o
"I’ITAN

Programmers' Technical Reference
Guide for the TITAN TTCN-3 Toolset

Jend Balasko

Version 10.1.0, 2024-04-25

Table of Contents

1. About the Document

1.1. Purpose
1.2. Target Groups
1.3. Typographical Conventions

2. TTCN-3 Limitations in this Version
3. Clarifications to the TTCN-3 Standard

3.1. Predefined Function Identifiers

3.2. Meaning of any and all

3.3. Response and Exception Handling Parts
3.4. Variable Lists in param Redirect

3.5. References between Language Elements
3.6. Encoding Rules

3.7. Address Type

3.8. Importing import Statement from TTCN-3 Modules

3.9. Description of Behavior Types Syntax
3.10. Partially initialized structure values
3.11. Concatenation of templates

3.12. The predefined function replace
3.13. The execution of an altstep

3.14. ASN.1 extension additions

4. TTCN-3 Language Extensions

4.1. Syntax Extensions

4.2. Visibility Modifiers

4.3. The anytype

4.4. Ports and Test Configurations

4.5. Parameters of create Operation

4.6. Altsteps and Defaults

4.7. Interleave Statements

4.8. Logging Disambiguation

4.9. Value Returning done

4.10. Dynamic Templates

4.11. Template Module Parameters

4.12. Predefined Functions

4.13. Additional Predefined Functions

4.14. Exclusive Boundaries in Range Subtypes
4.15. Special Float Values Infinity and not_a_number
4.16. TTCN-3 Preprocessing

4.17. Parameter List Extensions

O 00 00 00 N 9 N0 W N DD DN

W W W W W N DN DN DN DN DN DNDDNDNDN R == = = e = = s
© 00 00 00 DN W 00 0 O = b W N DM O 0 O O U1 b W W N N = O

4.18.
4.19.
4.20.
4.21.
4.22.
4.23.
4.24.
4.25.
4.26.
4.27.
4.28.
4.29.
4.30.
4.31.
4.32
4.33.
4.34.
4.35
4.36.
4.37.
4.38.
4.39.
4.40.
4.41
4.42.

function, altstep and testcase References
Function Types with a RunsOn_self Clause
TTCN-3 Macros

Component Type Compatibility

Implicit Message Encoding

RAW Encoder and Decoder

TEXT Encoder and Decoder

XML Encoder and Decoder

JSON Encoder and Decoder

OER Encoder and Decoder

PER Encoder and Decoder

Build Consistency Checks

Negative Testing

Testcase Stop Operation

. Catching Dynamic Test Case Errors

Lazy Parameter Evaluation

Differences between the Load Test Runtime and the Function Test Runtime
. Profiling and code coverage

Defining enumeration fields with values known at compile time

Ports with translation capability
Real-time testing features
Object-oriented features

Default alternatives of union types

. Advanced matching

Logging sensitive data

5. Supported ASN.1 Constructs and Limitations
6. Compiling TTCN-3 and ASN.1 Modules

6.1. Command Line Syntax

6.2. The Compilation Process for TTCN-3 and ASN.1 Modules

6.3. Particularities of ASN.1 Modules

6.4. Using Component Relation Constraints from TTCN-3

7. The Run-time Configuration File
7.1. [MODULE_PARAMETERS]
7.2. [LOGGING]

7.3. [TESTPORT_PARAMETERS]
7.4. [DEFINE]

7.5. [INCLUDE]

7.6. [ORDERED_INCLUDE]

7.7. [EXTERNAL_COMMANDS]

7.8. [EXECUTE]

7.9. [GROUPS] (Parallel mode)

40

40

43

45

47

65
124
132
155
201
201
203
207
226
226
228
229
235
241
242
245
247
255
256
257
259
261
261
286
288
290
293
293
298
326
327
332
333
334
335
336

7.10. [COMPONENTS] (Parallel mode) 337

7.11. [MAIN_CONTROLLER] (Parallel mode) 338
7.12. [PROFILER] 339
7.13. Dynamic Configuration of Logging Options 344
8. The TITAN Project Descriptor File 348
8.1. Project Name 350
8.2. Referenced Projects 350
8.3. Files and Folders 351
8.4. Path Variables 352
8.5. ActiveConfiguration 352
8.6. Configurations 353
8.7. Packed Referenced Projects 362
8.8. Important Information, Limitations 366
9. XSD to TTCN-3 Converter 368
9.1. Terminology 368
9.2. Schema Component 368
9.3. Command-line Syntax 368
9.4. The Compilation Process for XML Schema 370
9.5. Restrictions 374
9.6. Extensions 374
10. Code Coverage of TTCN-3 Modules 376
10.1. Generating Code Coverage 376
10.2. Converting Code Coverage Data from XML to HTML 377
10.3. Command Line Syntax of tcov2lcov 377
10.4. Limitations 378
11. The TTCN-3 Debugger 379
11.1. Gathered information 379
11.2. Breakpoints 380
11.3. User interface and list of commands 381
11.4. Example 390
12. Tips & Troubleshooting 395
12.1. Type Aliasing 395
12.2. Reusing Logged Values or Templates in TTCN-3 Code 395
12.3. Using the TTCN-3 Preprocessing Functionality 396
12.4. More Efficient Implementation of the Types record of and set of 397
12.5. Workflow for Native XML Support 397
12.6. Debug Memory Use of Record/set of Types 404
12.7. Parsing limitations 405
13. References 407

14. Abbreviations 409

Abstract

This document describes detailed information on writing components of executable test suites for
the TITAN TTCN-3 Toolset.

Copyright

Copyright (c) 2000-2024 Ericsson Telecom AB.

All rights reserved. This program and the accompanying materials are made available under the
terms of the Eclipse Public License v2.0 that accompanies this distribution, and is available at
https://www.eclipse.org/org/documents/epl-2.0/EPL-2.0.html.

Disclaimer

The contents of this document are subject to revision without notice due to continued progress in
methodology, design and manufacturing. Ericsson should have no liability for any error or damage
of any kind resulting from the use of this document.

https://www.eclipse.org/org/documents/epl-2.0/EPL-2.0.html

Chapter 1. About the Document

1.1. Purpose

The purpose of this document is to provide detailed information on writing components, for
example, test ports, and so on, for executable test suites.

1.2. Target Groups

This document is intended for programmers of TTCN-3 test suites with information in addition to
that provided in the TITAN User Guide. It is recommended that the programmer reads the TITAN
User Guide before reading this document.

1.3. Typographical Conventions

This document uses the following typographical conventions:

Bold is used to represent graphical user interface (GUI) components such as buttons, menus, menu
items, dialog box options, fields and keywords, as well as menu commands. Bold is also used with
"+’ to represent key combinations. For example, Ctrl+Click

The character "/' is used to denote a menu and sub-menu sequence. For example, File / Open.

Monospaced font is used represent system elements such as command and parameter names,
program names, path names, URLs, directory names and code examples.

Bold monospaced font is used for commands that must be entered at the Command Line Interface
(CLD).

Chapter 2. TTCN-3 Limitations in this
Version

The present Test Executor is an implementation of TTCN-3 Core Language standard ([1]) with
support of ASN.1 ([3]). However, the following TTCN-3 language constructs are not supported in the
current version of the Test Executor. When applicable, the relevant clause of the standard text ([1])
is given within parentheses after each limitation. The list of ASN.1 related limitations can be found
in chapter 4.25.

« C++ code generation for parameterized local templates is not supported."” (5.0, relevant cells of
Table 1)
» Parameterized TTCN-3 record, set and union types. (5.41in [1]))

* TTCN-3 sub-typing constraints are checked only at compilation time. In the run-time
environment the restricted types are substituted with the corresponding base type and no run-
time error is produced if the assigned value violates the subtype constraint.

* The special TTCN-3 type anytype is supported with restrictions. (6.2.6 in [1])
« Type compatibility of structured types.” (6.3 in [1])

* Two (non-empty) component types are considered to be compatible only if the compatibility
relation is explicitly specified by the test suite writer. Details can be found in section 4.21. (6.3.3
and 9.3 in [1])

« Selective import statements. All TTCN-3 imports are treated as import all.”’ (8.2.3 and F.2 in [1])

» Type address must not be an external type specified outside TTCN-3. The special value null
cannot be assigned to variables of type address. (9.6 in [1])

* The compiler does not check whether a TTCN-3 function invoked from within a template,
Boolean guard expression of an alt construct, local variable initializer of an altstep or an
interleave statement has side-effects. The run-time behavior is undefined if a function with
side-effects (e.g. communication operations) is called while one of the above statements is being
executed. (20 in [1])

» The disconnect and unmap operations cannot refer to multiple connections or mappings. (21.1.2,
relevant parts in [1])

* The send and call operations cannot be used for multicast or broadcast communication. (22.2.1
and 22.3.1in [1])

* Attributes of type definitions cannot be changed when they are being imported. (27.1.2.1 in [1])

» Template instances cannot be used in the to clause of communication operations. Only values of
component and address types are allowed. (stated only in BNF)

* The additional predefined function decomp is not implemented. (D.2 of [3])

* In port type definitions the list of incoming and outgoing message types or signatures must be
explicitly specified, the all keyword is ignored by the compiler. (G.3 in [1])

* The TTCN-3 and ASN.1 modules are identified only by their names. Object identifiers in module
headers are ignored. Module object identifiers in import statements and references are skipped
without any checking, the semantic analyzer uses the module identifier only. (7.2.3 of [3], 8.1 in

(1D

The comparison operators do not work on objid values. Only the equality (==) and non-equality
(!=) operators are allowed. (7.2.5.2 of [3], 7.1.3 in [1])

Templates can not be used in the parameter of encvalue built-in function. (C.38 in [1])

The declaration of object identifiers can only point to constant values and integer variables,
references to objid variables are not supported.

The Configuration and Deployment Support and the Advanced Parameterization packages of
the TTCN-3 standard are not supported yet, except the Port with translation capability clause.
([21D).

In contrast to the standard, TITAN does not allow applying the same name to a structured type
and to an element of the same type.

From version 1.8.pl3 (or R8D) the logging machinery uses an internal TTCN-3 module, named
TitanLoggerApi, hence using this module name in user code is not allowed.

Referencing into an omitted field of any non-const variable/template of record/set type is
allowed and it will expand the structure to the level of reference. All the expanded fields under
omit will be unbound. This behavior is TITAN specific. According to the TTCN-3 standard (15.6.2
of [1]), the proper behavior would be a dynamic test case error in this situation. In case of
variable templates referencing into a matching mechanism will change the template regardless
of it being a left hand side or a right hand side value. In case of non-variable templates
referencing into a matching mechanism will cause an error. According to the TTCN-3 standard
the proper behavior for right hand side templates would be to return an expanded value but
not change it’s own value in case of AnyValue matching mechanism or stop with an error in
case of other matching mechanisms.

According to the standard, before matching the tools have to make sure that the template being
used is completely initialized, with no fields or elements left unbound. For performance reasons
this check is not done before the matching is done. Instead the matching will report the error,
when it tries to use an unbound field or elements.

In case the compiler is not able to decide at compile time, if all possible execution branches
contain a return statement, that is, in cases of alt statements, loops and branching statement
like if-else, select case, and so on, it will report an error without generating code. For example:

function f_check() return boolean {
for (var integer i:=0; 1 < some_variable; i := 1 + 1) {
return true;
}
}

In this case the compiler will report an error as it can not evaluate, if the loop will be executed
at least once, and if the loop is not executed, the end of the function would be reached without a
return statement. The workaround for this kind of problem is easy, the user needs to insert an
extra return statement at the end of the function, like:

function f_check() return boolean {
for (var integer i:=0; i < some_variable; i := i + 1) {
return true;
} return false

}

The language specification, after the "language" keyword, is ignored by the compiler.

For record of/set of types of fixed size, which have a length restriction of one concrete value,
and arrays the sizeof() and lengthof() predefined functions are not standard compliant:
sizeof() returns the number of elements, lengthof() returns the index of the last initialized
element plus one.

IPv6 networking between the MC, HC and Parallel Test Components is supported only on Linux
and Cygwin 1.7.

The optional "implicit omit" attribute can be applied directly to global value and template
definitions, but not to local value and template definitions.

The optional "implicit omit" attribute can be applied to a module, in which case it will have
effect on global value and template definitions in the module, and local value and template
definitions in the module, with the exception of (local) variable definitions

Templates using the decmatch (decoded content match, B.1.2.9 in [1]) matching mechanism
cannot be sent through test ports (doing so will result in a dynamic test case error). Template
module parameters using decmatch are also not supported.

Since TITAN version R5B the matching symbol "*" (AnyValueOrNone, B.1.2.4 in [1]) causes a
compile time error when assigned to a mandatory field of a record or set template, as it is stated
in the standard. This breaks backwards compatibility because in the older versions of TITAN
only a warning was emitted.

When assigning a value to a structure using the value list notation, assignment notation or
index notation (but not when assigning values to fields or elements one at a time), if the
structure’s old value (or part of it) is referenced on the right hand side, the structure’s new
value will only contain the fields or elements set in that assignment. All other fields or elements
that may have been initialized in prior assignments will be set to unbound.

If the structure’s old value is not referenced on the right hand side of the assignment, then only
the fields or elements mentioned in the assignment will be overwritten. All other fields or
elements will retain their previous values. Example:

type record R {
integer i1,
integer 12,
integer i3

}

var Rx :={1, 2, 3%};

X 1= 9{ 12 3 }; // assignment notation with no self-reference (0K)
// result: x := { i1 := 1, i2 := 3, i3 := 3 }

x :={ i1 x.i2 }; // assignment notation with self-reference (not 0K)
// result: x := { i1 := 3, i2 := <unbound>, i3 := <unbound> }

x.i3 := x.i1; // individual field assignment with self-reference (0K)
// result: x := { i1 := 3, i2 := <unbound>, i3 := 3 }

* Declaring multiple user ports (i.e. non-internal ports) with the same name is not fully
supported. The generated headers of two modules containing user ports with the same name
will cause C++ compilation errors, if one of the modules imports the other, or if it imports a
module that imports the other, etc. It is advised to give all user ports unique names.

[1] The semantic analyzer is able to verify modules with such definitions, but the generated C++ code will be incomplete or
€rroneous.

[2] Type compatibility for structured types is enabled only in the function test run-time due to performance considerations (except
record of/set of types for certain element types, see section 4.32.2). In the load test run-time aliased types and sub-types are treated
to be equivalent to their unrestricted root types. Different structured types are incompatible to each other. Two array types are
compatible if both have the same size and index offset and the element types are compatible according to the rules above.

[3] Recursive and non-recursive import means exactly the same when importing all definitions from a module.

Chapter 3. Clarifications to the TTCN-3
Standard

The TTCN-3 Core Language standard ([1]) and its Operational Semantics ([1]) give ambiguous
description for some language constructs. This section specifies our resolution for these ambiguities
that was followed during the implementation of our compiler and run-time environment.

3.1. Predefined Function Identifiers

The standard does not clarify the status of predefined function identifiers, that is, the names of
functions defined in Annex C of [1]. In our interpretation these words cannot be used to identify
userdefined TTCN3 entities because such a definition would hide the predefined function
completely. Thus our compiler treats these identifiers in the same way as the normal keywords of
the language. Therefore the inappropriate use of predefined functions, for example wrong number
of arguments, will result in syntax errors rather than semantic errors.

3.2. Meaning of any and all

The meaning of the keywords is only loosely defined in the standard. The resulting equivocality
concerns timer, port and component operations.

3.2.1. Timer and Port Operations

The meaning of keywords any and all in timer and port operations is unclear. These constructs
might be resolved statically at compilation time by applying the operation on all visible timers and
ports of the given scope unit. Our run-time environment, however, implements a dynamic
resolution, that is, it walks through the list of active timers and ports and applies the respective
operation. As a consequence of this, such operations are also applicable in scope units without
visible timers and ports, for example in functions without runs on clause. Because of the run-time
evaluation there is one limitation, which is verified by our semantic analyzer: the receiving port
operations, that is, receive, trigger, getcall, getreply, catch and check) that refer to any port cannot
have template parameter and value or param redirect. To avoid incompatibilities with future
versions it is not recommended to use any or all in timer and port operations.

3.2.2. Component Operations

The standard does not specify explicitly the behavior of the component operations that refer to all
component when only the MTC exists, that is, no PTC had been created during the testcase. In our
implementation both all component.running and all component.alive return true and the
operations all component.done and all component.killed succeed immediately in this situation.
Operations all component.stop and all component.kill do nothing; instead, a warning is issued. The
same rules are applied in single mode, when it is impossible to create PTCs, as well.

3.3. Response and Exception Handling Parts

The behavior of the response and exception handling part of a call operation is not clearly
specified in the standard. The allowed getreply and catch operations can handle only the possible
responses and exceptions of the previous signature call. In our implementation if any other event
arrives into the port queue during the execution of the response and exception handling part it
may block the execution forever. The runtime environment generates a dynamic test case error in
such a situation. If the test suite writer expects any other event on the same port during the
outstanding call, for example a simultaneous incoming call initiated by the other side, a non-
blocking call operation with the keyword nowait should be used. The response and the possible
incoming calls should be handled in a forthcoming regular alt construct using the appropriate
getreply and getcall operations.

3.4. Variable Lists in param Redirect

In the standard, it is not clear that the Variablelist notation in the param redirect of getcall and
getreply operations should refer to all parameters of the respective signature or to the relevant
parameters' only. Our compiler expects variable entries only for the relevant parameters and
ignores the irrelevant ones. This is because otherwise the test writer should use NotUsedSymbols for
all irrelevant parameters, which would be a redundant notation. For example, if a signature has
one in, one out and one inout parameter the compiler expects two variable entries in both getcall
and getreply operations.

3.5. References between Language Elements

The TTCN-3 standard does not specify clearly the permitted references between different kinds of
language elements. The following table shows our interpretation.

Table 1. References between TTCN-3 elements

Referred Literal value Constant External Module Template
element constant parameter
Referring

element

Constant Y Y* N N N
Array size Y Y N N N
Subtype Y Y N N N
constraint

Default value Y Y Y N N
of module

parameter

Referred Literal value Constant External Module Template
element constant parameter

Referring

element

Actual value of Y N N N N
module

parameter (in

configuration

file)

Default Y Y Y Y N
duration of
timer

Template (non- Y Y Y Y Y*
parameterized)

Legend:

* N Not allowed by the TTCN-3 language.
* Y Allowed and fully supported by the current version of this TTCN-3 tool.

* Y* Allowed and fully supported, but circular reference chains must be avoided.

» The above table implies that the value of all constants and the attributes of all
type constructs (type constraints, array sizes, etc.) shall be known at compilation
time.

* ASN.1 value assignments are treated as TTCN-3 constants.

* The value of constants shall refer only to built-in operators or additional
predefined functions.

NOTE * The body of non-parameterized templates and the default duration of timers
shall be known at test startup (load) time when all module parameters are
known.

* The actual parameters of templates or the actual duration of timers shall be
determined run-time because the actual value of variables may be referred.

* The rules for a language element do not depend on its scope unit. For example
the same rules apply on module, component and local (function, testcase,
altstep) constants.

3.6. Encoding Rules
The standard does not specify clearly some of the encoding rules.

» The encoding of fields in record, set and union types is supported.

* The order of attributes of the same type in a with statement is important. The second variant
might override the first, or an overriding attribute will override all the following attributes of

the same type.

* Encode attributes are an exception to this as they are not really attributes, but "contexts". It
cannot be determined to which encode "contexts" the variants of the same with statement
should belong if there are several. As having several encode "contexts" in the same with
statement would be a bad coding practice, a warning is generated and the last encode is used as
the statement’s encode "contexts".

* As encodes are contexts, an encode is only overridden if the overriding context is not the same.

* The order of attributes of different type in a with statement is not important, they do not affect
each other.

* In case of structured types, the encode context of the type is the encode context of its fields too,
if the fields do not override this attribute. The other attribute types are handled separately for
the structured type and its fields. Attributes inherited from higher level
(module/group/structured type) might change the encoding of a record and that of its fields.

