
1

Low Bandwidth X Extension
X Consortium Standard

D. Converse
J. Fulton
D. Lemke

R. Mor
K. Packard

R. Tice
D. Tonogai

Protocol Version 1.0

Copyright (c) 1996 X Consortium

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and sell copies of
the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE X
CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILI-
TY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be
used in advertising or otherwise to promote the sale, use or other dealings in
this Software without prior written authorization from the X Consortium.

Table of Contents
Introduction ... 2
Description ... 2

Data Flow ... 3
Tags .. 3
Short-circuiting .. 4
Graphics Re-encoding .. 5
Motion events .. 5
Event Squishing ... 5

Low Bandwidth X Extension

2

Master Client ... 5
Multiplexing of Clients .. 5
Swapping .. 6
Delta cache .. 6
Stream Compression .. 6
Authentication Protocols .. 7

C Library Interfaces .. 7
Application Library Interfaces ... 7
Proxy Library Interfaces .. 8

Protocol .. 8
Syntactic Conventions and Common Types ... 8
Errors ... 10
Requests ... 10
Events ... 30
Responses ... 33

Algorithm Naming ... 33
Encoding .. 33

Errors ... 34
Requests ... 34
Events ... 50
Re-encoding of X Events .. 52
Responses ... 53

Introduction
Low Bandwidth X (LBX) is a network-transparent protocol for running X Window
System applications over transport channels whose bandwidth and latency are sig-
nificantly worse than that used in local area networks. It combines a variety of
caching and reencoding techniques to reduce the volume of data that must be sent
over the wire. It can be used with existing clients by placing a proxy between the
clients and server, so that the low bandwidth/high latency communication occurs
between the proxy and server.

This extension was designed and implemented by Jim Fulton, David Lemke, Keith
Packard, and Dale Tonogai, all of Network Computing Devices (NCD). Chris Kent
Kantarjiev (Xerox PARC) participated in early design discussions. Ralph Mor (X Con-
sortium) designed and implemented additional sections. Donna Converse (X Con-
sortium) authored the protocol description and encoding from design notes and the
implementation. Ray Tice (X Consortium) resolved the open issues in the design and
specification. Bob Scheifler (X Consortium) helped out in many areas.

The extension name is "LBX".

Description
The design center for LBX is to use a proxy as an intermediary between the client
and server. The proxy reencodes and compresses requests, events, replies and er-
rors, as well as the resulting data stream. Additionally, the proxy can cache informa-
tion from the server to provide low-latency replies to clients. This reply generation
by the proxy is known as short-circuiting. A proxy can handle multiple clients for
a given server, but does not prevent clients from connecting directly to the server.
The design allows the proxy to multiplex multiple clients into a single data stream
to the server.

Low Bandwidth X Extension

3

Much of LBX is implemented as an extension. The compression and reencoding
changes can be isolated to the transport and dispatch portions of the server, while
short-circuiting requires minor changes to the server’s colormap and property code.

LBX employs several different compression and short-circuiting methods. Use of
these methods is negotiable, and in some cases, the algorithm used by a given
method is negotiable as well. LBX also provides for negotiation of extensions to LBX.

Data Flow
The LBX data stream goes through a number of layers:

1. Client requests

2. Read by LBX and potential byte-swapping

3. Request-specific compression

4. Potential byte swapping

5. Multiplexing of client request streams

6. Delta replacement

7. Stream compression

Transport

1. Stream decompression

2. Delta substitution

3. Demultiplexing of client request streams

4. Potential byte swapping

5. Reencoding

6. Request processing

The reverse process occurs with X server replies, events, and errors.

Tags
Tags are used to support caching of large data items that are expected to be queried
multiple times. Such things as the keyboard map and font metrics are often request-
ed by multiple clients. Rather than send the data each time, the first time the data
is sent it includes a tag. The proxy saves this data, so that subsequent requests can
send only the tag to refer to that same data. The different types of tags are used
for connection information, keyboard maps, modifier maps, fonts information and
properties.

Tag usage is negotiated as a boolean in the LbxStartProxy message. The proxy
controls how many tags are stored in the proxy. The server may wish to observe the
proxy’s InvalidateTag behavior to limit how many tags are cached at any one time.
Tagged data is not shared across types of tags, but the number space used for the
tag ids is. The tag ids are generated by the server.

Low Bandwidth X Extension

4

The X server keeps track of what tags are known to the proxy. The proxy can inval-
idate a tag if no tag bearing replies of that type are pending. The proxy sends an
LbxInvalidateTag message to release the tagged data. The proxy must not invalidate
connection tags unless instructed to do so by the server.

If the server wishes to discard tagged data, it must either have received an LbxIn-
validateTag request from the proxy or send an LbxInvalidateTag event to the proxy
for that tag.

Tag Substitution in Requests

Many substitution requests have a tag field, followed by fields marked optional.
For these requests, if the optional fields are present, the data in them is stored in
the indicated tag, unless the tag is 0. If the optional fields are absent, the tag field
indicates the tag that contains the data for the "optional" fields.

Property Tags

Property data makes special use of tags. A common use of properties is for in-
ter-client communication. If both clients use the proxy, it is wasteful to send the
data to the server and then back, when the server may never need it. LbxChange-
Property request does the same work as the core ChangeProperty request, but it
does not send the data. The reply to this request contains a tag id corresponding to
the data. If the property information is used locally, the server responds to LbxGet-
Property with the tag, and the property data need never be sent to the server. If the
server does require the data, it can issue an LbxQueryTag message. The proxy can
also send the data on at any time if it judges it appropriate (i.e., when the wire goes
idle). Since the proxy owns the property data, it must not invalidate the tag before
sending the data back to the server via an LbxTagData request.

Short-circuiting
Short-circuiting is used to handle constant data. This includes atoms, color name/
RGB mappings, and AllocColor calls. Atoms and color name/RGB mappings stay
constant for the life of the server. AllocColor replies are constant for each col-
ormap. Short-circuiting replaces round-trip requests with one-way requests, and
can sometimes use one in place of many.

Atoms are used heavily for ICCCM communication. Once the proxy knows the string
to atom mapping, it has no need to send subsequent requests for this atom to the
server.

Colorname/RGB mappings are constant, so once the proxy sees the response from
LookupColor , it need not forward any subsequent requests.

Clients often use the same color cells, so once a read-only color allocation has oc-
curred, the proxy knows what RGB values should be returned to the client. The
proxy doesn't need to forward any AllocColor requests it can resolve, but it must
tell the server to modify the color cell's reference count. LbxIncrementPixel is used
to support this.

For all three classes of short-circuiting, the proxy must still tell the server a request
has occurred, so that the request sequence numbers stay in sync. This is done with
LbxModifySequence .

Low Bandwidth X Extension

5

Sequence numbers cause the major complication with short-circuiting. X guaran-
tees that any replies, events or errors generated by a previous request will be sent
before those of a later request. This means that any requests that can be handled
by the proxy must have their reply sent after any previous events or errors.

If a proxy’s applications do not require strict adherence to the X protocol order-
ing of errors or events, a proxy might provide further optimization by avoiding the
overhead of maintaining this ordering, however, the resulting protocol is not strictly
X11 compliant.

Graphics Re-encoding
The LBX proxy attempts to reencode PolyPoint, PolyLine, PolySegment, PolyRec-
tangle, PolyArc, FillPoly, PolyFillRectangle, PolyFillArc, CopyArea, CopyPlane, Poly-
Text8, PolyText16, ImageText8, and ImageText16 requests. If the request can be
reencoded, it may be replaced by an equivalent LBX form of the request. The re-
quests are reencoded by attempting to reduce 2-byte coordinate, length, width and
angle fields to 1 byte. Where applicable, the coordinate mode is also converted to
Previous to improve the compressibility of the resulting data. In image requests,
the image data may also be compressed.

Motion events
To prevent clogging the wire with MotionNotify events, the server and proxy work
together to control the number of events on the wire. This is done with the LbxAl-
lowMotion request. The request adds an amount to an allowed motion count in the
server, which is kept on a per-proxy basis. Every motion notify event sent to the
proxy decrements the allowed motion counter. If the allowed motion count is less
than or equal to zero, motion events not required by the X protocol definition are
not sent to the proxy. The allowed motion counter has a minimum value of -2^31.

Event Squishing
In the core protocol, all events are padded as needed to be 32 bytes long. The LBX
extension reduces traffic by removing padding at the end of events, and implying
the event length from its type. This is known as squishing.

Master Client
When the initial X connection between the proxy and the server is converted to LBX
mode, the proxy itself becomes the master client. New client requests and some tag
messages are sent in the context of the master client.

Multiplexing of Clients
The LBX proxy multiplexes the data streams of all its clients into one stream, and
then splits them apart again when they are received. The LbxSwitch message is
used to tell each end which client is using the wire at the time.

The server should process delta requests in the order that they appear on the LBX
connection. If the server does not maintain the interclient request order for requests
sent by the proxy, it must still obey the semantics implied by the interclient request
order so that the delta cache functions correctly.

Low Bandwidth X Extension

6

The server can affect the multiplexing of clients by the proxy using the LbxListen-
ToOne and LbxListenToAll messages. This is useful during grabs, since the master
connection can not be blocked during grabs like other clients. The proxy is respon-
sible for tracking server grabs issued by its clients so that the proxy can multiplex
the client streams in an order executable by the server.

Replies must be ordered in the multiplexed data stream from the server to the proxy
such that the reply carrying tagged data precedes replies that refer to that tagged
data.

Swapping
Swapping is handled as with any X extension, with one caveat. Since a proxy can
be supporting clients with different byte orders, and they all share the same wire,
the length fields of all messages between the server and proxy are expressed in
the proxy byte order. This prevents any problems with length computation that may
occur when clients are switched.

Delta cache
LBX takes advantage of the fact that an X message may be very similar to one
that has been previously sent. For example, a KeyPress event may differ from a
previous KeyPress event in just a few bytes. By sending just the bytes that differ
(or "deltas"), the number of bytes sent over the wire can be substantially reduced.
Delta compaction is used on requests being sent by the proxy as well as on replies
and events being sent by the server.

The server and the proxy each keep per-proxy request and response caches. The
response cache contains events, errors and replies. All messages are saved in the
appropriate delta cache if they are of an appropriate type and more than 8 bytes
long but fit within the delta cache. The number of entries in the delta cache and the
maximum saved message size are negotiated in the LbxStartProxy request.

The LBX requests that are never stored in the request delta cache are the Lbx-
QueryVersion , LbxStartProxy , LbxSwitch , LbxNewClient , LbxAllowMotion
, LbxDelta , LbxQueryExtension , LbxPutImage , LbxGetImage , LbxBegin-
LargeRequest , LbxLargeRequestData , LbxEndLargeRequest and LbxInter-
nAtoms requests. The responses that are never stored in the response cache are
LbxSwitchEvent and LbxDeltaResponse . The message carried by a delta message
is also cached, if it meets the other requirements. Messages after the LbxStart-
Proxy request are cached starting at index 0, and incrementing the index, modulo
the number of entries, thereafter. The request and response caches are indepen-
dently indexed.

If the current message is cachable and the same length as a message in the corre-
sponding delta cache, a delta message may be substituted in place of the original
message in the protocol stream.

Stream Compression
Before being passed down to the transport layer messages can be passed through a
general purpose data compressor. The choice of compression algorithm is negotiat-
ed with See LbxStartProxy [lbx.htm#20870]. The proxy and server are not required

lbx.htm#20870
lbx.htm#20870

Low Bandwidth X Extension

7

to support any specific stream compressor. As an example, however, the X Consor-
tium implementation of a ZLIB based compressor is described below.

Note
The XC-ZLIB compressor is presented with a simple byte stream - the X and
LBX message boundaries are not apparent. The data is broken up into fixed
sized blocks. Each block is compressed using zlib 1.0 (by Gailly & Adler), then
a two byte header is prepended, and then the entire packet is transmitted.
The header has the following information:

 out[0] = (length & 0xfff) >> 8 | ((compflag) ? 0x80 : 0);
 out[1] = length & 0xff;

Authentication Protocols
The current version of LBX does not support multipass authentication protocols for
clients of the proxy. These authentication protocols return an Authenticate mes-
sage in response to a connection setup request, and require additional authentica-
tion data from the client after the LbxNewClient request, and before the reply to
LbxNewClient . One example of such a protocol is XC-QUERY-SECURITY-1.

