
X Toolkit Intrinsics -
C Language Interface

X Window System

Joel McCormack, Digital Equipment Corporation
Paul Asente, Digital Equipment Corporation

Ralph R. Swick, Digital Equipment Corporation

X Toolkit Intrinsics - C Language Interface: X Window System
by Joel McCormack, Paul Asente, and Ralph R. Swick
X Version 11, Release 7.7

XWindow System is a trademark of X Consortium, Inc.

Copyright © 1985, 1986, 1987, 1988, 1991, 1994 X Consortium

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated docu-
mentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to
promote the sale, use or other dealings in this Software without prior written authorization from the X Consortium.

Copyright © 1985, 1986, 1987, 1988, 1991, 1994 Digital Equipment Corporation, Maynard, Massachusetts.

Permission to use, copy, modify and distribute this documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appears in all copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Digital not be used in in advertising or publicity
pertaining to distribution of the software without specific, written prior permission. Digital makes no representations
about the suitability of the software described herein for any purpose. It is provided "as is" without express or
implied warranty.

i

Acknowledgments
The design of the X11 Intrinsics was done primarily by Joel McCormack of Digi-
tal WSL. Major contributions to the design and implementation also were done by
Charles Haynes, Mike Chow, and Paul Asente of Digital WSL. Additional contribu-
tors to the design and/or implementation were:

Loretta Guarino-Reid (Digital WSL) Rich Hyde (Digital WSL)
Susan Angebranndt (Digital WSL) Terry Weissman (Digital WSL)
Mary Larson (Digital UEG) Mark Manasse (Digital SRC)
Jim Gettys (Digital SRC) Leo Treggiari (Digital SDT)
Ralph Swick (Project Athena and Digital
ERP)

Mark Ackerman (Project Athena)

Ron Newman (Project Athena) Bob Scheifler (MIT LCS)

The contributors to the X10 toolkit also deserve mention. Although the X11 Intrin-
sics present an entirely different programming style, they borrow heavily from the
implicit and explicit concepts in the X10 toolkit.

The design and implementation of the X10 Intrinsics were done by:

Terry Weissman (Digital WSL)
Smokey Wallace (Digital WSL)
Phil Karlton (Digital WSL)
Charles Haynes (Digital WSL)
Frank Hall (HP)

The design and implementation of the X10 toolkit’s sample widgets were by the
above, as well as by:

Ram Rao (Digital UEG)
Mary Larson (Digital UEG)
Mike Gancarz (Digital UEG)
Kathleen Langone (Digital UEG)

These widgets provided a checklist of requirements that we had to address in the
X11 Intrinsics.

Thanks go to Al Mento of Digital’s UEG Documentation Group for formatting and
generally improving this document and to John Ousterhout of Berkeley for exten-
sively reviewing early drafts of it.

Finally, a special thanks to Mike Chow, whose extensive performance analysis of the
X10 toolkit provided the justification to redesign it entirely for X11.

Joel McCormack
Western Software Laboratory
Digital Equipment Corporation

Acknowledgments

ii

March 1988

The current design of the Intrinsics has benefited greatly from the input of several
dedicated reviewers in the membership of the X Consortium. In addition to those
already mentioned, the following individuals have dedicated significant time to sug-
gesting improvements to the Intrinsics:

Steve Pitschke (Stellar) C.Doug Blewett (AT&T)
Bob Miller (HP) David Schiferl (Tektronix)
Fred Taft (HP) Michael Squires (Sequent)
Marcel Meth (AT&T) JimFulton (MIT)
Mike Collins (Digital) Kerry Kimbrough (Texas Instruments)
Scott McGregor (Digital) Phil Karlton (Digital)
Julian Payne (ESS) Jacques Davy (Bull)
Gabriel Beged-Dov (HP) GlennWidener (Tektronix)

Thanks go to each of them for the countless hours spent reviewing drafts and code.

Ralph R. Swick
External Research Group
Digital Equipment Corporation
MIT Project Athena
June 1988

From Release 3 to Release 4, several new members joined the design team. We
greatly appreciate the thoughtful comments, suggestions, lengthy discussions, and
in some cases implementation code contributed by each of the following:

Don Alecci (AT&T) EllisCohen (OSF)
Donna Converse (MIT) Clive Feather (IXI)
Nayeem Islam (Sun) Dana Laursen (HP)
Keith Packard (MIT) Chris Peterson (MIT)
Richard Probst (Sun) Larry Cable (Sun)

In Release 5, the effort to define the internationalization additions was headed by
Bill McMahon of Hewlett Packard and Frank Rojas of IBM. This has been an educa-
tional process for many of us, and Bill and Frank’s tutelage has carried us through.
Vania Joloboff of the OSF also contributed to the internationalization additions. The
implementation efforts of Bill, Gabe Beged-Dov, and especially Donna Converse for
this release are also gratefully acknowledged.

Ralph R. Swick
December 1989
and
July 1991

The Release 6 Intrinsics is a result of the collaborative efforts of participants in the
X Consortium’s intrinsics working group. A few individuals contributed substantial
design proposals, participated in lengthy discussions, reviewed final specifications,

Acknowledgments

iii

and in most cases, were also responsible for sections of the implementation. They
deserve recognition and thanks for their major contributions:

Paul Asente (Adobe) Larry Cable (SunSoft)
Ellis Cohen (OSF) Daniel Dardailler (OSF)
Vania Joloboff (OSF) KalebKeithley (X Consortium)
Courtney Loomis (HP) Douglas Rand (OSF)
Bob Scheifler (X Consortium) Ajay Vohra (SunSoft)

Many others analyzed designs, offered useful comments and suggestions, and
participated in a significant subset of the process. The following people deserve
thanks for their contributions: Andy Bovingdon, Sam Chang, Chris Craig, George
Erwin-Grotsky, Keith Edwards, Clive Feather, Stephen Gildea, Dan Heller, Steve
Humphrey, David Kaelbling, Jaime Lau, Rob Lembree, Stuart Marks, Beth Mynatt,
Tom Paquin, Chris Peterson, Kamesh Ramakrishna, Tom Rodriguez, Jim VanGilder,
Will Walker, and Mike Wexler.

I am especially grateful to two of my colleagues: Ralph Swick for expert editorial
guidance, and Kaleb Keithley for leadership in the implementation and the specifi-
cation work.

Donna Converse
X Consortium
April 1994

iv

Table of Contents
About This Manual ... ix
1. Intrinsics and Widgets .. 1

Intrinsics .. 1
Languages .. 1
Procedures and Macros ... 2
Widgets ... 2

Core Widgets .. 3
Composite Widgets ... 6
Constraint Widgets ... 9

Implementation-Specific Types .. 10
Widget Classing ... 11

Widget Naming Conventions .. 12
Widget Subclassing in Public .h Files .. 13
Widget Subclassing in Private .h Files ... 14
Widget Subclassing in .c Files ... 15
Widget Class and Superclass Look Up ... 18
Widget Subclass Verification .. 18
Superclass Chaining ... 19
Class Initialization: class_initialize and class_part_initialize Proce-
dures ... 21
Initializing a Widget Class ... 22
Inheritance of Superclass Operations .. 22
Invocation of Superclass Operations .. 24
Class Extension Records .. 24

2. Widget Instantiation .. 27
Initializing the X Toolkit .. 27
Establishing the Locale .. 31
Loading the Resource Database .. 32
Parsing the Command Line ... 35
Creating Widgets ... 37

Creating and Merging Argument Lists .. 38
Creating a Widget Instance ... 40
Creating an Application Shell Instance .. 42
Convenience Procedure to Initialize an Application 43
Widget Instance Allocation: The allocate Procedure 45
Widget Instance Initialization: The initialize Procedure 46
Constraint Instance Initialization: The ConstraintClassPart initialize
Procedure ... 48
Nonwidget Data Initialization: The initialize_hook Procedure 48

Realizing Widgets .. 48
Widget Instance Window Creation: The realize Procedure 50
Window Creation Convenience Routine ... 51

Obtaining Window Information from a Widget .. 51
Unrealizing Widgets ... 53

Destroying Widgets .. 53
Adding and Removing Destroy Callbacks .. 55
Dynamic Data Deallocation: The destroy Procedure 55
Dynamic Constraint Data Deallocation: The ConstraintClassPart de-
stroy Procedure .. 56
Widget Instance Deallocation: The deallocate Procedure 56

Exiting from an Application ... 56

X Toolkit Intrinsics -
C Language Interface

v

3. Composite Widgets and Their Children .. 58
Addition of Children to a Composite Widget: The insert_child Procedure
... 59
Insertion Order of Children: The insert_position Procedure 59
Deletion of Children: The delete_child Procedure 60
Adding and Removing Children from the Managed Set 60

Managing Children ... 60
Unmanaging Children .. 62
Bundling Changes to the Managed Set .. 63
Determining if a Widget Is Managed ... 65

Controlling When Widgets Get Mapped .. 65
Constrained Composite Widgets .. 66

4. Shell Widgets .. 68
Shell Widget Definitions .. 68

ShellClassPart Definitions .. 69
ShellPart Definition .. 72
Shell Resources .. 75
ShellPart Default Values ... 77

Session Participation .. 83
Joining a Session .. 83
Saving Application State .. 84
Responding to a Shutdown .. 87
Resigning from a Session ... 87

5. Pop-Up Widgets ... 89
Pop-Up Widget Types ... 89
Creating a Pop-Up Shell .. 90
Creating Pop-Up Children .. 91
Mapping a Pop-Up Widget ... 91
Unmapping a Pop-Up Widget .. 94

6. Geometry Management ... 96
Initiating Geometry Changes ... 96
General Geometry Manager Requests ... 97
Resize Requests ... 99
Potential Geometry Changes ... 99
Child Geometry Management: The geometry_manager Procedure 100
Widget Placement and Sizing .. 101
Preferred Geometry ... 103
Size Change Management: The resize Procedure 105

7. Event Management ... 106
Adding and Deleting Additional Event Sources ... 106

Adding and Removing Input Sources ... 106
Adding and Removing Blocking Notifications 108
Adding and Removing Timeouts ... 108
Adding and Removing Signal Callbacks ... 109

Constraining Events to a Cascade of Widgets ... 111
Requesting Key and Button Grabs ... 112

Focusing Events on a Child ... 115
Events for Drawables That Are Not a Widget's Window 116

Querying Event Sources .. 117
Dispatching Events .. 118
The Application Input Loop ... 119
Setting and Checking the Sensitivity State of a Widget 120
Adding Background Work Procedures ... 121
X Event Filters ... 122

X Toolkit Intrinsics -
C Language Interface

vi

Pointer Motion Compression .. 122
Enter/Leave Compression ... 122
Exposure Compression ... 122

Widget Exposure and Visibility .. 124
Redisplay of a Widget: The expose Procedure 124
Widget Visibility ... 125

X Event Handlers ... 125
Event Handlers That Select Events ... 126
Event Handlers That Do Not Select Events 128
Current Event Mask ... 129
Event Handlers for X11 Protocol Extensions 130

Using the Intrinsics in a Multi-Threaded Environment 134
Initializing a Multi-Threaded Intrinsics Application 134
Locking X Toolkit Data Structures ... 134
Event Management in a Multi-Threaded Environment 136

8. Callbacks ... 137
Using Callback Procedure and Callback List Definitions 137
Identifying Callback Lists .. 138
Adding Callback Procedures .. 138
Removing Callback Procedures ... 139
Executing Callback Procedures ... 139
Checking the Status of a Callback List ... 140

9. Resource Management .. 141
Resource Lists .. 141
Byte Offset Calculations .. 146
Superclass-to-Subclass Chaining of Resource Lists 146
Subresources .. 147
Obtaining Application Resources ... 148
Resource Conversions .. 149

Predefined Resource Converters .. 149
New Resource Converters .. 152
Issuing Conversion Warnings ... 155
Registering a New Resource Converter ... 156
Resource Converter Invocation .. 159

Reading and Writing Widget State .. 162
Obtaining Widget State .. 162
Setting Widget State .. 164

10. Translation Management .. 170
Action Tables .. 170

Action Table Registration ... 171
Action Names to Procedure Translations ... 172
Action Hook Registration ... 172

Translation Tables .. 173
Event Sequences .. 174
Action Sequences ... 174
Multi-Click Time ... 174

Translation Table Management ... 175
Using Accelerators ... 177
KeyCode-to-KeySym Conversions ... 178
Obtaining a KeySym in an Action Procedure ... 181
KeySym-to-KeyCode Conversions ... 182
Registering Button and Key Grabs for Actions .. 182
Invoking Actions Directly ... 183
Obtaining a Widget's Action List ... 184

X Toolkit Intrinsics -
C Language Interface

vii

11. Utility Functions .. 185
Determining the Number of Elements in an Array 185
Translating Strings to Widget Instances ... 185
Managing Memory Usage .. 186
Sharing Graphics Contexts .. 187
Managing Selections .. 189

Setting and Getting the Selection Timeout Value 189
Using Atomic Transfers .. 190
Using Incremental Transfers .. 195
Setting and Retrieving Selection Target Parameters 200
Generating MULTIPLE Requests .. 202
Auxiliary Selection Properties .. 203
Retrieving the Most Recent Timestamp ... 203
Retrieving the Most Recent Event ... 204

Merging Exposure Events into a Region ... 204
Translating Widget Coordinates .. 204
Translating a Window to a Widget .. 205
Handling Errors ... 205
Setting WM_COLORMAP_WINDOWS .. 209
Finding File Names .. 210
Hooks for External Agents ... 213

Hook Object Resources .. 214
Querying Open Displays ... 218

12. Nonwidget Objects .. 219
Data Structures .. 219
Object Objects .. 219

ObjectClassPart Structure .. 219
ObjectPart Structure .. 221
Object Resources .. 221
ObjectPart Default Values .. 221
Object Arguments to Intrinsics Routines ... 221
Use of Objects .. 222

Rectangle Objects .. 223
RectObjClassPart Structure .. 223
RectObjPart Structure .. 224
RectObj Resources ... 225
RectObjPart Default Values .. 225
Widget Arguments to Intrinsics Routines .. 225
Use of Rectangle Objects ... 225

Undeclared Class ... 227
Widget Arguments to Intrinsics Routines .. 227

13. Evolution of the Intrinsics ... 229
Determining Specification Revision Level ... 229
Release 3 to Release 4 Compatibility .. 229

Additional Arguments ... 229
set_values_almost Procedures .. 230
Query Geometry ... 230
unrealizeCallback Callback List ... 230
Subclasses of WMShell .. 230
Resource Type Converters ... 231
KeySym Case Conversion Procedure ... 231
Nonwidget Objects ... 231

Release 4 to Release 5 Compatibility .. 231
baseTranslations Resource ... 231

X Toolkit Intrinsics -
C Language Interface

viii

Resource File Search Path ... 232
Customization Resource ... 232
Per-Screen Resource Database .. 232
Internationalization of Applications ... 233
Permanently Allocated Strings ... 233
Arguments to Existing Functions ... 233

Release 5 to Release 6 Compatibility .. 233
Widget Internals ... 234
General Application Development .. 234
Communication with Window and Session Managers 234
Geometry Management .. 235
Event Management ... 235
Resource Management ... 236
Translation Management .. 236
Selections .. 236
External Agent Hooks .. 236

A. Resource File Format ... 237
B. Translation Table Syntax .. 238
C. Compatibility Functions .. 246
D. Intrinsics Error Messages ... 256
E. Defined Strings ... 265
F. Resource Configuration Management ... 276

ix

About This Manual
X Toolkit Intrinsics — C Language Interface is intended to be read by both applica-
tion programmers who will use one or more of the many widget sets built with the
Intrinsics and by widget programmers who will use the Intrinsics to build widgets
for one of the widget sets. Not all the information in this manual, however, applies
to both audiences. That is, because the application programmer is likely to use only
a number of the Intrinsics functions in writing an application and because the wid-
get programmer is likely to use many more, if not all, of the Intrinsics functions in
building a widget, an attempt has been made to highlight those areas of informa-
tion that are deemed to be of special interest for the application programmer. (It is
assumed the widget programmer will have to be familiar with all the information.)
Therefore, all entries in the table of contents that are printed in bold indicate the
information that should be of special interest to an application programmer.

It is also assumed that, as application programmers become more familiar with the
concepts discussed in this manual, they will find it more convenient to implement
portions of their applications as special-purpose or custom widgets. It is possible,
nonetheless, to use widgets without knowing how to build them.

Conventions Used in this Manual
This document uses the following conventions:

• Global symbols are printed in this special font. These can be either function
names, symbols defined in include files, data types, or structure names. Argu-
ments to functions, procedures, or macros are printed in italics.

• Each function is introduced by a general discussion that distinguishes it from oth-
er functions. The function declaration itself follows, and each argument is specif-
ically explained. General discussion of the function, if any is required, follows the
arguments.

• To eliminate any ambiguity between those arguments that you pass and those that
a function returns to you, the explanations for all arguments that you pass start
with the word specifies or, in the case of multiple arguments, the word specify.
The explanations for all arguments that are returned to you start with the word
returns or, in the case of multiple arguments, the word return.

1

Chapter 1. Intrinsics and Widgets
The Intrinsics are a programming library tailored to the special requirements of user
interface construction within a network window system, specifically the X Window
System. The Intrinsics and a widget set make up an X Toolkit.

Intrinsics
The Intrinsics provide the base mechanism necessary to build a wide variety of in-
teroperating widget sets and application environments. The Intrinsics are a layer
on top of Xlib, the C Library X Interface. They extend the fundamental abstractions
provided by the X Window System while still remaining independent of any partic-
ular user interface policy or style.

The Intrinsics use object-oriented programming techniques to supply a consistent
architecture for constructing and composing user interface components, known as
widgets. This allows programmers to extend a widget set in new ways, either by
deriving new widgets from existing ones (subclassing) or by writing entirely new
widgets following the established conventions.

When the Intrinsics were first conceived, the root of the object hierarchy was a wid-
get class named Core. In Release 4 of the Intrinsics, three nonwidget superclasses
were added above Core. These superclasses are described in Chapter 12, Nonwid-
get Objects. The name of the class now at the root of the Intrinsics class hierarchy
is Object. The remainder of this specification refers uniformly to widgets and Core
as if they were the base class for all Intrinsics operations. The argument descrip-
tions for each Intrinsics procedure and Chapter 12, Nonwidget Objects describe
which operations are defined for the nonwidget superclasses of Core. The reader
may determine by context whether a specific reference to widget actually means
``widget'' or ``object.''

Languages
The Intrinsics are intended to be used for two programming purposes. Programmers
writing widgets will be using most of the facilities provided by the Intrinsics to con-
struct user interface components from the simple, such as buttons and scrollbars,
to the complex, such as control panels and property sheets. Application program-
mers will use a much smaller subset of the Intrinsics procedures in combination
with one or more sets of widgets to construct and present complete user interfaces
on an X display. The Intrinsics programming interfaces primarily intended for ap-
plication use are designed to be callable from most procedural programming lan-
guages. Therefore, most arguments are passed by reference rather than by value.
The interfaces primarily intended for widget programmers are expected to be used
principally from the C language. In these cases, the usual C programming conven-
tions apply. In this specification, the term client refers to any module, widget, or
application that calls an Intrinsics procedure.

Applications that use the Intrinsics mechanisms must include the header files <X11/
Intrinsic.h> and <X11/StringDefs.h>, or their equivalent, and they may also in-
clude <X11/Xatoms.h> and <X11/Shell.h>. In addition, widget implementations
should include <X11/IntrinsicP.h> instead of <X11/Intrinsic.h>.

Intrinsics and Widgets

2

The applications must also include the additional header files for each wid-
get class that they are to use (for example, <X11/Xaw/Label.h> or <X11/Xaw/
Scrollbar.h>). On a POSIX-based system, the Intrinsics object library file is named
libXt.a and is usually referenced as \-lXt when linking the application.

Procedures and Macros
All functions defined in this specification except those specified below may be im-
plemented as C macros with arguments. C applications may use ``#undef'' to re-
move a macro definition and ensure that the actual function is referenced. Any such
macro will expand to a single expression that has the same precedence as a func-
tion call and that evaluates each of its arguments exactly once, fully protected by
parentheses, so that arbitrary expressions may be used as arguments.

The following symbols are macros that do not have function equivalents and that
may expand their arguments in a manner other than that described above: XtCheck-
Subclass, XtNew, XtNumber, XtOffsetOf, XtOffset, and XtSetArg.

Widgets
The fundamental abstraction and data type of the X Toolkit is the widget, which is
a combination of an X window and its associated input and display semantics and
which is dynamically allocated and contains state information. Some widgets display
information (for example, text or graphics), and others are merely containers for
other widgets (for example, a menu box). Some widgets are output-only and do not
react to pointer or keyboard input, and others change their display in response to
input and can invoke functions that an application has attached to them.

Every widget belongs to exactly one widget class, which is statically allocated and
initialized and which contains the operations allowable on widgets of that class.
Logically, a widget class is the procedures and data associated with all widgets be-
longing to that class. These procedures and data can be inherited by subclasses.
Physically, a widget class is a pointer to a structure. The contents of this structure
are constant for all widgets of the widget class but will vary from class to class.
(Here, ``constant'' means the class structure is initialized at compile time and nev-
er changed, except for a one-time class initialization and in-place compilation of
resource lists, which takes place when the first widget of the class or subclass is
created.) For further information, see the section called “Creating Widgets”

The distribution of the declarations and code for a new widget class among a pub-
lic .h file for application programmer use, a private .h file for widget programmer
use, and the implementation .c file is described in the section called “Widget Class-
ing” The predefined widget classes adhere to these conventions.

A widget instance is composed of two parts:

• A data structure which contains instance-specific values.
• A class structure which contains information that is applicable to all widgets of

that class.

Much of the input/output of a widget (for example, fonts, colors, sizes, or border
widths) is customizable by users.

Intrinsics and Widgets

3

This chapter discusses the base widget classes, Core, Composite, and Constraint,
and ends with a discussion of widget classing.

Core Widgets
The Core widget class contains the definitions of fields common to all widgets. All
widgets classes are subclasses of the Core class, which is defined by the CoreClass-
Part and CorePart structures.

CoreClassPart Structure

All widget classes contain the fields defined in the CoreClassPart structure.

typedef struct {
 WidgetClass superclass; See Section
 String class_name; See Chapter 9
 Cardinal widget_size; See Section
 XtProc class_initialize; See Section
 XtWidgetClassProc class_part_initialize; See Section
 XtEnum class_inited; See Section
 XtInitProc initialize; See Section
 XtArgsProc initialize_hook; See Section
 XtRealizeProc realize; See Section
 XtActionList actions; See Chapter 10
 Cardinal num_actions; See Chapter 10
 XtResourceList resources; See Chapter 9
 Cardinal num_resources; See Chapter 9
 XrmClass xrm_class; Private to resource manager
 Boolean compress_motion; See Section
 XtEnum compress_exposure; See Section
 Boolean compress_enterleave; See Section
 Boolean visible_interest; See Section
 XtWidgetProc destroy; See Section
 XtWidgetProc resize; See Chapter 6
 XtExposeProc expose; See Section
 XtSetValuesFunc set_values; See Section
 XtArgsFunc set_values_hook; See Section
 XtAlmostProc set_values_almost; See Section
 XtArgsProc get_values_hook; See Section
 XtAcceptFocusProc accept_focus; See Section
 XtVersionType version; See Section
 XtPointer callback_private; Private to callbacks
 String tm_table; See Chapter 10
 XtGeometryHandler query_geometry; See Chapter 6
 XtStringProc display_accelerator; See Chapter 10
 XtPointer extension; See Section
} CoreClassPart;

All widget classes have the Core class fields as their first component. The prototyp-
ical WidgetClass and CoreWidgetClass are defined with only this set of fields.

typedef struct {

Intrinsics and Widgets

4

 CoreClassPart core_class;
} WidgetClassRec, *WidgetClass, CoreClassRec, *CoreWidgetClass;

Various routines can cast widget class pointers, as needed, to specific widget class
types.

The single occurrences of the class record and pointer for creating instances of
Core are

In IntrinsicP.h:

extern WidgetClassRec widgetClassRec;
#define coreClassRec widgetClassRec

In Intrinsic.h:

extern WidgetClass widgetClass, coreWidgetClass;

The opaque types Widget and WidgetClass and the opaque variable widgetClass
are defined for generic actions on widgets. In order to make these types opaque
and ensure that the compiler does not allow applications to access private data, the
Intrinsics use incomplete structure definitions in Intrinsic.h:

typedef struct _WidgetClassRec *WidgetClass, *CoreWidgetClass;

CorePart Structure

All widget instances contain the fields defined in the CorePart structure.

typedef struct _CorePart {
 Widget self; Described below
 WidgetClass widget_class; See Section
 Widget parent; See Section
 Boolean being_destroyed; See Section
 XtCallbackList destroy_callbacks; Section
 XtPointer constraints; See Section
 Position x; See Chapter 6
 Position y; See Chapter 6
 Dimension width; See Chapter 6
 Dimension height; See Chapter 6
 Dimension border_width; See Chapter 6
 Boolean managed; See Chapter 3
 Boolean sensitive; See Section
 Boolean ancestor_sensitive; See Section
 XtTranslations accelerators; See Chapter 10
 Pixel border_pixel; See Section
 Pixmap border_pixmap; See Section
 WidgetList popup_list; See Chapter 5
 Cardinal num_popups; See Chapter 5
 String name; See Chapter 9
 Screen *screen; See Section
 Colormap colormap; See Section

Intrinsics and Widgets

5

 Window window; See Section
 Cardinal depth; See Section
 Pixel background_pixel; See Section
 Pixmap background_pixmap; See Section
 Boolean visible; See Section
 Boolean mapped_when_managed; See Chapter 3
} CorePart;

All widget instances have the Core fields as their first component. The prototypical
type Widget is defined with only this set of fields.

typedef struct {
 CorePart core;
} WidgetRec, *Widget, CoreRec, *CoreWidget;

Various routines can cast widget pointers, as needed, to specific widget types.

In order to make these types opaque and ensure that the compiler does not allow
applications to access private data, the Intrinsics use incomplete structure defini-
tions in Intrinsic.h.

typedef struct _WidgetRec *Widget, *CoreWidget;

Core Resources

The resource names, classes, and representation types specified in the coreClass-
Rec resource list are

Name Class Representation
XtNaccelerators XtCAccelerators XtRAcceleratorTable
XtNbackground XtCBackground XtRPixel
XtNbackgroundPixmap XtCPixmap XtRPixmap
XtNborderColor XtCBorderColor XtRPixel
XtNborderPixmap XtCPixmap XtRPixmap
XtNcolormap XtCColormap XtRColormap
XtNdepth XtCDepth XtRInt
XtNmappedWhenMan-
aged

XtCMappedWhenMan-
aged

XtRBoolean

XtNscreen XtCScreen XtRScreen
XtNtranslations XtCTranslations XtRTranslationTable

Additional resources are defined for all widgets via the objectClassRec and rec-
tObjClassRec resource lists; see the section called “Object Objects” and the section
called “Rectangle Objects” for details.

CorePart Default Values

The default values for the Core fields, which are filled in by the Intrinsics, from the
resource lists, and by the initialize procedures, are

Intrinsics and Widgets

6

Field Default Value
self Address of the widget structure (may not be changed).
widget_class widget_class argument to XtCreateWidget (may not be

changed).
parent parent argument to XtCreateWidget (may not be

changed).
being_destroyed Parent's being_destroyed value.
destroy_callbacks NULL
constraints NULL
x 0
y 0
width 0
height 0
border_width 1
managed False

sensitive True

ancestor_sensitive logical AND of parent's sensitive and ancestor_sensitive
values.

accelerators NULL
border_pixel XtDefaultForeground

border_pixmap XtUnspecifiedPixmap

popup_list NULL
num_popups 0
name name argument to XtCreateWidget (may not be

changed).
screen Parent's screen; top-level widget gets screen from display

specifier (may not be changed).
colormap Parent's colormap value.
window NULL
depth Parent's depth; top-level widget gets root window depth.
background_pixel XtDefaultBackground

background_pixmap XtUnspecifiedPixmap

visible True

mapped_when_managedTrue

XtUnspecifiedPixmap is a symbolic constant guaranteed to be unequal to any valid
Pixmap id, None, and ParentRelative.

Composite Widgets
The Composite widget class is a subclass of the Core widget class (see Chapter 3,
Composite Widgets and Their Children). Composite widgets are intended to be con-
tainers for other widgets. The additional data used by composite widgets are de-
fined by the CompositeClassPart and CompositePart structures.

Intrinsics and Widgets

7

CompositeClassPart Structure

In addition to the Core class fields, widgets of the Composite class have the following
class fields.

typedef struct {
 XtGeometryHandler geometry_manager; See Chapter 6
 XtWidgetProc change_managed; See Chapter 3
 XtWidgetProc insert_child; See Chapter 3
 XtWidgetProc delete_child; See Chapter 3
 XtPointer extension; See Section
} CompositeClassPart;

The extension record defined for CompositeClassPart with record_type equal to
NULLQUARK is CompositeClassExtensionRec.

typedef struct {
 XtPointer next_extension; See Section
 XrmQuark record_type; See Section
 long version; See Section
 Cardinal record_size; See Section
 Boolean accepts_objects; See Section
 Boolean allows_change_managed_set; See Section
} CompositeClassExtensionRec, *CompositeClassExtension;

Composite classes have the Composite class fields immediately following the Core
class fields.

typedef struct {
 CoreClassPart core_class;
 CompositeClassPart composite_class;
} CompositeClassRec, *CompositeWidgetClass;

The single occurrences of the class record and pointer for creating instances of
Composite are

In IntrinsicP.h:

extern CompositeClassRec compositeClassRec;

In Intrinsic.h:

extern WidgetClass compositeWidgetClass;

The opaque types CompositeWidget and CompositeWidgetClass and the opaque
variable compositeWidgetClass are defined for generic operations on widgets
whose class is Composite or a subclass of Composite. The symbolic constant for
the CompositeClassExtension version identifier is XtCompositeExtensionVersion
(see the section called “Class Extension Records”). Intrinsic.h uses an incomplete
structure definition to ensure that the compiler catches attempts to access private
data.

Intrinsics and Widgets

8

typedef struct _CompositeClassRec *CompositeWidgetClass;

CompositePart Structure

In addition to the Core instance fields, widgets of the Composite class have the
following instance fields defined in the CompositePart structure.

typedef struct {
 WidgetList children; See Chapter 3
 Cardinal num_children; See Chapter 3
 Cardinal num_slots; See Chapter 3
 XtOrderProc insert_position; See Section
} CompositePart;

Composite widgets have the Composite instance fields immediately following the
Core instance fields.

typedef struct {
 CorePart core;
 CompositePart composite;
} CompositeRec, *CompositeWidget;

Intrinsic.h uses an incomplete structure definition to ensure that the compiler
catches attempts to access private data.

typedef struct _CompositeRec *CompositeWidget;

Composite Resources

The resource names, classes, and representation types that are specified in the
compositeClassRec resource list are

Name Class Representation
XtNchildren XtCReadOnly XtRWidgetList
XtNinsertPosition XtCInsertPosition XtRFunction
XtNnumChildren XtCReadOnly XtRCardinal

CompositePart Default Values

The default values for the Composite fields, which are filled in from the Composite
resource list and by the Composite initialize procedure, are

Field Default Value
children NULL
num_children 0
num_slots 0
insert_position Internal function to

insert at end

Intrinsics and Widgets

9

The children, num_children, and insert_position fields are declared as resources;
XtNinsertPosition is a settable resource, XtNchildren and XtNnumChildren may be
read by any client but should only be modified by the composite widget class pro-
cedures.

Constraint Widgets
The Constraint widget class is a subclass of the Composite widget class (see the sec-
tion called “Constrained Composite Widgets”). Constraint widgets maintain addi-
tional state data for each child; for example, client-defined constraints on the child's
geometry. The additional data used by constraint widgets are defined by the Con-
straintClassPart and ConstraintPart structures.

ConstraintClassPart Structure

In addition to the Core and Composite class fields, widgets of the Constraint class
have the following class fields.

typedef struct {
 XtResourceList resources; See Chapter 9
 Cardinal num_resources; See Chapter 9
 Cardinal constraint_size; See Section
 XtInitProc initialize; See Section
 XtWidgetProc destroy; See Section
 XtSetValuesFunc set_values; See Section
 XtPointer extension; See Section
} ConstraintClassPart;

The extension record defined for ConstraintClassPart with record_type equal to
NULLQUARK is ConstraintClassExtensionRec.

typedef struct {
 XtPointer next_extension; See Section
 XrmQuark record_type; See Section
 long version; See Section
 Cardinal record_size; See Section
 XtArgsProc get_values_hook; See Section
} ConstraintClassExtensionRec, *ConstraintClassExtension;

Constraint classes have the Constraint class fields immediately following the Com-
posite class fields.

typedef struct _ConstraintClassRec {
 CoreClassPart core_class;
 CompositeClassPart composite_class;
 ConstraintClassPart constraint_class;
} ConstraintClassRec, *ConstraintWidgetClass;

The single occurrences of the class record and pointer for creating instances of
Constraint are

In IntrinsicP.h:

Intrinsics and Widgets

10

extern ConstraintClassRec constraintClassRec;

In Intrinsic.h:

extern WidgetClass constraintWidgetClass;

The opaque types ConstraintWidget and ConstraintWidgetClass and the opaque
variable constraintWidgetClass are defined for generic operations on widgets
whose class is Constraint or a subclass of Constraint. The symbolic constant for the
ConstraintClassExtension version identifier is XtConstraintExtensionVersion
(see the section called “Class Extension Records”). Intrinsic.h uses an incomplete
structure definition to ensure that the compiler catches attempts to access private
data.

typedef struct _ConstraintClassRec *ConstraintWidgetClass;

ConstraintPart Structure

In addition to the Core and Composite instance fields, widgets of the Constraint
class have the following unused instance fields defined in the ConstraintPart struc-
ture

typedef struct {
 int empty;
} ConstraintPart;

Constraint widgets have the Constraint instance fields immediately following the
Composite instance fields.

typedef struct {
 CorePart core;
 CompositePart composite;
 ConstraintPart constraint;
} ConstraintRec, *ConstraintWidget;

Intrinsic.h uses an incomplete structure definition to ensure that the compiler
catches attempts to access private data.

typedef struct _ConstraintRec *ConstraintWidget;

Constraint Resources

The constraintClassRec core_class and constraint_class resources fields are
NULL, and the num_resources fields are zero; no additional resources beyond those
declared by the superclasses are defined for Constraint.

Implementation-Specific Types
To increase the portability of widget and application source code between different
system environments, the Intrinsics define several types whose precise represen-

Intrinsics and Widgets

11

tation is explicitly dependent upon, and chosen by, each individual implementation
of the Intrinsics.

These implementation-defined types are

Boolean A datum that contains a zero or nonzero value. Unless ex-
plicitly stated, clients should not assume that the nonze-
ro value is equal to the symbolic value True.

Cardinal An unsigned integer datum with a minimum range of
[0..2^16-1].

Dimension An unsigned integer datum with a minimum range of
[0..2^16-1].

Position A signed integer datum with a minimum range of
[-2^15..2^15-1].

XtPointer A datum large enough to contain the largest of a char*,
int*, function pointer, structure pointer, or long value. A
pointer to any type or function, or a long value may be
converted to an XtPointer and back again and the result
will compare equal to the original value. In ANSI C envi-
ronments it is expected that XtPointer will be defined
as void*.

XtArgVal A datum large enough to contain an XtPointer, Cardi-
nal, Dimension, or Position value.

XtEnum An integer datum large enough to encode at least 128
distinct values, two of which are the symbolic values
True and False. The symbolic values TRUE and FALSE
are also defined to be equal to True and False, respec-
tively.

In addition to these specific types, the precise order of the fields within the struc-
ture declarations for any of the instance part records ObjectPart, RectObjPart,
CorePart, CompositePart, ShellPart, WMShellPart, TopLevelShellPart, and Ap-
plicationShellPart is implementation-defined. These structures may also have
additional private fields internal to the implementation. The ObjectPart, RectObj-
Part, and CorePart structures must be defined so that any member with the same
name appears at the same offset in ObjectRec, RectObjRec, and CoreRec (Wid-
getRec). No other relations between the offsets of any two fields may be assumed.

Widget Classing
The widget_class field of a widget points to its widget class structure, which contains
information that is constant across all widgets of that class. As a consequence, wid-
gets usually do not implement directly callable procedures; rather, they implement
procedures, called methods, that are available through their widget class structure.
These methods are invoked by generic procedures that envelop common actions
around the methods implemented by the widget class. Such procedures are applic-
able to all widgets of that class and also to widgets whose classes are subclasses
of that class.

Intrinsics and Widgets

12

All widget classes are a subclass of Core and can be subclassed further. Subclass-
ing reduces the amount of code and declarations necessary to make a new widget
class that is similar to an existing class. For example, you do not have to describe
every resource your widget uses in an XtResourceList. Instead, you describe on-
ly the resources your widget has that its superclass does not. Subclasses usually
inherit many of their superclasses' procedures (for example, the expose procedure
or geometry handler).

Subclassing, however, can be taken too far. If you create a subclass that inherits
none of the procedures of its superclass, you should consider whether you have
chosen the most appropriate superclass.

To make good use of subclassing, widget declarations and naming conventions are
highly stylized. A widget consists of three files:

• A public .h file, used by client widgets or applications.
• A private .h file, used by widgets whose classes are subclasses of the widget class.
• A .c file, which implements the widget.

Widget Naming Conventions
The Intrinsics provide a vehicle by which programmers can create new widgets
and organize a collection of widgets into an application. To ensure that applications
need not deal with as many styles of capitalization and spelling as the number of
widget classes it uses, the following guidelines should be followed when writing
new widgets:

• Use the X library naming conventions that are applicable. For example, a record
component name is all lowercase and uses underscores (_) for compound words
(for example, background_pixmap). Type and procedure names start with upper-
case and use capitalization for compound words (for example, ArgList or XtSet-
Values).

• A resource name is spelled identically to the field name except that compound
names use capitalization rather than underscore. To let the compiler catch
spelling errors, each resource name should have a symbolic identifier prefixed
with ``XtN''. For example, the background_pixmap field has the corresponding
identifier XtNbackgroundPixmap, which is defined as the string ``background-
Pixmap''. Many predefined names are listed in <X11/StringDefs.h>. Before you
invent a new name, you should make sure there is not already a name that you
can use.

• A resource class string starts with a capital letter and uses capitalization for com-
pound names (for example,``BorderWidth''). Each resource class string should
have a symbolic identifier prefixed with ``XtC'' (for example, XtCBorderWidth).
Many predefined classes are listed in <X11/StringDefs.h>.

• A resource representation string is spelled identically to the type name (for ex-
ample, ``TranslationTable''). Each representation string should have a symbolic
identifier prefixed with ``XtR'' (for example, XtRTranslationTable). Many prede-
fined representation types are listed in <X11/StringDefs.h>.

• New widget classes start with a capital and use uppercase for compound words.
Given a new class name AbcXyz, you should derive several names:

• • Additional widget instance structure part name AbcXyzPart.
• Complete widget instance structure names AbcXyzRec and _AbcXyzRec.
• Widget instance structure pointer type name AbcXyzWidget.
• Additional class structure part name AbcXyzClassPart.

Intrinsics and Widgets

13

• Complete class structure names AbcXyzClassRec and _AbcXyzClassRec.
• Class structure pointer type name AbcXyzWidgetClass.
• Class structure variable abcXyzClassRec.
• Class structure pointer variable abcXyzWidgetClass.

• Action procedures available to translation specifications should follow the same
naming conventions as procedures. That is, they start with a capital letter, and
compound names use uppercase (for example, ``Highlight'' and ``NotifyClient'').

The symbolic identifiers XtN..., XtC..., and XtR... may be implemented as macros,
as global symbols, or as a mixture of the two. The (implicit) type of the identifier
is String. The pointer value itself is not significant; clients must not assume that
inequality of two identifiers implies inequality of the resource name, class, or repre-
sentation string. Clients should also note that although global symbols permit sav-
ings in literal storage in some environments, they also introduce the possibility of
multiple definition conflicts when applications attempt to use independently devel-
oped widgets simultaneously.

Widget Subclassing in Public .h Files
The public .h file for a widget class is imported by clients and contains

• A reference to the public .h file for the superclass.
• Symbolic identifiers for the names and classes of the new resources that this wid-

get adds to its superclass. The definitions should have a single space between the
definition name and the value and no trailing space or comment in order to reduce
the possibility of compiler warnings from similar declarations in multiple classes.

• Type declarations for any new resource data types defined by the class.
• The class record pointer variable used to create widget instances.
• The C type that corresponds to widget instances of this class.
• Entry points for new class methods.

For example, the following is the public .h file for a possible implementation of a
Label widget:

#ifndef LABEL_H
#define LABEL_H
/* New resources */
#define XtNjustify "justify"
#define XtNforeground "foreground"
#define XtNlabel "label"
#define XtNfont "font"
#define XtNinternalWidth "internalWidth"
#define XtNinternalHeight "internalHeight"
/* Class record pointer */
extern WidgetClass labelWidgetClass;
/* C Widget type definition */
typedef struct _LabelRec *LabelWidget;
/* New class method entry points */
extern void LabelSetText();
 /* Widget w */
 /* String text */
extern String LabelGetText();
 /* Widget w */

Intrinsics and Widgets

14

#endif LABEL_H

The conditional inclusion of the text allows the application to include header files
for different widgets without being concerned that they already may be included as
a superclass of another widget.

To accommodate operating systems with file name length restrictions, the name of
the public .h file is the first ten characters of the widget class. For example, the
public .h file for the Constraint widget class is Constraint.h.

Widget Subclassing in Private .h Files
The private .h file for a widget is imported by widget classes that are subclasses
of the widget and contains

• A reference to the public .h file for the class.
• A reference to the private .h file for the superclass.
• Symbolic identifiers for any new resource representation types defined by the

class. The definitions should have a single space between the definition name and
the value and no trailing space or comment.

• A structure part definition for the new fields that the widget instance adds to its
superclass's widget structure.

• The complete widget instance structure definition for this widget.
• A structure part definition for the new fields that this widget class adds to its

superclass's constraint structure if the widget class is a subclass of Constraint.
• The complete constraint structure definition if the widget class is a subclass of

Constraint.
• Type definitions for any new procedure types used by class methods declared in

the widget class part.
• A structure part definition for the new fields that this widget class adds to its

superclass's widget class structure.
• The complete widget class structure definition for this widget.
• The complete widget class extension structure definition for this widget, if any.
• The symbolic constant identifying the class extension version, if any.
• The name of the global class structure variable containing the generic class struc-

ture for this class.
• An inherit constant for each new procedure in the widget class part structure.

For example, the following is the private .h file for a possible Label widget:

#ifndef LABELP_H
#define LABELP_H
#include <X11/Label.h>
/* New representation types used by the Label widget */
#define XtRJustify "Justify"
/* New fields for the Label widget record */
typedef struct {
/* Settable resources */
 Pixel foreground;
 XFontStruct *font;
 String label; /* text to display */
 XtJustify justify;

Intrinsics and Widgets

15

 Dimension internal_width; /* # pixels horizontal border */
 Dimension internal_height; /* # pixels vertical border */
/* Data derived from resources */
 GC normal_GC;
 GC gray_GC;
 Pixmap gray_pixmap;
 Position label_x;
 Position label_y;
 Dimension label_width;
 Dimension label_height;
 Cardinal label_len;
 Boolean display_sensitive;
} LabelPart;

/* Full instance record declaration */
typedef struct _LabelRec {
 CorePart core;
 LabelPart label;
} LabelRec;
/* Types for Label class methods */
typedef void (*LabelSetTextProc)();
 /* Widget w */
 /* String text */
typedef String (*LabelGetTextProc)();
 /* Widget w */
/* New fields for the Label widget class record */
typedef struct {
 LabelSetTextProc set_text;
 LabelGetTextProc get_text;
 XtPointer extension;
} LabelClassPart;
/* Full class record declaration */
typedef struct _LabelClassRec {
 CoreClassPart core_class;
 LabelClassPart label_class;
} LabelClassRec;
/* Class record variable */
extern LabelClassRec labelClassRec;
#define LabelInheritSetText((LabelSetTextProc)_XtInherit)
#define LabelInheritGetText((LabelGetTextProc)_XtInherit)
#endif LABELP_H

To accommodate operating systems with file name length restrictions, the name of
the private .h file is the first nine characters of the widget class followed by a capital
P. For example, the private .h file for the Constraint widget class is ConstrainP.h.

Widget Subclassing in .c Files
The .c file for a widget contains the structure initializer for the class record variable,
which contains the following parts:

• Class information (for example, superclass, class_name, widget_size,
class_initialize, and class_inited).

Intrinsics and Widgets

16

• Data constants (for example, resources and num_resources, actions and
num_actions, visible_interest, compress_motion, compress_exposure, and ver-
sion).

• Widget operations (for example, initialize, realize, destroy, resize, expose,
set_values, accept_focus, and any new operations specific to the widget).

The superclass field points to the superclass global class record, declared in the
superclass private .h file. For direct subclasses of the generic core widget, super-
class should be initialized to the address of the widgetClassRec structure. The su-
perclass is used for class chaining operations and for inheriting or enveloping a
superclass's operations (see the section called “Superclass Chaining”, the section
called “Initializing a Widget Class”, and the section called “Inheritance of Super-
class Operations”.

The class_name field contains the text name for this class, which is used by the
resource manager. For example, the Label widget has the string ``Label''. More
than one widget class can share the same text class name. This string must be
permanently allocated prior to or during the execution of the class initialization
procedure and must not be subsequently deallocated.

The widget_size field is the size of the corresponding widget instance structure (not
the size of the class structure).

The version field indicates the toolkit implementation version number and is used
for runtime consistency checking of the X Toolkit and widgets in an application.
Widget writers must set it to the implementation-defined symbolic value XtVersion
in the widget class structure initialization. Those widget writers who believe that
their widget binaries are compatible with other implementations of the Intrinsics
can put the special value XtVersionDontCheck in the version field to disable version
checking for those widgets. If a widget needs to compile alternative code for differ-
ent revisions of the Intrinsics interface definition, it may use the symbol XtSpeci-
ficationRelease, as described in Chapter 13, Evolution of the Intrinsics. Use of
XtVersion allows the Intrinsics implementation to recognize widget binaries that
were compiled with older implementations.

The extension field is for future upward compatibility. If the widget programmer
adds fields to class parts, all subclass structure layouts change, requiring complete
recompilation. To allow clients to avoid recompilation, an extension field at the end
of each class part can point to a record that contains any additional class information
required.

All other fields are described in their respective sections.

The .c file also contains the declaration of the global class structure pointer variable
used to create instances of the class. The following is an abbreviated version of the .c
file for a Label widget. The resources table is described in Chapter 9, Resource
Management.

/* Resources specific to Label */
static XtResource resources[] = {
 {XtNforeground, XtCForeground, XtRPixel, sizeof(Pixel),
 XtOffset(LabelWidget, label.foreground), XtRString,
 XtDefaultForeground},
 {XtNfont, XtCFont, XtRFontStruct, sizeof(XFontStruct *),

Intrinsics and Widgets

17

 XtOffset(LabelWidget, label.font),XtRString,
 XtDefaultFont},
 {XtNlabel, XtCLabel, XtRString, sizeof(String),
 XtOffset(LabelWidget, label.label), XtRString, NULL},
 .
 .
 .
}
/* Forward declarations of procedures */
static void ClassInitialize();
static void Initialize();
static void Realize();
static void SetText();
static void GetText();
 .
 .
 .

/* Class record constant */
LabelClassRec labelClassRec = {
 {
 /* core_class fields */
 /* superclass */ (WidgetClass)&coreClassRec,
 /* class_name */ "Label",
 /* widget_size */ sizeof(LabelRec),
 /* class_initialize */ ClassInitialize,
 /* class_part_initialize */ NULL,
 /* class_inited */ False,
 /* initialize */ Initialize,
 /* initialize_hook */ NULL,
 /* realize */ Realize,
 /* actions */ NULL,
 /* num_actions */ 0,
 /* resources */ resources,
 /* num_resources */ XtNumber(resources),
 /* xrm_class */ NULLQUARK,
 /* compress_motion */ True,
 /* compress_exposure */ True,
 /* compress_enterleave */ True,
 /* visible_interest */ False,
 /* destroy */ NULL,
 /* resize */ Resize,
 /* expose */ Redisplay,
 /* set_values */ SetValues,
 /* set_values_hook */ NULL,
 /* set_values_almost */ XtInheritSetValuesAlmost,
 /* get_values_hook */ NULL,
 /* accept_focus */ NULL,
 /* version */ XtVersion,
 /* callback_offsets */ NULL,
 /* tm_table */ NULL,
 /* query_geometry */ XtInheritQueryGeometry,
 /* display_accelerator */ NULL,

Intrinsics and Widgets

18

 /* extension */ NULL
 },
 {
 /* Label_class fields */
 /* get_text */ GetText,
 /* set_text */ SetText,
 /* extension */ NULL
 }
};
/* Class record pointer */
WidgetClass labelWidgetClass = (WidgetClass) &labelClassRec;
/* New method access routines */
void LabelSetText(w, text)
 Widget w;
 String text;
{
 LabelWidgetClass lwc = (Label WidgetClass)XtClass(w);
 XtCheckSubclass(w, labelWidgetClass, NULL);
 *(lwc->label_class.set_text)(w, text)
}
/* Private procedures */
 .
 .
 .

Widget Class and Superclass Look Up
To obtain the class of a widget, use XtClass.

WidgetClass XtClass(w);

w Specifies the widget. Must be of class Object or any subclass there-
of.

The XtClass function returns a pointer to the widget's class structure.

To obtain the superclass of a widget, use XtSuperclass.

WidgetClass XtSuperClass(w);

w Specifies the widget. Must be of class Object or any subclass there-
of.

The XtSuperclass function returns a pointer to the widget's superclass class struc-
ture.

Widget Subclass Verification
To check the subclass to which a widget belongs, use XtIsSubclass.

Boolean XtIsSubclass(w, widget_class);

w Specifies the widget or object instance whose class
is to be checked. Must be of class Object or any sub-
class thereof.

Intrinsics and Widgets

19

widget_class Specifies the widget class for which to test. Must be
objectClass or any subclass thereof.

The XtIsSubclass function returns True if the class of the specified widget is equal
to or is a subclass of the specified class. The widget's class can be any number of
subclasses down the chain and need not be an immediate subclass of the specified
class. Composite widgets that need to restrict the class of the items they contain
can use XtIsSubclass to find out if a widget belongs to the desired class of objects.

To test if a given widget belongs to a subclass of an Intrinsics-defined class, the In-
trinsics define macros or functions equivalent to XtIsSubclass for each of the built-
in classes. These procedures are XtIsObject, XtIsRectObj, XtIsWidget, XtIsCom-
posite, XtIsConstraint, XtIsShell, XtIsOverrideShell, XtIsWMShell, XtIsVen-
dorShell, XtIsTransientShell, XtIsTopLevelShell, XtIsApplicationShell, and
XtIsSessionShell.

All these macros and functions have the same argument description.

Boolean XtIs(w);

w Specifies the widget or object instance whose class is to be
checked. Must be of class Object or any subclass thereof.

These procedures may be faster than calling XtIsSubclass directly for the built-
in classes.

To check a widget's class and to generate a debugging error message, use XtCheck-
Subclass, defined in <X11/IntrinsicP.h>:

void XtCheckSubclass(w, widget_class, message);

w Specifies the widget or object whose class is to be
checked. Must be of class Object or any subclass
thereof.

widget_class Specifies the widget class for which to test. Must be
objectClass or any subclass thereof.

message Specifies the message to be used.

The XtCheckSubclass macro determines if the class of the specified widget is equal
to or is a subclass of the specified class. The widget's class can be any number of
subclasses down the chain and need not be an immediate subclass of the specified
class. If the specified widget's class is not a subclass, XtCheckSubclass constructs
an error message from the supplied message, the widget's actual class, and the
expected class and calls XtErrorMsg. XtCheckSubclass should be used at the entry
point of exported routines to ensure that the client has passed in a valid widget
class for the exported operation.

XtCheckSubclass is only executed when the module has been compiled with the
compiler symbol DEBUG defined; otherwise, it is defined as the empty string and
generates no code.

Superclass Chaining
While most fields in a widget class structure are self-contained, some fields are
linked to their corresponding fields in their superclass structures. With a linked

Intrinsics and Widgets

20

field, the Intrinsics access the field's value only after accessing its corresponding su-
perclass value (called downward superclass chaining) or before accessing its corre-
sponding superclass value (called upward superclass chaining). The self-contained
fields are

In all widget classes: class_name
 class_initialize
 widget_size
 realize
 visible_interest
 resize
 expose
 accept_focus
 compress_motion
 compress_exposure
 compress_enterleave
 set_values_almost
 tm_table
 version
 allocate
 deallocate

In Composite widget classes: geometry_manager
 change_managed
 insert_child
 delete_child
 accepts_objects
 allows_change_managed_set

In Constraint widget classes: constraint_size

In Shell widget classes: root_geometry_manager

With downward superclass chaining, the invocation of an operation first accesses
the field from the Object, RectObj, and Core class structures, then from the subclass
structure, and so on down the class chain to that widget's class structure. These
superclass-to-subclass fields are

 class_part_initialize
 get_values_hook
 initialize
 initialize_hook
 set_values
 set_values_hook
 resources

In addition, for subclasses of Constraint, the following fields of the Constraint-
ClassPart and ConstraintClassExtensionRec structures are chained from the
Constraint class down to the subclass:

 resources
 initialize

Intrinsics and Widgets

21

 set_values
 get_values_hook

With upward superclass chaining, the invocation of an operation first accesses the
field from the widget class structure, then from the superclass structure, and so on
up the class chain to the Core, RectObj, and Object class structures. The subclass-to-
superclass fields are

 destroy
 actions

For subclasses of Constraint, the following field of ConstraintClassPart is chained
from the subclass up to the Constraint class: destroy

Class Initialization: class_initialize and
class_part_initialize Procedures

Many class records can be initialized completely at compile or link time. In some
cases, however, a class may need to register type converters or perform other sorts
of once-only runtime initialization.

Because the C language does not have initialization procedures that are invoked
automatically when a program starts up, a widget class can declare a class_initialize
procedure that will be automatically called exactly once by the Intrinsics. A class
initialization procedure pointer is of type XtProc:

typedef void (*XtProc)(void);

A widget class indicates that it has no class initialization procedure by specifying
NULL in the class_initialize field.

In addition to the class initialization that is done exactly once, some classes perform
initialization for fields in their parts of the class record. These are performed not just
for the particular class, but for subclasses as well, and are done in the class's class
part initialization procedure, a pointer to which is stored in the class_part_initialize
field. The class_part_initialize procedure pointer is of type XtWidgetClassProc.

void (*XtWidgetClassProc)(WidgetClass)(widget_class);

widget_class Points to the class structure for the class being ini-
tialized.

During class initialization, the class part initialization procedures for the class and
all its superclasses are called in superclass-to-subclass order on the class record.
These procedures have the responsibility of doing any dynamic initializations nec-
essary to their class's part of the record. The most common is the resolution of any
inherited methods defined in the class. For example, if a widget class C has super-
classes Core, Composite, A, and B, the class record for C first is passed to Core 's
class_part_initialize procedure. This resolves any inherited Core methods and com-
piles the textual representations of the resource list and action table that are de-
fined in the class record. Next, Composite's class_part_initialize procedure is called
to initialize the composite part of C's class record. Finally, the class_part_initialize
procedures for A, B, and C, in that order, are called. For further information, see

Intrinsics and Widgets

22

the section called “Initializing a Widget Class” Classes that do not define any new
class fields or that need no extra processing for them can specify NULL in the
class_part_initialize field.

All widget classes, whether they have a class initialization procedure or not, must
start with their class_inited field False.

The first time a widget of a class is created, XtCreateWidget ensures that the widget
class and all superclasses are initialized, in superclass-to-subclass order, by check-
ing each class_inited field and, if it is False, by calling the class_initialize and the
class_part_initialize procedures for the class and all its superclasses. The Intrinsics
then set the class_inited field to a nonzero value. After the one-time initialization,
a class structure is constant.

The following example provides the class initialization procedure for a Label class.

static void ClassInitialize()
{
 XtSetTypeConverter(XtRString, XtRJustify, CvtStringToJustify,
 NULL, 0, XtCacheNone, NULL);
}

Initializing a Widget Class
A class is initialized when the first widget of that class or any subclass is created.
To initialize a widget class without creating any widgets, use XtInitializeWidget-
Class.

void XtInitializeWidgetClass(object_class);

object_class Specifies the object class to initialize. May be ob-
jectClass or any subclass thereof.

If the specified widget class is already initialized, XtInitializeWidgetClass re-
turns immediately.

If the class initialization procedure registers type converters, these type converters
are not available until the first object of the class or subclass is created or XtIni-
tializeWidgetClass is called (see the section called “Resource Conversions”).

Inheritance of Superclass Operations
A widget class is free to use any of its superclass's self-contained operations rather
than implementing its own code. The most frequently inherited operations are

• expose
• realize
• insert_child
• delete_child
• geometry_manager
• set_values_almost

To inherit an operation xyz, specify the constant XtInherit Xyz in your class record.

Intrinsics and Widgets

23

Every class that declares a new procedure in its widget class part must provide for
inheriting the procedure in its class_part_initialize procedure. The chained opera-
tions declared in Core and Constraint records are never inherited. Widget classes
that do nothing beyond what their superclass does specify NULL for chained pro-
cedures in their class records.

Inheriting works by comparing the value of the field with a known, special value
and by copying in the superclass's value for that field if a match occurs. This spe-
cial value, called the inheritance constant, is usually the Intrinsics internal value
_XtInherit cast to the appropriate type. _XtInherit is a procedure that issues an
error message if it is actually called.

For example, CompositeP.h contains these definitions:

#define XtInheritGeometryManager ((XtGeometryHandler) _XtInherit)
#define XtInheritChangeManaged ((XtWidgetProc) _XtInherit)
#define XtInheritInsertChild ((XtArgsProc) _XtInherit)
#define XtInheritDeleteChild ((XtWidgetProc) _XtInherit)

Composite's class_part_initialize procedure begins as follows:

static void CompositeClassPartInitialize(widgetClass)
 WidgetClass widgetClass;
{
 CompositeWidgetClass wc = (CompositeWidgetClass)widgetClass;
 CompositeWidgetClass super = (CompositeWidgetClass)wc->core_class.superclass;
 if (wc->composite_class.geometry_manager == XtInheritGeometryManager) {
 wc->composite_class.geometry_manager = super->composite_class.geometry_manager;
 }
 if (wc->composite_class.change_managed == XtInheritChangeManaged) {
 wc->composite_class.change_managed = super->composite_class.change_managed;
 }
 .
 .
 .

Nonprocedure fields may be inherited in the same manner as procedure fields. The
class may declare any reserved value it wishes for the inheritance constant for its
new fields. The following inheritance constants are defined:

For Object:

• XtInheritAllocate
• XtInheritDeallocate

For Core:

• XtInheritRealize
• XtInheritResize
• XtInheritExpose
• XtInheritSetValuesAlmost
• XtInheritAcceptFocus
• XtInheritQueryGeometry
• XtInheritTranslations

Intrinsics and Widgets

24

• XtInheritDisplayAccelerator

For Composite:

• XtInheritGeometryManager
• XtInheritChangeManaged
• XtInheritInsertChild
• XtInheritDeleteChild

For Shell:

• XtInheritRootGeometryManager

Invocation of Superclass Operations
A widget sometimes needs to call a superclass operation that is not chained. For
example, a widget's expose procedure might call its superclass's expose and then
perform a little more work on its own. For example, a Composite class with prede-
fined managed children can implement insert_child by first calling its superclass's
insert_child and then calling XtManageChild to add the child to the managed set.

Note
A class method should not use XtSuperclass but should instead call the
class method of its own specific superclass directly through the superclass
record. That is, it should use its own class pointers only, not the widget's
class pointers, as the widget's class may be a subclass of the class whose
implementation is being referenced.

This technique is referred to as enveloping the superclass's operation.

Class Extension Records
It may be necessary at times to add new fields to already existing widget class struc-
tures. To permit this to be done without requiring recompilation of all subclasses,
the last field in a class part structure should be an extension pointer. If no extension
fields for a class have yet been defined, subclasses should initialize the value of the
extension pointer to NULL.

If extension fields exist, as is the case with the Composite, Constraint, and Shell
classes, subclasses can provide values for these fields by setting the extension point-
er for the appropriate part in their class structure to point to a statically declared
extension record containing the additional fields. Setting the extension field is nev-
er mandatory; code that uses fields in the extension record must always check the
extension field and take some appropriate default action if it is NULL.

In order to permit multiple subclasses and libraries to chain extension records from
a single extension field, extension records should be declared as a linked list, and
each extension record definition should contain the following four fields at the be-
ginning of the structure declaration:

struct {
 XtPointer next_extension;

Intrinsics and Widgets

25

 XrmQuark record_type;
 long version;
 Cardinal record_size;
};

next_extension Specifies the next record in the list, or NULL.

record_type Specifies the particular structure declaration to
which each extension record instance conforms.

version Specifies a version id symbolic constant supplied by
the definer of the structure.

record_size Specifies the total number of bytes allocated for the
extension record.

The record_type field identifies the contents of the extension record and is used
by the definer of the record to locate its particular extension record in the list.
The record_type field is normally assigned the result of XrmStringToQuark for a
registered string constant. The Intrinsics reserve all record type strings beginning
with the two characters ``XT'' for future standard uses. The value NULLQUARK
may also be used by the class part owner in extension records attached to its own
class part extension field to identify the extension record unique to that particular
class.

The version field is an owner-defined constant that may be used to identify binary
files that have been compiled with alternate definitions of the remainder of the ex-
tension record data structure. The private header file for a widget class should pro-
vide a symbolic constant for subclasses to use to initialize this field. The record_size
field value includes the four common header fields and should normally be initial-
ized with sizeof ().

Any value stored in the class part extension fields of CompositeClassPart, Con-
straintClassPart, or ShellClassPart must point to an extension record conform-
ing to this definition.

The Intrinsics provide a utility function for widget writers to locate a particular class
extension record in a linked list, given a widget class and the offset of the extension
field in the class record.

To locate a class extension record, use XtGetClassExtension.

XtPointer XtGetClassExtension(object_class, byte_offset, type, ver-
sion, record_size);

object_class Specifies the object class containing the extension
list to be searched.

byte_offset Specifies the offset in bytes from the base of the class
record of the extension field to be searched.

type Specifies the record_type of the class extension to be
located.

version Specifies the minimum acceptable version of the
class extension required for a match.

Intrinsics and Widgets

26

record_size Specifies the minimum acceptable length of the class
extension record required for a match, or 0.

The list of extension records at the specified offset in the specified object class will
be searched for a match on the specified type, a version greater than or equal to the
specified version, and a record size greater than or equal the specified record_size
if it is nonzero. XtGetClassExtension returns a pointer to a matching extension
record or NULL if no match is found. The returned extension record must not be
modified or freed by the caller if the caller is not the extension owner.

27

Chapter 2. Widget Instantiation
A hierarchy of widget instances constitutes a widget tree. The shell widget returned
by XtAppCreateShell is the root of the widget tree instance. The widgets with one
or more children are the intermediate nodes of that tree, and the widgets with no
children of any kind are the leaves of the widget tree. With the exception of pop-
up children (see Chapter 5, Pop-Up Widgets), this widget tree instance defines the
associated X Window tree.

Widgets can be either composite or primitive. Both kinds of widgets can contain
children, but the Intrinsics provide a set of management mechanisms for construct-
ing and interfacing between composite widgets, their children, and other clients.

Composite widgets, that is, members of the class compositeWidgetClass, are con-
tainers for an arbitrary, but widget implementation-defined, collection of children,
which may be instantiated by the composite widget itself, by other clients, or by a
combination of the two. Composite widgets also contain methods for managing the
geometry (layout) of any child widget. Under unusual circumstances, a composite
widget may have zero children, but it usually has at least one. By contrast, primitive
widgets that contain children typically instantiate specific children of known class-
es themselves and do not expect external clients to do so. Primitive widgets also do
not have general geometry management methods.

In addition, the Intrinsics recursively perform many operations (for example, real-
ization and destruction) on composite widgets and all their children. Primitive wid-
gets that have children must be prepared to perform the recursive operations them-
selves on behalf of their children.

A widget tree is manipulated by several Intrinsics functions. For example, XtReal-
izeWidget traverses the tree downward and recursively realizes all pop-up widgets
and children of composite widgets. XtDestroyWidget traverses the tree downward
and destroys all pop-up widgets and children of composite widgets. The functions
that fetch and modify resources traverse the tree upward and determine the inher-
itance of resources from a widget's ancestors. XtMakeGeometryRequest traverses
the tree up one level and calls the geometry manager that is responsible for a wid-
get child's geometry.

To facilitate upward traversal of the widget tree, each widget has a pointer to its
parent widget. The Shell widget that XtAppCreateShell returns has a parent point-
er of NULL.

To facilitate downward traversal of the widget tree, the children field of each com-
posite widget is a pointer to an array of child widgets, which includes all normal
children created, not just the subset of children that are managed by the composite
widget's geometry manager. Primitive widgets that instantiate children are entirely
responsible for all operations that require downward traversal below themselves.
In addition, every widget has a pointer to an array of pop-up children.

Initializing the X Toolkit
Before an application can call any Intrinsics function other than XtSetLanguageProc
and XtToolkitThreadInitialize, it must initialize the Intrinsics by using

Widget Instantiation

28

• XtToolkitInitialize, which initializes the Intrinsics internals
• XtCreateApplicationContext, which initializes the per-application state
• XtDisplayInitialize or *XtOpenDisplay, which initializes the per-display state
• XtAppCreateShell, which creates the root of a widget tree

Or an application can call the convenience procedure XtOpenApplication, which
combines the functions of the preceding procedures. An application wishing to
use the ANSI C locale mechanism should call XtSetLanguageProc prior to calling
XtDisplayInitialize, *XtOpenDisplay, XtOpenApplication, or XtAppInitial-
ize.

Multiple instances of X Toolkit applications may be implemented in a single address
space. Each instance needs to be able to read input and dispatch events indepen-
dently of any other instance. Further, an application instance may need multiple
display connections to have widgets on multiple displays. From the application's
point of view, multiple display connections usually are treated together as a single
unit for purposes of event dispatching. To accommodate both requirements, the In-
trinsics define application contexts, each of which provides the information needed
to distinguish one application instance from another. The major component of an
application context is a list of one or more X Display pointers for that application.
The Intrinsics handle all display connections within a single application context si-
multaneously, handling input in a round-robin fashion. The application context type
XtAppContext is opaque to clients.

To initialize the Intrinsics internals, use XtToolkitInitialize.

void XtToolkitInitialize();

If XtToolkitInitialize was previously called, it returns immediately. When Xt-
ToolkitThreadInitialize is called before XtToolkitInitialize, the latter is pro-
tected against simultaneous activation by multiple threads.

To create an application context, use XtCreateApplicationContext.

XtAppContext XtCreateApplicationContext();

The XtCreateApplicationContext function returns an application context, which
is an opaque type. Every application must have at least one application context.

To destroy an application context and close any remaining display connections in
it, use XtDestroyApplicationContext.

void XtDestroyApplicationContext(app_context);

app_context Specifies the application context.

The XtDestroyApplicationContext function destroys the specified application
context. If called from within an event dispatch (for example, in a callback proce-
dure), XtDestroyApplicationContext does not destroy the application context un-
til the dispatch is complete.

To get the application context in which a given widget was created, use XtWidget-
ToApplicationContext.

XtAppContext XtWidgetToApplicationContext(w);

Widget Instantiation

29

w Specifies the widget for which you want the application context.
Must be of class Object or any subclass thereof.

The XtWidgetToApplicationContext function returns the application context for
the specified widget.

To initialize a display and add it to an application context, use XtDisplayInitial-
ize.

void XtDisplayInitialize(app_context, display, application_name,
application_class, options, num_options, argc, argv);

app_context Specifies the application context.

display Specifies a previously opened display connection.
Note that a single display connection can be in at
most one application context.

application_name Specifies the name of the application instance.

application_class Specifies the class name of this application, which
is usually the generic name for all instances of this
application.

options Specifies how to parse the command line for any ap-
plication-specific resources. The options argument is
passed as a parameter to XrmParseCommand. For fur-
ther information, see Parsing Command Line Options
in Xlib — C Language X Interface and the section
called “Parsing the Command Line” of this specifica-
tion.

num_options Specifies the number of entries in the options list.

argc Specifies a pointer to the number of command line
parameters.

argv Specifies the list of command line parameters.