 Attributes with qualifiers referring to the same field are handled as if they were separate with
statements. The same rules apply to them. For example, the last encode from the ones referring
to the same field is taken as the encoding context of the field.

 Attributes belonging to a field of a structured type or a type alias have the following overwriting
rules. A new variant attribute together with the directive override clears all current attributes
defined for the type of the field. A new variant attribute without the directive override
overwrites only the current variant attribute, all other attributes remain unchanged.

3.7. Address Type

The standard does not specify clearly the status of special TTCN-3 type address. Our implementation
is based on the rules below.

The test suite writer can assign the name address to a regular data type. There can be at most one
type named address in each TTCN-3 module. It is allowed that different modules of the test suite
assign the name address to different types.

The name address cannot be assigned to the following TTCN-3 types:

* port types
« component types"’

* signatures

the built-in type default™

Whenever the word address is used as a type, it is assumed to be a reference to the type named
address in the current module. The type named address cannot be imported into another TTCN-3
module, that is, it can be referenced using the name address only within its own module. If one
wants to use this type in other modules a regular alternate name must be assigned to it with type
aliasing.

Addressing the SUT in communication operations is allowed only if the address type is defined in
the same module as the corresponding port type. In addition, the port type must have a special

10

extension attribute to support address values (See section "Support of address type" in [16] for more
details).

Note that it is possible to use different address types on different ports in the same TTCN-3 module
if the respective port types are imported from different modules, but neither address type may be
referenced with name address by the importing module.

3.8. Importing import Statement from TTCN-3 Modules

See [18] standard for detailed description. Additional information for better understanding:

» Import (see following chapters of the [18] standard 8.2.3.1-8.2.3.6, and 8.2.5, only applies for
global definitions (see [18] table 8. in 8.2.3.1), therefore import functionality is not interfered by
import of import statement.

* Import statement can be imported by only import of import statement (chapter 8.2.5 and
8.2.3.7).

» Import statements are by default private, importing of import statement with public or friend
visibility is recursively resolved, and thus importing of importing of import statement is
possible.

» Importing of import statement - in case of friend visibility -recursive resolving is broken, if the
import chain has a member that is not friend of the exporting module.

* Importing of import statement circular import chain causes error.

» Example for friend type and importing of import statement

B.tten // friend template
friend module C, E;

friend template integer t B_i_fr := 0;

C.tten // public import and importing of import statement, friend of B
public import from B all;
public import from B {import all};

D.tten // public import and importing of import statement, NOT friend of B
public import from C all;
public import from C { import all };

E.tten // public import and importing of import statement, friend of B
public import from D { import all };
public import from D all;

testcase tc_B() runs on MTC {
var integer i:=valueof(t_B_i_fr); //Visible!
setverdict(pass);

}

11

3.9. Description of Behavior Types Syntax

TITAN supports the behaviour type package of the TTCN-3 standard, but with a different syntax. For
details of the behaviour types see [5].

Table 2. Behaviour types - refers shows the different syntax of the function behaviour type.
Standard (6.2.13.2 in [5]) Titan specific syntax

type function MyFunc3 (in integer p1) return var MyFunc3 myVar1 := refers(int2char);
charstring;

NOTE The functionality is same as in the standard, only the syntax is different.

The syntax of the apply operation is different, Table 3 Behaviour types - apply and derefers
Standard:

Table 3. Behaviour types - apply and derefers

Standard (6.2.13.2 in [5]) Titan specific syntax
type function MyFuncType (); v_func.apply(MyVar2)
type function t_functionstartTests(); vl_comp.start(derefers(vl_function2)());

3.10. Partially initialized structure values

According to the standard TTCN-3 variables and module parameters (of structured types) can be in
3 different states during their initialization:

* uninitialized (or unbound) - none of the value’s fields or elements has been initialized - values in
this state cannot be copied or used on the right hand side of an operation;

* partially initialized - some of the value’s fields or elements have been initialized, but not all of
them (or at least not enough to meet the minimum type restrictions) - these values can be
copied, but cannot be used on the right hand side of an operation;

* fully initialized (or bound) - all of the value’s fields or elements have been initialized - these
values are ready to be used on the right hand side of an operation.

The isbound operation should only return true if the value is in the 3rd (fully initialized) state.

This isn’t the case in the TITAN runtime. Values only have 2 states: bound and unbound, which is
what the isbound operation returns. This can be any combination of the previously mentioned 3
states, depending on the type:

* record/set: unbound = uninitialized, bound = at least partially initialized, meaning that a record
/ set is bound if at least one of its fields is bound'”;

* record of / set of: unbound = uninitialized, bound = at least partially initialized, meaning that
the record of is only unbound if it has never received an initial value (even initializing with {}
creates a bound record of / set of value);

12

* array: unbound = uninitialized or partially initialized, bound = fully initialized, meaning that
the array is only bound if all of its elements are bound;

* unions can’t be partially initialized, so TITAN stores their bound state correctly (although it’s still
possible to create union values, where the selected alternative is unbound, with the legacy
command line option -B; these values would be considered bound by TITAN).

There is a workaround in TITAN’s implementation of records / sets to allow the copying of partially
initialized values (union values with unbound selected alternatives can also be copied when the
compiler option -B is set). In all other cases the user is responsible for making sure the value is
usable on the right hand side of an operation. The isbound function is usually not enough to ensure,
that the value is usable.

3.11. Concatenation of templates

TITAN supports the concatenation of templates and template variables of string types (bitstring,
hexstring, octetstring, charstring, universal charstring) and list types (record of, set of) with the
following limitations:
» templates can only be concatenated in the Function Test runtime;
* valid concatenation operands (for binary string and list types):
o specific values (i.e. literal values),
o any value ("?"") with no length restriction or with a fixed" length restriction,
o any value or none ("*") with a fixed length restriction,
o references to constants, templates, variables, or template variables;

» operands of charstring and universal charstring template concatenation cannot contain
matching mechanisms (not even patterns), only specific values and references;

* reference operands of binary string (bitstring, hexstring, octetstring) template concatenation
can also refer to binary string templates with wildcards in addition to the template types listed
as valid operands (these cannot be used in template concatenations directly, because of parser
limitations);

* similarly, reference operands of record of or set of template concatenation can also refer to
template lists containing matching mechanisms (but these cannot appear in template
concatenations directly due to parser limitations);

* the first operand of a record of or set of template concatenation can only be a reference
(because of parser limitations);

* template module parameters cannot be concatenated in the configuration file.

3.12. The predefined function replace

In TITAN the predefined function replace cannot be used on arrays.

If the fourth parameter of replace is an empty string or sequence, then it acts as a delete function
(the specified substring or subsequence is simply removed from the input value and nothing is

13

inserted in its stead).

Example:

type record of integer IntList;

var IntList vi_myList := {1, 2, 3 };

var IntList vl_emptylList := {};

replace(vl_myList, 1, 2, vl_emptylList); // returns { 1 }
replace("abcdef", 2, 1, ""); // returns "abdef"
replace('12FFF'H, 3, 2, "'H); // returns '12F'H

3.13. The execution of an altstep

Whenever an altstep is called, either from an alt statement or through an activated default, both
the local definitions and the alt-branches in the altstep body are executed. The local definitions
are allocated and initialized every time the altstep begins execution, and they are destroyed every
time execution of the altstep ends, regardless of whether any of the alt-branches was chosen.

Example:

type component CT {
var integer counter := 0;
timer tmr;

}

function f() runs on CT return integer {
counter := counter + 1;
return counter;

}

altstep as() runs on CT {

var integer local := f();

[] tmr.timeout { log(counter); }
+

testcase tc() runs on CT {
tmr.start(2.0);
alt {
[1 as();
}
}

In the above example altstep as is executed twice. Once, after the first snapshot is taken in the alt
statement in testcase tc (when the timer has not timed out yet), and once, when the second
snapshot is taken (when the timer has timed out). In both cases the local definition in the altstep is
initialized, calling function f. The value of component variable counter at the time it is logged is 2.

14

3.14. ASN.1 extension additions

Extension addition fields in ASN.1 SEQUENCE and SET types are treated as optional fields, after they
are imported into TTCN-3. The ASN.1-based codecs, BER and OER, still treat these fields as they are
declared in ASN.1.

[4] Relevant parameters are the in and inout parameters in case of getcall operation as well as out and inout ones in case of
getreply.

[5] If component types were allowed for addressing the compiler would not be able to decide whether a component reference in
the to or from clause of a communication operation denotes a test component, which is reachable through a port connection or an
address inside the SUT, which is reachable through a port mapping.

[6] The values of type default (i.e. the TTCN-3 default references) cannot be passed outside the test component by any means.
[7] The bound state of fields or elements is also determined by using the ishound operation on the field or element.

[8] In this case a range length restriction, whose upper and lower bounds are equal, is also considered as a “fixed' length
restrictione.g.: ? length(2..2) is a valid operand, but ? length(2..3) is not

15

Chapter 4. TTCN-3 Language Extensions

The Test Executor supports the following non-standard additions to TTCN-3 Core Language in order
to improve its usability or provide backward compatibility with older versions.

4.1. Syntax Extensions

The compiler does not report an error or warning if the semi-colon is missing at the end of a TTCN-
3 definition although the definition does not end with a closing bracket.

The statement block is optional after the guard operations of altsteps, alt and interleave
constructs and in the response and exception handling part of call statements. A missing statement
block has the same meaning as an empty statement block. If the statement block is omitted, a
terminating semi-colon must be present after the guard statement.

The standard escape sequences of C/C++ programming languages are recognized and accepted in
TTCN-3 character string values, that is, in literal values of charstring and universal charstring
types, as well as in the arguments of built-in operations log() and action().

As a consequence of the extended escape sequences and in contrast with the TTCN-3
NOTE standard, the backslash character itself has to be always duplicated within
character string values.

The following table summarizes all supported escape sequences of TTCN-3 character string values:

Table 4. Character string escape sequences

Escape sequence Character code (decimal) Meaning
7 bell
8 backspace
12 new page
10 line feed
13 carriage return
9 horizontal tabulator
11 vertical tabulator
\ 92 backslash
" 34 quotation mark
' 39 apostrophe
? 63 question mark
<newline> nothing line continuation
NNN octal notation (NNN is the
character code in at most 3
octal digits)

16

Escape sequence Character code (decimal) Meaning

NN hexadecimal notation (NN is the
character code in at most 2
hexadecimal digits)

34 quotation mark (standard
notation of TTCN-3)

Only the standardized escape sequences are recognized in matching patterns of
NOTE character string templates because they have special meaning there. For example,
inside string patterns \n denotes a set of characters rather than a single character.

Although the standard requires that characters of TTCN-3 charstring values must be between 0 and
127, TITAN allows characters between 0 and 255. The printable representation of characters with
code 128 to 255 is undefined.

The compiler implements an ASN.1-like scoping for TTCN-3 enumerated types, which means it
allows the re-use of the enumerated values as identifiers of other definitions. The enumerated
values are recognized only in contexts where enumerated values are expected; otherwise the
identifiers are treated as simple references. However, using identifiers this way may cause
misleading error messages and complicated debugging.

The compiler allows the local definitions (constants, variables, timers) to be placed in the middle of
statement blocks, that is, after other behavior statements. The scope of such definitions extends
from the statement following the definition to the end of the statement block. Forward-referencing
of local definitions and jumping forward across them using goto statements are not allowed.

The compiler accepts in-line compound values in the operands of TTCN-3 expressions although the
BNF of the standard allows only single values. The only meaningful use of the compound operands
is with the comparison operators, that is, == and !=. Two in-line compound values cannot be
compared with each other because their types are unknown; at least one operand of the
comparison must be a referenced value. This feature has a limitation: In the places where in-line
compound templates are otherwise accepted by the syntax (e.g. in the right-hand side of a variable
assignment or in the actual parameter of a function call) the referenced value shall be used as the
left operand of the comparison. Otherwise the parser gets confused when seeing the comparison
operator after the compound value.

Examples:

17

// invalid since neither of the operands is of known type

if({1,2}={2,1}H{}

// both are valid
while (v_myRecord == { 1, omit }) { }
if ({ f1 :=1, f2 := omit } = v_mySet) {}

// rejected because cannot be parsed
v_myBooleanFlag := { 1, 2, 3 } == v_myRecordOf;
f_myFunctionTakingBoolean({ 1, 2, 3 } != v_mySetOf);
// in reverse order these are allowed

v_myBooleanFlag := v_myRecordOf == { 1, 2, 3 };
f_myFunctionTakingBoolean(v_mySetOf != { 1, 2, 3 });

4.2. Visibility Modifiers

TITAN defines 3 visibility modifiers for module level definitions, and component member
definitions: public, private, friend (8.2.5 in [1]).

On module level definitions they mean the following:

* The public modifier means that the definition is visible in every module importing its module.
* The private modifier means that the definition is only visible within the same module.

» The friend modifier means that the definition is only visible within modules that the actual
module declared as a friend module.

If no visibility modifier is provided, the default is the public modifier.
In component member definitions they mean the followings:

* The public modifier means that any function/testcase/altstep running on that component can
access the member definition directly.

* The private modifier means that only those functions/testcases/altsteps can access the definition
which runs on the component type directly. If they run on a component type extending the one
containing the definition, it will not be directly visible.

The friend modifier is not available within component types.

Example:

18

module modulel

{

import from module2 all;
import from module3 all;
import from module4 all;

const
const
const
const

const
const
const
const

module2Type akarmil := 1; //0K, type is implicitly public

module2TypePublic akarmi2 := 2; //0K, type is explicitly public
module2TypeFriend akarmi3 := 3; //0K, modulel is friend of module2
module2TypePrivate akarmi4 := 4; //NOK, module2TypePrivate is private to module2

module3Type akarmi5 := 5; //0K, type is implicitly public

module3TypePublic akarmi6 := 6; //0K, type is explicitly public
module3TypeFriend akarmi7 := 7; //NOK, modulel is NOT a friend of module3
module3TypePrivate akarmi8 := 8; //NOK, module2TypePrivate is private to module2

type component User_CT extends Lib4_CT {};

function f_set3_Lib4 _1() runs on User CT { v_Lib4_ 1 :
function f_set3 Lib4 2() runs on User CT { v_Lib4 2 :
function f_set3 Lib4 3() runs on User CT { v_Lib4 3 :

}

0} //0K
0} //0K
@ } //NOK, v_Lib4_3 is private

module module2

{

friend module moduleil;

type integer module2Type;

public type integer module2TypePublic;
friend type integer module2TypeFriend;
private type integer module2TypePrivate;
} // end of module

module module3

{

type integer module3Type;

public type integer module3TypePublic;
friend type integer module3TypeFriend;
private type integer module3TypePrivate;
} // end of module

module moduled {

type component Lib4_CT {

var integer v_Lib4_1;

public var integer v_Lib4_2;
private var integer v_Lib4_3;

}

19

4.3. The anytype

The special TTCN-3 type anytype is defined as shorthand for the union of all known data types and
the address type (if defined) in a TTCN-3 module. This would result in a large amount of code
having to be generated for the anytype, even if it is not actually used. For performance reasons,
Titan only generates this code if a variable of anytype is declared or used, and does not create fields
in the anytype for all data types. Instead, the user has to specify which types are needed as anytype
fields with an extension attribute at module scope.

Examples:

20

module elsewhere {
type float money;
type charstring greeting;
}
module local {
import from elsewhere all;
type integer money;
type record MyRec {
integer 1,
float f
¥

control {
var anytype v_any,
v_any.integer := 3;
// ischosen(v_any.integer) == true

v_any.charstring := "three";
// ischosen(v_any.charstring) == true

v_any.greeting := "hello";
// ischosen(v_any.charstring) == false
// ischosen(v_any.greeting) == true

v_any.MyRec := { i := 42, f := 0.5}
// ischosen(v_any.MyRec) == true

v_any.integer := v_any.MyRec.i - 2;

// back to ischosen(v_any.integer) == true v_any.money := 0;
// local money i.e. integer

// not elsewhere.money (float)

// ischosen(v_any.integer) == false

// ischosen(v_any.money) == true

// error: no such field (not added explicitly)
// v_any.float := 3.1;

// error: v_any.elsewhere.money
}
}

with {

extension "anytype integer, charstring" // adds two fields
extension "anytype MyRec" // adds a third field

extension "anytype money" // adds the local money type
//not allowed: extension "anytype elsewhere.money"
extension "anytype greeting" // adds the imported type}

non

In the above example, the anytype behaves as a union with five fields named "integer", "charstring",

21

"MyRec", "money" and "greeting". The anytype extension attributes are cumulative; the effect is the
same as if a single extension attribute contained all five types.

NOTE Field "greeting" of type charstring is distinct from the field "charstring" even though
they have the same type (same for "integer" and "money").

Types imported from another module (elsewhere) can be added to the anytype of the importing
module (local) if the type can be accessed with its unqualified name, which requires that it does not
clash with any local type. In the example, the imported type "greeting" can be added to the anytype
of module local, but "money" (a float) clashes with the local type "money" (an integer). To use the
imported "money", it has to be qualified with its module name, for example a variable of type
elsewhere.money can be declared, but elsewhere.money can not be used as an anytype field.

4.4. Ports and Test Configurations

If all instances of a TTCN-3 port type are intended to be used for internal communication only
(i.e. between two TTCN-3 test components) the generation and linking of an empty Test Port
skeleton can be avoided. If the attribute with { extension "internal" }is appended to the port type
definition, all C++ code that is needed for this port will be included in the output modules.[9]

If the user wants to use address values in to and from clause and sender redirect of TTCN-3 port
operations the with { extension "address" } attribute shall be used in the corresponding port type
definition(s) to generate proper C++ code.

When address is used in port operations the corresponding port must have an
active mapping to a port of the test system interface, otherwise the operation will

NOTE fail at runtime. Using of address values in to and from clauses implicitly means
system as component reference. (See section "Support of address type" in [16] for
more details).[10]

Unlike the latest TTCN-3 standard, our run time environment allows to connect a TTCN-3 port to
more than one ports of the same remote test component. When these connections persist (usually
in transient states), only receiving is allowed from that remote test component, because the
destination cannot be specified unambiguously in the to clause of the send operation. Similarly, it is
allowed to map a TTCN-3 port to more than one ports of the system, although it is not possible to
send messages to the SUT.

4.5. Parameters of create Operation

The built-in TTCN-3 create operation can take a second, optional argument in the parentheses. The
first argument, which is the part of the standard, can assign a name to the newly created test
component. The optional, non-standard second argument specifies the location of the component.
Also the second argument is a value or expression of type charstring.

According to the standard the component name is a user-defined attribute for a test component,
which can be an arbitrary string value containing any kind of characters including whitespace. It is
not necessary to assign a unique name for each test component; several active test components can

22

have the same name at the same time. The component name is not an identifier; it cannot be used
to address test components in configuration operations as component references can. The name
can be assigned only at component creation and it cannot be changed later.

Component name is useful for the following purposes:

* it appears in the printout when logging the corresponding component reference;
* it can be incorporated in the name of the log file (see the metacharacter %n);

* it can be used to identify the test component in the configuration file (when specifying test port
parameters (see section [LOGGING]), component location constraints (see section [COMPONENTS]
(Parallel mode)) and logging options (see sections FileMask and ConsoleMask).

Specifying the component location is useful when performing distributed test execution. The value
used as location must be a host name, a fully qualified domain name, an IP address or the name of
a host group defined in the configuration file (see section [GROUPS] (Parallel mode)). The explicit
specification of the location overrides the location constraints given in the configuration file (see
section [COMPONENTS] (Parallel mode) for detailed description). If no suitable and available host is
found the create operation fails with a dynamic test case error.

If only the component name is to be specified, the second argument may be omitted. If only the
component location is specified a NotUsedSymbol shall be given in the place of the component name.

