
X Transport Interface

X Consortium Standard

Stuart Anderson

X Transport Interface: X Consortium Standard
by Stuart Anderson
Ralph Mor
Alan Coopersmith

X Version 11, Release 7.X

Version 0.7

Copyright © 1993, 1994 NCR Corporation - Dayton, Ohio, USA

All Rights Reserved

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright notice and this permission notice appear in supporting documentation,
and that the name NCR not be used in advertising or publicity pertaining to distribution of the software without specific, written prior permission.
NCR makes no representations about the suitability of this software for any purpose. It is provided "as is" without express or implied warranty.

NCR DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL NCR BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

Copyright © 1993, 1994, 2002 The Open Group

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”),
to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/
or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
NO EVENT SHALL THE OPEN GROUP BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of The Open Group shall not be used in advertising or otherwise to promote the sale, use or other
dealings in this Software without prior written authorization from The Open Group.

X Window System is a trademark of The Open Group, Inc.

iii

Table of Contents
The X Transport Interface ... iv
1. Purposes and Goals ... 1
2. Overview of the Interface ... 2
3. Definition of Address Specification Format ... 3
4. Internal Data Structures ... 4

Xtransport ... 4
XtransConnInfo .. 6

5. Exposed Transport Independent API ... 7
Core Interface API ... 7
Utility API .. 9

6. Transport Option Definition .. 10
7. Hidden Transport Dependent API ... 11
8. Configuration ... 13
9. Transport Specific Definitions ... 14
10. Implementation Notes ... 15

iv

The X Transport Interface
Designed by Stuart Anderson (NCR) with help from Ralph Mor (X Consortium)

Note

This documentation does not completely match the implementation in R6 (as a result of some
late changes made in the code). Specifically, support was added for font server cloning, and
conditional compliation was introduced for client vs. server code.

1

Chapter 1. Purposes and Goals
The X Transport Interface is intended to combine all system and transport specific code into a single place
in the source tree. This API should be used by all libraries, clients and servers of the X Window System.
Use of this API should allow the addition of new types of transports and support for new platforms without
making any changes to the source except in the X Transport Interface code.

This interface should solve the problem of multiple #ifdef TRANSPORT and #ifdef PLATFORM
statements scattered throughout the source tree.

This interface should provide enough functionality to support all types of protocols, including connection
oriented protocols such as X11 and FS, and connection-less oriented protocols such as XDMCP.

2

Chapter 2. Overview of the Interface
The interface provides an API for use by applications. The functions in this API perform work that is
common to all transports and systems, such as parsing an address into a host and port number. The functions
in this API call transport specific functions that are contained in a table whose contents are defined at
compile time. This table contains an entry for each type of transport. Each entry is a record containing
mostly pointers to function that implements the interface for the given transport.

This API does not provide an abstraction for select() or poll(). These functions are themselves
transport independent, so an additional interface is not needed for these functions. It is also unclear how
such an interface would affect performance.

3

Chapter 3. Definition of Address
Specification Format

Addresses are specified in the following syntax,

protocol/host:port

where protocol specifies a protocol family or an alias for a protocol family. A definition of common
protocol families is given in a later section.

The host part specifies the name of a host or other transport dependent entity that could be interpreted
as a Network Service Access Point (NSAP).

The port part specifies the name of a Transport Service Access Point (TSAP). The format of the TSAP
is defined by the underlying transport implementation, but it is represented using a string format when it
is part of an address.

4

Chapter 4. Internal Data Structures
There are two major data structures associated with the transport independent portion of this interface.
Additional data structures may be used internally by each transport.