The XtDisplayInitialize function retrieves the language string to be used for
the specified display (see the section called “Finding File Names”), calls the lan-
guage procedure (if set) with that language string, builds the resource database
for the default screen, calls the Xlib XrmParseCommand function to parse the com-
mand line, and performs other per-display initialization. After XrmParseCommand has
been called, argc and argv contain only those parameters that were not in the stan-
dard option table or in the table specified by the options argument. If the modi-
fied argc is not zero, most applications simply print out the modified argv along
with a message listing the allowable options. On POSIX-based systems, the applica-
tion name is usually the final component of argv[0]. If the synchronous resource is
True, XtDisplayInitialize calls the Xlib XSynchronize function to put Xlib into
synchronous mode for this display connection and any others currently open in the
application context. See the section called “Loading the Resource Database” and
the section called “Parsing the Command Line” for details on the application_name,
application_class, options, and num_options arguments.

XtDisplayInitialize calls XrmSetDatabase to associate the resource database of
the default screen with the display before returning.

Widget Instantiation

30

To open a display, initialize it, and then add it to an application context, use
*XtOpenDisplay.

Display *XtOpenDisplay(app_context, display_string, application_name,
application_class, options, num_options, argc, argv);

app_context Specifies the application context.

display_string Specifies the display string, or NULL.

application_name Specifies the name of the application instance, or
NULL.

application_class Specifies the class name of this application, which
is usually the generic name for all instances of this
application.

options Specifies how to parse the command line for any ap-
plication-specific resources. The options argument is
passed as a parameter to XrmParseCommand.

num_options Specifies the number of entries in the options list.

argc Specifies a pointer to the number of command line
parameters.

argv Specifies the list of command line parameters.

The *XtOpenDisplay function calls XOpenDisplay with the specified display_string.
If display_string is NULL, *XtOpenDisplay uses the current value of the \-display
option specified in argv. If no display is specified in argv, the user's default display
is retrieved from the environment. On POSIX-based systems, this is the value of the
DISPLAY environment variable.

If this succeeds, *XtOpenDisplay then calls XtDisplayInitialize and passes it
the opened display and the value of the \-name option specified in argv as the
application name. If no \-name option is specified and application_name is non-
NULL, application_name is passed to XtDisplayInitialize. If application_name
is NULL and if the environment variable RESOURCE_NAME is set, the value of
RESOURCE_NAME is used. Otherwise, the application name is the name used to
invoke the program. On implementations that conform to ANSI C Hosted Environ-
ment support, the application name will be argv[0] less any directory and file type
components, that is, the final component of argv[0], if specified. If argv[0] does not
exist or is the empty string, the application name is ``main''. *XtOpenDisplay re-
turns the newly opened display or NULL if it failed.

See the section called “Using the Intrinsics in a Multi-Threaded Environment” for
information regarding the use of *XtOpenDisplay in multiple threads.

To close a display and remove it from an application context, use XtCloseDisplay.

void XtCloseDisplay(display);

display Specifies the display.

The XtCloseDisplay function calls XCloseDisplay with the specified display as
soon as it is safe to do so. If called from within an event dispatch (for example, a

Widget Instantiation

31

callback procedure), XtCloseDisplay does not close the display until the dispatch is
complete. Note that applications need only call XtCloseDisplay if they are to con-
tinue executing after closing the display; otherwise, they should call XtDestroyAp-
plicationContext.

See the section called “Using the Intrinsics in a Multi-Threaded Environment” for
information regarding the use of XtCloseDisplay in multiple threads.

Establishing the Locale
Resource databases are specified to be created in the current process locale. Dur-
ing display initialization prior to creating the per-screen resource database, the In-
trinsics will call out to a specified application procedure to set the locale according
to options found on the command line or in the per-display resource specifications.

The callout procedure provided by the application is of type XtLanguageProc.

typedef String (*XtLanguageProc)(display, language, client_data);

display Passes the display.

language Passes the initial language value obtained from the
command line or server per-display resource specifi-
cations.

client_data Passes the additional client data specified in the call
to XtSetLanguageProc.

The language procedure allows an application to set the locale to the value of the
language resource determined by XtDisplayInitialize. The function returns a
new language string that will be subsequently used by XtDisplayInitialize to
establish the path for loading resource files. The returned string will be copied by
the Intrinsics into new memory.

Initially, no language procedure is set by the Intrinsics. To set the language proce-
dure for use by XtDisplayInitialize, use XtSetLanguageProc.

XtLanguageProc XtSetLanguageProc(app_context, proc, client_data);

app_context Specifies the application context in which the lan-
guage procedure is to be used, or NULL.

proc Specifies the language procedure.

client_data Specifies additional client data to be passed to the lan-
guage procedure when it is called.

XtSetLanguageProc sets the language procedure that will be called from XtDis-
playInitialize for all subsequent Displays initialized in the specified application
context. If app_context is NULL, the specified language procedure is registered in
all application contexts created by the calling process, including any future appli-
cation contexts that may be created. If proc is NULL, a default language procedure
is registered. XtSetLanguageProc returns the previously registered language pro-
cedure. If a language procedure has not yet been registered, the return value is

Widget Instantiation

32

unspecified, but if this return value is used in a subsequent call to XtSetLanguage-
Proc, it will cause the default language procedure to be registered.

The default language procedure does the following:

• Sets the locale according to the environment. On ANSI C-based systems this is
done by calling setlocale(LC_ALL, language). If an error is encountered, a warn-
ing message is issued with XtWarning.

• Calls XSupportsLocale to verify that the current locale is supported. If the locale
is not supported, a warning message is issued with XtWarning and the locale is
set to ``C''.

• Calls XSetLocaleModifiers specifying the empty string.
• Returns the value of the current locale. On ANSI C-based systems this is the return

value from a final call to setlocale(LC_ALL, NULL).

A client wishing to use this mechanism to establish locale can do so by calling XtSet-
LanguageProc prior to XtDisplayInitialize, as in the following example.

 Widget top;
 XtSetLanguageProc(NULL, NULL, NULL);
 top = XtOpenApplication(...);
 ...

Loading the Resource Database
The XtDisplayInitialize function first determines the language string to be used
for the specified display. It then creates a resource database for the default screen
of the display by combining the following sources in order, with the entries in the
first named source having highest precedence:

• Application command line (argc, argv).
• Per-host user environment resource file on the local host.
• Per-screen resource specifications from the server.
• Per-display resource specifications from the server or from the user preference

file on the local host.
• Application-specific user resource file on the local host.
• Application-specific class resource file on the local host.

When the resource database for a particular screen on the display is needed (either
internally, or when XtScreenDatabase is called), it is created in the following man-
ner using the sources listed above in the same order:

• A temporary database, the ̀ `server resource database'', is created from the string
returned by XResourceManagerString or, if XResourceManagerString returns
NULL, the contents of a resource file in the user's home directory. On POSIX-based
systems, the usual name for this user preference resource file is $HOME/.Xde-
faults.

• If a language procedure has been set, XtDisplayInitialize first searches the
command line for the option ``-xnlLanguage'', or for a -xrm option that specifies
the xnlLanguage/XnlLanguage resource, as specified by Section 2.4. If such a
resource is found, the value is assumed to be entirely in XPCS, the X Portable
Character Set. If neither option is specified on the command line, XtDisplayIni-

Widget Instantiation

33

tialize queries the server resource database (which is assumed to be entirely
in XPCS) for the resource name.xnlLanguage, class Class.XnlLanguage where
name and Class are the application_name and application_class specified to
XtDisplayInitialize. The language procedure is then invoked with the resource
value if found, else the empty string. The string returned from the language pro-
cedure is saved for all future references in the Intrinsics that require the per-
display language string.

• The screen resource database is initialized by parsing the command line in the
manner specified by Section 2.4.

• If a language procedure has not been set, the initial database is then queried for
the resource name.xnlLanguage, class Class.XnlLanguage as specified above. If
this database query fails, the server resource database is queried; if this query
also fails, the language is determined from the environment; on POSIX-based sys-
tems, this is done by retrieving the value of the LANG environment variable. If no
language string is found, the empty string is used. This language string is saved
for all future references in the Intrinsics that require the per-display language
string.

• After determining the language string, the user's environment resource file is then
merged into the initial resource database if the file exists. This file is user-, host-,
and process-specific and is expected to contain user preferences that are to over-
ride those specifications in the per-display and per-screen resources. On POSIX-
based systems, the user's environment resource file name is specified by the value
of the XENVIRONMENT environment variable. If this environment variable does
not exist, the user's home directory is searched for a file named .Xdefaults-host,
where host is the host name of the machine on which the application is running.

• The per-screen resource specifications are then merged into the screen resource
database, if they exist. These specifications are the string returned by XScreen-
ResourceString for the respective screen and are owned entirely by the user.

• Next, the server resource database created earlier is merged into the screen re-
source database. The server property, and corresponding user preference file, are
owned and constructed entirely by the user.

• The application-specific user resource file from the local host is then merged into
the screen resource database. This file contains user customizations and is stored
in a directory owned by the user. Either the user or the application or both can
store resource specifications in the file. Each should be prepared to find and re-
spect entries made by the other. The file name is found by calling XrmSetData-
base with the current screen resource database, after preserving the original dis-
play-associated database, then calling XtResolvePathname with the parameters
(display, NULL, NULL, NULL, path, NULL, 0, NULL), where path is defined in an
operating-system-specific way. On POSIX-based systems, path is defined to be the
value of the environment variable XUSERFILESEARCHPATH if this is defined.
If XUSERFILESEARCHPATH is not defined, an implementation-dependent de-
fault value is used. This default value is constrained in the following manner:

• • If the environment variable XAPPLRESDIR is not defined, the default XUSER-
FILESEARCHPATH must contain at least six entries. These entries must con-
tain $HOME as the directory prefix, plus the following substitutions:

 1. %C, %N, %L or %C, %N, %l, %t, %c
 2. %C, %N, %l
 3. %C, %N
 4. %N, %L or %N, %l, %t, %c
 5. %N, %l
 6. %N

Widget Instantiation

34

The order of these six entries within the path must be as given above. The order
and use of substitutions within a given entry are implementation-dependent.

• If XAPPLRESDIR is defined, the default XUSERFILESEARCHPATH must con-
tain at least seven entries. These entries must contain the following directory
prefixes and substitutions:

 1. $XAPPLRESDIR with %C, %N, %L or %C, %N, %l, %t, %c
 2. $XAPPLRESDIR with %C, %N, %l
 3. $XAPPLRESDIR with %C, %N
 4. $XAPPLRESDIR with %N, %L or %N, %l, %t, %c
 5. $XAPPLRESDIR with %N, %l
 6. $XAPPLRESDIR with %N
 7. $HOME with %N

The order of these seven entries within the path must be as given above. The or-
der and use of substitutions within a given entry are implementation-dependent.

• Last, the application-specific class resource file from the local host is merged into
the screen resource database. This file is owned by the application and is usually
installed in a system directory when the application is installed. It may contain
sitewide customizations specified by the system manager. The name of the appli-
cation class resource file is found by calling XtResolvePathname with the parame-
ters (display, ``app-defaults'', NULL, NULL, NULL, NULL, 0, NULL). This file is
expected to be provided by the developer of the application and may be required
for the application to function properly. A simple application that wants to be as-
sured of having a minimal set of resources in the absence of its class resource file
can declare fallback resource specifications with XtAppSetFallbackResources.
Note that the customization substitution string is retrieved dynamically by XtRe-
solvePathname so that the resolved file name of the application class resource
file can be affected by any of the earlier sources for the screen resource database,
even though the contents of the class resource file have lowest precedence. After
calling XtResolvePathname, the original display-associated database is restored.

To obtain the resource database for a particular screen, use XtScreenDatabase.

XrmDatabase XtScreenDatabase(screen);

screen Specifies the screen whose resource database is to be re-
turned.

The XtScreenDatabase function returns the fully merged resource database as
specified above, associated with the specified screen. If the specified screen does
not belong to a Display initialized by XtDisplayInitialize, the results are unde-
fined.

To obtain the default resource database associated with a particular display, use
XtDatabase.

XrmDatabase XtDatabase(display);

display Specifies the display.

The XtDatabase function is equivalent to XrmGetDatabase. It returns the database
associated with the specified display, or NULL if a database has not been set.

Widget Instantiation

35

To specify a default set of resource values that will be used to initialize the resource
database if no application-specific class resource file is found (the last of the six
sources listed above), use XtAppSetFallbackResources.

void XtAppSetFallbackResources(app_context, specification_list);

app_context Specifies the application context in which the fall-
back specifications will be used.

specification_list Specifies a NULL-terminated list of resource specifi-
cations to preload the database, or NULL.

Each entry in specification_list points to a string in the format of XrmPutLineRe-
source. Following a call to XtAppSetFallbackResources, when a resource data-
base is being created for a particular screen and the Intrinsics are not able
to find or read an application-specific class resource file according to the rules
given above and if specification_list is not NULL, the resource specifications in
specification_list will be merged into the screen resource database in place of
the application-specific class resource file. XtAppSetFallbackResources is not re-
quired to copy specification_list; the caller must ensure that the contents of the
list and of the strings addressed by the list remain valid until all displays are ini-
tialized or until XtAppSetFallbackResources is called again. The value NULL for
specification_list removes any previous fallback resource specification for the ap-
plication context. The intended use for fallback resources is to provide a minimal
number of resources that will make the application usable (or at least terminate
with helpful diagnostic messages) when some problem exists in finding and loading
the application defaults file.

Parsing the Command Line
The *XtOpenDisplay function first parses the command line for the following op-
tions:

-display Specifies the display name for XOpenDisplay.

-name Sets the resource name prefix, which overrides the application
name passed to *XtOpenDisplay.

-xnllanguage Specifies the initial language string for establishing locale and for
finding application class resource files.

XtDisplayInitialize has a table of standard command line options that are passed
to XrmParseCommand for adding resources to the resource database, and it takes as
a parameter additional application-specific resource abbreviations. The format of
this table is described in Section 15.9 in Xlib — C Language X Interface.

typedef enum {
 XrmoptionNoArg, /* Value is specified in OptionDescRec.value */
 XrmoptionIsArg, /* Value is the option string itself */
 XrmoptionStickyArg, /* Value is characters immediately following option */
 XrmoptionSepArg, /* Value is next argument in argv */
 XrmoptionResArg, /* Use the next argument as input to XrmPutLineResource*/
 XrmoptionSkipArg, /* Ignore this option and the next argument in argv */
 XrmoptionSkipNArgs, /* Ignore this option and the next */

Widget Instantiation

36

 /* OptionDescRec.value arguments in argv */
 XrmoptionSkipLine /* Ignore this option and the rest of argv */
} XrmOptionKind;
typedef struct {
 char *option; /* Option name in argv */
 char *specifier; /* Resource name (without application name) */
 XrmOptionKind argKind; /* Location of the resource value */
 XPointer value; /* Value to provide if XrmoptionNoArg */
} XrmOptionDescRec, *XrmOptionDescList;

The standard table contains the following entries:

Option String Resource Name Argument Kind Resource Value
−background *background SepArg next argument
−bd *borderColor SepArg next argument
−bg *background SepArg next argument
−borderwidth .borderWidth SepArg next argument
−bordercolor *borderColor SepArg next argument
−bw .borderWidth SepArg next argument
−display .display SepArg next argument
−fg *foreground SepArg next argument
−fn *font SepArg next argument
−font *font SepArg next argument
−foreground *foreground SepArg next argument
−geometry .geometry SepArg next argument
−iconic .iconic NoArg "true"
−name .name SepArg next argument
−reverse .reverseVideo NoArg "on"
−rv .reverseVideo NoArg "on"
+rv .reverseVideo NoArg "off"
−selectionTimeout .selectionTimeout SepArg next argument
−synchronous .synchronous NoArg "on"
+synchronous .synchronous NoArg "off"
−title .title SepArg next argument
−xnllanguage .xnlLanguage SepArg next argument
−xrm next argument ResArg next argument
−xtsessionID .sessionID SepArg next argument

Note that any unique abbreviation for an option name in the standard table or in
the application table is accepted.

If reverseVideo is True, the values of XtDefaultForeground and XtDefaultBack-
ground are exchanged for all screens on the Display.

The value of the synchronous resource specifies whether or not Xlib is put into syn-
chronous mode. If a value is found in the resource database during display initial-

Widget Instantiation

37

ization, XtDisplayInitialize makes a call to XSynchronize for all display connec-
tions currently open in the application context. Therefore, when multiple displays
are initialized in the same application context, the most recent value specified for
the synchronous resource is used for all displays in the application context.

The value of the selectionTimeout resource applies to all displays opened in the
same application context. When multiple displays are initialized in the same appli-
cation context, the most recent value specified is used for all displays in the appli-
cation context.

The -xrm option provides a method of setting any resource in an application. The
next argument should be a quoted string identical in format to a line in the user
resource file. For example, to give a red background to all command buttons in an
application named xmh, you can start it up as

xmh -xrm 'xmh*Command.background: red'

When it parses the command line, XtDisplayInitialize merges the application
option table with the standard option table before calling the Xlib XrmParseCommand
function. An entry in the application table with the same name as an entry in the
standard table overrides the standard table entry. If an option name is a prefix of an-
other option name, both names are kept in the merged table. The Intrinsics reserve
all option names beginning with the characters ``-xt'' for future standard uses.

Creating Widgets
The creation of widget instances is a three-phase process:

1. The widgets are allocated and initialized with resources and are optionally added
to the managed subset of their parent.

2. All composite widgets are notified of their managed children in a bottom-up tra-
versal of the widget tree.

3. The widgets create X windows, which then are mapped.

To start the first phase, the application calls XtCreateWidget for all its widgets and
adds some (usually, most or all) of its widgets to their respective parents' managed
set by calling XtManageChild. To avoid an O(n2) creation process where each com-
posite widget lays itself out each time a widget is created and managed, parent
widgets are not notified of changes in their managed set during this phase.

After all widgets have been created, the application calls XtRealizeWidget with
the top-level widget to execute the second and third phases. XtRealizeWidget first
recursively traverses the widget tree in a postorder (bottom-up) traversal and then
notifies each composite widget with one or more managed children by means of its
change_managed procedure.

Notifying a parent about its managed set involves geometry layout and possibly
geometry negotiation. A parent deals with constraints on its size imposed from
above (for example, when a user specifies the application window size) and sugges-
tions made from below (for example, when a primitive child computes its preferred
size). One difference between the two can cause geometry changes to ripple in both
directions through the widget tree. The parent may force some of its children to

Widget Instantiation

38

change size and position and may issue geometry requests to its own parent in or-
der to better accommodate all its children. You cannot predict where anything will
go on the screen until this process finishes.

Consequently, in the first and second phases, no X windows are actually created,
because it is likely that they will get moved around after creation. This avoids un-
necessary requests to the X server.

Finally, XtRealizeWidget starts the third phase by making a preorder (top-down)
traversal of the widget tree, allocates an X window to each widget by means of its
realize procedure, and finally maps the widgets that are managed.

Creating and Merging Argument Lists
Many Intrinsics functions may be passed pairs of resource names and values. These
are passed as an arglist, a pointer to an array of Arg structures, which contains

typedef struct {
 String name;
 XtArgVal value;
} Arg, *ArgList;

where XtArgVal is as defined in Section 1.5.

If the size of the resource is less than or equal to the size of an XtArgVal, the re-
source value is stored directly in value; otherwise, a pointer to it is stored in value.

To set values in an ArgList, use XtSetArg.

void XtSetArg(arg, name, value);

arg Specifies the name/value pair to set.

name Specifies the name of the resource.

value Specifies the value of the resource if it will fit in an XtArgVal,
else the address.

The XtSetArg function is usually used in a highly stylized manner to minimize the
probability of making a mistake; for example:

Arg args[20];
int n;
n = 0;
XtSetArg(args[n], XtNheight, 100); n++;
XtSetArg(args[n], XtNwidth, 200); n++;
XtSetValues(widget, args, n);

Alternatively, an application can statically declare the argument list and use XtNum-
ber:

static Args args[] = {
 {XtNheight, (XtArgVal) 100},

Widget Instantiation

39

 {XtNwidth, (XtArgVal) 200},
};
XtSetValues(Widget, args, XtNumber(args));

Note that you should not use expressions with side effects such as auto-increment
or auto-decrement within the first argument to XtSetArg. XtSetArg can be imple-
mented as a macro that evaluates the first argument twice.

To merge two arglist arrays, use XtMergeArgLists.

ArgList XtMergeArgLists(args1, num_args1, args2, num_args2);

args1 Specifies the first argument list.

num_args1 Specifies the number of entries in the first argument list.

args2 Specifies the second argument list.

num_args2 Specifies the number of entries in the second argument
list.

The XtMergeArgLists function allocates enough storage to hold the combined ar-
glist arrays and copies them into it. Note that it does not check for duplicate entries.
The length of the returned list is the sum of the lengths of the specified lists. When
it is no longer needed, free the returned storage by using XtFree.

All Intrinsics interfaces that require ArgList arguments have analogs conforming
to the ANSI C variable argument list (traditionally called ``varargs'') calling con-
vention. The name of the analog is formed by prefixing ``Va'' to the name of the
corresponding ArgList procedure; e.g., XtVaCreateWidget. Each procedure named
XtVasomething takes as its last arguments, in place of the corresponding ArgList/
Cardinal parameters, a variable parameter list of resource name and value pairs
where each name is of type String and each value is of type XtArgVal. The end of
the list is identified by a name entry containing NULL. Developers writing in the C
language wishing to pass resource name and value pairs to any of these interfaces
may use the ArgList and varargs forms interchangeably.

Two special names are defined for use only in varargs lists: XtVaTypedArg and
XtVaNestedList.

#define XtVaTypedArg "XtVaTypedArg"

If the name XtVaTypedArg is specified in place of a resource name, then the follow-
ing four arguments are interpreted as a name/type/value/size tuple where name is
of type String, type is of type String, value is of type XtArgVal, and size is of type
int. When a varargs list containing XtVaTypedArg is processed, a resource type con-
version (see the section called “Resource Conversions”) is performed if necessary
to convert the value into the format required by the associated resource. If type is
XtRString, then value contains a pointer to the string and size contains the number
of bytes allocated, including the trailing null byte. If type is not XtRString, then if
size is less than or equal to sizeof(XtArgVal), the value should be the data cast to
the type XtArgVal, otherwise value is a pointer to the data. If the type conversion
fails for any reason, a warning message is issued and the list entry is skipped.

#define XtVaNestedList "XtVaNestedList"

Widget Instantiation

40

If the name XtVaNestedList is specified in place of a resource name, then the fol-
lowing argument is interpreted as an XtVarArgsList value, which specifies another
varargs list that is logically inserted into the original list at the point of declaration.
The end of the nested list is identified with a name entry containing NULL. Varargs
lists may nest to any depth.

To dynamically allocate a varargs list for use with XtVaNestedList in multiple calls,
use XtVaCreateArgsList.

typedef XtPointer XtVarArgsList;

XtVarArgsList XtVaCreateArgsList(unused, ...);

unused This argument is not currently used and must be specified
as NULL.

... Specifies a variable parameter list of resource name and val-
ue pairs.

The XtVaCreateArgsList function allocates memory and copies its arguments into
a single list pointer, which may be used with XtVaNestedList. The end of both lists
is identified by a name entry containing NULL. Any entries of type XtVaTypedArg
are copied as specified without applying conversions. Data passed by reference (in-
cluding Strings) are not copied, only the pointers themselves; the caller must ensure
that the data remain valid for the lifetime of the created varargs list. The list should
be freed using XtFree when no longer needed.

Use of resource files and of the resource database is generally encouraged over
lengthy arglist or varargs lists whenever possible in order to permit modification
without recompilation.

Creating a Widget Instance
To create an instance of a widget, use XtCreateWidget.

Widget XtCreateWidget(name, object_class, parent, args, num_args);

name Specifies the resource instance name for the created
widget, which is used for retrieving resources and,
for that reason, should not be the same as any other
widget that is a child of the same parent.

object_class Specifies the widget class pointer for the created ob-
ject. Must be objectClass or any subclass thereof.

parent Specifies the parent widget. Must be of class Object
or any subclass thereof.

args Specifies the argument list to override any other re-
source specifications.

num_args Specifies the number of entries in the argument list.

The XtCreateWidget function performs all the boilerplate operations of widget cre-
ation, doing the following in order:

Widget Instantiation

41

• Checks to see if the class_initialize procedure has been called for this class and
for all superclasses and, if not, calls those necessary in a superclass-to-subclass
order.

• If the specified class is not coreWidgetClass or a subclass thereof, and the
parent's class is a subclass of compositeWidgetClass and either no exten-
sion record in the parent's composite class part extension field exists with the
record_type NULLQUARK or the accepts_objects field in the extension record
is False, XtCreateWidget issues a fatal error; see the section called “Addition
of Children to a Composite Widget: The insert_child Procedure” and Chapter 12,
Nonwidget Objects.

• If the specified class contains an extension record in the object class part exten-
sion field with record_type NULLQUARK and the allocate field is not NULL, the
procedure is invoked to allocate memory for the widget instance. If the parent
is a member of the class constraintWidgetClass, the procedure also allocates
memory for the parent's constraints and stores the address of this memory in-
to the constraints field. If no allocate procedure is found, the Intrinsics allocate
memory for the widget and, when applicable, the constraints, and initializes the
constraints field.

• Initializes the Core nonresource data fields self, parent, widget_class,
being_destroyed, name, managed, window, visible, popup_list, and num_popups.

• Initializes the resource fields (for example, background_pixel) by using the Core-
ClassPart resource lists specified for this class and all superclasses.

• If the parent is a member of the class constraintWidgetClass, initializes the
resource fields of the constraints record by using the ConstraintClassPart re-
source lists specified for the parent's class and all superclasses up to constrain-
tWidgetClass.

• Calls the initialize procedures for the widget starting at the Object initialize pro-
cedure on down to the widget's initialize procedure.

• If the parent is a member of the class constraintWidgetClass, calls the Con-
straintClassPart initialize procedures, starting at constraintWidgetClass on
down to the parent's ConstraintClassPart initialize procedure.

• If the parent is a member of the class compositeWidgetClass, puts the widget
into its parent's children list by calling its parent's insert_child procedure. For
further information, see the section called “Addition of Children to a Composite
Widget: The insert_child Procedure”.

To create an instance of a widget using varargs lists, use XtVaCreateWidget.

Widget XtVaCreateWidget(name, object_class, parent, ...);

name Specifies the resource name for the created widget.

object_class Specifies the widget class pointer for the created ob-
ject. Must be objectClass or any subclass thereof.

parent Specifies the parent widget. Must be of class Object
or any subclass thereof.

... Specifies the variable argument list to override any
other resource specifications.

The XtVaCreateWidget procedure is identical in function to XtCreateWidget with
the args and num_args parameters replaced by a varargs list, as described in Sec-
tion 2.5.1.

Widget Instantiation

42

Creating an Application Shell Instance
An application can have multiple top-level widgets, each of which specifies a unique
widget tree that can potentially be on different screens or displays. An application
uses XtAppCreateShell to create independent widget trees.

Widget XtAppCreateShell(name, application_class, widget_class, display,
args, num_args);

name Specifies the instance name of the shell widget.
If name is NULL, the application name passed to
XtDisplayInitialize is used.

application_class Specifies the resource class string to be used in place
of the widget class_name string when widget_class is
applicationShellWidgetClass or a subclass there-
of.

widget_class Specifies the widget class for the top-level widget
(e.g., applicationShellWidgetClass).

display Specifies the display for the default screen and for
the resource database used to retrieve the shell wid-
get resources.

args Specifies the argument list to override any other re-
source specifications.

num_args Specifies the number of entries in the argument list.

The XtAppCreateShell function creates a new shell widget instance as the root
of a widget tree. The screen resource for this widget is determined by first scan-
ning args for the XtNscreen argument. If no XtNscreen argument is found, the
resource database associated with the default screen of the specified display is
queried for the resource name.screen, class Class.Screen where Class is the spec-
ified application_class if widget_class is applicationShellWidgetClass or a sub-
class thereof. If widget_class is not application\%Shell\%Widget\%Class or a
subclass, Class is the class_name field from the CoreClassPart of the specified
widget_class. If this query fails, the default screen of the specified display is used.
Once the screen is determined, the resource database associated with that screen
is used to retrieve all remaining resources for the shell widget not specified in args.
The widget name and Class as determined above are used as the leftmost (i.e., root)
components in all fully qualified resource names for objects within this widget tree.

If the specified widget class is a subclass of WMShell, the name and Class as deter-
mined above will be stored into the WM_CLASS property on the widget's window
when it becomes realized. If the specified widget_class is applicationShellWid-
getClass or a subclass thereof, the WM_COMMAND property will also be set from
the values of the XtNargv and XtNargc resources.

To create multiple top-level shells within a single (logical) application, you can use
one of two methods:

• Designate one shell as the real top-level shell and create the others as pop-up
children of it by using XtCreatePopupShell.

• Have all shells as pop-up children of an unrealized top-level shell.

Widget Instantiation

43

The first method, which is best used when there is a clear choice for what is the
main window, leads to resource specifications like the following:

xmail.geometry:... (the main window)
xmail.read.geometry:... (the read window)
xmail.compose.geometry:... (the compose window)

The second method, which is best if there is no main window, leads to resource
specifications like the following:

xmail.headers.geometry:... (the headers window)
xmail.read.geometry:... (the read window)
xmail.compose.geometry:... (the compose window)

To create a top-level widget that is the root of a widget tree using varargs lists, use
XtVaAppCreateShell.

Widget XtVaAppCreateShell(name, application_class, widget_class, dis-
play);

name Specifies the instance name of the shell widget.
If name is NULL, the application name passed to
XtDisplayInitialize is used.

application_class Specifies the resource class string to be used in place
of the widget class_name string when widget_class is
applicationShellWidgetClass or a subclass there-
of.

widget_class Specifies the widget class for the top-level widget.

display Specifies the display for the default screen and for
the resource database used to retrieve the shell wid-
get resources.

... Specifies the variable argument list to override any
other resource specifications.

The XtVaAppCreateShell procedure is identical in function to XtAppCreateShell
with the args and num_args parameters replaced by a varargs list, as described in
Section 2.5.1.

Convenience Procedure to Initialize an Application
To initialize the Intrinsics internals, create an application context, open and initialize
a display, and create the initial root shell instance, an application may use XtOpe-
nApplication or XtVaOpenApplication.

Widget XtOpenApplication(app_context_return, application_class, op-
tions, num_options, argc_in_out, argv_in_out, fallback_resources,
widget_class, args, num_args);

app_context_return Returns the application context, if non-NULL.

Widget Instantiation

44

application_class Specifies the class name of the application.

options Specifies the command line options table.

num_options Specifies the number of entries in options.

argc_in_out Specifies a pointer to the number of command line
arguments.

argv_in_out Specifies a pointer to the command line arguments.

fallback_resources Specifies resource values to be used if the applica-
tion class resource file cannot be opened or read, or
NULL.

widget_class Specifies the class of the widget to be created. Must
be shellWidgetClass or a subclass.

args Specifies the argument list to override any other re-
source specifications for the created shell widget.

num_args Specifies the number of entries in the argument list.

The XtOpenApplication function calls XtToolkitInitialize followed by XtCre-
ateApplicationContext, then calls *XtOpenDisplay with display_string NULL and
application_name NULL, and finally calls XtAppCreateShell with name NULL, the
specified widget_class, an argument list and count, and returns the created shell.
The recommended widget_class is sessionShellWidgetClass. The argument list
and count are created by merging the specified args and num_args with a list con-
taining the specified argc and argv. The modified argc and argv returned by XtDis-
playInitialize are returned in argc_in_out and argv_in_out. If app_context_return
is not NULL, the created application context is also returned. If the display speci-
fied by the command line cannot be opened, an error message is issued and XtOpe-
nApplication terminates the application. If fallback_resources is non-NULL, XtAp-
pSetFallbackResources is called with the value prior to calling *XtOpenDisplay.

Widget XtVaOpenApplication(app_context_return, application_class, op-
tions, num_options, argc_in_out, argv_in_out, fallback_resources,
widget_class);

app_context_return Returns the application context, if non-NULL.

application_class Specifies the class name of the application.

options Specifies the command line options table.

num_options Specifies the number of entries in options.

argc_in_out Specifies a pointer to the number of command line
arguments.

argv_in_out Specifies the command line arguments array.

fallback_resources Specifies resource values to be used if the application
class resource file cannot be opened, or NULL.

widget_class Specifies the class of the widget to be created. Must
be shellWidgetClass or a subclass.

Widget Instantiation

45

... Specifies the variable argument list to override any
other resource specifications for the created shell.

The XtVaOpenApplication procedure is identical in function to XtOpenApplication
with the args and num_args parameters replaced by a varargs list, as described in
Section 2.5.1.

Widget Instance Allocation: The allocate Procedure
A widget class may optionally provide an instance allocation procedure in the Ob-
jectClassExtension record.

When the call to create a widget includes a varargs list containing XtVaTypedArg,
these arguments will be passed to the allocation procedure in an XtTypedArgList.

typedef struct {
 String name;
 String type;
 XtArgVal value;
 int size;
} XtTypedArg, *XtTypedArgList;

The allocate procedure pointer in the ObjectClassExtension record is of type
(*AllocateProc).

typedef void (*AllocateProc)(widget_class, constraint_size,
more_bytes, args, num_args, typed_args, num_typed_args, new_return,
more_bytes_return);

widget_class Specifies the widget class of the instance to allocate.

constraint_size Specifies the size of the constraint record to allocate,
or 0.

more_bytes Specifies the number of auxiliary bytes of memory to
allocate.

args Specifies the argument list as given in the call to cre-
ate the widget.

num_args Specifies the number of arguments.

typed_args Specifies the list of typed arguments given in the call
to create the widget.

num_typed_args Specifies the number of typed arguments.

new_return Returns a pointer to the newly allocated instance, or
NULL in case of error.

more_bytes_return Returns the auxiliary memory if it was requested, or
NULL if requested and an error occurred; otherwise,
unchanged.

At widget allocation time, if an extension record with record_type equal to NUL-
LQUARK is located through the object class part extension field and the allocate

Widget Instantiation

46

field is not NULL, the (*AllocateProc) will be invoked to allocate memory for the
widget. If no ObjectClassPart extension record is declared with record_type equal to
NULLQUARK, then XtInheritAllocate and XtInheritDeallocate are assumed.
If no (*AllocateProc) is found, the Intrinsics will allocate memory for the widget.

An (*AllocateProc) must perform the following:

• Allocate memory for the widget instance and return it in new_return. The memory
must be at least wc->core_class.widget_size bytes in length, double-word aligned.

• Initialize the core.constraints field in the instance record to NULL or to point to a
constraint record. If constraint_size is not 0, the procedure must allocate memory
for the constraint record. The memory must be double-word aligned.

• If more_bytes is not 0, then the address of a block of memory at least more_bytes in
size, double-word aligned, must be returned in the more_bytes_return parameter,
or NULL to indicate an error.

A class allocation procedure that envelops the allocation procedure of a superclass
must rely on the enveloped procedure to perform the instance and constraint allo-
cation. Allocation procedures should refrain from initializing fields in the widget
record except to store pointers to newly allocated additional memory. Under no cir-
cumstances should an allocation procedure that envelopes its superclass allocation
procedure modify fields in the instance part of any superclass.

Widget Instance Initialization: The initialize Procedure
The initialize procedure pointer in a widget class is of type (*XtInitProc).

typedef void (*XtInitProc)(request, new, args, num_args);

request Specifies a copy of the widget with resource values as re-
quested by the argument list, the resource database, and
the widget defaults.

new Specifies the widget with the new values, both resource
and nonresource, that are actually allowed.

args Specifies the argument list passed by the client, for com-
puting derived resource values. If the client created the
widget using a varargs form, any resources specified via
XtVaTypedArg are converted to the widget representation
and the list is transformed into the ArgList format.

num_args Specifies the number of entries in the argument list.

An initialization procedure performs the following:

• Allocates space for and copies any resources referenced by address that the client
is allowed to free or modify after the widget has been created. For example, if a
widget has a field that is a String, it may choose not to depend on the characters
at that address remaining constant but dynamically allocate space for the string
and copy it to the new space. Widgets that do not copy one or more resources
referenced by address should clearly so state in their user documentation.

Note
It is not necessary to allocate space for or to copy callback lists.

Widget Instantiation

47

• Computes values for unspecified resource fields. For example, if width and height
are zero, the widget should compute an appropriate width and height based on
its other resources.

Note
A widget may directly assign only its own width and height within the
initialize, initialize_hook, set_values, and set_values_hook procedures; see
Chapter 6, Geometry Management.

• Computes values for uninitialized nonresource fields that are derived from re-
source fields. For example, graphics contexts (GCs) that the widget uses are de-
rived from resources like background, foreground, and font.

An initialization procedure also can check certain fields for internal consistency. For
example, it makes no sense to specify a colormap for a depth that does not support
that colormap.

Initialization procedures are called in superclass-to-subclass order after all fields
specified in the resource lists have been initialized. The initialize procedure does
not need to examine args and num_args if all public resources are declared in the
resource list. Most of the initialization code for a specific widget class deals with
fields defined in that class and not with fields defined in its superclasses.

If a subclass does not need an initialization procedure because it does not need to
perform any of the above operations, it can specify NULL for the initialize field in
the class record.

Sometimes a subclass may want to overwrite values filled in by its superclass. In
particular, size calculations of a superclass often are incorrect for a subclass, and
in this case, the subclass must modify or recalculate fields declared and computed
by its superclass.

As an example, a subclass can visually surround its superclass display. In this case,
the width and height calculated by the superclass initialize procedure are too small
and need to be incremented by the size of the surround. The subclass needs to know
if its superclass's size was calculated by the superclass or was specified explicitly.
All widgets must place themselves into whatever size is explicitly given, but they
should compute a reasonable size if no size is requested.

The request and new arguments provide the necessary information for a subclass
to determine the difference between an explicitly specified field and a field com-
puted by a superclass. The request widget is a copy of the widget as initialized by
the arglist and resource database. The new widget starts with the values in the re-
quest, but it has been updated by all superclass initialization procedures called so
far. A subclass initialize procedure can compare these two to resolve any potential
conflicts.

In the above example, the subclass with the visual surround can see if the width and
height in the request widget are zero. If so, it adds its surround size to the width
and height fields in the new widget. If not, it must make do with the size originally
specified.

The new widget will become the actual widget instance record. Therefore, the ini-
tialization procedure should do all its work on the new widget; the request widget
should never be modified. If the initialize procedure needs to call any routines that
operate on a widget, it should specify new as the widget instance.

Widget Instantiation

48

Constraint Instance Initialization: The ConstraintClass-
Part initialize Procedure

The constraint initialization procedure pointer, found in the ConstraintClassPart
initialize field of the widget class record, is of type (*XtInitProc). The values
passed to the parent constraint initialization procedures are the same as those
passed to the child's class widget initialization procedures.

The constraints field of the request widget points to a copy of the constraints record
as initialized by the arglist and resource database.

The constraint initialization procedure should compute any constraint fields derived
from constraint resources. It can make further changes to the new widget to make
the widget and any other constraint fields conform to the specified constraints, for
example, changing the widget's size or position.

If a constraint class does not need a constraint initialization procedure, it can specify
NULL for the initialize field of the ConstraintClassPart in the class record.

Nonwidget Data Initialization: The initialize_hook Proce-
dure

Note
The initialize_hook procedure is obsolete, as the same information is now
available to the initialize procedure. The procedure has been retained for
those widgets that used it in previous releases.

The initialize_hook procedure pointer is of type (*XtArgsProc):

typedef void(*XtArgsProc)(w, args, num_args);

w Specifies the widget.

args Specifies the argument list passed by the client. If the
client created the widget using a varargs form, any re-
sources specified via XtVaTypedArg are converted to the
widget representation and the list is transformed into the
ArgList format.

num_args Specifies the number of entries in the argument list.

If this procedure is not NULL, it is called immediately after the corresponding ini-
tialize procedure or in its place if the initialize field is NULL.

The initialize_hook procedure allows a widget instance to initialize nonresource data
using information from the specified argument list as if it were a resource.

Realizing Widgets
To realize a widget instance, use XtRealizeWidget.

Widget Instantiation

49

void XtRealizeWidget(w);

w Specifies the widget. Must be of class Core or any subclass thereof.

If the widget is already realized, XtRealizeWidget simply returns. Otherwise it per-
forms the following:

• Binds all action names in the widget's translation table to procedures (see the
section called “Action Names to Procedure Translations”).

• Makes a postorder traversal of the widget tree rooted at the specified widget and
calls each non-NULL change_managed procedure of all composite widgets that
have one or more managed children.

• Constructs an XSetWindowAttributes structure filled in with information derived
from the Core widget fields and calls the realize procedure for the widget, which
adds any widget-specific attributes and creates the X window.

• If the widget is not a subclass of compositeWidgetClass, XtRealizeWidget re-
turns; otherwise it continues and performs the following:

• • Descends recursively to each of the widget's managed children and calls the
realize procedures. Primitive widgets that instantiate children are responsible
for realizing those children themselves.

• Maps all of the managed children windows that have mapped_when_managed
True. If a widget is managed but mapped_when_managed is False, the widget
is allocated visual space but is not displayed.

If the widget is a top-level shell widget (that is, it has no parent), and
mapped_when_managed is True, XtRealizeWidget maps the widget window.

XtCreateWidget, XtVaCreateWidget, XtRealizeWidget, XtManageChildren, XtUn-
manage\%Children, XtUnrealizeWidget, XtSetMappedWhenManaged, and XtDe-
stroy\%Widget maintain the following invariants:

• If a composite widget is realized, then all its managed children are realized.
• If a composite widget is realized, then all its managed children that have

mapped_when_managed True are mapped.

All Intrinsics functions and all widget routines should accept either realized or un-
realized widgets. When calling the realize or change_managed procedures for chil-
dren of a composite widget, XtRealizeWidget calls the procedures in reverse or-
der of appearance in the CompositePart children list. By default, this ordering of
the realize procedures will result in the stacking order of any newly created sub-
windows being top-to-bottom in the order of appearance on the list, and the most
recently created child will be at the bottom.

To check whether or not a widget has been realized, use XtIsRealized.

Boolean XtIsRealized(w);

w Specifies the widget. Must be of class Object or any subclass there-
of.

The XtIsRealized function returns True if the widget has been realized, that is, if
the widget has a nonzero window ID. If the specified object is not a widget, the state
of the nearest widget ancestor is returned.

Some widget procedures (for example, set_values) might wish to operate differently
after the widget has been realized.

Widget Instantiation

50

Widget Instance Window Creation: The realize Proce-
dure

The realize procedure pointer in a widget class is of type (*XtRealizeProc).

typedef void (*XtRealizeProc)(w, value_mask, attributes);

w Specifies the widget.

value_mask Specifies which fields in the attributes structure are
used.

attributes Specifies the window attributes to use in the XCre-
ateWindow call.

The realize procedure must create the widget's window.

Before calling the class realize procedure, the generic XtRealizeWidget function
fills in a mask and a corresponding XSetWindowAttributes structure. It sets the
following fields in attributes and corresponding bits in value_mask based on infor-
mation in the widget core structure:

• The background_pixmap (or background_pixel if background_pixmap is XtUn-
specifiedPixmap) is filled in from the corresponding field.

• The border_pixmap (or border_pixel if border_pixmap is XtUnspecifiedPixmap)
is filled in from the corresponding field.

• The colormap is filled in from the corresponding field.
• The event_mask is filled in based on the event handlers registered, the event

translations specified, whether the expose field is non-NULL, and whether
visible_interest is True.

• The bit_gravity is set to NorthWestGravity if the expose field is NULL.

These or any other fields in attributes and the corresponding bits in value_mask can
be set by the realize procedure.

Note that because realize is not a chained operation, the widget class realize pro-
cedure must update the XSetWindowAttributes structure with all the appropriate
fields from non-Core superclasses.

A widget class can inherit its realize procedure from its superclass during class ini-
tialization. The realize procedure defined for coreWidgetClass calls XtCreateWin-
dow with the passed value_mask and attributes and with window_class and visual
set to CopyFromParent. Both compositeWidgetClass and constraintWidgetClass
inherit this realize procedure, and most new widget subclasses can do the same
(see the section called “Inheritance of Superclass Operations”).

The most common noninherited realize procedures set bit_gravity in the mask and
attributes to the appropriate value and then create the window. For example, de-
pending on its justification, Label might set bit_gravity to WestGravity, Center-
Gravity, or EastGravity. Consequently, shrinking it would just move the bits ap-
propriately, and no exposure event is needed for repainting.

If a composite widget's children should be realized in an order other than that spec-
ified (to control the stacking order, for example), it should call XtRealizeWidget on
its children itself in the appropriate order from within its own realize procedure.

Widget Instantiation

51

Widgets that have children and whose class is not a subclass of compositeWidget-
Class are responsible for calling XtRealizeWidget on their children, usually from
within the realize procedure.

Realize procedures cannot manage or unmanage their descendants.

Window Creation Convenience Routine
Rather than call the Xlib XCreateWindow function explicitly, a realize procedure
should normally call the Intrinsics analog XtCreateWindow, which simplifies the cre-
ation of windows for widgets.

void XtCreateWindow(w, window_class, visual, value_mask, attributes);

w Specifies the widget that defines the additional win-
dow attributed. Must be of class Core or any subclass
thereof.

window_class Specifies the Xlib window class (for example, In-
putOutput, InputOnly, or CopyFromParent).

visual Specifies the visual type (usually CopyFromParent).

value_mask Specifies which fields in the attributes structure are
used.

attributes Specifies the window attributes to use in the XCre-
ateWindow call.

The XtCreateWindow function calls the Xlib XCreateWindow function with values
from the widget structure and the passed parameters. Then, it assigns the created
window to the widget's window field.

XtCreateWindow evaluates the following fields of the widget core structure: depth,
screen, parent->core.window, x, y, width, height, and border_width.

Obtaining Window Information from a Widget
The Core widget class definition contains the screen and window ids. The window
field may be NULL for a while (see the section called “Creating Widgets” and the
section called “Realizing Widgets”).

The display pointer, the parent widget, screen pointer, and window of a widget are
available to the widget writer by means of macros and to the application writer by
means of functions.

Display XtDisplay(w);

w Specifies the widget. Must be of class Core or any subclass thereof.

XtDisplay returns the display pointer for the specified widget.

Widget XtParent(w);

w Specifies the widget. Must be of class Object or any subclass there-
of.

Widget Instantiation

52

XtParent returns the parent object for the specified widget. The returned object
will be of class Object or a subclass.

Screen *XtScreen(w);

w Specifies the widget. Must be of class Core or any subclass thereof.

*XtScreen returns the screen pointer for the specified widget.

Window XtWindow(w);

w Specifies the widget. Must be of class Core or any subclass thereof.

XtWindow returns the window of the specified widget.

The display pointer, screen pointer, and window of a widget or of the closest wid-
get ancestor of a nonwidget object are available by means of *XtDisplayOfObject,
*XtScreenOfObject, and XtWindowOfObject.

Display *XtDisplayOfObject(w);

object Specifies the object. Must be of class Object or any subclass
thereof.

*XtDisplayOfObject is identical in function to XtDisplay if the object is a widget;
otherwise *XtDisplayOfObject returns the display pointer for the nearest ancestor
of object that is of class Widget or a subclass thereof.

Screen *XtScreenOfObject(object);

object Specifies the object. Must be of class Object or any subclass
thereof.

*XtScreenOfObject is identical in function to *XtScreen if the object is a widget;
otherwise *XtScreenOfObject returns the screen pointer for the nearest ancestor
of object that is of class Widget or a subclass thereof.

Window XtWindowOfObject(object);

object Specifies the object. Must be of class Object or any subclass
thereof.

XtWindowOfObject is identical in function to XtWindow if the object is a widget;
otherwise XtWindowOfObject returns the window for the nearest ancestor of object
that is of class Widget or a subclass thereof.

To retrieve the instance name of an object, use XtName.

String XtName(object);

object Specifies the object whose name is desired. Must be of class
Object or any subclass thereof.

XtName returns a pointer to the instance name of the specified object. The storage
is owned by the Intrinsics and must not be modified. The name is not qualified by
the names of any of the object's ancestors.

Widget Instantiation

53

Several window attributes are locally cached in the widget instance. Thus, they
can be set by the resource manager and XtSetValues as well as used by routines
that derive structures from these values (for example, depth for deriving pixmaps,
background_pixel for deriving GCs, and so on) or in the XtCreateWindow call.

The x, y, width, height, and border_width window attributes are available to geome-
try managers. These fields are maintained synchronously inside the Intrinsics. When
an XConfigureWindow is issued by the Intrinsics on the widget's window (on request
of its parent), these values are updated immediately rather than some time later
when the server generates a ConfigureNotify event. (In fact, most widgets do not
select SubstructureNotify events.) This ensures that all geometry calculations are
based on the internally consistent toolkit world rather than on either an inconsistent
world updated by asynchronous ConfigureNotify events or a consistent, but slow,
world in which geometry managers ask the server for window sizes whenever they
need to lay out their managed children (see Chapter 6, Geometry Management).

Unrealizing Widgets
To destroy the windows associated with a widget and its non-pop-up descendants,
use XtUnrealizeWidget.

void XtUnrealizeWidget(w);

w Specifies the widget. Must be of class Core or any subclass thereof.

If the widget is currently unrealized, XtUnrealizeWidget simply returns. Otherwise
it performs the following:

• Unmanages the widget if the widget is managed.
• Makes a postorder (child-to-parent) traversal of the widget tree rooted at the spec-

ified widget and, for each widget that has declared a callback list resource named
``unrealizeCallback'', executes the procedures on the XtNunrealizeCallback list.

• Destroys the widget's window and any subwindows by calling XDestroyWindow
with the specified widget's window field.

Any events in the queue or which arrive following a call to XtUnrealizeWidget will
be dispatched as if the window(s) of the unrealized widget(s) had never existed.

Destroying Widgets
The Intrinsics provide support

• To destroy all the pop-up children of the widget being destroyed and destroy all
children of composite widgets.

• To remove (and unmap) the widget from its parent.
• To call the callback procedures that have been registered to trigger when the

widget is destroyed.
• To minimize the number of things a widget has to deallocate when destroyed.
• To minimize the number of XDestroyWindow calls when destroying a widget tree.

To destroy a widget instance, use XtDestroyWidget.

void XtDestroyWidget(w);

Widget Instantiation

54

w Specifies the widget. Must be of class Object or any subclass there-
of.

The XtDestroyWidget function provides the only method of destroying a widget,
including widgets that need to destroy themselves. It can be called at any time,
including from an application callback routine of the widget being destroyed. This
requires a two-phase destroy process in order to avoid dangling references to de-
stroyed widgets.

In phase 1, XtDestroyWidget performs the following:

• If the being_destroyed field of the widget is True, it returns immediately.
• Recursively descends the widget tree and sets the being_destroyed field to True

for the widget and all normal and pop-up children.
• Adds the widget to a list of widgets (the destroy list) that should be destroyed

when it is safe to do so.

Entries on the destroy list satisfy the invariant that if w2 occurs after w1 on the
destroy list, then w2 is not a descendent, either normal or pop-up, of w1.

Phase 2 occurs when all procedures that should execute as a result of the current
event have been called, including all procedures registered with the event and trans-
lation managers, that is, when the current invocation of XtDispatchEvent is about
to return, or immediately if not in XtDispatchEvent.

In phase 2, XtDestroyWidget performs the following on each entry in the destroy
list in the order specified:

• If the widget is not a pop-up child and the widget's parent is a subclass of com-
posite\%WidgetClass, and if the parent is not being destroyed, it calls XtUnman-
ageChild on the widget and then calls the widget's parent's delete_child proce-
dure (see the section called “Deletion of Children: The delete_child Procedure”).

• Calls the destroy callback procedures registered on the widget and all normal and
pop-up descendants in postorder (it calls child callbacks before parent callbacks).

The XtDestroyWidget function then makes second traversal of the widget and all
normal and pop-up descendants to perform the following three items on each widget
in postorder:

• If the widget is not a pop-up child and the widget's parent is a subclass of con-
straint\%WidgetClass, it calls the ConstraintClassPart destroy procedure for
the parent, then for the parent's superclass, until finally it calls the Constraint-
ClassPart destroy procedure for constraintWidgetClass.

• Calls the CoreClassPart destroy procedure declared in the widget class, then
the destroy procedure declared in its superclass, until finally it calls the destroy
procedure declared in the Object class record. Callback lists are deallocated.

• If the widget class object class part contains an ObjectClassExtension record
with the record_type NULLQUARK and the deallocate field is not NULL, calls the
deallocate procedure to deallocate the instance and if one exists, the constraint
record. Otherwise, the Intrinsics will deallocate the widget instance record and
if one exists, the constraint record.

• Calls XDestroyWindow if the specified widget is realized (that is, has an X win-
dow). The server recursively destroys all normal descendant windows. (Windows
of realized pop-up Shell children, and their descendants, are destroyed by a shell
class destroy procedure.)

Widget Instantiation

55

Adding and Removing Destroy Callbacks
When an application needs to perform additional processing during the destruction
of a widget, it should register a destroy callback procedure for the widget. The
destroy callback procedures use the mechanism described in Chapter 8, Callbacks.
The destroy callback list is identified by the resource name XtNdestroyCallback.

For example, the following adds an application-supplied destroy callback procedure
ClientDestroy with client data to a widget by calling XtAddCallback.

XtAddCallback(w, XtNdestroyCallback, ClientDestroy, client_data)

Similarly, the following removes the application-supplied destroy callback proce-
dure ClientDestroy by calling XtRemoveCallback.

XtRemoveCallback(w, XtNdestroyCallback, ClientDestroy, client_data)

The ClientDestroy argument is of type (*XtCallbackProc); see the section called
“Using Callback Procedure and Callback List Definitions”.

Dynamic Data Deallocation: The destroy Procedure
The destroy procedure pointers in the ObjectClassPart, RectObjClassPart, and
CoreClassPart structures are of type XtWidgetProc.

typedef void XtWidgetProc(w);

w Specifies the widget being destroyed.

The destroy procedures are called in subclass-to-superclass order. Therefore, a
widget's destroy procedure should deallocate only storage that is specific to the
subclass and should ignore the storage allocated by any of its superclasses. The
destroy procedure should deallocate only resources that have been explicitly creat-
ed by the subclass. Any resource that was obtained from the resource database or
passed in an argument list was not created by the widget and therefore should not
be destroyed by it. If a widget does not need to deallocate any storage, the destroy
procedure entry in its class record can be NULL.

Deallocating storage includes, but is not limited to, the following steps:

• Calling XtFree on dynamic storage allocated with XtMalloc, XtCalloc, and so on.
• Calling XFreePixmap on pixmaps created with direct X calls.
• Calling XtReleaseGC on GCs allocated with XtGetGC.
• Calling XFreeGC on GCs allocated with direct X calls.
• Calling XtRemoveEventHandler on event handlers added to other widgets.
• Calling XtRemoveTimeOut on timers created with XtAppAddTimeOut.
• Calling XtDestroyWidget for each child if the widget has children and is not a

subclass of compositeWidgetClass.

During destroy phase 2 for each widget, the Intrinsics remove the widget from the
modal cascade, unregister all event handlers, remove all key, keyboard, button, and
pointer grabs and remove all callback procedures registered on the widget. Any
outstanding selection transfers will time out.

Widget Instantiation

56

Dynamic Constraint Data Deallocation: The Constraint-
ClassPart destroy Procedure

The constraint destroy procedure identified in the ConstraintClassPart con-
straintWidgetClass. This constraint destroy procedure pointer is of type XtWid-
getProc. The constraint destroy procedures are called in subclass-to-superclass or-
der, starting at the class of the widget's parent and ending at constraint\%Widget-
Class. Therefore, a parent's constraint destroy procedure should deallocate only
storage that is specific to the constraint subclass and not storage allocated by any
of its superclasses.

If a parent does not need to deallocate any constraint storage, the constraint destroy
procedure entry in its class record can be NULL.

Widget Instance Deallocation: The deallocate Procedure
The deallocate procedure pointer in the ObjectClassExtension record is of type
XtDeallocateProc.

typedef void (*XtDeallocateProc)(widget, more_bytes);

widget Specifies the widget being destroyed.

more_bytes Specifies the auxiliary memory received from the cor-
responding allocator along with the widget, or NULL.

When a widget is destroyed, if an ObjectClassExtension record exists in the object
class part extension field with record_type NULLQUARK and the deallocate field
is not NULL, the XtDeallocateProc will be called. If no ObjectClassPart extension
record is declared with record_type equal to NULLQUARK, then XtInheritAllo-
cate and XtInheritDeallocate are assumed. The responsibilities of the deallocate
procedure are to deallocate the memory specified by more_bytes if it is not NULL,
to deallocate the constraints record as specified by the widget's core.constraints
field if it is not NULL, and to deallocate the widget instance itself.

If no XtDeallocateProc is found, it is assumed that the Intrinsics originally allocat-
ed the memory and is responsible for freeing it.

Exiting from an Application
All X Toolkit applications should terminate by calling XtDestroyApplicationCon-
text and then exiting using the standard method for their operating system (typi-
cally, by calling exit for POSIX-based systems). The quickest way to make the win-
dows disappear while exiting is to call XtUnmapWidget on each top-level shell wid-
get. The Intrinsics have no resources beyond those in the program image, and the
X server will free its resources when its connection to the application is broken.

Depending upon the widget set in use, it may be necessary to explicitly destroy in-
dividual widgets or widget trees with XtDestroyWidget before calling XtDestroy-
ApplicationContext in order to ensure that any required widget cleanup is prop-
erly executed. The application developer must refer to the widget documentation
to learn if a widget needs to perform cleanup beyond that performed automatically
by the operating system. If the client is a session participant (see the section called

Widget Instantiation

57

“Session Participation”), then the client may wish to resign from the session before
exiting. See the section called “Resigning from a Session” for details.

58

Chapter 3. Composite Widgets and
Their Children

Composite widgets (widgets whose class is a subclass of compositeWidgetClass)
can have an arbitrary number of children. Consequently, they are responsible for
much more than primitive widgets. Their responsibilities (either implemented di-
rectly by the widget class or indirectly by Intrinsics functions) include:

• Overall management of children from creation to destruction.
• Destruction of descendants when the composite widget is destroyed.
• Physical arrangement (geometry management) of a displayable subset of children

(that is, the managed children).
• Mapping and unmapping of a subset of the managed children.

Overall management is handled by the generic procedures XtCreateWidget and
XtDestroyWidget. XtCreateWidget adds children to their parent by calling the
parent's insert_child procedure. XtDestroyWidget removes children from their par-
ent by calling the parent's delete_child procedure and ensures that all children of
a destroyed composite widget also get destroyed.

Only a subset of the total number of children is actually managed by the geometry
manager and hence possibly visible. For example, a composite editor widget sup-
porting multiple editing buffers might allocate one child widget for each file buffer,
but it might display only a small number of the existing buffers. Widgets that are in
this displayable subset are called managed widgets and enter into geometry man-
ager calculations. The other children are called unmanaged widgets and, by defin-
ition, are not mapped by the Intrinsics.

Children are added to and removed from their parent's managed set by using
XtManageChild, XtManageChildren, XtUnmanageChild, XtUnmanageChildren, and
XtChangeManagedSet, which notify the parent to recalculate the physical layout of
its children by calling the parent's change_managed procedure. The XtCreateMan-
agedWidget convenience function calls XtCreateWidget and XtManageChild on the
result.

Most managed children are mapped, but some widgets can be in a state where they
take up physical space but do not show anything. Managed widgets are not mapped
automatically if their map_when_managed field is False. The default is True and is
changed by using XtSetMappedWhenManaged.

Each composite widget class declares a geometry manager, which is responsible
for figuring out where the managed children should appear within the composite
widget's window. Geometry management techniques fall into four classes:

Fixed boxes Fixed boxes have a fixed number of children created by
the parent. All these children are managed, and none ever
makes geometry manager requests.

Homogeneous boxes Homogeneous boxes treat all children equally and apply
the same geometry constraints to each child. Many clients
insert and delete widgets freely.

Heterogeneous boxes Heterogeneous boxes have a specific location where each
child is placed. This location usually is not specified in pix-

Composite Widgets
and Their Children

59

els, because the window may be resized, but is expressed
rather in terms of the relationship between a child and the
parent or between the child and other specific children.
The class of heterogeneous boxes is usually a subclass of
Constraint.

Shell boxes Shell boxes typically have only one child, and the child's
size is usually exactly the size of the shell. The geometry
manager must communicate with the window manager, if
it exists, and the box must also accept ConfigureNotify
events when the window size is changed by the window
manager.

Addition of Children to a Composite Widget:
The insert_child Procedure

To add a child to the parent's list of children, the XtCreateWidget function calls the
parent's class routine insert_child. The insert_child procedure pointer in a compos-
ite widget is of type XtWidgetProc.

typedef void (*XtWidgetProc)(w);

w Passes the newly created child.

Most composite widgets inherit their superclass's operation. The insert_child rou-
tine in CompositeWidgetClass calls the insert_position procedure and in-
serts the child at the specified position in the children list, expanding it if necessary.

Some composite widgets define their own insert_child routine so that they can or-
der their children in some convenient way, create companion controller widgets
for a new widget, or limit the number or class of their child widgets. A composite
widget class that wishes to allow nonwidget children (see Chapter 12, Nonwidget
Objects) must specify a CompositeClassExtension extension record as described
in the section called “CompositeClassPart Structure” and set the accepts_objects
field in this record to True. If the CompositeClassExtension record is not specified
or the accepts_objects field is False, the composite widget can assume that all its
children are of a subclass of Core without an explicit subclass test in the insert_child
procedure.

If there is not enough room to insert a new child in the children array (that is,
num_children is equal to num_slots), the insert_child procedure must first reallocate
the array and update num_slots. The insert_child procedure then places the child
at the appropriate position in the array and increments the num_children field.

Insertion Order of Children: The
insert_position Procedure

Instances of composite widgets sometimes need to specify more about the order in
which their children are kept. For example, an application may want a set of com-
mand buttons in some logical order grouped by function, and it may want buttons
that represent file names to be kept in alphabetical order without constraining the
order in which the buttons are created.

Composite Widgets
and Their Children

60

An application controls the presentation order of a set of children by supplying an
XtNinsertPosition resource. The insert_position procedure pointer in a composite
widget instance is of type (*XtOrderProc).

typedef Cardinal (*XtOrderProc)(w);

w Passes the newly created widget.

Composite widgets that allow clients to order their children (usually homogeneous
boxes) can call their widget instance's insert_position procedure from the class's
insert_child procedure to determine where a new child should go in its children
array. Thus, a client using a composite class can apply different sorting criteria
to widget instances of the class, passing in a different insert_position procedure
resource when it creates each composite widget instance.

The return value of the insert_position procedure indicates how many children
should go before the widget. Returning zero indicates that the widget should go be-
fore all other children, and returning num_children indicates that it should go after
all other children. The default insert_position function returns num_children and
can be overridden by a specific composite widget's resource list or by the argument
list provided when the composite widget is created.

Deletion of Children: The delete_child Proce-
dure

To remove the child from the parent's children list, the XtDestroyWidget function
eventually causes a call to the Composite parent's class delete_child procedure. The
delete_child procedure pointer is of type XtWidgetProc.

typedef void (*XtWidgetProc)(w);

w Passes the child being deleted.

Most widgets inherit the delete_child procedure from their superclass. Composite
widgets that create companion widgets define their own delete_child procedure to
remove these companion widgets.

Adding and Removing Children from the Man-
aged Set

The Intrinsics provide a set of generic routines to permit the addition of widgets to
or the removal of widgets from a composite widget's managed set. These generic
routines eventually call the composite widget's change_managed procedure if the
procedure pointer is non-NULL. The change_managed procedure pointer is of type
XtWidgetProc. The widget argument specifies the composite widget whose man-
aged child set has been modified.

Managing Children
To add a list of widgets to the geometry-managed (and hence displayable) subset of
their Composite parent, use XtManageChildren.

Composite Widgets
and Their Children

61

typedef Widget *WidgetList;

void XtManageChildren(children, num_children);

children Specifies a list of child widgets. Each child must be
of class RectObj or any subclass thereof.

num_children Specifies the number of children in the list.

The XtManageChildren function performs the following:

• Issues an error if the children do not all have the same parent or if the parent's
class is not a subclass of compositeWidgetClass.

• Returns immediately if the common parent is being destroyed; otherwise, for each
unique child on the list, XtManageChildren ignores the child if it already is man-
aged or is being destroyed, and marks it if not.

• If the parent is realized and after all children have been marked, it makes some
of the newly managed children viewable:

• • Calls the change_managed routine of the widgets' parent.
• Calls XtRealizeWidget on each previously unmanaged child that is unrealized.
• Maps each previously unmanaged child that has map_when_managed True.

Managing children is independent of the ordering of children and independent of
creating and deleting children. The layout routine of the parent should consider
children whose managed field is True and should ignore all other children. Note
that some composite widgets, especially fixed boxes, call XtManageChild from their
insert_child procedure.

If the parent widget is realized, its change_managed procedure is called to notify it
that its set of managed children has changed. The parent can reposition and resize
any of its children. It moves each child as needed by calling XtMoveWidget, which
first updates the x and y fields and which then calls XMoveWindow.

If the composite widget wishes to change the size or border width of any of
its children, it calls XtResizeWidget, which first updates the width, height, and
border_width fields and then calls XConfigureWindow. Simultaneous repositioning
and resizing may be done with XtConfigureWidget; see the section called “Widget
Placement and Sizing”.

To add a single child to its parent widget's set of managed children, use XtMan-
ageChild.

void XtManageChild(child);

child Specifies the child. Must be of class RectObj or any subclass
thereof.

The XtManageChild function constructs a WidgetList of length 1 and calls XtMan-
ageChildren.

To create and manage a child widget in a single procedure, use XtCreateManaged-
Widget or XtVaCreateManagedWidget.

Widget XtCreateManagedWidget(name, widget_class, parent, args,
num_args);

Composite Widgets
and Their Children

62

name Specifies the resource instance name for the created
widget.

widget_class Specifies the widget class pointer for the created
widget. (rC

parent Specifies the parent widget. Must be of class Com-
posite or any subclass thereof.

args Specifies the argument list to override any other re-
source specifications.

num_args Specifies the number of entries in the argument list.

The XtCreateManagedWidget function is a convenience routine that calls XtCre-
ateWidget and XtManageChild.

Widget XtVaCreateManagedWidget(name, widget_class, parent);

name Specifies the resource instance name for the created
widget.

widget_class Specifies the widget class pointer for the created
widget. (rC

parent Specifies the parent widget. Must be of class Com-
posite or any subclass thereof.

... Specifies the variable argument list to override any
other resource specifications.

XtVaCreateManagedWidget is identical in function to XtCreateManagedWidget with
the args and num_args parameters replaced by a varargs list, as described in Sec-
tion 2.5.1.

Unmanaging Children
To remove a list of children from a parent widget's managed list, use XtUnman-
ageChildren.

void XtUnmanageChildren(children, num_children);

children Specifies a list of child widgets. Each child must be
of class RectObj or any subclass thereof.

num_children Specifies the number of children.

The XtUnmanageChildren function performs the following:

• Returns immediately if the common parent is being destroyed.
• Issues an error if the children do not all have the same parent or if the parent is

not a subclass of compositeWidgetClass.
• For each unique child on the list, XtUnmanageChildren ignores the child if it is

unmanaged; otherwise it performs the following:
• • Marks the child as unmanaged.

• If the child is realized and the map_when_managed field is True, it is unmapped.

Composite Widgets
and Their Children

63

• If the parent is realized and if any children have become unmanaged, calls the
change_managed routine of the widgets' parent.

XtUnmanageChildren does not destroy the child widgets. Removing widgets from
a parent's managed set is often a temporary banishment, and some time later the
client may manage the children again. To destroy widgets entirely, XtDestroyWid-
get should be called instead; see the section called “Exiting from an Application”.

To remove a single child from its parent widget's managed set, use XtUnman-
ageChild.

void XtUnmanageChild(child);

child Specifies the child. Must be of class RectObj or any subclass
thereof.

The XtUnmanageChild function constructs a widget list of length 1 and calls XtUn-
manageChildren.

These functions are low-level routines that are used by generic composite widget
building routines. In addition, composite widgets can provide widget-specific, high-
level convenience procedures.

Bundling Changes to the Managed Set
A client may simultaneously unmanage and manage children with a single call
to the Intrinsics. In this same call the client may provide a callback procedure
that can modify the geometries of one or more children. The composite widget
class defines whether this single client call results in separate invocations of the
change_managed method, one to unmanage and the other to manage, or in just a
single invocation.