Examples:

//create operation without arguments
var MyCompType v_myCompRef := MyCompType.create;

// component name is assigned
v_myCompRef := MyCompType.create("myCompName");

// component name is calculated dynamically
v_myCompArray[i] := MyCompType.create("myName" & int2str(i));

// both name and location are specified (non-standard notation)
v_myCompRef := MyCompType.create("myName", "heintel");

// only the location is specified (non-standard notation)
v_myCompRef := MyCompType.create(-, "159.107.198.97") alive;

4.6. Altsteps and Defaults

According to the TTCN-3 standard an altstep can be activated as default only if all of its value
parameters are in parameters. However, our compiler and run-time environment allows the
activation of altsteps with out or inout value or template parameters as well. In this case the actual
parameters of the activated default shall be the references of variables or template variables that
are defined in the respective component type. This restriction is in accordance with the rules of the
standard about timer parameters of activated defaults.

23

Passing local variables or timers to defaults is forbidden because the lifespan of
local definitions might be shorter than the default itself, which might lead to
unpredictable behavior if the default is called after leaving the statement block that
the local variable is defined in. Since ports can be defined only in component types,
there is no restriction about the port parameters of altsteps. These restrictions are
not applicable to direct invocations of altsteps (e.g. in alt constructs).

NOTE

The compiler allows using a statement block after altstep instances within alt statements. The
statement block is executed if the corresponding altstep instance was chosen during the evaluation
of the alt statement and the altstep has finished without reaching a repeat or stop statement. This
language feature makes the conversion of TTCN-2 test suites easier.

NOTE This construct is valid according to the TTCN-3 BNF syntax, but its semantics are not
mentioned anywhere in the standard text.

The compiler accepts altsteps containing only an [else] branch. This is not allowed by the BNF as

every altstep must have at least one regular branch (which can be either a guard statement or an

altstep instance). This construct is practically useful if the corresponding altstep is instantiated as

the last branch of the alternative.

4.7. Interleave Statements

The compiler realizes TTCN-3 interleave statements using a different approach than it is described
in section 7.5 of [1]. The externally visible behavior of the generated code is equivalent to that of the
canonical mapping, but our algorithm has the following advantages:

* Loop constructs for, while and do-while loops are accepted and supported without any
restriction in interleave statements. The transformation of statements is done in a lower level
than the TTCN-3 language, which does not restrict the embedded loops.

» Statements activate, deactivate and stop can also be used within interleave. The execution of
these statements is atomic so we did not see the reason why the standard forbids them.

* The size of our generated code is linear in contrast to the exponential code growth of the
canonical algorithm. In other words, the C++ equivalent of every embedded statement appears
exactly once in the output.

* The run-time realization does not require any extra operating system resources, such as multi-
threading.

4.8. Logging Disambiguation

The TTCN-3 log statement provides the means to write logging information to a file or display on
console (standard error). Options FileMask and ConsoleMask determine which events will appear in
the file and on the console, respectively. The generated logging messages are of type
USER_UNQUALIFIED.

The log statement accepts among others fixed character strings TTCN-3 constants, variables, timers,
functions, templates and expressions; for a complete list please refer to the table 18 in [1]. It is

24

allowed to pass multiple arguments to a single log statement, separated by commas.

The TTCN-3 standard does not specify how logging information should be presented. The following
sections describe how TITAN implemented logging.

The arguments of the TTCN-3 statement action are handled according to the same rules as log.

4.8.1. Literal Free Text String

Strings entered between quotation marks (") [11] and the results of special macros given in section
TTCN-3 Macros in the argument of the log statement are verbatim copied to the log. The escape
sequences given in Table 4 are interpreted and the resulting non-printable characters (such as
newlines, tabulators, etc.) will influence the printout.

Example:
log("foo");//The log printout will look like this:

12:34:56.123456 foo
bar

4.8.2. TTCN-3 Values and Templates

Literal values, referenced values or templates, wildcards, compound values, in-line (modified)
templates, etc. (as long as the type of the expression is unambiguous) are discussed in this section.

These values are printed into the log using TTCN-3 Core Language syntax so that the printout can be
simply copied into a TTCN-3 module to initialize an appropriate constant/variable/template, etc.

nn

In case of (universal) charstring values the delimiter quotation marks ("") are printed and the
embedded non-printable characters are substituted with the escape sequences in the first 9 rows of
Table 4. All other non-printable characters are displayed in the TTCN-3 quadruple notation.

If the argument refers to a constant of type charstring, the actual value is not substituted to yield a
literal string.

Example:

const charstring c_string := "foo\000";
log(c_string);

//The log printout will look like this:
12:34:56.123456 "foo" & char(@, @, 0, 0)

4.8.3. Built-in Function match()

For the built-in match() function the printout will contain the detailed matching process field-by-
field (similarly to the failed receive statements) instead of the Boolean result.

This rule is applied only if the match() " operation is the top-level expression to be logged, see the

25

example below:

// this will print the detailed matching process
log(match(v_myvalue, t_template));

// this will print only a Boolean value (true or false)
log(not not match(v_myvalue, t_template));

All the other predefined and user-defined functions with actual arguments will print the return
value of the function into the log according to the TTCN-3 standard.

4.8.4. Special TTCN-3 Objects

If the argument refers to a TTCN-3 port, timer or array (slice) of the above, then the actual
properties of the TTCN-3 object is printed into the log.

For ports the name and the state of the port is printed.

In case of timers the name of the timer, the default duration, the current state (inactive, started or
expired), the actual duration and the elapsed time (if applicable) is printed in a structured form.

4.9. Value Returning done

The compiler allows starting TTCN-3 functions having return type on PTCs. Those functions must
have the appropriate runs on clause. If such a function terminates normally on the PTC, the
returned value can be matched and retrieved in a done operation.

According to the TTCN-3 standard, the value redirect in a done operation can only be used to store
the local verdict on the PTC that executed the behavior function. In TITAN the value redirect can
also be used to store the behavior function’s return value with the help of an optional template
argument.

If this template argument is present, then the compiler treats it as a value returning done
operation, otherwise it is treated as a verdict returning done.

The following rules apply to the optional template argument and the value redirect:

* The syntax of the template and value redirect is identical with that of the receive operation.

 If the template is present, then the type of the template and the variable used in the value
redirect shall be identical. If the template is not present, then the type of the value redirect must
be verdicttype.

* In case of a value returning done the return type shall be a TTCN-3 type marked with the
following attribute: with { extension "done" }. It is allowed to mark and use several types in
done statements within one test suite. If the type to be used is defined in ASN.1 then a type alias
shall be added to one of the TTCN-3 modules with the above attribute.

* In case of a value returning done the type of the template or variable must be visible from the
module where the done statement is used.

* Only those done statements can have a template or a value redirect that refer to a specific PTC

26

component reference. That is, it is not allowed to use this construct with any component.done or
all component.done.

A value returning done statement is successful if all the conditions below are fulfilled:

* The corresponding PTC has terminated.

The function that was started on the PTC has terminated normally. That is, the PTC was stopped
neither by itself nor by other component and no dynamic test case error occurred.

* The return type of the function that was started on the PTC is identical to the type of the
template used in the done statement.

* The value returned by the function on the PTC matches the given template.
If the done operation was successful and the value redirect is present the value returned by the PTC

(if there was a matching template), or the local verdict on the PTC (if there was no matching
template) is stored in the given variable or variable field.

The returned value can be retrieved from alive PTCs, too. In this case the done operation always
refers to the return value of the lastly started behavior function of the PTC. Starting a new function
on the PTC discards the return value of the previous function automatically (i.e.it cannot be
retrieved or matched after the start component operation anymore).

Example:

27

type integer MyReturnType with { extension "done" };

function ptcBehavior() runs on MyCompType return MyReturnType
{

setverdict(inconc);
return 123;

}

// value returning 'done’
testcase myTestCase() runs on AnotherCompType

{
var MyReturnType myVar;

var MyCompType ptc := MyCompType.create;
ptc.start(ptcBehavior());
ptc.done(MyReturnType : ?) -> value myVar;
// myVar will contain 123

by

// verdict returning 'done'
testcase myTestCase2() runs on AnotherCompType

{

var verdicttype myVar;

var MyCompType ptc := MyCompType.create;
ptc.start(pteBehavior());

ptc.done -> value myVar;

// myVar will contain inconc

4.10. Dynamic Templates

Dynamic templates (template variables, functions returning templates and passing template
variables by reference) are now parts of the TTCN-3 Core Language standard ([1]). These constructs
have been added to the standard with the same syntax and semantics as they were supported in
this Test Executor. Thus dynamic templates are not considered language extensions anymore.

However, there is one extension compared to the supported version of Core Language. Unlike the
standard, the compiler and the run-time environment allow the external functions to return
templates.

Example:

// this is not valid according to the standard
external function MyExtFunction() return template octetstring;

4.11. Template Module Parameters

The compiler accepts template module parameters by inserting an optional "template" keyword

28

into the standard modulepar syntax construct between the modulepar keyword and the type
reference. The extended BNF rule:

ModuleParDef ::= "modulepar" (ModulePar | ("{"MultiTypedModuleParList "}"))ModulePar
::= ["template"] Type ModuleParlList

Example:

modulepar template charstring mp_tstr1 := ("a" .. "f") ifpresent
modulepar template integer mp_tint := complement (1,2,3)

4.12. Predefined Functions

The built-in predefined functions ispresent, ischosen, lengthof and sizeof are applicable not only to
value-like language elements (constants, variables, etc.), but template-like entities (templates,
template variables, template parameters) as well. If the function is allowed to be called on a value
of a given type it is also allowed to be called on a template of that type with the meaning described
in the following subchapters.

"dynamic test case error" does not necessarily denote here an error situation: it may

NOTE
well be a regular outcome of the function.

4.12.1. sizeof

The function sizeof is applicable to templates of record, set, record of, set of and objid types. The
function is applicable only if the sizeof function gives the same result on all values that match the
template.[12] In case of record of and set of types the length restrictions are also considered.
Dynamic test case error occurs if the template can match values with different sizes or the length
restriction contradicts the number of elements in the template body.

Examples:

29

type record of integer R;
type set S { integer f1, bitstring f2 optional, charstring f3 optional }
template R tr_1 := { 1, permutation(2, 3), ? }

template R tr_2 := {1, *, (2, 3) }

template R tr_ 3 := { 1, * 10 } length(5)

template R tr 4 := { 1, 2 * } length(1..2)

template S tr_5 := { f1 := (0 .99), 2 := omit, f3 := 7?7 }
template S tr_6 := { f3 := f1 := 1, f2 := '00'B ifpresent }
template S tr_7 := ({ f1 := 1, f2 := omit, f3 := "ABC" },

{ f1:= 2, f3 := omit, f2 := "1'B })
template S tr_8 := 7

//sizeof(tr_1) » 4
//sizeof(tr_2) » error
//sizeof(tr_3) » 5
//sizeof(tr_4) » error
//sizeof(tr_5) » 2
//sizeof(tr_6) » error
//sizeof(tr_7) » 2
//sizeof(tr_8) » error

4.12.2. ispresent

The predefined function ispresent has been extended; its parameter can now be any valid
TemplateInstance. It is working according to the following ETSI CRs: http://forge.etsi.org/mantis/
view.php?id=5934 and http://forge.etsi.org/mantis/view.php?id=5936.

4.12.3. oct2unichar

The function oct2unichar (in octetstring invalue, in charstring string_encoding := "UTF-8")
return universal charstring converts an octetstring invalue to a universal charstring by use of the
given string_encoding. The octets are interpreted as mandated by the standardized mapping
associated with the given string_encoding and the resulting characters are appended to the
returned value. If the optional string_encoding parameter is omitted, the default value "UTF-8".

The following values are allowed as string_encoding actual parameters: UTF8, UTF-16, UTF-16BE, UTF-
16LE, UTF-32, UTF-32BE, UTF-32LE.

DTE occurs if the invalue does not conform to UTF standards. The oct2unichar checks if the Byte
Order Mark (BOM) is present. If not a warning will be appended to the log file. oct2unichar will
decode the invalue even in absence of the BOM.

Any code unit greater than Ox10FFFF is ill-formed.
UTF-32 code units in the range of 0x0000D800 - 0xO000DFFF are ill-formed.
UTF-16 code units in the range of 0xD800 - 0XDFFF are ill-formed.

UTF-8 code units in the range of 0xD800 - OxDFFF are ill-formed.

30

http://forge.etsi.org/mantis/view.php?id=5934
http://forge.etsi.org/mantis/view.php?id=5934
http://forge.etsi.org/mantis/view.php?id=5936

Example:

oct2unichar (' C384€396C39CC3A4C3B6C3BC'0)="A00460";oct2unichar('00C400D600DCOAELQ0F6A0F
C'0,"UTF-16LE") = "AOUs60";

4.12.4. unichar2oct

The function unichar2oct (in universal charstring invalue, in charstring string_encoding :=
"UTF-8") return octetstring converts a universal charstring invalue to an octetstring. Each octet of
the octetstring will contain the octets mandated by mapping the characters of invalue using the
standardized mapping associated with the given string_encoding in the same order as the
characters appear in inpar. If the optional string_encoding parameter is omitted, the default
encoding is "UTF-8".

The following values are allowed as string_encoding actual parameters: UTF-8, UTF-8 BOM, UTF-16,
UTF-16BE, UTF-16LE, UTF-32, UTF-32BE, UTF-32LE.

The function unichar2oct adds the Byte Order Mark (BOM) to the beginning of the octetstring in
case of UTF-16 and UTF-32 encodings. The remove_bom function helps to remove it, if it is not needed.
The presence of the BOM is expected at the inverse function oct2unichar because the coding type
(without the BOM) can be detected only in case of UTF-8 encoded octetstring. By default UTF-8
encoding does not add the BOM to the octetstring, however UTF-8 BOM encoding can be used to add
it.

DTE occurs if the invalue does not conform to UTF standards.
Any code unit greater than 0x10FFFF is ill-formed.

Example:

unichar2oct("AOUA6G") = "EFBBBF(C384C396C39CC3A4C3B6C3BC'0;
unichar2oct("AOU&60", "UTF-16LE") = 'FFFEQ@C400D60QDCOAE4QQF600FC'O;

4.12.5. get_stringencoding

The function get_stringencoding (in octetstring encoded_value) return charstring identifies the
encoding of the encoded_value. The following return values are allowed as charstring: ASCII, UTF-8,
UTF-16BE, UTF-16LE, UTF-32BE, UTF-32LE.

If the type of encoding could not been identified, it returns the value: <unknown>

Example:

var octetstring invalue := "EFBBBF(384C396(C39CC3A4C3B6(C3BC'0;
var charstring codingtype := get_stringencoding(invalue);
the resulting codingtype is "UTF-8"

31

4.12.6. remove_bom

The function remove_bom (in octetstring encoded_value) return octetstring strips the BOM if it is
present and returns the original octetstring otherwise.

Example:

var octetstring invalue := 'EFBBBF(384(396C39CC3A4C3B6(C3BC'0;
var octetstring nobom := remove_bom(invalue);
the resulting nobom contains: 'C384(396C39CC3A4(C3B6C3BC'0;

4.13. Additional Predefined Functions

In addition to standardized TTCN-3 predefined functions given in Annex C of [1] and Annex B of [3]
the following built-in conversion functions are supported by our compiler and run-time
environment:

4.13.1. str2bit

The function str2bit (charstring value) return bitstring converts a charstring value to a
bitstring, where each character represents the value of one bit in the resulting bitstring. Its
argument may contain the characters "0" or "1" only, otherwise the result is a dynamic test case
error.

NOTE This function is the reverse of the standardized bit2str.

Example:

str2bit ("1011011100") = '1011011100'B

4.13.2. str2hex

The function str2hex (charstring value) return hexstring converts a charstring value to a
hexstring, where each character in the character string represents the value of one hexadecimal
digit in the resulting hexstring. The incoming character string may contain any number of
characters. A dynamic test case error occurs if one or more characters of the charstring are outside
the ranges "0" .. "9", "A" .. "F" and "a" .. "f".

NOTE This function is the reverse of the standardized hex2str.

Example:

str2hex ("1D7") = '1D7'H

32

4.13.3. float2str

The function float2str (float value) return charstring converts a float value to a charstring. If
the input is zero or its absolute value is between 10™* and 10", the decimal dot notation is used in
the output with 6 digits in the fraction part. Otherwise the exponential notation is used with
automatic (at most 6) digits precision in the mantissa.

Example:

float2str (3.14) = "3.140000"

4.13.4. unichar2char

The function unichar2char (universal charstring value) return charstring converts a’ universal
charstring” value to a charstring. The elements of the input string are converted one by one. The
function only converts universal characters when the conversion result lies between 0 end 127
(that is, the result is an ISO 646 character).

The inverse conversion is implicit, that is, the charstring values are converted to
NOTE universal charstring values automatically, without the need for a conversion
function.

Example:

unichar2char(char(0,0,0,64)) = "@"

4.13.5. log2str
The function log2str can be used to log into charstring instead of the log file.

Syntax:

log2str (-++) return charstring

This function can be parameterized in the same way as the log function, it returns a charstring
value which contains the log string for all the provided parameters, but it does not contain the
timestamp, severity and call stack information, thus the output does not depend on the runtime
configuration file. The parameters are interpreted the same way as they are in the log function:
their string values are identical to what the log statement writes to the log file. The extra
information (timestamp, severity, call stack) not included in the output can be obtained by writing
external functions which use the runtime’s Logger class to obtain the required data.

4.13.6. testcasename

The function testcasename returns the unqualified name of the actually executing test case. When it
is called from the control part and no test case is being executed, it returns the empty string.

33

Syntax:

testcasename () return charstring

4.13.7. isbound

The function isbound behaves identically to the isvalue function with the following exception: it
returns true for a record-of value which contains both initialized and uninitialized elements.

type record of integer rint;

var rint r_u; // uninitialized

isvalue(r_u); // returns false

isbound(r_u); // returns false also

//lengthof(r_u) would cause a dynamic testcase error

var rint r_@ := {} // zero length
isvalue(r_3); // returns true
isbound(r_3); // returns true
lengthof(r_3); // returns @

var rint r_3 := {0, -, 2} // has a "hole"
isvalue(r_3); // returns false
isbound(r_3); // returns true
lengthof(r_3); // returns 3

var rint r_3full := {0, 1, 2 }
isvalue(r_3full); // returns true

isbound(r_3full); // returns true
lengthof(r_3full); // returns 3

The introduction of isbound permits TTCN-3 code to distinguish between r_u and r_3; isvalue alone
cannot do this (it returns false for both).

Syntax:

isbound (in template any_type i) return boolean;

4.13.8. ttcn2string

Syntax:
tten2string(in <TemplateInstance> ti) return charstring

This predefined function returns its parameter’s value in a string which is in TTCN-3 syntax. The
returned string has legal ttcn-3 with a few exceptions such as unbound values. Unbound values are

34

returned as "-", which can be used only as fields of assignment or value list notations, but not as top
level assignments (e.g. x:=- is illegal). Differences between the output format of ttcn2string() and
log2str():

Value/template log2str() tten2string()
Unbound value "<unbound>"
Uninitialized template "<uninitialized template>"
Enumerated value name (number) name

4.13.9. string2ttcn

Syntax:
string2tten(in charstring tten_str, inout <reference> ref)

This predefined function does not have a return value, thus it is a statement. Any error in the input
string will cause an exception that can be caught using @try - @catch blocks. The message string of
the exception contains the exact cause of the error. There might be syntax and semantic errors.
This function uses the module parameter parser of the TITAN runtime, it accepts the same syntax as
the module parameters of the configuration file. Check the documentation chapters for the module
parameters section. There are differences between the ttcn-3 syntax and the configuration file
module parameters syntax, these are described in the documentation chapter of the module
parameters. The second parameter must be a reference to a value or template variable.

Example code:

type record MyRecord { integer a, boolean b }

var template MyRecord my_rec
otry {
string2tten("complement ({1,7},{(1,2,3),false}) ifpresent", my_rec)
log(my_rec)
}
@catch (err_str) {
log("string2tten() failed: ", err_str)
}

The log output will look like this:
complement ({ @ :=1, b :=?7}, {a:=(1, 2, 3), b := false }) ifpresent

4.13.10. encode_baseb4

Syntax:

35

encode_baseb64(in octetstring ostr, in boolean
use_linebreaks := false) return charstring

The function encode_base64 (in octetstring ostr, in boolean use_linebreaks := false) return
charstring ‘converts an octetstring ‘ostr to a charstring. The charstring will contain the Base64
representation of ostr. The use_linebreaks parameter adds newlines after every 76 output
characters, according to the MIME specs, if it is omitted, the default value is false.