C Library Interfaces
The C Library routines for LBX are in the Xext library. The prototypes are located
in a file named "XLbx.h".

Application Library Interfaces
In a proxy environment, applications do not need to call these routines to take ad-
vantage of LBX. Clients can, however, obtain information about the LBX extension
to the server using this interface. Use of this routine may be altered when connect-
ed through a proxy, as described in See C Library Interfaces [lbx.htm#33319].

XLbxQueryVersion

To determine the version of LBX supported by the X server, call XLbxQueryVersion .

Bool XLbxQueryVersion(display, major_version_return,
minor_version_return);

display Specifies the connection to the X server.

major_version_return Returns the extension major version number.

minor_version_return Returns the extension minor version number.

The XLbxQueryVersion function determines if the LBX extension is present. If the
extension is not present, XLbxQueryVersion returns False ; otherwise, it returns
True . If the extension is present, XLbxQueryVersion returns the major and minor
version numbers of the extension as supported by the X server.

lbx.htm#33319
lbx.htm#33319

Low Bandwidth X Extension

8

Proxy Library Interfaces
The following interfaces are intended for use by the proxy.

XLbxQueryExtension

To determine the dynamically assigned codes for the extension, use the Xlib function
XQueryExtension or the LBX function XLbxQueryExtension .

Bool XLbxQueryExtension(display, major_opcode_return,
first_event_return, first_error_return);

display Specifies the connection to the X server.

major_opcode_return Returns the major opcode.

first_event_return Returns the first event code.

first_error_return Returns the first error code.

The XLbxQueryExtension function determines if the LBX extension is present. If
the extension is not present, XLbxQueryExtension returns False ; otherwise, it
returns True . If the extension is present, XLbxQueryExtension returns the ma-
jor opcode for the extension to major_opcode_return, the base event type code to
first_event_return, and the base error code to first_error_return; otherwise, the re-
turn values are undefined.

XLbxGetEventBase

To determine the base event type code, use the Xlib function XQueryExtension or
the LBX function XLbxGetEventBase.

int XLbxGetEventBase(display);

display Specifies the connection to the X server.

The XLbxGetEventBase function returns the base event type code if the extension
is present; otherwise, it returns -1.

Protocol

Syntactic Conventions and Common Types
Please refer to the X Window System Protocol specification, as this document uses
the syntactic conventions established there and references types defined there.

The following additional types are defined by this extension:

DIFFITEM
1 CARD8 offset
1 CARD8 diff

Low Bandwidth X Extension

9

LBXANGLE: CARD8 or 2 BYTE
 where (in order of precedence):
 (0 <= in <= A(95)) && !(in % A(5)) out = 0x5a + (in /
A(5))
 A(105) <= in <= A(360) && !(in % A(15)) out = 0x67 +
(in / A(15))
 -A(100) <= in <= -A(5) && !(in % A(5)) out = 0xa6 +
(in / A(5))
 -A(360) < in <= -A(105) && !(in % A(15)) out = 0x98 +
(in / A(15))
 -A(360) < in <= A(360) out[0] = in >> 8; out[1] = in

LBXARC:
 [x, y: LBXINT16,
 width, height: LBXCARD16,
 angle1, angle2: LBXANGLE]

Within a list of arcs, after the first arc, x and y are relative to the corresponding
fields of the prior arc.

LBXCARD16: CARD8 or 2 BYTE
 where:
 0x0000 <= in < 0x00F0 CARD8
 0x00F0 <= in < 0x10F0 out[0] = 0xF0 | ((in - 0xF0) >>
8)
 out[1] = in - 0xF0

LBXGCANDDRAWENT
[gc-cache-index, drawable-cache-index: CARD4]

LBXGCANDDRAWUPDATE
 drawable: DRAWABLE /* present only if
drawable-cache-index
 == 0 */
gc: GC] /* present only if gc-cache-index == 0 */

LBXGCANDDRAWABLE
 cache-entries: LBXGCANDDRAWENT
 updates: LBXGCANDDRAWUPDATE

LBXINT16: INT8 or 2 BYTE
 where:
 0xF790 <= in < 0xFF90 out[0] = 0x80 | (((in + 0x70) >>
8) & 0x0F)
 out[1] = in + 0x70
 0xFF90 <= in < 0x0080 CARD8
 0x0080 <= in < 0x0880 out[0] = 0x80 | (((in - 0x80) >>
8) & 0x0F)
 out[1] = in - 0x80

Low Bandwidth X Extension

10

LBXPINT16: CARD8 or 2 BYTE /* for
usually positive numbers */
 where:
 0xFE00 <= in < 0x0000 out[0] = 0xF0 | (((in + 0x1000)
>> 8) & 0x0F)
 out[1] = in + 0x1000
 0x0000 <= in < 0x00F0 CARD8
 0x00F0 <= in < 0x0EF0 out[0] = 0xF0 | ((in - 0xF0) >>8)
 out[1] = in - 0xF0

LBXPOINT: [x, y: LBXINT16]
 Within a list of points, after the first rectangle, x and y are
relative to the corresponding fields of the prior point.

LBXRECTANGLE:
 [x, y: LBXINT16,
 width, height: LBXCARD16]

Within a list of rectangles, after the first rectangle, x and y are relative to the cor-
responding fields of the prior rectangle.

MASK: CARD8

Errors
As with the X11 protocol, when a request terminates with an error, the request has
no side effects (that is, there is no partial execution).

There is one error, LbxClient . This error indicates that the client field of an LBX
request was invalid, or that the proxy’s connection was in an invalid state for a start
or stop proxy request.

Requests
There is one request that is expected to be used only by the client: LbxQueryVersion

There is one request that is expected to be used by the client or the proxy: Lbx-
QueryExtension .

The following requests are expected to be used only by the proxy, and are instigated
by the proxy: LbxStartProxy , LbxStopProxy , LbxNewClient , LbxSwitch , Lbx-
CloseClient , LbxModifySequence , LbxAllowMotion , LbxInvalidateTag , LbxTag-
Data and LbxQueryTag .

All other requests are sent by the proxy to the LBX server and are instigated by
reception of an X request from the client. They replace the X request.

Requests Initiated by the Proxy or by the Client

LbxQueryVersion
=>;

Low Bandwidth X Extension

11

LbxQueryVersion
majorVersion: CARD16
minorVersion: CARD16

This request returns the major and minor version numbers of the LBX protocol.

The encoding of this request is on See LbxQueryVersion [lbx.htm#34166].

Requests Initiated or Substituted by the Proxy

LbxQueryExtension
nbytes : CARD32
name : STRING8
=>
num-requests: CARD8
present: BOOL
major-opcode: CARD8
first-event: CARD8
first-error: CARD8
reply-mask: LISTofMASK /* optional */
event-mask:LISTofMASK /* optional */
Errors: Alloc

This request is identical to the QueryExtension request, with an additional field, and
two optional additional fields. When the client issues an QueryExtension request,
the proxy will substitute an LbxQueryExtension request.

This request determines if the named extension is present. If so, the major opcode
for the extension is returned, if it has one. Otherwise, zero is returned. Any minor
opcode and the request formats are specific to the extension. If the extension in-
volves additional event types, the base event type code is returned. Otherwise, ze-
ro is returned. The format of events is specific to the extension. If the extension
involves additional error codes, the base error code is returned. Otherwise, zero is
returned. The format of additional data in the errors is specific to the extension.

In addition, the number of requests defined by the named extension is returned. If
the number of requests is nonzero, and if the information is available, reply-mask
and event-mask will be included in the reply. The reply-mask represents a bit-wise
one-to-one correspondence with the extension requests. The least significant bit
corresponds to the first request, and the next bit corresponds to the next request,
and so on. Each element in the list contains eight meaningful bits, except for the
last element, which contains eight or fewer meaningful bits. Unused bits are not
guaranteed to be zero. The bit corresponding to a request is set if the request could
generate a reply, otherwise it is zero. In the same way, the event-mask represents
a bit-wise one-to-one correspondence with the extension requests. A bit is set if the
corresponding request could result in the generation of one or more extension or
X11 events. If reply-mask is present in the reply, event-mask will also be present.

The encoding of this request is on See LbxQueryExtension [lbx.htm#37117].

lbx.htm#34166
lbx.htm#34166
lbx.htm#37117
lbx.htm#37117

Low Bandwidth X Extension

12

Control Requests Initiated by the Proxy

LbxStartProxy
options : LISTofOPTION
=>
choices: LISTofCHOICE
Errors: LbxClient , Alloc
where:
OPTION [optcode: CARD8,
len: OPTLEN,
option: (See See StartProxy Options [lbx.htm#35444])]
CHOICE [optcode: CARD8,
len: OPTLEN,
choice: (See See StartProxy Options [lbx.htm#35444])]

Table 1. StartProxy Options

optcode option choice default
delta-proxy DELTAOPT DELTACHOICE entries=16,

maxlen=64
delta-server DELTAOPT DELTACHOICE entries=16,

maxlen=64
stream-comp LISTofNAMEDOPT INDEXEDCHOICE No Compression
bitmap-comp LISTofSTRING8 LISTofINDEXE-

DOPT
No Compression

pixmap-comp LISTofPIXMAP-
METHOD

LISTofPIXMAP-
CHOICE

No Compression

use-squish BOOL BOOL True
use-tags BOOL BOOL True
colormap LISTofSTRING8 INDEXEDCHOICE No Colormap Grab-

bing
extension NAMEDOPT INDEXEDCHOICE Extension Disabled

DELTAOPT [minN, maxN, prefN: CARD8
minMaxMsgLen, maxMaxMsgLen, prefMaxMsgLen: CARD8]
DELTACHOICE [entries, maxlen: CARD8]
INDEXEDCHOICE [index: CARD8,
data: LISTofBYTE]
INDEXEDOPT [index, opcode: CARD8]
NAMEDOPT [name: STRING8,
detail: LISTofBYTE]
OPTLEN 1 or 3 CARD8

lbx.htm#35444
lbx.htm#35444
lbx.htm#35444
lbx.htm#35444

Low Bandwidth X Extension

13

where:
(0 < in <= 0xFF): out = in
(0 <= in<= 0xFFFF): out[0] = 0; out[1] = in >> 8; out[2] = in& 0xFF;
PIXMAPMETHOD [name: STRING8,
format-mask: BITMASK,
depths: LISTofCARD8]
PIXMAPCHOICE [index, opcode: CARD8,
format-mask: BITMASK,
depths: LISTofCARD8]

This request negotiates LBX protocol options, and switches the proxy-server con-
nection from X11 protocol to LBX protocol.

The proxy gives the preferred protocol options in the request. The server chooses
from the given options and informs the proxy which to use. The options may be listed
in any order, and the proxy may choose which options to negotiate. If an option is
not successfully negotiated, the default is used.

The server delta cache and proxy delta caches can be configured for number of
entries, and the length of entries. (See See Delta cache [lbx.htm#22595] for details.)
The delta caches are configured using the delta-server and delta-proxy options. To
configure a cache, the proxy sends the minimum, maximum and preferred values
for the number of cache entries, (minN, maxN, prefN), and the length of the cache
entries, (minMaxMsgLen, maxMaxMsgLen, prefMaxMsgLen). The server’s reply
fields, entries and maxlen , contains the values to use. These values must be within
the ranges specified by the proxy. The server may also specify an entries value of 0
to disable delta caching. The cache entry lengths are specified in units of 4 bytes.

The stream compression algorithm is selected using the stream-comp option.
(Stream compression is described in See Stream Compression [lbx.htm#11596].)
Each algorithm has a name that follows the naming conventions in See Algorithm
Naming [lbx.htm#13570]. To negotiate using the stream-comp option, the proxy
lists its available compressors. For each candidate algorithm, the proxy sends the
name in the name field, and uses the detail field to send any additional data spe-
cific to each compression algorithm. The reply contains a 0-based index into the
list of algorithms to indicate which algorithm to use, followed by data specific to
that algorithm.