To simultaneously remove from and add to the geometry-managed set of children
of a composite parent, use XtChangeManagedSet.

void XtChangeManagedSet(unmanage_children, num_unmanage_children,
do_change_proc, client_data, manage_children, num_manage_children);

unmanage_children Specifies the list of widget children to initially re-
move from the managed set.

num_unmanage_children Specifies the number of entries in the
unmanage_children list.

do_change_proc Specifies a procedure to invoke between unmanag-
ing and managing the children, or NULL.

client_data Specifies client data to be passed to the
do_change_proc.

manage_children Specifies the list of widget children to finally add to
the managed set.

num_manage_children Specifies the number of entries in the
manage_children list.

Composite Widgets
and Their Children

64

The XtChangeManagedSet function performs the following:

• Returns immediately if num_unmanage_children and num_manage_children are
both 0.

• Issues a warning and returns if the widgets specified in the manage_children and
the unmanage_children lists do not all have the same parent or if that parent is
not a subclass of compositeWidgetClass.

• Returns immediately if the common parent is being destroyed.
• If do_change_proc is not NULL and the parent's CompositeClassExtension

allows_change_managed_set field is False, then XtChangeManagedSet performs
the following:

• • Calls XtUnmanageChildren (unmanage_children, num_unmanage_children).
• Calls the do_change_proc.
• Calls XtManageChildren (manage_children, num_manage_children).

• Otherwise, the following is performed:
• • For each child on the unmanage_children list; if the child is already unmanaged

it is ignored, otherwise it is marked as unmanaged, and if it is realized and its
map_when_managed field is True, it is unmapped.

• If do_change_proc is non-NULL, the procedure is invoked.
• For each child on the manage_children list; if the child is already managed or

is being destroyed, it is ignored; otherwise it is marked as managed.
• If the parent is realized and after all children have been marked, the

change_managed method of the parent is invoked, and subsequently some of
the newly managed children are made viewable by calling XtRealizeWidget on
each previously unmanaged child that is unrealized and mapping each previ-
ously unmanaged child that has map_when_managed True.

If no CompositeClassExtension record is found in the parent's composite class
part extension field with record type NULLQUARK and version greater than 1,
and if XtInheritChangeManaged was specified in the parent's class record dur-
ing class initialization, the value of the allows_change_managed_set field is inher-
ited from the superclass. The value inherited from compositeWidgetClass for the
allows_change_managed_set field is False.

It is not an error to include a child in both the unmanage_children and the
manage_children lists. The effect of such a call is that the child remains managed
following the call, but the do_change_proc is able to affect the child while it is in
an unmanaged state.

The do_change_proc is of type *XtDoChangeProc.

typedef void *XtDoChangeProc(composite_parent, unmange_children,
num_unmanage_children, manage_children, num_manage_children,
client_data);

composite_parent Passes the composite parent whose managed set is
being altered.

unmanage_children Passes the list of children just removed from the man-
aged set.

num_unmanage_children Passes the number of entries in the
unmanage_children list.

manage_children Passes the list of children about to be added to the
managed set.

Composite Widgets
and Their Children

65

num_manage_children Passes the number of entries in the manage_children
list.

client_data Passes the client data passed to XtChangeMan-
agedSet.

The do_change_proc procedure is used by the caller of XtChangeManagedSet to
make changes to one or more children at the point when the managed set contains
the fewest entries. These changes may involve geometry requests, and in this case
the caller of XtChangeManagedSet may take advantage of the fact that the Intrinsics
internally grant geometry requests made by unmanaged children without invoking
the parent's geometry manager. To achieve this advantage, if the do_change_proc
procedure changes the geometry of a child or of a descendant of a child, then that
child should be included in the unmanage_children and manage_children lists.

Determining if a Widget Is Managed
To determine the managed state of a given child widget, use XtIsManaged.

Boolean XtIsManaged(w);

w Specifies the widget. Must be of class Object or any subclass there-
of.

The XtIsManaged function returns True if the specified widget is of class RectObj
or any subclass thereof and is managed, or False otherwise.

Controlling When Widgets Get Mapped
A widget is normally mapped if it is managed. However, this behavior can be over-
ridden by setting the XtNmappedWhenManaged resource for the widget when it is
created or by setting the map_when_managed field to False.

To change the value of a given widget's map_when_managed field, use
XtSetMappedWhenManaged.

void XtSetMappedWhenManaged(w, map_when_managed);

w Specifies the widget. Must be of class Core or any
subclass thereof.

map_when_managed Specifies a Boolean value that indicates the
new value that is stored into the widget's
map_when_managed field.

If the widget is realized and managed, and if map_when_managed is True,
XtSetMappedWhenManaged maps the window. If the widget is realized and managed,
and if map_when_managed is False, it unmaps the window. XtSetMappedWhenMan-
aged is a convenience function that is equivalent to (but slightly faster than) calling
XtSetValues and setting the new value for the XtNmappedWhenManaged resource
then mapping the widget as appropriate. As an alternative to using XtSetMapped-
WhenManaged to control mapping, a client may set mapped_when_managed to False
and use XtMapWidget and XtUnmapWidget explicitly.

To map a widget explicitly, use XtMapWidget.

Composite Widgets
and Their Children

66

XtMapWidget(w);

w Specifies the widget. Must be of class Core or any subclass thereof.

To unmap a widget explicitly, use XtUnmapWidget.

XtUnmapWidget(w);

w Specifies the widget. Must be of class Core or any subclass thereof.

Constrained Composite Widgets
The Constraint widget class is a subclass of compositeWidgetClass. The name is
derived from the fact that constraint widgets may manage the geometry of their
children based on constraints associated with each child. These constraints can
be as simple as the maximum width and height the parent will allow the child to
occupy or can be as complicated as how other children should change if this child
is moved or resized. Constraint widgets let a parent define constraints as resources
that are supplied for their children. For example, if the Constraint parent defines the
maximum sizes for its children, these new size resources are retrieved for each child
as if they were resources that were defined by the child widget's class. Accordingly,
constraint resources may be included in the argument list or resource file just like
any other resource for the child.

Constraint widgets have all the responsibilities of normal composite widgets and,
in addition, must process and act upon the constraint information associated with
each of their children.

To make it easy for widgets and the Intrinsics to keep track of the constraints asso-
ciated with a child, every widget has a constraints field, which is the address of a
parent-specific structure that contains constraint information about the child. If a
child's parent does not belong to a subclass of constraintWidgetClass, then the
child's constraints field is NULL.

Subclasses of Constraint can add constraint data to the constraint record defined by
their superclass. To allow this, widget writers should define the constraint records
in their private .h file by using the same conventions as used for widget records.
For example, a widget class that needs to maintain a maximum width and height
for each child might define its constraint record as follows:

typedef struct {
 Dimension max_width, max_height;
} MaxConstraintPart;
typedef struct {
 MaxConstraintPart max;
} MaxConstraintRecord, *MaxConstraint;

A subclass of this widget class that also needs to maintain a minimum size would
define its constraint record as follows:

typedef struct {
 Dimension min_width, min_height;
} MinConstraintPart;

Composite Widgets
and Their Children

67

typedef struct {
 MaxConstraintPart max;
 MinConstraintPart min;
} MaxMinConstraintRecord, *MaxMinConstraint;

Constraints are allocated, initialized, deallocated, and otherwise maintained insofar
as possible by the Intrinsics. The Constraint class record part has several entries
that facilitate this. All entries in ConstraintClassPart are fields and procedures
that are defined and implemented by the parent, but they are called whenever ac-
tions are performed on the parent's children.

The XtCreateWidget function uses the constraint_size field in the parent's class
record to allocate a constraint record when a child is created. XtCreateWidget also
uses the constraint resources to fill in resource fields in the constraint record asso-
ciated with a child. It then calls the constraint initialize procedure so that the parent
can compute constraint fields that are derived from constraint resources and can
possibly move or resize the child to conform to the given constraints.

When the XtGetValues and XtSetValues functions are executed on a child, they use
the constraint resources to get the values or set the values of constraints associated
with that child. XtSetValues then calls the constraint set_values procedures so that
the parent can recompute derived constraint fields and move or resize the child as
appropriate. If a Constraint widget class or any of its superclasses have declared
a ConstraintClassExtension record in the ConstraintClassPart extension fields
with a record type of NULLQUARK and the get_values_hook field in the extension
record is non-NULL, XtGetValues calls the get_values_hook procedure(s) to allow
the parent to return derived constraint fields.

The XtDestroyWidget function calls the constraint destroy procedure to deallocate
any dynamic storage associated with a constraint record. The constraint record it-
self must not be deallocated by the constraint destroy procedure; XtDestroyWidget
does this automatically.

68

Chapter 4. Shell Widgets
Shell widgets hold an application's top-level widgets to allow them to communicate
with the window manager and session manager. Shells have been designed to be
as nearly invisible as possible. Clients have to create them, but they should never
have to worry about their sizes.

If a shell widget is resized from the outside (typically by a window manager), the
shell widget also resizes its managed child widget automatically. Similarly, if the
shell's child widget needs to change size, it can make a geometry request to the
shell, and the shell negotiates the size change with the outer environment. Clients
should never attempt to change the size of their shells directly.

The five types of public shells are:

OverrideShell Used for shell windows that completely bypass the window
manager (for example, pop-up menu shells).

TransientShell Used for shell windows that have the WM_TRANSIENT_FOR
property set. The effect of this property is dependent upon the
window manager being used.

TopLevelShell Used for normal top-level windows (for example, any additional
top-level widgets an application needs).

ApplicationShell Formerly used for the single main top-level window that the
window manager identifies as an application instance and
made obsolete by SessionShell.

SessionShell Used for the single main top-level window that the window
manager identifies as an application instance and that inter-
acts with the session manager.

Shell Widget Definitions
Widgets negotiate their size and position with their parent widget, that is, the widget
that directly contains them. Widgets at the top of the hierarchy do not have parent
widgets. Instead, they must deal with the outside world. To provide for this, each
top-level widget is encapsulated in a special widget, called a shell widget.

Shell widgets, whose class is a subclass of the Composite class, encapsulate other
widgets and can allow a widget to avoid the geometry clipping imposed by the par-
ent-child window relationship. They also can provide a layer of communication with
the window manager.

The eight different types of shells are:

Shell The base class for shell widgets; provides the fields needed for
all types of shells. Shell is a direct subclass of compositeWid-
getClass.

OverrideShell A subclass of Shell; used for shell windows that completely by-
pass the window manager.

WMShell A subclass of Shell; contains fields needed by the common win-
dow manager protocol.

Shell Widgets

69

VendorShell A subclass of WMShell; contains fields used by vendor-specific
window managers.

TransientShell A subclass of VendorShell; used for shell windows that desire
the WM_TRANSIENT_FOR property.

TopLevelShell A subclass of VendorShell; used for normal top-level windows.

ApplicationShell A subclass of TopLevelShell; may be used for an application's
additional root windows.

SessionShell A subclass of ApplicationShell; used for an application's main
root window.

Note that the classes Shell, WMShell, and VendorShell are internal and should not
be instantiated or subclassed. Only OverrrideShell, TransientShell, TopLevelShell,
ApplicationShell, and SessionShell are intended for public use.

ShellClassPart Definitions
Only the Shell class has additional class fields, which are all contained in the Shell-
ClassExtensionRec. None of the other Shell classes have any additional class fields:

typedef struct {
 XtPointer extension;
} ShellClassPart, OverrideShellClassPart,
WMShellClassPart, VendorShellClassPart, TransientShellClassPart,
TopLevelShellClassPart, ApplicationShellClassPart, SessionShellClassPart;

The full Shell class record definitions are:

typedef struct _ShellClassRec {
 CoreClassPart core_class;
 CompositeClassPart composite_class;
 ShellClassPart shell_class;
} ShellClassRec;

typedef struct {
 XtPointer next_extension; See the section called “Class Extension Records”
 XrmQuark record_type; See the section called “Class Extension Records”
 long version; See the section called “Class Extension Records”
 Cardinal record_size; See the section called “Class Extension Records”
 XtGeometryHandler root_geometry_manager; See below
} ShellClassExtensionRec, *ShellClassExtension;

typedef struct _OverrideShellClassRec {
 CoreClassPart core_class;
 CompositeClassPart composite_class;
 ShellClassPart shell_class;
 OverrideShellClassPart override_shell_class;
} OverrideShellClassRec;

Shell Widgets

70

typedef struct _WMShellClassRec {
 CoreClassPart core_class;
 CompositeClassPart composite_class;
 ShellClassPart shell_class;
 WMShellClassPart wm_shell_class;
} WMShellClassRec;

typedef struct _VendorShellClassRec {
 CoreClassPart core_class;
 CompositeClassPart composite_class;
 ShellClassPart shell_class;
 WMShellClassPart wm_shell_class;
 VendorShellClassPart vendor_shell_class;
} VendorShellClassRec;

typedef struct _TransientShellClassRec {
 CoreClassPart core_class;
 CompositeClassPart composite_class;
 ShellClassPart shell_class;
 WMShellClassPart wm_shell_class;
 VendorShellClassPart vendor_shell_class;
 TransientShellClassPart transient_shell_class;
} TransientShellClassRec;

typedef struct _TopLevelShellClassRec {
 CoreClassPart core_class;
 CompositeClassPart composite_class;
 ShellClassPart shell_class;
 WMShellClassPart wm_shell_class;
 VendorShellClassPart vendor_shell_class;
 TopLevelShellClassPart top_level_shell_class;
} TopLevelShellClassRec;

typedef struct _ApplicationShellClassRec {
 CoreClassPart core_class;
 CompositeClassPart composite_class;
 ShellClassPart shell_class;
 WMShellClassPart wm_shell_class;
 VendorShellClassPart vendor_shell_class;
 TopLevelShellClassPart top_level_shell_class;
 ApplicationShellClassPart application_shell_class;
} ApplicationShellClassRec;

typedef struct _SessionShellClassRec {
 CoreClassPart core_class;
 CompositeClassPart composite_class;
 ShellClassPart shell_class;
 WMShellClassPart wm_shell_class;
 VendorShellClassPart vendor_shell_class;
 TopLevelShellClassPart top_level_shell_class;

Shell Widgets

71

 ApplicationShellClassPart application_shell_class;
 SessionShellClassPart session_shell_class;
} SessionShellClassRec;

The single occurrences of the class records and pointers for creating instances of
shells are:

extern ShellClassRec shellClassRec;
extern OverrideShellClassRec overrideShellClassRec;
extern WMShellClassRec wmShellClassRec;
extern VendorShellClassRec vendorShellClassRec;
extern TransientShellClassRec transientShellClassRec;
extern TopLevelShellClassRec topLevelShellClassRec;
extern ApplicationShellClassRec applicationShellClassRec;
extern SessionShellClassRec sessionShellClassRec;
extern WidgetClass shellWidgetClass;
extern WidgetClass overrideShellWidgetClass;
extern WidgetClass wmShellWidgetClass;
extern WidgetClass vendorShellWidgetClass;
extern WidgetClass transientShellWidgetClass;
extern WidgetClass topLevelShellWidgetClass;
extern WidgetClass applicationShellWidgetClass;
extern WidgetClass sessionShellWidgetClass;

The following opaque types and opaque variables are defined for generic operations
on widgets whose class is a subclass of Shell.

Types Variables
ShellWidget shellWidgetClass
OverrideShellWidget overrideShellWidgetClass
WMShellWidget wmShellWidgetClass
VendorShellWidget vendorShellWidgetClass
TransientShellWidget transientShellWidgetClass
TopLevelShellWidget topLevelShellWidgetClass
ApplicationShellWidget applicationShellWidgetClass
SessionShellWidget sessionShellWidgetClass
ShellWidgetClass
OverrideShellWidgetClass
WMShellWidgetClass
VendorShellWidgetClass
TransientShellWidgetClass
TopLevelShellWidgetClass
ApplicationShellWidgetClass
SessionShellWidgetClass

The declarations for all Intrinsics-defined shells except VendorShell appear in
Shell.h and ShellP.h. VendorShell has separate public and private .h files which
are included by Shell.h and ShellP.h.

Shell Widgets

72

Shell.h uses incomplete structure definitions to ensure that the compiler catches
attempts to access private data in any of the Shell instance or class data structures.

The symbolic constant for the ShellClassExtension version identifier is
XtShellExtensionVersion (see the section called “Class Extension Records”).

The root_geometry_manager procedure acts as the parent geometry manager
for geometry requests made by shell widgets. When a shell widget calls either
XtMakeGeometryRequest or XtMakeResizeRequest, the root_geometry_manager
procedure is invoked to negotiate the new geometry with the window manager. If
the window manager permits the new geometry, the root_geometry_manager pro-
cedure should return XtGeometryYes; if the window manager denies the geome-
try request or does not change the window geometry within some timeout interval
(equal to wm_timeout in the case of WMShells), the root_geometry_manager proce-
dure should return XtGeometryNo. If the window manager makes some alternative
geometry change, the root_geometry_manager procedure may return either XtGe-
ometryNo and handle the new geometry as a resize or XtGeometryAlmost in antic-
ipation that the shell will accept the compromise. If the compromise is not accept-
ed, the new size must then be handled as a resize. Subclasses of Shell that wish
to provide their own root_geometry_manager procedures are strongly encouraged
to use enveloping to invoke their superclass's root_geometry_manager procedure
under most situations, as the window manager interaction may be very complex.

If no ShellClassPart extension record is declared with record_type equal to NUL-
LQUARK, then XtInheritRootGeometryManager is assumed.

ShellPart Definition
The various shell widgets have the following additional instance fields defined in
their widget records:

typedef struct {
 String geometry;
 XtCreatePopupChildProc create_popup_child_proc;
 XtGrabKind grab_kind;
 Boolean spring_loaded;
 Boolean popped_up;
 Boolean allow_shell_resize;
 Boolean client_specified;
 Boolean save_under;
 Boolean override_redirect;
 XtCallbackList popup_callback;
 XtCallbackList popdown_callback;
 Visual * visual;
} ShellPart;

typedef struct {
 int empty;
} OverrideShellPart;

typedef struct {
 String title;

Shell Widgets

73

 int wm_timeout;
 Boolean wait_for_wm;
 Boolean transient;
 Boolean urgency;
 Widget client_leader;
 String window_role;
 struct _OldXSizeHints {
 long flags;
 int x, y;
 int width, height;
 int min_width, min_height;
 int max_width, max_height;
 int width_inc, height_inc;
 struct {
 int x;
 int y;
 } min_aspect, max_aspect;
 } size_hints;
 XWMHints wm_hints;
 int base_width, base_height, win_gravity;
 Atom title_encoding;
} WMShellPart;

typedef struct {
 int vendor_specific;
} VendorShellPart;

typedef struct {
 Widget transient_for;
} TransientShellPart;
typedef struct {
 String icon_name;
 Boolean iconic;
 Atom icon_name_encoding;
} TopLevelShellPart;

typedef struct {
 char * class;
 XrmClass xrm_class;
 int argc;
 char ** argv;
} ApplicationShellPart;

typedef struct {
 SmcConn connection;
 String session_id;
 String * restart_command;
 String * clone_command;
 String * discard_command;
 String * resign_command;
 String * shutdown_command;

Shell Widgets

74

 String * environment;
 String current_dir;
 String program_path;
 unsigned char restart_style;
 Boolean join_session;
 XtCallbackList save_callbacks;
 XtCallbackList interact_callbacks;
 XtCallbackList cancel_callbacks;
 XtCallbackList save_complete_callbacks;
 XtCallbackList die_callbacks;
 XtCallbackList error_callbacks;
} SessionShellPart;

The full shell widget instance record definitions are:

typedef struct {
 CorePart core;
 CompositePart composite;
 ShellPart shell;
} ShellRec, *ShellWidget;

typedef struct {
 CorePart core;
 CompositePart composite;
 ShellPart shell;
 OverrideShellPart override;
} OverrideShellRec, *OverrideShellWidget;

typedef struct {
 CorePart core;
 CompositePart composite;
 ShellPart shell;
 WMShellPart wm;
} WMShellRec, *WMShellWidget;

typedef struct {
 CorePart core;
 CompositePart composite;
 ShellPart shell;
 WMShellPart wm;
 VendorShellPart vendor;
} VendorShellRec, *VendorShellWidget;

typedef struct {
 CorePart core;
 CompositePart composite;
 ShellPart shell;
 WMShellPart wm;
 VendorShellPart vendor;
 TransientShellPart transient;
} TransientShellRec, *TransientShellWidget;

Shell Widgets

75

typedef struct {
 CorePart core;
 CompositePart composite;
 ShellPart shell;
 WMShellPart wm;
 VendorShellPart vendor;
 TopLevelShellPart topLevel;
} TopLevelShellRec, *TopLevelShellWidget;

typedef struct {
 CorePart core;
 CompositePart composite;
 ShellPart shell;
 WMShellPart wm;
 VendorShellPart vendor;
 TopLevelShellPart topLevel;
 ApplicationShellPart application;
} ApplicationShellRec, *ApplicationShellWidget;

typedef struct {
 CorePart core;
 CompositePart composite;
 ShellPart shell;
 WMShellPart wm;
 VendorShellPart vendor;
 TopLevelShellPart topLevel;
 ApplicationShellPart application;
 SessionShellPart session;
} SessionShellRec, *SessionShellWidget;

Shell Resources
The resource names, classes, and representation types specified in the shellClass-
Rec resource list are:

Name Class Representation
XtNallowShellResize XtCAllowShellResize XtRBoolean
XtNcreatePopupChildProc XtCCreatePopupChildProc XtRFunction
XtNgeometry XtCGeometry XtRString
XtNoverrideRedirect XtCOverrideRedirect XtRBoolean
XtNpopdownCallback XtCCallback XtRCallback
XtNpopupCallback XtCCallback XtRCallback
XtNsaveUnder XtCSaveUnder XtRBoolean
XtNvisual XtCVisual XtRVisual

OverrideShell declares no additional resources beyond those defined by Shell.

The resource names, classes, and representation types specified in the wmShell-
ClassRec resource list are:

Shell Widgets

76

Name Class Representation
XtNbaseHeight XtCBaseHeight XtRInt
XtNbaseWidth XtCBaseWidth XtRInt
XtNclientLeader XtCClientLeader XtRWidget
XtNheightInc XtCHeightInc XtRInt
XtNiconMask XtCIconMask XtRBitmap
XtNiconPixmap XtCIconPixmap XtRBitmap
XtNiconWindow XtCIconWindow XtRWindow
XtNiconX XtCIconX XtRInt
XtNiconY XtCIconY XtRInt
XtNinitialState XtCInitialState XtRInitialState
XtNinput XtCInput XtRBool
XtNmaxAspectX XtCMaxAspectX XtRInt
XtNmaxAspectY XtCMaxAspectY XtRInt
XtNmaxHeight XtCMaxHeight XtRInt
XtNmaxWidth XtCMaxWidth XtRInt
XtNminAspectX XtCMinAspectX XtRInt
XtNminAspectY XtCMinAspectY XtRInt
XtNminHeight XtCMinHeight XtRInt
XtNminWidth XtCMinWidth XtRInt
XtNtitle XtCTitle XtRString
XtNtitleEncoding XtCTitleEncoding XtRAtom
XtNtransient XtCTransient XtRBoolean
XtNwaitforwm, XtNwait-
ForWm

XtCWaitforwm, XtCWait-
ForWm

XtRBoolean

XtNwidthInc XtCWidthInc XtRInt
XtNwindowRole XtCWindowRole XtRString
XtNwinGravity XtCWinGravity XtRGravity
XtNwindowGroup XtCWindowGroup XtRWindow
XtNwmTimeout XtCWmTimeout XtRInt
XtNurgency XtCUrgency XtRBoolean
_

The class resource list for VendorShell is implementation-defined.

The resource names, classes, and representation types that are specified in the
transient\%ShellClassRec resource list are:

Name Class Representation
XtNtransientFor XtCTransientFor XtRWidget

The resource names, classes, and representation types that are specified in the
topLevelShellClassRec resource list are:

Shell Widgets

77

Name Class Representation
XtNiconName XtCIconName XtRString
XtNiconNameEncoding XtCIconNameEncoding XtRAtom
XtNiconic XtCIconic XtRBoolean

The resource names, classes, and representation types that are specified in the
application\%ShellClassRec resource list are:

Name Class Representation
XtNargc XtCArgc XtRInt
XtNargv XtCArgv XtRStringArray

The resource names, classes, and representation types that are specified in the
sessionShellClassRec resource list are:

Name Class Representation
XtNcancelCallback XtCCallback XtRCallback
XtNcloneCommand XtCCloneCommand XtRCommandArgArray
XtNconnection XtCConnection XtRSmcConn
XtNcurrentDirectory XtCCurrentDirectory XtRDirectoryString
XtNdieCallback XtCCallback XtRCallback
XtNdiscardCommand XtCDiscardCommand XtRCommandArgArray
XtNenvironment XtCEnvironment XtREnvironmentArray
XtNerrorCallback XtCCallback XtRCallback
XtNinteractCallback XtCCallback XtRCallback
XtNjoinSession XtCJoinSession XtRBoolean
XtNprogramPath XtCProgramPath XtRString
XtNresignCommand XtCResignCommand XtRCommandArgArray
XtNrestartCommand XtCRestartCommand XtRCommandArgArray
XtNrestartStyle XtCRestartStyle XtRRestartStyle
XtNsaveCallback XtCCallback XtRCallback
XtNsaveCompleteCallback XtCCallback XtRCallback
XtNsessionID XtCSessionID XtRString
XtNshutdownCommand XtCShutdownCommand XtRCommandArgArray

ShellPart Default Values

The default values for fields common to all classes of public shells (filled in by the
Shell resource lists and the Shell initialize procedures) are:

Shell Widgets

78

Field Default Value
geometry NULL
create_popup_child_proc NULL
grab_kind (none)
spring_loaded (none)
popped_up False

allow_shell_resize False

client_specified (internal)
save_under True for OverrideShell and Transien-

tShell, False otherwise
override_redirect True for OverrideShell, False otherwise
popup_callback NULL
popdown_callback NULL
visual CopyFromParent

The geometry field specifies the size and position and is usually given only on a
command line or in a defaults file. If the geometry field is non-NULL when a widget
of class WMShell is realized, the geometry specification is parsed using XWMGeome-
try with a default geometry string constructed from the values of x, y, width, height,
width_inc, and height_inc and the size and position flags in the window manager
size hints are set. If the geometry specifies an x or y position, then USPosition is
set. If the geometry specifies a width or height, then USSize is set. Any fields in the
geometry specification override the corresponding values in the Core x, y, width,
and height fields. If geometry is NULL or contains only a partial specification, then
the Core x, y, width, and height fields are used and PPosition and PSize are set as
appropriate. The geometry string is not copied by any of the Intrinsics Shell class-
es; a client specifying the string in an arglist or varargs list must ensure that the
value remains valid until the shell widget is realized. For further information on the
geometry string, see the section called “Parsing the Window Geometry” in Xlib —
C Language X Interface.

The create_popup_child_proc procedure is called by the XtPopup procedure and
may remain NULL. The grab_kind, spring_loaded, and popped_up fields maintain
widget state information as described under XtPopup, XtMenuPopup, XtPopdown, and
XtMenuPopdown. The allow_shell_resize field controls whether the widget contained
by the shell is allowed to try to resize itself. If allow_shell_resize is False, any geom-
etry requests made by the child will always return XtGeometryNo without interact-
ing with the window manager. Setting save_under True instructs the server to at-
tempt to save the contents of windows obscured by the shell when it is mapped
and to restore those contents automatically when the shell is unmapped. It is useful
for pop-up menus. Setting override_redirect True determines whether the window
manager can intercede when the shell window is mapped. For further information
on override_redirect, see the section called “Window Attributes” in Xlib — C Lan-
guage X Interface and the section called “Pop-up Windows” and the section called
“Redirection of Operations” in the Inter-Client Communication Conventions Manu-
al. The pop-up and pop-down callbacks are called during XtPopup and XtPopdown.
The default value of the visual resource is the symbolic value CopyFromParent. The
Intrinsics do not need to query the parent's visual type when the default value is
used; if a client using XtGetValues to examine the visual type receives the value

Shell Widgets

79

CopyFromParent, it must then use XGetWindowAttributes if it needs the actual vi-
sual type.

The default values for Shell fields in WMShell and its subclasses are:

Field Default Value
title Icon name, if specified, otherwise the

application's name
wm_timeout Five seconds, in units of milliseconds
wait_for_wm True

transient True for TransientShell, False other-
wise

urgency False

client_leader NULL
window_role NULL
min_width XtUnspecifiedShellInt

min_height XtUnspecifiedShellInt

max_width XtUnspecifiedShellInt

max_height XtUnspecifiedShellInt

width_inc XtUnspecifiedShellInt

height_inc XtUnspecifiedShellInt

min_aspect_x XtUnspecifiedShellInt

min_aspect_y XtUnspecifiedShellInt

max_aspect_x XtUnspecifiedShellInt

max_aspect_y XtUnspecifiedShellInt

input False

initial_state Normal
icon_pixmap None
icon_window None
icon_x XtUnspecifiedShellInt

icon_y XtUnspecifiedShellInt

icon_mask None
window_group XtUnspecifiedWindow

base_width XtUnspecifiedShellInt

base_height XtUnspecifiedShellInt

win_gravity XtUnspecifiedShellInt

title_encoding See text

The title and title_encoding fields are stored in the WM_NAME property on the
shell's window by the WMShell realize procedure. If the title_encoding field is None,
the title string is assumed to be in the encoding of the current locale and the encod-
ing of the WM_NAME property is set to XStdICCTextStyle. If a language procedure
has not been set the default value of title_encoding is XA_STRING, otherwise the
default value is None. The wm_timeout field specifies, in milliseconds, the amount of

Shell Widgets

80

time a shell is to wait for confirmation of a geometry request to the window manag-
er. If none comes back within that time, the shell assumes the window manager is
not functioning properly and sets wait_for_wm to False (later events may reset this
value). When wait_for_wm is False, the shell does not wait for a response, but re-
lies on asynchronous notification. If transient is True, the WM_TRANSIENT_FOR
property will be stored on the shell window with a value as specified below. The in-
terpretation of this property is specific to the window manager under which the ap-
plication is run; see the Inter-Client Communication Conventions Manual for more
details.

The realize and set_values procedures of WMShell store the
WM_CLIENT_LEADER property on the shell window. When client_leader is not
NULL and the client leader widget is realized, the property will be created with the
value of the window of the client leader widget. When client_leader is NULL and
the shell widget has a NULL parent, the widget's window is used as the value of the
property. When client_leader is NULL and the shell widget has a non-NULL parent,
a search is made for the closest shell ancestor with a non-NULL client_leader, and
if none is found the shell ancestor with a NULL parent is the result. If the resulting
widget is realized, the property is created with the value of the widget's window.

When the value of window_role is not NULL, the realize and set_values procedures
store the WM_WINDOW_ROLE property on the shell's window with the value of
the resource.

All other resources specify fields in the window manager hints and the window
manager size hints. The realize and set_values procedures of WMShell set the cor-
responding flag bits in the hints if any of the fields contain nondefault values. In
addition, if a flag bit is set that refers to a field with the value XtUnspecifiedShel-
lInt, the value of the field is modified as follows:

Field Replacement
base_width, base_height 0
width_inc, height_inc 1
max_width, max_height 32767
min_width, min_height 1
min_aspect_x, min_aspect_y -1
max_aspect_x, max_aspect_y -1
icon_x, icon_y -1
win_gravity Value returned by XWMGeometry if

called, else NorthWestGravity

If the shell widget has a non-NULL parent, then the realize and set_values pro-
cedures replace the value XtUnspecifiedWindow in the window_group field with
the window id of the root widget of the widget tree if the root widget is realized.
The symbolic constant XtUnspecifiedWindowGroup may be used to indicate that
the window_group hint flag bit is not to be set. If transient is True, the shell's
class is not a subclass of TransientShell, and window_group is not XtUnspeci-
fiedWindowGroup, the WMShell realize and set_values procedures then store the
WM_TRANSIENT_FOR property with the value of window_group.

Transient shells have the following additional resource:

Shell Widgets

81

Field Replacement
transient_for NULL

The realize and set_values procedures of TransientShell store the
WM_TRANSIENT_FOR property on the shell window if transient is True. If
transient_for is non-NULL and the widget specified by transient_for is realized, then
its window is used as the value of the WM_TRANSIENT_FOR property; otherwise,
the value of window_group is used.

TopLevel shells have the the following additional resources:

Field Default Value
icon_name Shell widget's name
iconic False
icon_name_encoding See text

The icon_name and icon_name_encoding fields are stored in the WM_ICON_NAME
property on the shell's window by the TopLevelShell realize procedure. If the
icon_name_encoding field is None, the icon_name string is assumed to be in the en-
coding of the current locale and the encoding of the WM_ICON_NAME property
is set to XStdICCTextStyle. If a language procedure has not been set, the default
value of icon_name_encoding is XA_STRING, otherwise the default value is None.
The iconic field may be used by a client to request that the window manager iconify
or deiconify the shell; the TopLevelShell set_values procedure will send the appro-
priate WM_CHANGE_STATE message (as specified by the Inter-Client Communi-
cation Conventions Manual) if this resource is changed from False to True and will
call XtPopup specifying grab_kind as XtGrabNone if iconic is changed from True
to False. The XtNiconic resource is also an alternative way to set the XtNinitialS-
tate resource to indicate that a shell should be initially displayed as an icon; the
TopLevelShell initialize procedure will set initial_state to IconicState if iconic is
True.

Application shells have the following additional resources:

Field Default Value
argc 0
argv NULL

The argc and argv fields are used to initialize the standard property
WM_COMMAND. See the Inter-Client Communication Conventions Manual for
more information.

The default values for the SessionShell instance fields, which are filled in from the
resource lists and by the initialize procedure, are

Shell Widgets

82

Field Default Value
cancel_callbacks NULL
clone_command See text
connection NULL
current_dir NULL
die_callbacks NULL
discard_command NULL
environment NULL
error_callbacks NULL
interact_callbacks NULL
join_session True
program_path NULL
resign_command NULL
restart_command See text
restart_style SmRestartIfRunning
save_callbacks NULL
save_complete_callbacks NULL
session_id NULL
shutdown_command NULL

The connection field contains the session connection object or NULL if a session
connection is not being managed by this widget.

The session_id is an identification assigned to the session participant by the session
manager. The session_id will be passed to the session manager as the client identi-
fier of the previous session. When a connection is established with the session man-
ager, the client id assigned by the session manager is stored in the session_id field.
When not NULL, the session_id of the Session shell widget that is at the root of the
widget tree of the client leader widget will be used to create the SM_CLIENT_ID
property on the client leader's window.

If join_session is False, the widget will not attempt to establish a connection to the
session manager at shell creation time. See the section called “Joining a Session”
and the section called “Resigning from a Session” for more information on the func-
tionality of this resource.

The restart_command, clone_command, discard_command, resign_command,
shutdown_command, environment, current_dir, program_path, and restart_style
fields contain standard session properties.

When a session connection is established or newly managed by the shell, the
shell initialize and set_values methods check the values of the restart_command,
clone_command, and program_path resources. At that time, if restart_command is
NULL, the value of the argv resource will be copied to restart_command. Whether or
not restart_command was NULL, if "-xtsessionID" "<session id>" does not already
appear in the restart_command, it will be added by the initialize and set_values
methods at the beginning of the command arguments; if the "-xtsessionID" argu-
ment already appears with an incorrect session id in the following argument, that
argument will be replaced with the current session id.

Shell Widgets

83

After this, the shell initialize and set_values procedures check the clone_command.
If clone_command is NULL, restart_command will be copied to clone_command,
except the "-xtsessionID" and following argument will not be copied.

Finally, the shell initialize and set_values procedures check the program_path.
If program_path is NULL, the first element of restart_command is copied to
program_path.

The possible values of restart_style are SmRestartIfRunning, SmRestartAnyway,
SmRestartImmediately, and SmRestartNever. A resource converter is registered
for this resource; for the strings that it recognizes, see the section called “Prede-
fined Resource Converters”.

The resource type EnvironmentArray is a NULL-terminated array of pointers to
strings; each string has the format "name=value". The ̀ =' character may not appear
in the name, and the string is terminated by a null character.

Session Participation
Applications can participate in a user's session, exchanging messages with the ses-
sion manager as described in the X Session Management Protocol and the X Session
Management Library.

When a widget of sessionShellWidgetClass or a subclass is created, the widget
provides support for the application as a session participant and continues to pro-
vide support until the widget is destroyed.

Joining a Session
When a Session shell is created, if connection is NULL, and if join_session is True,
and if argv or restart_command is not NULL, and if in POSIX environments the
SESSION_MANAGER environment variable is defined, the shell will attempt to
establish a new connection with the session manager.

To transfer management of an existing session connection from an application to the
shell at widget creation time, pass the existing session connection ID as the connec-
tion resource value when creating the Session shell, and if the other creation-time
conditions on session participation are met, the widget will maintain the connection
with the session manager. The application must ensure that only one Session shell
manages the connection.

In the Session shell set_values procedure, if join_session changes from False
to True and connection is NULL and when in POSIX environments the
SESSION_MANAGER environment variable is defined, the shell will attempt to
open a connection to the session manager. If connection changes from NULL to
non-NULL, the Session shell will take over management of that session connection
and will set join_session to True. If join_session changes from False to True and
connection is not NULL, the Session shell will take over management of the session
connection.

When a successful connection has been established, connection contains the session
connection ID for the session participant. When the shell begins to manage the
connection, it will call XtAppAddInput to register the handler which watches for
protocol messages from the session manager. When the attempt to connect fails, a
warning message is issued and connection is set to NULL.

Shell Widgets

84

While the connection is being managed, if a SaveYourself, SaveYourselfPhase2,
Interact, ShutdownCancelled, SaveComplete, or Die message is received from
the session manager, the Session shell will call out to application callback pro-
cedures registered on the respective callback list of the Session shell and will
send SaveYourselfPhase2Request, InteractRequest, InteractDone, SaveYour-
selfDone, and ConnectionClosed messages as appropriate. Initially, all of the
client's session properties are undefined. When any of the session property resource
values are defined or change, the Session shell initialize and set_values procedures
will update the client's session property value by a SetProperties or a DeleteProp-
erties message, as appropriate. The session ProcessID and UserID properties are
always set by the shell when it is possible to determine the value of these properties.

Saving Application State
The session manager instigates an application checkpoint by sending a SaveYour-
self request. Applications are responsible for saving their state in response to the
request.

When the SaveYourself request arrives, the procedures registered on the Session
shell's save callback list are called. If the application does not register any save
callback procedures on the save callback list, the shell will report to the session
manager that the application failed to save its state. Each procedure on the save
callback list receives a token in the call_data parameter.

The checkpoint token in the call_data parameter is of type XtCheckpointToken.

typedef struct {
 int save_type;
 int interact_style;
 Boolean shutdown;
 Boolean fast;
 Boolean cancel_shutdown
 int phase;
 int interact_dialog_type; /* return */
 Boolean request_cancel; /* return */
 Boolean request_next_phase; /* return */
 Boolean save_success; /* return */
} XtCheckpointTokenRec, *XtCheckpointToken;

The save_type, interact_style, shutdown, and fast fields of the token contain the
parameters of the SaveYourself message. The possible values of save_type are
SmSaveLocal, SmSaveGlobal, and SmSaveBoth; these indicate the type of informa-
tion to be saved. The possible values of interact_style are SmInteractStyleNone,
SmInteractStyleErrors, and SmInteractStyleAny; these indicate whether user
interaction would be permitted and, if so, what kind of interaction. If shutdown is
True, the checkpoint is being performed in preparation for the end of the session.
If fast is True, the client should perform the checkpoint as quickly as possible. If
cancel_shutdown is True, a ShutdownCancelled message has been received for the
current save operation. (See the section called “Resigning from a Session”.) The
phase is used by manager clients, such as a window manager, to distinguish between
the first and second phase of a save operation. The phase will be either 1 or 2. The
remaining fields in the checkpoint token structure are provided for the application
to communicate with the shell.

Shell Widgets

85

Upon entry to the first application save callback procedure, the return fields in
the token have the following initial values: interact_dialog_type is SmDialogNormal;
request_cancel is False; request_next_phase is False; and save_success is True.
When a token is returned with any of the four return fields containing a noninitial
value, and when the field is applicable, subsequent tokens passed to the application
during the current save operation will always contain the noninitial value.

The purpose of the token's save_success field is to indicate the outcome of the en-
tire operation to the session manager and ultimately, to the user. Returning False
indicates some portion of the application state could not be successfully saved. If
any token is returned to the shell with save_success False, tokens subsequently
received by the application for the current save operation will show save_success
as False. When the shell sends the final status of the checkpoint to the session
manager, it will indicate failure to save application state if any token was returned
with save_success False.

Session participants that manage and save the state of other clients should structure
their save or interact callbacks to set request_next_phase to True when phase is 1,
which will cause the shell to send the SaveYourselfPhase2Request when the first
phase is complete. When the SaveYourselfPhase2 message is received, the shell
will invoke the save callbacks a second time with phase equal to 2. Manager clients
should save the state of other clients when the callbacks are invoked the second
time and phase equal to 2.

The application may request additional tokens while a checkpoint is under way, and
these additional tokens must be returned by an explicit call.

To request an additional token for a save callback response that has a deferred
outcome, use XtSessionGetToken.

XtCheckpointToken XtSessionGetToken(widget);

widget Specifies the Session shell widget which manages session
participation.

The XtSessionGetToken function will return NULL if no checkpoint operation is
currently under way.

To indicate the completion of checkpoint processing including user interaction, the
application must signal the Session shell by returning all tokens. (See the section
called “Interacting with the User during a Checkpoint” and the section called “Com-
pleting a Save”). To return a token, use XtSessionReturnToken.

void XtSessionReturnToken(token);

token Specifies a token that was received as the call_data by a pro-
cedure on the interact callback list or a token that was re-
ceived by a call to XtSessionGetToken.

Tokens passed as call_data to save callbacks are implicitly returned when the save
callback procedure returns. A save callback procedure should not call XtSession-
ReturnToken on the token passed in its call_data.

Requesting Interaction

When the token interact_style allows user interaction, the application may interact
with the user during the checkpoint, but must wait for permission to interact. Appli-

Shell Widgets

86

cations request permission to interact with the user during the checkpointing oper-
ation by registering a procedure on the Session shell's interact callback list. When
all save callback procedures have returned, and each time a token that was granted
by a call to XtSessionGetToken is returned, the Session shell examines the interact
callback list. If interaction is permitted and the interact callback list is not empty,
the shell will send an InteractRequest to the session manager when an interact
request is not already outstanding for the application.

The type of interaction dialog that will be requested is specified by the
interact_dialog_type field in the checkpoint token. The possible values for
interact_dialog_type are SmDialogError and SmDialogNormal. If a token is returned
with interact_dialog_type containing SmDialogError, the interact request and any
subsequent interact requests will be for an error dialog; otherwise, the request will
be for a normal dialog with the user.

When a token is returned with save_success False or interact_dialog_type SmDi-
alogError, tokens subsequently passed to callbacks during the same active SaveY-
ourself response will reflect these changed values, indicating that an error condi-
tion has occurred during the checkpoint.

The request_cancel field is a return value for interact callbacks only. Upon return
from a procedure on the save callback list, the value of the token's request_cancel
field is not examined by the shell. This is also true of tokens received through a call
to XtSessionGetToken.

Interacting with the User during a Checkpoint

When the session manager grants the application's request for user interaction, the
Session shell receives an Interact message. The procedures registered on the in-
teract callback list are executed, but not as if executing a typical callback list. These
procedures are individually executed in sequence, with a checkpoint token function-
ing as the sequencing mechanism. Each step in the sequence begins by removing a
procedure from the interact callback list and executing it with a token passed in the
call_data. The interact callback will typically pop up a dialog box and return. When
the user interaction and associated application checkpointing has completed, the
application must return the token by calling XtSessionReturnToken. Returning the
token completes the current step and triggers the next step in the sequence.

During interaction the client may request cancellation of a shutdown. When a to-
ken passed as call_data to an interact procedure is returned, if shutdown is True
and cancel_shutdown is False, request_cancel indicates whether the application
requests that the pending shutdown be cancelled. If request_cancel is True, the field
will also be True in any tokens subsequently granted during the checkpoint oper-
ation. When a token is returned requesting cancellation of the session shutdown,
pending interact procedures will still be called by the Session shell. When all inter-
act procedures have been removed from the interact callback list, executed, and
the final interact token returned to the shell, an InteractDone message is sent to
the session manager, indicating whether a pending session shutdown is requested
to be cancelled.

Responding to a Shutdown Cancellation

Callbacks registered on the cancel callback list are invoked when the Session shell
processes a ShutdownCancelled message from the session manager. This may oc-
cur during the processing of save callbacks, while waiting for interact permission,

Shell Widgets

87

during user interaction, or after the save operation is complete and the application
is expecting a SaveComplete or a Die message. The call_data for these callbacks
is NULL.

When the shell notices that a pending shutdown has been cancelled, the token
cancel_shutdown field will be True in tokens subsequently given to the application.

Receiving notice of a shutdown cancellation does not cancel the pending execu-
tion of save callbacks or interact callbacks. After the cancel callbacks execute, if
interact_style is not SmInteractStyleNone and the interact list is not empty, the
procedures on the interact callback list will be executed and passed a token with
interact_style SmInteractStyleNone. The application should not interact with the
user, and the Session shell will not send an InteractDone message.

Completing a Save

When there is no user interaction, the shell regards the application as having fin-
ished saving state when all callback procedures on the save callback list have re-
turned, and any additional tokens passed out by XtSessionGetToken have been re-
turned by corresponding calls to XtSessionReturnToken. If the save operation in-
volved user interaction, the above completion conditions apply, and in addition, all
requests for interaction have been granted or cancelled, and all tokens passed to
interact callbacks have been returned through calls to XtSessionReturnToken. If
the save operation involved a manager client that requested the second phase, the
above conditions apply to both the first and second phase of the save operation.

When the application has finished saving state, the Session shell will report the
result to the session manager by sending the SaveYourselfDone message. If the
session is continuing, the shell will receive the SaveComplete message when all
applications have completed saving state. This message indicates that applications
may again allow changes to their state. The shell will execute the save_complete
callbacks. The call_data for these callbacks is NULL.

Responding to a Shutdown
Callbacks registered on the die callback list are invoked when the session manager
sends a Die message. The callbacks on this list should do whatever is appropriate
to quit the application. Before executing procedures on the die callback list, the
Session shell will close the connection to the session manager and will remove the
handler that watches for protocol messages. The call_data for these callbacks is
NULL.

Resigning from a Session
When the Session shell widget is destroyed, the destroy method will close the con-
nection to the session manager by sending a ConnectionClosed protocol message
and will remove the input callback that was watching for session protocol messages.

When XtSetValues is used to set join_session to False, the set_values method of
the Session shell will close the connection to the session manager if one exists by
sending a ConnectionClosed message, and connection will be set to NULL.

Applications that exit in response to user actions and that do not wait for phase
2 destroy to complete on the Session shell should set join_session to False before
exiting.

Shell Widgets

88

When XtSetValues is used to set connection to NULL, the Session shell will stop
managing the connection, if one exists. However, that session connection will not
be closed.

Applications that wish to ensure continuation of a session connection beyond the
destruction of the shell should first retrieve the connection resource value, then
set the connection resource to NULL, and then they may safely destroy the widget
without losing control of the session connection.

The error callback list will be called if an unrecoverable communications error oc-
curs while the shell is managing the connection. The shell will close the connection,
set connection to NULL, remove the input callback, and call the procedures regis-
tered on the error callback list. The call_data for these callbacks is NULL.

89

Chapter 5. Pop-Up Widgets
Pop-up widgets are used to create windows outside of the window hierarchy defined
by the widget tree. Each pop-up child has a window that is a descendant of the root
window, so that the pop-up window is not clipped by the pop-up widget's parent
window. Therefore, pop-ups are created and attached differently to their widget
parent than normal widget children.

A parent of a pop-up widget does not actively manage its pop-up children; in fact, it
usually does not operate upon them in any way. The popup_list field in the CorePart
structure contains the list of its pop-up children. This pop-up list exists mainly to
provide the proper place in the widget hierarchy for the pop-up to get resources
and to provide a place for XtDestroyWidget to look for all extant children.

A composite widget can have both normal and pop-up children. A pop-up can be
popped up from almost anywhere, not just by its parent. The term child always refers
to a normal, geometry-managed widget on the composite widget's list of children,
and the term pop-up child always refers to a widget on the pop-up list.

Pop-Up Widget Types
There are three kinds of pop-up widgets:

• Modeless pop-ups

A modeless pop-up (for example, a dialog box that does not prevent continued
interaction with the rest of the application) can usually be manipulated by the
window manager and looks like any other application window from the user's
point of view. The application main window itself is a special case of a modeless
pop-up.

• Modal pop-ups

A modal pop-up (for example, a dialog box that requires user input to continue)
can sometimes be manipulated by the window manager, and except for events
that occur in the dialog box, it disables user-event distribution to the rest of the
application.

• Spring-loaded pop-ups

A spring-loaded pop-up (for example, a menu) can seldom be manipulated by the
window manager, and except for events that occur in the pop-up or its descen-
dants, it disables user-event distribution to all other applications.

Modal pop-ups and spring-loaded pop-ups are very similar and should be coded
as if they were the same. In fact, the same widget (for example, a ButtonBox or
Menu widget) can be used both as a modal pop-up and as a spring-loaded pop-
up within the same application. The main difference is that spring-loaded pop-ups
are brought up with the pointer and, because of the grab that the pointer button
causes, require different processing by the Intrinsics. Furthermore, all user input
remap events occurring outside the spring-loaded pop-up (e.g., in a descendant) are
also delivered to the spring-loaded pop-up after they have been dispatched to the
appropriate descendant, so that, for example, button-up can take down a spring-
loaded pop-up no matter where the button-up occurs.

Pop-Up Widgets

90

Any kind of pop-up, in turn, can pop up other widgets. Modal and spring-loaded pop-
ups can constrain user events to the most recent such pop-up or allow user events
to be dispatched to any of the modal or spring-loaded pop-ups currently mapped.

Regardless of their type, all pop-up widget classes are responsible for communicat-
ing with the X window manager and therefore are subclasses of one of the Shell
widget classes.

Creating a Pop-Up Shell
For a widget to be popped up, it must be the child of a pop-up shell widget. None of
the Intrinsics-supplied shells will simultaneously manage more than one child. Both
the shell and child taken together are referred to as the pop-up. When you need to
use a pop-up, you always refer to the pop-up by the pop-up shell, not the child.

To create a pop-up shell, use XtCreatePopupShell.

Widget XtCreatePopupShell(name, widget_class, parent, args, num_args);

name Specifies the instance name for the created shell wid-
get.

widget_class Specifies the widget class pointer for the created
shell widget.

parent Specifies the parent widget. Must be of class Core or
any subclass thereof.

args Specifies the argument list to override any other re-
source specifications.

num_args Specifies the number of entries in the argument list.

The XtCreatePopupShell function ensures that the specified class is a subclass of
Shell and, rather than using insert_child to attach the widget to the parent's children
list, attaches the shell to the parent's popup_list directly.

The screen resource for this widget is determined by first scanning args for the
XtNscreen argument. If no XtNscreen argument is found, the resource database
associated with the parent's screen is queried for the resource name.screen, class
Class.Screen where Class is the class_name field from the CoreClassPart of the
specified widget_class. If this query fails, the parent's screen is used. Once the
screen is determined, the resource database associated with that screen is used to
retrieve all remaining resources for the widget not specified in args.

A spring-loaded pop-up invoked from a translation table via XtMenuPopup must al-
ready exist at the time that the translation is invoked, so the translation manager
can find the shell by name. Pop-ups invoked in other ways can be created when the
pop-up actually is needed. This delayed creation of the shell is particularly useful
when you pop up an unspecified number of pop-ups. You can look to see if an ap-
propriate unused shell (that is, not currently popped up) exists and create a new
shell if needed.

To create a pop-up shell using varargs lists, use XtVaCreatePopupShell.

Widget XtVaCreatePopupShell(name, widget_class, parent, ...);

Pop-Up Widgets

91

name Specifies the instance name for the created shell wid-
get.

widget_class Specifies the widget class pointer for the created
shell widget.

parent Specifies the parent widget. Must be of class Core or
any subclass thereof.

... Specifies the variable argument list to override any
other resource specifications.

XtVaCreatePopupShell is identical in function to XtCreatePopupShell with the
args and num_args parameters replaced by a varargs list as described in Section
2.5.1.

Creating Pop-Up Children
Once a pop-up shell is created, the single child of the pop-up shell can be created
either statically or dynamically.

At startup, an application can create the child of the pop-up shell, which is appro-
priate for pop-up children composed of a fixed set of widgets. The application can
change the state of the subparts of the pop-up child as the application state changes.
For example, if an application creates a static menu, it can call XtSetSensitive (or,
in general, XtSetValues) on any of the buttons that make up the menu. Creating the
pop-up child early means that pop-up time is minimized, especially if the application
calls XtRealizeWidget on the pop-up shell at startup. When the menu is needed,
all the widgets that make up the menu already exist and need only be mapped. The
menu should pop up as quickly as the X server can respond.

Alternatively, an application can postpone the creation of the child until it is needed,
which minimizes application startup time and allows the pop-up child to reconfig-
ure itself each time it is popped up. In this case, the pop-up child creation routine
might poll the application to find out if it should change the sensitivity of any of
its subparts.

Pop-up child creation does not map the pop-up, even if you create the child and call
XtRealizeWidget on the pop-up shell.

All shells have pop-up and pop-down callbacks, which provide the opportunity either
to make last-minute changes to a pop-up child before it is popped up or to change
it after it is popped down. Note that excessive use of pop-up callbacks can make
popping up occur more slowly.

Mapping a Pop-Up Widget
Pop-ups can be popped up through several mechanisms:

• A call to XtPopup or XtPopupSpringLoaded.
• One of the supplied callback procedures XtCallbackNone, XtCallbackNonexclu-
sive, or XtCallbackExclusive.

• The standard translation action XtMenuPopup.

Some of these routines take an argument of type XtGrabKind, which is defined as

Pop-Up Widgets

92

typedef enum {XtGrabNone, XtGrabNonexclusive, XtGrabExclusive} XtGrabKind;

The create_popup_child_proc procedure pointer in the shell widget instance record
is of type *XtCreatePopupChildProc.

void *XtCreatePopupChildProc(w);

w Specifies the shell widget being popped up.

To map a pop-up from within an application, use XtPopup.

void XtPopup(popup_shell, grab_kind);

popup_shell Specifies the shell widget.

grab_kind Specifies the way in which user events should be con-
strained.

The XtPopup function performs the following:

• Calls XtCheckSubclass to ensure popup_shell's class is a subclass of shellWid-
getClass.

• Raises the window and returns if the shell's popped_up field is already True.
• Calls the callback procedures on the shell's popup_callback list, specifying a point-

er to the value of grab_kind as the call_data argument.
• Sets the shell popped_up field to True, the shell spring_loaded field to False, and

the shell grab_kind field from grab_kind.
• If the shell's create_popup_child_proc field is non-NULL, XtPopup calls it with

popup_shell as the parameter.
• If grab_kind is either XtGrabNonexclusive or XtGrabExclusive, it calls

XtAddGrab(popup_shell, (grab_kind == XtGrabExclusive), False)
• Calls XtRealizeWidget with popup_shell specified.
• Calls XMapRaised with the window of popup_shell.

To map a spring-loaded pop-up from within an application, use XtPop-
upSpringLoaded.

void XtPopupSpringLoaded(popup_shell);

popup_shell Specifies the shell widget to be popped up.

The XtPopupSpringLoaded function performs exactly as XtPopup except that it sets
the shell spring_loaded field to True and always calls XtAddGrab with exclusive True
and spring-loaded True.

To map a pop-up from a given widget's callback list, you also can register one of the
XtCallbackNone, XtCallbackNonexclusive, or XtCallbackExclusive convenience
routines as callbacks, using the pop-up shell widget as the client data.

void XtCallbackNone(w, client_data, call_data);

w Specifies the widget.

client_data Specifies the pop-up shell.

Pop-Up Widgets

93

call_data Specifies the callback data argument, which is not
used by this procedure.

void XtCallbackNonexclusive(w, client_data, call_data);

w Specifies the widget.

client_data Specifies the pop-up shell.

call_data Specifies the callback data argument, which is not
used by this procedure.

void XtCallbackExclusive(w, client_data, call_data);

w Specifies the widget.

client_data Specifies the pop-up shell.

call_data Specifies the callback data argument, which is not
used by this procedure.

The XtCallbackNone, XtCallbackNonexclusive, and XtCallbackExclusive func-
tions call XtPopup with the shell specified by the client_data argument and
grab_kind set as the name specifies. XtCallbackNone, XtCallbackNonexclu-
sive, and XtCallbackExclusive specify XtGrabNone, XtGrabNonexclusive, and
XtGrabExclusive, respectively. Each function then sets the widget that executed
the callback list to be insensitive by calling XtSetSensitive. Using these functions
in callbacks is not required. In particular, an application must provide customized
code for callbacks that create pop-up shells dynamically or that must do more than
desensitizing the button.

Within a translation table, to pop up a menu when a key or pointer button is pressed
or when the pointer is moved into a widget, use XtMenuPopup, or its synonym,
MenuPopup. From a translation writer's point of view, the definition for this transla-
tion action is

void XtMenuPopup(shell_name);

shell_name Specifies the name of the shell widget to pop up.

XtMenuPopup is known to the translation manager, which registers the correspond-
ing built-in action procedure XtMenuPopupAction using XtRegisterGrabAction
specifying owner_events True, event_mask ButtonPressMask | ButtonRelease-
Mask, and pointer_mode and keyboard_mode GrabModeAsync.

If XtMenuPopup is invoked on ButtonPress, it calls XtPopupSpringLoaded on the
specified shell widget. If XtMenuPopup is invoked on KeyPress or EnterWindow, it
calls XtPopup on the specified shell widget with grab_kind set to XtGrabNonexclu-
sive. Otherwise, the translation manager generates a warning message and ignores
the action.

XtMenuPopup tries to find the shell by searching the widget tree starting at the
widget in which it is invoked. If it finds a shell with the specified name in the pop-
up children of that widget, it pops up the shell with the appropriate parameters.
Otherwise, it moves up the parent chain to find a pop-up child with the specified
name. If XtMenuPopup gets to the application top-level shell widget and has not
found a matching shell, it generates a warning and returns immediately.

Pop-Up Widgets

94

Unmapping a Pop-Up Widget
Pop-ups can be popped down through several mechanisms:

• A call to XtPopdown
• The supplied callback procedure XtCallbackPopdown
• The standard translation action XtMenuPopdown

To unmap a pop-up from within an application, use XtPopdown.

void XtPopdown(popup_shell);

popup_shell Specifies the shell widget to pop down.

The XtPopdown function performs the following:

• Calls XtCheckSubclass to ensure popup_shell's class is a subclass of shellWid-
getClass.

• Checks that the popped_up field of popup_shell is True; otherwise, it returns im-
mediately.

• Unmaps popup_shell's window and, if override_redirect is False, sends a synthet-
ic UnmapNotify event as specified by the Inter-Client Communication Conventions
Manual.

• If popup_shell's grab_kind is either XtGrabNonexclusive or XtGrabExclusive, it
calls XtRemoveGrab.

• Sets popup_shell's popped_up field to False.
• Calls the callback procedures on the shell's popdown_callback list, specifying a

pointer to the value of the shell's grab_kind field as the call_data argument.

To pop down a pop-up from a callback list, you may use the callback XtCallback-
Popdown.

void XtCallbackPopdown(w, client_data, call_data);

w Specifies the widget.

client_data Specifies a pointer to the XtPopdownID structure.

call_data Specifies the callback data argument, which is not
used by this procedure.

The XtCallbackPopdown function casts the client_data parameter to a pointer of
type XtPopdownID.

typedef struct {
 Widget shell_widget;
 Widget enable_widget;
} XtPopdownIDRec, *XtPopdownID;

The shell_widget is the pop-up shell to pop down, and the enable_widget is usually
the widget that was used to pop it up in one of the pop-up callback convenience
procedures.

XtCallbackPopdown calls XtPopdown with the specified shell_widget and then calls
XtSetSensitive to resensitize enable_widget.

Pop-Up Widgets

95

Within a translation table, to pop down a spring-loaded menu when a key or pointer
button is released or when the pointer is moved into a widget, use XtMenuPopdown or
its synonym, MenuPopdown. From a translation writer's point of view, the definition
for this translation action is

void XtMenuPopdown(shell_name);

shell_name Specifies the name of the shell widget to pop down.

If a shell name is not given, XtMenuPopdown calls XtPopdown with the widget for
which the translation is specified. If shell_name is specified in the translation table,
XtMenuPopdown tries to find the shell by looking up the widget tree starting at the
widget in which it is invoked. If it finds a shell with the specified name in the pop-
up children of that widget, it pops down the shell; otherwise, it moves up the parent
chain to find a pop-up child with the specified name. If XtMenuPopdown gets to the
application top-level shell widget and cannot find a matching shell, it generates a
warning and returns immediately.

96

Chapter 6. Geometry Management
A widget does not directly control its size and location; rather, its parent is respon-
sible for controlling them. Although the position of children is usually left up to their
parent, the widgets themselves often have the best idea of their optimal sizes and,
possibly, preferred locations.

To resolve physical layout conflicts between sibling widgets and between a widget
and its parent, the Intrinsics provide the geometry management mechanism. Almost
all composite widgets have a geometry manager specified in the geometry_manager
field in the widget class record that is responsible for the size, position, and stacking
order of the widget's children. The only exception is fixed boxes, which create their
children themselves and can ensure that their children will never make a geometry
request.

Initiating Geometry Changes
Parents, children, and clients each initiate geometry changes differently. Because
a parent has absolute control of its children's geometry, it changes the geome-
try directly by calling XtMove\%Widget, XtResizeWidget, or XtConfigureWidget. A
child must ask its parent for a geometry change by calling XtMakeGeometryRequest
or XtMakeResizeRequest. An application or other client code initiates a geometry
change by calling XtSetValues on the appropriate geometry fields, thereby giving
the widget the opportunity to modify or reject the client request before it gets prop-
agated to the parent and the opportunity to respond appropriately to the parent's
reply.

When a widget that needs to change its size, position, border width, or stacking
depth asks its parent's geometry manager to make the desired changes, the geom-
etry manager can allow the request, disallow the request, or suggest a compromise.

When the geometry manager is asked to change the geometry of a child, the geom-
etry manager may also rearrange and resize any or all of the other children that it
controls. The geometry manager can move children around freely using XtMoveWid-
get. When it resizes a child (that is, changes the width, height, or border width)
other than the one making the request, it should do so by calling XtResizeWidget.
The requesting child may be given special treatment; see the section called “Child
Geometry Management: The geometry_manager Procedure”. It can simultaneously
move and resize a child with a single call to XtConfigureWidget.

Often, geometry managers find that they can satisfy a request only if they can re-
configure a widget that they are not in control of; in particular, the composite wid-
get may want to change its own size. In this case, the geometry manager makes a
request to its parent's geometry manager. Geometry requests can cascade this way
to arbitrary depth.

Because such cascaded arbitration of widget geometry can involve extended nego-
tiation, windows are not actually allocated to widgets at application startup until all
widgets are satisfied with their geometry; see the section called “Creating Widgets”
and the section called “Realizing Widgets”.

Geometry Management

97

Note
1. The Intrinsics treatment of stacking requests is deficient in several areas.

Stacking requests for unrealized widgets are granted but will have no ef-
fect. In addition, there is no way to do an XtSetValues that will generate
a stacking geometry request.

2. After a successful geometry request (one that returned XtGeometryYes),
a widget does not know whether its resize procedure has been called.
Widgets should have resize procedures that can be called more than once
without ill effects.

General Geometry Manager Requests
When making a geometry request, the child specifies an XtWidgetGeometry struc-
ture.

typedef unsigned long XtGeometryMask;
typedef struct {
 XtGeometryMask request_mode;
 Position x, y;
 Dimension width, height;
 Dimension border_width;
 Widget sibling;
 int stack_mode;
} XtWidgetGeometry;

To make a general geometry manager request from a widget, use XtMakeGeome-
tryRequest.

XtGeometryResult XtMakeGeometryRequest(w, request, reply_return);

w Specifies the widget making the request. Must be of
class RectObj or any subclass thereof.

request Specifies the desired widget geometry (size, position,
border width, and stacking order).

reply_return Returns the allowed widget size, or may be NULL if
the requesting widget is not interested in handling
XtGeometryAlmost.

Depending on the condition, XtMakeGeometryRequest performs the following:

• If the widget is unmanaged or the widget's parent is not realized, it makes the
changes and returns XtGeometryYes.

• If the parent's class is not a subclass of compositeWidgetClass or the parent's
geometry_manager field is NULL, it issues an error.

• If the widget's being_destroyed field is True, it returns XtGeometryNo.
• If the widget x, y, width, height, and border_width fields are all equal to the

requested values, it returns XtGeometryYes; otherwise, it calls the parent's
geometry_manager procedure with the given parameters.

• If the parent's geometry manager returns XtGeometryYes and if XtCWQueryOnly
is not set in request->request_mode and if the widget is realized, XtMakeGeome-

Geometry Management

98

tryRequest calls the XConfigureWindow Xlib function to reconfigure the widget's
window (set its size, location, and stacking order as appropriate).

• If the geometry manager returns XtGeometryDone, the change has been approved
and actually has been done. In this case, XtMakeGeometryRequest does no config-
uring and returns XtGeometryYes. XtMakeGeometryRequest never returns XtGe-
ometryDone.

• Otherwise, XtMakeGeometryRequest just returns the resulting value from the
parent's geometry manager.

Children of primitive widgets are always unmanaged; therefore, XtMakeGeome-
tryRequest always returns XtGeometryYes when called by a child of a primitive
widget.

The return codes from geometry managers are

typedef enum {
 XtGeometryYes,
 XtGeometryNo,
 XtGeometryAlmost,
 XtGeometryDone
} XtGeometryResult;

The request_mode definitions are from <X11/X.h>.

#define CWX (1<<0)
#define CWY (1<<1)
#define CWWidth (1<<2)
#define CWHeight (1<<3)
#define CWBorderWidth (1<<4)
#define CWSibling (1<<5)
#define CWStackMode (1<<6)

The Intrinsics also support the following value.

#define XtCWQueryOnly (1<<7)

XtCWQueryOnly indicates that the corresponding geometry request is only a query
as to what would happen if this geometry request were made and that no widgets
should actually be changed.

XtMakeGeometryRequest, like the XConfigureWindow Xlib function, uses
request_mode to determine which fields in the XtWidgetGeometry structure the
caller wants to specify.

The stack_mode definitions are from <X11/X.h>:

#define Above 0
#define Below 1
#define TopIf 2
#define BottomIf 3
#define Opposite 4

Geometry Management

99

The Intrinsics also support the following value.

#define XtSMDontChange 5

For definition and behavior of Above, Below, TopIf, BottomIf, and Opposite, BLAH
in Xlib — C Language X Interface.. XtSMDontChange indicates that the widget wants
its current stacking order preserved.

Resize Requests
To make a simple resize request from a widget, you can use XtMakeResizeRequest
as an alternative to XtMakeGeometryRequest.

typedef XtGeometryResult XtMakeResizeRequest(w, width, width_return);

w Specifies the widget making the request. Must be of
class RectObj or any subclass thereof.

width Specify the desired widget width and height.

height

width_return Return the allowed widget width and height.

height_return

The XtMakeResizeRequest function, a simple interface to XtMakeGeometryRequest,
creates an XtWidgetGeometry structure and specifies that width and height should
change by setting request_mode to CWWidth | CWHeight. The geometry manager is
free to modify any of the other window attributes (position or stacking order) to sat-
isfy the resize request. If the return value is XtGeometryAlmost, width_return and
height_return contain a compromise width and height. If these are acceptable, the
widget should immediately call XtMakeResizeRequest again and request that the
compromise width and height be applied. If the widget is not interested in XtGeom-
etryAlmost replies, it can pass NULL for width_return and height_return.

Potential Geometry Changes
Sometimes a geometry manager cannot respond to a geometry request from a child
without first making a geometry request to the widget's own parent (the original
requestor's grandparent). If the request to the grandparent would allow the parent
to satisfy the original request, the geometry manager can make the intermediate
geometry request as if it were the originator. On the other hand, if the geometry
manager already has determined that the original request cannot be completely sat-
isfied (for example, if it always denies position changes), it needs to tell the grand-
parent to respond to the intermediate request without actually changing the geom-
etry because it does not know if the child will accept the compromise. To accomplish
this, the geometry manager uses XtCWQueryOnly in the intermediate request.

When XtCWQueryOnly is used, the geometry manager needs to cache enough in-
formation to exactly reconstruct the intermediate request. If the grandparent's re-
sponse to the intermediate query was XtGeometryAlmost, the geometry manager
needs to cache the entire reply geometry in the event the child accepts the parent's
compromise.