Example:

encode_baseb4('42617365363420656E636F64696E6720736368656D65'0) ==
"QmFzZTYOIGVuY29kaW5nIHNjaGVtZQ=="

4.13.11. decode_baseb4

Syntax:

decode_baseb4(in charstring str) return octetstring

The function decode_base64 (in charstring str) return octetstring converts a charstring str
encoded in Base64 to an octetstring. The octetstring will contain the decoded Base64 string of str.

Example:

decode_base64("QmFzZTYOIGVuY29kaW5nIHNjaGVtZQ==") ==
'42617365363420656E636F64696E6720736368656D65'0

4.13.12. json2cbor

Syntax:

json2cbor (in universal charstring us) return octetstring

The function json2cbor(in universal charstring us) return octetstring converts a TITAN encoded
json document into the binary representation of that json document using a binary coding called
CBOR. The encoding follows the recommendations written in the CBOR standard [22] section 4.2.

Example:

json2cbor ("{"a":1,"b":2}") == "A2616101616202'0

36

4.13.13. cbor2json

Syntax:

cbor2json(in octetstring os) return universal charstring

The function cbor2json(in octetstring os) return universal charstring converts a CBOR encoded
bytestream into a json document which can be decoded using the built in JSON decoder. The
decoding follows the recommendations written in the CBOR standard [22] section 4.1 except that
the indefinite-length items are not made definite before conversion and the decoding of indefinite-
length items is not supported.

Example:

cbor2json('A2616101616202'0) == "{"a":1,"b":2}"

4.13.14. json2bson

Syntax:

json2bson(in universal charstring us) return octetstring

The function json2bson(in universal charstring us) return octetstring converts a TITAN encoded
json document into the binary representation of that json document using a binary coding called
BSON. Only top level json objects and arrays can be encoded. (Note that an encoded top level json
array will be decoded as a json object) The encoding follows the rules written in the BSON standard
[23]. The encoding handles the extension rules written in the MongoDB Extended JSON document
[24]. The encoding of 128-bit float values is not supported.

Example:

json2bson("{"a":1,"b":2}") == '13000000106100010000001062000200000000'0

4.13.15. bson2json

Syntax:

bson2json(in octetstring os) return universal charstring

The function bson2json(in octetstring os) return universal charstring converts a BSON encoded
bytestream into a json document which can be decoded using the built in JSON decoder. The
decoding follows the extension rules written in the BSON standard [23]. The decoding handles the
rules written in the MongoDB Extended JSON document [24]. The decoding of 128-bit float values is
not supported.

37

Example:

bson2json('13000000106100010000001062000200000000'0) == "{"a":1,"b":2}"

4.14. Exclusive Boundaries in Range Subtypes

The boundary values used to specify range subtypes can be preceded by an exclamation mark. By
using the exclamation mark the boundary value itself can be excluded from the specified range. For
example integer range (!0..!10) is equivalent to range (1..9). In case of float type open intervals can
be specified by using excluded boundaries, for example (0.0..!1.0) is an interval which contains 0.0
but does not contain 1.0.

4.15. Special Float Values Infinity and not_a_number

The keyword infinity (which is also used to specify value range and size limits) can be used to
specify the special float values -infinity and +infinity, these are equivalent to MINUS-INFINITY and
PLUS-INFINITY used in ASN.1. A new keyword not_a_number has been introduced which is
equivalent to NOT-A-NUMBER used in ASN.1. The -infinity and +infinity and not_a_number special
values can be used in arithmetic operations. If an arithmetic operation’s operand is not_a_number
then the result of the operation will also be not_a_number. The special value not_a_number cannot
be used in a float range subtype because it’s an unordered value, but can be added as a single value,
for example subtype (0.0 .. infinity, not_a_number) contains all positive float values and the
not_a_number value.

4.16. TTCN-3 Preprocessing

Preprocessing of the TTCN-3 files with a C preprocessor is supported by the compiler. External
preprocessing is used: the Makefile Generator generates a Makefile which will invoke the C
preprocessor to preprocess the TTCN-3 files with the suffix ."ttcnpp. The output of the C
preprocessor will be generated to an intermediate file with the suffix . "ttcn. The intermediate files
contain the TTCN-3 source code and line markers. The compiler can process these line markers
along with TTCN-3. If the preprocessing is done with the -P option [13], the resulting code will not
contain line markers; it will be compatible with any standard TTCN-3 compiler. The compiler will
use the line markers to give almost [14] correct error or warning messages, which will point to the
original locations in the .ttcnpp file. The C preprocessor directive #"include can be used in .ttcnpp
files; the Makefile Generator will treat all files with suffix ."ttcnin as TTCN-3 include files. The
"ttenin files will be added to the Makefile as special TTCN-3 include files which will not be
translated by the compiler, but will be checked for modification when building the test suite.

Extract from the file:

38

Example.ttcnpp:
module Example {
function func()

{
#ifdef DEBUG

log("Example: DEBUG");
felse

log("Example: RELEASE");
fendif

The output is a preprocessed intermediate file Example.ttcn. The resulting output from the above
code:

1 "Example.ttcnpp"
module Example {
function func()

{
log("Example: RELEASE");

}

The line marker (# 1 "Example.ttcnpp") tells the compiler what the origin of the succeeding code is.

4.17. Parameter List Extensions

In addition to standardized TTCN-3 parameter handling described in 5.4.2 of [1] TITAN also
supports the mixing of list notation and assignment notation in an actual parameter list.

4.17.1. Missing Named and Unnamed Actual Parameters

To facilitate handling of long actual parameter lists in the TITAN implementation, the actual
parameter list consists of two optional parts: an unnamed part followed by a named part, in this
order. In the actual parameter list a value must be assigned to every mandatory formal parameter
either in the named part or in the unnamed part. (Mandatory parameter is one without default
value assigned in the formal parameter list.) Consequently, the unnamed part, the named part or
both may be omitted from the actual parameter list. Omitting the named part from the actual
parameter lists provides backward compatibility with the standard notation.

The named and unnamed parts are separated by a comma as are the elements within both lists. It is
not allowed to assign value to a given formal parameter in both the named and the unnamed part
of the actual parameter list.

There can be at most one unnamed part, followed by at most one named part. Consequently, an

39

unnamed actual parameter may not follow a named parameter.

Named actual parameters must follow the same relative order as the formal parameters. It is not
allowed to specify named actual parameters in an arbitrary order.

Examples

The resulting parameter values are indicated in brackets in the comments:

function myFunction(integer p_par1, boolean p_par2 := true) { ==+ }
control {

// the actual parameter list is syntactically correct below:
myFunction(1, p_par2 := false); // (1, false)

myFunction(2); // (2, true)

myFunction(p_par1 := 3, p_par2 := false); // (3, false)

// the actual parameter list is syntactically erroneous below:
myFunction(@, true, -); // too many parameters

myFunction(1, p_par1 :=1); // p_par1 is given twice
myFunction(); // no value is assigned to mandatory p_par]
myFunction(p_par2 := false, p_par1 := 3); // out of order
myFunction(p_par2 := false, 1); // unnamed part cannot follow

// named part

}

4.18. function, altstep and testcase References

Although TITAN supports the behaviour type package ([5]) of the TTCN-3 standard, but this feature
was included in the standard with a different syntax.

It is allowed to create TTCN-3 types of functions, altsteps and testcases. Values, for example
variables, of such types can carry references to the respective TTCN-3 definitions. To facilitate
reference using, three new operations (refers, derefers and apply) were introduced. This new
language feature allows to create generic algorithms in TTCN-3 with late binding, (i.e. code in which
the function to be executed is specified only at runtime).

4.19. Function Types with a RunsOn_self Clause

A function type or an altstep type, defined with a standard runs on clause, can use all constants,
variables, timers and ports given in the component type definition referenced by the runs on clause
(see chapter 16 of [1]).

A function type or an altstep type, defined with the TITAN-introduced runs on self clause, similarly,
makes use of the resources of a component type; however, the component type in question is not
given in advance. When an altstep or a function is called via a function variable, that is, a
reference, using the apply operation, it can use the resources defined by the component type
indicated in the runs on clause of the actually referenced function or altstep.

The "runs on self" construct is permitted only for function and altstep types. Any actual function or

40

altstep must refer to a given component type name in their runs on clause.

A variable with type of function type is called a function variable. Such variables can contain
references to functions or altsteps. At function variable assignment, component type compatibility
checking is performed with respect to the component context of the assignment statement and the
"runs on" clause of the assigned function or altstep. When the apply() operator is applied to a
function variable, no compatibility checking is performed.

The rationale for this distinction is the following: due to type compatibility checking at the time of
value assignment to the function variable, the TTCN-3 environment can be sure that any non-null
value of the variable is a function reference that is component-type-compatible with that
component that is actually executing the code using the apply() operator.

As a consequence of this, it is forbidden to use values of function variables as arguments to the
TTCN-3 operators start() or send().

Example of using the clause runs on self in a library

A component type may be defined as an extension of another component type (using the standard
extends keyword mentioned in chapter 6.2.10.2 of [1]). The effect of this definition is that the
extended component type will implicitly contain all constant, variable, port and timer definitions
from the parent type as well. In the example below, the component type User _CT aggregates its own
constant, variable, port and timer definitions (resources) with those defined in the component type
Library_CT (see line a).

The library developer writes a set of library functions that have a runs on Library_CT clause (see
line h). Such library functions may offer optional references to other functions that are supposed to
be specified by the user of the library (see line e). We say in this case that the library function may
call user-provided callback functions via function variables. These function variables must have a
type specified; optionally with a runs on clause. If this runs on clause refers to an actual component
type name, then this actual type name must be known at the time of writing the library.

Library functions that runs on Library_CT can run on other component types as well, provided that
the actual component type is compatible with Library_CT (see chapter 6.3.3 of [1]). An obvious
design goal for the library writer is to permit references to any callback function that has a
component-type-compatible runs on clause. However, the cardinality of compatible component
types is infinitely large; therefore, they cannot be explicitly referenced by the function type
definitions of the library.

The "runs on self" concept provides a remedy for this contradiction and allows conceiving library
components prepared to take up user-written "plug-ins".

In the code excerpt below, function f_LibraryFunction (which has the clause runs on Library_CT)
uses the function reference variable v_callBackRef_self (defined in Library_CT).The function
f_MyCallbackFunction (see line b) has a runs on User_CT clause. User_CT (see line a) extends
Library_CT, therefore it is suitable for running library function with runs on Library_CT clause, for
example.

When the assignment to the function variable v_CallbackRef_self is performed (see line c) inside
f_MyUserFunction (that is, inside the context User_CT), then compatibility checking is performed.

41

Since User_CT is compatible with Library_CT, the assignment is allowed.

Direct call to f_MyCallbackFunction() with runs on User_CT from a runs on Library_CT context (see
line g) would cause semantic error according to the TTCN3 language. However, calling the function
via v_CallBackRef _self is allowed (see line d).

module RunsOn_Self

{
//:::
// Function Types
//:::
//---- line f)

type function CallbackFunctionRefRunsonSelf_FT () runs on self;

//=========z=======z====sszssosscossoossozosoossoossoosoossooosoossozosoosozsszss
//Component Types
== e —————————————————————
type component Library_CT
{
//---- line e)
var CallbackFunctionRefRunsonSelf FT v_CallbackRef_self := null;
var integer v_Lib;
}
//---- line a)
type component User_CT extends Library_CT
{
var integer v_User;
}
//---- line h)
function f_LibraryFunction () runs on Library_CT
{
//---- line g)

// Direct call of the callback function would cause semantic ERROR
//f_MyCallbackFunction();

if (v_CallbackRef _self != null)
{
// Calling a function via reference that has a "runs on self" in its header
// is always allowed with the exception of functions/altsteps without runs
// on clause
//---- line d)
v_CallbackRef_self.apply();
}
}// end f_LibraryFunction

function f_MyUserFunction () runs on User_CT

{

// This is allowed as f_MyCallbackFunction has runs on clause compatible

42

// with the runs on clause of this function (f_MyUserFunction)
// The use of function/altstep references with "runs on self" in their
// headers is limited to call them on the given component instance; i.e.
// allowed: assignments, parameterization and activate (the actual function's
// runs on is compared to the runs on of the function in which
// the operation is executed)
// not allowed: start, sending and receiving
// no check is needed for apply!
//---- line c)
v_CallbackRef_self := refers (f_MyCallbackFunction);

// This is allowed as Library_CT is a parent of User_CT
// Pls. note, as the function is executing on a User_CT
// instance, it shall never cause a problem of calling
// a callback function with "runs on User_CT" from it.
f_LibraryFunction();

}//end f_MyUserFunction

//---- line b)
function f_MyCallbackFunction () runs on User_CT
{/*application/dependent behaviour*/}

} // end of module RunsOn _Self

4.20. TTCN-3 Macros

The compiler and the run-time environment support the following non-standard macro notation in
TTCN-3 modules. All TTCN-3 macros consist of a percent (%) character followed by the macro
identifier. Macro identifiers are case sensitive. The table below summarizes the available macros
and their meaning. Macro identifiers not listed here are reserved for future extension.

Table 5. TTCN-3 macros

Macro Meaning

%moduleld name of the TTCN-3 module

%definitionld name of the top-level TTCN-3 definition

%testcaseld name of the test case that is currently being
executed

%fileName name of the TTCN-3 source file

%1lineNumber number of line in the source file

The following rules apply to macros:

* All macros are substituted with a value of type charstring. They can be used as operands of
complex expressions (concatenation, comparison, etc.).

* All macros except %testcaseld are evaluated during compilation and they can be used anywhere

43

in the TTCN-3 module.

Macro %testcaseld is evaluated at runtime. It can be used only within functions and altsteps
that are being run on test components (on the MTC or PTCs) and within testcases. It is not
allowed to use macro %testcaseld in the module control part. If a function or altstep that
contains macro %testcaseld is called directly from the control part the evaluation of the macro
results in a dynamic test case error.

The result of macro %testcaseld is not a constant thus it cannot be used in the value of TTCN-3
constants. It is allowed only in those contexts where TTCN-3 variable references are permitted.

Macro %definitionId is always substituted with the name of the top-level module definition that
it is used in. [15] For instance, if the macro appears in a constant that is defined within a
function then the macro will be substituted with the function’s name rather than the one of the
constant. When used within the control part macro %definitionId is substituted with the word
“control”.

Macro %fileName is substituted with the name of the source file in the same form as it was
passed to the compiler. This can be a simple file name, a relative or an absolute path name.

The result of macro %lineNumber is always a string that contains the current line number as a
decimal number. Numbering of lines starts from 1. All lines of the input file (including
comments and empty lines) are counted. When it needs to be used in an integer expression a
conversion is necessary: str2int(%lineNumber). The above expression is evaluated during
compilation without any runtime performance penalty.

Source line markers are considered when evaluating macros %fileName and %lineNumber. In
preprocessed TTCN-3 modules the macros are substituted with the original file name and line
number that the macro comes from provided that the preprocessor supports it.

When macros are used in log() statements, they are treated like literal strings rather than
charstring value references. That is, quotation marks around the strings are not used and
special characters within them are not escaped in the log file.

For compatibility with the C preprocessor the compiler also recognizes the following C style
macros: _FILE isidentical to %fileName and _LINE isidentical to str2int(%LlineNumber).

Macros are not substituted within quotation marks (i.e. within string literals and attributes).

The full power of TTCN-3 macros can be exploited in combination with the C preprocessor.

Example:

44

module M {

// the value of c_MyConst will be "M"

const charstring c_MyConst := %moduleld;

// MyTemplate will contain 28

template integer t_MyTemplateWithVeryLongName := lengthof(%definitionId);
function f_MyFunction() {

// the value of c_MylLocalConst1 will be "f_MyFunction"

const charstring c_MylLocalConst1 := %definitionId;

// the value of c_MylLocalConst2 will be "%definitionId"

const charstring c_MylLocalConst2 := "%definitionId";

// the value of c_MylLocalConst3 will be "12"

const charstring c_MylLocalConst3 := %lineNumber; //This is line 12
// the value of c_MylLocalConst4 will be 14

const integer c_MylLocalConst4 := str2int(%lineNumber);//This is line 14
// the 1line below is invalid because %testcaseld is not a constant
const charstring c_MyInvalidConst := %testcaseld;

// this 1is valid, of course

var charstring v_MylocalVar := %testcaseld;

// the two log commands below give different output in the log file
log("function:", %definitionId, " testcase: ", %testcaseld);

// printout: function: f_MyFunction testcase: tc_MyTestcase
log("function:", c_MylLocalConst1, " testcase: ", v_MylLocalVar);

// printout: function: "f_MyFunction" testcase: "tc_MyTestcase"

}

}

4.21. Component Type Compatibility

The ETSI standard defines type compatibility of component types for component reference values
and for functions with “runs on” clause. In order to be compatible, both component types are
required to have identical definitions (cf. [1], chapter 6.3.3).

Compatibility is an asymmetric relation, if component type B is compatible with
NOTE component type A, the opposite is not necessarily true. (E.g., component type B may
contain definitions absent in component type A.)

All definitions from the parent type are implicitly contained when the keyword extends appears in
the type definition (cf. [1], chapter 6.2.10.2) and so the required identity of the type definitions is
ensured. The compiler considers component type B to be compatible with A if B has an extends
clause, which contains A or a component type that is compatible with A.

Example:
type component A { var integer i; }
type component B extends A {

// extra definitions may be added here

}

45

In order to provide support for existing TTCN-3 code (e.g. standardized test suites) it is allowed to
explicitly signal the compatibility relation between component types using a special extension
attribute. Using such attributes shall be avoided in newly written TTCN-3 modules. Combining
component type inheritance and the attribute extension is possible, but not recommended.

Thus, the compiler considers component type B to be compatible with A if B has an extension
attribute that points to A as base component type and all definitions of A are present and identical
in B.

type component A { var integer i; }

type component B {

var integer i; // definitions of A must be repeated
var octetstring o; // new definitions may be added
} with {

extension "extends A"

}

4.21.1. Implementation Restrictions

The list of definitions shared with different compatible component types shall be distinct. If
component type Z is compatible with both X and Y and neither X is compatible with Y nor Y is
compatible with X then X and Y shall not have definitions with identical names but different origin.
If both X and Y are compatible with component type C then all definitions in X and Y which are
originated from C are inherited by Z on two paths.

Example: According to the standard component type Z should be compatible with both X and Y, but
the compatibility relation cannot be established because X and Y have a definition with the same
name.

type component X { timer T1, T2; }

type component Y { timer T1, T3; }

type component Z { timer T1, T2, T3; }

with { extension "extends X, Y" }

// invalid because the origin of T1 is ambiguous

The situation can be resolved by introducing common ancestor C for X and Y, which holds the
shared definition.

type component C { timer T1; }

type component X { timer T1, T2; } with { extension "extends C" }
type component Y { timer T1, T3; } with { extension "extends C" }
type component Z {

timer T1, // origin is C

T2, // origin is X

T3; // origin is Y

} with { extension "extends X, Y" }

46

Circular compatibility chains between component types are not allowed. If two component types
need to be defined as identical, type aliasing must be used instead of compatibility.

The following code is invalid:

type component A {

// the same definitions as in B
} with { extension "extends B" }
type component B {

// the same definitions as in A
} with { extension "extends A" }

When using the non-standard extension attribute the initial values of the corresponding definitions
of compatible components should be identical. The compiler does not enforce this for all cases;
however, in the case of different initial values the resulting run-time behavior is undefined. If the
initial values cannot be determined at compile time (module parameters) the compiler will remain
silent. In other situations the compiler may report an error or a warning.

All component types are compatible with each empty component type. Empty components are
components which have neither own nor inherited definitions.