Bitmap compression is negotiated using the bitmap-comp option. The proxy sends a
list of names of available algorithms, and the server reply lists the algorithms to use.
For each bitmap algorithm in the reply, a 0-based index into the list of algorithms
indicates the algorithm, and the opcode field gives the value for use in requests. The
algorithm names follow the conventions in See Algorithm Naming [lbx.htm#13570].

Pixmap compression is negotiated using the pixmap-comp option. The proxy sends
a list of available algorithms. For each algorithm, the list includes, the name, a
bitmask of supported formats, and a list of depths that the format supports. The
server reply lists the algorithms to use. For each pixmap algorithm in the reply,
the reply contains a 0-based index into the list of proxy algorithms, the opcode to
use in requests when referring to this algorithm, a mask of valid formats, and a list

lbx.htm#22595
lbx.htm#22595
lbx.htm#11596
lbx.htm#11596
lbx.htm#13570
lbx.htm#13570
lbx.htm#13570
lbx.htm#13570
lbx.htm#13570

Low Bandwidth X Extension

14

of valid depths. Algorithm names follow the conventions in See Algorithm Naming
[lbx.htm#13570].

Squishing is negotiated using the use-squish option. If the proxy desires squishing,
it sends a true value. The reply from the server indicates whether to do squishing,
and will indicate squishing only if use-squish is set to true in the request.

Tag caching, described in See Tags [lbx.htm#11018], is negotiated using the use-
tag option. If the proxy desires tag caching, it sends a true value. The reply from the
server indicates whether to do tag caching, and will demand caching only if use-
tag is set to true in the request.

The colormap option is used to negotiate what color matching algorithm will be
used by the proxy when the proxy uses the LbxAllocColor request to allocate pixels
in a grabbed colormap. To negotiate using the colormap option, the proxy lists the
names of available colormap algorithms. The choice in the reply contains a 0-based
index into the list of algorithms to indicate which algorithm to use, followed by data
specific to that algorithm. If no colormap algorithm is successfully negotiated, then
the LbxAllocColor , LbxGrabCmap , and LbxReleaseCmap requests will not be
used.

The extension option is used to control extensions to LBX. These extensions may, for
example, enable other types of compression. To negotiate an extension, the name
of the extension is sent, followed by any data specific to that extension. The ex-
tension name follows the conventions in See Algorithm Naming [lbx.htm#13570].
The extension option may occur multiple times in the start proxy message, since
multiple extensions can be negotiated. The reply to an extension option contains
the zero-based index of the extension option, as counted in the LbxStartProxy mes-
sage. This index is followed by extension-specific information. The server does not
respond to extensions it does not recognize.

An LbxClient error is returned when a client which is already communicating
through an LBX proxy to the X server sends a LbxStartProxy request.

The encoding for this request is on See LbxStartProxy [lbx.htm#27452].

LbxStopProxy
Errors: LbxClient

This request terminates the connection between the proxy and X server, and termi-
nates any clients connected through the proxy.

The encoding for this request is on See LbxStopProxy [lbx.htm#23471].

An LbxClient error is returned if the requesting client is not an LBX proxy.

LbxNewClient
byte-order : CARD8
client-id : CARD32
protocol-major-version : CARD16
protocol-minor-version: CARD16
authorization-protocol-name : STRING8
authorization-protocol-data : STRING8
=>

lbx.htm#13570
lbx.htm#13570
lbx.htm#11018
lbx.htm#11018
lbx.htm#13570
lbx.htm#13570
lbx.htm#27452
lbx.htm#27452
lbx.htm#23471
lbx.htm#23471

Low Bandwidth X Extension

15

LbxNewClient
Core X reply (if connection is rejected)

OR

success: BOOL
change-type: {NoDeltas, NormalClientDeltas, AppGroupDeltas}
protocol-major-version: CARD16
protocol-minor-version: CARD16
tag-id: CARD32
length: CARD16
connection-data: CONINFO or CONDIF or CONDIFROOT

where:
CONINFO: (the "additional data" portion of the core connection reply for success-
es)
CONDIF: [resource-id-base: CARD32,
root-input-masks: LISTofSETofEVENT]
CONDIFROOT: [resource-id-base: CARD32,
root: WINDOW
root-visual: VISUALID
default-colormap: COLORMAP
white-pixel, black-pixel: CARD32
root-input-masks: LISTofSETofEVENT]

Errors: LbxClient, Alloc

This request, which is sent by the proxy over the control connection, creates a new
virtual connection to the server.

Much of the information in the LbxNewClient request and reply is identical to the
connection setup and reply information in the core X protocol.

For the LbxNewClient request, the field unique to LBX is client-id. For the LbxNew-
Client reply, tag-id and change-type are fields unique to LBX, and the contents of
connection-data may be different in LBX from the core X protocol (see below).

The proxy assigns each virtual connection a unique identifier using the client-id
field in the LbxNewClient request. This client-id is used in the LBX protocol to
specify the current client (see the LbxSwitch request and the LbxSwitchEvent).
client-id 0 is reserved for the proxy control connection. An LbxClient error will
result if the LbxNewClient request contains a client-id of 0 or an already in use
client-id.

If the server rejects this new virtual connection, the server sends a core X connec-
tion failure reply to the proxy. The current version of LBX does not support the re-
turn of an Authenticate reply.

Low Bandwidth X Extension

16

If the change-type field is set to NoDeltas , then connection-data is sent using the
CONINFO structure, which is identical to the additional data of the core connection
reply. If the tag-id is non-zero, then the connection-data is stored by the proxy using
this tag value. Tagged connection data must be stored by the proxy, and can not be
invalidated by the proxy until an LbxInvalidateTag event is received for that tag.

When the change-type field is not set to NoDeltas , then connection data is sent
as changes against connection information previously sent to the proxy. The tag-id
field, if non-zero, has the tag of the previously sent data to apply the changes to. A
zero tag-id indicates that the changes are with respect to the connection information
sent when the proxy connected to the server.

If the change-type field is set to NormalClientDeltas , then connection-data is sent
using the CONDIF structure. The values in the CONDIF structure are substituted for
the identically named fields of the connection information for the new connection.

If the change-type field is set to AppGroupDeltas , then connection-data is sent
using the CONDIFROOT structure. The root , root-visual , and default-colormap
fields, when nonzero, are substituted for the corresponding fields in the reference
connection information. The white-pixel and black-pixel fields are substituted only
when the default-colormap field of the reply is non-zero. When default-colormap
field of the reply is zero, so are white-pixel and black-pixel . The first entry in the
root-input-masks field is the current-input-mask for the default root window. The
remaining entries in root-input-masks are input masks for non-video screens, as
defined by the X Print Extension. The number of non-video screens is one less than
the number of entries in root-input-masks . These screens are at the end of screen
list in the reference connection information.

The encoding for this request is on See The description of this request is on page
13. [lbx.htm#15166].

LbxCloseClient
client : CARD32
Errors: LbxClient

This requests the server to close down the connection represented by the specified
proxy’s client identifier. If the specified client wasn’t previously registered with the
server by a LbxNewClient request, the server will send the LbxClient error.

The encoding for this request is on See The description of this request is on page
12. [lbx.htm#21121].

LbxSwitch
client : CARD32
Errors: LbxClient

This request causes the X server to treat subsequent requests as being from a con-
nection to the X server represented by the specified client identifier.

If the client making the request is not the proxy, or if the client identifier sent in
the request was not previously sent in a LbxNewClient request, an LbxClient error
is returned.

The encoding for this request is on See LbxSwitch [lbx.htm#36790].

lbx.htm#15166
lbx.htm#15166
lbx.htm#15166
lbx.htm#21121
lbx.htm#21121
lbx.htm#21121
lbx.htm#36790
lbx.htm#36790

Low Bandwidth X Extension

17

LbxSync
=>

The sync request causes the server to send a reply when all requests before the
sync request have been processed.

The encoding for this client is on See LbxSync [lbx.htm#21186].

LbxModifySequence
adjust : CARD32
Errors: None

This request advances the sequence number of the virtual client connection by the
specified amount. The proxy sends the LbxModifySequence request to the server
when it replies to a client request without forwarding the client request on to the
X server.

The encoding for this client is on See The description of this request is on page 13.
[lbx.htm#10940].

LbxAllowMotion
num : CARD32
Errors: None

This request controls the delivery of optional motion notify events, as described
in See Motion events [lbx.htm#15503]. The num field specifies an increase in the
allowed number of motion notify events sent.

The encoding for this request is on See The description of this request is on page
14. [lbx.htm#11897].

LbxInvalidateTag
tag : CARD32

The LBX proxy sends this notification to the X server when it refuses to store tagged
data, or when it releases tagged data which was previously stored and which was
not invalidated by a notification from the X server.

The encoding for this request is on See LbxInvalidateTag [lbx.htm#37545].

LbxTagData
tag : CARD32
real-length : CARD32
data : LISTofBYTE

This request specifies the data associated with a previously assigned tag. It is sent
in two circumstances: in response to receiving a SendTagDataEvent , and sponta-
neously, when the proxy must rely on the server to store data which was not previ-
ously received from the server. The data is carried in the byte order and structure
as would have originally been sent in the core protocol request.

lbx.htm#21186
lbx.htm#21186
lbx.htm#10940
lbx.htm#10940
lbx.htm#15503
lbx.htm#15503
lbx.htm#11897
lbx.htm#11897
lbx.htm#11897
lbx.htm#37545
lbx.htm#37545

Low Bandwidth X Extension

18

The encoding for this request is on See LbxTagData [lbx.htm#37174].

LbxGrabCmap
cmap : Colormap
=>
smart-grab : BOOL
large-pixel: BOOL /* optional */
auto-release: BOOL /* optional */
three-channels : BOOL /* optional */
bits-per-rgb: CARD4 /* optional */
cells : LISTofCHAN /* optional */

where:
CHAN: LISTofLBXPIXEL
LBXPIXEL: PIXELPRIVATE or PIXELPRIVATERANGE or
PIXELALLOC or PIXELALLOCRANGE
PIXEL: CARD8 or CARD16
PIXELPRIVATE: [pixel: PIXEL]
PIXELPRIVATERANGE: [first-pixel, last-pixel: PIXEL]
PIXELALLOC: [pixel: PIXEL,
color: COLORSINGLE or COLORTRIPLE]
PIXELALLOCRANGE: [first-pixel, last-pixel: PIXEL,
colors: LISTofCOLORSINGLE or LISTofCOLORTRIPLE]
COLORSINGLE: [value: CARD8 or CARD16]
COLORTRIPLE: [r, g, b: COLORSINGLE]
Errors: Colormap

This request asks the server for control of allocating new colormap cells in the spec-
ified colormap. The server grants control by replying to this request. If no changes
have occurred since the last time this proxy grabbed this colormap, then the smart-
grab field of the reply is set to true, and the optional fields are not sent. Otherwise,
the current contents of the colormap are placed in the reply, as described later in
this section.

Once the proxy has received the reply, it can use the LbxAllocColor request to
allocate new colormap cells without the performance penalty of round trips. The
proxy is still permitted to use the normal colormap and LbxIncrementPixel requests
while the colormap is grabbed. The grab is valid across all virtual connections of
the proxy.

The LbxGrabCmap request is limited to colormaps for the visual types negotiated as
part of the colormap algorithm negotiation in the start proxy request at connection
setup.

The server and other proxies may not allocate new colormap cells in the colormap
while the colormap is grabbed by this proxy. If the server or another proxy needs

lbx.htm#37174
lbx.htm#37174

Low Bandwidth X Extension

19

to allocate new colormap cells, the server sends a Lbx ReleaseCmap event to the
proxy holding the grab, which then issues an LbxReleaseCmap request.

The server and other proxies may free colormap cells in a colormap grabbed by a
proxy. The server will send an LbxFreeCells event to the proxy that currently has
the colormap grabbed when the cell reference count reaches 0.