Xtransport
Each transport supported has an entry in the transport table. The transport table is an array of Xtransport
records. Each record contains all the entry points for a single transport. This record is defined as:

typedef struct _Xtransport {

 char *TransName;
 int flags;

 XtransConnInfo (*OpenCOTSClient)(
 struct _Xtransport *, /* transport */
 char *, /* protocol */
 char *, /* host */
 char * /* port */
);

 XtransConnInfo (*OpenCOTSServer)(
 struct _Xtransport *, /* transport */
 char *, /* protocol */
 char *, /* host */
 char * /* port */
);

 XtransConnInfo (*OpenCLTSClient)(
 struct _Xtransport *, /* transport */
 char *, /* protocol */
 char *, /* host */
 char * /* port */
);

 XtransConnInfo (*OpenCLTSServer)(
 struct _Xtransport *, /* transport */
 char *, /* protocol */
 char *, /* host */
 char * /* port */
);

 int (*SetOption)(
 XtransConnInfo, /* connection */
 int, /* option */
 int /* arg */
);

 int (*CreateListener)(
 XtransConnInfo, /* connection */

Internal Data Structures

5

 char *, /* port */
 int /* flags */
);

 int (*ResetListener)(
 XtransConnInfo /* connection */
);

 XtransConnInfo (*Accept)(
 XtransConnInfo /* connection */
);

 int (*Connect)(
 XtransConnInfo, /* connection */
 char *, /* host */
 char * /* port */
);

 int (*BytesReadable)(
 XtransConnInfo, /* connection */
 BytesReadable_t * /* pend */
);

 int (*Read)(
 XtransConnInfo, /* connection */
 char *, /* buf */
 int /* size */
);

 int (*Write)(
 XtransConnInfo, /* connection */
 char *, /* buf */
 int /* size */
);

 int (*Readv)(
 XtransConnInfo, /* connection */
 struct iovec *, /* buf */
 int /* size */
);

 int (*Writev)(
 XtransConnInfo, /* connection */
 struct iovec *, /* buf */
 int /* size */
);

 int (*Disconnect)(
 XtransConnInfo /* connection */
);

 int (*Close)(
 XtransConnInfo /* connection */
);

Internal Data Structures

6

} Xtransport;

The flags field can contain an OR of the following masks:

TRANS_ALIAS indicates that this record is providing an alias, and should not be used
to create a listener.

TRANS_LOCAL indicates that this is a LOCALCONN transport.

TRANS_ABSTRACT indicates that a local connection transport uses the abstract socket
namespace.

Some additional flags may be set in the flags field by the library while it is running:

TRANS_DISABLED indicates that this transport has been disabled.

TRANS_NOLISTEN indicates that servers should not open new listeners using this transport.

TRANS_NOUNLINK set by a transport backend to indicate that the endpoints for its
connection should not be unlinked.

XtransConnInfo
Each connection will have an opaque XtransConnInfo transport connection object allocated for it. This
record contains information specific to the connection. The record is defined as:

typedef struct _XtransConnInfo *XtransConnInfo;

struct _XtransConnInfo {
 struct _Xtransport *transptr;
 char *priv;
 int flags;
 int fd;
 int family;
 char *addr;
 int addrlen;
 char *peeraddr;
 int peeraddrlen;
};

7

Chapter 5. Exposed Transport
Independent API

This API is included in each library and server that uses it. The API may be used by the library, but it is not
added to the public API for that library. This interface is simply an implementation facilitator. This API
contains a low level set of core primitives, and a few utility functions that are built on top of the primitives.
The utility functions exist to provide a more familiar interface that can be used to port existing code.

A macro is defined in Xtrans.h for TRANS(func) that creates a unique function name depending on
where the code is compiled. For example, when built for Xlib, TRANS(OpenCOTSClient) becomes
_X11TransOpenCOTSClient.

All failures are considered fatal, and the connection should be closed and re-established if desired. In most
cases, however, the value of errno will be available for debugging purposes.

Core Interface API
• XtransConnInfo TRANS(OpenCOTSClient)(char *address)

This function creates a Connection-Oriented Transport that is suitable for use by a client. The parameter
address contains the full address of the server to which this endpoint will be connected. This functions
returns an opaque transport connection object on success, or NULL on failure.