4.22. Implicit Message Encoding

The TTCN-3 standard [1] does not specify a standard way of data encoding/decoding. TITAN has a
common C++ API for encoding/decoding; to use this API external functions are usually needed. The
common solution is to define a TTCN-3 external function and write the C++ code containing the API
calls. In most cases the C++ code explicitly written to an auxiliary C++ file contains only simple code
patterns which call the encoding/decoding API functions on the specified data. In TITAN there is a
TTCN-3 language extension which automatically generates such external functions.

Based on this automatic encoding/decoding mechanism, dual-faced ports are introduced. Dual-
faced ports have an external and an internal interface and can automatically transform messages
passed through them based on mapping rules defined in TTCN-3 source files. These dual-faced ports
eliminate the need for simple port mapping components and thus simplify the test configuration.

4.22.1. Dual-faced Ports

In the TTCN-3 standard ([1]), a port type is defined by listing the allowed incoming and outgoing
message types. Dual-faced ports have on the other hand two different message lists: one for the
external and one for the internal interface. External and internal interfaces are given in two
distinct port type definitions. The dual-faced concept is applicable to message based ports and the
message based part of mixed ports.

Dual-faced port types must have user attribute to designate its external interface. The internal
interface is given by the port type itself. A port type can be the external interface of several
different dual-faced port types.

47

The internal interface is involved in communication operations (send, receive, etc.) and the external
interface is used when transferring messages to/from other test components or the system under
test. The operations connect and map applied on dual-faced ports will consider the external port type
when checking the consistency of the connection or mapping.[16]

Dual-faced Ports between Test Components

Dual-faced ports used for internal communication must have the attributes internal in addition to
user (see section Visibility Modifiers). The referenced port type describing the external interface
may have any attributes.

Dual-faced Ports between Test Components and the SUT

The port type used as external interface must have the attribute provider. These dual-faced port
types do not have their own test port; instead, they use the test port belonging to the external
interface when communicating to SUT. Using the attribute provider implies changes in the Test Port
API of the external interface. For details see the section "Provider port types" in [16].

If there are several entities within the SUT to be addressed, the dual-faced port type must have the
attribute address in addition to user. In this case the external interface must have the attribute
address too. For more details see section Visibility Modifiers.

4.22.2. Type Mapping

Mapping is required between the internal and external interfaces of the dual-faced ports because
the two faces are specified in different port type definitions, thus, enabling different sets of
messages.

Messages passing through dual-faced ports will be transformed based on the mapping rules.
Mapping rules must be specified for the outgoing and incoming directions separately. These rules
are defined in the attribute user of the dual-faced port type.

An outgoing mapping is applied when a send operation is performed on the dual-faced port. The
outcome of the mapping will be transmitted to the destination test component or SUT. The outgoing
mappings transform each outgoing message of the internal interface to the outgoing messages of
the external interface.

An incoming mapping is applied when a message arrives on a dual-faced port from a test
component or the SUT. The outcome of the mapping will be inserted into the port queue and it will
be extracted by the receive operation. The incoming mappings transform each incoming messages
of the external interface to the incoming message of the internal interface.

Mapping Rules

A mapping rule is an elementary transformation step applied on a message type (source type)
resulting in another message type (target type). Source type and target type are not necessarily
different.

Mapping rules are applied locally in both directions, thus, an error caused by a mapping rule
affects the test component owning the dual-faced port, not its communication partner.

48

Mappings are given for each source type separately. Several mapping targets may belong to the
same source type; if this is the case, all targets must be listed immediately after each other (without
repeating the source type).

The following transformation rules may apply to the automatic conversion between the messages
of the external and internal interfaces of a dual-faced port:

* No conversion. Applicable to any message type, this is a type preserving mapping, no value
conversion is performed. Source and target types must be identical. This mapping does not have
any options. For example, control or status indication massages may transparently be conveyed
between the external and the internal interfaces. Keyword used in attribute user of port type
definition: simple.

* Message discarding. This rule means that messages of the given source type will not be
forwarded to the opposite interface. Thus, there is no destination type, which must be indicated
by the not used symbol (-). This mapping does not have any options. For example, incoming
status indication massages of the external interface may be omitted on the internal interface.
Keyword used in attribute user of port type definition: discard.

* Conversion using the built-in codecs. Here, a corresponding encoding or decoding subroutine of
the built-in codecs (for example RAW, TEXT or BER) is invoked. The conversion and error
handling options are specified with the same syntax as used for the encoding/decoding
functions, see section Attribute Syntax. Here, source type corresponds to input type and target
type corresponds to output type of the encoding. Keyword used in attribute user of port type
definition: encode or decode; either followed by an optional errorbehavior.

* Function or external function. The transformation rule may be described by an (external)
function referenced by the mapping. The function must have the attribute extension specifying
one of the prototypes given in section Encoder/decoder Function Prototypes. The incoming and
the outgoing type of the function must be equal to the source and target type of the mapping,
respectively. The function may be written in TTCN-3, C++ or generated automatically by the
compiler. This mapping does not have any options. Keyword used in attribute user of port type
definition: function.

Mapping with One Target

Generally speaking, a source type may have one or more targets. Every mapping target can be used
alone. However, only one target can be designated with the following rules if

* no conversion takes place (keyword simple);

» encoding a structured message (keyword encode) [17];

* an (external) function with prototype convert or fast is invoked

Mapping with More Targets

On the other hand, more than one target is needed, when the type of an encoded message must be
reconstructed. An octetstring, for example, can be decoded to a value of more than one structured
PDU type. It is not necessary to specify mutually exclusive decoder rules. It is possible and useful to
define a catch-all rule at the end to handle invalid messages.

49

The following rules may be used with more than one target if

* an (external) function with prototype backtrack is invoked;
* decoding a structured message (keyword decode);

* (as a last alternative) the source message is discarded

The conversion rules are tried in the same order as given in the attribute until one of them
succeeds, that is, the function returns ¢ 0K or decoding is completed without any error. The
outcome of the successful conversion will be the mapped result of the source message. If all
conversion rules fail and the last alternative is discard, then the source message is discarded.
Otherwise dynamic test case error occurs.

Mapping from Sliding Buffer

Using sliding buffers is necessary for example, if a stream-based transport, like TCP, is carrying the
messages. A stream-based transport is destroying message boundaries: a message may be torn
apart or subsequent messages may stick together.

The following rules may be used with more than one target when there is a sliding buffer on the
source side if

* an (external) function with prototype sliding is invoked;

* decoding a structured message (keyword decode)

Above rules imply that the source type of this mapping be either octetstring or charstring. The
run-time environment maintains a separate buffer for each connection of the dual-faced port.
Whenever data arrives to the buffer, the conversion rules are applied on the buffer in the same
order as given in the attribute. If one of the rules succeeds (that is, the function returns 0 or
decoding is completed without any error) the outcome of the conversion will appear on the
destination side. If the buffer still contains data after successful decoding, the conversion is
attempted again to get the next message. If one of the rules indicates that the data in the buffer is
insufficient to get an entire message (the function returns 2 INCOMPLETE_MESSAGE or decoding fails
with error code ET_INCOMPL_MSG), then the decoding is interrupted until the next fragment arrives in
the buffer. If all conversion rules fail (the function returns 1 NOT_MY_TYPE or decoding fails with any
other error code than ET_INCOMPL_MSG), dynamic test case error occurs.

Decoding with sliding should be the last decoding option in the list of decoding
NOTE options and there should be only one decoding with sliding buffer. In other cases
the first decoding with sliding buffer might disable reaching later decoding options.

4.22.3. Encoder/decoder Function Prototypes

Encoder/decoder functions are used to convert between different data (message) structures. We can
consider e.g. an octet string received from the remote system that should be passed to the upper
layer as a TCP message.

Prototypes are attributes governing data input/output rules and conversion result indication. In
other words, prototypes are setting the data interface types. The compiler will verify that the

50

parameters and return value correspond to the given prototype. Any TTCN-3 function (even
external ones) may be defined with a prototype. There are four prototypes defined as follows:

* prototype convert

Functions of this prototype have one parameter (i.e. the data to be converted), which shall be an
in value parameter, and the result is obtained in the return value of the function.

Example:

external function f_convert(in A param_ex) return B
with { extension "prototype(convert)" }

+ The input data received in the parameter param_ex of type A is converted. The result returned is of
type B.

* prototype fast

Functions of this prototype have one input parameter (the same as above) but the result is
obtained in an out value parameter rather than in return value. Hence, a faster operation is
possible as there is no need to copy the result if the target variable is passed to the function. The
order of the parameters is fixed: the first one is always the input parameter and the last one is
the output parameter.

Example:

external function f_fast(in A param_1, out B param_2)
with { extension "prototype(fast)" }

+ The input data received in the parameter param_1 of type A is converted. The resulting data of type
B is contained in the output parameter param_2 of type B.

* prototype backtrack

Functions of this prototype have the same data input/output structure as of prototype fast, but
there is an additional integer value returned to indicate success or failure of the conversion
process. In case of conversion failure the contents of the output parameter is undefined. These
functions can only be used for decoding. The following return values are defined to indicate the
outcome of the decoding operation:

> 0 (0K). Decoding was successful; the result is stored in the out parameter.

o 1 (NOT_MY_TYPE). Decoding was unsuccessful because the input parameter does not contain a
valid message of type B. The content of the out parameter is undefined.

Example:

31

external function f_backtrack(in A param_1, out B param_2) return integer
with { extension "prototype(backtrack)" }

The input data received in the parameter param_1 of type A is converted. The resulting data of type
B is contained in the output parameter param_2 of type B. The function return value (an integer)
indicates success or failure of the conversion process.

* prototype sliding

Functions of this prototype have the same behavior as the one of prototype backtrack,
consequently, these functions can only be used for decoding. The difference is that there is no
need for the input parameter to contain exactly one message: it may contain a fragment of a
message or several concatenated messages stored in a FIFO buffer. The first parameter of the
function is an inout value parameter, which is a reference to a buffer of type octetstring or
charstring. The function attempts to recognize an entire message. It if succeeds, the message is
removed from the beginning of the FIFO buffer, hence the name of this prototype: sliding
(buffer). In case of failure the contents of the buffer remains unchanged. The return value
indicates success or failure of the conversion process or insufficiency of input data as follows:

> 0 (0K). Decoding was successful; the result is stored in the out parameter. The decoded
message was removed from the beginning of the inout parameter which is used as a sliding
buffer.

o 1 (NOT_MY_TYPE). Decoding was unsuccessful because the input parameter does not contain or
start with a valid message of type B. The buffer (inout parameter) remains unchanged. The
content of out parameter is undefined.

o 2 (INCOMPLETE_MESSAGE). Decoding was unsuccessful because the input stream does not
contain a complete message (i.e. the end of the message is missing). The input buffer (inout
parameter) remains unchanged. The content of out parameter is undefined.

Example:

external function f_sliding(inout A param_1, out B param_2) return integer
with { extension "prototype(sliding)" }

+ The first portion of the input data received in the parameter param_1 of type A is converted. The
resulting data of type B is contained in the output parameter param_2 of type B. The return value
indicates the outcome of the conversion process.

4.22.4. Automatic Generation of Encoder/decoder Functions

Encoding and decoding is performed by C++ external functions using the built-in codecs. These
functions can be generated automatically by the complier. The present section deals with attributes
governing the function generation.

32

Input and Output Types

Automatically generated encoder/decoder functions must have an attribute prototype assigned. If
the encoder/decoder function has been written manually, only the attribute prototype may be given.
Automatically generated encoder/decoder functions must have either the attribute encode or the
attribute decode. In the case of encoding, the input type of the function must be the (structured) type
to be encoded, which in turn must have the appropriate encoding attributes needed for the
specified encoding method. The output type of the encoding procedure must be octetstring (BER,
RAW, XER and JSON coding) or charstring (TEXT coding). In case of decoding the functions work the
other way around: the input type is octetstring or charstring and the output type can be any
(structured) type with appropriate encoding attributes.

Attribute Syntax

The syntax of the encode and decode attributes is the following:

("enCOde" | "dECOd@") Il(ll(llRAwll I IIBERII | llTEXTII I IIXERII | “JSON" | IIOER" | "PER") [II : n
<codec_options>] ")"

BER encoding can be applied only for ASN.1 types.

The <’ codec_options > part specifies extra options for the particular codec. Currently it is
applicable only in case of BER, XML and PER encoding/decoding. In case of BER and XER the
codec_options are copied transparently to the parameter list of the C++ encoder/decoder function
call in the generated function body without checking the existence or correctness of the referenced
symbols.

Example of prototype convert, BER encoding and decoding (the PDU is an ASN.1 type):

external function encode_PDU(in PDU pdu) return octetstring
with { extension "prototype(convert) encode(BER:BER_ENCODE_DER)" }
external function decode_PDU(in octetstring os) return PDU
with { extension "prototype(convert) decode(BER:BER_ACCEPT_ALL)" }

Example of prototype convert, XML encoding and decoding (the PDU is a TTCN-3 type):

external function encode_PDU(in PDU pdu) return octetstring
with { extension "prototype(convert) encode(XER:XER_EXTENDED)" }
external function decode_PDU(in octetstring os) return PDU
with { extension "prototype(convert) decode(XER:XER_EXTENDED)" }

In case of PER the codec_options are analyzed during compilation. If they contain the text ALIGNED
(except when that text is preceded by UN), then the encoder or decoder function will use the aligned
version of PER, otherwise it will use the unaligned version. If the codec_options contain the text
CANONICAL, then the encoder or decoder will use the canonical version of PER, otherwise it will use
the basic version. All other text in the codec_options is ignored.

33

Example of prototype convert, PER encoding and decoding (the PDU is an ASN.1 type):

external function encode_PDU(in PDU pdu) return octetstring

with { extension "prototype(convert) encode(PER)" } // unaligned, basic

external function encode_PDU_a(in PDU pdu) return octetstring

with { extension "prototype(convert) encode(PER:ALIGNED)" } // aligned, basic
external function encode_PDU_c(in PDU pdu) return octetstring

with { extension "prototype(convert) encode(PER:CANONICAL)" } // unaligned, canonical
external function encode_PDU_a_c(in PDU pdu) return octetstring

with { extension "prototype(convert) encode(PER:ALIGNED CANONICAL)" } // aligned,
canonical

external function decode_PDU(in octetstring os) return PDU

with { extension "prototype(convert) decode(PER)" } // unaligned, basic

external function decode_PDU_a(in octetstring os) return PDU

with { extension "prototype(convert) decode(PER:ALIGNED)" } // aligned, basic
external function decode_PDU_c(in octetstring os) return PDU

with { extension "prototype(convert) decode(PER:CANONICAL)" } // unaligned, canonical
external function decode_PDU_a_c(in octetstring os) return PDU

with { extension "prototype(convert) decode(PER:ALIGNED CANONICAL)" } // aligned,
canonical

Codec Error Handling

The TITAN codec API has some well defined function calls that control the behavior of the codecs in
various error situations during encoding and decoding. An error handling method is set for each
possible error type. The default error handling method can be overridden by specifying the
errorbehavior attribute:

"errorbehavior" "(" <error_type> <error_handling>
{"," <error_type> ":" <error_handling> } ")"

Possible error types and error handlings are defined in [16], section "The common API". The value
of <error_type> shall be a value of type error_type_t without the prefix ET_. The value of
<error_handling> shall be a value of type error_behavior_t without the prefix EB_.

The TTCN-3 attribute errorbehavior (INCOMPL_ANY:ERROR), for example, will be mapped to the
following C++ statement:

TTCN_EncDec::set_error_behavior (TTCN_EncDec::ET_INCOMPL_ANY,
TTCN_EncDec::EB_ERROR);

When using the backtrack or sliding decoding functions, the default error behavior has to be
changed in order to avoid a runtime error if the in or inout parameter does not contain a type we
could decode. With this change an integer value is returned carrying the fault code. Without this
change a dynamic test case error is generated. Example:

54

external function decode_PDU(in octetstring os, out PDU pdu) return integer
with {

extension "prototype(backtrack)"

extension "decode(BER:BER_ACCEPT_LONG|BER_ACCEPT_INDEFINITE)"

extension "errorbehavior (ALL:WARNING)"

}

4.22.5. Handling of encode and variant attributes

The TITAN compiler offers two different ways of handling encoding-related attributes:

the new (standard compliant) handling method, and

the legacy handling method, for backward compatibility.

New codec handling

This method of handling encode and variant attributes is active by default. It supports many of the
newer encoding-related features added to the TTCN-3 standard.

Differences from the legacy method:

encode and variant attributes can be defined for types as described in the TTCN-3 standard
(although the type restrictions for built-in codecs still apply);

a type can have multiple encode attributes (this provides the option to choose from multiple
codecs, even user-defined ones, when encoding values of that type);

ASN.1 types automatically have BER, JSON, PER, and XML (if the compiler option -a is set)
encoding (they are treated as if they had the corresponding encode attributes);

encoding-specific variant attributes are supported (e.g.: variant "XML"."untagged");

the parameters encoding_info/decoding_info and dynamic_encoding of predefined functions
encvalue, decvalue, encvalue_unichar and decvalue_unichar are supported (the encoding_info
/decoding_info parameters are currently ignored, see also the next point)

the dynamic_encoding parameter can be used for choosing the codec to use for values of types
with multiple encodings, the following values are available: BER:2002, CER:2002, DER:2002, JSON,
OER, RAW, TEXT, XER, XML and PER;

the self.setencode version of the setencode operation is supported (it can be used for choosing
the codec to use for types with multiple encodings within the scope of the current component);

the @local modifier is supported for encode attributes;

a type’s the default codec (used by decmatch templates, the @decoded modifier, and the
predefined functions encvalue, decvalue, encvalue_unichar and decvalue_unichar when no
dynamic encoding parameter is given) is:

its one defined codec, if it has exactly one codec defined; or

unspecified, if it has multiple codecs defined (the mentioned methods of encoding/decoding can
only be used in this case, if a codec was selected for the type using self.setencode).

55

Differences from the TTCN-3 standard:

switching codecs during the encoding or decoding of a structure is currently not supported (the
entire structure will be encoded or decoded using the codec used at top level);

the port-specific versions of the setencode operation are not supported (since messages sent
through ports are not automatically encoded; see also dual-faced ports in section Dual-faced
Ports);

the @local modifier only affects encode attributes, it does not affect the other attribute types;

encode and variant attributes do not affect constants, templates, variables, template variables or
import statements (these are accepted, but ignored by the compiler);

references to multiple definitions in attribute qualifiers is not supported(e.g.: encode (template
all except (t1)) “RAW”);

retrieving attribute values is not supported (e.g.: var universal charstring x := MyType.encode).

Legacy codec handling

This is the method of handling encode and variant attributes that was used before version 6.3.0 (/6
R3A). It can be activated through the compiler command line option -e.

Differences from the new method:

36

each codec has its own rules for defining encode and variant attributes;

a type can only have one encode attribute (if more than one is defined, then only the last one is
considered), however, it can have variant attributes that belong to other codecs (this can make
determining the default codec tricky);

ASN.1 types automatically have BER, JSON, PER, and XML (if the compiler option -a is set) encoding,
however the method of setting a default codec (for the predefined functions encvalue, decvalue,
encvalue_unichar, decvalue_unichar, for decmatch templates, and for the @decoded modifier) is
different (see section Setting the default codec for ASN.1 types);

encoding-specific variant attributes are not supported (e.g.: variant "XML"."untagged");

the parameters encoding_info/decoding_info and dynamic_encoding of predefined functions
encvalue, decvalue, encvalue_unichar and decvalue_unichar are ignored;

the setencode operation is not supported;
the @local modifier is not supported.

the TTCN-3 language elements that automatically encode or decode (i.e. predefined functions
encvalue, decvalue, encvalue_unichar and decvalue_unichar, decmatch templates, and value and
parameter redirects with the @decoded modifier) ignore the encode and variant attributes in
reference types and encode/decode values as if they were values of the base type (only the base
type’s encode and variant attributes are in effect in these cases). Encoder and decoder external
functions take all of the type’s attributes into account. For example:

type record BaseType {
integer fieldT,
charstring field2

}
with {
encode "XML";
variant "name as uncapitalized";

}

type BaseType ReferenceType
with {
encode "XML";
variant "name as uncapitalized";

}

external function f_enc(in ReferenceType x) return octetstring
with { extension "prototype(convert) encode(XER:XER_EXTENDED)" }

function () {
var ReferenceType val := { fieldl := 3, field2 := "abc" };

var charstring res1 := oct2char(bit2oct(encvalue(val)));

// "<baseType>\n\t<field>3</field>\n</baseType>\n\n"

// it's encoded as if it were a value of type 'BaseType',

// the name and attributes of type 'ReferenceType' are ignored

var charstring res2 := oct2char(f_enc(val));
// "<referenceType>\n\t<field>3</field>\n</referenceType>\n\n"
// it's encoded correctly, as a value of type 'ReferenceType'

The differences from the TTCN-3 standard listed in the previous section also apply to the legacy
method.