Geometry Management

100

If the grandparent's response was XtGeometryAlmost, it may also be necessary to
cache the entire reply geometry from the grandparent when XtCWQueryOnly is not
used. If the geometry manager is still able to satisfy the original request, it may
immediately accept the grandparent's compromise and then act on the child's re-
quest. If the grandparent's compromise geometry is insufficient to allow the child's
request and if the geometry manager is willing to offer a different compromise to
the child, the grandparent's compromise should not be accepted until the child has
accepted the new compromise.

Note that a compromise geometry returned with XtGeometryAlmost is guaranteed
only for the next call to the same widget; therefore, a cache of size 1 is sufficient.

Child Geometry Management: The
geometry_manager Procedure

The geometry_manager procedure pointer in a composite widget class is of type
*XtGeometryHandler.

XtGeometryResult *XtGeometryHandler(w, request, geometry_return);

w Passes the widget making the request.

request Passes the new geometry the child desires.

geometry_return Passes a geometry structure in which the geometry
manager may store a compromise.

A class can inherit its superclass's geometry manager during class initialization.

A bit set to zero in the request's request_mode field means that the child widget
does not care about the value of the corresponding field, so the geometry manager
can change this field as it wishes. A bit set to 1 means that the child wants that
geometry element set to the value in the corresponding field.

If the geometry manager can satisfy all changes requested and if XtCWQueryOnly
is not specified, it updates the widget's x, y, width, height, and border_width fields
appropriately. Then, it returns XtGeometryYes, and the values pointed to by the
geometry_return argument are undefined. The widget's window is moved and re-
sized automatically by XtMakeGeometryRequest.

Homogeneous composite widgets often find it convenient to treat the widget making
the request the same as any other widget, including reconfiguring it using XtCon-
figureWidget or XtResizeWidget as part of its layout process, unless XtCWQueryOn-
ly is specified. If it does this, it should return XtGeometryDone to inform XtMakeGe-
ometryRequest that it does not need to do the configuration itself.

Note
To remain compatible with layout techniques used in older widgets (before
XtGeometryDone was added to the Intrinsics), a geometry manager should
avoid using XtResizeWidget or XtConfigureWidget on the child making the
request because the layout process of the child may be in an intermediate
state in which it is not prepared to handle a call to its resize procedure. A
self-contained widget set may choose this alternative geometry management

Geometry Management

101

scheme, however, provided that it clearly warns widget developers of the
compatibility consequences.

Although XtMakeGeometryRequest resizes the widget's window (if the geometry
manager returns XtGeometryYes), it does not call the widget class's resize proce-
dure. The requesting widget must perform whatever resizing calculations are need-
ed explicitly.

If the geometry manager disallows the request, the widget cannot change its geom-
etry. The values pointed to by geometry_return are undefined, and the geometry
manager returns XtGeometryNo.

Sometimes the geometry manager cannot satisfy the request exactly but may be
able to satisfy a similar request. That is, it could satisfy only a subset of the re-
quests (for example, size but not position) or a lesser request (for example, it cannot
make the child as big as the request but it can make the child bigger than its cur-
rent size). In such cases, the geometry manager fills in the structure pointed to by
geometry_return with the actual changes it is willing to make, including an appropri-
ate request_mode mask, and returns XtGeometryAlmost. If a bit in geometry_return-
>request_mode is zero, the geometry manager agrees not to change the corre-
sponding value if geometry_return is used immediately in a new request. If a bit is
1, the geometry manager does change that element to the corresponding value in
geometry_return. More bits may be set in geometry_return->request_mode than in
the original request if the geometry manager intends to change other fields should
the child accept the compromise.

When XtGeometryAlmost is returned, the widget must decide if the compromise
suggested in geometry_return is acceptable. If it is, the widget must not change its
geometry directly; rather, it must make another call to XtMakeGeometryRequest.

If the next geometry request from this child uses the geometry_return values filled
in by the geometry manager with an XtGeometryAlmost return and if there have
been no intervening geometry requests on either its parent or any of its other chil-
dren, the geometry manager must grant the request, if possible. That is, if the child
asks immediately with the returned geometry, it should get an answer of XtGeome-
tryYes. However, dynamic behavior in the user's window manager may affect the
final outcome.

To return XtGeometryYes, the geometry manager frequently rearranges the posi-
tion of other managed children by calling XtMoveWidget. However, a few geome-
try managers may sometimes change the size of other managed children by calling
XtResizeWidget or XtConfigureWidget. If XtCWQueryOnly is specified, the geom-
etry manager must return data describing how it would react to this geometry re-
quest without actually moving or resizing any widgets.

Geometry managers must not assume that the request and geometry_return argu-
ments point to independent storage. The caller is permitted to use the same field
for both, and the geometry manager must allocate its own temporary storage, if
necessary.

Widget Placement and Sizing
To move a sibling widget of the child making the geometry request, the parent uses
XtMoveWidget.

Geometry Management

102

void XtMoveWidget(w, x, y);

w Specifies the widget. Must be of class RectObj or any subclass
thereof.

x

y Specify the new widget x and y coordinates.

The XtMoveWidget function returns immediately if the specified geometry fields are
the same as the old values. Otherwise, XtMoveWidget writes the new x and y values
into the object and, if the object is a widget and is realized, issues an Xlib XMoveWin-
dow call on the widget's window.

To resize a sibling widget of the child making the geometry request, the parent uses
XtResizeWidget.

void XtResizeWidget(w, width, height, border_width);

w Specifies the widget. Must be of class RectObj or any
subclass thereof.

width

height

border_width Specify the new widget size.

The XtResizeWidget function returns immediately if the specified geometry fields
are the same as the old values. Otherwise, XtResizeWidget writes the new width,
height, and border_width values into the object and, if the object is a widget and is
realized, issues an XConfigureWindow call on the widget's window.

If the new width or height is different from the old values, XtResizeWidget calls
the object's resize procedure to notify it of the size change.

To move and resize the sibling widget of the child making the geometry request,
the parent uses XtConfigureWidget.

void XtConfigureWidget(w, x, y, width, height, border_width);

w Specifies the widget. Must be of class RectObj or any
subclass thereof.

x

y Specify the new widget x and y coordinates.

width

height

border_width Specify the new widget size.

The XtConfigureWidget function returns immediately if the specified new geometry
fields are all equal to the current values. Otherwise, XtConfigureWidget writes the

Geometry Management

103

new x, y, width, height, and border_width values into the object and, if the object
is a widget and is realized, makes an Xlib XConfigureWindow call on the widget's
window.

If the new width or height is different from its old value, XtConfigureWidget calls
the object's resize procedure to notify it of the size change; otherwise, it simply
returns.

To resize a child widget that already has the new values of its width, height, and
border width, the parent uses XtResizeWindow.

void XtResizeWindow(w);

w Specifies the widget. Must be of class Core or any subclass thereof.

The XtResizeWindow function calls the XConfigureWindow Xlib function to make
the window of the specified widget match its width, height, and border width. This
request is done unconditionally because there is no inexpensive way to tell if these
values match the current values. Note that the widget's resize procedure is not
called.

There are very few times to use XtResizeWindow; instead, the parent should use
XtResizeWidget.

Preferred Geometry
Some parents may be willing to adjust their layouts to accommodate the preferred
geometries of their children. They can use XtQueryGeometry to obtain the preferred
geometry and, as they see fit, can use or ignore any portion of the response.

To query a child widget's preferred geometry, use XtQueryGeometry.

XtGeometryResult XtQueryGeometry(w, intended, preferred_return);

w Specifies the widget. Must be of class RectObj or any
subclass thereof.

intended Specifies the new geometry the parent plans to give
to the child, or NULL.

preferred_return Returns the child widget's preferred geometry.

To discover a child's preferred geometry, the child's parent stores the new geometry
in the corresponding fields of the intended structure, sets the corresponding bits
in intended.request_mode, and calls XtQueryGeometry. The parent should set only
those fields that are important to it so that the child can determine whether it may
be able to attempt changes to other fields.

XtQueryGeometry clears all bits in the preferred_return->request_mode field
and checks the query_geometry field of the specified widget's class record. If
query_geometry is not NULL, XtQueryGeometry calls the query_geometry proce-
dure and passes as arguments the specified widget, intended, and preferred_return
structures. If the intended argument is NULL, XtQueryGeometry replaces it with a
pointer to an XtWidgetGeometry structure with request_mode equal to zero before
calling the query_geometry procedure.

Geometry Management

104

Note
If XtQueryGeometry is called from within a geometry_manager procedure for
the widget that issued XtMakeGeometryRequest or XtMakeResizeRequest,
the results are not guaranteed to be consistent with the requested changes.
The change request passed to the geometry manager takes precedence over
the preferred geometry.

The query_geometry procedure pointer is of type *XtGeometryHandler.

typedef XtGeometryResult (*XtGeometryHandler)(w, request,
preferred_return);

w Passes the child widget whose preferred geometry is
required.

request Passes the geometry changes that the parent plans
to make.

preferred_return Passes a structure in which the child returns its pre-
ferred geometry.

The query_geometry procedure is expected to examine the bits set in re-
quest->request_mode, evaluate the preferred geometry of the widget, and store the
result in preferred_return (setting the bits in preferred_return->request_mode cor-
responding to those geometry fields that it cares about). If the proposed geometry
change is acceptable without modification, the query_geometry procedure should
return XtGeometryYes. If at least one field in preferred_return with a bit set in
preferred_return->request_mode is different from the corresponding field in re-
quest or if a bit was set in preferred_return->request_mode that was not set in
the request, the query_geometry procedure should return XtGeometryAlmost. If the
preferred geometry is identical to the current geometry, the query_geometry pro-
cedure should return XtGeometryNo.

Note
The query_geometry procedure may assume that no XtMakeResizeRequest
or XtMakeGeometryRequest is in progress for the specified widget; that is, it
is not required to construct a reply consistent with the requested geometry
if such a request were actually outstanding.

After calling the query_geometry procedure or if the query_geometry field is NULL,
XtQueryGeometry examines all the unset bits in preferred_return->request_mode
and sets the corresponding fields in preferred_return to the current values from
the widget instance. If CWStackMode is not set, the stack_mode field is set to XtSM-
DontChange. XtQueryGeometry returns the value returned by the query_geometry
procedure or XtGeometryYes if the query_geometry field is NULL.

Therefore, the caller can interpret a return of XtGeometryYes as not needing to
evaluate the contents of the reply and, more important, not needing to modify its
layout plans. A return of XtGeometryAlmost means either that both the parent and
the child expressed interest in at least one common field and the child's preference
does not match the parent's intentions or that the child expressed interest in a
field that the parent might need to consider. A return value of XtGeometryNo means
that both the parent and the child expressed interest in a field and that the child

Geometry Management

105

suggests that the field's current value in the widget instance is its preferred value.
In addition, whether or not the caller ignores the return value or the reply mask,
it is guaranteed that the preferred_return structure contains complete geometry
information for the child.

Parents are expected to call XtQueryGeometry in their layout routine and wherever
else the information is significant after change_managed has been called. The first
time it is invoked, the changed_managed procedure may assume that the child's
current geometry is its preferred geometry. Thus, the child is still responsible for
storing values into its own geometry during its initialize procedure.

Size Change Management: The resize Proce-
dure

A child can be resized by its parent at any time. Widgets usually need to know when
they have changed size so that they can lay out their displayed data again to match
the new size. When a parent resizes a child, it calls XtResizeWidget, which updates
the geometry fields in the widget, configures the window if the widget is realized,
and calls the child's resize procedure to notify the child. The resize procedure point-
er is of type XtWidgetProc.

If a class need not recalculate anything when a widget is resized, it can specify
NULL for the resize field in its class record. This is an unusual case and should
occur only for widgets with very trivial display semantics. The resize procedure
takes a widget as its only argument. The x, y, width, height, and border_width fields
of the widget contain the new values. The resize procedure should recalculate the
layout of internal data as needed. (For example, a centered Label in a window that
changes size should recalculate the starting position of the text.) The widget must
obey resize as a command and must not treat it as a request. A widget must not issue
an XtMakeGeometryRequest or XtMakeResizeRequest call from its resize procedure.

106

Chapter 7. Event Management
While Xlib allows the reading and processing of events anywhere in an application,
widgets in the X Toolkit neither directly read events nor grab the server or pointer.
Widgets register procedures that are to be called when an event or class of events
occurs in that widget.

A typical application consists of startup code followed by an event loop that reads
events and dispatches them by calling the procedures that widgets have registered.
The default event loop provided by the Intrinsics is XtAppMainLoop.

The event manager is a collection of functions to perform the following tasks:

• Add or remove event sources other than X server events (in particular, timer in-
terrupts, file input, or POSIX signals).

• Query the status of event sources.
• Add or remove procedures to be called when an event occurs for a particular

widget.
• Enable and disable the dispatching of user-initiated events (keyboard and pointer

events) for a particular widget.
• Constrain the dispatching of events to a cascade of pop-up widgets.
• Register procedures to be called when specific events arrive.
• Register procedures to be called when the Intrinsics will block.
• Enable safe operation in a multi-threaded environment.

Most widgets do not need to call any of the event handler functions explicitly.
The normal interface to X events is through the higher-level translation manager,
which maps sequences of X events, with modifiers, into procedure calls. Applica-
tions rarely use any of the event manager routines besides XtAppMainLoop.

Adding and Deleting Additional Event Sources
While most applications are driven only by X events, some applications need to
incorporate other sources of input into the Intrinsics event-handling mechanism.
The event manager provides routines to integrate notification of timer events and
file data pending into this mechanism.

The next section describes functions that provide input gathering from files. The
application registers the files with the Intrinsics read routine. When input is pending
on one of the files, the registered callback procedures are invoked.

Adding and Removing Input Sources
To register a new file as an input source for a given application context, use XtAp-
pAddInput.

XtInputId XtAppAddInput(app_context, source, condition, proc,
client_data);

app_context Specifies the application context that identifies the ap-
plication.

Event Management

107

source Specifies the source file descriptor on a POSIX-based
system or other operating-system-dependent device
specification.

condition Specifies the mask that indicates a read, write, or ex-
ception condition or some other operating-system-de-
pendent condition.

proc Specifies the procedure to be called when the condi-
tion is found.

client_data Specifies an argument passed to the specified proce-
dure when it is called.

The XtAppAddInput function registers with the Intrinsics read routine a new source
of events, which is usually file input but can also be file output. Note that file should
be loosely interpreted to mean any sink or source of data. XtAppAddInput also spec-
ifies the conditions under which the source can generate events. When an event is
pending on this source, the callback procedure is called.

The legal values for the condition argument are operating-system-dependent. On
a POSIX-based system, source is a file number and the condition is some union of
the following:

XtInputReadMask Specifies that proc is to be called when source has
data to be read.

XtInputWriteMask Specifies that proc is to be called when source is
ready for writing.

XtInputExceptMask Specifies that proc is to be called when source has
exception data.

Callback procedure pointers used to handle file events are of type (*XtInputCall-
backProc).

typedef void (*XtInputCallbackProc)(client_data, source, id);

client_data Passes the client data argument that was registered
for this procedure in XtApp\%AddInput.

source Passes the source file descriptor generating the event.

id Passes the id returned from the corresponding XtAp-
pAddInput call.

See the section called “Using the Intrinsics in a Multi-Threaded Environment” for
information regarding the use of XtAppAddInput in multiple threads.

To discontinue a source of input, use XtRemoveInput.

void XtRemoveInput(id);

id Specifies the id returned from the corresponding XtAppAddInput
call.

The XtRemoveInput function causes the Intrinsics read routine to stop watching for
events from the file source specified by id.

Event Management

108

See the section called “Using the Intrinsics in a Multi-Threaded Environment” for
information regarding the use of XtRemoveInput in multiple threads.

Adding and Removing Blocking Notifications
Occasionally it is desirable for an application to receive notification when the In-
trinsics event manager detects no pending input from file sources and no pending
input from X server event sources and is about to block in an operating system call.

To register a hook that is called immediately prior to event blocking, use XtAppAd-
dBlockHook.

XtBlockHookId XtAppAddBlockHook(app_context, proc, client_data);

app_context Specifies the application context that identifies the ap-
plication.

proc Specifies the procedure to be called before blocking.

client_data Specifies an argument passed to the specified proce-
dure when it is called.

The XtAppAddBlockHook function registers the specified procedure and returns an
identifier for it. The hook procedure proc is called at any time in the future when
the Intrinsics are about to block pending some input.

The procedure pointers used to provide notification of event blocking are of type
*XtBlockHookProc.

void *XtBlockHookProc(client_data);

client_data Passes the client data argument that was registered
for this procedure in XtApp\%AddBlockHook.

To discontinue the use of a procedure for blocking notification, use XtRemoveBlock-
Hook.

void XtRemoveBlockHook(id);

id Specifies the identifier returned from the corresponding call to
XtAppAddBlockHook.

The XtRemoveBlockHook function removes the specified procedure from the list of
procedures that are called by the Intrinsics read routine before blocking on event
sources.

Adding and Removing Timeouts
The timeout facility notifies the application or the widget through a callback proce-
dure that a specified time interval has elapsed. Timeout values are uniquely identi-
fied by an interval id.

To register a timeout callback, use XtAppAddTimeOut.

XtIntervalId XtAppAddTimeOut(app_context, interval, proc, client_data);

Event Management

109

app_context Specifies the application context for which the timer
is to be set.

interval Specifies the time interval in milliseconds.

proc Specifies the procedure to be called when the time ex-
pires.

client_data Specifies an argument passed to the specified proce-
dure when it is called.

The XtAppAddTimeOut function creates a timeout and returns an identifier for it.
The timeout value is set to interval. The callback procedure proc is called when
XtAppNextEvent or XtAppProcessEvent is next called after the time interval elaps-
es, and then the timeout is removed.

Callback procedure pointers used with timeouts are of type *XtTimerCallbackProc.

void *XtTimerCallbackProc(client_data, timer);

client_data Passes the client data argument that was registered
for this procedure in XtApp\%AddTimeOut.

timer Passes the id returned from the corresponding XtAp-
pAddTimeOut call.

See the section called “Using the Intrinsics in a Multi-Threaded Environment” for
information regarding the use of XtAppAddTimeOut in multiple threads.

To clear a timeout value, use XtRemoveTimeOut.

void XtRemoveTimeOut(timer);

timer Specifies the id for the timeout request to be cleared.

The XtRemoveTimeOut function removes the pending timeout. Note that timeouts
are automatically removed once they trigger.

Please refer to Section 7.12 for information regarding the use of XtRemoveTimeOut
in multiple threads.

Adding and Removing Signal Callbacks
The signal facility notifies the application or the widget through a callback proce-
dure that a signal or other external asynchronous event has occurred. The regis-
tered callback procedures are uniquely identified by a signal id.

Prior to establishing a signal handler, the application or widget should call XtAp-
pAddSignal and store the resulting identifier in a place accessible to the signal han-
dler. When a signal arrives, the signal handler should call XtNoticeSignal to notify
the Intrinsics that a signal has occured. To register a signal callback use XtAppAd-
dSignal.

XtSignalId XtAppAddSignal(app_context, proc, client_data);

app_context Specifies the application context that identifies the ap-
plication.

Event Management

110

proc Specifies the procedure to be called when the signal
is noticed.

client_data Specifies an argument passed to the specified proce-
dure when it is called.

The callback procedure pointers used to handle signal events are of type (*XtSig-
nalCallbackProc).

typedef void (*XtSignalCallbackProc)(client_data, id);

client_data Passes the client data argument that was registered
for this procedure in XtAppAddSignal.

id Passes the id returned from the corresponding XtAp-
pAddSignal call.

To notify the Intrinsics that a signal has occured, use XtNoticeSignal.

void XtNoticeSignal(id);

id Specifies the id returned from the corresponding XtAppAddSig-
nal call.

On a POSIX-based system, XtNoticeSignal is the only Intrinsics function that can
safely be called from a signal handler. If XtNoticeSignal is invoked multiple times
before the Intrinsics are able to invoke the registered callback, the callback is
only called once. Logically, the Intrinsics maintain ``pending'' flag for each regis-
tered callback. This flag is initially False and is set to True by XtNoticeSignal.
When XtAppNextEvent or XtAppProcessEvent (with a mask including XtIMSignal)
is called, all registered callbacks with ``pending'' True are invoked and the flags
are reset to False.

If the signal handler wants to track how many times the signal has been raised,
it can keep its own private counter. Typically the handler would not do any other
work; the callback does the actual processing for the signal. The Intrinsics never
block signals from being raised, so if a given signal can be raised multiple times
before the Intrinsics can invoke the callback for that signal, the callback must be
designed to deal with this. In another case, a signal might be raised just after the
Intrinsics sets the pending flag to False but before the callback can get control,
in which case the pending flag will still be True after the callback returns, and the
Intrinsics will invoke the callback again, even though all of the signal raises have
been handled. The callback must also be prepared to handle this case.

To remove a registered signal callback, call XtRemoveSignal.

void XtRemoveSignal(id);

id Specifies the id returned by the corresponding call to XtAppAd-
dSignal.

The client should typically disable the source of the signal before calling
XtRemoveSignal. If the signal could have been raised again before the source was
disabled and the client wants to process it, then after disabling the source but be-
fore calling XtRemoveSignal the client can test for signals with XtAppPending and
process them by calling XtAppProcessEvent with the mask XtIMSignal.

Event Management

111

Constraining Events to a Cascade of Widgets
Modal widgets are widgets that, except for the input directed to them, lock out user
input to the application.

When a modal menu or modal dialog box is popped up using XtPopup, user events
(keyboard and pointer events) that occur outside the modal widget should be deliv-
ered to the modal widget or ignored. In no case will user events be delivered to a
widget outside the modal widget.

Menus can pop up submenus, and dialog boxes can pop up further dialog boxes to
create a pop-up cascade. In this case, user events may be delivered to one of several
modal widgets in the cascade.

Display-related events should be delivered outside the modal cascade so that expo-
sure events and the like keep the application's display up-to-date. Any event that
occurs within the cascade is delivered as usual. The user events delivered to the
most recent spring-loaded shell in the cascade when they occur outside the cascade
are called remap events and are KeyPress, KeyRelease, ButtonPress, and Button-
Release. The user events ignored when they occur outside the cascade are Motion-
Notify and EnterNotify. All other events are delivered normally. In particular, note
that this is one way in which widgets can receive LeaveNotify events without first
receiving EnterNotify events; they should be prepared to deal with this, typically
by ignoring any unmatched LeaveNotify events.

XtPopup uses the XtAddGrab and XtRemoveGrab functions to constrain user events
to a modal cascade and subsequently to remove a grab when the modal widget is
popped down.

To constrain or redirect user input to a modal widget, use XtAddGrab.

void XtAddGrab(w, exclusive, spring_loaded);

w Specifies the widget to add to the modal cascade.
Must be of class Core or any subclass thereof.

exclusive Specifies whether user events should be dispatched
exclusively to this widget or also to previous widgets
in the cascade.

spring_loaded Specifies whether this widget was popped up be-
cause the user pressed a pointer button.

The XtAddGrab function appends the widget to the modal cascade and checks that
exclusive is True if spring_loaded is True. If this condition is not met, XtAddGrab
generates a warning message.

The modal cascade is used by XtDispatchEvent when it tries to dispatch a user
event. When at least one modal widget is in the widget cascade, XtDispatchEvent
first determines if the event should be delivered. It starts at the most recent cascade
entry and follows the cascade up to and including the most recent cascade entry
added with the exclusive parameter True.

This subset of the modal cascade along with all descendants of these widgets com-
prise the active subset. User events that occur outside the widgets in this subset

Event Management

112

are ignored or remapped. Modal menus with submenus generally add a submenu
widget to the cascade with exclusive False. Modal dialog boxes that need to restrict
user input to the most deeply nested dialog box add a subdialog widget to the cas-
cade with exclusive True. User events that occur within the active subset are deliv-
ered to the appropriate widget, which is usually a child or further descendant of
the modal widget.

Regardless of where in the application they occur, remap events are always deliv-
ered to the most recent widget in the active subset of the cascade registered with
spring_loaded True, if any such widget exists. If the event occurred in the active
subset of the cascade but outside the spring-loaded widget, it is delivered normally
before being delivered also to the spring-loaded widget. Regardless of where it is
dispatched, the Intrinsics do not modify the contents of the event.

To remove the redirection of user input to a modal widget, use XtRemoveGrab.

void XtRemoveGrab(w);

w Specifies the widget to remove from the modal cascade.

The XtRemoveGrab function removes widgets from the modal cascade starting at the
most recent widget up to and including the specified widget. It issues a warning if
the specified widget is not on the modal cascade.

Requesting Key and Button Grabs
The Intrinsics provide a set of key and button grab interfaces that are parallel to
those provided by Xlib and that allow the Intrinsics to modify event dispatching
when necessary. X Toolkit applications and widgets that need to passively grab keys
or buttons or actively grab the keyboard or pointer should use the following Intrin-
sics routines rather than the corresponding Xlib routines.

To passively grab a single key of the keyboard, use XtGrabKey.

void XtGrabKey(widget, keycode, modifiers, owner_events, pointer_mode);

widget Specifies the widget in whose window the key is to
be grabbed. Must be of class Core or any subclass
thereof.

keycode , modi-
fiers , owner_events
, pointer_mode ,
keyboard_mode

Specify arguments to XGrabKey; see Section 12.2 in
Xlib — C Language X Interface.

XtGrabKey calls XGrabKey specifying the widget's window as the grab window if
the widget is realized. The remaining arguments are exactly as for XGrabKey. If
the widget is not realized, or is later unrealized, the call to XGrabKey is performed
(again) when the widget is realized and its window becomes mapped. In the future,
if XtDispatchEvent is called with a KeyPress event matching the specified keycode
and modifiers (which may be AnyKey or AnyModifier, respectively) for the widget's
window, the Intrinsics will call XtUngrabKeyboard with the timestamp from the Key-
Press event if either of the following conditions is true:

• There is a modal cascade and the widget is not in the active subset of the cascade
and the keyboard was not previously grabbed, or

Event Management

113

• XFilterEvent returns True.

To cancel a passive key grab, use XtUngrabKey.

void XtUngrabKey(widget, keycode, modifiers);

widget Specifies the widget in whose window the key was
grabbed.

keycode , modifiers Specify arguments to XUngrabKey; see Section 12.2 in
Xlib — C Language X Interface.

The XtUngrabKey procedure calls XUngrabKey specifying the widget's window as
the ungrab window if the widget is realized. The remaining arguments are exactly
as for XUngrabKey. If the widget is not realized, XtUngrabKey removes a deferred
XtGrabKey request, if any, for the specified widget, keycode, and modifiers.

To actively grab the keyboard, use XtGrabKeyboard.

int XtGrabKeyboard(widget, owner_events, pointer_mode, time);

widget Specifies the widget for whose window the keyboard
is to be grabbed. Must be of class Core or any sub-
class thereof.

owner_events ,
pointer_mode ,
keyboard_mode , time

Specify arguments to XGrabKeyboard; see Section
12.2 in Xlib — C Language X Interface.

If the specified widget is realized, XtGrabKeyboard calls XGrabKeyboard specifying
the widget's window as the grab window. The remaining arguments and return value
are exactly as for XGrabKeyboard. If the widget is not realized, XtGrabKeyboard
immediately returns GrabNotViewable. No future automatic ungrab is implied by
XtGrabKeyboard.

To cancel an active keyboard grab, use XtUngrabKeyboard.

void XtUngrabKeyboard(widget, time);

widget Specifies the widget that has the active keyboard grab.

time Specifies the additional argument to XUngrabKeyboard; see
Section 12.2 in Xlib — C Language X Interface.

XtUngrabKeyboard calls XUngrabKeyboard with the specified time.

To passively grab a single pointer button, use XtGrabButton.

void XtGrabButton(widget, button, modifiers, owner_events, event_mask,
pointer_mode, confine_to, cursor);

widget Specifies the widget in whose window the button is
to be grabbed. Must be of class Core or any subclass
thereof.

button , modifiers
, owner_events ,
event_mask , pointer_mode

Specify arguments to XGrabButton; see Section 12.1
in Xlib — C Language X Interface.

Event Management

114

, keyboard_mode ,
confine_to , cursor

XtGrabButton calls XGrabButton specifying the widget's window as the grab win-
dow if the widget is realized. The remaining arguments are exactly as for XGrab-
Button. If the widget is not realized, or is later unrealized, the call to XGrabButton
is performed (again) when the widget is realized and its window becomes mapped.
In the future, if XtDispatchEvent is called with a ButtonPress event matching the
specified button and modifiers (which may be AnyButton or AnyModifier, respec-
tively) for the widget's window, the Intrinsics will call XtUngrabPointer with the
timestamp from the ButtonPress event if either of the following conditions is true:

• There is a modal cascade and the widget is not in the active subset of the cascade
and the pointer was not previously grabbed, or

• XFilterEvent returns True.

To cancel a passive button grab, use XtUngrabButton.

void XtUngrabButton(widget, button, modifiers);

widget Specifies the widget in whose window the button was
grabbed.

button , modifiers Specify arguments to XUngrabButton; see Section 12.1
in Xlib — C Language X Interface.

The XtUngrabButton procedure calls XUngrabButton specifying the widget's win-
dow as the ungrab window if the widget is realized. The remaining arguments are
exactly as for XUngrabButton. If the widget is not realized, XtUngrabButton removes
a deferred XtGrabButton request, if any, for the specified widget, button, and mod-
ifiers.

To actively grab the pointer, use XtGrabPointer.

int XtGrabPointer(widget, owner_events, event_mask, pointer_mode,
confine_to, cursor, time);

widget Specifies the widget for whose window the pointer is
to be grabbed. Must be of class Core or any subclass
thereof.

owner_events , event_mask
, pointer_mode ,
keyboard_mode ,
confine_to , cursor , time

Specify arguments to XGrabPointer; see Section
12.1 in Xlib — C Language X Interface.

If the specified widget is realized, XtGrabPointer calls XGrabPointer, specifying
the widget's window as the grab window. The remaining arguments and return val-
ue are exactly as for XGrabPointer. If the widget is not realized, XtGrabPointer
immediately returns GrabNotViewable. No future automatic ungrab is implied by
XtGrabPointer.

To cancel an active pointer grab, use XtUngrabPointer.

void XtUngrabPointer(widget, time);

widget Specifies the widget that has the active pointer grab.

Event Management

115

time Specifies the time argument to XUngrabPointer; see Section
12.1 in Xlib — C Language X Interface.

XtUngrabPointer calls XUngrabPointer with the specified time.

Focusing Events on a Child
To redirect keyboard input to a normal descendant of a widget without calling
XSetInputFocus, use XtSetKeyboardFocus.

void XtSetKeyboardFocus(subtree);

subtree Specifies the subtree of the hierarchy for which the key-
board focus is to be set. Must be of class Core or any
subclass thereof.

descendant Specifies either the normal (non-pop-up) descendant of
subtree to which keyboard events are logically direct-
ed, or None. It is not an error to specify None when no
input focus was previously set. Must be of class Object
or any subclass thereof.

XtSetKeyboardFocus causes XtDispatchEvent to remap keyboard events occurring
within the specified subtree and dispatch them to the specified descendant widget
or to an ancestor. If the descendant's class is not a subclass of Core, the descendant
is replaced by its closest windowed ancestor.

When there is no modal cascade, keyboard events can be dispatched to a widget in
one of five ways. Assume the server delivered the event to the window for widget E
(because of X input focus, key or keyboard grabs, or pointer position).

• If neither E nor any of E's ancestors have redirected the keyboard focus, or if the
event activated a grab for E as specified by a call to XtGrabKey with any value
of owner_events, or if the keyboard is actively grabbed by E with owner_events
False via XtGrabKeyboard or XtGrabKey on a previous key press, the event is
dispatched to E.

• Beginning with the ancestor of E closest to the root that has redirected the key-
board focus or E if no such ancestor exists, if the target of that focus redirection
has in turn redirected the keyboard focus, recursively follow this focus chain to
find a widget F that has not redirected focus.

• • If E is the final focus target widget F or a descendant of F, the event is dispatched
to E.

• If E is not F, an ancestor of F, or a descendant of F, and the event activated a
grab for E as specified by a call to XtGrabKey for E, XtUngrabKeyboard is called.

• If E is an ancestor of F, and the event is a key press, and either
• • E has grabbed the key with XtGrabKey and owner_events False, or

• E has grabbed the key with XtGrabKey and owner_events True, and the coor-
dinates of the event are outside the rectangle specified by E's geometry, then
the event is dispatched to E.

• Otherwise, define A as the closest common ancestor of E and F:
• • If there is an active keyboard grab for any widget via either XtGrabKeyboard

or XtGrabKey on a previous key press, or if no widget between F and A (non-
inclusive) has grabbed the key and modifier combination with XtGrabKey and
any value of owner_events, the event is dispatched to F.

Event Management

116

• Else, the event is dispatched to the ancestor of F closest to A that has grabbed
the key and modifier combination with XtGrabKey.

When there is a modal cascade, if the final destination widget as identified above
is in the active subset of the cascade, the event is dispatched; otherwise the event
is remapped to a spring-loaded shell or discarded. Regardless of where it is dis-
patched, the Intrinsics do not modify the contents of the event.

When subtree or one of its descendants acquires the X input focus or the pointer
moves into the subtree such that keyboard events would now be delivered to the
subtree, a FocusIn event is generated for the descendant if FocusChange events
have been selected by the descendant. Similarly, when subtree loses the X input
focus or the keyboard focus for one of its ancestors, a FocusOut event is generated
for descendant if FocusChange events have been selected by the descendant.

A widget tree may also actively manage the X server input focus. To do so, a widget
class specifies an accept_focus procedure.

The accept_focus procedure pointer is of type *XtAcceptFocusProc.

Boolean *XtAcceptFocusProc(w, time);

w Specifies the widget.

time Specifies the X time of the event causing the accept focus.

Widgets that need the input focus can call XSetInputFocus explicitly, pursuant to
the restrictions of the Inter-Client Communication Conventions Manual.. To allow
outside agents, such as the parent, to cause a widget to take the input focus, every
widget exports an accept_focus procedure. The widget returns a value indicating
whether it actually took the focus or not, so that the parent can give the focus to
another widget. Widgets that need to know when they lose the input focus must use
the Xlib focus notification mechanism explicitly (typically by specifying translations
for FocusIn and FocusOut events). Widgets classes that never want the input focus
should set the accept_focus field to NULL.

To call a widget's accept_focus procedure, use XtCallAcceptFocus.

Boolean XtCallAcceptFocus(w, time);

w Specifies the widget. Must be of class Core or any subclass
thereof.

time Specifies the X time of the event that is causing the focus
change.

The XtCallAcceptFocus function calls the specified widget's accept_focus proce-
dure, passing it the specified widget and time, and returns what the accept_focus
procedure returns. If accept_focus is NULL, XtCallAcceptFocus returns False.

Events for Drawables That Are Not a Widget's Window
Sometimes an application must handle events for drawables that are not associat-
ed with widgets in its widget tree. Examples include handling GraphicsExpose and
NoExpose events on Pixmaps, and handling PropertyNotify events on the root win-
dow.

Event Management

117

To register a drawable with the Intrinsics event dispatching, use XtRegisterDraw-
able.

void XtRegisterDrawable(display, drawable, widget);

display Specifies the drawable's display.

drawable Specifies the drawable to register.

widget Specifies the widget to register the drawable for.

XtRegisterDrawable associates the specified drawable with the specified widget
so that future calls to XtWindowToWidget with the drawable will return the widget.
The default event dispatcher will dispatch future events that arrive for the drawable
to the widget in the same manner as events that contain the widget's window.

If the drawable is already registered with another widget, or if the drawable is the
window of a widget in the client's widget tree, the results of calling XtRegister-
Drawable are undefined.

To unregister a drawable with the Intrinsics event dispatching, use XtUnregister-
Drawable.

void XtUnregisterDrawable(display, drawable);

display Specifies the drawable's display.

drawable Specifies the drawable to unregister.

XtUnregisterDrawable removes an association created with XtRegisterDrawable.
If the drawable is the window of a widget in the client's widget tree the results of
calling XtUnregisterDrawable are undefined.

Querying Event Sources
The event manager provides several functions to examine and read events (includ-
ing file and timer events) that are in the queue. The next three functions are Intrin-
sics equivalents of the XPending, XPeekEvent, and XNextEvent Xlib calls.

To determine if there are any events on the input queue for a given application, use
XtAppPending.

XtInputMask XtAppPending(app_context);

app_context Specifies the application context that identifies the ap-
plication to check.

The XtAppPending function returns a nonzero value if there are events pending
from the X server, timer pending, other input sources pending, or signal sources
pending. The value returned is a bit mask that is the OR of XtIMXEvent, XtIMTimer,
XtIMAlternateInput, and XtIMSignal (see XtAppProcessEvent). If there are no
events pending, XtAppPending flushes the output buffers of each Display in the
application context and returns zero.

To return the event from the head of a given application's input queue without re-
moving input from the queue, use XtAppPeekEvent.

Event Management

118

Boolean XtAppPeekEvent(app_context, event_return);

app_context Specifies the application context that identifies the
application.

event_return Returns the event information to the specified event
structure.

If there is an X event in the queue, XtAppPeekEvent copies it into event_return
and returns True. If no X input is on the queue, XtAppPeekEvent flushes the out-
put buffers of each Display in the application context and blocks until some in-
put is available (possibly calling some timeout callbacks in the interim). If the
next available input is an X event, XtAppPeekEvent fills in event_return and re-
turns True. Otherwise, the input is for an input source registered with XtAppAd-
dInput, and XtAppPeekEvent returns False. The sample implementations provides
XtAppPeekEvent as described. Timeout callbacks are called while blocking for in-
put. If some input for an input source is available, XtAppPeekEvent will return True
without returning an event.

To remove and return the event from the head of a given application's X event queue,
use XtAppNextEvent.

void XtAppNextEvent(app_context, event_return);

app_context Specifies the application context that identifies the
application.

event_return Returns the event information to the specified event
structure.

If the X event queue is empty, XtAppNextEvent flushes the X output buffers of each
Display in the application context and waits for an X event while looking at the other
input sources and timeout values and calling any callback procedures triggered by
them. This wait time can be used for background processing; see the section called
“Adding Background Work Procedures”.

Dispatching Events
The Intrinsics provide functions that dispatch events to widgets or other application
code. Every client interested in X events on a widget uses XtAddEventHandler to
register which events it is interested in and a procedure (event handler) to be called
when the event happens in that window. The translation manager automatically
registers event handlers for widgets that use translation tables; see Chapter 10,
Translation Management.

Applications that need direct control of the processing of different types of input
should use XtAppProcessEvent.

void XtAppProcessEvent(app_context, mask);

app_context Specifies the application context that identifies the ap-
plication for which to process input.

mask Specifies what types of events to process. The mask
is the bitwise inclusive OR of any combination of
XtIMXEvent, XtIMTimer, XtIMAlternateInput, and

Event Management

119

XtIMSignal. As a convenience, Intrinsic.h defines
the symbolic name XtIMAll to be the bitwise inclusive
OR of these four event types.

The XtAppProcessEvent function processes one timer, input source, signal source,
or X event. If there is no event or input of the appropriate type to process, then
XtAppProcessEvent blocks until there is. If there is more than one type of input
available to process, it is undefined which will get processed. Usually, this proce-
dure is not called by client applications; see XtAppMainLoop. XtAppProcessEvent
processes timer events by calling any appropriate timer callbacks, input sources
by calling any appropriate input callbacks, signal source by calling any appropriate
signal callbacks, and X events by calling XtDispatchEvent.

When an X event is received, it is passed to XtDispatchEvent, which calls the ap-
propriate event handlers and passes them the widget, the event, and client-specific
data registered with each procedure. If no handlers for that event are registered,
the event is ignored and the dispatcher simply returns.

To dispatch an event returned by XtAppNextEvent, retrieved directly from the Xlib
queue, or synthetically constructed, to any registered event filters or event han-
dlers, call XtDispatchEvent.

Boolean XtDispatchEvent(event);

event Specifies a pointer to the event structure to be dispatched to
the appropriate event handlers.

The XtDispatchEvent function first calls XFilterEvent with the event and the win-
dow of the widget to which the Intrinsics intend to dispatch the event, or the event
window if the Intrinsics would not dispatch the event to any handlers. If XFil-
terEvent returns True and the event activated a server grab as identified by a previ-
ous call to XtGrabKey or XtGrabButton, XtDispatchEvent calls XtUngrabKeyboard
or XtUngrabPointer with the timestamp from the event and immediately returns
True. If XFilterEvent returns True and a grab was not activated, XtDispatchEvent
just immediately returns True. Otherwise, XtDispatchEvent sends the event to the
event handler functions that have been previously registered with the dispatch rou-
tine. XtDispatchEvent returns True if XFilterEvent returned True, or if the event
was dispatched to some handler, and False if it found no handler to which to dis-
patch the event. XtDispatchEvent records the last timestamp in any event that con-
tains a timestamp (see XtLastTimestampProcessed), regardless of whether it was
filtered or dispatched. If a modal cascade is active with spring_loaded True, and if
the event is a remap event as defined by XtAddGrab, XtDispatchEvent may dispatch
the event a second time. If it does so, XtDispatchEvent will call XFilterEvent again
with the window of the spring-loaded widget prior to the second dispatch, and if
XFilterEvent returns True, the second dispatch will not be performed.

The Application Input Loop
To process all input from a given application in a continuous loop, use the conve-
nience procedure XtAppMainLoop.

void XtAppMainLoop(app_context);

app_context Specifies the application context that identifies the ap-
plication.

Event Management

120

The XtAppMainLoop function first reads the next incoming X event by calling XtApp-
NextEvent and then dispatches the event to the appropriate registered procedure
by calling XtDispatchEvent. This constitutes the main loop of X Toolkit applications.
There is nothing special about XtAppMainLoop; it simply calls XtAppNextEvent and
then XtDispatchEvent in a conditional loop. At the bottom of the loop, it checks
to see if the specified application context's destroy flag is set. If the flag is set, the
loop breaks. The whole loop is enclosed between a matching XtAppLock and XtAp-
pUnlock.

Applications can provide their own version of this loop, which tests some global
termination flag or tests that the number of top-level widgets is larger than zero
before circling back to the call to XtAppNextEvent.

Setting and Checking the Sensitivity State of a
Widget

Many widgets have a mode in which they assume a different appearance (for exam-
ple, are grayed out or stippled), do not respond to user events, and become dormant.

When dormant, a widget is considered to be insensitive. If a widget is insensitive,
the event manager does not dispatch any events to the widget with an event type of
KeyPress, KeyRelease, ButtonPress, ButtonRelease, MotionNotify, EnterNotify,
LeaveNotify, FocusIn, or FocusOut.

A widget can be insensitive because its sensitive field is False or because one of its
ancestors is insensitive and thus the widget's ancestor_sensitive field also is False.
A widget can but does not need to distinguish these two cases visually.

Note
Pop-up shells will have ancestor_sensitive False if the parent was insensitive
when the shell was created. Since XtSetSensitive on the parent will not
modify the resource of the pop-up child, clients are advised to include a re-
source specification of the form ``*TransientShell.ancestorSensitive: True''
in the application defaults resource file or to otherwise ensure that the par-
ent is sensitive when creating pop-up shells.

To set the sensitivity state of a widget, use XtSetSensitive.

void XtSetSensitive(w, sensitive);

w Specifies the widget. Must be of class RectObj or any
subclass thereof.

sensitive Specifies whether the widget should receive keyboard,
pointer, and focus events.

The XtSetSensitive function first calls XtSetValues on the current widget with
an argument list specifying the XtNsensitive resource and the new value. If sensi-
tive is False and the widget's class is a subclass of Composite, XtSetSensitive
recursively propagates the new value down the child tree by calling XtSetValues
on each child to set ancestor_sensitive to False. If sensitive is True and the widget's
class is a subclass of Composite and the widget's ancestor_sensitive field is True,
XtSetSensitive sets the ancestor_sensitive of each child to True and then recur-

Event Management

121

sively calls XtSetValues on each normal descendant that is now sensitive to set
ancestor_sensitive to True.

XtSetSensitive calls XtSetValues to change the sensitive and ancestor_sensitive
fields of each affected widget. Therefore, when one of these changes, the widget's
set_values procedure should take whatever display actions are needed (for example,
graying out or stippling the widget).

XtSetSensitive maintains the invariant that, if the parent has either sensitive or
ancestor_sensitive False, then all children have ancestor_sensitive False.

To check the current sensitivity state of a widget, use XtIsSensitive.

Boolean XtIsSensitive(w);

w Specifies the object. Must be of class Object or any subclass there-
of.

The XtIsSensitive function returns True or False to indicate whether user input
events are being dispatched. If object's class is a subclass of RectObj and both sen-
sitive and ancestor_sensitive are True, XtIsSensitive returns True; otherwise, it
returns False.

Adding Background Work Procedures
The Intrinsics have some limited support for background processing. Because
most applications spend most of their time waiting for input, you can register an
idle-time work procedure that is called when the toolkit would otherwise block
in XtAppNextEvent or XtAppProcessEvent. Work procedure pointers are of type
(*XtWorkProc).

typedef Boolean (*XtWorkProc)(client_data);

client_data Passes the client data specified when the work proce-
dure was registered.

This procedure should return True when it is done to indicate that it should be
removed. If the procedure returns False, it will remain registered and called again
when the application is next idle. Work procedures should be very judicious about
how much they do. If they run for more than a small part of a second, interactive
feel is likely to suffer.

To register a work procedure for a given application, use XtAppAddWorkProc.

XtWorkProcId XtAppAddWorkProc(app_context, proc, client_data);

app_context Specifies the application context that identifies the ap-
plication.

proc Specifies the procedure to be called when the applica-
tion is idle.

client_data Specifies the argument passed to the specified proce-
dure when it is called.

The XtAppAddWorkProc function adds the specified work procedure for the appli-
cation identified by app_context and returns an opaque unique identifier for this

Event Management

122

work procedure. Multiple work procedures can be registered, and the most recently
added one is always the one that is called. However, if a work procedure adds an-
other work procedure, the newly added one has lower priority than the current one.

To remove a work procedure, either return True from the procedure when it is called
or use XtRemoveWorkProc outside of the procedure.

void XtRemoveWorkProc(id);

id Specifies which work procedure to remove.

The XtRemoveWorkProc function explicitly removes the specified background work
procedure.

X Event Filters
The event manager provides filters that can be applied to specific X events. The
filters, which screen out events that are redundant or are temporarily unwanted,
handle pointer motion compression, enter/leave compression, and exposure com-
pression.

Pointer Motion Compression
Widgets can have a hard time keeping up with a rapid stream of pointer motion
events. Furthermore, they usually do not care about every motion event. To throw
out redundant motion events, the widget class field compress_motion should be
True. When a request for an event would return a motion event, the Intrinsics check
if there are any other motion events for the same widget immediately following the
current one and, if so, skip all but the last of them.

Enter/Leave Compression
To throw out pairs of enter and leave events that have no intervening events, as
can happen when the user moves the pointer across a widget without stopping in it,
the widget class field compress_enterleave should be True. These enter and leave
events are not delivered to the client if they are found together in the input queue.

Exposure Compression
Many widgets prefer to process a series of exposure events as a single expose region
rather than as individual rectangles. Widgets with complex displays might use the
expose region as a clip list in a graphics context, and widgets with simple displays
might ignore the region entirely and redisplay their whole window or might get the
bounding box from the region and redisplay only that rectangle.

In either case, these widgets do not care about getting partial exposure events.
The compress_exposure field in the widget class structure specifies the type and
number of exposure events that are dispatched to the widget's expose procedure.
This field must be initialized to one of the following values:

#define XtExposeNoCompress ((XtEnum)False)
#define XtExposeCompressSeries ((XtEnum)True)

Event Management

123

#define XtExposeCompressMultiple <implementation-defined>
#define XtExposeCompressMaximal <implementation-defined>

optionally ORed with any combination of the following flags (all with implementa-
tion-defined values): XtExposeGraphicsExpose, XtExposeGraphicsExposeMerged,
XtExposeNoExpose, and XtExposeNoRegion.

If the compress_exposure field in the widget class structure does not specify XtEx-
poseNoCompress, the event manager calls the widget's expose procedure only once
for a series of exposure events. In this case, all Expose or GraphicsExpose events
are accumulated into a region. When the final event is received, the event manager
replaces the rectangle in the event with the bounding box for the region and calls
the widget's expose procedure, passing the modified exposure event and (unless
XtExposeNoRegion is specified) the region. For more information on regions, see
Section 16.5 in Xlib — C Language X Interface..)

The values have the following interpretation:

XtExposeNoCompress

• No exposure compression is performed; every selected event is individually dis-
patched to the expose procedure with a region argument of NULL.

XtExposeCompressSeries

• Each series of exposure events is coalesced into a single event, which is dis-
patched when an exposure event with count equal to zero is reached.

XtExposeCompressMultiple

• Consecutive series of exposure events are coalesced into a single event, which
is dispatched when an exposure event with count equal to zero is reached and
either the event queue is empty or the next event is not an exposure event for
the same widget.

XtExposeCompressMaximal

• All expose series currently in the queue for the widget are coalesced into a single
event without regard to intervening nonexposure events. If a partial series is in
the end of the queue, the Intrinsics will block until the end of the series is received.

The additional flags have the following meaning:

XtExposeGraphicsExpose

• Specifies that GraphicsExpose events are also to be dispatched to the expose pro-
cedure. GraphicsExpose events are compressed, if specified, in the same manner
as Expose events.

XtExposeGraphicsExposeMerged

• Specifies in the case of XtExposeCompressMultiple and XtExposeCompressMax-
imal that series of GraphicsExpose and Expose events are to be compressed to-
gether, with the final event type determining the type of the event passed to the
expose procedure. If this flag is not set, then only series of the same event type
as the event at the head of the queue are coalesced. This flag also implies XtEx-
poseGraphicsExpose.

Event Management

124

XtExposeNoExpose

• Specifies that NoExpose events are also to be dispatched to the expose procedure.
NoExpose events are never coalesced with other exposure events or with each
other.

XtExposeNoRegion

• Specifies that the final region argument passed to the expose procedure is NULL.
The rectangle in the event will still contain bounding box information for the entire
series of compressed exposure events. This option saves processing time when
the region is not needed by the widget.

Widget Exposure and Visibility
Every primitive widget and some composite widgets display data on the screen by
means of direct Xlib calls. Widgets cannot simply write to the screen and forget
what they have done. They must keep enough state to redisplay the window or parts
of it if a portion is obscured and then reexposed.

Redisplay of a Widget: The expose Procedure
The expose procedure pointer in a widget class is of type (*XtExposeProc).

typedef void (*XtExposeProc)(w, event, region);

w Specifies the widget instance requiring redisplay.

event Specifies the exposure event giving the rectangle requiring
redisplay.

region Specifies the union of all rectangles in this exposure se-
quence.

The redisplay of a widget upon exposure is the responsibility of the expose proce-
dure in the widget's class record. If a widget has no display semantics, it can specify
NULL for the expose field. Many composite widgets serve only as containers for
their children and have no expose procedure.

Note
If the expose procedure is NULL, XtRealizeWidget fills in a default bit grav-
ity of NorthWestGravity before it calls the widget's realize procedure.

If the widget's compress_exposure class field specifies XtExposeNoCompress or
XtExposeNoRegion, or if the event type is NoExpose (see the section called “Expo-
sure Compression”), region is NULL. If XtExposeNoCompress is not specified and
the event type is not NoExpose, the event is the final event in the compressed series
but x, y, width, and height contain the bounding box for all the compressed events.
The region is created and destroyed by the Intrinsics, but the widget is permitted
to modify the region contents.

A small simple widget (for example, Label) can ignore the bounding box informa-
tion in the event and redisplay the entire window. A more complicated widget (for
example, Text) can use the bounding box information to minimize the amount of

Event Management

125

calculation and redisplay it does. A very complex widget uses the region as a clip
list in a GC and ignores the event information. The expose procedure is not chained
and is therefore responsible for exposure of all superclass data as well as its own.

However, it often is possible to anticipate the display needs of several levels of
subclassing. For example, rather than implement separate display procedures for
the widgets Label, Pushbutton, and Toggle, you could write a single display routine
in Label that uses display state fields like

Boolean invert;
Boolean highlight;
Dimension highlight_width;

Label would have invert and highlight always False and highlight_width zero. Push-
button would dynamically set highlight and highlight_width, but it would leave in-
vert always False. Finally, Toggle would dynamically set all three. In this case, the
expose procedures for Pushbutton and Toggle inherit their superclass's expose pro-
cedure; see the section called “Inheritance of Superclass Operations”.

Widget Visibility
Some widgets may use substantial computing resources to produce the data they
will display. However, this effort is wasted if the widget is not actually visible on the
screen, that is, if the widget is obscured by another application or is iconified.

The visible field in the core widget structure provides a hint to the widget that it
need not compute display data. This field is guaranteed to be True by the time an
exposure event is processed if any part of the widget is visible, but is False if the
widget is fully obscured.

Widgets can use or ignore the visible hint. If they ignore it, they should have
visible_interest in their widget class record set False. In such cases, the visible field
is initialized True and never changes. If visible_interest is True, the event manager
asks for VisibilityNotify events for the widget and sets visible to True on Vis-
ibilityUnobscured or VisibilityPartiallyObscured events and False on Visi-
bilityFullyObscured events.

X Event Handlers
Event handlers are procedures called when specified events occur in a widget.
Most widgets need not use event handlers explicitly. Instead, they use the Intrinsics
translation manager. Event handler procedure pointers are of the type (*XtEven-
tHandler).

typedef void (*XtEventHandler)(w, client_data, event,
continue_to_dispatch);

w Specifies the widget for which the event arrived.

client_data Specifies any client-specific information registered
with the event handler.

event Specifies the triggering event.

Event Management

126

continue_to_dispatch Specifies whether the remaining event handlers reg-
istered for the current event should be called.

After receiving an event and before calling any event handlers, the Boolean pointed
to by continue_to_dispatch is initialized to True. When an event handler is called,
it may decide that further processing of the event is not desirable and may store
False in this Boolean, in which case any handlers remaining to be called for the
event are ignored.

The circumstances under which the Intrinsics may add event handlers to a widget
are currently implementation-dependent. Clients must therefore be aware that stor-
ing False into the continue_to_dispatch argument can lead to portability problems.

Event Handlers That Select Events
To register an event handler procedure with the dispatch mechanism, use XtAddE-
ventHandler.

void XtAddEventHandler(w, event_mask, nonmaskable, proc, client_data);

w Specifies the widget for which this event handler is
being registered. Must be of class Core or any subclass
thereof.

event_mask Specifies the event mask for which to call this proce-
dure.

nonmaskable Specifies whether this procedure should be called
on the nonmaskable events (GraphicsExpose, No-
Expose, SelectionClear, SelectionRequest, Selec-
tionNotify, ClientMessage, and MappingNotify).

proc Specifies the procedure to be called.

client_data Specifies additional data to be passed to the event han-
dler.

The XtAddEventHandler function registers a procedure with the dispatch mecha-
nism that is to be called when an event that matches the mask occurs on the speci-
fied widget. Each widget has a single registered event handler list, which will con-
tain any procedure/client_data pair exactly once regardless of the manner in which
it is registered. If the procedure is already registered with the same client_data val-
ue, the specified mask augments the existing mask. If the widget is realized, XtAd-
dEventHandler calls XSelectInput, if necessary. The order in which this procedure
is called relative to other handlers registered for the same event is not defined.

To remove a previously registered event handler, use XtRemoveEventHandler.

void XtRemoveEventHandler(w, event_mask, nonmaskable, proc,
client_data);

w Specifies the widget for which this procedure is regis-
tered. Must be of class Core or any subclass thereof.

event_mask Specifies the event mask for which to unregister this
procedure.

Event Management

127

nonmaskable Specifies whether this procedure should be removed
on the nonmaskable events (GraphicsExpose, No-
Expose, SelectionClear, SelectionRequest, Selec-
tionNotify, ClientMessage, and MappingNotify).

proc Specifies the procedure to be removed.

client_data Specifies the registered client data.

The XtRemoveEventHandler function unregisters an event handler registered with
XtAddEventHandler or XtInsertEventHandler for the specified events. The re-
quest is ignored if client_data does not match the value given when the handler
was registered. If the widget is realized and no other event handler requires the
event, XtRemoveEventHandler calls XSelectInput. If the specified procedure has
not been registered or if it has been registered with a different value of client_data,
XtRemoveEventHandler returns without reporting an error.

To stop a procedure registered with XtAddEventHandler or XtInsertEventHandler
from receiving all selected events, call XtRemoveEventHandler with an event_mask
of XtAllEvents and nonmaskable True. The procedure will continue to receive any
events that have been specified in calls to XtAddRawEventHandler or XtInsertRaw-
EventHandler.

To register an event handler procedure that receives events before or after all pre-
viously registered event handlers, use XtInsertEventHandler.

typedef enum {XtListHead, XtListTail} XtListPosition;

void XtInsertEventHandler(w, event_mask, nonmaskable, proc,
client_data, position);

w Specifies the widget for which this event handler is
being registered. Must be of class Core or any subclass
thereof.

event_mask Specifies the event mask for which to call this proce-
dure.

nonmaskable Specifies whether this procedure should be called
on the nonmaskable events (GraphicsExpose, No-
Expose, SelectionClear, SelectionRequest, Selec-
tionNotify, ClientMessage, and MappingNotify).

proc Specifies the procedure to be called.

client_data Specifies additional data to be passed to the client's
event handler.

position Specifies when the event handler is to be called rela-
tive to other previously registered handlers.

XtInsertEventHandler is identical to XtAddEventHandler with the additional posi-
tion argument. If position is XtListHead, the event handler is registered so that it is
called before any event handlers that were previously registered for the same wid-
get. If position is XtListTail, the event handler is registered to be called after any

Event Management

128

previously registered event handlers. If the procedure is already registered with
the same client_data value, the specified mask augments the existing mask and the
procedure is repositioned in the list.

Event Handlers That Do Not Select Events
On occasion, clients need to register an event handler procedure with the dispatch
mechanism without explicitly causing the X server to select for that event. To do
this, use XtAddRawEventHandler.

void XtAddRawEventHandler(w, event_mask, nonmaskable, proc,
client_data);

w Specifies the widget for which this event handler is
being registered. Must be of class Core or any subclass
thereof.

event_mask Specifies the event mask for which to call this proce-
dure.

nonmaskable Specifies whether this procedure should be called
on the nonmaskable events (GraphicsExpose, No-
Expose, SelectionClear, SelectionRequest, Selec-
tionNotify, ClientMessage, and MappingNotify).

proc Specifies the procedure to be called.

client_data Specifies additional data to be passed to the client's
event handler.

The XtAddRawEventHandler function is similar to XtAddEventHandler except that
it does not affect the widget's event mask and never causes an XSelectInput for its
events. Note that the widget might already have those mask bits set because of other
nonraw event handlers registered on it. If the procedure is already registered with
the same client_data, the specified mask augments the existing mask. The order in
which this procedure is called relative to other handlers registered for the same
event is not defined.

To remove a previously registered raw event handler, use XtRemoveRawEven-
tHandler.

void XtRemoveRawEventHandler(w, event_mask, nonmaskable, proc,
client_data);

w Specifies the widget for which this procedure is regis-
tered. Must be of class Core or any subclass thereof.

event_mask Specifies the event mask for which to unregister this
procedure.

nonmaskable Specifies whether this procedure should be removed
on the nonmaskable events (GraphicsExpose, No-
Expose, SelectionClear, SelectionRequest, Selec-
tionNotify, ClientMessage, and MappingNotify).

proc Specifies the procedure to be registered.

Event Management

129

client_data Specifies the registered client data.

The XtRemoveRawEventHandler function unregisters an event handler registered
with XtAddRawEventHandler or XtInsertRawEventHandler for the specified events
without changing the window event mask. The request is ignored if client_data does
not match the value given when the handler was registered. If the specified proce-
dure has not been registered or if it has been registered with a different value of
client_data, XtRemoveRawEventHandler returns without reporting an error.

To stop a procedure registered with XtAddRawEventHandler or XtInsertRawEven-
tHandler from receiving all nonselected events, call XtRemoveRawEventHandler
with an event_mask of XtAllEvents and nonmaskable True. The procedure will con-
tinue to receive any events that have been specified in calls to XtAddEventHandler
or XtInsertEventHandler.

To register an event handler procedure that receives events before or after all pre-
viously registered event handlers without selecting for the events, use XtInser-
tRawEventHandler.

void XtInsertRawEventHandler(w, event_mask, nonmaskable, proc,
client_data, position);

w Specifies the widget for which this event handler is
being registered. Must be of class Core or any subclass
thereof.

event_mask Specifies the event mask for which to call this proce-
dure.

nonmaskable Specifies whether this procedure should be called
on the nonmaskable events (GraphicsExpose, No-
Expose, SelectionClear, SelectionRequest, Selec-
tionNotify, ClientMessage, and MappingNotify).

proc Specifies the procedure to be registered.

client_data Specifies additional data to be passed to the client's
event handler.

position Specifies when the event handler is to be called rela-
tive to other previously registered handlers.

The XtInsertRawEventHandler function is similar to XtInsertEventHandler ex-
cept that it does not modify the widget's event mask and never causes an XSelec-
tInput for the specified events. If the procedure is already registered with the same
client_data value, the specified mask augments the existing mask and the procedure
is repositioned in the list.

Current Event Mask
To retrieve the event mask for a given widget, use XtBuildEventMask.

EventMask XtBuildEventMask(w);

w Specifies the widget. Must be of class Core or any subclass thereof.

Event Management

130

The XtBuildEventMask function returns the event mask representing the logical
OR of all event masks for event handlers registered on the widget with XtAddEven-
tHandler and XtInsertEventHandler and all event translations, including acceler-
ators, installed on the widget. This is the same event mask stored into the XSetWin-
dowAttributes structure by XtRealizeWidget and sent to the server when event
handlers and translations are installed or removed on the realized widget.

Event Handlers for X11 Protocol Extensions
To register an event handler procedure with the Intrinsics dispatch mechanism ac-
cording to an event type, use XtInsertEventTypeHandler.

void XtInsertEventTypeHandler(widget, event_type, select_data, proc,
client_data, position);

widget Specifies the widget for which this event handler is
being registered. Must be of class Core or any subclass
thereof.

event_type Specifies the event type for which to call this event
handler.

select_data Specifies data used to request events of the specified
type from the server, or NULL.

proc Specifies the event handler to be called.

client_data Specifies additional data to be passed to the event han-
dler.

position Specifies when the event handler is to be called rela-
tive to other previously registered handlers.

XtInsertEventTypeHandler registers a procedure with the dispatch mechanism
that is to be called when an event that matches the specified event_type is dis-
patched to the specified widget.

If event_type specifies one of the core X protocol events, then select_data must be
a pointer to a value of type EventMask, indicating the event mask to be used to
select for the desired event. This event mask is included in the value returned by
XtBuildEventMask. If the widget is realized, XtInsertEventTypeHandler calls XS-
electInput if necessary. Specifying NULL for select_data is equivalent to specify-
ing a pointer to an event mask containing 0. This is similar to the XtInsertRaw-
EventHandler function.

If event_type specifies an extension event type, then the semantics of the data point-
ed to by select_data are defined by the extension selector registered for the speci-
fied event type.

In either case the Intrinsics are not required to copy the data pointed to by
select_data, so the caller must ensure that it remains valid as long as the event
handler remains registered with this value of select_data.

The position argument allows the client to control the order of invocation of event
handlers registered for the same event type. If the client does not care about the

Event Management

131

order, it should normally specify XtListTail, which registers this event handler
after any previously registered handlers for this event type.

Each widget has a single registered event handler list, which will contain any pro-
cedure/client_data pair exactly once if it is registered with XtInsertEventType-
Handler, regardless of the manner in which it is registered and regardless of
the value(s) of select_data. If the procedure is already registered with the same
client_data value, the specified mask augments the existing mask and the procedure
is repositioned in the list.

To remove an event handler registered with XtInsertEventTypeHandler, use
XtRemoveEventTypeHandler.

void XtRemoveEventTypeHandler(widget, event_type, select_data, proc,
client_data);

widget Specifies the widget for which the event handler was
registered. Must be of class Core or any subclass
thereof.

event_type Specifies the event type for which the handler was reg-
istered.

select_data Specifies data used to deselect events of the specified
type from the server, or NULL.

proc Specifies the event handler to be removed.

client_data Specifies the additional client data with which the pro-
cedure was registered.

The XtRemoveEventTypeHandler function unregisters an event handler registered
with XtInsertEventTypeHandler for the specified event type. The request is ig-
nored if client_data does not match the value given when the handler was regis-
tered.

If event_type specifies one of the core X protocol events, select_data must be a
pointer to a value of type EventMask, indicating the event mask to be used to
deselect for the appropriate event. If the widget is realized, XtRemoveEventType-
Handler calls XSelectInput if necessary. Specifying NULL for select_data is equiv-
alent to specifying a pointer to an event mask containing 0. This is similar to the
XtRemoveRawEventHandler function.

If event_type specifies an extension event type, then the semantics of the data point-
ed to by select_data are defined by the extension selector registered for the speci-
fied event type.

To register a procedure to select extension events for a widget, use XtRegisterEx-
tensionSelector.

void XtRegisterExtensionSelector(*display, min_event_type,
max_event_type, proc, client_data);

display Specifies the display for which the extension selector
is to be registered.

min_event_type

Event Management

132

max_event_type Specifies the range of event types for the extension.

proc Specifies the extension selector procedure.

client_data Specifies additional data to be passed to the exten-
sion selector.

The XtRegisterExtensionSelector function registers a procedure to arrange for
the delivery of extension events to widgets.

If min_event_type and max_event_type match the parameters to a previous call to
XtRegisterExtensionSelector for the same display, then proc and client_data re-
place the previously registered values. If the range specified by min_event_type and
max_event_type overlaps the range of the parameters to a previous call for the same
display in any other way, an error results.

When a widget is realized, after the core.realize method is called, the Intrinsics
check to see if any event handler specifies an event type within the range of a reg-
istered extension selector. If so, the Intrinsics call each such selector. If an event
type handler is added or removed, the Intrinsics check to see if the event type falls
within the range of a registered extension selector, and if it does, calls the selector.
In either case the Intrinsics pass a list of all the widget's event types that are within
the selector's range. The corresponding select data are also passed. The selector is
responsible for enabling the delivery of extension events required by the widget.

An extension selector is of type (*XtExtensionSelectProc).

typedef void (*XtExtensionSelectProc)(widget, event_types, select_data,
count, client_data);

widget Specifies the widget that is being realized or is having
an event handler added or removed.

event_types Specifies a list of event types that the widget has reg-
istered event handlers for.

select_data Specifies a list of the select_data parameters specified
in XtInsertEventTypeHandler.

count Specifies the number of entries in the event_types and
select_data lists.

client_data Specifies the additional client data with which the pro-
cedure was registered.

The event_types and select_data lists will always have the same number of ele-
ments, specified by count. Each event type/select data pair represents one call to
XtInsertEventTypeHandler.

To register a procedure to dispatch events of a specific type within XtDis-
patchEvent, use XtSetEventDispatcher.

XtEventDispatchProc XtSetEventDispatcher(display, event_type, proc);

display Specifies the display for which the event dispatcher is
to be registered.

Event Management

133

event_type Specifies the event type for which the dispatcher should
be invoked.

proc Specifies the event dispatcher procedure.

The XtSetEventDispatcher function registers the event dispatcher procedure spec-
ified by proc for events with the type event_type. The previously registered dis-
patcher (or the default dispatcher if there was no previously registered dispatcher)
is returned. If proc is NULL, the default procedure is restored for the specified type.

In the future, when XtDispatchEvent is called with an event type of event_type, the
specified proc (or the default dispatcher) is invoked to determine a widget to which
to dispatch the event.

The default dispatcher handles the Intrinsics modal cascade and keyboard focus
mechanisms, handles the semantics of compress_enterleave and compress_motion,
and discards all extension events.

An event dispatcher procedure pointer is of type (*XtEventDispatchProc).

typedef Boolean (*XtEventDispatchProc)(event);

event Passes the event to be dispatched.

The event dispatcher procedure should determine whether this event is of a type
that should be dispatched to a widget.

If the event should be dispatched to a widget, the event dispatcher procedure should
determine the appropriate widget to receive the event, call XFilterEvent with the
window of this widget, or None if the event is to be discarded, and if XFilterEvent
returns False, dispatch the event to the widget using XtDispatchEventToWidget.
The procedure should return True if either XFilterEvent or XtDispatchEvent-
ToWidget returned True and False otherwise.

If the event should not be dispatched to a widget, the event dispatcher procedure
should attempt to dispatch the event elsewhere as appropriate and return True if it
successfully dispatched the event and False otherwise.

Some dispatchers for extension events may wish to forward events according to the
Intrinsics' keyboard focus mechanism. To determine which widget is the end result
of keyboard event forwarding, use XtGetKeyboardFocusWidget.