If the colormap is a of a static visual type, such as StaticGray , StaticColor , GrayS-
cale , or TrueColor , then the proxy’s grab is immediately released by the server,
and the proxy must use LbxIncrementPixel requests in place of LbxAllocColor re-
quests for this colormap.

If the cmap field does not refer to a valid colormap or the colormap is already
grabbed by this proxy then a Colormap error is generated.

The reply describes the contents of the colormap via several arguments and a de-
scriptive list containing one or three channels, with each channel describing allo-
cations in the colormap.

The large-pixel argument, if True, specifies that PIXEL indices will be listed as
CARD16 quantities instead of CARD8. The auto-release field, if True, indicates that
this colormap is of a static visual type and the proxy’s grab is immediately released
by the server.

If three-channels is False, a single channel is enclosed and color values are de-
scribed using COLORTRIPLE, which has fields for red, green and blue. A single
channel is used when the visual type is not DirectColor or TrueColor .

If three-channels is True, separate red, green and blue channel lists are enclosed,
for describing a DirectColor or TrueColor colormap. Color values for entries in
each channel are sent using COLORSINGLE and the corresponding PIXEL value
refers to the RGB subfield of the current channel, as defined by the corresponding
red-mask, green-mask and blue-mask of the visual.

The bits-per-rgb value is one less than the bits-per-rgb-value field of the visual that
the colormap belongs to. If the value is 7 or less, then COLORSINGLE values in the
descriptive list are sent using CARD8 fields. Otherwise these values are sent using
CARD16 fields.

The list describing current colormap allocations contains entries of the following
types:

An LBXPIXELPRIVATE entry indicates that the pixel in the pixel field is unavailable
for allocation.

An LBXPIXELPRIVATERANGE entry indicates that a contiguous range of pixels are
unavailable for allocation. The range is first-pixel to last-pixel , and includes last-
pixel .

An LBXPIXELALLOC entry indicates that the pixel in the pixel field is allocated as
a read-only pixel. The color field carries the color information of the pixel.

An LBXPIXELALLOCRANGE entry indicates that a contiguous range of pixels are
allocated as read-only. The range starts first-pixel to last-pixel , and includes last-
pixel . These fields are followed by a list of COLORSINGLE or COLORTRIPLE, de-
pending on the value of three-channels .

Low Bandwidth X Extension

20

A NEXTCHANNEL entry indicates that the next channel of the colormap will be
described.

A LISTEND entry indicates the end of the colormap description.

All pixels not described in the reply are unallocated.

The encoding for this request is on See LbxGrabCmap [lbx.htm#17198].

LbxReleaseCmap
cmap : Colormap

This request releases the specified grabbed colormap. If the cmap field does not
refer to a colormap, a BadColormap error is produced.

The proxy must remember the state of the colormap when the LbxReleaseCmap
request is issued if this proxy may at some future time issue another LbxGrabCmap
request on this colormap before the state of the colormap changes.

The encoding for this request is on See LbxReleaseCmap [lbx.htm#14796].

LbxInternAtoms
count : CARD16
names: LISTofSTRING8
=>
atoms : LISTofATOM
Errors: Alloc

This request allows the proxy to intern a group of atoms in a single round trip. The
server will create any atoms that do not exist.

The encoding for this request is on See LbxInternAtoms [lbx.htm#34140].

Substitution Requests

LbxAllocColor
cmap : Colormap
pixel : CARD32
red , green , blue : CARD16

This request is sent by a proxy that has given colormap grabbed to allocate a new
read-only cell in the colormap. The proxy may substitute this request for the core
AllocColor and AllocNamedColor requests.

The pixel field identifies the colormap cell to allocate. The red , green , and blue
fields are the hardware specific color values of the corresponding fields of the core
AllocColor request. The mapping to hardware specific colormap values by the proxy
is performed using the color algorithm negotiated by LbxStartProxy .

For colormaps of static visual types, the LbxIncrementPixel request is used instead
of LBX AllocColor .

lbx.htm#17198
lbx.htm#17198
lbx.htm#14796
lbx.htm#14796
lbx.htm#34140
lbx.htm#34140

Low Bandwidth X Extension

21

If the cmap field does not identify a grabbed colormap then a BadAccess error is
produced. If the pixel field refers to a read-write entry, or the pixel field refers to a
pixel outside of the range of this colormap, a BadAlloc error is produced.

The encoding for this request is on See LbxAllocColor [lbx.htm#28429].

LbxIncrementPixel
cmap : COLORMAP
pixel : CARD32
Errors: None

This request replaces the AllocColor request for read-only pixels currently allocated
for the current client. If the visual type of the colormap is of a static type, this
request may be used on currently unallocated pixels. The colormap is not required
to be grabbed to use this request.

The encoding for this request is on See The description of this request is on page
14. [lbx.htm#38053].

LbxDelta
count : CARD8
cache-index : CARD8
diffs : LISTofDIFFITEM

This request contains a minimal amount of information relative to a similar prior
request. The information is in the form of a difference comparison to a prior request.
The prior request is specified by an index to a cache, independently maintained by
both the proxy and the server.

The encoding for this request is on See The description of this request is on page
18. [lbx.htm#39838].

LbxGetModifierMapping
=>
keyspermod : CARD8
tag : CARD32
keycodes : LISTofKEYCODE /* optional */

This request is identical to the core GetModifierMapping request, with the ad-
dition of a tag being returned in the reply. See See Tag Substitution in Requests
[lbx.htm#26534] for a description of the tag field and optional fields.

The encoding for this request is on See LbxGetModifierMapping [lbx.htm#40057].

LbxGetKeyboardMapping
firstKeyCode : KEYCODE
count : CARD8
=>
keysperkeycode : CARD8

lbx.htm#28429
lbx.htm#28429
lbx.htm#38053
lbx.htm#38053
lbx.htm#38053
lbx.htm#39838
lbx.htm#39838
lbx.htm#39838
lbx.htm#26534
lbx.htm#26534
lbx.htm#40057
lbx.htm#40057

Low Bandwidth X Extension

22

LbxGetKeyboardMapping
tag : CARD32
keysyms : LISTofKEYSYM /* optional */
Errors: Value

This request is identical to the X GetKeyboardMapping protocol request, with the
addition that a tag is returned in the reply. See See Tag Substitution in Requests
[lbx.htm#26534] for a description of the tag field and optional fields.

The encoding for this request is on See LbxGetKeyboardMapping [lbx.htm#21702].

LbxGetWinAttrAndGeom
window : WINDOW
=>
visual: VISUALID
class: {InputOutput, InputOnly}
bit-gravity: BITGRAVITY
win-gravity: WINGRAVITY
backing-store: {NotUseful, WhenMapped, Always}
backing-planes: CARD32
backing-pixel: CARD32
save-under: BOOL
colormap: COLORMAP or None
map-is-installed: BOOL
map-state: {Unmapped, Unviewable, Viewable}
all-event-masks, your-event-mask: SETofEVENT
do-not-propagate-mask: SETofDEVICEEVENT
override-redirect: BOOL
root: WINDOW
depth: CARD8
x, y: INT16
width, height, border-width: CARD16
Errors: Window

GetWindowAttributes and GetGeometry are frequently used together in the X pro-
tocol. LbxGetWinAttrAndGeom allows the proxy to request the same information
in one round trip.

The encoding for this request is on See LbxGetWinAttrAndGeom [lbx.htm#41440].

LbxQueryFont
font : FONTABLE
=>
compression: BOOL
tag: CARD32

lbx.htm#26534
lbx.htm#26534
lbx.htm#21702
lbx.htm#21702
lbx.htm#41440
lbx.htm#41440

Low Bandwidth X Extension

23

LbxQueryFont
font-info: FONTINFO /* optional */
char-infos: LISTofCHARINFO or LISTofLBXCHARINFO /* optional */
where:
LBXCHARINFO: [left-side-bearing: INT6
right-side-bearing: INT7
character-width: INT6
ascent: INT6
descent: INT7]
Errors: Font,Alloc

This request is used to replace the core QueryFont request and has identical se-
mantics.

See See Tag Substitution in Requests [lbx.htm#26534] for a description of the tag
field and optional fields.

The compression field is True if the char-infos field is represented using LBX-
CHARINFO.

The per-character information will be encoded in an LBXCHARINFO when, for every
character, the character-width, left-side-bearing, and ascent can each be represent-
ed in not more than 6 bits, and the right-side-bearing and descent can each be rep-
resented in not more than 7 bits, and the attributes field is identical the attributes
field of the max_bounds of the font_info field of the font.

The encoding for this request is on See LbxQueryFont [lbx.htm#24597].

LbxChangeProperty
window : WINDOW
property : ATOM
type : ATOM
format : {0,8,16,32}
mode : {Replace, Prepend, Append}
nUnits : CARD32
=>
tag: CARD32

This request is sent to the server when the client sends an X ChangeProperty re-
quest through the proxy. The size of the data is sent with this request, but not the
property data itself. The server reply contains a tag identifier for the data, which
is stored in the proxy. The proxy must not discard this data before it is sent to the
server, or invalidated by the server. This means that before issuing an LbxStopProxy
request, or exiting, the proxy must send Lbx TagData requests for these items. If the
server loses the connection before the information is sent back, the server should
revert the property value to its last known value, if possible.

If the mode field is Prepend or Append , the tag refers only to the prepended or
appended data.

lbx.htm#26534
lbx.htm#26534
lbx.htm#24597
lbx.htm#24597

Low Bandwidth X Extension

24

If the tag in the reply is zero, then the change was ignored by the server, as defined
in the security extension. The proxy should dump the associated data, since the
server will never ask for it.

The encoding for this request is on See LbxChangeProperty [lbx.htm#18013].

LbxGetProperty
window : WINDOW
property : ATOM
type : ATOM or AnyPropertyType
long-offset : CARD32
long-length : CARD32
delete : CARD8
=>
type: ATOM or None
format: {0, 8, 16, 32}
bytes-after: CARD32
nItems: CARD32
tag: CARD32
value: LISTofINT8 or LISTofINT16 or LISTofINT32

This request may be used by the proxy as a substitution for a core GetProperty
request. It allows tags to be used for property data that is unlikely to change often
in value, but is likely to be fetched by multiple clients.

The LbxGetProperty request has the same arguments as the core GetProperty re-
quest. The reply for LbxGetProperty has all of the fields from the core GetProperty
reply, but has the additional fields of nItems and tag .

In order to utilize tags in LbxGetProperty for a specific property, the server must
first send the complete property data to the proxy and associate this data with a
tag. More precisely, the server sends an LbxGetProperty reply with a new tag ,
nItems set to the number of items in the property, the size of the property data in
the reply length field, and the complete property data in value. The proxy stores the
property data in its tag cache and associates it with the specified tag.

In response to future LbxGetProperty requests for the same property, if the server
thinks that the proxy has the actual property data in its tag cache, it may choose to
send an LbxGetProperty reply without the actual property data. In this case, the
reply would include a non-zero tag , a zero reply length, and no data for value.

If the server chooses not to generate a tagged reply to LbxGetProperty , or for some
reason is unable to do so, it would send a reply with a tag of zero, the size of the
property data in the reply length field, and the complete property data in value.

The encoding for this request is on See LbxGetProperty [lbx.htm#13863].

LbxPolyPoint
gc-and-drawable: LBXGCANDDRAWABLE
points : LISTofLBXPOINT

lbx.htm#18013
lbx.htm#18013
lbx.htm#13863
lbx.htm#13863

Low Bandwidth X Extension

25

LbxPolyPoint
Errors: Alloc and those given for the corresponding X request.

This request replaces the PolyPoint request. Not all PolyPoint requests can be
represented as LbxPolyPoint requests.

The proxy will convert the representation of the points to be relative to the previous
point, as described by previous coordinate mode in the X protocol.

The encoding for this request is on See LbxPolyPoint [lbx.htm#29719].

LbxPolyLine
gc-and-drawable: LBXGCANDDRAWABLE
points : LISTofLBXPOINT
Errors: Alloc and those given for the corresponding X request.