Setting the default codec for ASN.1 types

Since ASN.1 types cannot have encode or variant attributes, the compiler determines their encoding
type by checking external encoder or decoder functions (of built-in encoding types) declared for the

type.

The TITAN runtime does not directly call these external functions, they simply indicate which
encoding type to use when encoding or decoding the ASN.1 type in question through predefined
functions encvalue and decvalue, decoded content matching (decmatch templates) and in value and
parameter redirects with the @decoded modifier.

These external functions can be declared with any prototype, and with the regular stream type of
either octetstring or charstring (even though encvalue and decvalue have bitstring streams).

The ASN.1 type cannot have several external encoder or decoded functions of different (built-in or
legacy PER) encoding types, as this way the compiler won’t know which encoding to use. Multiple

57

encoder or decoder functions of the same encoding type can be declared for one type.

These requirements are only checked if there is at least one encvalue, decvalue,
decmatch template or decoded parameter or value redirect in the compiled modules.
They are also checked separately for encoding and decoding (meaning that, for
example, multiple encoder functions do not cause an error if only decvalues are

NOTE
used in the modules and no encvalues).
The compiler searches all modules when attempting to find the coder functions
needed for a type (including those that are not imported to the module where the
encvalue, decvalue, decmatch or @decoded is located).
Example:

external function f_enc_seq(in MyAsnSequenceType x) return octetstring
with { extension "prototype(convert) encode(JSON)" }

external function f_dec_seq(in octetstring x, out MyAsnSequenceType y)
with { extension "prototype(fast) decode(JSON)" }

var MyAsnSequenceType v_seq := { num := 10, str := "abc" };
var bitstring v_enc := encvalue(v_seq); // uses the JSON encoder

var MyAsnSequenceType v_seq2;
var integer v_result := decvalue(v_enc, v_seq2); // uses the JSON decoder

4.22.6. Calling user defined encoding functions with encvalue and decvalue

The predefined functions encvalue and decvalue can be used to encode and decode values with user
defined external functions (custom encoding and decoding functions).

These functions must have the encode/decode and prototype extension attributes, similarly to built-in
encoder and decoder functions, except the name of the encoding (the string specified in the encode
or decode extension attribute) must not be equal to any of the built-in encoding names (e.g. BER,
TEXT, XER, etc.).

The compiler generates calls to these functions whenever encvalue or decvalue is called, or
whenever a matching operation is performed on a decmatch template, or whenever a redirected
value or parameter is decoded (with the @decoded modifier), if the value’s type has the same
encoding as the encoder or decoder function (the string specified in the type’s encode attribute is
equivalent to the string in the external function’s encode or decode extension attribute).

Restrictions:

* only one custom encoding and one custom decoding function can be declared per user-defined
codec (only checked if encvalue, decvalue, decmatch or @decoded are used at least once on the type)

* the prototype of custom encoding functions must be convert

38

* the prototype of custom decoding functions must be sliding

* the stream type of custom encoding and decoding functions is bitstring

Although theoretically variant attributes can be added for custom encoding types,
their coding functions would not receive any information about them, so they
would essentially be regarded as comments. If custom variant attributes are used,
the variant attribute parser’s error level must be lowered to warnings with the
compiler option -E.

NOTE The compiler searches all modules when attempting to find the coder functions
needed for a type (including those that are not imported to the module where the
encvalue, decvalue, decmatch or @decoded is located; if this is the case, then an extra
include statement is added in the generated C++ code to the header generated for
the coder function’s module).

Example:

type union Value {
integer intVal,
octetstring byteVal,
charstring strVal

}
with {
encode "abc";

}

external function f_enc_value(in Value x) return bitstring
with { extension "prototype(convert) encode(abc)" }

external function f_dec_value(inout bitstring b, out Value x) return integer
with { extension "prototype(sliding) decode(abc)" }

var Value x := { intVal := 3 };
var bitstring bs := encvalue(x); // equivalent to f_enc_value(x)

var integer res := decvalue(bs, x); // equivalent to f_dec_value(bs, x)

4.22.7. Legacy PER encoding and decoding through user defined functions

TITAN now has a built-in PER codec, but it also provides the means to call user defined PER encoder
and decoder external functions when using encvalue, decvalue, decmatch templates, and value and
parameter redirects with the @decoded modifier. This requires the use of the compiler option -H,
otherwise these external functions will have the built-in PER encoding/decoding code generated for
them.

This can be achieved the same way as the custom encoder and decoder functions described in
section Calling user defined encoding functions with encvalue and decvalue, except the name of the

39

encoding (the string specified in the encode or decode extension attribute) must be PER.

This can only be done for ASN.1 types, and has the same restrictions as the custom encoder and
decoder functions. There is one extra restriction when using legacy codec handling (see section
Setting the default codec for ASN.1 types): an ASN.1 type cannot have both a PER encoder/decoder
function and an encoder/decoder function of a built-in type set (this is checked separately for
encoding and decoding).

The compiler searches all modules when attempting to find the coder functions
needed for a type (including those that are not imported to the module where the

NOTE encvalue, decvalue, decmatch or @decoded is located; if this is the case, then an extra
include statement is added in the generated C++ code to the header generated for
the coder function’s module).

Example:

external function f_enc_per(in MyAsnSequenceType x) return bitstring
with { extension "prototype(convert) encode(PER)" }

external function f_dec_per(in bitstring x, out MyAsnSequenceType y)
with { extension "prototype(fast) decode(PER)" }

var MyAsnSequenceType x := { num := 10, str := "abc" };
var bitstring bs := encvalue(x); // equivalent to f_enc_per(x)

var MyAsnSequenceType y;
var integer res := decvalue(bs, y); // equivalent to f_dec_per(bs, y);

4.22.8. Common Syntax of Attributes

All information related to implicit message encoding shall be given as extension attributes of the
relevant TTCN-3 definitions. The attributes have a common basic syntax, which is applicable to all
attributes given in this section:

* Whitespace characters (spaces, tabulators, newlines, etc.) and TTCN-3 comments are allowed
anywhere in the attribute text. Attributes containing only comments, whitespace or both are
simply ignored
Example:
with { extension "/* this is a comment */" }

* When a definition has multiple attributes, the attributes can be given either in one attribute text
separated by whitespace or in separate TTCN-3 attributes.
Example:
with { extension "address provider" } means exactly the same as
with { extension "address"; extension "provider" }

* Settings for a single attribute, however, cannot be split in several TTCN-3 attributes.

60

Example of an invalid attribute:
with { extension "prototype("; extension "convert)" }

» Each kind of attribute can be given at most once for a definition.
Example of an invalid attribute:
with { extension "internal internal" }

» The order of attributes is not relevant.
Example:
with { extension "prototype(fast) encode(RAW)" } means exactly the same as
with { extension "encode(RAW) prototype(fast)" }

* The keywords introduced in this section, which are not TTCN-3 keywords, are not reserved
words. The compiler will recognize the word properly if it has a different meaning (e.g. the
name of a type) in the given context.

Example: the attribute
with { extension "user provider in(internal » simple: function(prototype))" } can be a valid
if there is a port type named provider; internal and simple are message types and prototype is
the name of a function.

4.22.9. API describing External Interfaces

Since the default class hierarchy of test ports does not allow sharing of C++ code with other port
types, an alternate internal API is introduced for port types describing external interfaces. This
alternate internal API is selected by giving the appropriate TTCN-3 extension attribute to the port.
The following extension attributes or attribute combinations can be used:

Table 6. Port extension attributes

Attribute(s) Test Port Communicatio Using of SUT External Notes
n with SUT addresses interface
allowed allowed
nothing normal yes no own
internal none no no own
address see [16] yes yes own
"Support of
address type"
provider see [16] yes no own
"Provider port
types"
internal none no no own means the
provider same as
internal
address see [16] yes yes own
provider "Support of
address type"
and "Provider
port types"

61

Attribute(s) Test Port Communicatio Using of SUT External Notes

n with SUT addresses interface
allowed allowed
user PT ... none yes depends on PT PT PT must have
attribute
provider
internal user none no no PT PT can have
PT... any attributes
addressuser none yes yes PT PT must have
PT ... attributes
address and
provider

4.22.10. BNF Syntax of Attributes

FunctionAttributes ::= {FunctionAttribute}
FunctionAttribute ::= PrototypeAttribute | TransparentAttribute

ExternalFunctionAttributes ::= {ExternalFunctionAttribute}
ExternalFunctionAttribute ::= PrototypeAttribute | EncodeAttribute | DecodeAttribute |
ErrorBehaviorAttribute

PortTypeAttributes ::= {PortTypeAttribute}
PortTypeAttribute ::= InternalAttribute | AddressAttribute | ProviderAttribute |
UserAttribute

PrototypeAttribute ::= "prototype" "(" PrototypeSetting ")"
PrototypeSetting ::= "convert" | "fast" | "backtrack" | "sliding"
TransparentAttribute ::= "transparent”

EncodeAttribute ::= "encode" "(" EncodingType [":" EncodingOptions] ")"
EncodingType ::= "BER" | "RAW" | "TEXT"| "XER" | "JSON" | "OER" | "PER"

EncodingOptions ::= {ExtendedAlphaNum}

DecodeAttribute ::= "decode" "(" EncodingType [":" EncodingOptions] ")"
ErrorBehaviorAttribute ::= "errorbehavior" "(" ErrorBehaviorSetting {","
ErrorBehaviorSetting} ")"

ErrorBehaviorSetting ::= ErrorType ":" ErrorHandling

ErrorType ::= ErrorTypeldentifier | "ALL"

ErrorHandling ::= "DEFAULT" | "ERROR" | "WARNING" | "IGNORE"
InternalAttribute ::= "internal”

AddressAttribute ::= "address"

ProviderAttribute ::= "provider"

62

UserAttribute ::= "user" PortTypeReference {InOutTypeMapping}
PortTypeReference ::= [Moduleldentifier "."] PortTypeldentifier
InOutTypeMapping ::= ("in" | "out") "(" TypeMapping {";" TypeMapping} ")"
TypeMapping ::= MessageType "->" TypeMappingTarget {"," TypeMappingTarget}
TypeMappingTarget ::= (MessageType ":" (SimpleMapping | FunctionMapping |
EncodeMapping | DecodeMapping)) | ("-" ":" DiscardMapping)

MessageType ::= PredefinedType | ReferencedMessageType
ReferencedMessageType ::= [ModuleIdentifier "."] (StructTypeldentifier |
EnumTypeIdentifier | SubTypeldentifier | ComponentTypeldentifier)

SimpleMapping ::= "simple"
FunctionMapping ::= "function" "(" FunctionReference ")"
FunctionReference ::= [ModuleIdentifier "."] (FunctionIdentifier |

ExtFunctionIdentifier)

EncodeMapping ::= EncodeAttribute [ErrorBehaviorAttribute]
DecodeMapping ::= DecodeAttribute [ErrorBehaviorAttribute]
DiscardMapping ::= "discard"

Non-terminal symbols in bold are references to the BNF of the TTCN-3 Core Language (Annex A, [1])

Example:

type record ControlRequest { }

type record ControlResponse { }

type record PDUTypel { }

type record PDUType2 { }

// the encoder/decoder functions are written in {cpp}

external function enc_PDUTypel1(in PDUTypel par) return octetstring
with { extension "prototype(convert)" }

external function dec_PDUTypel1(in octetstring stream,

out PDUTypel result) return integer

with { extension "prototype(backtrack)" }

// port type PT1 is the external interface of the dual-faced port
// with its own Test Port. See section "The purpose of Test Ports" in the API guide.

type port PT1 message {

out ControlRequest;

in ControlResponse;

inout octetstring;

} with { extension "provider" }

// port type PT2 is the internal interface of the dual-faced port
// This port is communicating directly with the SUT using the Test Port of PTT.

63

type port PT2 message {

out ControlRequest;

inout PDUTypel, PDUType2;

} with { extension "user PT1

out(ControlRequest -> ControlRequest: simple;
PDUType1 -> octetstring: function(enc_PDUTypel);
PDUType2 -> octetstring: encode(RAW))
in(ControlResponse -> - : discard;

octetstring -> PDUTypel: function(dec_PDUTypel),

PDUType2: decode(RAW),
* 1 discard)"

}

type component MTC_CT {
port PT2 MTC_PORT;
}

type component SYSTEM_SCT {
port PT1 SYSTEM_PORT;

}
testcase tc_DUALFACED () runs on MTC_CT system SYSTEM_SCT

{

map(mtc:MTC_PORT, system:SYSTEM_PORT);
MTC_PORT.send(PDUTypel1:{::-});
MTC_PORT.receive(PDUType1:?);

}

The external face of the dual-faced port (defined by PT1) sends and receives the protocol massages
as octetstrings. On the internal face of the same dual-faced port (defined by PT2) the octetstring is
converted to two message types (PDUType1, PDUType2). The conversion happens both when sending
and when receiving messages.

When sending messages, messages of type PDUTypel1 will be converted as defined by the function
enc_PDUType1; whereas messages of type PDUType2 will be converted using the built-in conversion
rules RAW.

When a piece of octetstring is received, decoding will first be attempted using the function
dec_PDUType1; in successful case the resulting structured type has PDUTypel. When decoding using
the function dec_PDUType1 is unsuccessful, the octetstring is decoded using the built-in conversion
rules RAW; the resulting message is of type PDUType2. When none of the above conversion succeeds,
the octetstring will be discarded.

ControlRequest and ControlResponse will not be affected by a conversion in either direction.

64

MTC

MTC_PORT

1
SYSTEM_PORT . FT1

system

4.23. RAW Encoder and Decoder

The RAW encoder and decoder are general purpose functionalities developed originally for
handling legacy protocols.

The encoder converts abstract TTCN-3 structures (or types) into a bitstream suitable for serial
transmission.

The decoder, on the contrary, converts the received bitstream into values of abstract TTCN-3
structures.

This section covers the coding rules in general, the attributes controlling them and the attributes
allowed for a particular type.

You can use the encoding rules defined in this section to encode and decode the following TTCN-3
types:

* bitstring

* boolean

* charstring

* enumerated

» float

65

* hexstring

* integer

* octetstring

* record

* record of, set of
* set

* union

* universal charstring
The compiler will produce code capable of RAW encoding/decoding if

1. The module has attribute 'encode "RAW", in other words at the end of the module there is a text
with { encode "RAW" }

2. Compound types have at least one variant attribute. When a compound type is only used
internally or it is never RAW encoded/decoded then the attribute variant has to be omitted.

When a type can be RAW encoded/decoded but with default specification then the

empty variant specification can be used: variant "".

NOTE In order to reduce the code size the TITAN compiler only add the RAW encoding if

1. Either the type has a RAW variant attribute OR

2. The type is used by an upper level type definition with RAW variant attribute.

Example: In this minimal introductory example there are two types to be RAW encoded: OCT2 and
CX_Frame but only the one of them has RAW variant attribute.

module Frame {
external function enc_CX_frame(in CX_Frame cx_message) return octetstring
with { extension "prototype(convert) encode(RAW)" }

external function dec_CX_frame(in octetstring stream) return CX_Frame
with { extension "prototype(convert) decode(RAW)" }

type octetstring 0CT2 length(2);
type record CX_Frame

{

0CT2 data_length,
octetstring data_stream
} with { variant "" }

} with { encode "RAW" }

4.23.1. General Rules and Restrictions

The TTCN-3 standard defines a mechanism using attributes to define, among others, encoding

66

variants (see [1], chapter 27 "Specifying attributes"). However, the attributes to be defined are
implementation specific. This and the following chapters describe each attribute available in
TITAN.

General Rules

If an attribute can be assigned to a given type, it can also almost always be assigned to the same
type of fields in a record, set or union. Attributes belonging to a record or set field overwrites the
effect of the same attributes specified for the type of the field.

The location of an attribute is evaluated before the attribute itself. This means that if an attribute is
overwritten thanks to its qualification or the overwriting rules, or both, its validity at the given
location will not be checked.

It is not recommended to use the attributes LENGTHTO, LENGTHINDEX, TAG, CROSSTAG, PRESENCE, UNIT,
POINTERTO, PTROFFSET with dotted qualifiers as it may lead to confusion.

Octetstrings and records with extension bit shall be octet aligned. That is, they should start and end
in octet boundary.

Error encountered during the encoding or decoding process are handled as defined in section
"Setting error behavior" in [16].

4.23.2. Rules Concerning the Encoder

The encoder doesn’t modify the data to be encoded; instead, it substitutes the value of calculated
fields (length, pointer, tag, crosstag and presence fields) with the calculated value in the encoded
bitfield if necessary.

The value of the pointer and length fields are calculated during encoding and the resulting value
will be used in sending operations. During decoding, the decoder uses the received length and
pointer information to determine the length and the place of the fields.

During encoding, the encoder sets the value of the presence, tag and crosstag fields according to the
presence of the optional and union fields.

4.23.3. Rule Concerning the Decoder

The decoder determines the presence of the optional fields on the basis of the value of the tag,
crosstag and presence fields.

4.23.4. Attributes

An attribute determines coding and encoding rules. In this section the attributes are grouped
according to their function.

Attributes Governing Conversion of TTCN-3 Types into Bitfields

This section defines the attributes describing how a TTCN-3 type is converted to a bitfield.

67

BITORDERINFIELD

Attribute syntax: BITORDERINFIELD(<parameter>)

Parameters allowed: msb, 1sb

Default value: 1sb

Can be used with: stand-alone types, or a field of a record or set.

Description: This attribute specifies the order of the bits within a field. When set to msb, the first bit
sent will be the most significant bit of the original field. When set to 1sb, the first bit sent will be the
least significant bit of the original field.

Comment: The effect of BITORDERINFIELD(msb) is equal to the effect of BITORDER(msb) BYTEORDER(1last).

Example:

type bitstring BITn

with {

variant "BITORDERINFIELD(1sb)"
¥

const BITn c_bits := '10010110'B
//Encoding of c_bits gives the following result: 10010110

type bitstring BITnreverse
with {

variant "BITORDERINFIELD(msb)"
}

const BITnreverse c¢_bitsrev := '10010110'B
//Encoding of c_bitsrev gives the following result: 01101001

COMP

Attribute syntax: COMP(<parameter>)

Parameters allowed: nosign, 2scompl, signbit

Default value: nosign

Can be used with: stand-alone types or the field of a record or set.

Description: This attribute specifies the type of encoding of negative integer numbers as follows:
nosign: negative numbers are not allowed;

2scompl: 2’s complement encoding;

signbit: sign bit and the absolute value is coded. (Only with integer and enumerated types.)

Examples:

68

//Example number 1): coding with sign bit
type integer INT1

with {

variant "COMP(signbit)";

variant "FIELDLENGTH(8)"

}

const INT1 c_i := -1

//Encoded c_i: 10000001 '81'0

// sign bitl

//Example number 2): two's complement coding
type integer INT2 with {variant "COMP(2scompl)";
variant "FIELDLENGTH(8)"

}

const INT2 c_i2 := -1
//Encoded c¢_i2: 11111111 "FF'0

FIELDLENGTH
Attribute syntax: FIELDLENGTH(<parameter>)

Parameters allowed: variable, null_terminated (for charstring and universal charstring types only)
positive integer

Default value: variable, 8 (for integer type only)
Can be used with:

* integer;

e enumerated;

» octetstring;

* charstring;

* bitstring;

* hexstring;

* universal charstring;
e record fields;

* set fields;

* record of types;
* set of types.

