In this sample we use Lato font [Dziedzic and El Morabity, 2019] as the body font. For the math we use the same input as in The LTEX $_{\mathrm{E}}$ Companion [Mittelbach and Fischer, 2023, § 12.5]).

In all examples we use Iwona scaled 1.15

Iwona regular

First some large operators both in text: $\iiint_{\mathcal{Q}} f(x, y, z) d x d y d z$ and $\prod_{y \in \Gamma_{\tilde{c}}} \partial\left(\widetilde{X}_{y}\right)$; and also on display:

$$
\begin{aligned}
\iiint \int_{\mathrm{Q}} f(w, x, y, z) d w d x d y d z & \leq \oint_{\partial Q} f^{\prime}\left(\max \left\{\frac{\|w\|}{\left|w^{2}+x^{2}\right|} ; \frac{\|z\|}{\left|y^{2}+z^{2}\right|} ; \frac{\|w \oplus z\|}{\|x \oplus y\|}\right\}\right) \\
& \approx \biguplus_{\mathbb{Q} \in \bar{Q}}\left[f^{*}\left(\frac{\left.\int \mathbb{Q}(t)\right]}{\sqrt{1-t^{2}}}\right)\right]_{t=\alpha}^{t=\vartheta}-\left(\Delta+\stackrel{(1)}{v-v)^{3}}\right.
\end{aligned}
$$

For x in the open interval]-1,1[the infinite sum in Equation (8) is convergent; however, this does not hold throughout the closed interval $[-1,1]$.

$$
(1-x)^{-k}=1+\sum_{j=1}^{\infty}(-1)^{j}\left\{\begin{array}{l}
k \tag{2}\\
j
\end{array}\right\} x^{j} \quad \text { for } k \in \mathbb{N} ; k \neq 0
$$

Iwona condensed

First some large operators both in text: $\iiint_{\mathcal{Q}} f(x, y, z) d x d y d z$ and $\prod_{y \in \Gamma_{\tilde{c}}} \partial\left(\widetilde{X}_{\nu}\right)$;
and also on display:

$$
\begin{aligned}
\iiint \int_{\mathbb{Q}} f(w, x, y, z) d w d x d y d z & \leq \oint_{\partial Q} f^{\prime}\left(\max \left\{\frac{\|w\|}{\left|w^{2}+x^{2}\right|} ; \frac{\|z\|}{\left|y^{2}+z^{2}\right|} ; \frac{\|w \oplus z\|}{\|x \oplus y\|}\right\}\right) \\
& \approx \biguplus_{\mathbb{Q} \in \bar{Q}}\left[f^{*}\left(\frac{\left.\int \mathbb{Q}(t)\right]}{\sqrt{1-t^{2}}}\right)\right]_{t=\alpha}^{t=\vartheta}-(\Delta+v-v)^{3}
\end{aligned}
$$

For x in the open interval $]-1,1[$ the infinite sum in Equation (8) is convergent; however, this does not hold throughout the closed interval $[-1,1]$.

$$
(1-x)^{-k}=1+\sum_{j=1}^{\infty}(-1)^{j}\left\{\begin{array}{l}
k \tag{4}\\
j
\end{array}\right\} x^{j} \quad \text { for } k \in \mathbb{N} ; k \neq 0
$$

Iwona light

First some large operators both in text: $\iiint_{\mathcal{Q}} f(x, y, z) d x d y d z$ and $\prod_{y \in \Gamma_{\tilde{c}}} \partial\left(\widetilde{X}_{\nu}\right)$;
and also on display:

$$
\begin{aligned}
\iiint \int_{\mathrm{Q}} f(w, x, y, z) d w d x d y d z & \leq \oint_{\partial Q} f^{\prime}\left(\max \left\{\frac{\|w\|}{\left|w^{2}+x^{2}\right|} ; \frac{\|z\|}{\left|y^{2}+z^{2}\right|} ; \frac{\|w \oplus z\|}{\|x \oplus y\|}\right\}\right) \\
& \approx \biguplus_{\mathbb{Q} \in \bar{Q}}\left[f^{*}\left(\frac{\left.\int \mathbb{Q}(t)\right]}{\sqrt{1-t^{2}}}\right)\right]_{t=\alpha}^{t=\vartheta}-(\Delta+v-v)^{3}
\end{aligned}
$$

For x in the open interval $]-1,1[$ the infinite sum in Equation (8) is convergent; however, this does not hold throughout the closed interval $[-1,1]$.

$$
(1-x)^{-k}=1+\sum_{j=1}^{\infty}(-1)^{j}\left\{\begin{array}{l}
k \tag{6}\\
j
\end{array}\right\} x^{j} \quad \text { for } k \in \mathbb{N} ; k \neq 0
$$

Iwona light condensed

First some large operators both in text: $\iiint_{\mathcal{Q}} f(x, y, z) d x d y d z$ and $\prod_{y \in \Gamma_{\tilde{c}}} \partial\left(\widetilde{X}_{y}\right)$;
and also on display: and also on display:

$$
\begin{aligned}
\iiint \int_{\mathbb{Q}} f(w, x, y, z) d w d x d y d z & \leq \oint_{\partial Q} f^{\prime}\left(\max \left\{\frac{\|w\|}{\left|w^{2}+x^{2}\right|} ; \frac{\|z\|}{\left|y^{2}+z^{2}\right|} ; \frac{\|w \oplus z\|}{\|x \oplus y\|}\right\}\right) \\
& \approx \biguplus_{\mathbb{Q} \in \bar{Q}}\left[f^{*}\left(\frac{\int \mathbb{Q}(t)[}{\sqrt{1-t^{2}}}\right)\right]_{t=\alpha}^{t=\vartheta}-(\Delta+v-v)^{3}
\end{aligned}
$$

For x in the open interval] $-1,1[$ the infinite sum in Equation (8) is convergent; however, this does not hold throughout the closed interval $[-1,1]$.

$$
(1-x)^{-k}=1+\sum_{j=1}^{\infty}(-1)^{j}\left\{\begin{array}{l}
k \tag{8}\\
j
\end{array}\right\} x^{j} \quad \text { for } k \in \mathbb{N} ; k \neq 0
$$

References

Łukasz Dziedzic and Mohamed El Morabity. The lato package, 2019. URL http://www.latofonts.com/.

Frank Mittelbach and Ulrike Fischer. The LaTeX Companion: Parts I \& II, 3rd Edition. Addison-Wesley Professional, May 2023. ISBN 978-01-3816-648-9.