Widget XtGetKeyboardFocusWidget(widget);

widget Specifies the widget to get forwarding information for.

The XtGetKeyboardFocusWidget function returns the widget that would be the end
result of keyboard event forwarding for a keyboard event for the specified widget.

To dispatch an event to a specified widget, use XtDispatchEventToWidget.

Boolean XtDispatchEventToWidget(widget, event);

widget Specifies the widget to which to dispatch the event.

event Specifies a pointer to the event to be dispatched.

Event Management

134

The XtDispatchEventToWidget function scans the list of registered event handlers
for the specified widget and calls each handler that has been registered for the
specified event type, subject to the continue_to_dispatch value returned by each
handler. The Intrinsics behave as if event handlers were registered at the head of
the list for Expose, NoExpose, GraphicsExpose, and VisibilityNotify events to
invoke the widget's expose procedure according to the exposure compression rules
and to update the widget's visible field if visible_interest is True. These internal
event handlers never set continue_to_dispatch to False.

XtDispatchEventToWidget returns True if any event handler was called and False
otherwise.

Using the Intrinsics in a Multi-Threaded Envi-
ronment

The Intrinsics may be used in environments that offer multiple threads of execution
within the context of a single process. A multi-threaded application using the In-
trinsics must explicitly initialize the toolkit for mutually exclusive access by calling
XtToolkitThreadInitialize.

Initializing a Multi-Threaded Intrinsics Application
To test and initialize Intrinsics support for mutually exclusive thread access, call
XtToolkitThreadInitialize.

Boolean XtToolkitThreadInitialize();

XtToolkitThreadInitialize returns True if the Intrinsics support mutually ex-
clusive thread access, otherwise it returns False. XtToolkitThreadInitialize
must be called before XtCreateApplicationContext, XtAppInitialize, XtOpenAp-
plication, or XtSetLanguageProc is called. XtToolkitThreadInitialize may be
called more than once; however, the application writer must ensure that it is not
called simultaneously by two or more threads.

Locking X Toolkit Data Structures
The Intrinsics employs two levels of locking: application context and process. Lock-
ing an application context ensures mutually exclusive access by a thread to the state
associated with the application context, including all displays and widgets associ-
ated with it. Locking a process ensures mutually exclusive access by a thread to
Intrinsics process global data.

A client may acquire a lock multiple times and the effect is cumulative. The client
must ensure that the lock is released an equal number of times in order for the lock
to be acquired by another thread.

Most application writers will have little need to use locking as the Intrinsics per-
forms the necessary locking internally. Resource converters are an exception. They
require the application context or process to be locked before the application can
safely call them directly, for example:

 ...

Event Management

135

 XtAppLock(app_context);
 XtCvtStringToPixel(dpy, args, num_args, fromVal, toVal, closure_ret);
 XtAppUnlock(app_context);
 ...

When the application relies upon XtConvertAndStore or a converter to provide the
storage for the results of a conversion, the application should acquire the process
lock before calling out and hold the lock until the results have been copied.

Application writers who write their own utility functions, such as one which re-
trieves the being_destroyed field from a widget instance, must lock the application
context before accessing widget internal data. For example:

#include <X11/CoreP.h>
Boolean BeingDestroyed (widget)
 Widget widget;
{
 Boolean ret;
 XtAppLock(XtWidgetToApplicationContext(widget));
 ret = widget->core.being_destroyed;
 XtAppUnlock(XtWidgetToApplicationContext(widget));
 return ret;
}

A client that wishes to atomically call two or more Intrinsics functions must lock
the application context. For example:

 ...
 XtAppLock(XtWidgetToApplicationContext(widget));
 XtUnmanageChild (widget1);
 XtManageChild (widget2);
 XtAppUnlock(XtWidgetToApplicationContext(widget));
 ...

Locking the Application Context

To ensure mutual exclusion of application context, display, or widget internal state,
use XtAppLock.

void XtAppLock(app_context);

app_context Specifies the application context to lock.

XtAppLock blocks until it is able to acquire the lock. Locking the application context
also ensures that only the thread holding the lock makes Xlib calls from within Xt.
An application that makes its own direct Xlib calls must either lock the application
context around every call or enable thread locking in Xlib.

To unlock a locked application context, use XtAppUnlock.

void XtAppUnlock(app_context);

app_context Specifies the application context that was previously
locked.

Event Management

136

Locking the Process

To ensure mutual exclusion of X Toolkit process global data, a widget writer must
use XtProcessLock.

void XtProcessLock();

XtProcessLock blocks until it is able to acquire the lock. Widget writers may use
XtProcessLock to guarantee mutually exclusive access to widget static data.

To unlock a locked process, use XtProcessUnlock.

void XtProcessUnlock();

To lock both an application context and the process at the same time, call XtAppLock
first and then XtProcessLock. To release both locks, call XtProcessUnlock first and
then XtAppUnlock. The order is important to avoid deadlock.

Event Management in a Multi-Threaded Environment
In a nonthreaded environment an application writer could reasonably assume that
it is safe to exit the application from a quit callback. This assumption may no longer
hold true in a multi-threaded environment; therefore it is desirable to provide a
mechanism to terminate an event-processing loop without necessarily terminating
its thread.

To indicate that the event loop should terminate after the current event dispatch
has completed, use XtAppSetExitFlag.

void XtAppSetExitFlag(app_context);

app_context Specifies the application context.

XtAppMainLoop tests the value of the flag and will return if the flag is True.

Application writers who implement their own main loop may test the value of the
exit flag with XtAppGetExitFlag.

Boolean XtAppGetExitFlag(app_context);

app_context Specifies the application context.

XtAppGetExitFlag will normally return False, indicating that event processing may
continue. When XtAppGetExitFlag returns True, the loop must terminate and re-
turn to the caller, which might then destroy the application context.

Application writers should be aware that, if a thread is blocked in XtAppNextEvent,
XtAppPeekEvent, or XtAppProcessEvent and another thread in the same application
context opens a new display, adds an alternate input, or a timeout, any new source(s)
will not normally be "noticed" by the blocked thread. Any new sources are "noticed"
the next time one of these functions is called.

The Intrinsics manage access to events on a last-in, first-out basis. If multiple
threads in the same application context block in XtAppNextEvent, XtAppPeekEvent,
or XtAppProcessEvent, the last thread to call one of these functions is the first
thread to return.

137

Chapter 8. Callbacks
Applications and other widgets often need to register a procedure with a widget that
gets called under certain prespecified conditions. For example, when a widget is
destroyed, every procedure on the widget's destroy_callbacks list is called to notify
clients of the widget's impending doom.

Every widget has an XtNdestroyCallbacks callback list resource. Widgets can define
additional callback lists as they see fit. For example, the Pushbutton widget has a
callback list to notify clients when the button has been activated.

Except where otherwise noted, it is the intent that all Intrinsics functions may be
called at any time, including from within callback procedures, action routines, and
event handlers.

Using Callback Procedure and Callback List
Definitions

Callback procedure pointers for use in callback lists are of type (*XtCallbackProc).

typedef void (*XtCallbackProc)(w, client_data, call_data);

w Specifies the widget owning the list in which the call-
back is registered.

client_data Specifies additional data supplied by the client when
the procedure was registered.

call_data Specifies any callback-specific data the widget wants
to pass to the client. For example, when Scrollbar exe-
cutes its XtNthumbChanged callback list, it passes the
new position of the thumb.

The client_data argument provides a way for the client registering the callback
procedure also to register client-specific data, for example, a pointer to additional
information about the widget, a reason for invoking the callback, and so on. The
client_data value may be NULL if all necessary information is in the widget. The
call_data argument is a convenience to avoid having simple cases where the client
could otherwise always call XtGetValues or a widget-specific function to retrieve
data from the widget. Widgets should generally avoid putting complex state infor-
mation in call_data. The client can use the more general data retrieval methods, if
necessary.

Whenever a client wants to pass a callback list as an argument in an XtCreateWid-
get, XtSetValues, or XtGetValues call, it should specify the address of a NULL-
terminated array of type XtCallbackList.

typedef struct {
 XtCallbackProc callback;
 XtPointer closure;
} XtCallbackRec, *XtCallbackList;

Callbacks

138

For example, the callback list for procedures A and B with client data clientDataA
and clientDataB, respectively, is

static XtCallbackRec callbacks[] = {
 {A, (XtPointer) clientDataA},
 {B, (XtPointer) clientDataB},
 {(XtCallbackProc) NULL, (XtPointer) NULL}
};

Although callback lists are passed by address in arglists and varargs lists, the In-
trinsics recognize callback lists through the widget resource list and will copy the
contents when necessary. Widget initialize and set_values procedures should not
allocate memory for the callback list contents. The Intrinsics automatically do this,
potentially using a different structure for their internal representation.

Identifying Callback Lists
Whenever a widget contains a callback list for use by clients, it also exports in its
public .h file the resource name of the callback list. Applications and client widgets
never access callback list fields directly. Instead, they always identify the desired
callback list by using the exported resource name. All the callback manipulation
functions described in this chapter except XtCallCallbackList check to see that
the requested callback list is indeed implemented by the widget.

For the Intrinsics to find and correctly handle callback lists, they must be declared
with a resource type of XtRCallback. The internal representation of a callback list
is implementation-dependent; widgets may make no assumptions about the value
stored in this resource if it is non-NULL. Except to compare the value to NULL
(which is equivalent to XtCallbackStatus XtCallbackHasNone), access to call-
back list resources must be made through other Intrinsics procedures.

Adding Callback Procedures
To add a callback procedure to a widget's callback list, use XtAddCallback.

void XtAddCallback(w, callback_name, callback, client_data);

w Specifies the widget. Must be of class Object or any
subclass thereof.

callback_name Specifies the callback list to which the procedure is
to be appended.

callback Specifies the callback procedure.

client_data Specifies additional data to be passed to the specified
procedure when it is invoked, or NULL.

A callback will be invoked as many times as it occurs in the callback list.

To add a list of callback procedures to a given widget's callback list, use XtAdd-
Callbacks.

void XtAddCallbacks(w, callback_name, callbacks);

Callbacks

139

w Specifies the widget. Must be of class Object or any
subclass thereof.

callback_name Specifies the callback list to which the procedures
are to be appended.

callbacks Specifies the null-terminated list of callback proce-
dures and corresponding client data.

Removing Callback Procedures
To delete a callback procedure from a widget's callback list, use XtRemoveCallback.

void XtRemoveCallback(w, callback_name, callback, client_data);

w Specifies the widget. Must be of class Object or any
subclass thereof.

callback_name Specifies the callback list from which the procedure
is to be deleted.

callback Specifies the callback procedure.

client_data Specifies the client data to match with the registered
callback entry.

The XtRemoveCallback function removes a callback only if both the procedure and
the client data match.

To delete a list of callback procedures from a given widget's callback list, use
XtRemoveCallbacks.

void XtRemoveCallbacks(w, callback_name, callbacks);

w Specifies the widget. Must be of class Object or any
subclass thereof.

callback_name Specifies the callback list from which the procedures
are to be deleted.

callbacks Specifies the null-terminated list of callback proce-
dures and corresponding client data.

To delete all callback procedures from a given widget's callback list and free all
storage associated with the callback list, use XtRemoveAllCallbacks.

void XtRemoveAllCallbacks(w, callback_name);

w Specifies the widget. Must be of class Object or any
subclass thereof.

callback_name Specifies the callback list to be cleared.

Executing Callback Procedures
To execute the procedures in a given widget's callback list, specifying the callback
list by resource name, use XtCallCallbacks.

Callbacks

140

void XtCallCallbacks(w, callback_name, call_data);

w Specifies the widget. Must be of class Object or any
subclass thereof.

callback_name Specifies the callback list to be executed.

call_data Specifies a callback-list-specific data value to pass to
each of the callback procedure in the list, or NULL.

XtCallCallbacks calls each of the callback procedures in the list named by
callback_name in the specified widget, passing the client data registered with the
procedure and call-data.

To execute the procedures in a callback list, specifying the callback list by address,
use XtCallCallbackList.

void XtCallCallbackList(widget, callbacks, call_data);

widget Specifies the widget instance that contains the callback
list. Must be of class Object or any subclass thereof.

callbacks Specifies the callback list to be executed.

call_data Specifies a callback-list-specific data value to pass to
each of the callback procedures in the list, or NULL.

The callbacks parameter must specify the contents of a widget or object resource
declared with representation type XtRCallback. If callbacks is NULL, XtCallCall-
backList returns immediately; otherwise it calls each of the callback procedures in
the list, passing the client data and call_data.

Checking the Status of a Callback List
To find out the status of a given widget's callback list, use XtHasCallbacks.

typedef enum {XtCallbackNoList, XtCallbackHasNone, XtCallbackHasSome}
XtCallbackStatus;

XtCallbackStatus XtHasCallbacks(w, callback_name);

w Specifies the widget. Must be of class Object or any
subclass thereof.

callback_name Specifies the callback list to be checked.

The XtHasCallbacks function first checks to see if the widget has a callback list
identified by callback_name. If the callback list does not exist, XtHasCallbacks re-
turns XtCallbackNoList. If the callback list exists but is empty, it returns XtCall-
backHasNone. If the callback list exists and has at least one callback registered, it
returns XtCallbackHasSome.

141

Chapter 9. Resource Management
A resource is a field in the widget record with a corresponding resource entry in
the resources list of the widget or any of its superclasses. This means that the field
is settable by XtCreateWidget (by naming the field in the argument list), by an
entry in a resource file (by using either the name or class), and by XtSetValues.
In addition, it is readable by XtGetValues. Not all fields in a widget record are
resources. Some are for bookkeeping use by the generic routines (like managed and
being_destroyed). Others can be for local bookkeeping, and still others are derived
from resources (many graphics contexts and pixmaps).

Widgets typically need to obtain a large set of resources at widget creation time.
Some of the resources come from the argument list supplied in the call to XtCre-
ateWidget, some from the resource database, and some from the internal defaults
specified by the widget. Resources are obtained first from the argument list, then
from the resource database for all resources not specified in the argument list, and
last, from the internal default, if needed.

Resource Lists
A resource entry specifies a field in the widget, the textual name and class of the
field that argument lists and external resource files use to refer to the field, and a
default value that the field should get if no value is specified. The declaration for
the XtResource structure is

typedef struct {
 String resource_name;
 String resource_class;
 String resource_type;
 Cardinal resource_size;
 Cardinal resource_offset;
 String default_type;
 XtPointer default_addr;
} XtResource, *XtResourceList;

When the resource list is specified as the CoreClassPart, ObjectClassPart, Rec-
tObjClassPart, or ConstraintClassPart resources field, the strings pointed to by
resource_name, resource_class, resource_type, and default_type must be perma-
nently allocated prior to or during the execution of the class initialization procedure
and must not be subsequently deallocated.

The resource_name field contains the name used by clients to access the field in the
widget. By convention, it starts with a lowercase letter and is spelled exactly like the
field name, except all underscores (_) are deleted and the next letter is replaced by
its uppercase counterpart. For example, the resource name for background_pixel
becomes backgroundPixel. Resource names beginning with the two-character se-
quence ``xt'', and resource classes beginning with the two-character sequence
``Xt'' are reserved to the Intrinsics for future standard and implementation-depen-
dent uses. Widget header files typically contain a symbolic name for each resource
name. All resource names, classes, and types used by the Intrinsics are named in
<X11/StringDefs.h>. The Intrinsics's symbolic resource names begin with ``XtN''

Resource Management

142

and are followed by the string name (for example, XtNbackgroundPixel for back-
groundPixel).

The resource_class field contains the class string used in resource specification files
to identify the field. A resource class provides two functions:

• It isolates an application from different representations that widgets can use for
a similar resource.

• It lets you specify values for several actual resources with a single name. A re-
source class should be chosen to span a group of closely related fields.

For example, a widget can have several pixel resources: background, foreground,
border, block cursor, pointer cursor, and so on. Typically, the background defaults to
white and everything else to black. The resource class for each of these resources in
the resource list should be chosen so that it takes the minimal number of entries in
the resource database to make the background ivory and everything else darkblue.

In this case, the background pixel should have a resource class of ``Background''
and all the other pixel entries a resource class of ̀ `Foreground''. Then, the resource
file needs only two lines to change all pixels to ivory or darkblue:

*Background: ivory
*Foreground: darkblue

Similarly, a widget may have several font resources (such as normal and bold), but
all fonts should have the class Font. Thus, changing all fonts simply requires only
a single line in the default resource file:

*Font: 6x13

By convention, resource classes are always spelled starting with a capital letter to
distinguish them from resource names. Their symbolic names are preceded with
``XtC'' (for example, XtCBackground).

The resource_type field gives the physical representation type of the resource and
also encodes information about the specific usage of the field. By convention, it
starts with an uppercase letter and is spelled identically to the type name of the
field. The resource type is used when resources are fetched to convert from the
resource database format (usually String) or the format of the resource default
value (almost anything, but often String) to the desired physical representation
(see the section called “Resource Conversions”). The Intrinsics define the following
resource types:

Resource Type Structure or Field Type
XtRAcceleratorTable XtAccelerators
XtRAtom Atom
XtRBitmap Pixmap, depth=1
XtRBoolean Boolean
XtRBool Bool
XtRCallback XtCallbackList
XtRCardinal Cardinal
XtRColor XColor

Resource Management

143

Resource Type Structure or Field Type
XtRColormap Colormap
XtRCommandArgArray String*
XtRCursor Cursor
XtRDimension Dimension
XtRDirectoryString String
XtRDisplay Display*
XtREnum XtEnum
XtREnvironmentArray String*
XtRFile FILE*
XtRFloat float
XtRFont Font
XtRFontSet XFontSet
XtRFontStruct XFontStruct*
XtRFunction (*)()
XtRGeometry char*, format as defined by XParseGe-

ometry

XtRGravity int
XtRInitialState int
XtRInt int
XtRLongBoolean long
XtRObject Object
XtRPixel Pixel
XtRPixmap Pixmap
XtRPointer XtPointer
XtRPosition Position
XtRRestartStyle unsigned char
XtRScreen Screen*
XtRShort short
XtRSmcConn XtPointer
XtRString String
XtRStringArray String*
XtRStringTable String*
XtRTranslationTable XtTranslations
XtRUnsignedChar unsigned char
XtRVisual Visual*
XtRWidget Widget
XtRWidgetClass WidgetClass
XtRWidgetList WidgetList
XtRWindow Window

Resource Management

144

<X11/StringDefs.h> also defines the following resource types as a convenience for
widgets, although they do not have any corresponding data type assigned: XtREd-
itMode, XtRJustify, and XtROrientation.

The resource_size field is the size of the physical representation in bytes; you should
specify it as sizeof(type) so that the compiler fills in the value. The resource_offset
field is the offset in bytes of the field within the widget. You should use the XtOff-
setOf macro to retrieve this value. The default_type field is the representation type
of the default resource value. If default_type is different from resource_type and
the default value is needed, the resource manager invokes a conversion procedure
from default_type to resource_type. Whenever possible, the default type should be
identical to the resource type in order to minimize widget creation time. However,
there are sometimes no values of the type that the program can easily specify. In
this case, it should be a value for which the converter is guaranteed to work (for
example, XtDefaultForeground for a pixel resource). The default_addr field speci-
fies the address of the default resource value. As a special case, if default_type is
XtRString, then the value in the default_addr field is the pointer to the string rather
than a pointer to the pointer. The default is used if a resource is not specified in
the argument list or in the resource database or if the conversion from the repre-
sentation type stored in the resource database fails, which can happen for various
reasons (for example, a misspelled entry in a resource file).

Two special representation types (XtRImmediate and XtRCallProc) are usable only
as default resource types. XtRImmediate indicates that the value in the default_addr
field is the actual value of the resource rather than the address of the value. The
value must be in the correct representation type for the resource, coerced to an
XtPointer. No conversion is possible, since there is no source representation type.
XtRCallProc indicates that the value in the default_addr field is a procedure point-
er. This procedure is automatically invoked with the widget, resource_offset, and a
pointer to an XrmValue in which to store the result. XtRCallProc procedure pointers
are of type (*XtResourceDefaultProc).

typedef void (*XtResourceDefaultProc)(w, offset, value);

w Specifies the widget whose resource value is to be obtained.

offset Specifies the offset of the field in the widget record.

value Specifies the resource value descriptor to return.

The (*XtResourceDefaultProc) procedure should fill in the value->addr field with
a pointer to the resource value in its correct representation type.

To get the resource list structure for a particular class, use XtGetResourceList.

void XtGetResourceList(class, resources_return, num_resources_return);

class Specifies the object class to be queried. It must be
objectClass or any subclass thereof.

resources_return Returns the resource list.

num_resources_return Returns the number of entries in the resource list.

If XtGetResourceList is called before the class is initialized, it returns the resource
list as specified in the class record. If it is called after the class has been initialized,

Resource Management

145

XtGetResourceList returns a merged resource list that includes the resources for
all superclasses. The list returned by XtGetResourceList should be freed using
XtFree when it is no longer needed.

To get the constraint resource list structure for a particular widget class, use XtGet-
ConstraintResourceList.

void XtGetConstraintResourceList(class, resources_return,
num_resources_return);

class Specifies the object class to be queried. It must be
objectClass or any subclass thereof.

resources_return Returns the constraint resource list.

num_resources_return Returns the number of entries in the constraint re-
source list.

If XtGetConstraintResourceList is called before the widget class is initialized, the
resource list as specified in the widget class Constraint part is returned. If XtGet-
ConstraintResourceList is called after the widget class has been initialized, the
merged resource list for the class and all Constraint superclasses is returned. If the
specified class is not a subclass of constraintWidgetClass, *resources_return is set
to NULL and *num_resources_return is set to zero. The list returned by XtGetCon-
straintResourceList should be freed using XtFree when it is no longer needed.

The routines XtSetValues and XtGetValues also use the resource list to set and
get widget state; see the section called “Obtaining Widget State” and the section
called “Setting Widget State”.

Here is an abbreviated version of a possible resource list for a Label widget:

/* Resources specific to Label */
static XtResource resources[] = {
{XtNforeground, XtCForeground, XtRPixel, sizeof(Pixel),
 XtOffsetOf(LabelRec, label.foreground), XtRString, XtDefaultForeground},
{XtNfont, XtCFont, XtRFontStruct, sizeof(XFontStruct*),
 XtOffsetOf(LabelRec, label.font), XtRString, XtDefaultFont},
{XtNlabel, XtCLabel, XtRString, sizeof(String),
 XtOffsetOf(LabelRec, label.label), XtRString, NULL},
 .
 .
 .
}

The complete resource name for a field of a widget instance is the concatenation of
the application shell name (from XtAppCreateShell), the instance names of all the
widget's parents up to the top of the widget tree, the instance name of the widget
itself, and the resource name of the specified field of the widget. Similarly, the full
resource class of a field of a widget instance is the concatenation of the application
class (from XtAppCreateShell), the widget class names of all the widget's parents
up to the top of the widget tree, the widget class name of the widget itself, and the
resource class of the specified field of the widget.

Resource Management

146

Byte Offset Calculations
To determine the byte offset of a field within a structure type, use XtOffsetOf.

Cardinal XtOffsetOf(structure_type, field_name);

structure_type Specifies a type that is declared as a structure.

field_name Specifies the name of a member within the structure.

The XtOffsetOf macro expands to a constant expression that gives the offset in
bytes to the specified structure member from the beginning of the structure. It is
normally used to statically initialize resource lists and is more portable than XtOff-
set, which serves the same function.

To determine the byte offset of a field within a structure pointer type, use XtOffset.

Cardinal XtOffset(pointer_type, field_name);

pointer_type Specifies a type that is declared as a pointer to a
structure.

field_name Specifies the name of a member within the structure.

The XtOffset macro expands to a constant expression that gives the offset in bytes
to the specified structure member from the beginning of the structure. It may be
used to statically initialize resource lists. XtOffset is less portable than XtOffsetOf.

Superclass-to-Subclass Chaining of Resource
Lists

The XtCreateWidget function gets resources as a superclass-to-subclass chained
operation. That is, the resources specified in the objectClass resource list are
fetched, then those in rectObjClass, and so on down to the resources specified
for this widget's class. Within a class, resources are fetched in the order they are
declared.

In general, if a widget resource field is declared in a superclass, that field is included
in the superclass's resource list and need not be included in the subclass's resource
list. For example, the Core class contains a resource entry for background_pixel.
Consequently, the implementation of Label need not also have a resource entry for
background_pixel. However, a subclass, by specifying a resource entry for that field
in its own resource list, can override the resource entry for any field declared in
a superclass. This is most often done to override the defaults provided in the su-
perclass with new ones. At class initialization time, resource lists for that class are
scanned from the superclass down to the class to look for resources with the same
offset. A matching resource in a subclass will be reordered to override the super-
class entry. If reordering is necessary, a copy of the superclass resource list is made
to avoid affecting other subclasses of the superclass.

Also at class initialization time, the Intrinsics produce an internal representation of
the resource list to optimize access time when creating widgets. In order to save
memory, the Intrinsics may overwrite the storage allocated for the resource list in

Resource Management

147

the class record; therefore, widgets must allocate resource lists in writable storage
and must not access the list contents directly after the class_initialize procedure
has returned.

Subresources
A widget does not do anything to retrieve its own resources; instead, XtCreateWid-
get does this automatically before calling the class initialize procedure.

Some widgets have subparts that are not widgets but for which the widget would
like to fetch resources. Such widgets call XtGetSubresources to accomplish this.

void XtGetSubresources(w, base, name, class, resources, num_resources,
args, num_args);

w Specifies the object used to qualify the subpart re-
source name and class. Must be of class Object or
any subclass thereof.

base Specifies the base address of the subpart data struc-
ture into which the resources will be written.

name Specifies the name of the subpart.

class Specifies the class of the subpart.

resources Specifies the resource list for the subpart.

num_resources Specifies the number of entries in the resource list.

args Specifies the argument list to override any other re-
source specifications.

num_args Specifies the number of entries in the argument list.

The XtGetSubresources function constructs a name and class list from the appli-
cation name and class, the names and classes of all the object's ancestors, and the
object itself. Then it appends to this list the name and class pair passed in. The
resources are fetched from the argument list, the resource database, or the default
values in the resource list. Then they are copied into the subpart record. If args is
NULL, num_args must be zero. However, if num_args is zero, the argument list is
not referenced.

XtGetSubresources may overwrite the specified resource list with an equivalent
representation in an internal format, which optimizes access time if the list is used
repeatedly. The resource list must be allocated in writable storage, and the caller
must not modify the list contents after the call if the same list is to be used again.
Resources fetched by XtGetSubresources are reference-counted as if they were
referenced by the specified object. Subresources might therefore be freed from the
conversion cache and destroyed when the object is destroyed, but not before then.

To fetch resources for widget subparts using varargs lists, use XtVaGetSubre-
sources.

void XtVaGetSubresources(w, base, name, class, resources,
num_resources);

Resource Management

148

w Specifies the object used to qualify the subpart re-
source name and class. Must be of class Object or
any subclass thereof.

base Specifies the base address of the subpart data struc-
ture into which the resources will be written.

name Specifies the name of the subpart.

class Specifies the class of the subpart.

resources Specifies the resource list for the subpart.

num_resources Specifies the number of entries in the resource list.

... Specifies the variable argument list to override any
other resource specifications.

XtVaGetSubresources is identical in function to XtGetSubresources with the args
and num_args parameters replaced by a varargs list, as described in Section 2.5.1.

Obtaining Application Resources
To retrieve resources that are not specific to a widget but apply to the overall ap-
plication, use XtGetApplicationResources.

void XtGetApplicationResources(w, base, resources, num_resources, args,
num_args);

w Specifies the object that identifies the resource data-
base to search (the database is that associated with
the display for this object). Must be of class Object
or any subclass thereof.

base Specifies the base address into which the resource
values will be written.

resources Specifies the resource list.

num_resources Specifies the number of entries in the resource list.

args Specifies the argument list to override any other re-
source specifications.

num_args Specifies the number of entries in the argument list.

The XtGetApplicationResources function first uses the passed object, which is
usually an application shell widget, to construct a resource name and class list. The
full name and class of the specified object (that is, including its ancestors, if any) is
logically added to the front of each resource name and class. Then it retrieves the
resources from the argument list, the resource database, or the resource list default
values. After adding base to each address, XtGetApplicationResources copies the
resources into the addresses obtained by adding base to each offset in the resource
list. If args is NULL, num_args must be zero. However, if num_args is zero, the
argument list is not referenced. The portable way to specify application resources
is to declare them as members of a structure and pass the address of the structure
as the base argument.

Resource Management

149

XtGetApplicationResources may overwrite the specified resource list with an
equivalent representation in an internal format, which optimizes access time if the
list is used repeatedly. The resource list must be allocated in writable storage, and
the caller must not modify the list contents after the call if the same list is to be
used again. Any per-display resources fetched by XtGetApplicationResources will
not be freed from the resource cache until the display is closed.

To retrieve resources for the overall application using varargs lists, use XtVaGetAp-
plicationResources.

void XtVaGetApplicationResources(w, base, resources, num_resources);

w Specifies the object that identifies the resource data-
base to search (the database is that associated with
the display for this object). Must be of class Object
or any subclass thereof.

base Specifies the base address into which the resource
values will be written.

resources Specifies the resource list for the subpart.

num_resources Specifies the number of entries in the resource list.

... Specifies the variable argument list to override any
other resource specifications.

XtVaGetApplicationResources is identical in function to XtGetApplicationRe-
sources with the args and num_args parameters replaced by a varargs list, as de-
scribed in Section 2.5.1.

Resource Conversions
The Intrinsics provide a mechanism for registering representation converters that
are automatically invoked by the resource-fetching routines. The Intrinsics addi-
tionally provide and register several commonly used converters. This resource con-
version mechanism serves several purposes:

• It permits user and application resource files to contain textual representations
of nontextual values.

• It allows textual or other representations of default resource values that are de-
pendent on the display, screen, or colormap, and thus must be computed at run-
time.

• It caches conversion source and result data. Conversions that require much com-
putation or space (for example, string-to-translation-table) or that require round-
trips to the server (for example, string-to-font or string-to-color) are performed
only once.

Predefined Resource Converters
The Intrinsics define all the representations used in the Object, RectObj, Core, Com-
posite, Constraint, and Shell widget classes. The Intrinsics register the following
resource converters that accept input values of representation type XtRString.

Resource Management

150

Target Representa-
tion

Converter Name Additional Args

XtRAcceleratorTable XtCvtStringToAcceleratorTable

XtRAtom XtCvtStringToAtom Display*
XtRBoolean XtCvtStringToBoolean

XtRBool XtCvtStringToBool

XtRCommandArgArray XtCvtStringToCommandArgArray

XtRCursor XtCvtStringToCursor Display*
XtRDimension XtCvtStringToDimension

XtRDirectoryString XtCvtStringToDirectoryString

XtRDisplay XtCvtStringToDisplay

XtRFile XtCvtStringToFile

XtRFloat XtCvtStringToFloat

XtRFont XtCvtStringToFont Display*
XtRFontSet XtCvtStringToFontSet Display*, String lo-

cale
XtRFontStruct XtCvtStringToFontStruct Display*
XtRGravity XtCvtStringToGravity

XtRInitialState XtCvtStringToInitialState

XtRInt XtCvtStringToInt

XtRPixel XtCvtStringToPixel colorConvertArgs

XtRPosition XtCvtStringToPosition

XtRRestartStyle XtCvtStringToRestartStyle

XtRShort XtCvtStringToShort

XtRTranslationTable XtCvtStringToTranslationTable

XtRUnsignedChar XtCvtStringToUnsignedChar

XtRVisual XtCvtStringToVisual Screen*, Cardinal
depth

The String-to-Pixel conversion has two predefined constants that are guaranteed
to work and contrast with each other: XtDefaultForeground and XtDefaultBack-
ground. They evaluate to the black and white pixel values of the widget's screen,
respectively. If the application resource reverseVideo is True, they evaluate to the
white and black pixel values of the widget's screen, respectively. Similarly, the
String-to-Font and String-to-FontStruct converters recognize the constant XtDe-
faultFont and evaluate this in the following manner:

• Query the resource database for the resource whose full name is ̀ `xtDefaultFont'',
class ``XtDefaultFont'' (that is, no widget name/class prefixes), and use a type
XtRString value returned as the font name or a type XtRFont or XtRFontStruct
value directly as the resource value.

• If the resource database does not contain a value for xtDefaultFont, class XtDe-
faultFont, or if the returned font name cannot be successfully opened, an imple-
mentation-defined font in ISO8859-1 character set encoding is opened. (One pos-
sible algorithm is to perform an XListFonts using a wildcard font name and use
the first font in the list. This wildcard font name should be as broad as possible

Resource Management

151

to maximize the probability of locating a useable font; for example, "-*-*-*-R-*-*-
-120--*-*-*-ISO8859-1".)

• If no suitable ISO8859-1 font can be found, issue a warning message and return
False.

The String-to-FontSet converter recognizes the constant XtDefaultFontSet and
evaluate this in the following manner:

• Query the resource database for the resource whose full name is ``xtDefault-
FontSet'', class ``XtDefaultFontSet'' (that is, no widget name/class prefixes), and
use a type XtRString value returned as the base font name list or a type XtR-
FontSet value directly as the resource value.

• If the resource database does not contain a value for xtDefaultFontSet, class XtDe-
faultFontSet, or if a font set cannot be successfully created from this resource,
an implementation-defined font set is created. (One possible algorithm is to per-
form an XCreateFontSet using a wildcard base font name. This wildcard base
font name should be as broad as possible to maximize the probability of locating
a useable font; for example, "-*-*-*-R-*-*-*-120-*-*-*-*".)

• If no suitable font set can be created, issue a warning message and return False.

If a font set is created but missing_charset_list is not empty, a warning is issued
and the partial font set is returned. The Intrinsics register the String-to-FontSet
converter with a conversion argument list that extracts the current process locale at
the time the converter is invoked. This ensures that the converter is invoked again
if the same conversion is required in a different locale.

The String-to-Gravity conversion accepts string values that are the names of win-
dow and bit gravities and their numerical equivalents, as defined in Xlib — C Lan-
guage X Interface.: ForgetGravity, UnmapGravity, NorthWestGravity, NorthGrav-
ity, NorthEastGravity, WestGravity, CenterGravity, EastGravity, SouthWest-
Gravity, SouthGravity, SouthEastGravity, and StaticGravity. Alphabetic case
is not significant in the conversion.

The String-to-CommandArgArray conversion parses a String into an array of
strings. White space characters separate elements of the command line. The con-
verter recognizes the backslash character ``\\'' as an escape character to allow the
following white space character to be part of the array element.

The String-to-DirectoryString conversion recognizes the string ``XtCurrentDirec-
tory'' and returns the result of a call to the operating system to get the current
directory.

The String-to-RestartStyle conversion accepts the values RestartIfRunning,
RestartAnyway, RestartImmediately, and RestartNever as defined by the X Ses-
sion Management Protocol.

The String-to-InitialState conversion accepts the values NormalState or IconicS-
tate as defined by the Inter-Client Communication Conventions Manual..

The String-to-Visual conversion calls XMatchVisualInfo using the screen and depth
fields from the core part and returns the first matching Visual on the list. The widget
resource list must be certain to specify any resource of type XtRVisual after the
depth resource. The allowed string values are the visual class names defined in X
Window System Protocol, Section 8; StaticGray, StaticColor, TrueColor, GrayS-
cale, PseudoColor, and DirectColor.

Resource Management

152

The Intrinsics register the following resource converter that accepts an input value
of representation type XtRColor.

Target Representation Converter Name Additional Args
XtRPixel XtCvtColorToPixel

The Intrinsics register the following resource converters that accept input values
of representation type XtRInt.

Target Representation Converter Name Additional Args
XtRBoolean XtCvtIntToBoolean

XtRBool XtCvtIntToBool

XtRColor XtCvtIntToColor colorConvertArgs

XtRDimension XtCvtIntToDimension

XtRFloat XtCvtIntToFloat

XtRFont XtCvtIntToFont

XtRPixel XtCvtIntToPixel

XtRPixmap XtCvtIntToPixmap

XtRPosition XtCvtIntToPosition

XtRShort XtCvtIntToShort

XtRUnsignedChar XtCvtIntToUnsignedChar

The Intrinsics register the following resource converter that accepts an input value
of representation type XtRPixel.

Target Representation Converter Name Additional Args
XtRColor XtCvtPixelToColor

New Resource Converters
Type converters use pointers to XrmValue structures (defined in <X11/
Xresource.h>; see Section 15.4 in Xlib — C Language X Interface.) for input and
output values.

typedef struct {
 unsigned int size;
 XPointer addr;
} XrmValue, *XrmValuePtr;

The addr field specifies the address of the data, and the size field gives the total
number of significant bytes in the data. For values of type String, addr is the ad-
dress of the first character and size includes the NULL-terminating byte.

A resource converter procedure pointer is of type (*XtTypeConverter).

typedef Boolean (*XtTypeConverter)(display, args, num_args, from, to,
converter_data);

display Specifies the display connection with which this con-
version is associated.

Resource Management

153

args Specifies a list of additional XrmValue arguments
to the converter if additional context is needed to
perform the conversion, or NULL. For example, the
String-to-Font converter needs the widget's display,
and the String-to-Pixel converter needs the widget's
screen and colormap.

num_args Specifies the number of entries in args.

from Specifies the value to convert.

to Specifies a descriptor for a location into which to
store the converted value.

converter_data Specifies a location into which the converter may
store converter-specific data associated with this
conversion.

The display argument is normally used only when generating error messages, to
identify the application context (with the function XtDisplayToApplicationCon-
text).

The to argument specifies the size and location into which the converter should
store the converted value. If the addr field is NULL, the converter should allocate
appropriate storage and store the size and location into the to descriptor. If the type
converter allocates the storage, it remains under the ownership of the converter
and must not be modified by the caller. The type converter is permitted to use static
storage for this purpose, and therefore the caller must immediately copy the data
upon return from the converter. If the addr field is not NULL, the converter must
check the size field to ensure that sufficient space has been allocated before storing
the converted value. If insufficient space is specified, the converter should update
the size field with the number of bytes required and return False without modifying
the data at the specified location. If sufficient space was allocated by the caller, the
converter should update the size field with the number of bytes actually occupied
by the converted value. For converted values of type XtRString, the size should
include the NULL-terminating byte, if any. The converter may store any value in the
location specified in converter_data; this value will be passed to the destructor, if
any, when the resource is freed by the Intrinsics.

The converter must return True if the conversion was successful and False other-
wise. If the conversion cannot be performed because of an improper source value,
a warning message should also be issued with XtAppWarningMsg.

Most type converters just take the data described by the specified from argument
and return data by writing into the location specified in the to argument. A few need
other information, which is available in args. A type converter can invoke another
type converter, which allows differing sources that may convert into a common in-
termediate result to make maximum use of the type converter cache.

Note that if an address is written into to->addr, it cannot be that of a local variable
of the converter because the data will not be valid after the converter returns. Static
variables may be used, as in the following example. If the converter modifies the
resource database, the changes affect any in-progress widget creation, XtGetAp-
plicationResources, or XtGetSubresources in an implementation-defined man-
ner; however, insertion of new entries or changes to existing entries is allowed and
will not directly cause an error.

Resource Management

154

The following is an example of a converter that takes a string and converts it to
a Pixel. Note that the display parameter is used only to generate error messages;
the Screen conversion argument is still required to inform the Intrinsics that the
converted value is a function of the particular display (and colormap).

#define done(type, value) \\
 { \\
 if (toVal->addr != NULL) { \\
 if (toVal->size < sizeof(type)) { \\
 toVal->size = sizeof(type); \\
 return False; \\
 } \\
 (type)(toVal->addr) = (value); \\
 } \\
 else { \\
 static type static_val; \\
 static_val = (value); \\
 toVal->addr = (XPointer)&static_val; \\
 } \\
 toVal->size = sizeof(type); \\
 return True; \\
 }
static Boolean CvtStringToPixel(dpy, args, num_args, fromVal, toVal, converter_data)
 Display *dpy;
 XrmValue *args;
 Cardinal *num_args;
 XrmValue *fromVal;
 XrmValue *toVal;
 XtPointer *converter_data;
{
 static XColor screenColor;
 XColor exactColor;
 Screen *screen;
 Colormap colormap;
 Status status;
 if (*num_args != 2)
 XtAppWarningMsg(XtDisplayToApplicationContext(dpy),
 "wrongParameters", "cvtStringToPixel", "XtToolkitError",
 "String to pixel conversion needs screen and colormap arguments",
 (String *)NULL, (Cardinal *)NULL);
 screen = *((Screen**) args[0].addr);
 colormap = *((Colormap *) args[1].addr);
 if (CompareISOLatin1(str, XtDefaultBackground) == 0) {
 *closure_ret = False;
 done(Pixel, WhitePixelOfScreen(screen));
 }
 if (CompareISOLatin1(str, XtDefaultForeground) == 0) {
 *closure_ret = False;
 done(Pixel, BlackPixelOfScreen(screen));
 }
 status = XAllocNamedColor(DisplayOfScreen(screen), colormap, (char*)fromVal->addr,
 &screenColor, &exactColor);
 if (status == 0) {

Resource Management

155

 String params[1];
 Cardinal num_params = 1;
 params[0] = (String)fromVal->addr;
 XtAppWarningMsg(XtDisplayToApplicationContext(dpy),
 "noColormap", "cvtStringToPixel", "XtToolkitError",
 "Cannot allocate colormap entry for \\"%s\\"", params,\
 &num_params);
 *converter_data = (char *) False;
 return False;
 } else {
 *converter_data = (char *) True;
 done(Pixel, &screenColor.pixel);
 }
}

All type converters should define some set of conversion values for which they are
guaranteed to succeed so these can be used in the resource defaults. This issue aris-
es only with conversions, such as fonts and colors, where there is no string repre-
sentation that all server implementations will necessarily recognize. For resources
like these, the converter should define a symbolic constant in the same manner as
XtDefaultForeground, XtDefaultBackground, and XtDefaultFont.

To allow the Intrinsics to deallocate resources produced by type converters, a re-
source destructor procedure may also be provided.

A resource destructor procedure pointer is of type (*XtDestructor).

typedef void (*XtDestructor)(app, to, converter_data, args, num_args);

app Specifies an application context in which the re-
source is being freed.

to Specifies a descriptor for the resource produced by
the type converter.

converter_data Specifies the converter-specific data returned by the
type converter.

args Specifies the additional converter arguments as
passed to the type converter when the conversion
was performed.

num_args Specifies the number of entries in args.

The destructor procedure is responsible for freeing the resource specified by the
to argument, including any auxiliary storage associated with that resource, but not
the memory directly addressed by the size and location in the to argument or the
memory specified by args.

Issuing Conversion Warnings
The XtDisplayStringConversionWarning procedure is a convenience routine for
resource type converters that convert from string values.

void XtDisplayStringConversionWarning(display, from_value);

Resource Management

156

display Specifies the display connection with which the conver-
sion is associated.

from_value Specifies the string that could not be converted.

to_type Specifies the target representation type requested.

The XtDisplayStringConversionWarning procedure issues a warning message us-
ing XtAppWarningMsg with name ``conversionError'', type ``string'', class ``Xt-
ToolkitError'', and the default message ``Cannot convert "from_value" to type
to_type''.

To issue other types of warning or error messages, the type converter should use
XtAppWarningMsg or XtAppErrorMsg.

To retrieve the application context associated with a given display connection, use
XtDisplayToApplicationContext.

XtAppContext XtDisplayToApplicationContext(display);

display Specifies an open and initialized display connection.

The XtDisplayToApplicationContext function returns the application context in
which the specified display was initialized. If the display is not known to the Intrin-
sics, an error message is issued.

Registering a New Resource Converter
When registering a resource converter, the client must specify the manner in which
the conversion cache is to be used when there are multiple calls to the converter.
Conversion cache control is specified via an XtCacheType argument.

typedef int XtCacheType;

An XtCacheType field may contain one of the following values:

XtCacheNone

• Specifies that the results of a previous conversion may not be reused to satisfy
any other resource requests; the specified converter will be called each time the
converted value is required.

XtCacheAll

• Specifies that the results of a previous conversion should be reused for any re-
source request that depends upon the same source value and conversion argu-
ments.

XtCacheByDisplay

• Specifies that the results of a previous conversion should be used as for
XtCacheAll but the destructor will be called, if specified, if XtCloseDisplay is
called for the display connection associated with the converted value, and the
value will be removed from the conversion cache.

The qualifier XtCacheRefCount may be ORed with any of the above values. If
XtCacheRefCount is specified, calls to XtCreateWidget, XtCreateManagedWidget,

Resource Management

157

XtGetApplicationResources, and XtGetSubresources that use the converted val-
ue will be counted. When a widget using the converted value is destroyed, the count
is decremented, and, if the count reaches zero, the destructor procedure will be
called and the converted value will be removed from the conversion cache.

To register a type converter for all application contexts in a process, use XtSet-
TypeConverter, and to register a type converter in a single application context, use
XtAppSetTypeConverter.

void XtSetTypeConverter(from_type, to_type, converter, convert_args,
num_args, cache_type, destructor);

from_type Specifies the source type.

to_type Specifies the destination type.

converter Specifies the resource type converter procedure.

convert_args Specifies additional conversion arguments, or NULL.

num_args Specifies the number of entries in convert_args.

cache_type Specifies whether or not resources produced by this
converter are sharable or display-specific and when
they should be freed.

destructor Specifies a destroy procedure for resources pro-
duced by this conversion, or NULL if no additional
action is required to deallocate resources produced
by the converter.

XtAppSetTypeConverter(app_context, from_type, to_type, converter,
convert_args, num_args, cache_type, destructor);

app_context Specifies the application context.

from_type Specifies the source type.

to_type Specifies the destination type.

converter Specifies the resource type converter procedure.

convert_args Specifies additional conversion arguments, or NULL.

num_args Specifies the number of entries in convert_args.

cache_type Specifies whether or not resources produced by this
converter are sharable or display-specific and when
they should be freed.

destructor Specifies a destroy procedure for resources pro-
duced by this conversion, or NULL if no additional
action is required to deallocate resources produced
by the converter.

XtSetTypeConverter registers the specified type converter and destructor in all
application contexts created by the calling process, including any future application

Resource Management

158

contexts that may be created. XtAppSetTypeConverter registers the specified type
converter in the single application context specified. If the same from_type and
to_type are specified in multiple calls to either function, the most recent overrides
the previous ones.

For the few type converters that need additional arguments, the Intrinsics con-
version mechanism provides a method of specifying how these arguments should
be computed. The enumerated type XtAddressMode and the structure XtCon-
vertArgRec specify how each argument is derived. These are defined in <X11/
Intrinsic.h>.

typedef enum {
 /* address mode parameter representation */
 XtAddress, /* address */
 XtBaseOffset, /* offset */
 XtImmediate, /* constant */
 XtResourceString, /* resource name string */
 XtResourceQuark, /* resource name quark */
 XtWidgetBaseOffset, /* offset */
 XtProcedureArg /* procedure to call */
} XtAddressMode;

typedef struct {
 XtAddressMode address_mode;
 XtPointer address_id;
 Cardinal size;
} XtConvertArgRec, *XtConvertArgList;

The size field specifies the length of the data in bytes. The address_mode field spec-
ifies how the address_id field should be interpreted. XtAddress causes address_id
to be interpreted as the address of the data. XtBaseOffset causes address_id to be
interpreted as the offset from the widget base. XtImmediate causes address_id to
be interpreted as a constant. XtResourceString causes address_id to be interpret-
ed as the name of a resource that is to be converted into an offset from the widget
base. XtResourceQuark causes address_id to be interpreted as the result of an Xr-
mStringToQuark conversion on the name of a resource, which is to be converted
into an offset from the widget base. XtWidgetBaseOffset is similar to XtBaseOff-
set except that it searches for the closest windowed ancestor if the object is not of
a subclass of Core (see Chapter 12, Nonwidget Objects). XtProcedureArg specifies
that address_id is a pointer to a procedure to be invoked to return the conversion
argument. If XtProcedureArg is specified, address_id must contain the address of
a function of type (*XtConvertArgProc).

typedef void (*XtConvertArgProc)(app, to, converter_data, args,
num_args);

app Specifies an application context in which the re-
source is being freed.

to Specifies a descriptor for the resource produced by
the type converter.

converter_data Specifies the converter-specific data returned by the
type converter.

Resource Management

159

args Specifies the additional converter arguments as
passed to the type converter when the conversion
was performed.

num_args Specifies the number of entries in args.

The destructor procedure is responsible for freeing the resource specified by the
to argument, including any auxiliary storage associated with that resource, but not
the memory directly addressed by the size and location in the to argument or the
memory specified by args.

Resource Converter Invocation
All resource-fetching routines (for example, XtGetSubresources, XtGetApplica-
tionResources, and so on) call resource converters if the resource database or
varargs list specifies a value that has a different representation from the desired
representation or if the widget's default resource value representation is different
from the desired representation.

To invoke explicit resource conversions, use XtConvertAndStore or XtCallCon-
verter.

typedef XtPointer XtCacheRef;

Boolean XtCallConverter(display, converter, conversion_args, num_args,
from, to_in_out, cache_ref_return);

display Specifies the display with which the conversion is to
be associated.

converter Specifies the conversion procedure to be called.

conversion_args Specifies the additional conversion arguments need-
ed to perform the conversion, or NULL.

num_args Specifies the number of entries in conversion_args.

from Specifies a descriptor for the source value.

to_in_out Returns the converted value.

cache_ref_return Returns a conversion cache id.

The XtCallConverter function looks up the specified type converter in the appli-
cation context associated with the display and, if the converter was not registered
or was registered with cache type XtCacheAll or XtCacheByDisplay, looks in the
conversion cache to see if this conversion procedure has been called with the spec-
ified conversion arguments. If so, it checks the success status of the prior call, and
if the conversion failed, XtCallConverter returns False immediately; otherwise it
checks the size specified in the to argument, and, if it is greater than or equal to
the size stored in the cache, copies the information stored in the cache into the lo-
cation specified by to->addr, stores the cache size into to->size, and returns True.
If the size specified in the to argument is smaller than the size stored in the cache,
XtCallConverter copies the cache size into to->size and returns False. If the con-
verter was registered with cache type XtCacheNone or no value was found in the

Resource Management

160

conversion cache, XtCallConverter calls the converter, and if it was not registered
with cache type XtCacheNone, enters the result in the cache. XtCallConverter then
returns what the converter returned.

The cache_ref_return field specifies storage allocated by the caller in which an
opaque value will be stored. If the type converter has been registered with the
XtCacheRefCount modifier and if the value returned in cache_ref_return is non-
NULL, then the caller should store the cache_ref_return value in order to decre-
ment the reference count when the converted value is no longer required. The
cache_ref_return argument should be NULL if the caller is unwilling or unable to
store the value.

To explicitly decrement the reference counts for resources obtained from XtCall-
Converter, use XtAppReleaseCacheRefs.

void XtAppReleaseCacheRefs(app_context, refs);

app_context Specifies the application context.

refs Specifies the list of cache references to be released.

XtAppReleaseCacheRefs decrements the reference count for the conversion entries
identified by the refs argument. This argument is a pointer to a NULL-terminated
list of XtCacheRef values. If any reference count reaches zero, the destructor, if any,
will be called and the resource removed from the conversion cache.

As a convenience to clients needing to explicitly decrement reference counts via
a callback function, the Intrinsics define two callback procedures, XtCallbackRe-
leaseCacheRef and XtCallbackReleaseCacheRefList.

void XtCallbackReleaseCacheRef(object, client_data, call_data);

object Specifies the object with which the resource is asso-
ciated.

client_data Specifies the conversion cache entry to be released.

call_data Is ignored.

This callback procedure may be added to a callback list to release a previously re-
turned XtCacheRef value. When adding the callback, the callback client_data argu-
ment must be specified as the value of the XtCacheRef data cast to type XtPointer.

void XtCallbackReleaseCacheRefList(object, client_data, call_data);

object Specifies the object with which the resources are as-
sociated.

client_data Specifies the conversion cache entries to be released.

call_data Is ignored.

This callback procedure may be added to a callback list to release a list of previously
returned XtCacheRef values. When adding the callback, the callback client_data
argument must be specified as a pointer to a NULL-terminated list of XtCacheRef
values.

Resource Management

161

To lookup and call a resource converter, copy the resulting value, and free a cached
resource when a widget is destroyed, use XtConvertAndStore.

Boolean XtConvertAndStore(object, from_type, from, to_type, to_in_out);

object Specifies the object to use for additional arguments, if
any are needed, and the destroy callback list. Must be of
class Object or any subclass thereof.

from_type Specifies the source type.

from Specifies the value to be converted.

to_type Specifies the destination type.

to_in_out Specifies a descriptor for storage into which the convert-
ed value will be returned.

The XtConvertAndStore function looks up the type converter registered to con-
vert from_type to to_type, computes any additional arguments needed, and then
calls XtCallConverter (or XtDirectConvert if an old-style converter was regis-
tered with XtAddConverter or XtAppAddConverter; see Appendix C) with the from
and to_in_out arguments. The to_in_out argument specifies the size and location
into which the converted value will be stored and is passed directly to the converter.
If the location is specified as NULL, it will be replaced with a pointer to private
storage and the size will be returned in the descriptor. The caller is expected to
copy this private storage immediately and must not modify it in any way. If a non-
NULL location is specified, the caller must allocate sufficient storage to hold the
converted value and must also specify the size of that storage in the descriptor. The
size field will be modified on return to indicate the actual size of the converted data.
If the conversion succeeds, XtConvertAndStore returns True; otherwise, it returns
False.

XtConvertAndStore adds XtCallbackReleaseCacheRef to the destroyCallback list
of the specified object if the conversion returns an XtCacheRef value. The resulting
resource should not be referenced after the object has been destroyed.

XtCreateWidget performs processing equivalent to XtConvertAndStore when ini-
tializing the object instance. Because there is extra memory overhead required to
implement reference counting, clients may distinguish those objects that are never
destroyed before the application exits from those that may be destroyed and whose
resources should be deallocated.

To specify whether reference counting is to be enabled for the resources of a partic-
ular object when the object is created, the client can specify a value for the Boolean
resource XtNinitialResourcesPersistent, class XtCInitialResourcesPersistent.

When XtCreateWidget is called, if this resource is not specified as False in either
the arglist or the resource database, then the resources referenced by this object
are not reference-counted, regardless of how the type converter may have been
registered. The effective default value is True; thus clients that expect to destroy
one or more objects and want resources deallocated must explicitly specify False
for XtNinitialResourcesPersistent.

The resources are still freed and destructors called when XtCloseDisplay is called
if the conversion was registered as XtCacheByDisplay.

Resource Management

162

Reading and Writing Widget State
Any resource field in a widget can be read or written by a client. On a write opera-
tion, the widget decides what changes it will actually allow and updates all derived
fields appropriately.

Obtaining Widget State
To retrieve the current values of resources associated with a widget instance, use
XtGetValues.

void XtGetValues(object, args, num_args);

object Specifies the object whose resource values are to be re-
turned. Must be of class Object or any subclass thereof.

args Specifies the argument list of name/address pairs that
contain the resource names and the addresses into which
the resource values are to be stored. The resource names
are widget-dependent.

num_args Specifies the number of entries in the argument list.

The XtGetValues function starts with the resources specified for the Object class
and proceeds down the subclass chain to the class of the object. The value field of a
passed argument list must contain the address into which to copy the contents of the
corresponding object instance field. If the field is a pointer type, the lifetime of the
pointed-to data is defined by the object class. For the Intrinsics-defined resources,
the following lifetimes apply:

• Not valid following any operation that modifies the resource:
• • XtNchildren resource of composite widgets.

• All resources of representation type XtRCallback.
• Remain valid at least until the widget is destroyed:
• • XtNaccelerators, XtNtranslations.
• Remain valid until the Display is closed:
• • XtNscreen.

It is the caller's responsibility to allocate and deallocate storage for the copied data
according to the size of the resource representation type used within the object.

If the class of the object's parent is a subclass of constraintWidgetClass, XtGet-
Values then fetches the values for any constraint resources requested. It starts with
the constraint resources specified for constraintWidgetClass and proceeds down
the subclass chain to the parent's constraint resources. If the argument list contains
a resource name that is not found in any of the resource lists searched, the value at
the corresponding address is not modified. If any get_values_hook procedures in the
object's class or superclass records are non-NULL, they are called in superclass-to-
subclass order after all the resource values have been fetched by XtGetValues.
Finally, if the object's parent is a subclass of constraintWidgetClass, and if any
of the parent's class or superclass records have declared ConstraintClassExten-
sion records in the Constraint class part extension field with a record type of NUL-
LQUARK, and if the get_values_hook field in the extension record is non-NULL,

Resource Management

163

XtGetValues calls the get_values_hook procedures in superclass-to-subclass order.
This permits a Constraint parent to provide nonresource data via XtGetValues.

Get_values_hook procedures may modify the data stored at the location addressed
by the value field, including (but not limited to) making a copy of data whose re-
source representation is a pointer. None of the Intrinsics-defined object classes copy
data in this manner. Any operation that modifies the queried object resource may
invalidate the pointed-to data.

To retrieve the current values of resources associated with a widget instance using
varargs lists, use XtVaGetValues.

void XtVaGetValues(object, ...);

object Specifies the object whose resource values are to be re-
turned. Must be of class Object or any subclass thereof.

... Specifies the variable argument list for the resources to be
returned.

XtVaGetValues is identical in function to XtGetValues with the args and num_args
parameters replaced by a varargs list, as described in Section 2.5.1. All value en-
tries in the list must specify pointers to storage allocated by the caller to which the
resource value will be copied. It is the caller's responsibility to ensure that sufficient
storage is allocated. If XtVaTypedArg is specified, the type argument specifies the
representation desired by the caller and the size argument specifies the number
of bytes allocated to store the result of the conversion. If the size is insufficient, a
warning message is issued and the list entry is skipped.

Widget Subpart Resource Data: The get_values_hook Procedure

Widgets that have subparts can return resource values from them through XtGet-
Values by supplying a get_values_hook procedure. The get_values_hook procedure
pointer is of type (*XtArgsProc).

typedef void (*XtArgsProc)(w, args, num_args);

w Specifies the widget whose subpart resource values are
to be retrieved.

args Specifies the argument list that was passed to XtGetVal-
ues or the transformed varargs list passed to XtVaGet-
Values.

num_args Specifies the number of entries in the argument list.

The widget with subpart resources should call XtGetSubvalues in the
get_values_hook procedure and pass in its subresource list and the args and
num_args parameters.

Widget Subpart State

To retrieve the current values of subpart resource data associated with a widget
instance, use XtGetSubvalues. For a discussion of subpart resources, see the sec-
tion called “Subresources”.

void XtGetSubvalues(base, resources, num_resources, args, num_args);

Resource Management

164

base Specifies the base address of the subpart data struc-
ture for which the resources should be retrieved.

resources Specifies the subpart resource list.

num_resources Specifies the number of entries in the resource list.

args Specifies the argument list of name/address pairs
that contain the resource names and the addresses
into which the resource values are to be stored.

num_args Specifies the number of entries in the argument list.

The XtGetSubvalues function obtains resource values from the structure identified
by base. The value field in each argument entry must contain the address into which
to store the corresponding resource value. It is the caller's responsibility to allocate
and deallocate this storage according to the size of the resource representation type
used within the subpart. If the argument list contains a resource name that is not
found in the resource list, the value at the corresponding address is not modified.

To retrieve the current values of subpart resources associated with a widget in-
stance using varargs lists, use XtVaGetSubvalues.

void XtVaGetSubvalues(base, resources, num_resources, ...);

base Specifies the base address of the subpart data struc-
ture for which the resources should be retrieved.

resources Specifies the subpart resource list.

num_resources Specifies the number of entries in the resource list.

... Specifies a variable argument list of name/address
pairs that contain the resource names and the ad-
dresses into which the resource values are to be
stored.

XtVaGetSubvalues is identical in function to XtGetSubvalues with the args and
num_args parameters replaced by a varargs list, as described in Section 2.5.1. Xt-
VaTypedArg is not supported for XtVaGetSubvalues. If XtVaTypedArg is specified in
the list, a warning message is issued and the entry is then ignored.

Setting Widget State
To modify the current values of resources associated with a widget instance, use
XtSetValues.

void XtSetValues(object, args, num_args);

object Specifies the object whose resources are to be modified.
Must be of class Object or any subclass thereof.

args Specifies the argument list of name/value pairs that con-
tain the resources to be modified and their new values.

num_args Specifies the number of entries in the argument list.

Resource Management

165

The XtSetValues function starts with the resources specified for the Object class
fields and proceeds down the subclass chain to the object. At each stage, it replaces
the object resource fields with any values specified in the argument list. XtSetVal-
ues then calls the set_values procedures for the object in superclass-to-subclass or-
der. If the object has any non-NULL set_values_hook fields, these are called imme-
diately after the corresponding set_values procedure. This procedure permits sub-
classes to set subpart data via XtSetValues.

If the class of the object's parent is a subclass of constraintWidgetClass, XtSet-
Values also updates the object's constraints. It starts with the constraint resources
specified for constraintWidgetClass and proceeds down the subclass chain to the
parent's class. At each stage, it replaces the constraint resource fields with any val-
ues specified in the argument list. It then calls the constraint set_values procedures
from constraintWidgetClass down to the parent's class. The constraint set_values
procedures are called with widget arguments, as for all set_values procedures, not
just the constraint records, so that they can make adjustments to the desired values
based on full information about the widget. Any arguments specified that do not
match a resource list entry are silently ignored.

If the object is of a subclass of RectObj, XtSetValues determines if a geometry re-
quest is needed by comparing the old object to the new object. If any geometry
changes are required, XtSetValues restores the original geometry and makes the
request on behalf of the widget. If the geometry manager returns XtGeometryYes,
XtSetValues calls the object's resize procedure. If the geometry manager returns
XtGeometryDone, XtSetValues continues, as the object's resize procedure should
have been called by the geometry manager. If the geometry manager returns XtGe-
ometryNo, XtSetValues ignores the geometry request and continues. If the geom-
etry manager returns XtGeometryAlmost, XtSetValues calls the set_values_almost
procedure, which determines what should be done. XtSetValues then repeats this
process, deciding once more whether the geometry manager should be called.

Finally, if any of the set_values procedures returned True, and the widget is real-
ized, XtSetValues causes the widget's expose procedure to be invoked by calling
XClearArea on the widget's window.

To modify the current values of resources associated with a widget instance using
varargs lists, use XtVaSetValues.

void XtVaSetValues(object, ...);

object Specifies the object whose resources are to be modified.
Must be of class Object or any subclass thereof.

... Specifies the variable argument list of name/value pairs that
contain the resources to be modified and their new values.

XtVaSetValues is identical in function to XtSetValues with the args and num_args
parameters replaced by a varargs list, as described in Section 2.5.1.

Widget State: The set_values Procedure

The set_values procedure pointer in a widget class is of type (*XtSetValuesFunc).

typedef Boolean (*XtSetValuesFunc)(current, request, new, args,
num_args);

Resource Management

166

current Specifies a copy of the widget as it was before the XtSet-
Values call.

request Specifies a copy of the widget with all values changed
as asked for by the XtSetValues call before any class
set_values procedures have been called.

new Specifies the widget with the new values that are actually
allowed.

args Specifies the argument list passed to XtSetValues or the
transformed argument list passed to XtVaSetValues.

num_args Specifies the number of entries in the argument list.

The set_values procedure should recompute any field derived from resources that
are changed (for example, many GCs depend on foreground and background pixels).
If no recomputation is necessary, and if none of the resources specific to a subclass
require the window to be redisplayed when their values are changed, you can spec-
ify NULL for the set_values field in the class record.

Like the initialize procedure, set_values mostly deals only with the fields defined in
the subclass, but it has to resolve conflicts with its superclass, especially conflicts
over width and height.

Sometimes a subclass may want to overwrite values filled in by its superclass. In
particular, size calculations of a superclass are often incorrect for a subclass, and,
in this case, the subclass must modify or recalculate fields declared and computed
by its superclass.

As an example, a subclass can visually surround its superclass display. In this case,
the width and height calculated by the superclass set_values procedure are too
small and need to be incremented by the size of the surround. The subclass needs
to know if its superclass's size was calculated by the superclass or was specified ex-
plicitly. All widgets must place themselves into whatever size is explicitly given, but
they should compute a reasonable size if no size is requested. How does a subclass
know the difference between a specified size and a size computed by a superclass?

The request and new parameters provide the necessary information. The request
widget is a copy of the widget, updated as originally requested. The new widget
starts with the values in the request, but it has additionally been updated by all
superclass set_values procedures called so far. A subclass set_values procedure can
compare these two to resolve any potential conflicts. The set_values procedure need
not refer to the request widget unless it must resolve conflicts between the cur-
rent and new widgets. Any changes the widget needs to make, including geometry
changes, should be made in the new widget.

In the above example, the subclass with the visual surround can see if the width and
height in the request widget are zero. If so, it adds its surround size to the width
and height fields in the new widget. If not, it must make do with the size originally
specified. In this case, zero is a special value defined by the class to permit the
application to invoke this behavior.

The new widget is the actual widget instance record. Therefore, the set_values pro-
cedure should do all its work on the new widget; the request widget should never

Resource Management

167

be modified. If the set_values procedure needs to call any routines that operate on
a widget, it should specify new as the widget instance.

Before calling the set_values procedures, the Intrinsics modify the resources of the
request widget according to the contents of the arglist; if the widget names all its
resources in the class resource list, it is never necessary to examine the contents
of args.

Finally, the set_values procedure must return a Boolean that indicates whether the
widget needs to be redisplayed. Note that a change in the geometry fields alone
does not require the set_values procedure to return True; the X server will eventu-
ally generate an Expose event, if necessary. After calling all the set_values proce-
dures, XtSetValues forces a redisplay by calling XClearArea if any of the set_values
procedures returned True. Therefore, a set_values procedure should not try to do
its own redisplaying.

Set_values procedures should not do any work in response to changes in geometry
because XtSetValues eventually will perform a geometry request, and that request
might be denied. If the widget actually changes size in response to a call to XtSet-
Values, its resize procedure is called. Widgets should do any geometry-related work
in their resize procedure.

Note that it is permissible to call XtSetValues before a widget is realized. Therefore,
the set_values procedure must not assume that the widget is realized.

Widget State: The set_values_almost Procedure

The set_values_almost procedure pointer in the widget class record is of type
(*XtAlmostProc).

typedef void (*XtAlmostProc)(old, new, request, reply);

old Specifies a copy of the object as it was before the XtSet-
Values call.

new Specifies the object instance record.

request Specifies the original geometry request that was sent to
the geometry manager that caused XtGeometryAlmost to
be returned.

reply Specifies the compromise geometry that was returned by
the geometry manager with XtGeometryAlmost.

Most classes inherit the set_values_almost procedure from their superclass by spec-
ifying XtInheritSetValuesAlmost in the class initialization. The set_values_almost
procedure in rectObjClass accepts the compromise suggested.

The set_values_almost procedure is called when a client tries to set a widget's geom-
etry by means of a call to XtSetValues and the geometry manager cannot satisfy the
request but instead returns XtGeometryNo or XtGeometryAlmost and a compromise
geometry. The new object is the actual instance record. The x, y, width, height, and
border_width fields contain the original values as they were before the XtSetValues
call, and all other fields contain the new values. The request parameter contains
the new geometry request that was made to the parent. The reply parameter con-
tains reply->request_mode equal to zero if the parent returned XtGeometryNo and

Resource Management

168

contains the parent's compromise geometry otherwise. The set_values_almost pro-
cedure takes the original geometry and the compromise geometry and determines
if the compromise is acceptable or whether to try a different compromise. It returns
its results in the request parameter, which is then sent back to the geometry man-
ager for another try. To accept the compromise, the procedure must copy the con-
tents of the reply geometry into the request geometry; to attempt an alternative
geometry, the procedure may modify any part of the request argument; to terminate
the geometry negotiation and retain the original geometry, the procedure must set
request->request_mode to zero. The geometry fields of the old and new instances
must not be modified directly.

Widget State: The ConstraintClassPart set_values Procedure

The constraint set_values procedure pointer is of type (*XtSetValuesFunc). The
values passed to the parent's constraint set_values procedure are the same as those
passed to the child's class set_values procedure. A class can specify NULL for the
set_values field of the ConstraintPart if it need not compute anything.

The constraint set_values procedure should recompute any constraint fields derived
from constraint resources that are changed. Furthermore, it may modify other wid-
get fields as appropriate. For example, if a constraint for the maximum height of a
widget is changed to a value smaller than the widget's current height, the constraint
set_values procedure may reset the height field in the widget.

Widget Subpart State

To set the current values of subpart resources associated with a widget instance,
use XtSetSubvalues. For a discussion of subpart resources, see the section called
“Subresources”.

void XtSetSubvalues(base, resources, num_resources, args, num_args);

base Specifies the base address of the subpart data struc-
ture into which the resources should be written.

resources Specifies the subpart resource list.

num_resources Specifies the number of entries in the resource list.

args Specifies the argument list of name/value pairs that
contain the resources to be modified and their new
values.

num_args Specifies the number of entries in the argument list.