This request replaces the PolyLine request. Not all PolyLine requests can be rep-
resented as LbxPolyline requests.

The proxy will convert the representation of the points to be relative to the previous
point, as described by previous coordinate mode in the X protocol.

The encoding for this request is on See The description of this request is on page
21. [lbx.htm#31086].

LbxPolySegment
gc-and-drawable: LBXGCANDDRAWABLE
segments : LISTofLBXSEGMENT

where:
LBXSEGEMENT; [x1, y1, x2, y2: LBXINT16]
Errors: Alloc and those given for the corresponding X request.

This request replaces the PolySegment request. Not all PolySegment requests can
be represented as LbxPolySegment requests.

For segments other than the first segment of the request, [x1, y1] is relative to [x1,
y1] of the previous segment. For all segments, [x2, y2] is relative to that segment’s
[x1, y1].

The encoding for this request is on See LbxPolySegment [lbx.htm#27528].

LbxPolyRectangle
gc-and-drawable: LBXGCANDDRAWABLE
rectangles : LISTofLBXRECTANGLE
Errors: Alloc and those given for the corresponding X request.

This request replaces the PolyRectangle request. Not all PolyRectangle requests
can be represented as LbxPolyRectangle requests.

lbx.htm#29719
lbx.htm#29719
lbx.htm#31086
lbx.htm#31086
lbx.htm#31086
lbx.htm#27528
lbx.htm#27528

Low Bandwidth X Extension

26

The encoding for this request is on See The description of this request is on page
22. [lbx.htm#33628].

LbxPolyArc
gc-and-drawable: LBXGCANDDRAWABLE
arcs : LISTofLBXARC
Errors: Alloc and those given for the corresponding X request.

This request replaces the PolyArc request. Not all PolyArc requests can be repre-
sented as LbxPolyArc requests.

The encoding for this request is on See LbxPolyArc [lbx.htm#25855].

LbxPolyFillRectangle
gc-and-drawable: LBXGCANDDRAWABLE
rectangles : LISTofLBXRECTANGLE
Errors: Alloc and those given for the corresponding X request.

This request replaces the PolyFillRectangle request. Not all PolyFillRectangle re-
quests can be represented as LbxPolyFillRectangle requests.

The encoding for this request is on See LbxPolyFillRectangle [lbx.htm#26399].

LbxPolyFillArc
gc-and-drawable: LBXGCANDDRAWABLE
arcs : LISTofLBXARC
Errors: Alloc and those given for the corresponding X request.

This request replaces the PolyFillArc request. Not all PolyFillArc requests can be
represented as LbxPolyFillArc requests.

The encoding for this request is on See The description of this request is on page
22. [lbx.htm#19081].

LbxFillPoly
gc-and-drawable: LBXGCANDDRAWABLE
shape : BYTE
points : LISTofLBXPOINT
Errors: Alloc and those given for the corresponding X request.

This request replaces the FillPoly request. Not all FillPoly requests can be repre-
sented as LbxFillPoly requests.

The proxy will convert the representation of the points to be relative to the previous
point, as described by previous coordinate mode in the X protocol.

The encoding for this request is on See LbxFillPoly [lbx.htm#24998].

LbxCopyArea
srcCache : CARD8 /* source drawable */

lbx.htm#33628
lbx.htm#33628
lbx.htm#33628
lbx.htm#25855
lbx.htm#25855
lbx.htm#26399
lbx.htm#26399
lbx.htm#19081
lbx.htm#19081
lbx.htm#19081
lbx.htm#24998
lbx.htm#24998

Low Bandwidth X Extension

27

LbxCopyArea
gc-and-drawable: LBXGCANDDRAWABLE
src-Drawable : CARD32
src-x : LBXPINT16
src-y : LBXPINT16
width : LBXCARD16
height : LBXCARD16
dst-x : LBXPINT16
dst-y : LBXPINT16
Errors: Those given for the corresponding X request.

This request replaces the CopyArea request for requests within its encoding range.

The encoding for this request is on See LbxCopyArea [lbx.htm#10231].

LbxCopyPlane
bit-plane : CARD32
src-cache : CARD8 /* cache reference for source drawable */
gc-and-drawable: LBXGCANDDRAWABLE
src-drawable : CARD32
src-x : LBXPINT16
src-y : LBXPINT16
width : LBXCARD16
height : LBXCARD16
dst-x : LBXPINT16
dst-y : LBXPINT16
Errors: Those given for the corresponding X request.

This request replaces the CopyPlane request for requests within its coding range.

The encoding for this request is on See LbxCopyPlane [lbx.htm#18847].

LbxPolyText8
gc-and-drawable: LBXGCANDDRAWABLE
x : LBXPINT16
y : LBXPINT16
items : LISTofTEXTITEM8
Errors: Alloc , and those given for the corresponding X request.

This request replaces the PolyText8 request for requests within its encoding range.

The encoding for this request is on See The description of this request is on page
23. [lbx.htm#39640].

LbxPolyText16
gc-and-drawable: LBXGCANDDRAWABLE

lbx.htm#10231
lbx.htm#10231
lbx.htm#18847
lbx.htm#18847
lbx.htm#39640
lbx.htm#39640
lbx.htm#39640

Low Bandwidth X Extension

28

LbxPolyText16
x: LBXPINT16
y : LBXPINT16
items : LISTofTEXTITEM16
Errors: Alloc , and those given for the corresponding X request.

This request replaces the PolyText16 request for requests within its encoding range.

The encoding for this request is on See The description of this request is on page
24. [lbx.htm#32634].

LbxImageText8
gc-and-drawable: LBXGCANDDRAWABLE
nChars : CARD8
x : LBXPINT16
y : LBXPINT16
string : STRING8
Errors: Alloc , and those given for the corresponding X request.

This request replaces the ImageText8 request for requests within its encoding
range.

The encoding for this request is on See The description of this request is on page
24. [lbx.htm#17018].

LbxImageText16
nChars : CARD8
gc-and-drawable: LBXGCANDDRAWABLE
x: LBXPINT16
y : LBXPINT16
string : STRING16
Errors: Alloc , and those given for the corresponding X request.

This request replaces the ImageText16 request for requests within its encoding
range.

The encoding for this request is on See The description of this request is on page
24. [lbx.htm#23910].

LbxPutImage
compression-method : CARD8
format : { Bitmap , XYPixmap , ZPixmap } /* packed */
gc-and-drawable: LBXGCANDDRAWABLE
width , height : LBXCARD16
dst-x , dst-y : LBXPINT16
depth : CARD8 /* packed */

lbx.htm#32634
lbx.htm#32634
lbx.htm#32634
lbx.htm#17018
lbx.htm#17018
lbx.htm#17018
lbx.htm#23910
lbx.htm#23910
lbx.htm#23910

Low Bandwidth X Extension

29

LbxPutImage
left-pad : CARD8 /* packed */
pad-bytes : CARD8 /* packed */
data :LISTofBYTE
Errors: Alloc , Value

When the request can be usefully compressed, this request replaces the PutImage
request. The compression-method parameter contains the opcode of a compression
method returned in the LbxStartProxy reply. The pad-bytes parameter gives the
number of unused pad bytes that follow the compressed image data. All other pa-
rameters are as in the X request. If the specified compression method is not recog-
nized, the server returns a Value error.

The encoding for this request is on See LbxPutImage [lbx.htm#12268].

LbxGetImage
drawable : DRAWABLE
x , y : INT16
width , height : CARD16
plane-mask : CARD32
format : {XYPixmap, ZPixmap}
=>
depth: CARD8
x-length: CARD32
visual: VISUALID or None
compression-method: CARD8
data: LISTofBYTE
Errors: Alloc,Match,Value

This request can replace the GetImage request. The same semantics apply, with
the following exceptions.

The compression-method field contains the opcode of the compression method used
in the reply. The compression opcodes are supplied in the LbxStartProxy reply. The
x-length field contains the length of the uncompressed version of the reply in 4
byte units.

A Value error is returned if the format is not recognized by the X server. A Match
error is returned under the same circumstances as described by the GetImage
request.

The encoding for this request is on See LbxGetImage [lbx.htm#10066].

LbxBeginLargeRequest
large-request-length : CARD32
Errors: Alloc

This request, along with the Lbx LargeRequestData and Lbx EndLargeRequest re-
quests, is used to transport a large request in pieces. The smaller size of the re-

lbx.htm#12268
lbx.htm#12268
lbx.htm#10066
lbx.htm#10066

Low Bandwidth X Extension

30

sulting requests allows smoother multiplexing of clients on a single low bandwidth
connection to the server. The resulting finer-grained multiplexing improves respon-
siveness for the other clients.

After a LbxBeginLargeRequest request is sent, multiple LbxLargeRequestData
requests are sent to transport all of the data in the large request, and finally an
LbxEndLargeRequest request is sent. The large-request-length field expresses the
total length of the transported large request, expressed as the number of bytes in
the transported request divided by four.

The encoding for this request is on See The description of this request is on page
25. [lbx.htm#22013].

LbxLargeRequestData
data : LISTofBYTE
Errors: Alloc

This request is used to carry the segments of a larger request, as described in the
definition of LbxBeginLargeRequest . The data must be carried in order, starting
with the request header, and each segment must be multiples of 4 bytes long. If the
LbxLargeRequestData is not preceded by a corresponding LbxBeginLargeRequest
, a BadAlloc error is generated.

The encoding for this request is on See The description of this request is on page
26. [lbx.htm#31469].

LbxEndLargeRequest
Errors: Length, Alloc

As described in the definition of LbxBeginLargeRequest , LbxEndLargeRequest is
used to signal the end of a series of LargeRequestData requests. If the total length
of the data transported by the LbxLargeRequestData requests does not match the
large-request-length field of the preceding LbxBeginLargeRequest request, then a
Length error occurs. If the LbxEndLargeRequest is not preceded by a correspond-
ing LbxBeginLargeRequest , a BadAlloc error is generated. The request is execut-
ed in order for that client as if it were the request after the request preceding Lbx-
EndLargeRequest .

The encoding for this request is on See LbxEndLargeRequest [lbx.htm#31037].

Events

LbxSwitchEvent
client : CARD32

Notify the proxy that the subsequent replies, events, and errors are relative to the
specified client.

The encoding for this event is on See LbxSwitchEvent [lbx.htm#17348].

LbxCloseEvent
client : CARD32

lbx.htm#22013
lbx.htm#22013
lbx.htm#22013
lbx.htm#31469
lbx.htm#31469
lbx.htm#31469
lbx.htm#31037
lbx.htm#31037
lbx.htm#17348
lbx.htm#17348

Low Bandwidth X Extension

31

Notify the proxy that the specified client's connection to the server is closed.

The encoding for this event is on See The description of this event is on page 27.
[lbx.htm#41814].

LbxInvalidateTagEvent
tag : CARD32
tag-type : {Modmap, Keymap, Property, Font, ConnInfo}

This message informs the proxy that the tag and the server data referenced by the
tag are obsolete, and should be discarded. The tag type may be one of the following
values: LbxTagTypeModmap , LbxTagTypeKeymap , LbxTagTypeProperty , Lbx-
TagTypeFont , LbxTagTypeConnInfo .

The encoding for this event is on See LbxInvalidateTagEvent [lbx.htm#34406].

LbxSendTagDataEvent
tag : CARD32
tag-type : {Property}

The server sends this event to the proxy to request a copy of tagged data which is
being stored by the proxy. The request contains a tag which was previously assigned
to the data by the server. The proxy should respond to SendTagData by sending
a TagData request to the server. The tag type may be one of the following values:
LbxTagTypeProperty .

The encoding for this event is on See LbxSendTagDataEvent [lbx.htm#22353].

LbxListenToOne
client : CARD32 or 0xffffffff

When the server is grabbed, ListenToOne is sent to the proxy. As an X client, the
proxy itself is unaffected by grabs, in order that it may respond to requests for data
from the X server.

When the client grabbing the server is managed through the proxy, the proxy will
permit messages from itself and the grabbing client to be sent immediately to the
server, and may buffer requests from other clients of the proxy. The client is iden-
tified in the event.