• XtransConnInfo TRANS(OpenCOTSServer)(char *address)

This function creates a Connection-Oriented Transport that is suitable for use by a server. The parameter
address contains the full address to which this server will be bound. This functions returns an opaque
transport connection object on success, or NULL on failure.

• XtransConnInfo TRANS(OpenCLTSClient)(char *address)

This function creates a Connection-Less Transport that is suitable for use by a client. The parameter
address contains the full address of the server to which this endpoint will be connected. This functions
returns an opaque transport connection object on success, or NULL on failure.

• XtransConnInfo TRANS(OpenCLTSServer)(char *address)

This function creates a Connection-Less Transport that is suitable for use by a server. The parameter
address contains the full address to which this server will be bound. This functions returns an opaque
transport connection object on success, or NULL on failure.

• int TRANS(SetOption)(XtransConnInfo connection, int option, int arg)

This function sets transport options, similar to the way setsockopt() and ioctl() work. The
parameter connection is an endpoint that was obtained from _XTransOpen*() functions. The
parameter option contains the option that will be set. The actual values for option are defined in a
later section. The parameter arg can be used to pass in an additional value that may be required by
some options. This function return 0 on success and -1 on failure.

Note

Based on current usage, the complimentary function TRANS(GetOption) is not necessary.

Exposed Transport Independent API

8

• int TRANS(CreateListener)(XtransConnInfo connection, char *port, int flags)

This function sets up the server endpoint for listening. The parameter connection is an endpoint
that was obtained from TRANS(OpenCOTSServer)() or TRANS(OpenCLTSServer)(). The
parameter port specifies the port to which this endpoint should be bound for listening. If port is
NULL, then the transport may attempt to allocate any available TSAP for this connection. If the
transport cannot support this, then this function will return a failure. The flags parameter can be
set to ADDR_IN_USE_ALLOWED to allow the call to the underlying binding function to fail with a
EADDRINUSE error without causing the TRANS(CreateListener) function itself to fail. This
function return 0 on success and -1 on failure.

• int TRANS(ResetListener)(XtransConnInfo connection)

When a server is restarted, certain listen ports may need to be reset. For example, unix domain
needs to check that the file used for communication has not been deleted. If it has, it must be
recreated. The parameter connection is an opened and bound endpoint that was obtained from
TRANS(OpenCOTSServer)() and passed to TRANS(CreateListener)(). This function
will return one of the following values: TRANS_RESET_NOOP, TRANS_RESET_NEW_FD, or
TRANS_RESET_FAILURE.

• XtransConnInfo TRANS(Accept)(XtransConnInfo connection)

Once a connection indication is received, this function can be called to accept the connection.
The parameter connection is an opened and bound endpoint that was obtained from
TRANS(OpenCOTSServer)() and passed to TRANS(CreateListener)(). This function will
return a new opaque transport connection object upon success, NULL otherwise.

• int TRANS(Connect)(XtransConnInfo connection, char *address)

This function creates a connection to a server. The parameter connection is an endpoint that was
obtained from TRANS(OpenCOTSClient)(). The parameter address specifies the TSAP to
which this endpoint should connect. If the protocol is included in the address, it will be ignored. This
function return 0 on success and -1 on failure.

• int TRANS(BytesReadable)(XtransConnInfo connection, BytesReadable_t *pend);

This function provides the same functionality as the BytesReadable macro.

• int TRANS(Read)(XtransConnInfo connection, char *buf, int size)

This function will return the number of bytes requested on a COTS connection, and will return the
minimum of the number bytes requested or the size of the incoming packet on a CLTS connection.

• int TRANS(Write)(XtransConnInfo connection, char *buf, int size)

This function will write the requested number of bytes on a COTS connection, and will send a packet
of the requested size on a CLTS connection.

• int TRANS(Readv)(XtransConnInfo connection, struct iovec *buf, int size)

Similar to TRANS(Read)().

• int TRANS(Writev)(XtransConnInfo connection, struct iovec *buf, int size)

Similar to TRANS(Write)().