The XtSetSubvalues function updates the resource fields of the structure identified
by base. Any specified arguments that do not match an entry in the resource list
are silently ignored.

To set the current values of subpart resources associated with a widget instance
using varargs lists, use XtVaSetSubvalues.

void XtVaSetSubvalues(base, resources, num_resources);

base Specifies the base address of the subpart data struc-
ture into which the resources should be written.

Resource Management

169

resources Specifies the subpart resource list.

num_resources Specifies the number of entries in the resource list.

... Specifies the variable argument list of name/value
pairs that contain the resources to be modified and
their new values.

XtVaSetSubvalues is identical in function to XtSetSubvalues with the args and
num_args parameters replaced by a varargs list, as described in Section 2.5.1.
XtVaTypedArg is not supported for XtVaSetSubvalues. If an entry containing Xt-
VaTypedArg is specified in the list, a warning message is issued and the entry is
ignored.

Widget Subpart Resource Data: The set_values_hook Procedure

Note
The set_values_hook procedure is obsolete, as the same information is now
available to the set_values procedure. The procedure has been retained for
those widgets that used it in versions prior to Release 4.

Widgets that have a subpart can set the subpart resource values through XtSet-
Values by supplying a set_values_hook procedure. The set_values_hook procedure
pointer in a widget class is of type (*XtArgsFunc).

typedef Boolean (*XtArgsFunc)(w, args, num_args);

w Specifies the widget whose subpart resource values are
to be changed.

args Specifies the argument list that was passed to XtSetVal-
ues or the transformed varargs list passed to XtVaSet-
Values.

num_args Specifies the number of entries in the argument list.

The widget with subpart resources may call XtSetValues from the set_values_hook
procedure and pass in its subresource list and the args and num_args parameters.

170

Chapter 10. Translation Management
Except under unusual circumstances, widgets do not hardwire the mapping of user
events into widget behavior by using the event manager. Instead, they provide a
default mapping of events into behavior that you can override.

The translation manager provides an interface to specify and manage the mapping
of X event sequences into widget-supplied functionality, for example, calling proce-
dure Abc when the y key is pressed.

The translation manager uses two kinds of tables to perform translations:

• The action tables, which are in the widget class structure, specify the mapping
of externally available procedure name strings to the corresponding procedure
implemented by the widget class.

• A translation table, which is in the widget class structure, specifies the mapping
of event sequences to procedure name strings.

You can override the translation table in the class structure for a specific widget
instance by supplying a different translation table for the widget instance. The re-
sources XtNtranslations and XtNbaseTranslations are used to modify the class de-
fault translation table; see the section called “Translation Table Management”.

Action Tables
All widget class records contain an action table, an array of XtActionsRec entries.
In addition, an application can register its own action tables with the translation
manager so that the translation tables it provides to widget instances can access
application functionality directly. The translation action procedure pointer is of type
(*XtActionProc).

typedef void (*XtActionProc)(w, event, params, num_params);

w Specifies the widget that caused the action to be called.

event Specifies the event that caused the action to be called.
If the action is called after a sequence of events, then
the last event in the sequence is used.

params Specifies a pointer to the list of strings that were speci-
fied in the translation table as arguments to the action,
or NULL.

num_params Specifies the number of entries in params.

typedef struct _XtActionsRec {
 String string;
 XtActionProc proc;
} XtActionsRec, *XtActionList;

The string field is the name used in translation tables to access the procedure. The
proc field is a pointer to a procedure that implements the functionality.

Translation Management

171

When the action list is specified as the CoreClassPart actions field, the string point-
ed to by string must be permanently allocated prior to or during the execution of
the class initialization procedure and must not be subsequently deallocated.

Action procedures should not assume that the widget in which they are invoked is
realized; an accelerator specification can cause an action procedure to be called for
a widget that does not yet have a window. Widget writers should also note which of
a widget's callback lists are invoked from action procedures and warn clients not
to assume the widget is realized in those callbacks.

For example, a Pushbutton widget has procedures to take the following actions:

• Set the button to indicate it is activated.
• Unset the button back to its normal mode.
• Highlight the button borders.
• Unhighlight the button borders.
• Notify any callbacks that the button has been activated.

The action table for the Pushbutton widget class makes these functions available
to translation tables written for Pushbutton or any subclass. The string entry is the
name used in translation tables. The procedure entry (usually spelled identically to
the string) is the name of the C procedure that implements that function:

XtActionsRec actionTable[] = {
 {"Set", Set},
 {"Unset", Unset},
 {"Highlight", Highlight},
 {"Unhighlight", Unhighlight}
 {"Notify", Notify},
};

The Intrinsics reserve all action names and parameters starting with the characters
``Xt'' for future standard enhancements. Users, applications, and widgets should
not declare action names or pass parameters starting with these characters except
to invoke specified built-in Intrinsics functions.

Action Table Registration
The actions and num_actions fields of CoreClassPart specify the actions imple-
mented by a widget class. These are automatically registered with the Intrinsics
when the class is initialized and must be allocated in writable storage prior to Core
class_part initialization, and never deallocated. To save memory and optimize ac-
cess, the Intrinsics may overwrite the storage in order to compile the list into an
internal representation.

To declare an action table within an application and register it with the translation
manager, use XtAppAddActions.

void XtAppAddActions(app_context, actions, num_actions);

app_context Specifies the application context.

actions Specifies the action table to register.

num_actions Specifies the number of entries in this action table.

Translation Management

172

If more than one action is registered with the same name, the most recently regis-
tered action is used. If duplicate actions exist in an action table, the first is used.
The Intrinsics register an action table containing XtMenuPopup and XtMenuPopdown
as part of XtCreateApplicationContext.

Action Names to Procedure Translations
The translation manager uses a simple algorithm to resolve the name of a procedure
specified in a translation table into the actual procedure specified in an action table.
When the widget is realized, the translation manager performs a search for the
name in the following tables, in order:

• The widget's class and all superclass action tables, in subclass-to-superclass or-
der.

• The parent's class and all superclass action tables, in subclass-to-superclass order,
then on up the ancestor tree.

• The action tables registered with XtAppAddActions and XtAddActions from the
most recently added table to the oldest table.

As soon as it finds a name, the translation manager stops the search. If it cannot
find a name, the translation manager generates a warning message.

Action Hook Registration
An application can specify a procedure that will be called just before every action
routine is dispatched by the translation manager. To do so, the application supplies
a procedure pointer of type (*XtActionHookProc).

typedef void (*XtActionHookProc)(w, client_data, action_name, event,
params, num_params);

w Specifies the widget whose action is about to be dis-
patched.

client_data Specifies the application-specific closure that was
passed to XtAppAddActionHook.

action_name Specifies the name of the action to be dispatched.

event Specifies the event argument that will be passed to
the action routine.

params Specifies the action parameters that will be passed to
the action routine.

num_params Specifies the number of entries in params.

Action hooks should not modify any of the data pointed to by the arguments other
than the client_data argument.

To add an action hook, use XtAppAddActionHook.

XtActionHookId XtAppAddActionHook(app, proc, client_data);

app Specifies the application context.

Translation Management

173

proc Specifies the action hook procedure.

client_data Specifies application-specific data to be passed to the
action hook.

XtAppAddActionHook adds the specified procedure to the front of a list maintained
in the application context. In the future, when an action routine is about to be in-
voked for any widget in this application context, either through the translation man-
ager or via XtCallActionProc, the action hook procedures will be called in reverse
order of registration just prior to invoking the action routine.

Action hook procedures are removed automatically and the XtActionHookId is
destroyed when the application context in which they were added is destroyed.

To remove an action hook procedure without destroying the application context,
use XtRemoveActionHook.

void XtRemoveActionHook(id);

id Specifies the action hook id returned by XtAppAddActionHook.

XtRemoveActionHook removes the specified action hook procedure from the list in
which it was registered.

Translation Tables
All widget instance records contain a translation table, which is a resource with a
default value specified elsewhere in the class record. A translation table specifies
what action procedures are invoked for an event or a sequence of events. A trans-
lation table is a string containing a list of translations from an event sequence into
one or more action procedure calls. The translations are separated from one anoth-
er by newline characters (ASCII LF). The complete syntax of translation tables is
specified in Appendix B.

As an example, the default behavior of Pushbutton is

• Highlight on enter window.
• Unhighlight on exit window.
• Invert on left button down.
• Call callbacks and reinvert on left button up.

The following illustrates Pushbutton's default translation table:

static String defaultTranslations =
 "<EnterWindow>: Highlight()\\n\\
 <LeaveWindow>: Unhighlight()\\n\\
 <Btn1Down>: Set()\\n\\
 <Btn1Up>: Notify() Unset()";

The tm_table field of the CoreClassPart should be filled in at class initialization time
with the string containing the class's default translations. If a class wants to inherit
its superclass's translations, it can store the special value XtInheritTranslations
into tm_table. In Core's class part initialization procedure, the Intrinsics compile
this translation table into an efficient internal form. Then, at widget creation time,

Translation Management

174

this default translation table is combined with the XtNtranslations and XtNbase-
Translations resources; see the section called “Translation Table Management”.

The resource conversion mechanism automatically compiles string translation ta-
bles that are specified in the resource database. If a client uses translation tables
that are not retrieved via a resource conversion, it must compile them itself using
XtParseTranslationTable.

The Intrinsics use the compiled form of the translation table to register the neces-
sary events with the event manager. Widgets need do nothing other than specify the
action and translation tables for events to be processed by the translation manager.

Event Sequences
An event sequence is a comma-separated list of X event descriptions that describes
a specific sequence of X events to map to a set of program actions. Each X event
description consists of three parts: The X event type, a prefix consisting of the X
modifier bits, and an event-specific suffix.

Various abbreviations are supported to make translation tables easier to read. The
events must match incoming events in left-to-right order to trigger the action se-
quence.

Action Sequences
Action sequences specify what program or widget actions to take in response to
incoming X events. An action sequence consists of space-separated action proce-
dure call specifications. Each action procedure call consists of the name of an ac-
tion procedure and a parenthesized list of zero or more comma-separated string
parameters to pass to that procedure. The actions are invoked in left-to-right order
as specified in the action sequence.

Multi-Click Time
Translation table entries may specify actions that are taken when two or more iden-
tical events occur consecutively within a short time interval, called the multi-click
time. The multi-click time value may be specified as an application resource with
name ``multiClickTime'' and class ``MultiClickTime'' and may also be modified dy-
namically by the application. The multi-click time is unique for each Display value
and is retrieved from the resource database by XtDisplayInitialize. If no value
is specified, the initial value is 200 milliseconds.

To set the multi-click time dynamically, use XtSetMultiClickTime.

void XtSetMultiClickTime(display, time);

display Specifies the display connection.

time Specifies the multi-click time in milliseconds.

XtSetMultiClickTime sets the time interval used by the translation manager to
determine when multiple events are interpreted as a repeated event. When a repeat
count is specified in a translation entry, the interval between the timestamps in each
pair of repeated events (e.g., between two ButtonPress events) must be less than
the multi-click time in order for the translation actions to be taken.

Translation Management

175

To read the multi-click time, use XtGetMultiClickTime.

int XtGetMultiClickTime(display);

display Specifies the display connection.

XtGetMultiClickTime returns the time in milliseconds that the translation manager
uses to determine if multiple events are to be interpreted as a repeated event for
purposes of matching a translation entry containing a repeat count.

Translation Table Management
Sometimes an application needs to merge its own translations with a widget's trans-
lations. For example, a window manager provides functions to move a window. The
window manager wishes to bind this operation to a specific pointer button in the
title bar without the possibility of user override and bind it to other buttons that
may be overridden by the user.

To accomplish this, the window manager should first create the title bar and then
should merge the two translation tables into the title bar's translations. One trans-
lation table contains the translations that the window manager wants only if the
user has not specified a translation for a particular event or event sequence (i.e.,
those that may be overridden). The other translation table contains the translations
that the window manager wants regardless of what the user has specified.

Three Intrinsics functions support this merging:

XtParseTranslationTable Compiles a translation table.

XtAugmentTranslations Merges a compiled translation table into a widget's
compiled translation table, ignoring any new transla-
tions that conflict with existing translations.

XtOverrideTranslations Merges a compiled translation table into a widget's
compiled translation table, replacing any existing
translations that conflict with new translations.

To compile a translation table, use XtParseTranslationTable.

XtTranslations XtParseTranslationTable(table);

table Specifies the translation table to compile.

The XtParseTranslationTable function compiles the translation table, provided
in the format given in Appendix B, into an opaque internal representation of type
XtTranslations. Note that if an empty translation table is required for any purpose,
one can be obtained by calling XtParseTranslationTable and passing an empty
string.

To merge additional translations into an existing translation table, use XtAugment-
Translations.

void XtAugmentTranslations(w, translations);

w Specifies the widget into which the new translations
are to be merged. Must be of class Core or any sub-
class thereof.

Translation Management

176

translations Specifies the compiled translation table to merge in.

The XtAugmentTranslations function merges the new translations into the existing
widget translations, ignoring any #replace, #augment, or #override directive that
may have been specified in the translation string. The translation table specified
by translations is not altered by this process. XtAugmentTranslations logically ap-
pends the string representation of the new translations to the string representation
of the widget's current translations and reparses the result with no warning mes-
sages about duplicate left-hand sides, then stores the result back into the widget in-
stance; i.e., if the new translations contain an event or event sequence that already
exists in the widget's translations, the new translation is ignored.

To overwrite existing translations with new translations, use XtOverrideTransla-
tions.

void XtOverrideTranslations(w, translations);

w Specifies the widget into which the new translations
are to be merged. Must be of class Core or any sub-
class thereof.

translations Specifies the compiled translation table to merge in.

The XtOverrideTranslations function merges the new translations into the exist-
ing widget translations, ignoring any #replace, #augment, or #override directive
that may have been specified in the translation string. The translation table spec-
ified by translations is not altered by this process. XtOverrideTranslations logi-
cally appends the string representation of the widget's current translations to the
string representation of the new translations and reparses the result with no warn-
ing messages about duplicate left-hand sides, then stores the result back into the
widget instance; i.e., if the new translations contain an event or event sequence
that already exists in the widget's translations, the new translation overrides the
widget's translation.

To replace a widget's translations completely, use XtSetValues on the XtNtransla-
tions resource and specify a compiled translation table as the value.

To make it possible for users to easily modify translation tables in their resource
files, the string-to-translation-table resource type converter allows the string to
specify whether the table should replace, augment, or override any existing trans-
lation table in the widget. To specify this, a pound sign (#) is given as the first
character of the table followed by one of the keywords ``replace'', ``augment'', or
``override'' to indicate whether to replace, augment, or override the existing table.
The replace or merge operation is performed during the Core instance initialization.
Each merge operation produces a new translation resource value; if the original ta-
bles were shared by other widgets, they are unaffected. If no directive is specified,
``#replace'' is assumed.

At instance initialization the XtNtranslations resource is first fetched. Then, if it was
not specified or did not contain ``#replace'', the resource database is searched for
the resource XtNbaseTranslations. If XtNbaseTranslations is found, it is merged into
the widget class translation table. Then the widget translations field is merged into
the result or into the class translation table if XtNbaseTranslations was not found.
This final table is then stored into the widget translations field. If the XtNtransla-
tions resource specified ``#replace'', no merge is done. If neither XtNbaseTransla-

Translation Management

177

tions or XtNtranslations are specified, the class translation table is copied into the
widget instance.

To completely remove existing translations, use XtUninstallTranslations.

void XtUninstallTranslations(w);

w Specifies the widget from which the translations are to be re-
moved. Must be of class Core or any subclass thereof.

The XtUninstallTranslations function causes the entire translation table for the
widget to be removed.

Using Accelerators
It is often desirable to be able to bind events in one widget to actions in another. In
particular, it is often useful to be able to invoke menu actions from the keyboard.
The Intrinsics provide a facility, called accelerators, that lets you accomplish this.
An accelerator table is a translation table that is bound with its actions in the con-
text of a particular widget, the source widget. The accelerator table can then be
installed on one or more destination widgets. When an event sequence in the des-
tination widget would cause an accelerator action to be taken, and if the source
widget is sensitive, the actions are executed as though triggered by the same event
sequence in the accelerator source widget. The event is passed to the action pro-
cedure without modification. The action procedures used within accelerators must
not assume that the source widget is realized nor that any fields of the event are in
reference to the source widget's window if the widget is realized.

Each widget instance contains that widget's exported accelerator table as a re-
source. Each class of widget exports a method that takes a displayable string rep-
resentation of the accelerators so that widgets can display their current accelera-
tors. The representation is the accelerator table in canonical translation table form
(see Appendix B). The display_accelerator procedure pointer is of type (*XtString-
Proc).

typedef void (*XtStringProc)(w, string);

w Specifies the source widget that supplied the accelerators.

string Specifies the string representation of the accelerators for
this widget.

Accelerators can be specified in resource files, and the string representation is the
same as for a translation table. However, the interpretation of the #augment and
#override directives applies to what will happen when the accelerator is installed;
that is, whether or not the accelerator translations will override the translations in
the destination widget. The default is #augment, which means that the accelerator
translations have lower priority than the destination translations. The #replace di-
rective is ignored for accelerator tables.

To parse an accelerator table, use XtParseAcceleratorTable.

XtAccelerators XtParseAcceleratorTable(source);

source Specifies the accelerator table to compile.

Translation Management

178

The XtParseAcceleratorTable function compiles the accelerator table into an
opaque internal representation. The client should set the XtNaccelerators resource
of each widget that is to be activated by these translations to the returned value.

To install accelerators from a widget on another widget, use XtInstallAccelera-
tors.

void XtInstallAccelerators(destination, source);

destination Specifies the widget on which the accelerators are to
be installed. Must be of class Core or any subclass
thereof.

source Specifies the widget from which the accelerators are
to come. Must be of class Core or any subclass thereof.

The XtInstallAccelerators function installs the accelerators resource value from
source onto destination by merging the source accelerators into the destination
translations. If the source display_accelerator field is non-NULL, XtInstallAccel-
erators calls it with the source widget and a string representation of the accelera-
tor table, which indicates that its accelerators have been installed and that it should
display them appropriately. The string representation of the accelerator table is its
canonical translation table representation.

As a convenience for installing all accelerators from a widget and all its descendants
onto one destination, use XtInstallAllAccelerators.

void XtInstallAllAccelerators(destination, source);

destination Specifies the widget on which the accelerators are to
be installed. Must be of class Core or any subclass
thereof.

source Specifies the root widget of the widget tree from which
the accelerators are to come. Must be of class Core or
any subclass thereof.

The XtInstallAllAccelerators function recursively descends the widget tree
rooted at source and installs the accelerators resource value of each widget encoun-
tered onto destination. A common use is to call XtInstallAllAccelerators and
pass the application main window as the source.

KeyCode-to-KeySym Conversions
The translation manager provides support for automatically translating KeyCodes in
incoming key events into KeySyms. KeyCode-to-KeySym translator procedure point-
ers are of type (*XtKeyProc).

typedef void (*XtKeyProc)(display, keycode, modifiers,
modifiers_return, keysym_return);

display Specifies the display that the KeyCode is from.

keycode Specifies the KeyCode to translate.

modifiers Specifies the modifiers to the KeyCode.

Translation Management

179

modifiers_return Specifies a location in which to store a mask that in-
dicates the subset of all modifiers that are examined
by the key translator for the specified keycode.

keysym_return Specifies a location in which to store the resulting
KeySym.

This procedure takes a KeyCode and modifiers and produces a KeySym. For any
given key translator function and keyboard encoding, modifiers_return will be a
constant per KeyCode that indicates the subset of all modifiers that are examined
by the key translator for that KeyCode.

The KeyCode-to-KeySym translator procedure must be implemented such that mul-
tiple calls with the same display, keycode, and modifiers return the same result un-
til either a new case converter, an (*XtCaseProc), is installed or a MappingNotify
event is received.

The Intrinsics maintain tables internally to map KeyCodes to KeySyms for each open
display. Translator procedures and other clients may share a single copy of this table
to perform the same mapping.

To return a pointer to the KeySym-to-KeyCode mapping table for a particular display,
use XtGetKeysymTable.

KeySym *XtGetKeysymTable(display, min_keycode_return,
keysyms_per_keycode_return);

display Specifies the display whose table is required.

min_keycode_return Returns the minimum KeyCode valid for the display.

keysyms_per_keycode_return Returns the number of KeySyms stored for each Key-
Code.

XtGetKeysymTable returns a pointer to the Intrinsics' copy of the server's
KeyCode-to-KeySym table. This table must not be modified. There are
keysyms_per_keycode_return KeySyms associated with each KeyCode, located in
the table with indices starting at index

 (test_keycode - min_keycode_return) * keysyms_per_keycode_return

for KeyCode test_keycode. Any entries that have no KeySyms associated with them
contain the value NoSymbol. Clients should not cache the KeySym table but should
call XtGetKeysymTable each time the value is needed, as the table may change prior
to dispatching each event.

For more information on this table, see Section 12.7 in Xlib — C Language X Inter-
face..

To register a key translator, use XtSetKeyTranslator.

void XtSetKeyTranslator(display, proc);

display Specifies the display from which to translate the events.

proc Specifies the procedure to perform key translations.

Translation Management

180

The XtSetKeyTranslator function sets the specified procedure as the current key
translator. The default translator is XtTranslateKey, an (*XtKeyProc) that uses
the Shift, Lock, numlock, and group modifiers with the interpretations defined in X
Window System Protocol, Section 5. It is provided so that new translators can call
it to get default KeyCode-to-KeySym translations and so that the default translator
can be reinstalled.

To invoke the currently registered KeyCode-to-KeySym translator, use XtTrans-
lateKeycode.

void XtTranslateKeycode(display, keycode, modifiers, modifiers_return,
keysym_return);

display Specifies the display that the KeyCode is from.

keycode Specifies the KeyCode to translate.

modifiers Specifies the modifiers to the KeyCode.

modifiers_return Returns a mask that indicates the modifiers actually
used to generate the KeySym.

keysym_return Returns the resulting KeySym.

The XtTranslateKeycode function passes the specified arguments directly to the
currently registered KeyCode-to-KeySym translator.

To handle capitalization of nonstandard KeySyms, the Intrinsics allow clients to
register case conversion routines. Case converter procedure pointers are of type
(*XtCaseProc).

typedef void (*XtCaseProc)(display, keysym, lower_return,
upper_return);

display Specifies the display connection for which the con-
version is required.

keysym Specifies the KeySym to convert.

lower_return Specifies a location into which to store the lowercase
equivalent for the KeySym.

upper_return Specifies a location into which to store the uppercase
equivalent for the KeySym.

If there is no case distinction, this procedure should store the KeySym into both
return values.

To register a case converter, use XtRegisterCaseConverter.

void XtRegisterCaseConverter(display, proc, start, stop);

display Specifies the display from which the key events are to
come.

proc Specifies the (*XtCaseProc) to do the conversions.

start Specifies the first KeySym for which this converter is valid.

Translation Management

181

stop Specifies the last KeySym for which this converter is valid.

The XtRegisterCaseConverter registers the specified case converter. The start and
stop arguments provide the inclusive range of KeySyms for which this converter
is to be called. The new converter overrides any previous converters for KeySyms
in that range. No interface exists to remove converters; you need to register an
identity converter. When a new converter is registered, the Intrinsics refresh the
keyboard state if necessary. The default converter understands case conversion for
all Latin KeySyms defined in X Window System Protocol, Appendix A.

To determine uppercase and lowercase equivalents for a KeySym, use XtConvert-
Case.

void XtConvertCase(display, keysym, lower_return, upper_return);

display Specifies the display that the KeySym came from.

keysym Specifies the KeySym to convert.

lower_return Returns the lowercase equivalent of the KeySym.

upper_return Returns the uppercase equivalent of the KeySym.

The XtConvertCase function calls the appropriate converter and returns the results.
A user-supplied (*XtKeyProc) may need to use this function.

Obtaining a KeySym in an Action Procedure
When an action procedure is invoked on a KeyPress or KeyRelease event, it often
has a need to retrieve the KeySym and modifiers corresponding to the event that
caused it to be invoked. In order to avoid repeating the processing that was just
performed by the Intrinsics to match the translation entry, the KeySym and modi-
fiers are stored for the duration of the action procedure and are made available to
the client.

To retrieve the KeySym and modifiers that matched the final event specification in
the translation table entry, use XtGetActionKeysym.

KeySym XtGetActionKeysym(event, modifiers_return);

event Specifies the event pointer passed to the action pro-
cedure by the Intrinsics.

modifiers_return Returns the modifiers that caused the match, if non-
NULL.

If XtGetActionKeysym is called after an action procedure has been invoked by the
Intrinsics and before that action procedure returns, and if the event pointer has the
same value as the event pointer passed to that action routine, and if the event is a
KeyPress or KeyRelease event, then XtGetActionKeysym returns the KeySym that
matched the final event specification in the translation table and, if modifiers_return
is non-NULL, the modifier state actually used to generate this KeySym; otherwise,
if the event is a KeyPress or KeyRelease event, then XtGetActionKeysym calls Xt-
TranslateKeycode and returns the results; else it returns NoSymbol and does not
examine modifiers_return.

Translation Management

182

Note that if an action procedure invoked by the Intrinsics invokes a subsequent
action procedure (and so on) via XtCallActionProc, the nested action procedure
may also call XtGetActionKeysym to retrieve the Intrinsics' KeySym and modifiers.

KeySym-to-KeyCode Conversions
To return the list of KeyCodes that map to a particular KeySym in the keyboard
mapping table maintained by the Intrinsics, use XtKeysymToKeycodeList.

void XtKeysymToKeycodeList(display, keysym, keycodes_return,
keycount_return);

display Specifies the display whose table is required.

keysym Specifies the KeySym for which to search.

keycodes_return Returns a list of KeyCodes that have keysym associ-
ated with them, or NULL if keycount_return is 0.

keycount_return Returns the number of KeyCodes in the keycode list.

The XtKeysymToKeycodeList procedure returns all the KeyCodes that have keysym
in their entry for the keyboard mapping table associated with display. For each entry
in the table, the first four KeySyms (groups 1 and 2) are interpreted as specified by
X Window System Protocol, Section 5. If no KeyCodes map to the specified KeySym,
keycount_return is zero and *keycodes_return is NULL.

The caller should free the storage pointed to by keycodes_return using XtFree when
it is no longer useful. If the caller needs to examine the KeyCode-to-KeySym table
for a particular KeyCode, it should call XtGetKeysymTable.

Registering Button and Key Grabs for Actions
To register button and key grabs for a widget's window according to the event bind-
ings in the widget's translation table, use XtRegisterGrabAction.

void XtRegisterGrabAction(action_proc, owner_events, event_mask,
pointer_mode);

action_proc Specifies the action procedure to search for in trans-
lation tables.

owner_events

event_mask

pointer_mode

keyboard_mode Specify arguments to XtGrabButton or XtGrabKey.

XtRegisterGrabAction adds the specified action_proc to a list known to the trans-
lation manager. When a widget is realized, or when the translations of a realized
widget or the accelerators installed on a realized widget are modified, its transla-
tion table and any installed accelerators are scanned for action procedures on this
list. If any are invoked on ButtonPress or KeyPress events as the only or final event

Translation Management

183

in a sequence, the Intrinsics will call XtGrabButton or XtGrabKey for the widget
with every button or KeyCode which maps to the event detail field, passing the spec-
ified owner_events, event_mask, pointer_mode, and keyboard_mode. For Button-
Press events, the modifiers specified in the grab are determined directly from the
translation specification and confine_to and cursor are specified as None. For Key-
Press events, if the translation table entry specifies colon (:) in the modifier list, the
modifiers are determined by calling the key translator procedure registered for the
display and calling XtGrabKey for every combination of standard modifiers which
map the KeyCode to the specified event detail KeySym, and ORing any modifiers
specified in the translation table entry, and event_mask is ignored. If the translation
table entry does not specify colon in the modifier list, the modifiers specified in the
grab are those specified in the translation table entry only. For both ButtonPress
and KeyPress events, don't-care modifiers are ignored unless the translation entry
explicitly specifies ``Any'' in the modifiers field.

If the specified action_proc is already registered for the calling process, the new
values will replace the previously specified values for any widgets that become re-
alized following the call, but existing grabs are not altered on currently realized
widgets.

When translations or installed accelerators are modified for a realized widget, any
previous key or button grabs registered as a result of the old bindings are released
if they do not appear in the new bindings and are not explicitly grabbed by the client
with XtGrabKey or XtGrabButton.

Invoking Actions Directly
Normally action procedures are invoked by the Intrinsics when an event or event
sequence arrives for a widget. To invoke an action procedure directly, without gen-
erating (or synthesizing) events, use XtCallActionProc.

void XtCallActionProc(widget, action, event, params, num_params);

widget Specifies the widget in which the action is to be in-
voked. Must be of class Core or any subclass thereof.

action Specifies the name of the action routine.

event Specifies the contents of the event passed to the action
routine.

params Specifies the contents of the params passed to the ac-
tion routine.

num_params Specifies the number of entries in params.

XtCallActionProc searches for the named action routine in the same manner and
order as translation tables are bound, as described in Section 10.1.2, except that
application action tables are searched, if necessary, as of the time of the call to
XtCallActionProc. If found, the action routine is invoked with the specified widget,
event pointer, and parameters. It is the responsibility of the caller to ensure that
the contents of the event, params, and num_params arguments are appropriate for
the specified action routine and, if necessary, that the specified widget is realized
or sensitive. If the named action routine cannot be found, XtCallActionProc gen-
erates a warning message and returns.

Translation Management

184

Obtaining a Widget's Action List
Occasionally a subclass will require the pointers to one or more of its superclass's
action procedures. This would be needed, for example, in order to envelop the
superclass's action. To retrieve the list of action procedures registered in the
superclass's actions field, use XtGetActionList.

void XtGetActionList(widget_class, actions_return, num_actions_return);

widget_class Specifies the widget class whose actions are to be
returned.

actions_return Returns the action list.

num_actions_return Returns the number of action procedures declared
by the class.

XtGetActionList returns the action table defined by the specified widget class.
This table does not include actions defined by the superclasses. If widget_class is
not initialized, or is not coreWidgetClass or a subclass thereof, or if the class does
not define any actions, *actions_return will be NULL and *num_actions_return will
be zero. If *actions_return is non-NULL the client is responsible for freeing the table
using XtFree when it is no longer needed.

185

Chapter 11. Utility Functions
The Intrinsics provide a number of utility functions that you can use to

• Determine the number of elements in an array.
• Translate strings to widget instances.
• Manage memory usage.
• Share graphics contexts.
• Manipulate selections.
• Merge exposure events into a region.
• Translate widget coordinates.
• Locate a widget given a window id.
• Handle errors.
• Set the WM_COLORMAP_WINDOWS property.
• Locate files by name with string substitutions.
• Register callback functions for external agents.
• Locate all the displays of an application context.

Determining the Number of Elements in an Ar-
ray

To determine the number of elements in a fixed-size array, use XtNumber.

Cardinal XtNumber(array);

array Specifies a fixed-size array of arbitrary type.

The XtNumber macro returns the number of elements allocated to the array.

Translating Strings to Widget Instances
To translate a widget name to a widget instance, use XtNameToWidget.

Widget XtNameToWidget(reference, names);

reference Specifies the widget from which the search is to start.
Must be of class Core or any subclass thereof.

names Specifies the partially qualified name of the desired wid-
get.

The XtNameToWidget function searches for a descendant of the reference widget
whose name matches the specified names. The names parameter specifies a simple
object name or a series of simple object name components separated by periods or
asterisks. XtNameToWidget returns the descendant with the shortest name matching
the specification according to the following rules, where child is either a pop-up
child or a normal child if the widget's class is a subclass of Composite :

• Enumerate the object subtree rooted at the reference widget in breadth-first or-
der, qualifying the name of each object with the names of all its ancestors up to,
but not including, the reference widget. The ordering between children of a com-
mon parent is not defined.

Utility Functions

186

• Return the first object in the enumeration that matches the specified name, where
each component of names matches exactly the corresponding component of the
qualified object name and asterisk matches any series of components, including
none.

• If no match is found, return NULL.

Since breadth-first traversal is specified, the descendant with the shortest matching
name (i.e., the fewest number of components), if any, will always be returned. How-
ever, since the order of enumeration of children is undefined and since the Intrinsics
do not require that all children of a widget have unique names, XtNameToWidget
may return any child that matches if there are multiple objects in the subtree with
the same name. Consecutive separators (periods or asterisks) including at least one
asterisk are treated as a single asterisk. Consecutive periods are treated as a single
period.

Managing Memory Usage
The Intrinsics memory management functions provide uniform checking for null
pointers and error reporting on memory allocation errors. These functions are com-
pletely compatible with their standard C language runtime counterparts malloc,
calloc, realloc, and free with the following added functionality:

• XtMalloc, XtCalloc, and XtRealloc give an error if there is not enough memory.
• XtFree simply returns if passed a NULL pointer.
• XtRealloc simply allocates new storage if passed a NULL pointer.

See the standard C library documentation on malloc, calloc, realloc, and free
for more information.

To allocate storage, use XtMalloc.

char * XtMalloc(size);

size Specifies the number of bytes desired.

The XtMalloc function returns a pointer to a block of storage of at least the specified
size bytes. If there is insufficient memory to allocate the new block, XtMalloc calls
XtErrorMsg.

To allocate and initialize an array, use XtCalloc.

char * XtCalloc(num, size);

num Specifies the number of array elements to allocate.

size Specifies the size of each array element in bytes.

The XtCalloc function allocates space for the specified number of array elements
of the specified size and initializes the space to zero. If there is insufficient memory
to allocate the new block, XtCalloc calls XtErrorMsg. XtCalloc returns the address
of the allocated storage.

To change the size of an allocated block of storage, use XtRealloc.

char *XtRealloc(ptr, num);

Utility Functions

187

ptr Specifies a pointer to the old storage allocated with XtMalloc,
XtCalloc, or XtRealloc, or NULL.

num Specifies number of bytes desired in new storage.

The XtRealloc function changes the size of a block of storage, possibly moving it.
Then it copies the old contents (or as much as will fit) into the new block and frees
the old block. If there is insufficient memory to allocate the new block, XtRealloc
calls XtErrorMsg. If ptr is NULL, XtRealloc simply calls XtMalloc. XtRealloc then
returns the address of the new block.

To free an allocated block of storage, use XtFree.

void XtFree(ptr);

ptr Specifies a pointer to a block of storage allocated with XtMal-
loc, XtCalloc, or XtRealloc, or NULL.

The XtFree function returns storage, allowing it to be reused. If ptr is NULL, XtFree
returns immediately.

To allocate storage for a new instance of a type, use XtNew.

type XtNew(t);

type Specifies a previously declared type.

XtNew returns a pointer to the allocated storage. If there is insufficient memory to
allocate the new block, XtNew calls XtErrorMsg. XtNew is a convenience macro that
calls XtMalloc with the following arguments specified:

((type *) XtMalloc((unsigned) sizeof(type)))

The storage allocated by XtNew should be freed using XtFree.

To copy an instance of a string, use XtNewString.

String XtNewString(string);

string Specifies a previously declared string.

XtNewString returns a pointer to the allocated storage. If there is insufficient mem-
ory to allocate the new block, XtNewString calls XtErrorMsg. XtNewString is a con-
venience macro that calls XtMalloc with the following arguments specified:

(strcpy(XtMalloc((unsigned)strlen(str) + 1), str))

The storage allocated by XtNewString should be freed using XtFree.

Sharing Graphics Contexts
The Intrinsics provide a mechanism whereby cooperating objects can share a graph-
ics context (GC), thereby reducing both the number of GCs created and the total
number of server calls in any given application. The mechanism is a simple caching
scheme and allows for clients to declare both modifiable and nonmodifiable fields
of the shared GCs.

Utility Functions

188

To obtain a shareable GC with modifiable fields, use XtAllocateGC.

GC XtAllocateGC(object, depth, value_mask, values, dynamic_mask,
unused_mask);

object Specifies an object, giving the screen for which the
returned GC is valid. Must be of class Object or any
subclass thereof.

depth Specifies the depth for which the returned GC is
valid, or 0.

value_mask Specifies fields of the GC that are initialized from val-
ues.

values Specifies the values for the initialized fields.

dynamic_mask Specifies fields of the GC that will be modified by the
caller.

unused_mask Specifies fields of the GC that will not be needed by
the caller.

The XtAllocateGC function returns a shareable GC that may be modified by the
client. The screen field of the specified widget or of the nearest widget ancestor of
the specified object and the specified depth argument supply the root and drawable
depths for which the GC is to be valid. If depth is zero, the depth is taken from the
depth field of the specified widget or of the nearest widget ancestor of the specified
object.

The value_mask argument specifies fields of the GC that are initialized with the
respective member of the values structure. The dynamic_mask argument specifies
fields that the caller intends to modify during program execution. The caller must
ensure that the corresponding GC field is set prior to each use of the GC. The
unused_mask argument specifies fields of the GC that are of no interest to the caller.
The caller may make no assumptions about the contents of any fields specified in
unused_mask. The caller may assume that at all times all fields not specified in
either dynamic_mask or unused_mask have their default value if not specified in
value_mask or the value specified by values. If a field is specified in both value_mask
and dynamic_mask, the effect is as if it were specified only in dynamic_mask and
then immediately set to the value in values. If a field is set in unused_mask and also
in either value_mask or dynamic_mask, the specification in unused_mask is ignored.

XtAllocateGC tries to minimize the number of unique GCs created by comparing the
arguments with those of previous calls and returning an existing GC when there are
no conflicts. XtAllocateGC may modify and return an existing GC if it was allocated
with a nonzero unused_mask.

To obtain a shareable GC with no modifiable fields, use XtGetGC.

GC XtGetGC(object, value_mask, values);

object Specifies an object, giving the screen and depth for
which the returned GC is valid. Must be of class Object
or any subclass thereof.

Utility Functions

189

value_mask Specifies which fields of the values structure are spec-
ified.

values Specifies the actual values for this GC.

The XtGetGC function returns a shareable, read-only GC. The parameters to this
function are the same as those for XCreateGC except that an Object is passed instead
of a Display. XtGetGC is equivalent to XtAllocateGC with depth, dynamic_mask, and
unused_mask all zero.

XtGetGC shares only GCs in which all values in the GC returned by XCreateGC are
the same. In particular, it does not use the value_mask provided to determine which
fields of the GC a widget considers relevant. The value_mask is used only to tell the
server which fields should be filled in from values and which it should fill in with
default values.

To deallocate a shared GC when it is no longer needed, use XtReleaseGC.

void XtReleaseGC(object, gc);

object Specifies any object on the Display for which the GC was
created. Must be of class Object or any subclass thereof.

gc Specifies the shared GC obtained with either XtAllocateGC
or XtGetGC.

References to shareable GCs are counted and a free request is generated to the
server when the last user of a given GC releases it.

Managing Selections
Arbitrary widgets in multiple applications can communicate with each other by
means of the Intrinsics global selection mechanism, which conforms to the specifi-
cations in the Inter-Client Communication Conventions Manual.. The Intrinsics sup-
ply functions for providing and receiving selection data in one logical piece (atomic
transfers) or in smaller logical segments (incremental transfers).

The incremental interface is provided for a selection owner or selection requestor
that cannot or prefers not to pass the selection value to and from the Intrinsics in
a single call. For instance, either an application that is running on a machine with
limited memory may not be able to store the entire selection value in memory or a
selection owner may already have the selection value available in discrete chunks,
and it would be more efficient not to have to allocate additional storage to copy the
pieces contiguously. Any owner or requestor that prefers to deal with the selection
value in segments can use the incremental interfaces to do so. The transfer between
the selection owner or requestor and the Intrinsics is not required to match the
underlying transport protocol between the application and the X server; the Intrin-
sics will break too large a selection into smaller pieces for transport if necessary
and will coalesce a selection transmitted incrementally if the value was requested
atomically.

Setting and Getting the Selection Timeout Value
To set the Intrinsics selection timeout, use XtAppSetSelectionTimeout.

Utility Functions

190

void XtAppSetSelectionTimeout(app_context, timeout);

app_context Specifies the application context.

timeout Specifies the selection timeout in milliseconds.

To get the current selection timeout value, use XtAppGetSelectionTimeout.

unsigned long XtAppGetSelectionTimeout(app_context);

app_context Specifies the application context.

The XtAppGetSelectionTimeout function returns the current selection timeout val-
ue in milliseconds. The selection timeout is the time within which the two commu-
nicating applications must respond to one another. The initial timeout value is set by
the selectionTimeout application resource as retrieved by XtDisplayInitialize. If
selectionTimeout is not specified, the default is five seconds.

Using Atomic Transfers
When using atomic transfers, the owner will completely process one selection re-
quest at a time. The owner may consider each request individually, since there is
no possibility for overlap between evaluation of two requests.

Atomic Transfer Procedures

The following procedures are used by the selection owner when providing selection
data in a single unit.

The procedure pointer specified by the owner to supply the selection data to the
Intrinsics is of type (*XtConvertSelectionProc).

typedef Boolean (*XtConvertSelectionProc)(w, selection, target,
type_return, value_return, length_return, format_return);

w Specifies the widget that currently owns this selec-
tion.

selection Specifies the atom naming the selection requested
(for example, XA_PRIMARY or XA_SECONDARY).

target Specifies the target type of the selection that has
been requested, which indicates the desired infor-
mation about the selection (for example, File Name,
Text, Window).

type_return Specifies a pointer to an atom into which the property
type of the converted value of the selection is to be
stored. For instance, either File Name or Text might
have property type XA_STRING.

value_return Specifies a pointer into which a pointer to the con-
verted value of the selection is to be stored. The se-
lection owner is responsible for allocating this stor-
age. If the selection owner has provided an (*XtS-
electionDoneProc) for the selection, this storage is
owned by the selection owner; otherwise, it is owned

Utility Functions

191

by the Intrinsics selection mechanism, which frees it
by calling XtFree when it is done with it.

length_return Specifies a pointer into which the number of el-
ements in value_return, each of size indicated by
format_return, is to be stored.

format_return Specifies a pointer into which the size in bits of the
data elements of the selection value is to be stored.

This procedure is called by the Intrinsics selection mechanism to get the value of
a selection as a given type from the current selection owner. It returns True if the
owner successfully converted the selection to the target type or False otherwise.
If the procedure returns False, the values of the return arguments are undefined.
Each (*XtConvertSelectionProc) should respond to target value TARGETS by re-
turning a value containing the list of the targets into which it is prepared to convert
the selection. The value returned in format_return must be one of 8, 16, or 32 to
allow the server to byte-swap the data if necessary.

This procedure does not need to worry about responding to the MULTIPLE or the
TIMESTAMP target values (see the section called “Window Creation Convenience
Routine” in the Inter-Client Communication Conventions Manual.). A selection re-
quest with the MULTIPLE target type is transparently transformed into a series of
calls to this procedure, one for each target type, and a selection request with the
TIMESTAMP target value is answered automatically by the Intrinsics using the time
specified in the call to XtOwnSelection or XtOwnSelectionIncremental.

To retrieve the SelectionRequest event that triggered the (*XtConvertSelection-
Proc) procedure, use XtGetSelectionRequest.

XSelectionRequestEvent *XtGetSelectionRequest(w, selection,
request_id);

w Specifies the widget that currently owns this selection.
Must be of class Core or any subclass thereof.

selection Specifies the selection being processed.

request_id Specifies the requestor id in the case of incremental
selections, or NULL in the case of atomic transfers.

XtGetSelectionRequest may be called only from within an (*XtConvertSelec-
tionProc) procedure and returns a pointer to the SelectionRequest event that
caused the conversion procedure to be invoked. Request_id specifies a unique id for
the individual request in the case that multiple incremental transfers are outstand-
ing. For atomic transfers, request_id must be specified as NULL. If no Selection-
Request event is being processed for the specified widget, selection, and request_id,
XtGetSelectionRequest returns NULL.

The procedure pointer specified by the owner when it desires notification upon los-
ing ownership is of type (*XtLoseSelectionProc).

typedef void (*XtLoseSelectionProc)(w, selection);

w Specifies the widget that has lost selection ownership.

selection Specifies the atom naming the selection.

Utility Functions

192

This procedure is called by the Intrinsics selection mechanism to inform the speci-
fied widget that it has lost the given selection. Note that this procedure does not
ask the widget to relinquish the selection ownership; it is merely informative.

The procedure pointer specified by the owner when it desires notification of receipt
of the data or when it manages the storage containing the data is of type (*XtS-
electionDoneProc).

typedef void (*XtSelectionDoneProc)(w, selection, target);

w Specifies the widget that owns the converted selection.

selection Specifies the atom naming the selection that was con-
verted.

target Specifies the target type to which the conversion was
done.

This procedure is called by the Intrinsics selection mechanism to inform the selec-
tion owner that a selection requestor has successfully retrieved a selection value. If
the selection owner has registered an (*XtSelectionDoneProc), it should expect it
to be called once for each conversion that it performs, after the converted value has
been successfully transferred to the requestor. If the selection owner has registered
an (*XtSelectionDoneProc), it also owns the storage containing the converted se-
lection value.

Getting the Selection Value

The procedure pointer specified by the requestor to receive the selection data from
the Intrinsics is of type (*XtSelectionCallbackPro).

typedef void (*XtSelectionCallbackPro)(w, client_data, selection, type,
value, length, format);

w Specifies the widget that requested the selection val-
ue.

client_data Specifies a value passed in by the widget when it re-
quested the selection.

selection Specifies the name of the selection that was request-
ed.

type Specifies the representation type of the selection val-
ue (for example, XA_STRING). Note that it is not
the target that was requested (which the client must
remember for itself), but the type that is used to
represent the target. The special symbolic constant
XT_CONVERT_FAIL is used to indicate that the selection
conversion failed because the selection owner did not
respond within the Intrinsics selection timeout inter-
val.

value Specifies a pointer to the selection value. The request-
ing client owns this storage and is responsible for free-
ing it by calling XtFree when it is done with it.

Utility Functions

193

length Specifies the number of elements in value.

format Specifies the size in bits of the data in each element
of value.

This procedure is called by the Intrinsics selection mechanism to deliver the re-
quested selection to the requestor.

If the SelectionNotify event returns a property of None, meaning the conversion
has been refused because there is no owner for the specified selection or the owner
cannot convert the selection to the requested target for any reason, the procedure
is called with a value of NULL and a length of zero.

To obtain the selection value in a single logical unit, use XtGetSelectionValue or
XtGetSelectionValues.

void XtGetSelectionValue(w, selection, target, callback, client_data,
time);

w Specifies the widget making the request. Must be of
class Core or any subclass thereof.

selection Specifies the particular selection desired; for example,
XA_PRIMARY.

target Specifies the type of information needed about the se-
lection.

callback Specifies the procedure to be called when the selec-
tion value has been obtained. Note that this is how the
selection value is communicated back to the client.

client_data Specifies additional data to be passed to the specified
procedure when it is called.

time Specifies the timestamp that indicates when the se-
lection request was initiated. This should be the time-
stamp of the event that triggered this request; the val-
ue CurrentTime is not acceptable.

The XtGetSelectionValue function requests the value of the selection converted
to the target type. The specified callback is called at some time after XtGetSelec-
tionValue is called, when the selection value is received from the X server. It may
be called before or after XtGetSelectionValue returns. For more information about
selection, target, and time, see Section 2.6 in the Inter-Client Communication Con-
ventions Manual..

void XtGetSelectionValues(w, selection, targets, count, callback,
client_data, time);

w Specifies the widget making the request. Must be of
class Core or any subclass thereof.

selection Specifies the particular selection desired (that is, pri-
mary or secondary).

targets Specifies the types of information needed about the
selection.

Utility Functions

194

count Specifies the length of the targets and client_data
lists.

callback Specifies the callback procedure to be called with
each selection value obtained. Note that this is how
the selection values are communicated back to the
client.

client_data Specifies a list of additional data values, one for each
target type, that are passed to the callback procedure
when it is called for that target.

time Specifies the timestamp that indicates when the se-
lection request was initiated. This should be the time-
stamp of the event that triggered this request; the val-
ue CurrentTime is not acceptable.

The XtGetSelectionValues function is similar to multiple calls to XtGetSelection-
Value except that it guarantees that no other client can assert ownership between
requests and therefore that all the conversions will refer to the same selection val-
ue. The callback is invoked once for each target value with the corresponding client
data. For more information about selection, target, and time, see section 2.6 in the
Inter-Client Communication Conventions Manual..

Setting the Selection Owner

To set the selection owner and indicate that the selection value will be provided in
one piece, use XtOwnSelection.

Boolean XtOwnSelection(w, selection, time, convert_proc,
lose_selection, done_proc);

w Specifies the widget that wishes to become the own-
er. Must be of class Core or any subclass thereof.

selection Specifies the name of the selection (for example,
XA_PRIMARY).

time Specifies the timestamp that indicates when the own-
ership request was initiated. This should be the time-
stamp of the event that triggered ownership; the val-
ue CurrentTime is not acceptable.

convert_proc Specifies the procedure to be called whenever a
client requests the current value of the selection.

lose_selection Specifies the procedure to be called whenever the
widget has lost selection ownership, or NULL if the
owner is not interested in being called back.

done_proc Specifies the procedure called after the requestor
has received the selection value, or NULL if the own-
er is not interested in being called back.

The XtOwnSelection function informs the Intrinsics selection mechanism that a
widget wishes to own a selection. It returns True if the widget successfully becomes
the owner and False otherwise. The widget may fail to become the owner if some

Utility Functions

195

other widget has asserted ownership at a time later than this widget. The widget
can lose selection ownership either because some other widget asserted later own-
ership of the selection or because the widget voluntarily gave up ownership of the
selection. The lose_selection procedure is not called if the widget fails to obtain se-
lection ownership in the first place.

If a done_proc is specified, the client owns the storage allocated for passing the
value to the Intrinsics. If done_proc is NULL, the convert_proc must allocate storage
using XtMalloc, XtRealloc, or XtCalloc, and the value specified is freed by the
Intrinsics when the transfer is complete.

Usually, a selection owner maintains ownership indefinitely until some other widget
requests ownership, at which time the Intrinsics selection mechanism informs the
previous owner that it has lost ownership of the selection. However, in response to
some user actions (for example, when a user deletes the information selected), the
application may wish to explicitly inform the Intrinsics by using XtDisownSelection
that it no longer is to be the selection owner.

void XtDisownSelection(w, selection, time);

w Specifies the widget that wishes to relinquish ownership.

selection Specifies the atom naming the selection being given up.

time Specifies the timestamp that indicates when the request
to relinquish selection ownership was initiated.

The XtDisownSelection function informs the Intrinsics selection mechanism that
the specified widget is to lose ownership of the selection. If the widget does not
currently own the selection, either because it lost the selection or because it never
had the selection to begin with, XtDisownSelection does nothing.

After a widget has called XtDisownSelection, its convert procedure is not called
even if a request arrives later with a timestamp during the period that this wid-
get owned the selection. However, its done procedure is called if a conversion that
started before the call to XtDisownSelection finishes after the call to XtDisownS-
election.

Using Incremental Transfers
When using the incremental interface, an owner may have to process more than one
selection request for the same selection, converted to the same target, at the same
time. The incremental functions take a request_id argument, which is an identifi-
er that is guaranteed to be unique among all incremental requests that are active
concurrently.

For example, consider the following:

• Upon receiving a request for the selection value, the owner sends the first seg-
ment.

• While waiting to be called to provide the next segment value but before sending
it, the owner receives another request from a different requestor for the same
selection value.

• To distinguish between the requests, the owner uses the request_id value. This
allows the owner to distinguish between the first requestor, which is asking for the
second segment, and the second requestor, which is asking for the first segment.

Utility Functions

196

Incremental Transfer Procedures

The following procedures are used by selection owners who wish to provide the
selection data in multiple segments.

The procedure pointer specified by the incremental owner to supply the selection
data to the Intrinsics is of type (*XtConvertSelectionIncrProc).

typedef XtPointer XtRequestId;

typedef Boolean (*XtConvertSelectionIncrProc)(w, selection, target,
type_return, value_return, length_return, format_return, max_length,
client_data, request_id);

w Specifies the widget that currently owns this selec-
tion.

selection Specifies the atom that names the selection request-
ed.

target Specifies the type of information required about the
selection.

type_return Specifies a pointer to an atom into which the property
type of the converted value of the selection is to be
stored.

value_return Specifies a pointer into which a pointer to the con-
verted value of the selection is to be stored. The se-
lection owner is responsible for allocating this stor-
age.

length_return Specifies a pointer into which the number of el-
ements in value_return, each of size indicated by
format_return, is to be stored.

format_return Specifies a pointer into which the size in bits of the
data elements of the selection value is to be stored so
that the server may byte-swap the data if necessary.

max_length Specifies the maximum number of bytes which may
be transferred at any one time.

client_data Specifies the value passed in by the widget when it
took ownership of the selection.

request_id Specifies an opaque identification for a specific re-
quest.

This procedure is called repeatedly by the Intrinsics selection mechanism to get the
next incremental chunk of data from a selection owner who has called XtOwnSelec-
tionIncremental. It must return True if the procedure has succeeded in converting
the selection data or False otherwise. On the first call with a particular request
id, the owner must begin a new incremental transfer for the requested selection
and target. On subsequent calls with the same request id, the owner may assume
that the previously supplied value is no longer needed by the Intrinsics; that is, a

Utility Functions

197

fixed transfer area may be allocated and returned in value_return for each segment
to be transferred. This procedure should store a non-NULL value in value_return
and zero in length_return to indicate that the entire selection has been delivered.
After returning this final segment, the request id may be reused by the Intrinsics
to begin a new transfer.

To retrieve the SelectionRequest event that triggered the selection conversion
procedure, use XtGetSelectionRequest, described in Section 11.5.2.1.

The procedure pointer specified by the incremental selection owner when it desires
notification upon no longer having ownership is of type (*XtLoseSelectionIncr-
Proc).

typedef void (*XtLoseSelectionIncrProc)(w, selection, client_data);

w Specifies the widget that has lost the selection owner-
ship.

selection Specifies the atom that names the selection.

client_data Specifies the value passed in by the widget when it
took ownership of the selection.

This procedure, which is optional, is called by the Intrinsics to inform the selection
owner that it no longer owns the selection.

The procedure pointer specified by the incremental selection owner when it desires
notification of receipt of the data or when it manages the storage containing the
data is of type (*XtSelectionDoneIncrProc).

typedef void (*XtSelectionDoneIncrProc)(w, selection, target,
request_id, client_data);

w Specifies the widget that owns the selection.

selection Specifies the atom that names the selection being
transferred.

target Specifies the target type to which the conversion was
done.

request_id Specifies an opaque identification for a specific re-
quest.

client_data Specified the value passed in by the widget when it
took ownership of the selection.

This procedure, which is optional, is called by the Intrinsics after the requestor has
retrieved the final (zero-length) segment of the incremental transfer to indicate that
the entire transfer is complete. If this procedure is not specified, the Intrinsics will
free only the final value returned by the selection owner using XtFree.

The procedure pointer specified by the incremental selection owner to notify it if
a transfer should be terminated prematurely is of type (*XtCancelConvertSelec-
tionProc).

typedef void (*XtCancelConvertSelectionProc)(w, selection, target,
request_id, client_data);

Utility Functions

198

w Specifies the widget that owns the selection.

selection Specifies the atom that names the selection being
transferred.

target Specifies the target type to which the conversion was
done.

request_id Specifies an opaque identification for a specific re-
quest.

client_data Specifies the value passed in by the widget when it
took ownership of the selection.

This procedure is called by the Intrinsics when it has been determined by means
of a timeout or other mechanism that any remaining segments of the selection no
longer need to be transferred. Upon receiving this callback, the selection request is
considered complete and the owner can free the memory and any other resources
that have been allocated for the transfer.

Getting the Selection Value Incrementally

To obtain the value of the selection using incremental transfers, use XtGetSelec-
tionValueIncremental or XtGetSelectionValuesIncremental.

void XtGetSelectionValueIncremental(w, selection, target,
selection_callback, client_data, time);

w Specifies the widget making the request. Must be of
class Core or any subclass thereof.

selection Specifies the particular selection desired.

target Specifies the type of information needed about the
selection.

selection_callback Specifies the callback procedure to be called to re-
ceive each data segment.

client_data Specifies client-specific data to be passed to the spec-
ified callback procedure when it is invoked.

time Specifies the timestamp that indicates when the se-
lection request was initiated. This should be the time-
stamp of the event that triggered this request; the
value CurrentTime is not acceptable.

The XtGetSelectionValueIncremental function is similar to XtGetSelectionVal-
ue except that the selection_callback procedure will be called repeatedly upon de-
livery of multiple segments of the selection value. The end of the selection value is
indicated when selection_callback is called with a non-NULL value of length zero,
which must still be freed by the client. If the transfer of the selection is aborted in the
middle of a transfer (for example, because of a timeout), the selection_callback pro-
cedure is called with a type value equal to the symbolic constant XT_CONVERT_FAIL
so that the requestor can dispose of the partial selection value it has collected up
until that point. Upon receiving XT_CONVERT_FAIL, the requesting client must de-

Utility Functions

199

termine for itself whether or not a partially completed data transfer is meaningful.
For more information about selection, target, and time, see the section called “Use
of Selection Atoms” in the Inter-Client Communication Conventions Manual.

void XtGetSelectionValuesIncremental(w, selection, targets, count,
selection_callback, client_data, time);

w Specifies the widget making the request. Must be of
class Core or any subclass thereof.

selection Specifies the particular selection desired.

targets Specifies the types of information needed about the
selection.

count Specifies the length of the targets and client_data
lists.

selection_callback Specifies the callback procedure to be called to re-
ceive each selection value.

client_data Specifies a list of client data (one for each target
type) values that are passed to the callback proce-
dure when it is invoked for the corresponding target.

time Specifies the timestamp that indicates when the se-
lection request was initiated. This should be the time-
stamp of the event that triggered this request; the
value CurrentTime is not acceptable.

The XtGetSelectionValuesIncremental function is similar to XtGetSelectionVa-
lueIncremental except that it takes a list of targets and client data. XtGetSelec-
tionValuesIncremental is equivalent to calling XtGetSelectionValueIncremen-
tal successively for each target/client_data pair except that XtGetSelectionVal-
uesIncremental does guarantee that all the conversions will use the same selection
value because the ownership of the selection cannot change in the middle of the
list, as would be possible when calling XtGetSelectionValueIncremental repeat-
edly. For more information about selection, target, and time, see Section 2.6 in the
Inter-Client Communication Conventions Manual.

Setting the Selection Owner for Incremental Transfers

To set the selection owner when using incremental transfers, use XtOwnSelec-
tionIncremental.

Boolean XtOwnSelectionIncremental(w, selection, time, convert_callback,
lose_callback, done_callback, cancel_callback, client_data);

w Specifies the widget that wishes to become the own-
er. Must be of class Core or any subclass thereof.

selection Specifies the atom that names the selection.

time Specifies the timestamp that indicates when the se-
lection ownership request was initiated. This should
be the timestamp of the event that triggered owner-
ship; the value CurrentTime is not acceptable.

Utility Functions

200

convert_callback Specifies the procedure to be called whenever the
current value of the selection is requested.

lose_callback Specifies the procedure to be called whenever the
widget has lost selection ownership, or NULL if the
owner is not interested in being notified.

done_callback Specifies the procedure called after the requestor
has received the entire selection, or NULL if the own-
er is not interested in being notified.

cancel_callback Specifies the callback procedure to be called when a
selection request aborts because a timeout expires,
or NULL if the owner is not interested in being noti-
fied.

client_data Specifies the argument to be passed to each of the
callback procedures when they are called.

The XtOwnSelectionIncremental procedure informs the Intrinsics incremental se-
lection mechanism that the specified widget wishes to own the selection. It returns
True if the specified widget successfully becomes the selection owner or False oth-
erwise. For more information about selection, target, and time, see Section 2.6 in
the Inter-Client Communication Conventions Manual.

If a done_callback procedure is specified, the client owns the storage allocated for
passing the value to the Intrinsics. If done_callback is NULL, the convert_callback
procedure must allocate storage using XtMalloc, XtRealloc, or XtCalloc, and the
final value specified is freed by the Intrinsics when the transfer is complete. After
a selection transfer has started, only one of the done_callback or cancel_callback
procedures is invoked to indicate completion of the transfer.

The lose_callback procedure does not indicate completion of any in-progress trans-
fers; it is invoked at the time a SelectionClear event is dispatched regardless of
any active transfers, which are still expected to continue.

A widget that becomes the selection owner using XtOwnSelectionIncremental may
use XtDisownSelection to relinquish selection ownership.

Setting and Retrieving Selection Target Parameters
To specify target parameters for a selection request with a single target, use
XtSetSelectionParameters.

void XtSetSelectionParameters(requestor, selection, type, value,
length, format);

requestor Specifies the widget making the request. Must be of
class Core or any subclass thereof.

selection Specifies the atom that names the selection.

type Specifies the type of the property in which the parame-
ters are passed.

value Specifies a pointer to the parameters.

Utility Functions

201

length Specifies the number of elements containing data in val-
ue, each element of a size indicated by format.

format Specifies the size in bits of the data in the elements of
value.

The specified parameters are copied and stored in a new property of the speci-
fied type and format on the requestor's window. To initiate a selection request with
a target and these parameters, a subsequent call to XtGetSelectionValue or to
XtGetSelectionValueIncremental specifying the same requestor widget and se-
lection atom will generate a ConvertSelection request referring to the property
containing the parameters. If XtSetSelectionParameters is called more than once
with the same widget and selection without a call to specify a request, the most
recently specified parameters are used in the subsequent request.

The possible values of format are 8, 16, or 32. If the format is 8, the elements of
value are assumed to be sizeof(char); if 16, sizeof(short); if 32, sizeof(long).

To generate a MULTIPLE target request with parameters for any of the multi-
ple targets of the selection request, precede individual calls to XtGetSelection-
Value and XtGetSelectionValueIncremental with corresponding individual calls
to XtSetSelectionParameters, and enclose these all within XtCreateSelection-
Request and XtSendSelectionRequest. XtGetSelectionValues and XtGetSelec-
tionValuesIncremental cannot be used to make selection requests with parame-
terized targets.

To retrieve any target parameters needed to perform a selection conversion, the
selection owner calls XtGetSelectionParameters.

void XtGetSelectionParameters(owner, selection, request_id,
type_return, value_return, length_return, format_return);

owner Specifies the widget that owns the specified selec-
tion.

selection Specifies the selection being processed.

request_id Specifies the requestor id in the case of incremental
selections, or NULL in the case of atomic transfers.

type_return Specifies a pointer to an atom in which the property
type of the parameters is stored.

value_return Specifies a pointer into which a pointer to the para-
meters is to be stored. A NULL is stored if no para-
meters accompany the request.

length_return Specifies a pointer into which the number of da-
ta elements in value_return of size indicated by
format_return are stored.

format_return Specifies a pointer into which the size in bits of the
parameter data in the elements of value is stored.

XtGetSelectionParameters may be called only from within an (*XtConvertSelec-
tionProc) or from within the first call to an (*XtConvertSelectionIncrProc) with
a new request_id.

Utility Functions

202

It is the responsibility of the caller to free the returned parameters using XtFree
when the parameters are no longer needed.

Generating MULTIPLE Requests
To have the Intrinsics bundle multiple calls to make selection requests into a single
request using a MULTIPLE target, use XtCreateSelectionRequest and XtSendS-
electionRequest.

void XtCreateSelectionRequest(requestor, selection);

requestor Specifies the widget making the request. Must be of
class Core or any subclass thereof.

selection Specifies the particular selection desired.

When XtCreateSelectionRequest is called, subsequent calls to XtGetSelection-
Value, XtGetSelectionValueIncremental, XtGetSelectionValues, and XtGetS-
electionValuesIncremental, with the requestor and selection as specified to
XtCreateSelectionRequest, are bundled into a single selection request with mul-
tiple targets. The request is made by calling XtSendSelectionRequest.

void XtSendSelectionRequest(requestor, selection, time);

requestor Specifies the widget making the request. Must be of
class Core or any subclass thereof.

selection Specifies the particular selection desired.

time Specifies the timestamp that indicates when the selec-
tion request was initiated. The value CurrentTime is not
acceptable.

When XtSendSelectionRequest is called with a value of requestor and selection
matching a previous call to XtCreateSelectionRequest, a selection request is sent
to the selection owner. If a single target request is queued, that request is made.
If multiple targets are queued, they are bundled into a single request with a tar-
get of MULTIPLE using the specified timestamp. As the values are returned, the
callbacks specified in XtGetSelectionValue, XtGetSelectionValueIncremental,
XtGetSelectionValues, and XtGetSelectionValueIncremental are invoked.

Multi-threaded applications should lock the application context before calling
XtCreateSelectionRequest and release the lock after calling XtSendSelection-
Request to ensure that the thread assembling the request is safe from interference
by another thread assembling a different request naming the same widget and se-
lection.

To relinquish the composition of a MULTIPLE request without sending it, use
XtCancelSelectionRequest.

void XtCancelSelectionRequest(requestor, selection);

requestor Specifies the widget making the request. Must be of
class Core or any subclass thereof.

selection Specifies the particular selection desired.

Utility Functions

203

When XtCancelSelectionRequest is called, any requests queued since the last call
to XtCreateSelectionRequest for the same widget and selection are discarded and
any resources reserved are released. A subsequent call to XtSendSelectionRequest
will not result in any request being made. Subsequent calls to XtGetSelectionVa-
lue, XtGetSelectionValues, XtGetSelectionValueIncremental, or XtGetSelec-
tionValuesIncremental will not be deferred.

Auxiliary Selection Properties
Certain uses of parameterized selections require clients to name other window prop-
erties within a selection parameter. To permit reuse of temporary property names
in these circumstances and thereby reduce the number of unique atoms created in
the server, the Intrinsics provides two interfaces for acquiring temporary property
names.

To acquire a temporary property name atom for use in a selection request, the client
may call XtReservePropertyAtom.

Atom XtReservePropertyAtom(w);

w Specifies the widget making a selection request.

XtReservePropertyAtom returns an atom that may be used as a property name dur-
ing selection requests involving the specified widget. As long as the atom remains
reserved, it is unique with respect to all other reserved atoms for the widget.

To return a temporary property name atom for reuse and to delete the property
named by that atom, use XtReleasePropertyAtom.

void XtReleasePropertyAtom(w, atom);

w Specifies the widget used to reserve the property name atom.

atom Specifies the property name atom returned by XtReserve-
PropertyAtom that is to be released for reuse.

XtReleasePropertyAtom marks the specified property name atom as no longer in
use and ensures that any property having that name on the specified widget's win-
dow is deleted. If atom does not specify a value returned by XtReserveProperty-
Atom for the specified widget, the results are undefined.

Retrieving the Most Recent Timestamp
To retrieve the timestamp from the most recent call to XtDispatchEvent that con-
tained a timestamp, use XtLastTimestampProcessed.

Time XtLastTimestampProcessed(display);

display Specifies an open display connection.

If no KeyPress, KeyRelease, ButtonPress, ButtonRelease, MotionNotify, Enter-
Notify, LeaveNotify, PropertyNotify, or SelectionClear event has yet been
passed to XtDispatchEvent for the specified display, XtLastTimestampProcessed
returns zero.

Utility Functions

204

Retrieving the Most Recent Event
To retrieve the event from the most recent call to XtDispatchEvent for a specific
display, use XtLastEventProcessed.

XEvent *XtLastEventProcessed(display);

display Specifies the display connection from which to retrieve the
event.

Returns the last event passed to XtDispatchEvent for the specified display. Returns
NULL if there is no such event. The client must not modify the contents of the
returned event.

Merging Exposure Events into a Region
The Intrinsics provide an XtAddExposureToRegion utility function that merges Ex-
pose and GraphicsExpose events into a region for clients to process at once rather
than processing individual rectangles. For further information about regions, see
the section called “Manipulating Regions” in Xlib — C Language X Interface..

To merge Expose and GraphicsExpose events into a region, use XtAddExposure-
ToRegion.

void XtAddExposureToRegion(event, region);

event Specifies a pointer to the Expose or GraphicsExpose event.

region Specifies the region object (as defined in <X11/Xutil.h>).

The XtAddExposureToRegion function computes the union of the rectangle defined
by the exposure event and the specified region. Then it stores the results back in
region. If the event argument is not an Expose or GraphicsExpose event, XtAddEx-
posureToRegion returns without an error and without modifying region.

This function is used by the exposure compression mechanism; see the section
called “Exposure Compression”

Translating Widget Coordinates
To translate an x-y coordinate pair from widget coordinates to root window absolute
coordinates, use XtTranslateCoords.

void XtTranslateCoords(w, x, rootx_return);

w Specifies the widget. Must be of class RectObj or any
subclass thereof.

x

y Specify the widget-relative x and y coordinates.

rootx_return

rooty_return Return the root-relative x and y coordinates.