When the client grabbing the server is not managed through the proxy, the client
field in the event will be 0xffffffff . The proxy will communicate with the server, and
it may buffer requests from other clients. The proxy will continue to handle new
connections while the server is grabbed.

The server will send ListenToAll to the proxy when the server is ungrabbed. There
is no time-out for this interval in the protocol.

The encoding for this event is on See The description of this event is on page 27.
[lbx.htm#18630].

LbxListenToAll

lbx.htm#41814
lbx.htm#41814
lbx.htm#34406
lbx.htm#34406
lbx.htm#22353
lbx.htm#22353
lbx.htm#18630
lbx.htm#18630

Low Bandwidth X Extension

32

Notify the proxy that the server has been ungrabbed, and that the proxy may now
send all buffered client requests on to the server.

The encoding for this event is on See The description of this event is on page 27.
[lbx.htm#30610].

LbxQuickMotionDeltaEvent
deltaTime : CARD8
deltaX : INT8
deltaY : INT8

This event is used as a replacement for the MotionNotify event when possible.
The fields are used as deltas to the most recent MotionNotify event encoded as a
MotionNotify event, LbxQuickMotionDeltaEvent , or LbxMotionDeltaEvent . Not
every MotionNotify event can be encoded as a LbxQuickMotionDeltaEvent .

The encoding for this event is on See LbxQuickMotionDeltaEvent [lbx.htm#35213].

LbxMotionDeltaEvent
deltaX : INT8
deltaY : INT8
deltaTime : CARD16
deltaSequence : CARD16

This event is used as a replacement for the MotionNotify event when possible.
The fields are used as deltas to the most recent MotionNotify event encoded as a
MotionNotify event, LbxQuickMotionDeltaEvent , or LbxMotionDeltaEvent . Not
every MotionNotify event can be encoded as a LbxMotionDeltaEvent .

The encoding for this event is on See LbxMotionDeltaEvent [lbx.htm#35310].

LbxReleaseCmapEvent
colormap : Colormap

This event notifies the proxy that it must release the grab on this colormap via the
ReleaseCmap request. See LbxReleaseCmap [lbx.htm#34675]

The encoding for this event is on See LbxReleaseCmapEvent [lbx.htm#14052].

LbxFreeCellsEvent
colormap : Colormap
pixelStart, pixelEnd : CARD32

The LbxFreeCells event is sent to a proxy that has a colormap grabbed to notify
the proxy that the reference count of the described cells were decremented to zero
by the server or another proxy. The reference count includes those by this proxy.
The proxy must update its copy of the colormap state accordingly if the colormap is
still grabbed, or if the proxy may in the future grab the colormap using smart-grab
mode. See LbxGrabCmap [lbx.htm#10922]

The pixelStart and pixelEnd fields of the event denote a continuous range of cells
that were freed.

lbx.htm#30610
lbx.htm#30610
lbx.htm#35213
lbx.htm#35213
lbx.htm#35310
lbx.htm#35310
lbx.htm#34675
lbx.htm#34675
lbx.htm#14052
lbx.htm#14052
lbx.htm#10922
lbx.htm#10922

Low Bandwidth X Extension

33

The encoding for this event is on See LbxFreeCellsEvent [lbx.htm#14731].

Responses
Responses are messages from the server to the proxy that not, strictly speaking,
events, replies or errors.

LbxDeltaResponse
count : CARD8
cache-index : CARD8
diffs : LISTofDIFFITEM

This response carries an event, reply, or error that has been encoded relative to a
message in the response delta cache. The cache-index field is the index into the
cache. Each entry in diffs provides a byte offset and replacement value to use in
reconstructing the response.

The encoding for this event is on See LbxDeltaResponse [lbx.htm#17100].

Algorithm Naming
To avoid potential clashes between different but similar algorithms for stream,
bitmap, and pixmap compression, the following naming scheme will be adhered to:

Each algorithm has a unique name, which is a STRING8, of the following form:

<organization>-<some-descriptive-name>

The organization field above is the organization name as registered in section 1 of
the X Registry (the registry is provided as a free service by the X Consortium.) This
prevents conflicts among different vendor’s extensions.

As an example, the X Consortium defines a zlib-based stream compression algorithm
called XC-ZLIB.

Encoding
The syntax and types used in the encoding are taken from the X protocol encoding.
Where LBX defines new types, they are defined earlier in this document.

As in the X protocol, in various cases, the number of bytes occupied by a component
will be specified by a lowercase single-letter variable name instead of a specific
numeric value, and often some other component will have its value specified as a
simple numeric expression involving these variables. Components specified with
such expressions are always interpreted as unsigned integers. The scope of such
variables is always just the enclosing request, reply, error, event, or compound type
structure.

For unused bytes, the encode-form is:

lbx.htm#14731
lbx.htm#14731
lbx.htm#17100
lbx.htm#17100

Low Bandwidth X Extension

34

N unused

If the number of unused bytes is variable, the encode-form typically is:

p unused, p=pad(E)

where E is some expression, and pad(E) is the number of bytes needed to round E
up to a multiple of four.

pad(E) = (4 - (E mod 4)) mod 4

In many of the encodings, the length depends on many variable length fields. The
variable L is used to indicate the number of padded 4 byte units needed to carry
the request. Similarly, the variable Lpad indicates the number of bytes needed to
pad the request to a 4 byte boundary.

For counted lists there is a common encoding of NLISTofFOO:

NLISTofFOO
1 m num items
m LISTofFOO items

For cached GC and Drawables:

LBXGCANDDRAWUPDATE
4 or 0 DRAWBLE optional drawable
4 or 0 GC optional GC

LBXGCANDDRAWABLE
8 LBXGCANDDRAWENT cache-entries
8 unused
m LBXGCANDDRAWUPDATE optional GC and Drawable

Errors

LbxClient
1 0 Error
1 CARD8 error-base + 0
2 CARD16 sequence number
4 unused
2 CARD16 lbx opcode
1 CARD8 major opcode
21 unused

Requests

LbxQueryVersion

Low Bandwidth X Extension

35

1 CARD8 opcode
1 0 lbx opcode
2 1 request length
=>
1 1 Reply
1 unused
2 CARD16 sequence number
4 0 reply length
2 CARD16 major version
2 CARD16 minor version
20 unused

The description of this request is on See LbxQueryVersion [lbx.htm#18761].

LbxStartProxy
1 CARD8 opcode
1 1 lbx opcode
2 L request length
n NLISTofOPTION-REQUEST options
p unused, p=pad(n)

OPTION-REQUEST
1 OPTCODE option-code
m OPTLEN option-request-byte-length, (b=m+a+1)
a DELTAOPT or option
 NLISTofNAMEDOPT or
 NLISTofSTR or
 NLISTofPIXMAPMETHOD or
 BOOL

The encoding of the option field depends on the option-code. See See StartProxy
Options [lbx.htm#35444].

1 OPTCODE option-code
0 LbxOptionDeltaProxy
1 LbxOptionDeltaServer
2 LbxOptionStreamCompression
3 LbxOptionBitmapCompression
4 LbxOptionPixmapCompression
5 LbxOptionMessageCompression /* also known as squishing */
6 LbxOptionUseTags
7 LbxOptionColormapAllocation
255 LbxOptionExtension

OPTLEN has two possible encodings, depending on the size of the value carried:

OPTLEN
1 CARD8 b (0 < b <= 255)

OPTLEN
1 0 long length header
1 c length0, c = b >> 8

lbx.htm#18761
lbx.htm#18761
lbx.htm#35444
lbx.htm#35444
lbx.htm#35444

Low Bandwidth X Extension

36

1 d length1, d= b & #xff

DELTAOPT
1 CARD8 min-cache-size
1 CARD8 max-cache-size
1 CARD8 preferred-cache-size
1 CARD8 min-message-length
1 CARD8 max-message-length (in 4-byte units)
1 CARD8 preferred-message-length

NAMEDOPT
f STR type-name
1 g+1 option-data-length
g LISTofBYTE option-data (option specific)

PIXMAPMETHOD
h STR name
1 BITMASK format mask
1 j depth count
j LISTofCARD8 depths

=>
=>

1 1 Reply
1 CARD8 count

0xff options in request cannot be decoded
2 CARD16 sequence number
4 (a+p-32)/4 reply length
a LISTofCHOICE options-reply
p unused, if (n<24) p=24-n else p=pad(n)

CHOICE
1 CARD8 request-option-index
b OPTLEN reply-option-byte-length
c DELTACHOICE or choice
 INDEXEDCHOICE or
 NLISTofINDEXEDOPT or
 NLISTofPIXMAPCHOICE or
 BOOL or
 INDEXEDCHOICE

The encoding of the choice field depends on the option-code. See See StartProxy
Options [lbx.htm#35444].

DELTACHOICE
1 CARD8 preferred cache size
1 CARD8 preferred message length in 4-byte units

INDEXEDCHOICE
1 CARD8 index
d LISTofBYTE data

lbx.htm#35444
lbx.htm#35444
lbx.htm#35444

Low Bandwidth X Extension

37

PIXMAPCHOICE
1 CARD8 index
1 CARD8 opcode
1 BITMASK format mask
e NLISTofCARD8 depths

The description of this request is on See LbxStartProxy [lbx.htm#20870].

LbxStopProxy
1 CARD8 opcode
1 2 lbx opcode
2 1 request length

The description of this request is on See LbxStopProxy [lbx.htm#27455].

LbxSwitch
1 CARD8 opcode
1 3 lbx opcode
2 2 request length
4 CARD32 client

The description of this request is on See LbxSwitch [lbx.htm#33500].

LbxNewClient
1 CARD8 opcode
1 4 lbx opcode
2 L request length
4 CARD32 client
The remaining bytes of the request are the core connection setup.
=>
If the connection is rejected, a core connection reply is sent. Otherwise the
reply has the form:
1 BOOL success
1 change type
 0 no-deltas
 1 normal-client-deltas
 2 app-group-deltas
2 CARD16 major version
2 CARD16 minor version
2 1 + a length
4 CARD32 tag id

The remaining bytes depend on the value of change-type and length.

For no-deltas, the remaining bytes are the "additional data" bytes of the core reply.
(a = length of core reply, in 4 byte quantities).

For normal-client-deltas, the additional bytes have the form, with a length (a = 1
+b):

4 CARD32 resource id base

lbx.htm#20870
lbx.htm#20870
lbx.htm#27455
lbx.htm#27455
lbx.htm#33500
lbx.htm#33500

Low Bandwidth X Extension

38

4b LISTofSETofEVENT root input masks

For app-group-deltas, the additional bytes have the following form, with a length
of (a = 1 + 4c):

4 CARD32 resource id base
4 WINDOW root id base
4 VISUALID visual
4 COLORMAP colormap
4 CARD32 white pixel
4 CARD32 black pixel
4c LISTofSETofEVENT root input masks

The description of this request is on See LbxNewClient [lbx.htm#17810].

LbxCloseClient
1 CARD8 opcode
1 5 lbx opcode
2 2 request length
4 CARD32 client

The description of this request is on See LbxCloseClient [lbx.htm#21625].

LbxModifySequence
1 CARD8 opcode
1 6 lbx opcode
2 2 request length
4 CARD32 offset to sequence number

The description of this request is on See LbxModifySequence [lbx.htm#36693].

LbxAllowMotion
1 CARD8 opcode
1 7 lbx opcode
2 2 request length
4 CARD32 number of MotionNotify events

The description of this request is on See LbxAllowMotion [lbx.htm#15895].

LbxIncrementPixel
1 CARD8 opcode
1 8 lbx opcode
2 3 request length
4 COLORMAP colormap
4 CARD32 pixel

The description of this request is on See LbxIncrementPixel [lbx.htm#27227].