• int TRANS(Disconnect)(XtransConnInfo connection)

Exposed Transport Independent API

9

This function is used when an orderly disconnect is desired. This function breaks the connection on the
transport. It is similar to the socket function shutdown().

• int TRANS(Close)(XtransConnInfo connection)

This function closes the transport, unbinds it, and frees all resources that was associated with the
transport. If a TRANS(Disconnect) call was not made on the connection, a disorderly disconnect
may occur.

• int TRANS(IsLocal)(XtransConnInfo connection)

Returns TRUE if it is a local transport.

• int TRANS(GetMyAddr)(XtransConnInfo connection, int *familyp, int *addrlenp, Xtransaddr **addrp)

This function is similar to getsockname(). This function will allocate space for the address, so it
must be freed by the caller. Not all transports will have a valid address until a connection is established.
This function should not be used until the connection is established with Connect() or Accept().

• int TRANS(GetPeerAddr)(XtransConnInfo connection, int *familyp, int *addrlenp, Xtransaddr
**addrp)

This function is similar to getpeername(). This function will allocate space for the address, so it
must be freed by the caller. Not all transports will have a valid address until a connection is established.
This function should not be used until the connection is established with Connect() or Accept().

• int TRANS(GetConnectionNumber)(XtransConnInfo connection)

Returns the file descriptor associated with this transport.

• int TRANS(MakeAllCOTSServerListeners)(char *port, int *partial_ret, int *count_ret, XtransConnInfo
**connections_ret)

This function should be used by most servers. It will try to establish a COTS server endpoint for each
transport listed in the transport table. partial_ret will be set to True if only a partial network could
be created. count_ret is the number of transports returned, and connections_ret is the list of
transports.

• int TRANS(MakeAllCLTSServerListeners)(char *port, int *partial_ret, int *count_ret,
XtransConnInfo **connections_ret)

This function should be used by most servers. It will try to establish a CLTS server endpoint for each
transport listed in the transport table. partial_ret will be set to True if only a partial network could
be created. count_ret is the number of transports returned, and connections_ret is the list of
transports.

Utility API
This section describes a few useful functions that have been implemented on top of the Core Interface
API. These functions are being provided as a convenience.

• int TRANS(ConvertAddress)(int *familyp, int *addrlenp, Xtransaddr *addrp)

This function converts a sockaddr based address to an X authorization based address (ie AF_INET,
AF_UNIX to the X protocol definition (ie FamilyInternet, FamilyLocal)).

10

Chapter 6. Transport Option Definition
The following options are defined for the TRANS(SetOption)() function. If an OS or transport does
not support any of these options, then it will silently ignore the option.

• TRANS_NONBLOCKING

This option controls the blocking mode of the connection. If the argument is set to 1, then the connection
will be set to blocking. If the argument is set to 0, then the connection will be set to non- blocking.

• TRANS_CLOSEONEXEC

This option determines what will happen to the connection when an exec is encountered. If the argument
is set to 1, then the connection will be closed when an exec occurs. If the argument is set to 0, then the
connection will not be closed when an exec occurs.

11

Chapter 7. Hidden Transport
Dependent API

The hidden transport dependent functions are placed in the Xtransport record. These function are similar
to the Exposed Transport Independent API, but some of the parameters and return values are slightly
different. Stuff like the #ifdef SUNSYSV should be handled inside these functions.

• XtransConnInfo *OpenCOTSClient (struct _Xtransport *thistrans, char *protocol, char *host, char
*port)

This function creates a Connection-Oriented Transport. The parameter thistrans points to an
Xtransport entry in the transport table. The parameters protocol, host, and port, point to strings
containing the corresponding parts of the address that was passed into TRANS(OpenCOTSClient)
(). This function must allocate and initialize the contents of the XtransConnInfo structure that is
returned by this function. This function will open the transport, and bind it into the transport namespace
if applicable. The local address portion of the XtransConnInfo structure will also be filled in by this
function.