Utility Functions

205

While XtTranslateCoords is similar to the Xlib XTranslateCoordinates function,
it does not generate a server request because all the required information already
is in the widget's data structures.

Translating a Window to a Widget
To translate a given window and display pointer into a widget instance, use XtWin-
dowToWidget.

Widget XtWindowToWidget(display, window);

display Specifies the display on which the window is defined.

window Specifies the drawable for which you want the widget.

If there is a realized widget whose window is the specified drawable on the specified
display, XtWindowToWidget returns that widget. If not and if the drawable has been
associated with a widget through XtRegisterDrawable, XtWindowToWidget returns
the widget associated with the drawable. In other cases it returns NULL.

Handling Errors
The Intrinsics allow a client to register procedures that are called whenever a fatal
or nonfatal error occurs. These facilities are intended for both error reporting and
logging and for error correction or recovery.

Two levels of interface are provided:

• A high-level interface that takes an error name and class and retrieves the error
message text from an error resource database.

• A low-level interface that takes a simple string to display.

The high-level functions construct a string to pass to the lower-level interface. The
strings may be specified in application code and are overridden by the contents of
an external systemwide file, the "error database file". The location and name of this
file are implementation-dependent.

Note
The application-context-specific error handling is not implemented on many
systems, although the interfaces are always present. Most implementations
will have just one set of error handlers for all application contexts within a
process. If they are set for different application contexts, the ones registered
last will prevail.

To obtain the error database (for example, to merge with an application- or wid-
get-specific database), use XtAppGetErrorDatabase.

XrmDatabase *XtAppGetErrorDatabase(app_context);

app_context Specifies the application context.

The XtAppGetErrorDatabase function returns the address of the error database.
The Intrinsics do a lazy binding of the error database and do not merge in the data-
base file until the first call to XtAppGetErrorDatabaseText.

Utility Functions

206

For a complete listing of all errors and warnings that can be generated by the In-
trinsics, see Appendix D, Intrinsics Error Messages

The high-level error and warning handler procedure pointers are of type (*XtEr-
rorMsgHandler).

typedef void (*XtErrorMsgHandler)(name, type, class, defaultp, params,
num_params);

name Specifies the name to be concatenated with the speci-
fied type to form the resource name of the error mes-
sage.

type Specifies the type to be concatenated with the name to
form the resource name of the error message.

class Specifies the resource class of the error message.

defaultp Specifies the default message to use if no error data-
base entry is found.

params Specifies a pointer to a list of parameters to be substi-
tuted in the message.

num_params Specifies the number of entries in params.

The specified name can be a general kind of error, like "invalidParameters" or "in-
validWindow", and the specified type gives extra information such as the name of
the routine in which the error was detected. Standard printf notation is used to
substitute the parameters into the message.

An error message handler can obtain the error database text for an error or a warn-
ing by calling XtAppGetErrorDatabaseText.

void XtAppGetErrorDatabaseText(app_context, name, default,
buffer_return, nbytes, database);

app_context Specifies the application context.

name , type Specify the name and type concatenated to form the
resource name of the error message.

class Specifies the resource class of the error message.

default Specifies the default message to use if an error data-
base entry is not found.

buffer_return Specifies the buffer into which the error message is
to be returned.

nbytes Specifies the size of the buffer in bytes.

database Specifies the name of the alternative database to be
used, or NULL if the application context's error data-
base is to be used.

The XtAppGetErrorDatabaseText returns the appropriate message from the error
database or returns the specified default message if one is not found in the error

Utility Functions

207

database. To form the full resource name and class when querying the database,
the name and type are concatenated with a single "." between them and the class
is concatenated with itself with a single "." if it does not already contain a ".".

To return the application name and class as passed to XtDisplayInitialize for a
particular Display, use XtGetApplicationNameAndClass.

void XtGetApplicationNameAndClass(display, name_return, class_return);

display Specifies an open display connection that has been
initialized with XtDisplayInitialize.

name_return Returns the application name.

class_return Returns the application class.

XtGetApplicationNameAndClass returns the application name and class passed to
XtDisplayInitialize for the specified display. If the display was never initialized
or has been closed, the result is undefined. The returned strings are owned by the
Intrinsics and must not be modified or freed by the caller.

To register a procedure to be called on fatal error conditions, use XtAppSetErrorMs-
gHandler.

XtErrorMsgHandler XtAppSetErrorMsgHandler(app_context, msg_handler);

app_context Specifies the application context.

msg_handler Specifies the new fatal error procedure, which should
not return.

XtAppSetErrorMsgHandler returns a pointer to the previously installed high-level
fatal error handler. The default high-level fatal error handler provided by the Intrin-
sics is named _XtDefaultErrorMsg and constructs a string from the error resource
database and calls XtError. Fatal error message handlers should not return. If one
does, subsequent Intrinsics behavior is undefined.

To call the high-level error handler, use XtAppErrorMsg.

void XtAppErrorMsg(app_context, name, type, class, default, params,
num_params);

app_context Specifies the application context.

name Specifies the general kind of error.

type Specifies the detailed name of the error.

class Specifies the resource class.

default Specifies the default message to use if an error data-
base entry is not found.

params Specifies a pointer to a list of values to be stored in
the message.

num_params Specifies the number of entries in params.

Utility Functions

208

The Intrinsics internal errors all have class "XtToolkitError".

To register a procedure to be called on nonfatal error conditions, use XtAppSet-
WarningMsgHandler.

XtErrorMsgHandler XtAppSetWarningMsgHandler(app_context, msg_handler);

app_context Specifies the application context.

msg_handler Specifies the new nonfatal error procedure, which
usually returns.

XtAppSetWarningMsgHandler returns a pointer to the previously installed high-level
warning handler. The default high-level warning handler provided by the Intrinsics
is named _XtDefaultWarningMsg and constructs a string from the error resource
database and calls XtWarning.

To call the installed high-level warning handler, use XtAppWarningMsg.

void XtAppWarningMsg(app_context, name, type, class, default, params,
num_params);

app_context Specifies the application context.

name Specifies the general kind of error.

type Specifies the detailed name of the error.

class Specifies the resource class.

default Specifies the default message to use if an error data-
base entry is not found.

params Specifies a pointer to a list of values to be stored in
the message.

num_params Specifies the number of entries in params.

The Intrinsics internal warnings all have class "XtToolkitError".

The low-level error and warning handler procedure pointers are of type (*XtEr-
rorHandler).

typedef void (*XtErrorHandler)(message);

message Specifies the error message.

The error handler should display the message string in some appropriate fashion.

To register a procedure to be called on fatal error conditions, use XtAppSetEr-
rorHandler.

XtErrorHandler XtAppSetErrorHandler(app_context, handler);

app_context Specifies the application context.

handler Specifies the new fatal error procedure, which should
not return.

Utility Functions

209

XtAppSetErrorHandler returns a pointer to the previously installed low-level fa-
tal error handler. The default low-level error handler provided by the Intrinsics is
_XtDefaultError. On POSIX-based systems, it prints the message to standard error
and terminates the application. Fatal error message handlers should not return. If
one does, subsequent Intrinsics behavior is undefined.

To call the installed fatal error procedure, use XtAppError.

void XtAppError(app_context, message);

app_context Specifies the application context.

message Specifies the message to be reported.

Most programs should use XtAppErrorMsg, not XtAppError, to provide for cus-
tomization and internationalization of error messages.

To register a procedure to be called on nonfatal error conditions, use XtAppSet-
WarningHandler.

XtErrorHandler XtAppSetWarningHandler(app_context, handler);

app_context Specifies the application context.

handler Specifies the new nonfatal error procedure, which
usually returns.

XtAppSetWarningHandler returns a pointer to the previously installed low-level
warning handler. The default low-level warning handler provided by the Intrinsics
is _XtDefaultWarning. On POSIX-based systems, it prints the message to standard
error and returns to the caller.

To call the installed nonfatal error procedure, use XtAppWarning.

void XtAppWarning(app_context, message);

app_context Specifies the application context.

message Specifies the nonfatal error message to be reported.

Most programs should use XtAppWarningMsg, not XtAppWarning, to provide for cus-
tomization and internationalization of warning messages.

Setting WM_COLORMAP_WINDOWS
A client may set the value of the WM_COLORMAP_WINDOWS property on a
widget's window by calling XtSetWMColormapWindows.

void XtSetWMColormapWindows(widget, list, count);

widget Specifies the widget on whose window the
WM_COLORMAP_WINDOWS property is stored. Must be
of class Core or any subclass thereof.

list Specifies a list of widgets whose windows are potentially to
be listed in the WM_COLORMAP_WINDOWS property.

Utility Functions

210

count Specifies the number of widgets in list.

XtSetWMColormapWindows returns immediately if widget is not realized or if count
is 0. Otherwise, XtSetWMColormapWindows constructs an ordered list of windows by
examining each widget in list in turn and ignoring the widget if it is not realized,
or adding the widget's window to the window list if the widget is realized and if its
colormap resource is different from the colormap resources of all widgets whose
windows are already on the window list.

Finally, XtSetWMColormapWindows stores the resulting window list in the
WM_COLORMAP_WINDOWS property on the specified widget's window. Refer to
Section 4.1.8 in the Inter-Client Communication Conventions Manual. for details of
the semantics of the WM_COLORMAP_WINDOWS property.

Finding File Names
The Intrinsics provide procedures to look for a file by name, allowing string sub-
stitutions in a list of file specifications. Two routines are provided for this: XtFind-
File and XtResolvePathname. XtFindFile uses an arbitrary set of client-specified
substitutions, and XtResolvePathname uses a set of standard substitutions corre-
sponding to the X/Open Portability Guide language localization conventions. Most
applications should use XtResolvePathname.

A string substitution is defined by a list of Substitution entries.

typedef struct {
 char match;
 String substitution;
} SubstitutionRec, *Substitution;

File name evaluation is handled in an operating-system-dependent fashion by an
(*XtFilePredicate) procedure.

typedef Boolean (*XtFilePredicate)(filename);

filename Specifies a potential filename.

A file predicate procedure is called with a string that is potentially a file name. It
should return True if this string specifies a file that is appropriate for the intended
use and False otherwise.

To search for a file using substitutions in a path list, use XtFindFile.

String XtFindFile(path, substitutions, num_substitutions, predicate);

path Specifies a path of file names, including substitution
characters.

substitutions Specifies a list of substitutions to make into the path.

num_substitutions Specifies the number of substitutions passed in.

predicate Specifies a procedure called to judge each potential
file name, or NULL.

Utility Functions

211

The path parameter specifies a string that consists of a series of potential file names
delimited by colons. Within each name, the percent character specifies a string sub-
stitution selected by the following character. The character sequence "%:" specifies
an embedded colon that is not a delimiter; the sequence is replaced by a single
colon. The character sequence "%%" specifies a percent character that does not
introduce a substitution; the sequence is replaced by a single percent character. If a
percent character is followed by any other character, XtFindFile looks through the
specified substitutions for that character in the match field and, if found, replaces
the percent and match characters with the string in the corresponding substitution
field. A substitution field entry of NULL is equivalent to a pointer to an empty string.
If the operating system does not interpret multiple embedded name separators in
the path (i.e., "/" in POSIX) the same way as a single separator, XtFindFile will
collapse multiple separators into a single one after performing all string substitu-
tions. Except for collapsing embedded separators, the contents of the string substi-
tutions are not interpreted by XtFindFile and may therefore contain any operat-
ing-system-dependent characters, including additional name separators. Each re-
sulting string is passed to the predicate procedure until a string is found for which
the procedure returns True; this string is the return value for XtFindFile. If no
string yields a True return from the predicate, XtFindFile returns NULL.

If the predicate parameter is NULL, an internal procedure that checks if the file
exists, is readable, and is not a directory is used.

It is the responsibility of the caller to free the returned string using XtFree when
it is no longer needed.

To search for a file using standard substitutions in a path list, use XtResolvePath-
name.

String XtResolvePathname(display, type, substitutions,
num_substitutions, predicate);

display Specifies the display to use to find the language for
language substitutions.

type

filename

suffix Specify values to substitute into the path.

path Specifies the list of file specifications, or NULL.

substitutions Specifies a list of additional substitutions to make in-
to the path, or NULL.

num_substitutions Specifies the number of entries in substitutions.

predicate Specifies a procedure called to judge each potential
file name, or NULL.

The substitutions specified by XtResolvePathname are determined from the value
of the language string retrieved by XtDisplayInitialize for the specified display.
To set the language for all applications specify "*xnlLanguage: lang" in the resource
database. The format and content of the language string are implementation-de-
fined. One suggested syntax is to compose the language string of three parts; a "lan-
guage part", a "territory part" and a "codeset part". The manner in which this com-

Utility Functions

212

position is accomplished is implementation-defined, and the Intrinsics make no in-
terpretation of the parts other than to use them in substitutions as described below.

XtResolvePathname calls XtFindFile with the following substitutions in addition
to any passed by the caller and returns the value returned by XtFindFile:

%N The value of the filename parameter, or the application's class name if
filename is NULL.

%T The value of the type parameter.

%S The value of the suffix parameter.

%L The language string associated with the specified display.

%l The language part of the display's language string.

%t The territory part of the display's language string.

%c The codeset part of the display's language string.

%C The customization string retrieved from the resource database associ-
ated with display.

%D The value of the implementation-specific default path.

If a path is passed to XtResolvePathname, it is passed along to XtFindFile. If the
path argument is NULL, the value of the XFILESEARCHPATH environment vari-
able is passed to XtFindFile. If XFILESEARCHPATH is not defined, an implemen-
tation-specific default path is used that contains at least six entries. These entries
must contain the following substitutions:

1. %C, %N, %S, %T, %L or %C, %N, %S, %T, %l, %t, %c
2. %C, %N, %S, %T, %l
3. %C, %N, %S, %T
4. %N, %S, %T, %L or %N, %S, %T, %l, %t, %c
5. %N, %S, %T, %l
6. %N, %S, %T

The order of these six entries within the path must be as given above. The order
and use of substitutions within a given entry are implementation-dependent. If the
path begins with a colon, it is preceded by %N%S. If the path includes two adjacent
colons, %N%S is inserted between them.

The type parameter is intended to be a category of files, usually being translated into
a directory in the pathname. Possible values might include "app-defaults", "help",
and "bitmap".

The suffix parameter is intended to be appended to the file name. Possible values
might include ".txt", ".dat", and ".bm".

A suggested value for the default path on POSIX-based systems is

 /usr/lib/X11/%L/%T/%N%C%S:/usr/lib/X11/%l/%T/%N%C%S:\
 /usr/lib/X11/%T/%N%C%S:/usr/lib/X11/%L/%T/%N%S:\
 /usr/lib/X11/%l/%T/%N%S:/usr/lib/X11/%T/%N%S

Utility Functions

213

Using this example, if the user has specified a language, it is used as a subdirectory
of /usr/lib/X11 that is searched for other files. If the desired file is not found there,
the lookup is tried again using just the language part of the specification. If the
file is not there, it is looked for in /usr/lib/X11. The type parameter is used as a
subdirectory of the language directory or of /usr/lib/X11, and suffix is appended to
the file name.

The %D substitution allows the addition of path elements to the implementation-spe-
cific default path, typically to allow additional directories to be searched with-
out preventing resources in the system directories from being found. For exam-
ple, a user installing resource files under a directory called "ourdir" might set
XFILESEARCHPATH to

 %D:ourdir/%T/%N%C:ourdir/%T/%N

The customization string is obtained by querying the resource database current-
ly associated with the display (the database returned by XrmGetDatabase) for the
resource application_name.customization, class application_class.Customization,
where application_name and application_class are the values returned by XtGetAp-
plicationNameAndClass. If no value is specified in the database, the empty string
is used.

It is the responsibility of the caller to free the returned string using XtFree when
it is no longer needed.

Hooks for External Agents
Applications may register functions that are called at a particular control points
in the Intrinsics. These functions are intended to be used to provide notification
of an "X Toolkit event", such as widget creation, to an external agent, such as an
interactive resource editor, drag-and-drop server, or an aid for physically challenged
users. The control points containing such registration hooks are identified in a "hook
registration" object.

To retrieve the hook registration widget, use XtHooksOfDisplay.

Widget XtHooksOfDisplay(display);

display Specifies the desired display.

The class of this object is a private, implementation-dependent subclass of Object.
The hook object has no parent. The resources of this object are the callback lists for
hooks and the read-only resources for getting a list of parentless shells. All of the
callback lists are initially empty. When a display is closed, the hook object associated
with it is destroyed.

The following procedures can be called with the hook registration object as an ar-
gument:

• XtAddCallback, XtAddCallbacks, XtRemoveCallback, XtRemoveCallbacks,
XtRemoveAllCallbacks, XtCallCallbacks, XtHasCallbacks, XtCallCallback-
List

• XtClass, XtSuperclass, XtIsSubclass, XtCheckSubclass, XtIsObject, XtIs-
RectObj, XtIsWidget, XtIsComposite, XtIsConstraint, XtIsShell, XtIsOver-

Utility Functions

214

rideShell, XtIsWMShell, XtIsVendorShell, XtIsTransientShell, XtIsTo-
plevelShell, XtIsApplicationShell, XtIsSessionShell

• XtWidgetToApplicationContext
• XtName, XtParent, *XtDisplayOfObject, *XtScreenOfObject
• XtSetValues, XtGetValues, XtVaSetValues, XtVaGetValues

Hook Object Resources
The resource names, classes, and representation types that are specified in the hook
object resource list are:

Name Class Representation
XtNcreateHook XtCCallback XtRCallback
XtNchangeHook XtCCallback XtRCallback
XtNconfigureHook XtCCallback XtRCallback
XtNgeometryHook XtCCallback XtRCallback
XtNdestroyHook XtCCallback XtRCallback
XtNshells XtCReadOnly XtRWidgetList
XtNnumShells XtCReadOnly XtRCardinal

Descriptions of each of these resources:

The XtNcreateHook callback list is called from: XtCreateWidget, XtCreateMan-
agedWidget, XtCreatePopupShell, XtAppCreateShell, and their corresponding
varargs versions.

The call_data parameter in a createHook callback may be cast to type XtCreate-
HookData.

typedef struct {
 String type;
 Widget widget;
 ArgList args;
 Cardinal num_args;
} XtCreateHookDataRec, *XtCreateHookData;

The type is set to XtHcreate, widget is the newly created widget, and args and
num_args are the arguments passed to the create function. The callbacks are called
before returning from the create function.

The XtNchangeHook callback list is called from:

• XtSetValues, XtVaSetValues
• XtManageChild, XtManageChildren, XtUnmanageChild, XtUnmanageChildren
• XtRealizeWidget, XtUnrealizeWidget
• XtAddCallback, XtRemoveCallback, XtAddCallbacks, XtRemoveCallbacks,
XtRemoveAllCallbacks

• XtAugmentTranslations, XtOverrideTranslations, XtUninstallTranslations
• XtSetKeyboardFocus, XtSetWMColormapWindows
• XtSetMappedWhenManaged, XtMapWidget, XtUnmapWidget
• XtPopup, XtPopupSpringLoaded, XtPopdown

Utility Functions

215

The call_data parameter in a changeHook callback may be cast to type XtChange-
HookData.

typedef struct {
 String type;
 Widget widget;
 XtPointer event_data;
 Cardinal num_event_data;
} XtChangeHookDataRec, *XtChangeHookData;

When the changeHook callbacks are called as a result of a call to XtSetValues or
XtVaSetValues, type is set to XtHsetValues, widget is the new widget passed to
the set_values procedure, and event_data may be cast to type XtChangeHookSet-
ValuesData.

typedef struct {
 Widget old, req;
 ArgList args;
 Cardinal num_args;
} XtChangeHookSetValuesDataRec, *XtChangeHookSetValuesData;

The old, req, args, and num_args are the parameters passed to the set_values pro-
cedure. The callbacks are called after the set_values and constraint set_values pro-
cedures have been called.

When the changeHook callbacks are called as a result of a call to XtManageChild
or XtManageChildren, type is set to XtHmanageChildren, widget is the parent,
event_data may be cast to type WidgetList and is the list of children being managed,
and num_event_data is the length of the widget list. The callbacks are called after
the children have been managed.

When the changeHook callbacks are called as a result of a call to XtUnmanageChild
or XtUnmanageChildren, type is set to XtHunmanageChildren, widget is the parent,
event_data may be cast to type WidgetList and is a list of the children being unman-
aged, and num_event_data is the length of the widget list. The callbacks are called
after the children have been unmanaged.

The changeHook callbacks are called twice as a result of a call to XtChangeMan-
agedSet, once after unmanaging and again after managing. When the callbacks are
called the first time, type is set to XtHunmanageSet, widget is the parent, event_data
may be cast to type WidgetList and is a list of the children being unmanaged, and
num_event_data is the length of the widget list. When the callbacks are called the
second time, the type is set to XtHmanageSet, widget is the parent, event_data
may be cast to type WidgetList and is a list of the children being managed, and
num_event_data is the length of the widget list.

When the changeHook callbacks are called as a result of a call to XtRealizeWidget,
the type is set to XtHrealizeWidget and widget is the widget being realized. The
callbacks are called after the widget has been realized.

When the changeHook callbacks are called as a result of a call to XtUnrealizeWid-
get, the type is set to XtHunrealizeWidget, and widget is the widget being unreal-
ized. The callbacks are called after the widget has been unrealized.

Utility Functions

216

When the changeHook callbacks are called as a result of a call to XtAddCallback,
type is set to XtHaddCallback, widget is the widget to which the callback is being
added, and event_data may be cast to type String and is the name of the callback be-
ing added. The callbacks are called after the callback has been added to the widget.

When the changeHook callbacks are called as a result of a call to XtAddCallbacks,
the type is set to XtHaddCallbacks, widget is the widget to which the callbacks
are being added, and event_data may be cast to type String and is the name of the
callbacks being added. The callbacks are called after the callbacks have been added
to the widget.

When the changeHook callbacks are called as a result of a call to XtRemoveCallback,
the type is set to XtHremoveCallback, widget is the widget from which the callback
is being removed, and event_data may be cast to type String and is the name of
the callback being removed. The callbacks are called after the callback has been
removed from the widget.

When the changeHook callbacks are called as a result of a call to XtRemoveCall-
backs, the type is set to XtHremoveCallbacks, widget is the widget from which the
callbacks are being removed, and event_data may be cast to type String and is the
name of the callbacks being removed. The callbacks are called after the callbacks
have been removed from the widget.

When the changeHook callbacks are called as a result of a call to XtRemoveAll-
Callbacks, the type is set to XtHremoveAllCallbacks and widget is the widget from
which the callbacks are being removed. The callbacks are called after the callbacks
have been removed from the widget.

When the changeHook callbacks are called as a result of a call to XtAugmentTrans-
lations, the type is set to XtHaugmentTranslations and widget is the widget whose
translations are being modified. The callbacks are called after the widget's transla-
tions have been modified.

When the changeHook callbacks are called as a result of a call to XtOverrideTrans-
lations, the type is set to XtHoverrideTranslations and widget is the widget
whose translations are being modified. The callbacks are called after the widget's
translations have been modified.

When the changeHook callbacks are called as a result of a call to XtUninstall-
Translations, The type is XtHuninstallTranslations and widget is the widget
whose translations are being uninstalled. The callbacks are called after the widget's
translations have been uninstalled.

When the changeHook callbacks are called as a result of a call to XtSetKeyboard-
Focus, the type is set to XtHsetKeyboardFocus and event_data may be cast to type
Widget and is the value of the descendant argument passed to XtSetKeyboardFo-
cus. The callbacks are called before returning from XtSetKeyboardFocus.

When the changeHook callbacks are called as a result of a call to XtSetWMColormap-
Windows, type is set to XtHsetWMColormapWindows, event_data may be cast to type
WidgetList and is the value of the list argument passed to XtSetWMColormapWin-
dows, and num_event_data is the length of the list. The callbacks are called before
returning from XtSetWMColormapWindows.

When the changeHook callbacks are called as a result of a call to XtSetMappedWhen-
Managed, the type is set to XtHsetMappedWhenManaged and event_data may be cast

Utility Functions

217

to type Boolean and is the value of the mapped_when_managed argument passed
to XtSetMappedWhenManaged. The callbacks are called after setting the widget's
mapped_when_managed field and before realizing or unrealizing the widget.

When the changeHook callbacks are called as a result of a call to XtMapWidget, the
type is set to XtHmapWidget and widget is the widget being mapped. The callbacks
are called after mapping the widget.

When the changeHook callbacks are called as a result of a call to XtUnmapWidget,
the type is set to XtHunmapWidget and widget is the widget being unmapped. The
callbacks are called after unmapping the widget.

When the changeHook callbacks are called as a result of a call to XtPopup, the type is
set to XtHpopup, widget is the widget being popped up, and event_data may be cast
to type XtGrabKind and is the value of the grab_kind argument passed to XtPopup.
The callbacks are called before returning from XtPopup.

When the changeHook callbacks are called as a result of a call to XtPop-
upSpringLoaded, the type is set to XtHpopupSpringLoaded and widget is the wid-
get being popped up. The callbacks are called before returning from XtPop-
upSpringLoaded.

When the changeHook callbacks are called as a result of a call to XtPopdown, the
type is set to XtHpopdown and widget is the widget being popped down. The callbacks
are called before returning from XtPopdown.

A widget set that exports interfaces that change application state without employing
the Intrinsics library should invoke the change hook itself. This is done by:

 XtCallCallbacks(XtHooksOfDisplay(dpy), XtNchangeHook, call_data);

The XtNconfigureHook callback list is called any time the Intrinsics move, resize,
or configure a widget and when XtResizeWindow is called.

The call_data parameter may be cast to type XtConfigureHookData.

typedef struct {
 String type;
 Widget widget;
 XtGeometryMask changeMask;
 XWindowChanges changes;
} XtConfigureHookDataRec, *XtConfigureHookData;

When the configureHook callbacks are called, the type is XtHconfigure, widget
is the widget being configured, and changeMask and changes reflect the changes
made to the widget. The callbacks are called after changes have been made to the
widget.

The XtNgeometryHook callback list is called from XtMakeGeometryRequest and
XtMakeResizeRequest once before and once after geometry negotiation occurs.

The call_data parameter may be cast to type XtGeometryHookData.

Utility Functions

218

typedef struct {
 String type;
 Widget widget;
 XtWidgetGeometry* request;
 XtWidgetGeometry* reply;
 XtGeometryResult result;
} XtGeometryHookDataRec, *XtGeometryHookData;

When the geometryHook callbacks are called prior to geometry negotiation, the
type is XtHpreGeometry, widget is the widget for which the request is being made,
and request is the requested geometry. When the geometryHook callbacks are
called after geometry negotiation, the type is XtHpostGeometry, widget is the wid-
get for which the request was made, request is the requested geometry, reply is
the resulting geometry granted, and result is the value returned from the geometry
negotiation.

The XtNdestroyHook callback list is called when a widget is destroyed. The call_data
parameter may be cast to type XtDestroyHookData.

typedef struct {
 String type;
 Widget widget;
} XtDestroyHookDataRec, *XtDestroyHookData;

When the destroyHook callbacks are called as a result of a call to XtDestroyWidget,
the type is XtHdestroy and widget is the widget being destroyed. The callbacks are
called upon completion of phase one destroy for a widget.

The XtNshells and XtnumShells are read-only resources that report a list of all par-
entless shell widgets associated with a display.

Clients who use these hooks must exercise caution in calling Intrinsics functions in
order to avoid recursion.

Querying Open Displays
To retrieve a list of the Displays associated with an application context, use XtGet-
Displays.

void XtGetDisplays(app_context, dpy_return, num_dpy_return);

app_context Specifies the application context.

dpy_return Returns a list of open Display connections in the spec-
ified application context.

num_dpy_return Returns the count of open Display connections in
dpy_return.

XtGetDisplays may be used by an external agent to query the list of open displays
that belong to an application context. To free the list of displays, use XtFree.

219

Chapter 12. Nonwidget Objects
Although widget writers are free to treat Core as the base class of the widget hier-
archy, there are actually three classes above it. These classes are Object, RectObj
(Rectangle Object), and (unnamed), and members of these classes are referred to
generically as objects. By convention, the term widget refers only to objects that are
a subclass of Core, and the term nonwidget refers to objects that are not a subclass
of Core. In the preceding portion of this specification, the interface descriptions
indicate explicitly whether the generic widget argument is restricted to particular
subclasses of Object. Sections 12.2.5, 12.3.5, and 12.5 summarize the permissible
classes of the arguments to, and return values from, each of the Intrinsics routines.

Data Structures
In order not to conflict with previous widget code, the data structures used by non-
widget objects do not follow all the same conventions as those for widgets. In par-
ticular, the class records are not composed of parts but instead are complete data
structures with filler for the widget fields they do not use. This allows the static
class initializers for existing widgets to remain unchanged.

Object Objects
The Object object contains the definitions of fields common to all objects. It en-
capsulates the mechanisms for resource management. All objects and widgets are
members of subclasses of Object, which is defined by the ObjectClassPart and
ObjectPart structures.

ObjectClassPart Structure
The common fields for all object classes are defined in the ObjectClassPart struc-
ture. All fields have the same purpose, function, and restrictions as the correspond-
ing fields in CoreClassPart; fields whose names are objn for some integer n are not
used for Object, but exist to pad the data structure so that it matches Core's class
record. The class record initialization must fill all objn fields with NULL or zero as
appropriate to the type.

typedef struct _ObjectClassPart {
 WidgetClass superclass;
 String class_name;
 Cardinal widget_size;
 XtProc class_initialize;
 XtWidgetClassProc class_part_initialize;
 XtEnum class_inited;
 XtInitProc initialize;
 XtArgsProc initialize_hook;
 XtProc obj1;
 XtPointer obj2;
 Cardinal obj3;
 XtResourceList resources;
 Cardinal num_resources;

Nonwidget Objects

220

 XrmClass xrm_class;
 Boolean obj4;
 XtEnum obj5;
 Boolean obj6;
 Boolean obj7;
 XtWidgetProc destroy;
 XtProc obj8;
 XtProc obj9;
 XtSetValuesFunc set_values;
 XtArgsFunc set_values_hook;
 XtProc obj10;
 XtArgsProc get_values_hook;
 XtProc obj11;
 XtVersionType version;
 XtPointer callback_private;
 String obj12;
 XtProc obj13;
 XtProc obj14;
 XtPointer extension;
} ObjectClassPart;

The extension record defined for ObjectClassPart with a record_type equal to
NULLQUARK is ObjectClassExtensionRec.

typedef struct {
 XtPointer next_extension; See the section called “Class Extension Records”
 XrmQuark record_type; See the section called “Class Extension Records”
 long version; See the section called “Class Extension Records”
 Cardinal record_size; See the section called “Class Extension Records”
 XtAllocateProc allocate; See the section called “Widget Instance Allocation: The allocate Procedure”.
 XtDeallocateProc deallocate; See the section called “Widget Instance Deallocation: The deallocate Procedure”.
} ObjectClassExtensionRec, *ObjectClassExtension;

The prototypical ObjectClass consists of just the ObjectClassPart.

typedef struct _ObjectClassRec {
 ObjectClassPart object_class;
} ObjectClassRec, *ObjectClass;

The predefined class record and pointer for ObjectClassRec are

In IntrinsicP.h:

extern ObjectClassRec objectClassRec;

In Intrinsic.h:

extern WidgetClass objectClass;

The opaque types Object and ObjectClass and the opaque variable objectClass
are defined for generic actions on objects. The symbolic constant for the Object-
ClassExtension version identifier is XtObjectExtensionVersion (see the section

Nonwidget Objects

221

called “Class Extension Records”). Intrinsic.h uses an incomplete structure def-
inition to ensure that the compiler catches attempts to access private data:

typedef struct _ObjectClassRec* ObjectClass;

ObjectPart Structure
The common fields for all object instances are defined in the ObjectPart structure.
All fields have the same meaning as the corresponding fields in CorePart.

typedef struct _ObjectPart {
 Widget self;
 WidgetClass widget_class;
 Widget parent;
 Boolean being_destroyed;
 XtCallbackList destroy_callbacks;
 XtPointer constraints;
} ObjectPart;

All object instances have the Object fields as their first component. The prototypical
type Object is defined with only this set of fields. Various routines can cast object
pointers, as needed, to specific object types.

In IntrinsicP.h:

typedef struct _ObjectRec {
 ObjectPart object;
} ObjectRec, *Object;

In Intrinsic.h:

typedef struct _ObjectRec *Object;

Object Resources
The resource names, classes, and representation types specified in the object-
ClassRec resource list are:

Name Class Representation
XtNdestroyCallback XtCCallback XtRCallback

ObjectPart Default Values
All fields in ObjectPart have the same default values as the corresponding fields
in CorePart.

Object Arguments to Intrinsics Routines
The WidgetClass arguments to the following procedures may be objectClass or
any subclass:

Nonwidget Objects

222

XtInitializeWidgetClass, XtCreateWidget, XtVaCreateWidget XtIsSubclass,
XtCheckSubclass XtGetResourceList, XtGetConstraintResourceList

The Widget arguments to the following procedures may be of class Object or any
subclass:

• XtCreateWidget, XtVaCreateWidget
• XtAddCallback, XtAddCallbacks, XtRemoveCallback, XtRemoveCallbacks,
XtRemoveAllCallbacks, XtCallCallbacks, XtHasCallbacks, XtCallCallback-
List

• XtClass, XtSuperclass, XtIsSubclass, XtCheckSubclass, XtIsObject, XtIs-
RectObj, XtIsWidget, XtIsComposite, XtIsConstraint, XtIsShell, XtIsOver-
rideShell, XtIsWMShell, XtIsVendorShell, XtIsTransientShell, XtIsTo-
plevelShell, XtIsApplicationShell, XtIsSessionShell

• XtIsManaged, XtIsSensitive (both will return False if argument is not a subclass
of RectObj)

• XtIsRealized (returns the state of the nearest windowed ancestor if class of ar-
gument is not a subclass of Core)

• XtWidgetToApplicationContext
• XtDestroyWidget
• XtParent, *XtDisplayOfObject, *XtScreenOfObject, XtWindowOfObject
• XtSetKeyboardFocus (descendant)
• XtGetGC, XtReleaseGC
• XtName
• XtSetValues, XtGetValues, XtVaSetValues, XtVaGetValues
• XtGetSubresources, XtGetApplicationResources, XtVaGetSubresources,
XtVaGetApplicationResources

• XtConvert, XtConvertAndStore

The return value of the following procedures will be of class Object or a subclass:

• XtCreateWidget, XtVaCreateWidget
• XtParent
• XtNameToWidget

The return value of the following procedures will be objectClass or a subclass:

• XtClass, XtSuperclass

Use of Objects
The Object class exists to enable programmers to use the Intrinsics' classing and
resource-handling mechanisms for things smaller and simpler than widgets. Objects
make obsolete many common uses of subresources as described in Sections 9.4,
9.7.2.4, and 9.7.2.5.

Composite widget classes that wish to accept nonwidget children must set the
accepts_objects field in the CompositeClassExtension structure to True. XtCre-
ateWidget will otherwise generate an error message on an attempt to create a non-
widget child.

Of the classes defined by the Intrinsics, ApplicationShell and SessionShell accept
nonwidget children, and the class of any nonwidget child must not be rectObj-

Nonwidget Objects

223

Class or any subclass. The intent of allowing Object children of ApplicationShell
and SessionShell is to provide clients a simple mechanism for establishing the re-
source-naming root of an object hierarchy.

Rectangle Objects
The class of rectangle objects is a subclass of Object that represents rectangular
areas. It encapsulates the mechanisms for geometry management and is called Rec-
tObj to avoid conflict with the Xlib Rectangle data type.

RectObjClassPart Structure
As with the ObjectClassPart structure, all fields in the RectObjClassPart struc-
ture have the same purpose and function as the corresponding fields in CoreClass-
Part; fields whose names are rectn for some integer n are not used for RectObj,
but exist to pad the data structure so that it matches Core's class record. The class
record initialization must fill all rectn fields with NULL or zero as appropriate to
the type.

typedef struct _RectObjClassPart {
 WidgetClass superclass;
 String class_name;
 Cardinal widget_size;
 XtProc class_initialize;
 XtWidgetClassProc class_part_initialize;
 XtEnum class_inited;
 XtInitProc initialize;
 XtArgsProc initialize_hook;
 XtProc rect1;
 XtPointer rect2;
 Cardinal rect3;
 XtResourceList resources;
 Cardinal num_resources;
 XrmClass xrm_class;
 Boolean rect4;
 XtEnum rect5;
 Boolean rect6;
 Boolean rect7;
 XtWidgetProc destroy;
 XtWidgetProc resize;
 XtExposeProc expose;
 XtSetValuesFunc set_values;
 XtArgsFunc set_values_hook;
 XtAlmostProc set_values_almost;
 XtArgsProc get_values_hook;
 XtProc rect9;
 XtVersionType version;
 XtPointer callback_private;
 String rect10;
 XtGeometryHandler query_geometry;
 XtProc rect11;
 XtPointer extension ;

Nonwidget Objects

224

} RectObjClassPart;

The RectObj class record consists of just the RectObjClassPart.

typedef struct _RectObjClassRec {
 RectObjClassPart rect_class;
} RectObjClassRec, *RectObjClass;

The predefined class record and pointer for RectObjClassRec are

In Intrinsic.h:

extern RectObjClassRec rectObjClassRec;

In Intrinsic.h:

extern WidgetClass rectObjClass;

The opaque types RectObj and RectObjClass and the opaque variable rectObj-
Class are defined for generic actions on objects whose class is RectObj or a subclass
of RectObj. Intrinsic.h uses an incomplete structure definition to ensure that the
compiler catches attempts to access private data:

typedef struct _RectObjClassRec* RectObjClass;

RectObjPart Structure
In addition to the ObjectPart fields, RectObj objects have the following fields de-
fined in the RectObjPart structure. All fields have the same meaning as the corre-
sponding field in CorePart.

typedef struct _RectObjPart {
 Position x, y;
 Dimension width, height;
 Dimension border_width;
 Boolean managed;
 Boolean sensitive;
 Boolean ancestor_sensitive;
} RectObjPart;

RectObj objects have the RectObj fields immediately following the Object fields.

typedef struct _RectObjRec {
 ObjectPart object;
 RectObjPart rectangle;
} RectObjRec, *RectObj;

In Intrinsic.h:

Nonwidget Objects

225

typedef struct _RectObjRec* RectObj;

RectObj Resources
The resource names, classes, and representation types that are specified in the
rectObjClassRec resource list are:

Name Class Representation
XtNancestorSensitive XtCSensitive XtRBoolean
XtNborderWidth XtCBorderWidth XtRDimension
XtNheight XtCHeight XtRDimension
XtNsensitive XtCSensitive XtRBoolean
XtNwidth XtCWidth XtRDimension
XtNx XtCPosition XtRPosition
XtNy XtCPosition XtRPosition

RectObjPart Default Values
All fields in RectObjPart have the same default values as the corresponding fields
in CorePart.

Widget Arguments to Intrinsics Routines
The WidgetClass arguments to the following procedures may be rectObjClass or
any subclass:

• XtCreateManagedWidget, XtVaCreateManagedWidget

The Widget arguments to the following procedures may be of class RectObj or any
subclass:

• XtConfigureWidget, XtMoveWidget, XtResizeWidget
• XtMakeGeometryRequest, XtMakeResizeRequest
• XtManageChildren, XtManageChild, XtUnmanageChildren, XtUnmanageChild,
XtChangeManagedSet

• XtQueryGeometry
• XtSetSensitive
• XtTranslateCoords

The return value of the following procedures will be of class RectObj or a subclass:

• XtCreateManagedWidget, XtVaCreateManagedWidget

Use of Rectangle Objects
RectObj can be subclassed to provide widgetlike objects (sometimes called gadgets)
that do not use windows and do not have those features that are seldom used in
simple widgets. This can save memory resources both in the server and in applica-
tions but requires additional support code in the parent. In the following discussion,

Nonwidget Objects

226

rectobj refers only to objects whose class is RectObj or a subclass of RectObj, but
not Core or a subclass of Core.

Composite widget classes that wish to accept rectobj children must set the
accepts_objects field in the CompositeClassExtension extension structure to True.
XtCreateWidget or XtCreateManagedWidget will otherwise generate an error if
called to create a nonwidget child. If the composite widget supports only children of
class RectObj or a subclass (i.e., not of the general Object class), it must declare an
insert_child procedure and check the subclass of each new child in that procedure.
None of the classes defined by the Intrinsics accept rectobj children.

If gadgets are defined in an object set, the parent is responsible for much more than
the parent of a widget. The parent must request and handle input events that occur
for the gadget and is responsible for making sure that when it receives an exposure
event the gadget children get drawn correctly. Rectobj children may have expose
procedures specified in their class records, but the parent is free to ignore them,
instead drawing the contents of the child itself. This can potentially save graphics
context switching. The precise contents of the exposure event and region arguments
to the RectObj expose procedure are not specified by the Intrinsics; a particular
rectangle object is free to define the coordinate system origin (self-relative or par-
ent-relative) and whether or not the rectangle or region is assumed to have been
intersected with the visible region of the object.

In general, it is expected that a composite widget that accepts nonwidget children
will document those children it is able to handle, since a gadget cannot be viewed
as a completely self-contained entity, as can a widget. Since a particular composite
widget class is usually designed to handle nonwidget children of only a limited set
of classes, it should check the classes of newly added children in its insert_child
procedure to make sure that it can deal with them.

The Intrinsics will clear areas of a parent window obscured by rectobj children,
causing exposure events, under the following circumstances:

• A rectobj child is managed or unmanaged.
• In a call to XtSetValues on a rectobj child, one or more of the set_values proce-

dures returns True.
• In a call to XtConfigureWidget on a rectobj child, areas will be cleared corre-

sponding to both the old and the new child geometries, including the border, if
the geometry changes.

• In a call to XtMoveWidget on a rectobj child, areas will be cleared corresponding
to both the old and the new child geometries, including the border, if the geometry
changes.

• In a call to XtResizeWidget on a rectobj child, a single rectangle will be cleared
corresponding to the larger of the old and the new child geometries if they are
different.

• In a call to XtMakeGeometryRequest (or XtMakeResizeRequest) on a rectobj child
with XtQueryOnly not set, if the manager returns XtGeometryYes, two rectangles
will be cleared corresponding to both the old and the new child geometries.

Stacking order is not supported for rectobj children. Composite widgets with rectobj
children are free to define any semantics desired if the child geometries overlap,
including making this an error.

When a rectobj is playing the role of a widget, developers must be reminded to avoid
making assumptions about the object passed in the Widget argument to a callback
procedure.

Nonwidget Objects

227

Undeclared Class
The Intrinsics define an unnamed class between RectObj and Core for possible fu-
ture use by the X Consortium. The only assumptions that may be made about the
unnamed class are

• The core_class.superclass field of coreWidgetClassRec contains a pointer to the
unnamed class record.

• A pointer to the unnamed class record when dereferenced as an ObjectClass will
contain a pointer to rectObjClassRec in its object_class.superclass field.

Except for the above, the contents of the class record for this class and the result of
an attempt to subclass or to create a widget of this unnamed class are undefined.

Widget Arguments to Intrinsics Routines
The WidgetClass arguments to the following procedures must be of class Shell or
a subclass:

• XtCreatePopupShell, XtVaCreatePopupShell, XtAppCreateShell, XtVaAppCre-
ateShell, XtOpenApplication, XtVaOpenApplication

The Widget arguments to the following procedures must be of class Core or any
subclass:

• XtCreatePopupShell, XtVaCreatePopupShell
• XtAddEventHandler, XtAddRawEventHandler, XtRemoveEventHandler,
XtRemoveRawEventHandler, XtInsertEventHandler, XtInsertRawEventHandler
XtInsertEventTypeHandler, XtRemoveEventTypeHandler,

• XtRegisterDrawable XtDispatchEventToWidget
• XtAddGrab, XtRemoveGrab, XtGrabKey, XtGrabKeyboard, XtUngrabKey, XtUn-
grabKeyboard, XtGrabButton, XtGrabPointer, XtUngrabButton, XtUngrab-
Pointer

• XtBuildEventMask
• XtCreateWindow, XtDisplay, *XtScreen, XtWindow
• XtNameToWidget
• XtGetSelectionValue, XtGetSelectionValues, XtOwnSelection, XtDisownS-
election, XtOwnSelectionIncremental, XtGetSelectionValueIncremental,
XtGetSelectionValuesIncremental, XtGetSelectionRequest

• XtInstallAccelerators, XtInstallAllAccelerators (both destination and
source)

• XtAugmentTranslations, XtOverrideTranslations, XtUninstallTranslations,
XtCallActionProc

• XtMapWidget, XtUnmapWidget
• XtRealizeWidget, XtUnrealizeWidget
• XtSetMappedWhenManaged
• XtCallAcceptFocus, XtSetKeyboardFocus (subtree)
• XtResizeWindow
• XtSetWMColormapWindows

The Widget arguments to the following procedures must be of class Composite or
any subclass:

• XtCreateManagedWidget, XtVaCreateManagedWidget

Nonwidget Objects

228

The Widget arguments to the following procedures must be of a subclass of Shell:

• XtPopdown, XtCallbackPopdown, XtPopup, XtCallbackNone, XtCallbackNonex-
clusive, XtCallbackExclusive, XtPopupSpringLoaded

The return value of the following procedure will be of class Core or a subclass:

• XtWindowToWidget

The return value of the following procedures will be of a subclass of Shell:

• XtAppCreateShell, XtVaAppCreateShell, XtAppInitialize, XtVaAppInitial-
ize, XtCreatePopupShell, XtVaCreatePopupShell

229

Chapter 13. Evolution of the Intrinsics
The interfaces described by this specification have undergone several sets of revi-
sions in the course of adoption as an X Consortium standard specification. Having
now been adopted by the Consortium as a standard part of the X Window System,
it is expected that this and future revisions will retain backward compatibility in
the sense that fully conforming implementations of these specifications may be pro-
duced that provide source compatibility with widgets and applications written to
previous Consortium standard revisions.

The Intrinsics do not place any special requirement on widget programmers to re-
tain source or binary compatibility for their widgets as they evolve, but several con-
ventions have been established to assist those developers who want to provide such
compatibility.

In particular, widget programmers may wish to conform to the convention de-
scribed in the section called “Class Extension Records” when defining class exten-
sion records.

Determining Specification Revision Level
Widget and application developers who wish to maintain a common source pool that
will build properly with implementations of the Intrinsics at different revision levels
of these specifications but that take advantage of newer features added in later
revisions may use the symbolic macro XtSpecificationRelease.

#define XtSpecificationRelease 6

As the symbol XtSpecificationRelease was new to Release 4, widgets and applica-
tions desiring to build against earlier implementations should test for the presence
of this symbol and assume only Release 3 interfaces if the definition is not present.

Release 3 to Release 4 Compatibility
At the data structure level, Release 4 retains binary compatibility with Release 3
(the first X Consortium standard release) for all data structures except WMShell-
Part, TopLevelShellPart, and TransientShellPart. Release 4 changed the ar-
gument type to most procedures that now take arguments of type XtPointer and
structure members that are now of type XtPointer in order to avoid potential ANSI
C conformance problems. It is expected that most implementations will be binary
compatible with the previous definition.

Two fields in CoreClassPart were changed from Boolean to XtEnum to allow im-
plementations additional freedom in specifying the representations of each. This
change should require no source modification.

Additional Arguments
Arguments were added to the procedure definitions for (*XtInitProc), (*XtSet-
ValuesFunc), and (*XtEventHandler) to provide more information and to allow
event handlers to abort further dispatching of the current event (caution is ad-

Evolution of the Intrinsics

230

vised!). The added arguments to (*XtInitProc) and (*XtSetValuesFunc) make
the initialize_hook and set_values_hook methods obsolete, but the hooks have been
retained for those widgets that used them in Release 3.

set_values_almost Procedures
The use of the arguments by a set_values_almost procedure was poorly described
in Release 3 and was inconsistent with other conventions.

The current specification for the manner in which a set_values_almost procedure
returns information to the Intrinsics is not compatible with the Release 3 specifica-
tion, and all widget implementations should verify that any set_values_almost pro-
cedures conform to the current interface.

No known implementation of the Intrinsics correctly implemented the Release 3
interface, so it is expected that the impact of this specification change is small.

Query Geometry
A composite widget layout routine that calls XtQueryGeometry is now expected to
store the complete new geometry in the intended structure; previously the specifi-
cation said ``store the changes it intends to make''. Only by storing the complete
geometry does the child have any way to know what other parts of the geometry
may still be flexible. Existing widgets should not be affected by this, except to take
advantage of the new information.

unrealizeCallback Callback List
In order to provide a mechanism for widgets to be notified when they become unre-
alized through a call to XtUnrealizeWidget, the callback list name ``unrealizeCall-
back'' has been defined by the Intrinsics. A widget class that requires notification
on unrealize may declare a callback list resource by this name. No class is required
to declare this resource, but any class that did so in a prior revision may find it
necessary to modify the resource name if it does not wish to use the new semantics.

Subclasses of WMShell
The formal adoption of the Inter-Client Communication Conventions Manual. as an
X Consortium standard has meant the addition of four fields to WMShellPart and
one field to TopLevelShellPart. In deference to some widget libraries that had
developed their own additional conventions to provide binary compatibility, these
five new fields were added at the end of the respective data structures.

To provide more convenience for TransientShells, a field was added to the previously
empty TransientShellPart. On some architectures the size of the part structure
will not have changed as a result of this.

Any widget implementation whose class is a subclass of TopLevelShell or Transien-
tShell must at minimum be recompiled with the new data structure declarations.
Because WMShellPart no longer contains a contiguous XSizeHints data structure, a
subclass that expected to do a single structure assignment of an XSizeHints struc-
ture to the size_hints field of WMShellPart must be revised, though the old fields
remain at the same positions within WMShellPart.

Evolution of the Intrinsics

231

Resource Type Converters
A new interface declaration for resource type converters was defined to provide
more information to converters, to support conversion cache cleanup with resource
reference counting, and to allow additional procedures to be declared to free re-
sources. The old interfaces remain (in the compatibility section), and a new set of
procedures was defined that work only with the new type converter interface.

In the now obsolete old type converter interface, converters are reminded that they
must return the size of the converted value as well as its address. The example
indicated this, but the description of (*XtConverter) was incomplete.

KeySym Case Conversion Procedure
The specification for the (*XtCaseProc) function type has been changed to match
the Release 3 implementation, which included necessary additional information re-
quired by the function (a pointer to the display connection), and corrects the argu-
ment type of the source KeySym parameter. No known implementation of the In-
trinsics implemented the previously documented interface.

Nonwidget Objects
Formal support for nonwidget objects is new to Release 4. A prototype implemen-
tation was latent in at least one Release 3 implementation of the Intrinsics, but the
specification has changed somewhat. The most significant change is the require-
ment for a composite widget to declare the CompositeClassExtension record with
the accepts_objects field set to True in order to permit a client to create a nonwid-
get child.

The addition of this extension field ensures that composite widgets written under
Release 3 will not encounter unexpected errors if an application attempts to create
a nonwidget child. In Release 4 there is no requirement that all composite widgets
implement the extra functionality required to manage windowless children, so the
accepts_objects field allows a composite widget to declare that it is not prepared
to do so.

Release 4 to Release 5 Compatibility
At the data structure level, Release 5 retains complete binary compatibility with
Release 4. The specification of the ObjectPart, RectObjPart, CorePart, Compos-
itePart, ShellPart, WMShellPart, TopLevelShellPart, and ApplicationShell-
Part instance records was made less strict to permit implementations to add inter-
nal fields to these structures. Any implementation that chooses to do so would, of
course, force a recompilation. The Xlib specification for XrmValue and XrmOption-
DescRec was updated to use a new type, XPointer, for the addr and value fields,
respectively, to avoid ANSI C conformance problems. The definition of XPointer is
binary compatible with the previous implementation.

baseTranslations Resource
A new pseudo-resource, XtNbaseTranslations, was defined to permit application
developers to specify translation tables in application defaults files while still giv-

Evolution of the Intrinsics

232

ing end users the ability to augment or override individual event sequences. This
change will affect only those applications that wish to take advantage of the new
functionality or those widgets that may have previously defined a resource named
``baseTranslations''.

Applications wishing to take advantage of the new functionality would change their
application defaults file, e.g., from

 app.widget.translations: value
to
 app.widget.baseTranslations: value

If it is important to the application to preserve complete compatibility of the defaults
file between different versions of the application running under Release 4 and Re-
lease 5, the full translations can be replicated in both the ``translations'' and the
``baseTranslations'' resource.

Resource File Search Path
The current specification allows implementations greater flexibility in defining the
directory structure used to hold the application class and per-user application de-
faults files. Previous specifications required the substitution strings to appear in
the default path in a certain order, preventing sites from collecting all the files for
a specific application together in one directory. The Release 5 specification allows
the default path to specify the substitution strings in any order within a single path
entry. Users will need to pay close attention to the documentation for the specif-
ic implementation to know where to find these files and how to specify their own
XFILESEARCHPATH and XUSERFILESEARCHPATH values when overriding the
system defaults.

Customization Resource
XtResolvePathname supports a new substitution string, %C, for specifying separate
application class resource files according to arbitrary user-specified categories. The
primary motivation for this addition was separate monochrome and color applica-
tion class defaults files. The substitution value is obtained by querying the current
resource database for the application resource name ̀ `customization'', class ̀ `Cus-
tomization''. Any application that previously used this resource name and class will
need to be aware of the possibly conflicting semantics.

Per-Screen Resource Database
To allow a user to specify separate preferences for each screen of a display, a per-
screen resource specification string has been added and multiple resource databas-
es are created; one for each screen. This will affect any application that modified
the (formerly unique) resource database associated with the display subsequent to
the Intrinsics database initialization. Such applications will need to be aware of the
particular screen on which each shell widget is to be created.

Although the wording of the specification changed substantially in the description
of the process by which the resource database(s) is initialized, the net effect is
the same as in prior releases with the exception of the added per-screen resource
specification and the new customization substitution string in XtResolvePathname.

Evolution of the Intrinsics

233

Internationalization of Applications
Internationalization as defined by ANSI is a technology that allows support of an
application in a single locale. In adding support for internationalization to the In-
trinsics the restrictions of this model have been followed. In particular, the new In-
trinsics interfaces are designed not to preclude an application from using other al-
ternatives. For this reason, no Intrinsics routine makes a call to establish the locale.
However, a convenience routine to establish the locale at initialize time has been
provided, in the form of a default procedure that must be explicitly installed if the
application desires ANSI C locale behavior.

As many objects in X, particularly resource databases, now inherit the global locale
when they are created, applications wishing to use the ANSI C locale model should
use the new function XtSetLanguageProc to do so.

The internationalization additions also define event filters as a part of the Xlib In-
put Method specifications. The Intrinsics enable the use of event filters through
additions to XtDispatchEvent. Applications that may not be dispatching all events
through XtDispatchEvent should be reviewed in the context of this new input
method mechanism.

In order to permit internationalization of error messages, the name and path of the
error database file are now allowed to be implementation-dependent. No adequate
standard mechanism has yet been suggested to allow the Intrinsics to locate the
database from localization information supplied by the client.

The previous specification for the syntax of the language string specified by xnl-
Language has been dropped to avoid potential conflicts with other standards. The
language string syntax is now implementation-defined. The example syntax cited is
consistent with the previous specification.

Permanently Allocated Strings
In order to permit additional memory savings, an Xlib interface was added to allow
the resource manager to avoid copying certain string constants. The Intrinsics spec-
ification was updated to explicitly require the Object class_name, resource_name,
resource_class, resource_type, default_type in resource tables, Core actions
string field, and Constraint resource_name, resource_class, resource_type, and
default_type resource fields to be permanently allocated. This explicit requirement
is expected to affect only applications that may create and destroy classes on the fly.

Arguments to Existing Functions
The args argument to XtAppInitialize, XtVaAppInitialize, *XtOpenDisplay,
XtDisplayInitialize, and XtInitialize were changed from Cardinal* to int* to
conform to pre-existing convention and avoid otherwise annoying typecasting in
ANSI C environments.

Release 5 to Release 6 Compatibility
At the data structure level, Release 6 retains binary compatibility with Release 5 for
all data structures except WMShellPart. Three resources were added to the specifi-
cation. The known implementations had unused space in the data structure, there-

Evolution of the Intrinsics

234

fore on some architectures and implementations, the size of the part structure will
not have changed as a result of this.

Widget Internals
Two new widget methods for instance allocation and deallocation were added to the
Object class. These new methods allow widgets to be treated as C++ objects in the
C++ environment when an appropriate allocation method is specified or inherited
by the widget class.

The textual descriptions of the processes of widget creation and widget destruction
have been edited to provide clarification to widget writers. Widgets writers may
have reason to rely on the specific order of the stages of widget creation and de-
struction; with that motivation, the specification now more exactly describes the
process.

As a convenience, an interface to locate a widget class extension record on a linked
list, XtGetClassExtension, has been added.

A new option to allow bundled changes to the managed set of a Compos-
ite widget is introduced in the Composite class extension record. Widgets
that define a change_managed procedure that can accommodate additions and
deletions to the managed set of children in a single invocation should set
allows_change_managed_set to True in the extension record.

The wording of the process followed by XtUnmanageChildren has changed slightly
to better handle changes to the managed set during phase 2 destroy processing.

A new exposure event compression flag, XtExposeNoRegion, was added. Many wid-
gets specify exposure compression, but either ignore the actual damage region
passed to the core expose procedure or use only the cumulative bounding box data
available in the event. Widgets with expose procedures that do not make use of ex-
act exposure region information can indicate that the Intrinsics need not compute
the region.

General Application Development
XtOpenApplication is a new convenience procedure to initialize the toolkit, create
an application context, open an X display connection, and create the root of the
widget instance tree. It is identical to the interface it replaces, XtAppInitialize, in
all respects except that it takes an additional argument specifying the widget class
of the root shell to create. This interface is now the recommended one so that clients
may easily become session participants. The old convenience procedures appear in
the compatibility section.

The toolkit initialization function XtToolkitInitialize may be called multiple
times without penalty.

In order to optimize changes in geometry to a set of geometry-managed children, a
new interface, XtChangeManagedSet, has been added.

Communication with Window and Session Managers
The revision of the Inter-Client Communication Conventions Manual. as an X Con-
sortium standard has resulted in the addition of three fields to the specification of
WMShellPart. These are urgency, client_leader, and window_role.

Evolution of the Intrinsics

235

The adoption of the X Session Management Protocol as an X Consortium standard
has resulted in the addition of a new shell widget, SessionShell, and an accompa-
nying subclass verification interface, XtIsSessionShell. This widget provides sup-
port for communication between an application and a session manager, as well as a
window manager. In order to preserve compatibility with existing subclasses of Ap-
plicationShell, the ApplicationShell was subclassed to create the new widget
class. The session protocol requires a modal response to certain checkpointing oper-
ations by participating applications. The SessionShell structures the application's
notification of and responses to messages from the session manager by use of vari-
ous callback lists and by use of the new interfaces XtSessionGetToken and XtSes-
sionReturnToken. There is also a new command line argument, -xtsessionID, which
facilitates the session manager in restarting applications based on the Intrinsics.

The resource name and class strings defined by the Intrinsics shell widgets in <X11/
Shell.h> are now listed in Appendix E. The addition of a new symbol for the WMShell
wait_for_wm resource was made to bring the external symbol and the string it repre-
sents into agreement. The actual resource name string in WMShell has not changed.
The resource representation type of the XtNwinGravity resource of the WMShell was
changed to XtRGravity in order to register a type converter so that window gravity
resource values could be specified by name.

Geometry Management

A clarification to the specification was made to indicate that geometry requests may
include current values along with the requested changes.

Event Management

In Release 6, support is provided for registering selectors and event handlers
for events generated by X protocol extensions and for dispatching those events
to the appropriate widget. The new event handler registration interfaces are
XtInsertEventTypeHandler and XtRemoveEventTypeHandler. Since the mecha-
nism to indicate selection of extension events is specific to the extension being used,
the Intrinsics introduces XtRegisterExtensionSelector, which allows the appli-
cation to select for the events of interest. In order to change the dispatching algo-
rithm to accommodate extension events as well as core X protocol events, the In-
trinsics event dispatcher may now be replaced or enveloped by the application with
XtSetEventDispatcher. The dispatcher may wish to call XtGetKeyboardFocusWid-
get to determine the widget with the current Intrinsics keyboard focus. A dispatch-
er, after determining the destination widget, may use XtDispatchEventToWidget
to cause the event to be dispatched to the event handlers registered by a specific
widget.

To permit the dispatching of events for nonwidget drawables, such as pixmaps that
are not associated with a widget's window, XtRegisterDrawable and XtUnregis-
terDrawable have been added to the library. A related update was made to the de-
scription of XtWindowToWidget.

The library is now thread-safe, allowing one thread at a time to enter the library
and protecting global data as necessary from concurrent use. Threaded toolkit ap-
plications are supported by the new interfaces XtToolkitThreadInitialize, XtAp-
pLock, XtAppUnlock, XtAppSetExitFlag, and XtAppGetExitFlag. Widget writers
may also use XtProcessLock and XtProcessUnlock.

Evolution of the Intrinsics

236

Safe handling of POSIX signals and other asynchronous notifications is now provid-
ed by use of XtAppAddSignal, XtNoticeSignal, and XtRemoveSignal.

The application can receive notification of an impending block in the Intrinsics event
manager by registering interest through XtAppAddBlockHook and XtRemoveBlock-
Hook.

XtLastEventProcessed returns the most recent event passed to XtDispatchEvent
for a specified display.

Resource Management
Resource converters are registered by the Intrinsics for window gravity and for
three new resource types associated with session participation: RestartStyle, Com-
mandArgArray and DirectoryString.

The file search path syntax has been extended to make it easier to include the de-
fault search path, which controls resource database construction, by using the new
substitution string, %D.

Translation Management
The default key translator now recognizes the NumLock modifier. If NumLock is
on and the second keysym is a keypad keysym (a standard keysym named with a
``KP'' prefix or a vendor-specific keysym in the hexadecimal range 0x11000000 to
0x1100FFFF), then the default key translator will use the first keysym if Shift and/
or ShiftLock is on and will use the second keysym if neither is on. Otherwise, it will
ignore NumLock and apply the normal protocol semantics.

Selections
The targets of selection requests may be parameterized, as described by the revised
Inter-Client Communication Conventions Manual.. When such requests are made,
XtSetSelectionParameters is used by the requestor to specify the target parame-
ters and XtGetSelectionParameters is used by the selection owner to retrieve the
parameters. When a parameterized target is specified in the context of a bundled
request for multiple targets, XtCreateSelectionRequest, XtCancelSelectionRe-
quest, and XtSendSelectionRequest are used to envelop the assembly of the re-
quest. When the parameters themselves are the names of properties, the Intrinsics
provides support for the economical use of property atom names; see XtReserve-
PropertyAtom and XtReleasePropertyAtom.

External Agent Hooks
External agent hooks were added for the benefit of applications that instrument
other applications for purposes of accessibility, testing, and customization. The ex-
ternal agent and the application communicate by a shared protocol which is trans-
parent to the application. The hook callbacks permit the external agent to register
interest in groups or classes of toolkit activity and to be notified of the type and de-
tails of the activity as it occurs. The new interfaces related to this effort are XtHook-
sOfDisplay, which returns the hook registration widget, and XtGetDisplays, which
returns a list of the X displays associated with an application context.

237

Appendix A. Resource File Format
A resource file contains text representing the default resource values for an appli-
cation or set of applications.

The format of resource files is defined by Xlib — C Language X Interface. and is
reproduced here for convenience only.

The format of a resource specification is

ResourceLine = Comment | IncludeFile | ResourceSpec | <empty line>
Comment ="!" {<any character except null or newline>}
IncludeFile = "#" WhiteSpace "include" WhiteSpace FileName WhiteS-

pace
FileName = <valid filename for operating system>
ResourceSpec = WhiteSpace ResourceName WhiteSpace ":" WhiteSpace Val-

ue
ResourceName = [Binding] {Component Binding} ComponentName
Binding ="." | "*"
WhiteSpace = {<space> | <horizontal tab>}
Component = "?" | ComponentName
ComponentName = NameChar {NameChar}
NameChar = "a"-"z" | "A"-"Z" | "0"-"9" | "_" | "-"
Value ={<any character except null or unescaped newline>}

Elements separated by vertical bar (|) are alternatives. Curly braces ({...}) indicate
zero or more repetitions of the enclosed elements. Square brackets ([...]) indicate
that the enclosed element is optional. Quotes ("...") are used around literal charac-
ters.

If the last character on a line is a backslash (\), that line is assumed to continue
on the next line.

To allow a Value to begin with whitespace, the two-character sequence
"\space" (backslash followed by space) is recognized and replaced by a space char-
acter, and the two-character sequence "\tab" (backslash followed by horizontal tab)
is recognized and replaced by a horizontal tab character.

To allow a Value to contain embedded newline characters, the two-character se-
quence "\n" is recognized and replaced by a newline character. To allow a Value
to be broken across multiple lines in a text file, the two-character sequence "\new-
line" (backslash followed by newline) is recognized and removed from the value.

To allow a Value to contain arbitrary character codes, the four-character sequence
"\nnn", where each n is a digit character in the range of "0"-"7", is recognized and
replaced with a single byte that contains the octal value specified by the sequence.
Finally, the two-character sequence "\\" is recognized and replaced with a single
backslash.

238

Appendix B. Translation Table Syntax
Notation

Syntax is specified in EBNF notation with the following conventions:

[a] Means either nothing or "a"
{ a } Means zero or more occurrences of "a"
(a |
b)

Means either "a" or "b"

\\n Is the newline character

All terminals are enclosed in double quotation marks (" "). Informal descriptions are
enclosed in angle brackets (< >). Syntax

The syntax of a translation table is

transla-
tionTable

= [directive] { production }

directive = ("#replace" | "#override" | "#augment") "\\\\n"
production = lhs ":" rhs "\\\\n"
lhs = (event | keyseq) { "," (event | keyseq) }
keyseq = """ keychar {keychar} """
keychar = ["^" | "$" | "\\\\"] <ISO Latin 1 character>
event = [modifier_list] "<"event_type">" ["(" count["+"] ")"] {detail}
modifier_list = (["!"] [":"] {modifier}) | "None"
modifier = ["~"] modifier_name
count = ("1" | "2" | "3" | "4" | ...)
modifier_name= "@" <keysym> | <see ModifierNames table below>
event_type = <see Event Types table below>
detail = <event specific details>
rhs = { name "(" [params] ")" }
name = namechar { namechar }
namechar = { "a"-"z" | "A"-"Z" | "0"-"9" | "_" | "-" }
params = string {"," string}
string = quoted_string | unquoted_string
quoted_string= “"” {<Latin 1 character> | escape_char} ["\\\\"] “"”
escape_char = "\\""
unquoted_string= {<Latin 1 character except space, tab, ",", "\\n", ")">}

The params field is parsed into a list of String values that will be passed to the
named action procedure. A quoted string may contain an embedded quotation mark
if the quotation mark is preceded by a single backslash (\). The three-character
sequence "\\\"" is interpreted as "single backslash followed by end-of-string".

Modifier Names

Translation Table Syntax

239

The modifier field is used to specify standard X keyboard and button modifier mask
bits. Modifiers are legal on event types KeyPress, KeyRelease, ButtonPress, But-
tonRelease, MotionNotify, EnterNotify, LeaveNotify, and their abbreviations.
An error is generated when a translation table that contains modifiers for any other
events is parsed.

• If the modifier list has no entries and is not "None", it means "don't care" on all
modifiers.

• If an exclamation point (!) is specified at the beginning of the modifier list, it
means that the listed modifiers must be in the correct state and no other modifiers
can be asserted.

• If any modifiers are specified and an exclamation point (!) is not specified, it means
that the listed modifiers must be in the correct state and "don't care" about any
other modifiers.

• If a modifier is preceded by a tilde (~), it means that that modifier must not be
asserted.

• If "None" is specified, it means no modifiers can be asserted.
• If a colon (:) is specified at the beginning of the modifier list, it directs the In-

trinsics to apply any standard modifiers in the event to map the event keycode
into a KeySym. The default standard modifiers are Shift and Lock, with the in-
terpretation as defined in X Window System Protocol, Section 5. The resulting
KeySym must exactly match the specified KeySym, and the nonstandard modifiers
in the event must match the modifier list. For example, ":<Key>a" is distinct from
":<Key>A", and ":Shift<Key>A" is distinct from ":<Key>A".

• If both an exclamation point (!) and a colon (:) are specified at the beginning of
the modifier list, it means that the listed modifiers must be in the correct state
and that no other modifiers except the standard modifiers can be asserted. Any
standard modifiers in the event are applied as for colon (:) above.