LbxDelta
1 CARD8 opcode

lbx.htm#17810
lbx.htm#17810
lbx.htm#21625
lbx.htm#21625
lbx.htm#36693
lbx.htm#36693
lbx.htm#15895
lbx.htm#15895
lbx.htm#27227
lbx.htm#27227

Low Bandwidth X Extension

39

1 9 lbx opcode
2 1+(2n +p+2)/4 request length
1 n count of diffs
1 CARD8 cache index
2n LISTofDIFFITEM offsets and differences
p unused, p=pad(2n + 2)

The description of this request is on See LbxDelta [lbx.htm#26857].

LbxGetModifierMapping
1 CARD8 opcode
1 10 lbx opcode
2 1 request length
=>
1 1 Reply
1 n keycodes-per-modifier
2 CARD16 sequence number
4 2n reply length
4 CARD32 tag
20 unused
8n LISTofKEYCODE keycodes

The description of this request is on See LbxGetModifierMapping [lbx.htm#37687].

LbxInvalidateTag
1 CARD8 opcode
1 12 lbx opcode
2 2 request length
4 CARD32 tag

The description of this request is on See LbxInvalidateTag [lbx.htm#12515].

LbxPolyPoint
1 CARD8 opcode
1 13 lbx opcode
2 1+(m+n+p)/4 request length
m LBXGCANDDRAWABLE cache entries
n LISTofLBXPOINT points (n is data-dependent)
p 0 unused, p=Lpad

The description of this request is on See LbxPolyPoint [lbx.htm#37179].

LbxPolyLine
1 CARD8 opcode
1 14 lbx opcode
2 1+(m+n+p)/4 request length
m LBXGCANDDRAWABLE cache entries
n LISTofLBXPOINT points (n is data-dependent)
p 0 unused, p=Lpad

The description of this request is on See LbxPolyLine [lbx.htm#16574].

lbx.htm#26857
lbx.htm#26857
lbx.htm#37687
lbx.htm#37687
lbx.htm#12515
lbx.htm#12515
lbx.htm#37179
lbx.htm#37179
lbx.htm#16574
lbx.htm#16574

Low Bandwidth X Extension

40

LbxPolySegment
1 CARD8 opcode
1 15 lbx opcode
2 1+(m+n+p)/4 request length
m LBXGCANDDRAWABLE cache entries
n LISTofLBXSEGMENT segments (n is data-dependent)
p 0 unused, p=Lpad

The description of this request is on See LbxPolySegment [lbx.htm#26077].

LbxPolyRectangle
1 CARD8 opcode
1 16 lbx opcode
2 1+(m+n+p)/4 request length
m LBXGCANDDRAWABLE cache entries
n LISTofLBXRECTANGLE rectangles (n is data-dependent)
p 0 unused, p=pad(m+n)

The description of this request is on See LbxPolyRectangle [lbx.htm#40958].

LbxPolyArc
1 CARD8 opcode
1 17 lbx opcode
2 1+(m+n+p)/4 request length
m LBXGCANDDRAWABLE cache entries
n LISTofLBXARCS arcs (n is data-dependent)
p 0 unused, p=Lpad

The description of this request is on See LbxPolyArc [lbx.htm#15317].

LbxFillPoly
1 CARD8 opcode
1 18 lbx opcode
2 1+(3+m+n+p)/4 request length
1 LBXGCANDDRAWENT cache entries
1 shape
0 Complex
1 Nonconvex
2 Convex
1 p pad byte count
m LBXGCANDDRAWUPDATE optional gc and drawable
n LISTofLBXPOINT points (n is data-dependent)
p 0 unused, p=Lpad

The description of this request is on See LbxFillPoly [lbx.htm#35796].

LbxPolyFillRectangle
1 CARD8 opcode
1 19 lbx opcode
2 1+(m+n+p)/4 request length

lbx.htm#26077
lbx.htm#26077
lbx.htm#40958
lbx.htm#40958
lbx.htm#15317
lbx.htm#15317
lbx.htm#35796
lbx.htm#35796

Low Bandwidth X Extension

41

m LBXGCANDDRAWABLE cache entries
n LISTofLBXRECTANGLE rectangles (n is data-dependent)
p 0 unused, p=Lpad

The description of this request is on See LbxPolyFillRectangle [lbx.htm#25511].

LbxPolyFillArc
1 CARD8 opcode
1 20 lbx opcode
2 1+(m+n+p)/4 request length
m LBXGCANDDRAWABLE cache entries
n LISTofLBXARC arcs (n is data-dependent)
p 0 unused, p=Lpad

The description of this request is on See LbxPolyFillArc [lbx.htm#42698].

LbxGetKeyboardMapping
1 CARD8 opcode
1 21 lbx opcode
2 2 request length
1 KEYCODE first keycode
1 m count
2 unused
=>
1 1 Reply
1 n keysyms-per-keycode
2 CARD16 sequence number
4 nm reply length (m = count field from the request)
4 CARD32 tag
20 unused
4nm LISTofKEYSYM keysyms

The description of this request is on See LbxGetKeyboardMapping
[lbx.htm#33719].

LbxQueryFont
1 CARD8 opcode
1 22 lbx opcode
2 2 request length
4 FONTABLE font
=>
1 1 Reply
1 BOOL compression
2 CARD16 sequence number
4 L reply length
4 CARD32 tag
20 unused
All of the following is conditional:
12 CHARINFO min-bounds
4 unused
12 CHARINFO max-bounds
4 unused

lbx.htm#25511
lbx.htm#25511
lbx.htm#42698
lbx.htm#42698
lbx.htm#33719
lbx.htm#33719

Low Bandwidth X Extension

42

2 CARD16 min-char-or-byte2
2 CARD16 max-char-or-byte2
2 CARD16 default-char
2 n number of FONTPROPs in properties
1 draw-direction
0 LeftToRight
1 RightToLeft
1 CARD8 min-byte1
1 CARD8 max-byte1
1 BOOL all-chars-exist
2 INT16 font-ascent
2 INT16 font-descent
4 m number of elements in char-infos
8n LISTofFONTPROP properties
and either
12m LISTofCHARINFO char-infos
or
m LISTofLBXCHARINFO char-infos

The description of this request is on See LbxQueryFont [lbx.htm#18818].

LbxChangeProperty
1 CARD8 opcode
1 23 lbx opcode
2 6 request length
4 WINDOW window
4 ATOM property
4 ATOM type
1 CARD8 format
1 mode
0 Replace
1 Preprend
2 Append
2 unused
4 CARD32 length of data in format units
 (= n for format = 8)
 (= n/2 for format = 16)
 (= n/4 for format = 32)
=>
1 1 Reply
1 unused
2 CARD16 sequence number
4 0 reply length
4 CARD32 tag
20 unused

The description of this request is on See LbxChangeProperty [lbx.htm#40098].

LbxGetProperty
1 CARD8 opcode
1 24 lbx opcode
2 7 request length
4 WINDOW window

lbx.htm#18818
lbx.htm#18818
lbx.htm#40098
lbx.htm#40098

Low Bandwidth X Extension

43

4 ATOM property
4 ATOM type
0 AnyPropertyType
1 CARD8 delete
3 unused
4 CARD32 long-offset
4 CARD32 long-length
=>
1 1 Reply
1 CARD8 format
2 CARD16 sequence number
4 CARD32 reply length
4 ATOM type
0 None
4 CARD32 bytes-after
4 CARD32 length of value in format units
 (= 0 for format = 0)
 (= n for format = 8)
 (= n/2 for format = 16)
 (= n/4 for format = 32)
4 CARD32 tag
8 unused

The description of this request is on See LbxGetProperty [lbx.htm#31397].

LbxTagData
1 CARD8 opcode
1 25 lbx opcode
2 3+(n+p)/4 request length
4 CARD32 tag
4 CARD32 length of data in bytes
n LISTofBYTE data
p unused, p=pad(n)

The description of this request is on See LbxTagData [lbx.htm#17987].

LbxCopyArea
1 CARD8 opcode
1 26 lbx opcode
2 L request length
1 CARD8 source drawable cache entry
1 LBXGCANDDRAWENT cache entries
4 or 0 DRAWABLE optional source drawable
b LBXGCANDDRAWUPDATE optional gc and dest drawable
c LBXPINT16 src-x
d LBXPINT16 src-y
e LBXPINT16 dst-x
f LBXPINT16 dst-y
g LBXCARD16 width
h LBXCARD16 height
p unused, p=Lpad

The description of this request is on See LbxCopyArea [lbx.htm#11409].

lbx.htm#31397
lbx.htm#31397
lbx.htm#17987
lbx.htm#17987
lbx.htm#11409
lbx.htm#11409

Low Bandwidth X Extension

44

LbxCopyPlane
1 CARD8 opcode
1 27 lbx opcode
2 L request length
4 CARD32 bit plane
1 CARD8 source drawable cache entry
1 LBXGCANDDRAWENT cache entries
4 or 0 DRAWABLE optional source drawable
b LBXGCANDDRAWUPDATE optional gc and dest drawable
c LBXPINT16 src-x
d LBXPINT16 src-y
e LBXPINT16 dst-x
f LBXPINT16 dst-y
g LBXCARD16 width
h LBXCARD16 height
p unused, p=Lpad

The description of this request is on See LbxCopyPlane [lbx.htm#36772].

LbxPolyText8
1 CARD8 opcode
1 28 lbx opcode
2 L request length
1 LBXGCANDDRAWENT cache entries
a LBXGCANDDRAWUPDATE optional gc and drawable
b LBXPINT16 x
c LBXPINT16 y
n LISTofTEXTITEM8 items
p unused, p=Lpad

The description of this request is on See LbxPolyText8 [lbx.htm#23201].

LbxPolyText16
1 CARD8 opcode
1 29 lbx opcode
2 L request length
1 LBXGCANDDRAWENT cache entries
a LBXGCANDDRAWUPDATE optional gc and drawable
b LBXPINT16 x
c LBXPINT16 y
2n LISTofTEXTITEM16 items
p unused, p=Lpad

The description of this request is on See LbxPolyText16 [lbx.htm#13228].

LbxImageText8
1 CARD8 opcode
1 30 lbx opcode
2 L request length
1 LBXGCANDDRAWENT cache entries
a LBXGCANDDRAWUPDATE optional gc and drawable

lbx.htm#36772
lbx.htm#36772
lbx.htm#23201
lbx.htm#23201
lbx.htm#13228
lbx.htm#13228

Low Bandwidth X Extension

45

b LBXPINT16 x
c LBXPINT16 y
n STRING8 string
p unused, p=Lpad

The description of this request is on See LbxImageText8 [lbx.htm#10990].

LbxImageText16
1 CARD8 opcode
1 31 lbx opcode
2 L request length
1 LBXGCANDDRAWENT cache entries
a LBXGCANDDRAWUPDATE optional gc and drawable
b LBXPINT16 x
c LBXPINT16 y
2n STRING16 string
p unused, p=Lpad

The description of this request is on See LbxImageText16 [lbx.htm#39584].

LbxQueryExtension
1 CARD8 opcode
1 32 lbx opcode
2 2+(n+p)/4 request length
4 n length of extension name
n STRING8 extension name
p unused, p=pad(n)
=>
1 1 Reply
1 n number of requests in the extension
2 CARD16 sequence number
4 0 or 2*(m + p) reply length, m = (n+7)/8
1 BOOL present
1 CARD8 major opcode
1 CARD8 first event
1 CARD8 first error
20 unused
m LISTofMASK optional reply-mask
p unused, p=pad(m)
m LISTofMASK optional event-mask
p unused, p=pad(m)

The description of this request is on See LbxQueryExtension [lbx.htm#36662].

LbxPutImage
1 CARD8 opcode
1 33 lbx opcode
2 L request length
1 CARD8 compression method
1 LBXGCANDDRAWENT cache entries
a PIPACKED bit-packed
b LBXGCANDDRAWUPDATE optional gc and drawable

lbx.htm#10990
lbx.htm#10990
lbx.htm#39584
lbx.htm#39584
lbx.htm#36662
lbx.htm#36662

Low Bandwidth X Extension

46

c LBXCARD16 width
d LBXCARD16 height
e LBXPINT16 x
f LBXPINT16 y
n LISTofBYTE compressed image data
p unused, p=Lpad

If there is no left padding and the depth is less than or equal to nine, PIPPACKED
is encoded as follows:

PIPACKED
1 #x80 | (format << 5) | ((depth -1) << 2)

Otherwise PIPACKED is defined as:

PIPACKED
1 (depth -1) << 2)
1 (format << 5) | left-pad

The description of this request is on See LbxPutImage [lbx.htm#21218].