• XtransConnInfo *OpenCOTSServer (struct _Xtransport *thistrans, char *protocol, char *host, char
*port)

This function creates a Connection-Oriented Transport. The parameter thistrans points to an
Xtransport entry in the transport table. The parameters protocol, host, and port point to strings
containing the corresponding parts of the address that was passed into TRANS(OpenCOTSClient)
(). This function must allocate and initialize the contents of the XtransConnInfo structure that is
returned by this function. This function will open the transport.

• XtransConnInfo *OpenCLTSClient (struct _Xtransport *thistrans, char *protocol, char *host, char
*port)

This function creates a Connection-Less Transport. The parameter thistrans points to an Xtransport
entry in the transport table. The parameters protocol, host, and port point to strings containing
the corresponding parts of the address that was passed into TRANS(OpenCOTSClient)(). This
function must allocate and initialize the contents of the XtransConnInfo structure that is returned by this
function. This function will open the transport, and bind it into the transport namespace if applicable.
The local address portion of the XtransConnInfo structure will also be filled in by this function.

• XtransConnInfo *OpenCLTSServer (struct _Xtransport *thistrans, char *protocol, char *host, char
*port)

This function creates a Connection-Less Transport. The parameter thistrans points to an Xtransport
entry in the transport table. The parameters protocol, host, and port point to strings containing
the corresponding parts of the address that was passed into TRANS(OpenCOTSClient)(). This
function must allocate and initialize the contents of the XtransConnInfo structure that is returned by this
function. This function will open the transport.

• int SetOption (struct _Xtransport *thistrans, int option, int arg)

This function provides a transport dependent way of implementing the options defined by the X
Transport Interface. In the current prototype, this function is not being used, because all of the options
defined so far are transport independent. This function will have to be used if a radically different
transport type is added, or a transport dependent option is defined.

• int CreateListener (struct _Xtransport *thistrans, char *port, int flags)

Hidden Transport Dependent API

12

This function takes a transport endpoint opened for a server, and sets it up to listen for incoming
connection requests. The parameter port contains the port portion of the address that was passed to the
Open function. The parameter flags should be set to ADDR_IN_USE_ALLOWED if the underlying
transport endpoint may be already bound and this should not be considered as an error. Otherwise flags
should be set to 0. This is used by IPv6 code, where the same socket can be bound to both an IPv6
address and then to a IPv4 address. This function will bind the transport into the transport name space if
applicable, and fill in the local address portion of the XtransConnInfo structure. The transport endpoint
will then be set to listen for incoming connection requests.

• int ResetListener (struct _Xtransport *thistrans)

This function resets the transport for listening.

• XtransConnInfo Accept(struct _Xtransport *thistrans)

This function creates a new transport endpoint as a result of an incoming connection request. The
parameter thistrans is the endpoint that was opened for listening by the server. The new endpoint
is opened and bound into the transport’s namespace. A XtransConnInfo structure describing the new
endpoint is returned from this function

• int Connect(struct _Xtransport *thistrans, char *host, char *port)

This function establishes a connection to a server. The parameters host and port describe the server
to which the connection should be established. The connection will be established so that Read() and
Write() call can be made.

• int BytesReadable(struct _Xtransport *thistrans, BytesReadable_t *pend)

This function replaces the BytesReadable() macro. This allows each transport to have it’s own
mechanism for determining how much data is ready to be read.

• int Read(struct _Xtransport *thistrans, char *buf, int size)

This function reads size bytes into buf from the connection.

• int Write(struct _Xtransport *thistrans, char *buf, int size)

This function writes size bytes from buf to the connection.

• int Readv(struct _Xtransport *thistrans, struct iovec *buf, int size)

This function performs a readv() on the connection.

• int Writev(struct _Xtransport *thistrans, struct iovec *buf, int size)

This function performs a writev() on the connection.

• int Disconnect(struct _Xtransport *thistrans)

This function initiates an orderly shutdown of a connection. If a transport does not distinguish between
orderly and disorderly disconnects, then a call to this function will have no affect.