Description: FIELDLENGTH specifies the length of the encoded type. The units of the parameter value
for specific types are the following:

* integer, enumerated, bitstring: bits;

69

* octetstring, universal charstring: octets;
* charstring: characters;

* hexstring: hex digits;

* set of/record of: elements.

The value 0 means variable length or, in case of the enumerated type, the minimum number of bits
required to display the maximum enumerated value. Integer cannot be coded with variable length.

If FIELDLENGTH is not specified, but a TTCN-3 length restriction with a fixed length is,
NOTE . .

then the restricted length will be used as FIELDLENGTH.
Examples:

//Example number 1): variable length octetstring
type octetstring 0CTn

with {

variant "FIELDLENGTH(variable)"

¥

//Example number 2): 22 bit length bitstrings
type bitstring BIT22

with {

variant "FIELDLENGTH(22)"

}

type record SomeRecord {
bitstring field
}

with {

variant (field) "FIELDLENGTH(22)"
}

// Null terminated strings
type charstring null_str with {variant "FIELDLENGTH(null_terminated)"}
type universal charstring null_ustr with { variant "FIELDLENGTH(null_terminated)"}

N bit / unsigned N bit

Attribute syntax: [unsigned] <parameter> bit
Parameters allowed: positive integer
Default value: -

Can be used with:

* integer;

70

e enumerated;

» octetstring;

* charstring;

* bitstring;

* hexstring;

e record fields;

* set fields.
Description: This attribute sets the FIELDLENGTH, BYTEORDER and COMP attributes to the following
values:

* BYTEORDER is set to last.

* N bit sets COMP to signbit, while unsigned N bit sets COMP to nosign (its default value).

* Depending on the encoded value’s type FIELDLENGTH is set to:
integer, enumerated, bitstring, boolean: N;
octetstring, charstring: N/8;
hexstring: N /4.

If FIELDLENGTH is not specified, but a TTCN-3 length restriction with a fixed length is,

NOTE
then the restricted length will be used as FIELDLENGTH.

The [unsigned] <parameter> bits syntax is also supported but the usage of bit keyword is preferred.

Examples:

71

//Example number 1): integer types
type integer Short (-32768 .. 32767)
with { variant "16 bit" };

// is equal to:
type integer ShortEq (-32768 .. 32767)
with { variant "FIELDLENGTH(16), COMP(signbit), BYTEORDER(1last)" };

type integer UnsignedlLong (@ .. 4294967295)
with { variant "unsigned 32 bit" };

// is equal to:
type integer UnsignedlLongEq (@ .. 4294967295)
with { variant "FIELDLENGTH(32), COMP(nosign), BYTEORDER(last)" };

//Example number 2): string types
type hexstring HStr20
with { variant "unsigned 20 bit" };

// 20 bits = 5 hex nibbles, ‘unsigned' is ignored
type hexstring HStr20Eq
with { variant "FIELDLENGTH(5), BYTEORDER(last)" };

type octetstring 0Str32
with { variant "32 bit" };

// 32 bits = 4 octets
type octetstring 0Str32Eq
with { variant "FIELDLENGTH(4), BYTEORDER(last)" };

type charstring CStr64 with
{ variant "64 bit" };

// 64 bits = 8 characters
type charstring CStr64Eq
with { variant "FIELDLENGTH(8), BYTEORDER(last)" };

FORMAT

Attribute syntax: FORMAT (<parameter>)

Parameters allowed: IEEE754 double, IEEE754 float
Default value: IEEE754 double

Can be used with: float type.

Description: FORMAT specifies the encoding format of float values.
IEEE754 double: The float value is encoded as specified in standard IEEE754 using 1 sign bit, 11
exponent bits and 52 bits for mantissa.

72

IEEE754 float: The float value is encoded as specified in standard IEEE754 using 1 sign bit, 8
exponent bits and 23 bits for mantissa.

Examples:

//Example number 1): single precision float
type float Single_float

with {

variant "FORMAT(IEEE754 float)"

}

//Example number 2): double precision float
type float Double_float

with {

variant "FORMAT(IEEE754 double)"

}

Attributes Controlling Conversion of Bitfields into a Bitstream

This section defines the attributes describing how bits and octets are put into the buffer.
BITORDER

Attribute syntax: BITORDER(<parameter>)

Parameters allowed: msb, 1sb

Default value: 1sb

Can be used with: stand-alone types or the field of a record or set.

Description: This attribute specifies the order of the bits within an octet. When set to 1sb, the first
bit sent will be the least significant bit of the original byte. When set to msb, the first bit sent will be
the most significant bit of the original byte. When applied to an octetstring using the extension bit
mechanism, only the least significant 7 bits are reversed, the 8th bit is reserved for the extension
bit.

Examples:

// Example number 1)
type octetstring OCT
with {

variant "BITORDER(1sb)"
}

const OCT c_oct := "123456'0
//The encoded bitfield: 01010110 00110100 00010010

// last octet AMfirst octet
// The buffer will have the following content:

73

74

// 00010010
// 00110100
// 01010110

//The encoding result in the octetstring '123456'0

//Example number 2)
type octetstring 0CTrev
with {

variant "BITORDER(msb)"
}

const OCTrev c_octr := '123456'0
//The encoded bitfield: 01010110 00110100 00010010
// last octet” Afirst octet

//The buffer will have the following content:
// 01001000
// 00101100
// 01101010

//The encoding results in the octetstring '482C6A'0
//Example number 3)

type bitstring BIT12 with {
variant "BITORDER(1sb), FIELDLENGTH(12)"

}

const BIT12 c_bits:="101101101010'B
//The encoded bitfield: 1011 01101010

// last octet™ Afirst octet

The buffer will have the following content:
// 01101010

/7 1011

// M next field

//The encoding will result in the octetstring '6A.9'0

//Example number 4)

type bitstring BIT12rev with {

variant "BITORDER(msb), FIELDLENGTH(12)"
}

const BIT12 c_BIT12rev:="'101101101010'B
//The encoded bitfield: 1011 01101010
// last octet” Afirst octet

//The buffer will have the following content:

// 01010110

// 1101

// ™ next field

//The encoding will result in the octetstring '56.D'0

BYTEORDER

Attribute syntax: BYTEORDER(<parameter>)

Parameters allowed: first, last

Default value: first

Can be used with: stand-alone types or the field of a record or set.

Description: The attribute determines the order of the bytes in the encoded data.

» first: The first octet placed first into the buffer.

* last: The last octet placed first into the buffer.

Comment: The attribute has no effect on a single octet field.

The attribute works differently for octetstring and integer types. The ordering of
bytes is counted from left-to-right (starting from the MSB) in an octetstring but

NOTE right-to-left (starting from the LSB) in an integer. Thus, the attribute
BYTEORDER(first) for an octetstring results the same encoded value than
BYTEORDER(1ast) for an integer having the same value.

Examples:

//Example number 1)

type octetstring OCT

with {

variant "BYTEORDER(first)"
}

const OCT c_oct := '123456'0
//The encoded bitfield: 01010110 00110100 00010010
// last octet” Afirst octet

The buffer will have the following content:
// 00010010
// 00110100
// 01010110

//The encoding will result in the octetstring '123456'0

//Example number 2)
type octetstring 0CTrev

75

with {variant "BYTEORDER(1last)"
}

const OCTrev c_octr := '123456'0
//The encoded bitfield: 01010110 00110100 00010010
// last octet” Afirst octet

//The buffer will have the following content:
// 01010110
// 00110100
// 00010010

The encoding will result in the octetstring '563412'0
//Example number 3)

type bitstring BIT12 with {

variant "BYTEORDER(first), FIELDLENGTH(12)"

}

const BIT12 c_bits:='100101101010'B

//The encoded bitfield: 1001 01101010

// last octet™ Afirst octet

The buffer will have the following content:
// 01101010

// ++.1001

// ™ next field

//The encoding will result in the octetstring '6A.9'0
//Example number 4)

type bitstring BIT12rev with {

variant "BYTEORDER(1last), FIELDLENGTH(12)"

}

const BIT12rev c_bits:='100101101010'B

//The encoded bitfield: 1001 01101010

// last octet” AMfirst octet

//The buffer will have the following content:

// 10010110

// +++.1010

// " next field

//The encoding will result in the octetstring '96.A'0

FIELDORDER
Attribute syntax: FIELDORDER(<parameter>)
Parameters allowed: msb, 1sb

Default value: 1sb

76

Can be used with: record or set types. It can also be assigned to a group of fields of a record.

Description: The attribute specifies the order in which consecutive fields of a structured type are
placed into octets. * msb: coded bitfields are concatenated within an octet starting from MSB, when
a field stretches the octet boundary, it continues at the MSB of next the octet. * 1sb: coded bitfields
are concatenated within an octet starting from LSB, when a field stretches the octet boundary, it
continues at the LSB of next the octet.

Comment: Fields within an octet must be coded with the same FIELDORDER.

Fields are always concatenated in increasing octet number direction.

FIELDORDER has a slightly different effect than order attributes. While the FIELDORDER shifts the
location of coded bitfields inside octets, the order attributes describes the order of the bits within a
bitfield.

There is NO connection between the effect of the FIELDORDER and the effects of the other order
attributes.

The attribute does not extend to lower level structures. If the same field order is
NOTE desired for the fields of a lower level record/set, then that record/set also needs a

FIELDORDER attribute.

Examples:

77

//Example number 1)
type record MyRec_1sb {
BIT1 field1,

BIT2 field2,

BIT3 fields3,

BIT4 field4,

BIT6 field5

}

with { variant "FIELDORDER(1sb)" }
const MyRec_lsb c_pdu := {
field1:="'1'B // bits of fieldl: a
field2:="'00'B // bits of field2: b
field3:='"111'B // bits of field3: c
field4:="0000'B // bits of field4: d
field5:="111111'B // bits of field5: e
}

//Encoding of c_pdu will result in:
// 00111001 ddcccbba

// 11111100 eeeeeedd

//Example number 2)

type record MyRec_msb {
BIT1 field1,
BIT2 field2,
BIT3 field3,
BIT4 field4,
BIT6 field5

}

with { variant "FIELDORDER(msb)" }
const MyRec_msb c_pdu2 := {
field1:='1'B // bits of fieldl: a

field2:='00'B // bits of field2: b
field3:="111'B // bits of field3: c
field4:='0000'B // bits of field4: d

field5:="111111'B // bits of field5: e
}

//Encoding of c_pdu2 will result in:

// 10011100 abbcccdd
// 00111111 ddeeeeee

HEXORDER
Attribute syntax: HEXORDER(<parameter>)

Parameters allowed: low, high

78

Default value: low
Can be used with: hexstring or octetstring type.

Description: Order of the hexs in the encoded data. * low: The hex digit in the lower nibble of the
octet is put in the lower nibble of the octet in the buffer. * high: The hex digit in the higher nibble of
the octet is put in the lower nibble of the octet in the buffer. (The value is swapped)

NOTE Only the whole octet is swapped if necessary. For more details see the example.

Examples:

79

//Example number 1)
type hexstring HEX_high
with {variant "HEXORDER(high)"}

const HEX_high c_hexs := '"12345'H
//The encoded bitfield: 0101 00110100 00010010
// last octet™ Afirst octet

//The buffer will have the following content:

// 00010010 12

// 00110100 34

// -+-.0101 .5

// " next field

//The encoding will result in the octetstring '1234.5'0

//Example number 2)

type hexstring HEX_low

with {variant "HEXORDER(1low)"}
const HEX low c_hexl := '12345'H

//The encoded bitfield: 0101 00110100 00010010

// last octet™ Afirst octet

//The buffer will have the following content:

// 00100001 21

// 01000011 43

// ++.0101 .5 <not twisted!

// N next field

//The encoding will result in the octetstring '2143.5'0

//Example number 3)
type octetstring OCT
with {variant "HEXORDER(high)"}

const OCT c_hocts := "1234'0

//The encoded bitfield: 00110100 00010010

// last octet™ Afirst octet

//The buffer will have the following content:

// 00100001 21

// 01000011 43

//The encoding will result in the octetstring '2143'0

CSN.1L/H
Attribute syntax: CSN.1 L/H
Default value: unset

Can be used with: all basic types, records/sets/unions (in which case the attribute is set for all fields
of the record/set/union)

80

Description: If set, the bits in the bitfield are treated as the relative values L and H from CSN.1
instead of their absolute values (0 is treated as L and 1 is treated as H). These values are encoded in
terms of the default padding pattern '2B’0 ('00101011’B), depending on their position in the
bitstream.

Practically the bits in the bitfield are XOR-ed with the pattern '2B’0O before being inserted into the
stream.

Example:

type integer uint16_t
with { variant "FIELDLENGTH(16)" variant "CSN.1 L/H" }

const uint16_t c_val := 4080;

// Without the variant attribute "CSN.1 L/H" this would be encoded as '11110000
00001111'B

// With the variant attribute "CSN.1 L/H" this would be encoded as '11011011
00100100'B

Extension Bit Setting Attributes

This section defines the attributes describing the extension bit mechanism.

The extension bit mechanism allows the size of an Information Element (IE) to be increased by
using the most significant bit (MSB, bit 7) of an octet as an extension bit. When an octet within an IE
has bit 7 defined as an extension bit, then the value "0' in that bit position indicates that the
following octet is an extension of the current octet. When the value is "1, the octet is not continued.

EXTENSION_BIT

Attribute syntax: EXTENSION_BIT(<parameter>)
Parameters allowed: no, yes, reverse

Default value: none

Can be used with:

octetstring,

(fields of @) record,

* set,

* record of,

* set of.
Description: When EXTENSION_BIT is set to yes, then each MSB is set to 0 except the last one which is
set to 1. When EXTENSION BIT is set to reverse, then each MSB is set to 1 and the MSB of the last octet

is set to 0 to indicate the end of the Information Element. When EXTENSION_BIT is set to no, then no
changes are made to the MSBs.

81

In case of the types record of and set of the last bit of the element of the structured
type will be used as EXTENSION_BIT. The data in the MSBs will be overwritten during
the encoding. When EXTENSION_BIT belongs to a record, the field containing the

NOTE
EXTENSION_BIT must explicitly be declared in the type definition. Also the last bit of
the element of record of and set of type shall be reserved for EXTENSION_BIT in the
type definition.
Examples:

//Example number 1)

octetstring 0CTn

with {variant "EXTENSION BIT(reverse)"}
const OCTn c_octs:="'586211'0

//The encoding will have the following result:
// 11011000

// 11100010

// 00010001

// 0 the overwritten EXTENSION_BITs

//The encoding will result in the octetstring 'D8E211'0
//Example number 2)

type record Rec3 {
BIT7 field1,

BIT1 extbit1,

BIT7 field2 optional,
BIT1 extbit2 optional
}

with { variant "EXTENSION_BIT(yes)" }
const Rec3 c_MyRec{
field1:='1000001'B,

extbit1:="'1'B,

field2:='1011101'B,

extbit2:="'0'B

+

//The encoding will have the following result:
// 01000001

// 11011101

// 0 the overwritten EXTENSION BITs

The encoding will result in the octetstring '41DD'0

//Example number 3)
type record Rec4{
BIT11 field1,

BIT1 extbit

}

82

type record of Rec4 Reclist

with { variant "EXTENSION_BIT(yes)"}
const Reclist c_recs{

{ field1:="'10010011011'B, extbit:="1'B}
{ field1:="11010111010'B, extbit:="0'B}
+

//The encoding will have the following result:
// 10011011

// 10100100

//7 11101011

// 0 the overwritten EXTENSION_BITs

//The encoding will result in the octetstring '9BA4EB'0

EXTENSION BIT GROUP
Attribute syntax: EXTENSION_BIT_GROUP(<param1, param2, param3>)

Parameters allowed: param1: no, yes, reverse
param2: first_field_name,
param3: last_field_name

Default value: none
Can be used with: a group of record fields

Description: The EXTENSION_BIT_GROUP limits the extension bit mechanism to a group of the fields of
a record instead of the whole record.

first_field_name: the name of the first field in the

grouplast_field_name: the name of the last field in the group

Multiple group definition is allowed to define more groups within one record. Every

NOTE .
group must be octet aligned and the groups must not overlap.

Example:

83

type record MyPDU{

0CT1 header,

BIT7 octet2info,

BIT1 extbit1,

BIT7 octet2ainfo optional,

BIT1 extbit2 optional,

0CT1 octet3,

BIT7 octet4info,

BIT1 extbit3,

BIT7 octet4ainfo optional,

BIT1 extbit4 optional,

} with {

variant "EXTENSION_BIT_GROUP(yes,octet2info,extbit2)";
variant "EXTENSION_BIT_GROUP(yes,octet4info,extbit4)"

}

const MyPDU c_pdu:={
header:='0F'0,
octet2info:="'1011011'8,
extbit1:= '0'B,
octet2ainfo:= omit,
extbit2:= omit,
octet3:='00'0,
octet4info:='0110001'B,
extbit3:="'1'B,
octet4ainfo:='0011100'B,
extbit4:='0"'B,

}

//The encoding will have the following result:

// 00001111

[/ **1**%1011011

// 00000000

// **0**0110001

// **1**0011100

// U the overwritten extension bits

//The encoding will result in the octetstring: '@FDB@@319C'0

Attributes Controlling Padding

This section defines the attributes that describe the padding of fields.
ALIGN

Attribute syntax: ALIGN(<parameter>)

Parameters allowed: left, right

Default value: left for octetstrings, right for all other types

84

Can be used with: stand-alone types or the field of a record or set.

Description: This attribute has meaning when the length of the actual value can be determined and
is less than the specified FIELDLENGTH. In such cases the remaining bits/bytes will be padded with
zeros. The attribute ALIGN specifies the sequence of the actual value and the padding within the
encoded bitfield.

right: The LSB of the actual value is aligned to the LSB of coded bitfield

left: The MSB of the actual value is aligned to the MSB of coded bitfield

It has no meaning during decoding except if the length of the actual value can be
NOTE determined from the length restriction of the type. In this case the ALIGN also
specifies the order of the actual value and the padding within the encoded bitfield.

Examples:

//Example number 1)

type octetstring 0CT10
with {

variant "ALIGN(left)";
variant "FIELDLENGTH(10)"
}

const OCT10 c_oct := '0102030405'0

//Encoded value: '01020304050000000000'0
//The decoded value: '01020304050000000000'0
//Example number 2)

type octetstring 0CT101length5 length(5)

with {

variant "ALIGN(left)";

variant "FIELDLENGTH(10)"

}

const 0CT101length5 c_oct5 := '0102030405'0
//Encoded value: '01020304050000000000'0
//The decoded value: '0102030405'0

PADDING
Attribute syntax: PADDING(<parameter>)
Parameters allowed:

* no

* yes

* octet
* nibble
* word16

85

e dword32

* integer to specify the padding unit and allow padding.
Default value: none
Can be used with: This attribute can belong to any types.

Description: This attribute specifies that an encoded type shall end at a boundary fixed by a
multiple of padding unit bits counted from the beginning of the message. The default padding unit is
8 bits. If PADDING is set to yes, then unused bits of the last octets of the encoded type will be filled
with padding pattern. If PADDING is set to no, the next field will use the remaining bits of the last
octet. If padding unit is specified, then the unused bits between the end of the field and the next
padding position will be filled with padding pattern.

It is possible to use different padding for every field of structured types. The
NOTE padding unit defined by PADDING and PREPADDING attributes can be different for the
same type.