LbxGetImage
1 CARD8 opcode
1 34 lbx opcode
2 6 request length
4 DRAWABLE drawable
2 INT16 x
2 INT16 y
2 CARD16 width
2 CARD16 height
4 CARD32 plane mask
1 CARD8 format
3 unused
=>
1 1 Reply
1 CARD8 depth
2 CARD16 sequence number
4 (n+p)/4 reply length
4 (m+p)/4 X reply length; if uncompressed, m=n
4 VISUALID visual
0 None
1 compression method
15 unused
n LISTofBYTE data
p unused, p=pad(n)

The description of this request is on See LbxGetImage [lbx.htm#26896].

LbxBeginLargeRequest
1 CARD8 opcode
1 35 lbx opcode

lbx.htm#21218
lbx.htm#21218
lbx.htm#26896
lbx.htm#26896

Low Bandwidth X Extension

47

2 2 request length
4 CARD32 large request length

The description of this request is on See LbxBeginLargeRequest [lbx.htm#31209].

LbxLargeRequestData
1 CARD8 opcode
1 36 lbx opcode
2 1+n request length
4n LISTofBYTE data

The description of this request is on See LbxLargeRequestData [lbx.htm#36982].

LbxEndLargeRequest
1 CARD8 opcode
1 37 lbx opcode
2 1 request length

The description of this request is on See LbxEndLargeRequest [lbx.htm#31841].

LbxInternAtoms
1 CARD8 opcode
1 38 lbx opcode
2 1+(2+m+n+p)/4 request length
2 m num-atoms
n LISTofLONGSTR names
p pad p=Lpad
=>
1 1 Reply
1 unused
2 CARD16 sequence number
4 a reply length, a = MAX(m - 6, 0)
4*m LISTofATOM atoms
p pad p = MAX(0, 4*(6 - m))

LONGSTR
2 c string length
c STRING8 string

The description of this request is on See LbxInternAtoms [lbx.htm#21636].

LbxGetWinAttrAndGeom
1 CARD8 opcode
1 39 lbx opcode
2 2 request length
4 CARD32 window id
=>
1 1 Reply
1 backing store
0 NotUseful
1 WhenMapped

lbx.htm#31209
lbx.htm#31209
lbx.htm#36982
lbx.htm#36982
lbx.htm#31841
lbx.htm#31841
lbx.htm#21636
lbx.htm#21636

Low Bandwidth X Extension

48

2 Always
2 CARD16 sequence number
4 7 reply length
4 VISUALID visual id
2 class
1 InputOutput
2 InputOnly
1 BITGRAVITY bit gravity
1 WINGRAVITY window gravity
4 CARD32 backing bit planes
4 CARD32 backing pixel
1 BOOL save under
1 BOOL map installed
1 map state
0 Unmapped
1 Unviewable
2 Viewable
1 BOOL override
4 COLORMAP colormap
4 SETofEVENT all events mask
4 SETofEVENT your event mask
2 SETofDEVICEEVENT do not propagate mask
2 unused
4 WINDOW root
2 INT16 x
2 INT16 y
2 CARD16 width
2 CARD16 height
2 CARD16 border width
1 CARD8 depth
1 unused

The description of this request is on See LbxGetWinAttrAndGeom [lbx.htm#39382].

LbxGrabCmap
1 CARD8 opcode
1 40 lbx opcode
2 2 request length
4 COLORMAP colormap
=>

If smart-grab is true, the reply is as follows:

1 1 Reply
1 #x80 flags
2 CARD16 sequence number
4 0 reply length
24 unused

If smart-grab is false, the reply is as follows:

1 1 Reply
1 flags (set of)

lbx.htm#39382
lbx.htm#39382

Low Bandwidth X Extension

49

 #x40 auto-release
 #x20 three-channels
 #x10 two-byte-pixels
lower four bits specifies bits-per-pixel
2 CARD16 sequence number
4 L reply length
m CHAN or CHANNELS cells (CHAN if !three-channels)
p 0 pad(m)

CHANNELS
a CHAN red
1 5 next channel
b CHAN green
1 5 next channel
c CHAN blue
1 0 list end

CHAN
d LISTofLBXPIXEL

LBXPIXEL
e PIXELPRIVATE or
 PIXELPRIVATERANGE or
 PIXELALLOC or
 PIXELALLOCRANGE

PIXELPRIVATE
1 1 pixel-private
f PIXEL pixel

PIXEL
f CARD8 or CARD16 (CARD8 if !two-byte-pixels)

PIXELPRIVATERANGE
1 2 pixel-private-range
f PIXEL fist-pixel
f PIXEL last-pixel

PIXELALLOC
1 3 pixel-private
f PIXEL pixel
g COLORSINGLE or COLORTRIPLE color (COLORSINGLE if
three-channels)

COLORSINGLE
h CARD8 or CARD16 value (CARD8 if bits-per-rgb =< 7)

COLORTRIPLE
h COLORSINGLE red
h COLORSINGLE green
h COLORSINGLE blue

PIXELALLOCRANGE
1 4 pixel-private

Low Bandwidth X Extension

50

f PIXEL first-pixel
f PIXEL last-pixel
j LISTofCOLORSINGLE or color (COLORSINGLE if three-channels)
 LISTofCOLORTRIPLE

The description of this request is on See LbxGrabCmap [lbx.htm#10922].

LbxReleaseCmap
1 CARD8 opcode
1 41 lbx opcode
2 2 request length
4 COLORMAP cmap

The description of this request is on See LbxReleaseCmap [lbx.htm#34675].

LbxAllocColor
1 CARD8 opcode
1 42 lbx opcode
2 5 request length
4 COLORMAP colormap
4 CARD32 pixel
2 CARD16 red
2 CARD16 green
2 CARD16 blue
2 unused

The description of this request is on See LbxAllocColor [lbx.htm#10446].

LbxSync
1 CARD8 opcode
1 43 lbx opcode
2 1 request length
=>
1 1 Reply
1 n unused
2 CARD16 sequence number
4 0 reply length
24 unused

The description of this request is on See LbxSync [lbx.htm#30719].

Events

LbxSwitchEvent
1 base + 0 code
1 0 lbx type
2 CARD16 sequence number
4 CARD32 client
24 unused

The description of this event is on See LbxSwitchEvent [lbx.htm#33748].

lbx.htm#10922
lbx.htm#10922
lbx.htm#34675
lbx.htm#34675
lbx.htm#10446
lbx.htm#10446
lbx.htm#30719
lbx.htm#30719
lbx.htm#33748
lbx.htm#33748

Low Bandwidth X Extension

51

LbxCloseEvent
1 base + 0 code
1 1 lbx type
2 CARD16 sequence number
4 CARD32 client
24 unused

The description of this event is on See LbxCloseEvent [lbx.htm#17292].

LbxInvalidateTagEvent
1 base + 0 code
1 3 lbx type
2 CARD16 sequence number
4 CARD32 tag
4 tag-type
1 LbxTagTypeModmap
2 LbxTagTypeKeymap
3 LbxTagTypeProperty
4 LbxTagTypeFont
5 LbxTagTypeConnInfo
20 unused

The description of this event is on See LbxInvalidateTagEvent [lbx.htm#23016].

LbxSendTagDataEvent
1 base + 0 code
1 4 lbx type
2 CARD16 sequence number
4 CARD32 tag
4 tag-type
3 LbxTagTypeProperty
20 unused

The description of this event is on See LbxSendTagDataEvent [lbx.htm#20373].

LbxListenToOne
1 base + 0 code
1 5 lbx type
2 CARD16 sequence number
4 CARD32 client
#xFFFFFFFF
a client not managed by the proxy
24 unused

The description of this event is on See LbxListenToOne [lbx.htm#25209].

LbxListenToAll
1 base + 0 code
1 6 lbx type
2 CARD16 sequence number

lbx.htm#17292
lbx.htm#17292
lbx.htm#23016
lbx.htm#23016
lbx.htm#20373
lbx.htm#20373
lbx.htm#25209
lbx.htm#25209

Low Bandwidth X Extension

52

28 unused

The description of this event is on See LbxListenToAll [lbx.htm#11095].

LbxQuickMotionDeltaEvent
1 base + 1 code
1 CARD8 delta-time
1 INT8 delta-x
1 INT8 delta-y

This event is not padded to 32 bytes.

The description of this event is on See LbxQuickMotionDeltaEvent
[lbx.htm#40268].

LbxMotionDeltaEvent
1 base + 0 code
1 7 lbx type
1 INT8 delta-x
1 INT8 delta-y
2 CARD16 delta-time
2 CARD16 delta-sequence

This event is not padded to 32 bytes.

The description of this event is on See LbxMotionDeltaEvent [lbx.htm#30033].

LbxReleaseCmapEvent
1 base + 0 code
1 8 lbx type
2 CARD16 sequence number
4 COLORMAP colormap
24 unused

The description of this event is on See LbxReleaseCmapEvent [lbx.htm#19129].

LbxFreeCellsEvent
1 base + 0 code
1 9 lbx type
2 CARD16 sequence number
4 COLORMAP colormap
4 PIXEL pixel start
4 PIXEL pixel end
16 unused

The description of this event is on See LbxFreeCellsEvent [lbx.htm#38041].

Re-encoding of X Events
The X protocol requires all X events to be 32 bytes. The LBX server reduces the
number of bytes sent between the server and the proxy for some X events by not

lbx.htm#11095
lbx.htm#11095
lbx.htm#40268
lbx.htm#40268
lbx.htm#30033
lbx.htm#30033
lbx.htm#19129
lbx.htm#19129
lbx.htm#38041
lbx.htm#38041

Low Bandwidth X Extension

53

appending unused pad bytes to the event data. The offsets of X event data are un-
changed. The proxy will pad the events to 32 bytes before passing them on to the
client.

LBX reencodes X event representations into the following sizes, if squishing is en-
abled:

KeyOrButton 32
EnterOrLeave 32
Keymap 32
Expose 20
GraphicsExposure 24
NoExposure 12
VisibilityNotify 12
CreateNotify 24
DestroyNotify 12
UnmapNotify 16
MapNotify 16
MapRequest 12
Reparent 24
ConfigureNotify 28
ConfigureRequest 28
GravityNotify 16
ResizeRequest 12
Circulate 20
Property Notify 20
SelectionClear 20
SelectionRequest 28
SelectionNotify 24
Colormap Notify 16
MappingNotify 8
ClientMessage 32
Unknown 32

Responses

LbxDeltaResponse
1 event_base + 0 event code
1 2 lbx type
2 1+(2+2n+p)/4 request length
1 n count of diffs
1 CARD8 cache index
2n LISTofDIFFITEM offsets and differences
p unused, p=pad(2n)

The description of this response is on See LbxDeltaResponse [lbx.htm#34042].

lbx.htm#34042
lbx.htm#34042

	Low Bandwidth X Extension
	Table of Contents
	Introduction
	Description
	Data Flow
	Tags
	Tag Substitution in Requests
	Property Tags

	Short-circuiting
	Graphics Re-encoding
	Motion events
	Event Squishing
	Master Client
	Multiplexing of Clients
	Swapping
	Delta cache
	Stream Compression
	Authentication Protocols

	C Library Interfaces
	Application Library Interfaces
	XLbxQueryVersion

	Proxy Library Interfaces
	XLbxQueryExtension
	XLbxGetEventBase

	Protocol
	Syntactic Conventions and Common Types
	Errors
	Requests
	Requests Initiated by the Proxy or by the Client
	Requests Initiated or Substituted by the Proxy
	Control Requests Initiated by the Proxy
	Substitution Requests

	Events
	Responses

	Algorithm Naming
	Encoding
	Errors
	Requests
	Events
	Re-encoding of X Events
	Responses