• int Close(struct _Xtransport *thistrans)

This function will break the connection, and close the endpoint.

13

Chapter 8. Configuration
The implementation of each transport can be platform specific. It is expected that existing connection types
such as TCPCONN, UNIXCONN, LOCALCONN, and STREAMSCONN will be replaced with flags for
each possible transport type.

In X11R6, the below flags to enable transport types were set in ConnectionFlags in the vendor.cf or
site.def config files.

In X11R7 modular releases, these flags are set when running configure scripts which include the
XTRANS_CONNECTION_FLAGS macro from xtrans.m4.

#define configure flag Description

TCPCONN --enable-tcp-
transport

Enables the INET (IPv4)
Domain Socket based
transport

IPv6 --enable-ipv6 Extends TCPCONN
to enable IPv6 Socket
based transport

UNIXCONN --enable-unix-
transport

Enables the UNIX
Domain Socket based
transport

STREAMSCONN Not available in X11R7 Enables the TLI based
transports

LOCALCONN --enable-local-
transport

Enables the SYSV Local
connection transports

DNETCONN Not available in X11R7 Enables the DECnet
transports

14

Chapter 9. Transport Specific
Definitions

Address ComponentProtocol Family

protocol host port

Internet inet inet6 tcp udp name of an internet
addressable host

string containing the
name of a service

or a valid port
number. Example:
"xserver0", "7100"

DECnet decnet name of a DECnet
addressable host

string containing
the complete name

of the object.
Example: "X$X0"

NETware ipx name of a NETware
addressable host

Not sure of the
specifics yet.

OSI osi name of an OSI
adressable host.

Not sure of the
specifics yet.

Local local pts named sco isc (ignored) String containing the
port name, ie "xserver0",

"fontserver0".

15

Chapter 10. Implementation Notes
This section refers to the prototype implementation that is being developed concurrently with this
document. This prototype has been able to flush out many details and problems as the specification was
being developed.

In X11R6, all of the source code for this interface was located in xc/lib/xtrans.

In X11R7, all of the source code for this interface is delivered via the lib/libxtrans modular package
from X.Org, and is installed under ${prefix}/X11/Xtrans so that other modules may find it when
they build.

All functions names in the source are of the format TRANS(func)(). The TRANS() macro is defined as

#if (__STDC__ && !defined(UNIXCPP)) || defined(ANSICPP)
#define TRANS(func) _PROTOCOLTrans##func
#else
#define TRANS(func) _PROTOCOLTrans/**/func
#endif

PROTOCOL will be uniquely defined in each directory where this code is compiled. PROTOCOL will
be defined to be the name of the protocol that is implemented by the library or server, such as X11, FS,
and ICE.

All libraries and servers that use the X Transport Interface should have a new file called
TRANSPORTtrans.c. This file will include the transports based on the configuration flags provided by
the configure script. Below is an example xfstrans.c for the font server.

#include "config.h"

#define FONT_t 1
#define TRANS_REOPEN 1
#define TRANS_SERVER 1

#include <X11/Xtrans/transport.c>

The source files for this interface are listed below.

Xtrans.h Function prototypes and defines for the Transport Independent API.

Xtransint.h Used by the interface implementation only. Contains the internal data
structures.

Xtranssock.c Socket implementation of the Transport Dependent API.

Xtranstli.c TLI implementation of the Transport Dependent API.

Xtransdnet.c DECnet implementation of the Transport Dependent API.

Xtranslocal.c Implementation of the Transport Dependent API for SYSV Local
connections.

Xtrans.c Exposed Transport Independent API Functions.

Implementation Notes

16

Xtransutil.c Collection of Utility functions that use the X Transport Interface.

The file Xtransint.h contains much of the transport related code that was previously in Xlibint.h
and Xlibnet.h. This will make the definitions available for all transport users. This should also obsolete
the equivalent code in other libraries.