• If a colon (:) is not specified, no standard modifiers are applied. Then, for example,
"<Key>A" and "<Key>a" are equivalent.

In key sequences, a circumflex (^) is an abbreviation for the Control modifier, a
dollar sign ($) is an abbreviation for Meta, and a backslash (\) can be used to quote
any character, in particular a double quote ("), a circumflex (^), a dollar sign ($),
and another backslash (\). Briefly:

No modifiers: None <event> detail
Any modifiers: <event> detail
Only these modifiers: ! mod1 mod2 <event> detail
These modifiers and any others: mod1 mod2 <event> detail

The use of "None" for a modifier list is identical to the use of an exclamation point
with no modifers.

Modifier Abbreviation Meaning
Ctrl c Control modifier bit
Shift s Shift modifier bit
Lock l Lock modifier bit
Meta m Meta key modifier
Hyper h Hyper key modifier
Super su Super key modifier

Translation Table Syntax

240

Modifier Abbreviation Meaning
Alt a Alt key modifier
Mod1 Mod1 modifier bit
Mod2 Mod2 modifier bit
Mod3 Mod3 modifier bit
Mod4 Mod4 modifier bit
Mod5 Mod5 modifier bit
Button1 Button1 modifier bit
Button2 Button2 modifier bit
Button3 Button3 modifier bit
Button4 Button4 modifier bit
Button5 Button5 modifier bit
None No modifiers
Any Any modifier combination

A key modifier is any modifier bit one of whose corresponding KeyCodes contains
the corresponding left or right KeySym. For example, "m" or "Meta" means any
modifier bit mapping to a KeyCode whose KeySym list contains XK_Meta_L or
XK_Meta_R. Note that this interpretation is for each display, not global or even
for each application context. The Control, Shift, and Lock modifier names refer ex-
plicitly to the corresponding modifier bits; there is no additional interpretation of
KeySyms for these modifiers.

Because it is possible to associate arbitrary KeySyms with modifiers, the set of key
modifiers is extensible. The "@" <keysym> syntax means any modifier bit whose
corresponding KeyCode contains the specified KeySym name.

A modifier_list/KeySym combination in a translation matches a modifiers/KeyCode
combination in an event in the following ways:

1. If a colon (:) is used, the Intrinsics call the display's (*XtKeyProc) with the
KeyCode and modifiers. To match, (modifiers & ~modifiers_return) must equal
modifier_list, and keysym_return must equal the given KeySym.

2. If (:) is not used, the Intrinsics mask off all don't-care bits from the modifiers. This
value must be equal to modifier_list. Then, for each possible combination of don't-
care modifiers in the modifier list, the Intrinsics call the display's (*XtKeyProc)
with the KeyCode and that combination ORed with the cared-about modifier bits
from the event. Keysym_return must match the KeySym in the translation.

Event Types

The event-type field describes XEvent types. In addition to the standard Xlib sym-
bolic event type names, the following event type synonyms are defined:

Type Meaning
Key KeyPress

KeyDown KeyPress

KeyUp KeyRelease

Translation Table Syntax

241

Type Meaning
BtnDown ButtonPress

BtnUp ButtonRelease

Motion MotionNotify

PtrMoved MotionNotify

MouseMoved MotionNotify

Enter EnterNotify

EnterWindow EnterNotify

Leave LeaveNotify

LeaveWindow LeaveNotify

FocusIn FocusIn

FocusOut FocusOut

Keymap KeymapNotify

Expose Expose

GrExp GraphicsExpose

NoExp NoExpose

Visible VisibilityNotify

Create CreateNotify

Destroy DestroyNotify

Unmap UnmapNotify

Map MapNotify

MapReq MapRequest

Reparent ReparentNotify

Configure ConfigureNotify

ConfigureReq ConfigureRequest

Grav GravityNotify

ResReq ResizeRequest

Circ CirculateNotify

CircReq CirculateRequest

Prop PropertyNotify

SelClr SelectionClear

SelReq SelectionRequest

Select SelectionNotify

Clrmap ColormapNotify

Message ClientMessage

Mapping MappingNotify

The supported abbreviations are:

Abbreviation Event Type Including
Ctrl KeyPress with Control modifier

Translation Table Syntax

242

Abbreviation Event Type Including
Meta KeyPress with Meta modifier
Shift KeyPress with Shift modifier
Btn1Down ButtonPress with Button1 detail
Btn1Up ButtonRelease with Button1 detail
Btn2Down ButtonPress with Button2 detail
Btn2Up ButtonRelease with Button2 detail
Btn3Down ButtonPress with Button3 detail
Btn3Up ButtonRelease with Button3 detail
Btn4Down ButtonPress with Button4 detail
Btn4Up ButtonRelease with Button4 detail
Btn5Down ButtonPress with Button5 detail
Btn5Up ButtonRelease with Button5 detail
BtnMotion MotionNotify with any button modifier
Btn1Motion MotionNotify with Button1 modifier
Btn2Motion MotionNotify with Button2 modifier
Btn3Motion MotionNotify with Button3 modifier
Btn4Motion MotionNotify with Button4 modifier
Btn5Motion MotionNotify with Button5 modifier

The detail field is event-specific and normally corresponds to the detail field of the
corresponding event as described by X Window System Protocol, Section 11. The
detail field is supported for the following event types:

KeyPress KeySym from event detail (keycode)
KeyRelease KeySym from event detail (keycode)
ButtonPress button from event detail
ButtonRelease button from event detail
MotionNotify event detail
EnterNotify event mode
LeaveNotify event mode
FocusIn event mode
FocusOut event mode
PropertyNotify atom
SelectionClear selection
SelectionRequest selection
SelectionNotify selection
ClientMessage type
MappingNotify request

If the event type is KeyPress or KeyRelease, the detail field specifies a KeySym
name in standard format which is matched against the event as described above,
for example, <Key>A.

Translation Table Syntax

243

For the PropertyNotify, SelectionClear, SelectionRequest, SelectionNotify,
and ClientMessage events the detail field is specified as an atom name; for example,
<Message>WM_PROTOCOLS. For the MotionNotify, EnterNotify, LeaveNotify,
FocusIn, FocusOut, and MappingNotify events, either the symbolic constants as
defined by X Window System Protocol, Section 11, or the numeric values may be
specified.

If no detail field is specified, then any value in the event detail is accepted as a
match.

A KeySym can be specified as any of the standard KeySym names, a hexadecimal
number prefixed with "0x" or "0X", an octal number prefixed with "0", or a deci-
mal number. A KeySym expressed as a single digit is interpreted as the correspond-
ing Latin 1 KeySym, for example, "0" is the KeySym XK_0. Other single character
KeySyms are treated as literal constants from Latin 1, for example, "!" is treated
as 0x21. Standard KeySym names are as defined in <X11/keysymdef.h> with the
"XK_" prefix removed.

Canonical Representation

Every translation table has a unique, canonical text representation. This represen-
tation is passed to a widget's display_accelerator procedure to describe the ac-
celerators installed on that widget. The canonical representation of a translation
table is (see also "Syntax")

transla-
tionTable

= { production }

production = lhs ":" rhs "\\n"
lhs =event { "," event }
event =[modifier_list] "<"event_type">" ["(" count["+"] ")"] {detail}
modifier_list = ["!"] [":"] {modifier}
modifier = ["˜"] modifier_name
count =("1" | "2" | "3" | "4" | ...)
modifier_name= "@" <keysym> | <see canonical modifier names below>
event_type = <see canonical event types below>
detail =<event-specific details>
rhs ={ name "(" [params] ")" }
name =namechar { namechar }
namechar = { "a"-"z" | "A"-"Z" | "0"-"9" | "_" | "-" }
params =string {"," string}
string =quoted_string
quoted_string= “"” {<Latin 1 character> | escape_char} ["\\\\"] “"”
escape_char = "\\""

The canonical modifier names are

 Ctrl Mod1 Button1
 Shift Mod2 Button2

Translation Table Syntax

244

 Lock Mod3 Button3
 Mod4 Button4
 Mod5 Button5

The canonical event types are

KeyPress KeyRelease
ButtonPress ButtonRelease
MotionNotify EnterNotify
LeaveNotify FocusIn
FocusOut KeymapNotify
Expose GraphicsExpose,
NoExpose VisibilityNotify
CreateNotify DestroyNotify
UnmapNotify MapNotify
MapRequest ReparentNotify
ConfigureNotify ConfigureRequest
GravityNotify ResizeRequest
CirculateNotify CirculateRequest
PropertyNotify SelectionClear
SelectionRequest SelectionNotify
ColormapNotify ClientMessage

Examples

• Always put more specific events in the table before more general ones:

 Shift <Btn1Down> : twas()\n\
 <Btn1Down> : brillig()

• For double-click on Button1 Up with Shift, use this specification:

Shift<Btn1Up>(2) : and()
• This is equivalent to the following line with appropriate timers set between events:

Shift<Btn1Down>,Shift<Btn1Up>,Shift<Btn1Down>,Shift<Btn1Up> : and()
• For double-click on Button1 Down with Shift, use this specification:

Shift<Btn1Down>(2) : the()
• This is equivalent to the following line with appropriate timers set between events:

Shift<Btn1Down>,Shift<Btn1Up>,Shift<Btn1Down> : the()
• Mouse motion is always discarded when it occurs between events in a table where

no motion event is specified:

Translation Table Syntax

245

<Btn1Down>,<Btn1Up> : slithy()

This is taken, even if the pointer moves a bit between the down and up events.
Similarly, any motion event specified in a translation matches any number of mo-
tion events. If the motion event causes an action procedure to be invoked, the
procedure is invoked after each motion event.

• If an event sequence consists of a sequence of events that is also a noninitial
subsequence of another translation, it is not taken if it occurs in the context of
the longer sequence. This occurs mostly in sequences like the following:

<Btn1Down>,<Btn1Up> : toves()\n\
<Btn1Up> : did()

The second translation is taken only if the button release is not preceded by a
button press or if there are intervening events between the press and the release.
Be particularly aware of this when using the repeat notation, above, with buttons
and keys, because their expansion includes additional events; and when specifying
motion events, because they are implicitly included between any two other events.
In particular, pointer motion and double-click translations cannot coexist in the
same translation table.

• For single click on Button1 Up with Shift and Meta, use this specification:
•

Shift Meta <Btn1Down>, Shift Meta<Btn1Up>: gyre()
• For multiple clicks greater or equal to a minimum number, a plus sign (+) may

be appended to the final (rightmost) count in an event sequence. The actions will
be invoked on the count-th click and each subsequent one arriving within the
multi-click time interval. For example:

Shift <Btn1Up>(2+) : and()
• To indicate EnterNotify with any modifiers, use this specification:

<Enter> : gimble()
• To indicate EnterNotify with no modifiers, use this specification:

None <Enter> : in()
• To indicate EnterNotify with Button1 Down and Button2 Up and "don't care"

about the other modifiers, use this specification:

Button1 ~Button2 <Enter> : the()
• To indicate EnterNotify with Button1 down and Button2 down exclusively, use

this specification:

! Button1 Button2 <Enter> : wabe()

You do not need to use a tilde (~) with an exclamation point (!).

246

Appendix C. Compatibility Functions 1

In prototype versions of the X Toolkit each widget class implemented an
Xt<Widget>Create (for example, XtLabelCreate) function, in which most of the
code was identical from widget to widget. In the Intrinsics, a single generic XtCre-
ateWidget performs most of the common work and then calls the initialize proce-
dure implemented for the particular widget class.

Each Composite class also implemented the procedures Xt<Widget>Add and an
Xt<Widget>Delete (for example, XtButtonBoxAddButton and XtButtonBoxDelete-
Button). In the Intrinsics, the Composite generic procedures XtManageChildren
and XtUnmanageChildren perform error checking and screening out of certain chil-
dren. Then they call the change_managed procedure implemented for the widget's
Composite class. If the widget's parent has not yet been realized, the call to the
change_managed procedure is delayed until realization time.

Old-style calls can be implemented in the X Toolkit by defining one-line procedures
or macros that invoke a generic routine. For example, you could define the macro
XtLabelCreate as:

#define XtLabelCreate(name, parent, args, num_args) \
 ((LabelWidget) XtCreateWidget(name, labelWidgetClass, parent, args, num_args))

Pop-up shells in some of the prototypes automatically performed an XtManageChild
on their child within their insert_child procedure. Creators of pop-up children need
to call XtManageChild themselves.

XtAppInitialize and XtVaAppInitialize have been replaced by XtOpenApplica-
tion and XtVaOpenApplication.

To initialize the Intrinsics internals, create an application context, open and initialize
a display, and create the initial application shell instance, an application may use
XtAppInitialize or XtVaAppInitialize.

Widget XtAppInitialize(app_context_return, application_class, options,
num_options, argc_in_out, argv_in_out, fallback_resources, args,
num_args);

app_context_return Returns the application context, if non-NULL.

application_class Specifies the class name of the application.

options Specifies the command line options table.

num_options Specifies the number of entries in options.

argc_in_out Specifies a pointer to the number of command line
arguments.

argv_in_out Specifies a pointer to the command line arguments.

fallback_resources Specifies resource values to be used if the applica-
tion class resource file cannot be opened or read, or
NULL.

1 This appendix is part of the formal Intrinsics Specification.

Compatibility Functions

247

args Specifies the argument list to override any other re-
source specifications for the created shell widget.

num_args Specifies the number of entries in the argument list.

The XtAppInitialize function calls XtToolkitInitialize followed by XtCre-
ateApplicationContext, then calls *XtOpenDisplay with display_string NULL and
application_name NULL, and finally calls XtAppCreateShell with application_name
NULL, widget_class application\%Shell\%Widget\%Class, and the specified args
and num_args and returns the created shell. The modified argc and argv re-
turned by XtDisplayInitialize are returned in argc_in_out and argv_in_out. If
app_context_return is not NULL, the created application context is also returned.
If the display specified by the command line cannot be opened, an error message
is issued and XtAppInitialize terminates the application. If fallback_resources is
non-NULL, XtAppSetFallbackResources is called with the value prior to calling
*XtOpenDisplay.

Widget XtVaAppInitialize(app_context_return, application_class, op-
tions, num_options, argc_in_out, argv_in_out, fallback_resources);

app_context_return Returns the application context, if non-NULL.

application_class Specifies the class name of the application.

options Specifies the command line options table.

num_options Specifies the number of entries in options.

argc_in_out Specifies a pointer to the number of command line
arguments.

argv_in_out Specifies the command line arguments array.

fallback_resources Specifies resource values to be used if the application
class resource file cannot be opened, or NULL.

... Specifies the variable argument list to override any
other resource specifications for the created shell.

The XtVaAppInitialize procedure is identical in function to XtAppInitialize with
the args and num_args parameters replaced by a varargs list, as described in Sec-
tion 2.5.1.

As a convenience to people converting from earlier versions of the toolkit with-
out application contexts, the following routines exist: XtInitialize, XtMain-
Loop, XtNextEvent, XtProcessEvent, XtPeekEvent, XtPending, XtAddInput, XtAd-
dTimeOut, XtAddWorkProc, XtCreateApplicationShell, XtAddActions, XtSetS-
electionTimeout, and XtGetSelectionTimeout.

Widget XtInitialize(shell_name, application_class, options,
num_options, argc, argv);

shell_name This parameter is ignored; therefore, you can specify
NULL.

application_class Specifies the class name of this application.

Compatibility Functions

248

options Specifies how to parse the command line for any ap-
plication-specific resources. The options argument is
passed as a parameter to XrmParseCommand.

num_options Specifies the number of entries in the options list.

argc Specifies a pointer to the number of command line
parameters.

argv Specifies the command line parameters.

XtInitialize calls XtToolkitInitialize to initialize the toolkit internals, cre-
ates a default application context for use by the other convenience routines, calls
*XtOpenDisplay with display_string NULL and application_name NULL, and finally
calls XtAppCreateShell with application_name NULL and returns the created shell.
The semantics of calling XtInitialize more than once are undefined. This routine
has been replaced by XtOpenApplication.

void XtMainLoop(void);

XtMainLoop first reads the next alternate input, timer, or X event by calling XtNex-
tEvent. Then it dispatches this to the appropriate registered procedure by calling
XtDispatchEvent. This routine has been replaced by XtAppMainLoop.

void XtNextEvent(event_return);

event_return Returns the event information to the specified event
structure.

If no input is on the X input queue for the default application context, XtNextEvent
flushes the X output buffer and waits for an event while looking at the alternate
input sources and timeout values and calling any callback procedures triggered by
them. This routine has been replaced by XtAppNextEvent. XtInitialize must be
called before using this routine.

void XtProcessEvent(mask);

mask Specifies the type of input to process.

XtProcessEvent processes one X event, timeout, or alternate input source (depend-
ing on the value of mask), blocking if necessary. It has been replaced by XtApp-
ProcessEvent. XtInitialize must be called before using this function.

Boolean XtPeekEvent(event_return);

event_return Returns the event information to the specified event
structure.

If there is an event in the queue for the default application context, XtPeekEvent fills
in the event and returns a nonzero value. If no X input is on the queue, XtPeekEvent
flushes the output buffer and blocks until input is available, possibly calling some
timeout callbacks in the process. If the input is an event, XtPeekEvent fills in
the event and returns a nonzero value. Otherwise, the input is for an alternate
input source, and XtPeekEvent returns zero. This routine has been replaced by
XtAppPeekEvent. XtInitialize must be called before using this routine.

Boolean XtPending();

Compatibility Functions

249

XtPending returns a nonzero value if there are events pending from the X server
or alternate input sources in the default application context. If there are no events
pending, it flushes the output buffer and returns a zero value. It has been replaced
by XtAppPending. XtInitialize must be called before using this routine.

XtInputId XtAddInput(source, condition, proc, client_data);

source Specifies the source file descriptor on a POSIX-based
system or other operating-system-dependent device
specification.

condition Specifies the mask that indicates either a read, write,
or exception condition or some operating-system-de-
pendent condition.

proc Specifies the procedure called when input is available.

client_data Specifies the parameter to be passed to proc when in-
put is available.

The XtAddInput function registers in the default application context a new source
of events, which is usually file input but can also be file output. (The word file should
be loosely interpreted to mean any sink or source of data.) XtAddInput also specifies
the conditions under which the source can generate events. When input is pending
on this source in the default application context, the callback procedure is called.
This routine has been replaced by XtAppAddInput. XtInitialize must be called
before using this routine.

XtIntervalId XtAddTimeOut(interval, proc, client_data);

interval Specifies the time interval in milliseconds.

proc Specifies the procedure to be called when time ex-
pires.

client_data Specifies the parameter to be passed to proc when it
is called.

The XtAddTimeOut function creates a timeout in the default application context and
returns an identifier for it. The timeout value is set to interval. The callback pro-
cedure will be called after the time interval elapses, after which the timeout is re-
moved. This routine has been replaced by XtAppAddTimeOut. XtInitialize must
be called before using this routine.

XtWorkProcId XtAddWorkProc(proc, client_data);

proc Procedure to call to do the work.

client_data Client data to pass to proc when it is called.

This routine registers a work procedure in the default application context. It has
been replaced by XtAppAddWorkProc. XtInitialize must be called before using
this routine.

Widget XtCreateApplicationShell(name, widget_class, args, num_args);

name This parameter is ignored; therefore, you can specify
NULL.

Compatibility Functions

250

widget_class Specifies the widget class pointer for the creat-
ed application shell widget. This will usually be
topLevelShellWidgetClass or a subclass thereof.

args Specifies the argument list to override any other re-
source specifications.

num_args Specifies the number of entries in args.

The procedure XtCreateApplicationShell calls XtAppCreateShell with
application_name NULL, the application class passed to XtInitialize, and the de-
fault application context created by XtInitialize. This routine has been replaced
by XtAppCreateShell.

An old-format resource type converter procedure pointer is of type (*XtConverter).

typedef void (*XtConverter)(args, num_args, from, to);

args Specifies a list of additional XrmValue arguments to the
converter if additional context is needed to perform the
conversion, or NULL.

num_args Specifies the number of entries in args.

from Specifies the value to convert.

to Specifies the descriptor to use to return the converted val-
ue.

Type converters should perform the following actions:

• Check to see that the number of arguments passed is correct.
• Attempt the type conversion.
• If successful, return the size and pointer to the data in the to argument; otherwise,

call XtWarningMsg and return without modifying the to argument.

Most type converters just take the data described by the specified from argument
and return data by writing into the specified to argument. A few need other infor-
mation, which is available in the specified argument list. A type converter can in-
voke another type converter, which allows differing sources that may convert into
a common intermediate result to make maximum use of the type converter cache.

Note that the address returned in to->addr cannot be that of a local variable of the
converter because this is not valid after the converter returns. It should be a pointer
to a static variable.

The procedure type (*XtConverter) has been replaced by (*XtTypeConverter).

The XtStringConversionWarning function is a convenience routine for old-format
resource converters that convert from strings.

void XtStringConversionWarning(src);

src Specifies the string that could not be converted.

dst_type Specifies the name of the type to which the string could
not be converted.

Compatibility Functions

251

The XtStringConversionWarning function issues a warning message with name
"conversionError", type "string", class "XtToolkitError, and the default message
string "Cannot convert "src" to type dst_type". This routine has been superseded by
XtDisplayStringConversionWarning.

To register an old-format converter, use XtAddConverter or XtAppAddConverter.

void XtAddConverter(from_type, to_type, converter, convert_args,
num_args);

from_type Specifies the source type.

to_type Specifies the destination type.

converter Specifies the type converter procedure.

convert_args Specifies how to compute the additional arguments
to the converter, or NULL.

num_args Specifies the number of entries in convert_args.

XtAddConverter is equivalent in function to XtSetTypeConverter with cache_type
equal to XtCacheAll for old-format type converters. It has been superseded by
XtSetTypeConverter.

void XtAppAddConverter(app_context, from_type, to_type, converter,
convert_args, num_args);

app_context Specifies the application context.

from_type Specifies the source type.

to_type Specifies the destination type.

converter Specifies the type converter procedure.

convert_args Specifies how to compute the additional arguments
to the converter, or NULL.

num_args Specifies the number of entries in convert_args.

XtAppAddConverter is equivalent in function to XtAppSetTypeConverter with
cache_type equal to XtCacheAll for old-format type converters. It has been super-
seded by XtAppSetTypeConverter.

To invoke resource conversions, a client may use XtConvert or, for old-format con-
verters only, XtDirectConvert.

void XtConvert(w, from_type, from, to_type, to_return);

w Specifies the widget to use for additional arguments, if
any are needed.

from_type Specifies the source type.

from Specifies the value to be converted.

to_type Specifies the destination type.

Compatibility Functions

252

to_return Returns the converted value.

void XtDirectConvert(converter, args, num_args, from, to_return);

converter Specifies the conversion procedure to be called.

args Specifies the argument list that contains the addition-
al arguments needed to perform the conversion (often
NULL).

num_args Specifies the number of entries in args.

from Specifies the value to be converted.

to_return Returns the converted value.

The XtConvert function looks up the type converter registered to convert from_type
to to_type, computes any additional arguments needed, and then calls XtDirect-
Convert or XtCallConverter. The XtDirectConvert function looks in the converter
cache to see if this conversion procedure has been called with the specified argu-
ments. If so, it returns a descriptor for information stored in the cache; otherwise,
it calls the converter and enters the result in the cache.

Before calling the specified converter, XtDirectConvert sets the return value size
to zero and the return value address to NULL. To determine if the conversion was
successful, the client should check to_return.addr for non-NULL. The data returned
by XtConvert must be copied immediately by the caller, as it may point to static
data in the type converter.

XtConvert has been replaced by XtConvertAndStore, and XtDirectConvert has
been superseded by XtCallConverter.

To deallocate a shared GC when it is no longer needed, use XtDestroyGC.

void XtDestroyGC(w, gc);

w Specifies any object on the display for which the shared GC was
created. Must be of class Object or any subclass thereof.

gc Specifies the shared GC to be deallocated.

References to sharable GCs are counted and a free request is generated to the
server when the last user of a given GC destroys it. Note that some earlier versions of
XtDestroyGC had only a gc argument. Therefore, this function is not very portable,
and you are encouraged to use XtReleaseGC instead.

To declare an action table in the default application context and register it with the
translation manager, use XtAddActions.

void XtAddActions(actions, num_actions);

actions Specifies the action table to register.

num_actions Specifies the number of entries in actions.

If more than one action is registered with the same name, the most recently regis-
tered action is used. If duplicate actions exist in an action table, the first is used. The

Compatibility Functions

253

Intrinsics register an action table for XtMenuPopup and XtMenuPopdown as part of X
Toolkit initialization. This routine has been replaced by XtAppAddActions. XtIni-
tialize must be called before using this routine.

To set the Intrinsics selection timeout in the default application context, use XtSetS-
electionTimeout.

void XtSetSelectionTimeout(timeout);

timeout Specifies the selection timeout in milliseconds. This routine
has been replaced by XtAppSetSelectionTimeout. XtIni-
tialize must be called before using this routine.

To get the current selection timeout value in the default application context, use
XtGetSelectionTimeout.

unsigned long XtGetSelectionTimeout();

The selection timeout is the time within which the two communicating applications
must respond to one another. If one of them does not respond within this interval,
the Intrinsics abort the selection request.

This routine has been replaced by XtAppGetSelectionTimeout. XtInitialize must
be called before using this routine.

To obtain the global error database (for example, to merge with an application- or
widget-specific database), use *XtGetErrorDatabase.

XrmDatabase *XtGetErrorDatabase();

The *XtGetErrorDatabase function returns the address of the error database. The
Intrinsics do a lazy binding of the error database and do not merge in the database
file until the first call to XtGetErrorDatbaseText. This routine has been replaced
by XtAppGetErrorDatabase.

An error message handler can obtain the error database text for an error or a warn-
ing by calling XtGetErrorDatabaseText.

void XtGetErrorDatabaseText(name, default, buffer_return, nbytes);

name

type Specify the name and type that are concatenated to
form the resource name of the error message.

class Specifies the resource class of the error message.

default Specifies the default message to use if an error data-
base entry is not found.

buffer_return Specifies the buffer into which the error message is
to be returned.

nbytes Specifies the size of the buffer in bytes.

The XtGetErrorDatabaseText returns the appropriate message from the error data-
base associated with the default application context or returns the specified default

Compatibility Functions

254

message if one is not found in the error database. To form the full resource name
and class when querying the database, the name and type are concatenated with a
single "." between them and the class is concatenated with itself with a single "." if
it does not already contain a ".". This routine has been superseded by XtAppGetEr-
rorDatabaseText.

To register a procedure to be called on fatal error conditions, use XtSetErrorMs-
gHandler.

void XtSetErrorMsgHandler(msg_handler);

msg_handler Specifies the new fatal error procedure, which should
not return.

The default error handler provided by the Intrinsics constructs a string from the
error resource database and calls XtError. Fatal error message handlers should
not return. If one does, subsequent Intrinsics behavior is undefined. This routine
has been superseded by XtAppSetErrorMsgHandler.

To call the high-level error handler, use XtErrorMsg.

void XtErrorMsg(name, type, class, default, params, num_params);

name Specifies the general kind of error.

type Specifies the detailed name of the error.

class Specifies the resource class.

default Specifies the default message to use if an error data-
base entry is not found.

params Specifies a pointer to a list of values to be stored in the
message.

num_params Specifies the number of entries in params.

This routine has been superseded by XtAppErrorMsg.

To register a procedure to be called on nonfatal error conditions, use XtSetWarn-
ingMsgHandler.

void XtSetWarningMsgHandler(msg_handler);

msg_handler Specifies the new nonfatal error procedure, which
usually returns.

The default warning handler provided by the Intrinsics constructs a string from the
error resource database and calls XtWarning. This routine has been superseded by
XtAppSetWarningMsgHandler.

To call the installed high-level warning handler, use XtWarningMsg.

void XtWarningMsg(name, type, class, default, params, num_params);

name Specifies the general kind of error.

type Specifies the detailed name of the error.

Compatibility Functions

255

class Specifies the resource class.

default Specifies the default message to use if an error data-
base entry is not found.

params Specifies a pointer to a list of values to be stored in the
message.

num_params Specifies the number of entries in params.

This routine has been superseded by XtAppWarningMsg.

To register a procedure to be called on fatal error conditions, use XtSetErrorHan-
dler.

void XtSetErrorHandler(handler);

handler Specifies the new fatal error procedure, which should not
return.

The default error handler provided by the Intrinsics is _XtError. On POSIX-based
systems, it prints the message to standard error and terminates the application.
Fatal error message handlers should not return. If one does, subsequent X Toolkit
behavior is undefined. This routine has been superseded by XtAppSetErrorHandler.

To call the installed fatal error procedure, use XtError.

void XtError(message);

message Specifies the message to be reported.

Most programs should use XtAppErrorMsg, not XtError, to provide for customiza-
tion and internationalization of error messages. This routine has been superseded
by XtAppError.

To register a procedure to be called on nonfatal error conditions, use XtSetWarn-
ingHandler.

void XtSetWarningHandler(handler);

handler Specifies the new nonfatal error procedure, which usually
returns.

The default warning handler provided by the Intrinsics is _XtWarning. On POSIX-
based systems, it prints the message to standard error and returns to the caller.
This routine has been superseded by XtAppSetWarningHandler.

To call the installed nonfatal error procedure, use XtWarning.

void XtWarning(message);

message Specifies the nonfatal error message to be reported.

Most programs should use XtAppWarningMsg, not XtWarning, to provide for cus-
tomization and internationalization of warning messages. This routine has been su-
perseded by XtAppWarning.

256

Appendix D. Intrinsics Error Messages
All Intrinsics errors and warnings have class ``XtToolkitError''. The following two
tables summarize the common errors and warnings that can be generated by the In-
trinsics. Additional implementation-dependent messages are permitted. Error Mes-
sages

Name Type Default Message
allocError calloc Cannot perform calloc
allocError malloc Cannot perform malloc
allocError realloc Cannot perform realloc
internalError xtMakeGeometryRequest internal error; ShellClas-

sExtension is NULL
invalidArgCount xtGetValues Argument count > 0 on

NULL argument list in
XtGetValues

invalidArgCount xtSetValues Argument count > 0 on
NULL argument list in
XtSetValues

invalidClass applicationShel-
lInsertChild

ApplicationShell does not
accept RectObj children;
ignored

invalidClass constraintSetValue Subclass of Constraint re-
quired in CallConstrain-
tSetValues

invalidClass xtAppCreateShell XtAppCreateShell re-
quires non-NULL widget
class

invalidClass xtCreatePopupShell XtCreatePopupShell re-
quires non-NULL widget
class

invalidClass xtCreateWidget XtCreateWidget requires
non-NULL widget class

invalidClass xtPopdown XtPopdown requires a
subclass of shellWidget-
Class

invalidClass xtPopup XtPopup requires a sub-
class of shellWidgetClass

invalidDimension xtCreateWindow Widget %s has zero width
and/or height

invalidDimension shellRealize Shell widget %s has zero
width and/or height

invalidDisplay xtInitialize Can't open display: %s
invalidGetValues xtGetValues NULL ArgVal in XtGetVal-

ues

Intrinsics Error Messages

257

Name Type Default Message
invalidExtension shellClassPartInitialize widget class %s has in-

valid ShellClassExtension
record

invalidExtension xtMakeGeometryRequest widget class %s has in-
valid ShellClassExtension
record

invalidGeometryManager xtMakeGeometryRequest XtMakeGeometryRequest
- parent has no geometry
manager

invalidParameter xtAddInput invalid condition passed to
XtAddInput

invalidParameter xtAddInput invalid condition passed to
XtAppAddInput

invalidParent xtChangeManagedSet Attempt to manage a child
when parent is not Com-
posite

invalidParent xtChangeManagedSet Attempt to unmanage a
child when parent is not
Composite

invalidParent xtCreatePopupShell XtCreatePopupShell re-
quires non-NULL parent

invalidParent xtCreateWidget XtCreateWidget requires
non-NULL parent

invalidParent xtMakeGeometryRequest non-shell has no parent in
XtMakeGeometryRequest

invalidParent xtMakeGeometryRequest XtMakeGeometryRequest
- parent not composite

invalidParent xtManageChildren Attempt to manage a child
when parent is not Com-
posite

invalidParent xtUnmanageChildren Attempt to unmanage a
child when parent is not
Composite

invalidProcedure inheritanceProc Unresolved inheritance
operation

invalidProcedure realizeProc No realize class procedure
defined

invalidWindow eventHandler Event with wrong window
missingWidget fetchDisplayArg FetchDisplayArg called

without a widget to refer-
ence

nonWidget xtCreateWidget attempt to add non-widget
child "%s" to parent "%s"
which supports only wid-
gets

Intrinsics Error Messages

258

Name Type Default Message
noPerDisplay closeDisplay Couldn't find per display

information
noPerDisplay getPerDisplay Couldn't find per display

information
noSelectionProperties freeSelectionProperty internal error: no selec-

tion property context for
display

noWidgetAncestor windowedAncestor Object "%s" does not have
windowed ancestor

nullDisplay xtRegisterExtensionSelec-
tor

XtRegisterExtensionSelec-
tor requires a non-NULL
display

nullProc insertChild "%s" parent has NULL
insert_child method

r2versionMismatch widget Widget class %s must be
re-compiled.

R3versionMismatch widget Widget class %s must be
re-compiled.

R4orR5versionMismatch widget Widget class %s must be
re-compiled.

rangeError xtRegisterExtensionSelec-
tor

Attempt to register mul-
tiple selectors for one ex-
tension event type

sessionManagement SmcOpenConnection Tried to connect to ses-
sion manager, %s

subclassMismatch xtCheckSubclass Widget class %s found
when subclass of %s ex-
pected: %s

Warning Messages

Name Type Default Message
ambiguousParent xtChangeManagedSet Not all children have

same parent
ambiguousParent xtManageChildren Not all children have

same parent in XtMan-
ageChildren

ambiguousParent xtUnmanageChildren Not all children have
same parent in XtUnman-
ageChildren

badFormat xtGetSelectionValue Selection owner returned
type INCR property with
format != 32

badGeometry shellRealize Shell widget "%s" has an
invalid geometry specifi-
cation: "%s"

Intrinsics Error Messages

259

Name Type Default Message
badValue cvtStringToPixel Color name "%s" is not de-

fined
communicationError select Select failed; error code

%s
conversionError string Cannot convert string

"%s" to type %s
conversionError stringToVisual Cannot find Visual of class

%s for display %s
conversionFailed xtConvertVarToArgList Type conversion failed
conversionFailed xtGetTypedArg Type conversion (%s to

%s) failed for widget '%s'
displayError invalidDisplay Can't find display struc-

ture
grabError xtAddGrab XtAddGrab requires exclu-

sive grab if spring_loaded
is TRUE

grabError xtRemoveGrab XtRemoveGrab asked to
remove a widget not on
the list

initializationError xtInitialize Initializing Resource Lists
twice

insufficientSpace xtGetTypedArg Insufficient space for con-
verted type '%s' in widget
'%s'

internalError shell Shell's window manager
interaction is broken

invalidAddressMode computeArgs Conversion arguments for
widget '%s' contain an un-
supported address mode

invalidArgCount getResources argument count > 0 on
NULL argument list

invalidCallbackList xtAddCallback Cannot find callback list
in XtAddCallback

invalidCallbackList xtAddCallback Cannot find callback list
in XtAddCallbacks

invalidCallbackList xtCallCallback Cannot find callback list
in XtCallCallbacks

invalidCallbackList xtRemoveAllCallback Cannot find callback list
in XtRemoveAllCallbacks

invalidCallbackList xtRemoveCallback Cannot find callback list
in XtRemoveCallbacks

invalidChild xtChangeManagedSet Null child passed to Un-
manageChildren

invalidChild xtManageChildren null child passed to Man-
ageChildren

Intrinsics Error Messages

260

Name Type Default Message
invalidChild xtManageChildren null child passed to

XtManageChildren
invalidChild xtUnmanageChildren Null child passed to XtUn-

manageChildren
invalidChild xtUnmanageChildren Null child found in argu-

ment list to unmanage
invalidDepth setValues Can't change widget

depth
invalidExtension xtCreateWidget widget "%s" class %s has

invalid CompositeClassEx-
tension record

invalidExtension xtCreateWidget widget class %s has in-
valid ConstraintClassEx-
tension record

invalidGrab ungrabKeyOrButton Attempt to remove nonex-
istent passive grab

invalidGrabKind xtPopup grab kind argument has
invalid value; XtGrabNone
assumed

invalidParameters freeTranslations Freeing XtTranslations re-
quires no extra arguments

invalidParameters mergeTranslations MergeTM to Transla-
tionTable needs no extra
arguments

invalidParameters xtMenuPopdown XtMenuPopdown called
with num_params != 0 or
1

invalidParameters xtMenuPopupAction MenuPopup wants exactly
one argument

invalidParent xtCopyFromParent CopyFromParent must
have non-NULL parent

invalidPopup xtMenuPopup Can't find popup widget
"%s" in XtMenuPopup

invalidPopup xtMenuPopdown Can't find popup in widget
"%s" in XtMenuPopdown

invalidPopup unsupportedOperation Pop-up menu creation is
only supported on Button-
Press, KeyPress or Enter-
Notify events.

invalidPopup unsupportedOperation Pop-up menu creation is
only supported on Button,
Key or EnterNotify events.

invalidProcedure deleteChild null delete_child proce-
dure for class %s in XtDe-
stroy

Intrinsics Error Messages

261

Name Type Default Message
invalidProcedure inputHandler XtRemoveInput: Input

handler not found
invalidProcedure set_values_almost set_values_almost proce-

dure shouldn't be NULL
invalidResourceCount getResources resource count > 0 on

NULL resource list
invalidResourceName computeArgs Cannot find resource

name %s as argument to
conversion

invalidShell xtTranslateCoords Widget has no shell ances-
tor

invalidSizeOverride xtDependencies Representation size %d
must match superclass's
to override %s

missingCharsetList cvtStringToFontSet Missing charsets in String
to FontSet conversion

noActionProc xtCallActionProc No action proc named
"%s" is registered for wid-
get "%s"

noColormap cvtStringToPixel Cannot allocate colormap
entry for "%s"

noFont cvtStringToFont Unable to load any usable
ISO8859-1 font

noFont cvtStringToFontSet Unable to load any usable
fontset

noFont cvtStringToFontStruct Unable to load any usable
ISO8859-1 font

notInConvertSelection xtGetSelectionRequest XtGetSelectionRequest or
XtGetSelectionParameters
called for widget "%s" out-
side of ConvertSelection
proc

notRectObj xtChangeManagedSet child "%s", class %s is not
a RectObj

notRectObj xtManageChildren child "%s", class %s is not
a RectObj

nullWidget xtConvertVarToArgList XtVaTypedArg conversion
needs non-NULL widget
handle

r3versionMismatch widget Shell Widget class %s bi-
nary compiled for R3

translationError nullTable Can't remove accelerators
from NULL table

translationError nullTable Tried to remove nonexis-
tent accelerators

Intrinsics Error Messages

262

Name Type Default Message
translationError ambiguousActions Overriding earlier transla-

tion manager actions.
translationError newActions New actions are:%s
translationError nullTable table to (un)merge must

not be null
translationError nullTable Can't translate event

through NULL table
translationError oldActions Previous entry was: %s %s
translationError unboundActions Actions not found: %s
translationError xtTranslateInitialize Initializing Translation

manager twice.
translationParseError missingComma ... possibly due to missing

',' in event sequence.
translationParseError nonLatin1 ... probably due to non-

Latin1 character in quoted
string

translationParseError parseError translation table syntax
error: %s

translationParseError parseString Missing '"'.
translationParseError showLine ... found while parsing

'%s'
typeConversionError noConverter No type converter regis-

tered for '%s' to '%s' con-
version.

unknownType xtConvertVarToArgList Unable to find type of re-
source for conversion

unknownType xtGetTypedArg Unable to find type of re-
source for conversion

versionMismatch widget Widget class %s version
mismatch (recompilation
needed):\\n widget %d vs.
intrinsics %d.

wrongParameters cvtIntOrPixelToXColor Pixel to color conversion
needs screen and col-
ormap arguments

wrongParameters cvtIntToBool Integer to Bool conversion
needs no extra arguments

wrongParameters cvtIntToBoolean Integer to Boolean conver-
sion needs no extra argu-
ments

wrongParameters cvtIntToFloat Integer to Float conver-
sion needs no extra argu-
ments

wrongParameters cvtIntToFont Integer to Font conversion
needs no extra arguments

Intrinsics Error Messages

263

Name Type Default Message
wrongParameters cvtIntToPixel Integer to Pixel conver-

sion needs no extra argu-
ments

wrongParameters cvtIntToPixmap Integer to Pixmap conver-
sion needs no extra argu-
ments

wrongParameters cvtIntToShort Integer to Short conver-
sion needs no extra argu-
ments

wrongParameters cvtIntToUnsignedChar Integer to UnsignedChar
conversion needs no extra
arguments

wrongParameters cvtStringToAccelera-
torTable

String to AcceleratorTable
conversion needs no extra
arguments

wrongParameters cvtStringToAtom String to Atom conversion
needs Display argument

wrongParameters cvtStringToBool String to Bool conversion
needs no extra arguments

wrongParameters cvtStringToBoolean String to Boolean conver-
sion needs no extra argu-
ments

wrongParameters cvtStringToCommandAr-
gArray

String to CommandArgAr-
ray conversion needs no
extra arguments

wrongParameters cvtStringToCursor String to cursor conver-
sion needs display argu-
ment

wrongParameters cvtStringToDimension String to Dimension con-
version needs no extra ar-
guments

wrongParameters cvtStringToDirecto-
ryString

String to DirectoryString
conversion needs no extra
arguments

wrongParameters cvtStringToDisplay String to Display conver-
sion needs no extra argu-
ments

wrongParameters cvtStringToFile String to File conversion
needs no extra arguments

wrongParameters cvtStringToFloat String to Float conversion
needs no extra arguments

wrongParameters cvtStringToFont String to font conversion
needs display argument

wrongParameters cvtStringToFontSet String to FontSet conver-
sion needs display and lo-
cale arguments

Intrinsics Error Messages

264

Name Type Default Message
wrongParameters cvtStringToFontStruct String to font conversion

needs display argument
wrongParameters cvtStringToGravity String to Gravity conver-

sion needs no extra argu-
ments

wrongParameters cvtStringToInitialState String to InitialState con-
version needs no extra ar-
guments

wrongParameters cvtStringToInt String to Integer conver-
sion needs no extra argu-
ments

wrongParameters cvtStringToPixel String to pixel conver-
sion needs screen and col-
ormap arguments

wrongParameters cvtStringToRestartStyle String to RestartStyle con-
version needs no extra ar-
guments

wrongParameters cvtStringToShort String to Integer conver-
sion needs no extra argu-
ments

wrongParameters cvtStringToTransla-
tionTable

String to TranslationTable
conversion needs no extra
arguments

wrongParameters cvtStringToUnsignedChar String to Integer conver-
sion needs no extra argu-
ments

wrongParameters cvtStringToVisual String to Visual conver-
sion needs screen and
depth arguments

wrongParameters cvtXColorToPixel Color to Pixel conversion
needs no extra arguments

wrongParameters freeCursor Free Cursor requires dis-
play argument

wrongParameters freeDirectoryString Free Directory String re-
quires no extra arguments

wrongParameters freeFile Free File requires no ex-
tra arguments

wrongParameters freeFont Free Font needs display
argument

wrongParameters freeFontSet FreeFontSet needs display
and locale arguments

wrongParameters freeFontStruct Free FontStruct requires
display argument

wrongParameters freePixel Freeing a pixel requires
screen and colormap ar-
guments

265

Appendix E. Defined Strings
The StringDefs.h header file contains definitions for the following resource name,
class, and representation type symbolic constants.

Resource names:

Symbol Definition
XtNaccelerators "accelerators"
XtNallowHoriz "allowHoriz"
XtNallowVert "allowVert"
XtNancestorSensitive "ancestorSensitive"
XtNbackground "background"
XtNbackgroundPixmap "backgroundPixmap"
XtNbitmap "bitmap"
XtNborder "borderColor"
XtNborderColor "borderColor"
XtNborderPixmap "borderPixmap"
XtNborderWidth "borderWidth"
XtNcallback "callback"
XtNchangeHook "changeHook"
XtNchildren "children"
XtNcolormap "colormap"
XtNconfigureHook "configureHook"
XtNcreateHook "createHook"
XtNdepth "depth"
XtNdestroyCallback "destroyCallback"
XtNdestroyHook "destroyHook"
XtNeditType "editType"
XtNfile "file"
XtNfont "font"
XtNfontSet "fontSet"
XtNforceBars "forceBars"
XtNforeground "foreground"
XtNfunction "function"
XtNgeometryHook "geometryHook"
XtNheight "height"
XtNhighlight "highlight"
XtNhSpace "hSpace"
XtNindex "index"
XtNinitialResourcesPersistent "initialResourcesPersistent"
XtNinnerHeight "innerHeight"

Defined Strings

266

Symbol Definition
XtNinnerWidth "innerWidth"
XtNinnerWindow "innerWindow"
XtNinsertPosition "insertPosition"
XtNinternalHeight "internalHeight"
XtNinternalWidth "internalWidth"
XtNjumpProc "jumpProc"
XtNjustify "justify"
XtNknobHeight "knobHeight"
XtNknobIndent "knobIndent"
XtNknobPixel "knobPixel"
XtNknobWidth "knobWidth"
XtNlabel "label"
XtNlength "length"
XtNlowerRight "lowerRight"
XtNmappedWhenManaged "mappedWhenManaged"
XtNmenuEntry "menuEntry"
XtNname "name"
XtNnotify "notify"
XtNnumChildren "numChildren"
XtNnumShells "numShells"
XtNorientation "orientation"
XtNparameter "parameter"
XtNpixmap "pixmap"
XtNpopupCallback "popupCallback"
XtNpopdownCallback "popdownCallback"
XtNresize "resize"
XtNreverseVideo "reverseVideo"
XtNscreen "screen"
XtNscrollProc "scrollProc"
XtNscrollDCursor "scrollDCursor"
XtNscrollHCursor "scrollHCursor"
XtNscrollLCursor "scrollLCursor"
XtNscrollRCursor "scrollRCursor"
XtNscrollUCursor "scrollUCursor"
XtNscrollVCursor "scrollVCursor"
XtNselection "selection"
XtNselectionArray "selectionArray"
XtNsensitive "sensitive"
XtNsession "session"

Defined Strings

267

Symbol Definition
XtNshells "shells"
XtNshown "shown"
XtNspace "space"
XtNstring "string"
XtNtextOptions "textOptions"
XtNtextSink "textSink"
XtNtextSource "textSource"
XtNthickness "thickness"
XtNthumb "thumb"
XtNthumbProc "thumbProc"
XtNtop "top"
XtNtranslations "translations"
XtNunrealizeCallback "unrealizeCallback"
XtNupdate "update"
XtNuseBottom "useBottom"
XtNuseRight "useRight"
XtNvalue "value"
XtNvSpace "vSpace"
XtNwidth "width"
XtNwindow "window"
XtNx "x"
XtNy "y"

Resource classes:

Symbol Definition
XtCAccelerators "Accelerators"
XtCBackground "Background"
XtCBitmap "Bitmap"
XtCBoolean "Boolean"
XtCBorderColor "BorderColor"
XtCBorderWidth "BorderWidth"
XtCCallback "Callback"
XtCColormap "Colormap"
XtCColor "Color"
XtCCursor "Cursor"
XtCDepth "Depth"
XtCEditType "EditType"
XtCEventBindings "EventBindings"
XtCFile "File"

Defined Strings

268

Symbol Definition
XtCFont "Font"
XtCFontSet "FontSet"
XtCForeground "Foreground"
XtCFraction "Fraction"
XtCFunction "Function"
XtCHeight "Height"
XtCHSpace "HSpace"
XtCIndex "Index"
XtCInitialResourcesPersistent "InitialResourcesPersistent"
XtCInsertPosition "InsertPosition"
XtCInterval "Interval"
XtCJustify "Justify"
XtCKnobIndent "KnobIndent"
XtCKnobPixel "KnobPixel"
XtCLabel "Label"
XtCLength "Length"
XtCMappedWhenManaged "MappedWhenManaged"
XtCMargin "Margin"
XtCMenuEntry "MenuEntry"
XtCNotify "Notify"
XtCOrientation "Orientation"
XtCParameter "Parameter"
XtCPixmap "Pixmap"
XtCPosition "Position"
XtCReadOnly "ReadOnly"
XtCResize "Resize"
XtCReverseVideo "ReverseVideo"
XtCScreen "Screen"
XtCScrollProc "ScrollProc"
XtCScrollDCursor "ScrollDCursor"
XtCScrollHCursor "ScrollHCursor"
XtCScrollLCursor "ScrollLCursor"
XtCScrollRCursor "ScrollRCursor"
XtCScrollUCursor "ScrollUCursor"
XtCScrollVCursor "ScrollVCursor"
XtCSelection "Selection"
XtCSelectionArray "SelectionArray"
XtCSensitive "Sensitive"
XtCSession "Session"

Defined Strings

269

Symbol Definition
XtCSpace "Space"
XtCString "String"
XtCTextOptions "TextOptions"
XtCTextPosition "TextPosition"
XtCTextSink "TextSink"
XtCTextSource "TextSource"
XtCThickness "Thickness"
XtCThumb "Thumb"
XtCTranslations "Translations"
XtCValue "Value"
XtCVSpace "VSpace"
XtCWidth "Width"
XtCWindow "Window"
XtCX "X"
XtCY "Y"

Resource representation types:

Symbol Definition
XtRAcceleratorTable "AcceleratorTable"
XtRAtom "Atom"
XtRBitmap "Bitmap"
XtRBool "Bool"
XtRBoolean "Boolean"
XtRCallback "Callback"
XtRCallProc "CallProc"
XtRCardinal "Cardinal"
XtRColor "Color"
XtRColormap "Colormap"
XtRCommandArgArray "CommandArgArray"
XtRCursor "Cursor"
XtRDimension "Dimension"
XtRDirectoryString "DirectoryString"
XtRDisplay "Display"
XtREditMode "EditMode"
XtREnum "Enum"
XtREnvironmentArray "EnvironmentArray"
XtRFile "File"
XtRFloat "Float"
XtRFont "Font"

Defined Strings

270

Symbol Definition
XtRFontSet "FontSet"
XtRFontStruct "FontStruct"
XtRFunction "Function"
XtRGeometry "Geometry"
XtRGravity "Gravity"
XtRImmediate "Immediate"
XtRInitialState "InitialState"
XtRInt "Int"
XtRJustify "Justify"
XtRLongBoolean XtRBool
XtRObject "Object"
XtROrientation "Orientation"
XtRPixel "Pixel"
XtRPixmap "Pixmap"
XtRPointer "Pointer"
XtRPosition "Position"
XtRRestartStyle "RestartStyle"
XtRScreen "Screen"
XtRShort "Short"
XtRSmcConn "SmcConn"
XtRString "String"
XtRStringArray "StringArray"
XtRStringTable "StringTable"
XtRUnsignedChar "UnsignedChar"
XtRTranslationTable "TranslationTable"
XtRVisual "Visual"
XtRWidget "Widget"
XtRWidgetClass "WidgetClass"
XtRWidgetList "WidgetList"
XtRWindow "Window"

Boolean enumeration constants:

Symbol Definition
XtEoff "off"
XtEfalse "false"
XtEno "no"
XtEon "on"
XtEtrue "true"
XtEyes "yes"

Defined Strings

271

Orientation enumeration constants:

Symbol Definition
XtEvertical "vertical"
XtEhorizontal "horizontal"

Text edit enumeration constants:

Symbol Definition
XtEtextRead "read"
XtEtextAppend "append"
XtEtextEdit "edit"

Color enumeration constants:

Symbol Definition
XtExtdefaultbackground "xtdefaultbackground"
XtExtdefaultforeground "xtdefaultforeground"

Font constant:

Symbol Definition
XtExtdefaultfont "xtdefaultfont"

Hooks for External Agents constants:

Symbol Definition
XtHcreate "Xtcreate"
XtHsetValues "Xtsetvalues"
XtHmanageChildren "XtmanageChildren"
XtHunmanageChildren "XtunmanageChildren"
XtHmanageSet "XtmanageSet"
XtHunmanageSet "XtunmanageSet"
XtHrealizeWidget "XtrealizeWidget"
XtHunrealizeWidget "XtunrealizeWidget"
XtHaddCallback "XtaddCallback"
XtHaddCallbacks "XtaddCallbacks"
XtHremoveCallback "XtremoveCallback"
XtHremoveCallbacks "XtremoveCallbacks"
XtHremoveAllCallbacks "XtremoveAllCallbacks"
XtHaugmentTranslations "XtaugmentTranslations"
XtHoverrideTranslations "XtoverrideTranslations"
XtHuninstallTranslations "XtuninstallTranslations"
XtHsetKeyboardFocus "XtsetKeyboardFocus"
XtHsetWMColormapWindows "XtsetWMColormapWindows"
XtHmapWidget "XtmapWidget"

Defined Strings

272

Symbol Definition
XtHunmapWidget "XtunmapWidget"
XtHpopup "Xtpopup"
XtHpopupSpringLoaded "XtpopupSpringLoaded"
XtHpopdown "Xtpopdown"
XtHconfigure "Xtconfigure"
XtHpreGeometry "XtpreGeometry"
XtHpostGeometry "XtpostGeometry"
XtHdestroy "Xtdestroy"

The Shell.h header file contains definitions for the following resource name, class,
and representation type symbolic constants.

Resource names:

Symbol Definition
XtNallowShellResize "allowShellResize"
XtNargc "argc"
XtNargv "argv"
XtNbaseHeight "baseHeight"
XtNbaseWidth "baseWidth"
XtNcancelCallback "cancelCallback"
XtNclientLeader "clientLeader"
XtNcloneCommand "cloneCommand"
XtNconnection "connection"
XtNcreatePopupChildProc "createPopupChildProc"
XtNcurrentDirectory "currentDirectory"
XtNdieCallback "dieCallback"
XtNdiscardCommand "discardCommand"
XtNenvironment "environment"
XtNerrorCallback "errorCallback"
XtNgeometry "geometry"
XtNheightInc "heightInc"
XtNiconMask "iconMask"
XtNiconName "iconName"
XtNiconNameEncoding "iconNameEncoding"
XtNiconPixmap "iconPixmap"
XtNiconWindow "iconWindow"
XtNiconX "iconX"
XtNiconY "iconY"
XtNiconic "iconic"
XtNinitialState "initialState"

Defined Strings

273

Symbol Definition
XtNinput "input"
XtNinteractCallback "interactCallback"
XtNjoinSession "joinSession"
XtNmaxAspectX "maxAspectX"
XtNmaxAspectY "maxAspectY"
XtNmaxHeight "maxHeight"
XtNmaxWidth "maxWidth"
XtNminAspectX "minAspectX"
XtNminAspectY "minAspectY"
XtNminHeight "minHeight"
XtNminWidth "minWidth"
XtNoverrideRedirect "overrideRedirect"
XtNprogramPath "programPath"
XtNresignCommand "resignCommand"
XtNrestartCommand "restartCommand"
XtNrestartStyle "restartStyle"
XtNsaveCallback "saveCallback"
XtNsaveCompleteCallback "saveCompleteCallback"
XtNsaveUnder "saveUnder"
XtNsessionID "sessionID"
XtNshutdownCommand "shutdownCommand"
XtNtitle "title"
XtNtitleEncoding "titleEncoding"
XtNtransient "transient"
XtNtransientFor "transientFor"
XtNurgency "urgency"
XtNvisual "visual"
XtNwaitForWm "waitforwm"
XtNwaitforwm "waitforwm"
XtNwidthInc "widthInc"
XtNwindowGroup "windowGroup"
XtNwindowRole "windowRole"
XtNwinGravity "winGravity"
XtNwmTimeout "wmTimeout"

Resource classes:

Symbol Definition
XtCAllowShellResize "allowShellResize"
XtCArgc "Argc"

Defined Strings

274

Symbol Definition
XtCArgv "Argv"
XtCBaseHeight "BaseHeight"
XtCBaseWidth "BaseWidth"
XtCClientLeader "ClientLeader"
XtCCloneCommand "CloneCommand"
XtCConnection "Connection"
XtCCreatePopupChildProc "CreatePopupChildProc"
XtCCurrentDirectory "CurrentDirectory"
XtCDiscardCommand "DiscardCommand"
XtCEnvironment "Environment"
XtCGeometry "Geometry"
XtCHeightInc "HeightInc"
XtCIconMask "IconMask"
XtCIconName "IconName"
XtCIconNameEncoding "IconNameEncoding"
XtCIconPixmap "IconPixmap"
XtCIconWindow "IconWindow"
XtCIconX "IconX"
XtCIconY "IconY"
XtCIconic "Iconic"
XtCInitialState "InitialState"
XtCInput "Input"
XtCJoinSession "JoinSession"
XtCMaxAspectX "MaxAspectX"
XtCMaxAspectY "MaxAspectY"
XtCMaxHeight "MaxHeight"
XtCMaxWidth "MaxWidth"
XtCMinAspectX "MinAspectX"
XtCMinAspectY "MinAspectY"
XtCMinHeight "MinHeight"
XtCMinWidth "MinWidth"
XtCOverrideRedirect "OverrideRedirect"
XtCProgramPath "ProgramPath"
XtCResignCommand "ResignCommand"
XtCRestartCommand "RestartCommand"
XtCRestartStyle "RestartStyle"
XtCSaveUnder "SaveUnder"
XtCSessionID "SessionID"
XtCShutdownCommand "ShutdownCommand"

Defined Strings

275

Symbol Definition
XtCTitle "Title"
XtCTitleEncoding "TitleEncoding"
XtCTransient "Transient"
XtCTransientFor "TransientFor"
XtCUrgency "Urgency"
XtCVisual "Visual"
XtCWaitForWm "Waitforwm"
XtCWaitforwm "Waitforwm"
XtCWidthInc "WidthInc"
XtCWindowGroup "WindowGroup"
XtCWindowRole "WindowRole"
XtCWinGravity "WinGravity"
XtCWmTimeout "WmTimeout"

Resource representation types:

Symbol Definition
XtRAtom "Atom"

276

Appendix F. Resource Configuration
Management

Setting and changing resources in X applications can be difficult for both the ap-
plication programmer and the end user. Resource Configuration Management
(RCM) addresses this problem by changing the X Intrinsics to immediately mod-
ify a resource for a specified widget and each child widget in the hierarchy. In this
context, immediate means: no sourcing of a resource file is required; the application
does not need to be restarted for the new resource values to take effect; and the
change occurs immediately.

The main difference between RCM and the Editres protocol is that the RCM customiz-
ing hooks reside in the Intrinsics and thus are linked with other toolkits such as
Motif and the Athena widgets. However, the EditRes protocol requires the appli-
cation to link with the EditRes routines in the Xmu library and Xmu is not used
by all applications that use Motif. Also, the EditRes protocol uses ClientMessage,
whereas the RCM Intrinsics hooks use PropertyNotify events.

X Properties and the PropertyNotify events are used to implement RCM and allow
on-the-fly resource customization. When the X Toolkit is initialized, two atoms are
interned with the strings Custom Init and Custom Data. Both _XtCreatePopupShell
and _XtAppCreateShell register a PropertyNotify event handler to handle these
properties.

A customization tool uses the Custom Init property to ping an application to get the
application's toplevel window. When the application's property notify event handler
is invoked, the handler deletes the property. No data is transferred in this property.

A customization tool uses the Custom Data property to tell an application that it
should change a resource's value. The data in the property contains the length of the
resource name (the number of bytes in the resource name), the resource name and
the new value for the resource. This property's type is XA_STRING and the format
of the string is:

1. The length of the resource name (the number of bytes in the resource name)

2. One space character

3. The resource name

4. One space character

5. The resource value

When setting the application's resource, the event handler calls functions to walk
the application's widget tree, determining which widgets are affected by the re-
source string, and then applying the value with XtSetValues. As the widget tree is
recursively descended, at each level in the widget tree a resource part is tested for
a match. When the entire resource string has been matched, the value is applied
to the widget or widgets.

Before a value is set on a widget, it is first determined if the last part of the resource
is a valid resource for that widget. It must also add the resource to the application's

Resource Configu-
ration Management

277

resource database and then query it using specific resource strings that is builds
from the widget information.

	X Toolkit Intrinsics - C Language Interface
	Table of Contents
	About This Manual
	Chapter 1. Intrinsics and Widgets
	Intrinsics
	Languages
	Procedures and Macros
	Widgets
	Core Widgets
	CoreClassPart Structure
	CorePart Structure
	Core Resources
	CorePart Default Values

	Composite Widgets
	CompositeClassPart Structure
	CompositePart Structure
	Composite Resources
	CompositePart Default Values

	Constraint Widgets
	ConstraintClassPart Structure
	ConstraintPart Structure
	Constraint Resources

	Implementation-Specific Types
	Widget Classing
	Widget Naming Conventions
	Widget Subclassing in Public .h Files
	Widget Subclassing in Private .h Files
	Widget Subclassing in .c Files
	Widget Class and Superclass Look Up
	Widget Subclass Verification
	Superclass Chaining
	Class Initialization: class_initialize and class_part_initialize Procedures
	Initializing a Widget Class
	Inheritance of Superclass Operations
	Invocation of Superclass Operations
	Class Extension Records

	Chapter 2. Widget Instantiation
	Initializing the X Toolkit
	Establishing the Locale
	Loading the Resource Database
	Parsing the Command Line
	Creating Widgets
	Creating and Merging Argument Lists
	Creating a Widget Instance
	Creating an Application Shell Instance
	Convenience Procedure to Initialize an Application
	Widget Instance Allocation: The allocate Procedure
	Widget Instance Initialization: The initialize Procedure
	Constraint Instance Initialization: The ConstraintClassPart initialize Procedure
	Nonwidget Data Initialization: The initialize_hook Procedure

	Realizing Widgets
	Widget Instance Window Creation: The realize Procedure
	Window Creation Convenience Routine

	Obtaining Window Information from a Widget
	Unrealizing Widgets

	Destroying Widgets
	Adding and Removing Destroy Callbacks
	Dynamic Data Deallocation: The destroy Procedure
	Dynamic Constraint Data Deallocation: The ConstraintClassPart destroy Procedure
	Widget Instance Deallocation: The deallocate Procedure

	Exiting from an Application

	Chapter 3. Composite Widgets and Their Children
	Addition of Children to a Composite Widget: The insert_child Procedure
	Insertion Order of Children: The insert_position Procedure
	Deletion of Children: The delete_child Procedure
	Adding and Removing Children from the Managed Set
	Managing Children
	Unmanaging Children
	Bundling Changes to the Managed Set
	Determining if a Widget Is Managed

	Controlling When Widgets Get Mapped
	Constrained Composite Widgets

	Chapter 4. Shell Widgets
	Shell Widget Definitions
	ShellClassPart Definitions
	ShellPart Definition
	Shell Resources
	ShellPart Default Values

	Session Participation
	Joining a Session
	Saving Application State
	Requesting Interaction
	Interacting with the User during a Checkpoint
	Responding to a Shutdown Cancellation
	Completing a Save

	Responding to a Shutdown
	Resigning from a Session

	Chapter 5. Pop-Up Widgets
	Pop-Up Widget Types
	Creating a Pop-Up Shell
	Creating Pop-Up Children
	Mapping a Pop-Up Widget
	Unmapping a Pop-Up Widget

	Chapter 6. Geometry Management
	Initiating Geometry Changes
	General Geometry Manager Requests
	Resize Requests
	Potential Geometry Changes
	Child Geometry Management: The geometry_manager Procedure
	Widget Placement and Sizing
	Preferred Geometry
	Size Change Management: The resize Procedure

	Chapter 7. Event Management
	Adding and Deleting Additional Event Sources
	Adding and Removing Input Sources
	Adding and Removing Blocking Notifications
	Adding and Removing Timeouts
	Adding and Removing Signal Callbacks

	Constraining Events to a Cascade of Widgets
	Requesting Key and Button Grabs

	Focusing Events on a Child
	Events for Drawables That Are Not a Widget's Window

	Querying Event Sources
	Dispatching Events
	The Application Input Loop
	Setting and Checking the Sensitivity State of a Widget
	Adding Background Work Procedures
	X Event Filters
	Pointer Motion Compression
	Enter/Leave Compression
	Exposure Compression

	Widget Exposure and Visibility
	Redisplay of a Widget: The expose Procedure
	Widget Visibility

	X Event Handlers
	Event Handlers That Select Events
	Event Handlers That Do Not Select Events
	Current Event Mask
	Event Handlers for X11 Protocol Extensions

	Using the Intrinsics in a Multi-Threaded Environment
	Initializing a Multi-Threaded Intrinsics Application
	Locking X Toolkit Data Structures
	Locking the Application Context
	Locking the Process

	Event Management in a Multi-Threaded Environment

	Chapter 8. Callbacks
	Using Callback Procedure and Callback List Definitions
	Identifying Callback Lists
	Adding Callback Procedures
	Removing Callback Procedures
	Executing Callback Procedures
	Checking the Status of a Callback List

	Chapter 9. Resource Management
	Resource Lists
	Byte Offset Calculations
	Superclass-to-Subclass Chaining of Resource Lists
	Subresources
	Obtaining Application Resources
	Resource Conversions
	Predefined Resource Converters
	New Resource Converters
	Issuing Conversion Warnings
	Registering a New Resource Converter
	Resource Converter Invocation

	Reading and Writing Widget State
	Obtaining Widget State
	Widget Subpart Resource Data: The get_values_hook Procedure
	Widget Subpart State

	Setting Widget State
	Widget State: The set_values Procedure
	Widget State: The set_values_almost Procedure
	Widget State: The ConstraintClassPart set_values Procedure
	Widget Subpart State
	Widget Subpart Resource Data: The set_values_hook Procedure

	Chapter 10. Translation Management
	Action Tables
	Action Table Registration
	Action Names to Procedure Translations
	Action Hook Registration

	Translation Tables
	Event Sequences
	Action Sequences
	Multi-Click Time

	Translation Table Management
	Using Accelerators
	KeyCode-to-KeySym Conversions
	Obtaining a KeySym in an Action Procedure
	KeySym-to-KeyCode Conversions
	Registering Button and Key Grabs for Actions
	Invoking Actions Directly
	Obtaining a Widget's Action List

	Chapter 11. Utility Functions
	Determining the Number of Elements in an Array
	Translating Strings to Widget Instances
	Managing Memory Usage
	Sharing Graphics Contexts
	Managing Selections
	Setting and Getting the Selection Timeout Value
	Using Atomic Transfers
	Atomic Transfer Procedures
	Getting the Selection Value
	Setting the Selection Owner

	Using Incremental Transfers
	Incremental Transfer Procedures
	Getting the Selection Value Incrementally
	Setting the Selection Owner for Incremental Transfers

	Setting and Retrieving Selection Target Parameters
	Generating MULTIPLE Requests
	Auxiliary Selection Properties
	Retrieving the Most Recent Timestamp
	Retrieving the Most Recent Event

	Merging Exposure Events into a Region
	Translating Widget Coordinates
	Translating a Window to a Widget
	Handling Errors
	Setting WM_COLORMAP_WINDOWS
	Finding File Names
	Hooks for External Agents
	Hook Object Resources
	Querying Open Displays

	Chapter 12. Nonwidget Objects
	Data Structures
	Object Objects
	ObjectClassPart Structure
	ObjectPart Structure
	Object Resources
	ObjectPart Default Values
	Object Arguments to Intrinsics Routines
	Use of Objects

	Rectangle Objects
	RectObjClassPart Structure
	RectObjPart Structure
	RectObj Resources
	RectObjPart Default Values
	Widget Arguments to Intrinsics Routines
	Use of Rectangle Objects

	Undeclared Class
	Widget Arguments to Intrinsics Routines

	Chapter 13. Evolution of the Intrinsics
	Determining Specification Revision Level
	Release 3 to Release 4 Compatibility
	Additional Arguments
	set_values_almost Procedures
	Query Geometry
	unrealizeCallback Callback List
	Subclasses of WMShell
	Resource Type Converters
	KeySym Case Conversion Procedure
	Nonwidget Objects

	Release 4 to Release 5 Compatibility
	baseTranslations Resource
	Resource File Search Path
	Customization Resource
	Per-Screen Resource Database
	Internationalization of Applications
	Permanently Allocated Strings
	Arguments to Existing Functions

	Release 5 to Release 6 Compatibility
	Widget Internals
	General Application Development
	Communication with Window and Session Managers
	Geometry Management
	Event Management
	Resource Management
	Translation Management
	Selections
	External Agent Hooks

	Appendix A. Resource File Format
	Appendix B. Translation Table Syntax
	Appendix C. Compatibility Functions
	Appendix D. Intrinsics Error Messages
	Appendix E. Defined Strings
	Appendix F. Resource Configuration Management