Examples:

//Example number 1)
type BIT5 Bit5padded with { variant "PADDING(yes)"}

const Bit5padded c_bits:='10011'B

//The encoding will have the following result:

// 00010011

// U the padding bits

//The encoding will result in the octetstring '13'0

//Example number 2)

type record Paddedrec{

BIT3 field1,

BIT7 field2

} with { variant "PADDING(yes)"}

const Paddedrec c_myrec:={
field1:='101'B,
field2:='0110100'B

}

//The encoding will have the following result:

// 10100101

// 00000001

// 0 the padding bits

//The encoding will result in the octetstring 'A501'0

//Example number 3): padding to 32 bits

86

type BIT5 Bit5padded_dw with { variant "PADDING(dword32)"}
const Bit5padded_dw c_dword:="10011'B

//The encoding will have the following result:

// 00010011

// 00000000

// 00000000

// 00000000

// U the padding bits

The encoding will result in the octetstring '13000000'0

//Example number 4)

type record Paddedrec_dw{

BIT3 field1,

BIT7 field2

} with { variant "PADDING(dword32)"}
const Paddedrec_dw c_dwords:={
field1:='101'B,

field2:='0110100'B

}

//The encoding will have the following result:

// 10100101

// 00000001

// 00000000

// 00000000

// U the padding bits

The encoding will result in the octetstring 'A5010000'0

//Example number 5)
type record ChangeActiveMaskRes
{
INT1 vtfunction (173),
INT2 newActiveMaskObjectID
//we want this padded to 64 bits
} with {variant "PADDING(88), PADDING_PATTERN('11111111'B)"}

type record Message

{
0CT3 pgn,
record {
record
{
ChangeActiveMaskRes changeActiveMaskRes
} vt2ecu
} pdu

} with { variant "" };

const Message c_message:={
pgn := '00E600'0,

pdu := {
vt2ecu := {
changeActiveMaskRes := {
vtfunction := 173,
newActiveMaskObjectID := 1005

}

The encoding will result in the following octetstring: '@OE6@QADED@3FFFFFFFFFF'O
//3 bytes pgn followed by 3 bytes pdu padded to 88 bits from the start of the message
//64 bits from the start of pdu

//Example number 6)
type record ChangeActiveMaskRes
{
INT1 vtfunction (173),
INT2 newActiveMaskObjectID
//we want this padded to 64 bits
+ with {variant "PADDING(64), PADDING_PATTERN('11111111'B)"}

type record Message

{
record {
record
{
ChangeActiveMaskRes changeActiveMaskRes
} vt2ecu
} pdy,
0CT3 pgn

} with { variant "" };

const Message c_message:={
pdu := {
vt2ecu := {
changeActiveMaskRes := {
vtfunction := 173,
newActiveMaskObjectID := 1005

}

I

pgn := "00E600'0
}

The encoding will result in the following octetstring: 'ADED@3FFFFFFFFFFOQE6QQ'0
//3 bytes pdu padded to 64 bits from the start of the message
//followed by 3 bytes of pgn

PADDING_PATTERN

88

Attribute syntax: PADDING_PATTERN(<parameter>)

Parameters allowed: bitstring

Default value: '00B

Can be used with: any type with attributes PADDING or PREPADDING.

Description: This attribute specifies padding pattern used by padding mechanism. The default
padding pattern is '0’B.If the specified padding pattern is shorter than the padding space, then the
padding pattern is repeated.

Comment: For a particular field or type only one padding pattern can be specified for PADDING and
PREPADDING.

Examples:

89

//Example number 1)
type BIT8 Bit8padded with {
variant "PREPADDING(yes), PADDING_PATTERN('1'B)"

}

type record PDU {
BIT3 field1,
Bit8padded field?

} with {variant ""}

const PDU c_myPDU:={
field1:='101'B,
field2:='10010011'B
}

//The encoding will have the following result:

// 11111101

// 10010011

//the padding bits are indicated in bold

//The encoding will result in the octetstring 'FD93'0
//Example number 2): padding to 32 bits

type BIT8 Bit8pdd with {
variant "PREPADDING(dword32), PADDING_PATTERN('10'B)"

}

type record PDU{

BIT3 field1,

Bit8pdd field2

} with {variant ""}
const PDU c_myPDUplus:={
field1:="101'B,
field2:="'10010011'B

+

//The encoding will have the following result:
// 01010101

// 01010101

// 01010101

// 01010101

// 10010011

//The padding bits are indicated in bold

//The encoding will result in the octetstring '5555555593'0

PADDALL
Attribute syntax: PADDALL(<parameter>)

Can be used with: record or set.

90

Description: If PADDALL is specified, the padding parameter specified for a whole record or set will
be valid for every field of the structured type in question.

If a different padding parameter is specified for any fields it won’t be overridden by

NOTE
the padding parameter specified for the record.

Examples:

//Example number 1)

type record Paddedrec{

BIT3 field1,

BIT7 field2

} with { variant "PADDING(yes)"}
const Paddedrec c_myrec:={
field1:='101'B,
field2:='0110100'B

}

//The encoding will have the following result:

// 10100101

// 00000001

// U the padding bits

//The encoding will result in the octetstring 'A501'0

//Example number 2)

type record Padddd{

BIT3 field1,

BIT7 field2

} with { variant "PADDING(yes), PADDALL"}

const Padddd c_myrec:={
field1:='101'B,
field2:='0110100'B

}

//The encoding will have the following result:
// 00000101

// 00110100

// U the padding bits

//The encoding will result in the octetstring '0534'0
//Example number 3)

type record Padded{

BIT3 field1,

BIT5 field2,

BIT7 field3
} with { variant "PADDING(yes), PADDALL"}

91

const Padded c_ourrec:={
field1:='101'B,
field2:="'10011'B,
field3:='0110100'B

}

//The encoding will have the following result:
// 00000101

// 00010011

// 00110100

// U the padding bits

//The encoding will result in the octetstring '051334'0
//Example number 4): field1 shouldn't be padded

type record Paddd{

BIT3 field1,

BIT5 field2,

BIT7 field3

} with { variant "PADDING(yes), PADDALL";
variant (field1) "PADDING(no)" }
const Paddd c_myrec:={
field1:='101'B,
field2:='10011'B,
field3:='0110100'B

}

//The encoding will have the following result:

// 10011101 < field1 is not padded!!!

// 00110100

// U the padding bit

//The encoding will result in the octetstring '9D34'0

PREPADDING
Attribute syntax: PREPADDING(<parameter>)
Parameters allowed:

°* no

* yes

e octet

* nibble
e word16

dword32

* integer to specify the padding unit and allow padding.

92

Default value: none
Can be used with: any type.

Description: This attribute specifies that an encoded type shall start at a boundary fixed by a
multiple of padding unit bits counted from the beginning of the message. The default padding unit
is 8 bits. If PREPADDING is set to yes, then unused bits of the last octets of the previous encoded type
will be filled with padding pattern and the actual field starts at octet boundary. If PREPADDING is set
to no, the remaining bits of the last octet will be used by the field. If padding unit specified, then the
unused bits between the end of the last field and the next padding position will be filled with
padding pattern and the actual field starts at from this point.

It is possible to use different padding for every field of structured types. The
NOTE padding unit defined by PADDING and PREPADDING attributes can be different for the

same type.

Examples:

93

//Example number 1)

type BIT8 bit8padded with { variant "PREPADDING(yes)"}
type record PDU{

BIT3 field1,

bit8padded field2

} with {variant ""}

const PDU c_myPDU:={

field1:='101'B,

field2:='10010011'B

}

//The encoding will have the following result:

// 00000101

// 10010011

//The padding bits are indicated in bold

//The encoding will result in the octetstring '0593'0
//Example number 2): padding to 32 bits

type BIT8 bit8padded_dw with { variant "PREPADDING(dword32)"}
type record PDU{

BIT3 field1,

bit8padded_dw field2

} with {variant ""}

const PDU myPDU:={

field1:="101'B,

field2:="10010011'B

}

//The encoding will have the following result:
// 00000101
// 00000000
// 00000000
// 00000000
// 10010011

//The padding bits are indicated in bold

//The encoding will result in the octetstring '0500000093'0

Attributes of Length and Pointer Field

This section describes the coding attributes of fields containing length information or serving as
pointer within a record.

The length and pointer fields must be of TTCN-3 integer type and must have fixed length.
The attributes described in this section are applicable to fields of a record.

LENGTHTO

94

Attribute syntax: LENGTHTO(<parameter>) [(+'| -') <offset>]
Parameters allowed: list of TTCN-3 field identifiers

Parameter value: any field name

Offset value: positive integer

Default value: none

Can be used with: fields of a record.

Description: The encoder is able to calculate the encoded length of one or several fields and put the
result in another field of the same record. Consider a record with the fields lengthField, field1,
field2 and field3. Here lengthField may contain the encoded length of either one field (for
example, field2), or sum of the lengths of multiple fields ((for example, that of field2 + field3). The
parameter is the field identifier (or list of field identifiers) of the record to be encoded.

If the offset is present, it is added to or subtracted from (the operation specified in the attribute is
performed) the calculated length during encoding. During decoding, the offset is subtracted from or
added to (the opposite operation to the one specified in the attribute is performed) the decoded
value of the length field.

The length is expressed in units defined by the attribute UNIT The default unit is
octet. The length field should be a TTCN-3 integer, bitstring, octetstring or union
type. Special union containing only integer, bitstring or octetstring fields can be
used for variable length field. It must not be used with LENGTHINDEX. The length field
NOTE can be included in to the sum of the lengths of multiple fields (e.g. lengthField +
field2 + field3). The union field is NOT selected by the encoder. So the suitable field
must be selected before encoding! The fields included in the length computing need
not be continuous. If bitstring or octetstring type is used, the length of the field
must be specified either with length() subtyping or with the FIELDLENGTH variant.

Examples:

//Example number 1)
type record Rec {
INT1 len,

0CT3 fieldT,
octetstring field2
}

with {
variant (len) "LENGTHTO(field1)";

variant (len) "UNIT(bits)"
}

//Example number 2)

type record Rec2 {

95

96

INTT len,
0CT3 fieldT,
octetstring field2

}

with {
variant (len) "LENGTHTO(len, field1, field2)"
}

//Example number 3)

type record Rec3 {
INTT len,

0CT3 field1,

0CT1 field2,
octetstring field3
}

with {

variant (len) "LENGTHTO(field1, field3)"
// field2 is excluded!

+

//Example number 4): using union as length field
type union length_union{

integer short_length_field,

integer long_length_field

} with {

variant (short_length_field) "FIELDLENGTH(7)";
variant (long_length_field) "FIELDLENGTH(15)";

}

type record Rec4{

BIT1 flag,

length_union length_field,

octetstring data

} with {

variant (length_field)
"CROSSTAG(short_length_field, flag = '0'B;
long_length_field, flag = '1'B)";

variant (length_field) "LENGTHTO(data)"

}

//Const for short data. Data is shorter than 127 octets:

const Rec4(octetstring oc):={

flag :='0'B,
length_field:={short_length_field:=0},
data := oc

}

//Const for long data. Data is longer than 126 octets:

const Rec4(octetstring oc):={

flag :="'1'B,
length_field:={1long_length_field:=0},
data := oc

+

//Example number 5): with offset
type record Rech {

integer len,

octetstring field

}

with {
variant (len) "LENGTHTO(field) + 1"
+

// { len := 0, field := '12345678'0 } would be encoded into '0512345678'0

// (1 is added to the length of ‘field")

// and '0512345678'0 would be decoded into { len := 4, field := '12345678'0 }
// (1 is subtracted from the decoded value of ‘len')

//Example number 6): with offset

type record Recb {
integer len,
octetstring field
}

with {
variant (len) "LENGTHTO(field) - 2"
}

// { len := 0, field := '12345678'0 } would be encoded into '0212345678'0

// (1 is added to the length of ‘field")

// and '0212345678'0 would be decoded into { len := 4, field := '12345678'0 }
// (1 is subtracted from the decoded value of ‘len')

//Example number 7): octetstring

type record Rec7 {

octetstring len length(1), // length of this field in octet
0CT3 fieldT,

octetstring field?

}

with {

variant (len) "LENGTHTO(field1)";
variant (len) "UNIT(bits)"

}

97

//Example number 8): bitstring
type record Rec8 {

btstring len,

0CT3 fieldT,

octetstring field?

}

with {
variant (len) "FIELDLENGTH(8)"; // length of this field in bits
variant (len) "LENGTHTO(field1)";

variant (len) "UNIT(bits)"
}

LENGTHINDEX

Attribute syntax: LENGTHINDEX (<parameter>)
Parameters allowed: TTCN-3 field identifier
Allowed values: any nested field name
Default value: none

Can be used with: fields of a record.

Description: This attribute extends the LENGTHTO attribute with the identification of the nested field
containing the length value within the field of the corresponding LENGTHTO attribute.

Comment: See also the description of the LENGTHTO attribute.

The field named by LENGTHINDEX attribute should be a TTCN-3 integer, bitstring or

NOTE .
octetstring type.

Example (see also example of LENGTHTO attribute).

98

type integer INT1

with {

variant "FIELDLENGTH(8)"
}

type record InnerRec {
INTT length
}

with { variant "" }
type record OuterRec {
InnerRec lengthRec,
octetstring field

+
with {
variant (lengthRec) "LENGTHTO(field)";

variant (lengthRec) "LENGTHINDEX(length)"
}

POINTERTO

Attribute syntax: POINTERTO(<parameter>)
Parameters allowed: TTCN-3 field identifier
Default value: none

Can be used with: fields of a record.

Description: Some record fields contain the distance to another encoded field. Records can be
encoded in the form of: ptr1, ptr2, ptr3, field1, field2, field3, where the position of fieldN within
the encoded stream can be determined from the value and position of field ptrN. The distance of
the pointed field from the base field will be ptrN * UNIT + PTROFFSET. The default base field is the
pointer itself. The base field can be set by the PTROFFSET attribute. When the pointed field is
optional, the pointer value 0 indicates the absence of the pointed field.

Comment: See also the description of UNIT (0) and PTROFFSET (0) attributes.
NOTE Pointer fields should be TTCN-3 integer type.

Examples:

99

type record Rec {
INTT ptr1,

INTT ptr2,

INT1 ptr3,

0CT3 field1,

0CT3 field2,

0CT3 field3

}

with {

variant (ptr1) "POINTERTO(field1)";
variant (ptr2) "POINTERTO(field2)";
variant (ptr3) "POINTERTO(field3)"
}

const Rec c_rec := {
ptr1 := <any value>,
ptr2 := <any value>,
ptr3 := <any value>,
field1 := '010203'0,

field2 := '040506'0,
field3 := '070809'0
}

//Encoded c_rec: '030507010203040506070809'0//The value of ptr1: 03
//PTROFFSET and UNIT are not set, so the default (@) is being //using.
//The starting position of ptr1: @th bit

//The starting position of fieldl= 3 * 8 + @ = 24th bit.

PTROFFSET

Attribute syntax: PTROFFSET (<parameter>)
Parameters allowed: integer, TTCN-3 field identifier
Default value: 0

Can be used with: fields of a record.

Description: The value of the pointer field calculated as the difference between beginning of the
pointer field and the beginning of the pointed field in bits, minus the pointer offset value, expressed
in whole UNIT (which is 8 bit, an octet by default). The PTROFFSET is measured in bits.

Comment: It can be specified a base field and pointer offset for one field. See also the description of
the attributes POINTERTO (0) and UNIT (0).

Examples:

100

type record Rec {
INT2 ptr1,

INT2 ptr2

0CT3 field1,

0CT3 field2

}

with {

variant (ptr1) "POINTERTO(field1)";
variant (ptr1) "PTROFFSET(ptr2)";
variant (ptr2) "POINTERTO(field2)";
variant (ptr2) "PTROFFSET(field1)"

}

//In the example above the distance will not include//the pointer itself.

UNIT
Attribute syntax: UNIT(<parameter>)
Parameters allowed:

* hits

* octets

* nibble

* word16
* dword32
* elements

* integer
Default value: octets
Can be used with: fields of a record.

Description: UNIT attribute is used in conjunction with the LENGTHTO (0) or POINTERTO (0) attributes.
Length indicator fields may contain length expressed in indicated number of bits.

Comment: See also description of the LENGTHTO and POINTERTO attributes. The elements can be used
with LENGTHTO only if the length field counts the number of elements in a record/set of field.

Examples:

101

//Example number 1): measuring length in 32 bit long units
type record Rec {

INT1 1length,

octetstring field

}

with {

variant (length) "LENGTHTO(field)";
variant (length) "UNIT(dword32)"

}

//Example number 2): measuring length in 2 bit long units
type record Rec {

INTT length,

octetstring field

}

with {

variant (length) "LENGTHTO(field)";
variant (length) "UNIT(2)"

}

//Example number 3): counting the number of elements of record of field
type record of BIT8 Bitrec

type record Rec{

integer length,

Bitrec data

}
with{
variant (length) "LENGTHTO(data)";

variant (length) "UNIT(elements)"
}

Attributes to Identify Fields in Structured Data Types

This section describes the coding attributes which during decoding identifies the fields within
structured data types such as record, set or union.

PRESENCE

Attribute syntax: PRESENCE(<parameter>)

Parameters allowed: a presence_indicator expression (see Description)
Default value: none

Can be used with: optional fields of a record or set.

Description: Within records some fields may indicate the presence of another optional field. The

102

attribute PRESENCE is used to describe these cases. Each optional field can have a PRESENCE definition.
The syntax of the PRESENCE attribute is the following: a PRESENCE definition is a presence_indicator
expression. Presence_indicators are of form <key> = <constant> or {<key1> = <constant1>, <key2>
= <constant2>, -+ <keyN> = <constantN>} where each key is a field(.nestedField) of the record, set or
union and each constant is a TTCN-3 constant expression (for example, 22, '2500 or '10011010B).

NOTE The PRESENCE attribute can identify the presence of the whole record. In that case
the field reference must be omitted.
Examples:

type record Rec {
BIT1 presence,

0CT3 field optional
}

with {
variant (field) "PRESENCE(presence = '1'B)"
+

type record R2{

0CT1 header,

0CT1 data

} with {variant "PRESENCE(header='11'0)"}

TAG

Attribute syntax: TAG(<parameter>)

Parameters allowed: list of field_identifications (see Description)
Default value: none

Can be used with: record or set.

Description: The purpose of the attribute TAG is to identify specific values in certain fields of the set,
record elements or union choices. When the TAG is specified to a record or a set, the presence of the
given element can be identified at decoding. When the TAG belongs to a union, the union member
can be identified at decoding. The attribute is a list of field_identifications. Each
field_identification consists of a record, set or union field name and a presence_indicator
expression separated by a comma (,). Presence_indicators are of form <key> = <constant> or {
<key1> = <constant1>, <key2> = <constant2>, -+ <keyN> = <constantN> } where each key is a
field(.nestedField) of the record, set or union and each constant is a TTCN-3 constant expression
(e.g. 22, '2500 or '10011010B).There is a special presence_indicator: OTHERWISE. This indicates the
default union member in a union when the TAG belongs to union.

TAG works on non-optional fields of a record as well. It is recommended to use the

NOTE
attributes CROSSTAG or PRESENCE leading to more effective decoding.

103

Examples:

//Example number 1): set
type record InnerRec {
INTT tag,

0CT3 field

}

with { variant "" }
type set SomeSet {
InnerRec field1 optional,
InnerRec field2 optional,
InnerRec field3 optional

}

with {

variant "TAG(field1, tag = 1;
field2, tag = 2;

field3, tag = 3)"

}

//Example number 2): union
type union SomeUnion {
InnerRec fieldT,

InnerRec field2,

InnerRec field3

}

with {

variant "TAG(field1, tag = 1;
field2, tag = 2;

field3, OTHERWISE)"

}

If neither tag=1 in field1 nor tag=2 in field2 are matched, field3 is selected.
//Example number 3): record

type record MyRec{

0CT1 header,

InnerRec field1 optional

}

with{
variant "TAG(field1, tag = 1)"
+

//field1 is present when in field1 tag equals 1.

CROSSTAG

104

Attribute syntax: CROSSTAG(<parameter>)

Parameters allowed: list of union "field_identifications" (see Description)
Default value: none

Can be used with: union fields of records.

Description: When one field of a record specifies the union member of another field of a record,
CROSSTAG definition is used. The syntax of the CROSSTAG attribute is the following. Each union
field can have a CROSSTAG definition. A CROSSTAG definition is a list of union field_identifications.
Each field_identification consists of a union field name and a presence_indicator expression
separated by a comma (,). Presence_indicators are of form <key> = <constant> or {<keyl> =
<constant1>, <key2> = <constant2>, -+ <keyN> = <constantN>} where each key is a field(.nestedField)
of the record, set or union and each constant is a TTCN-3 constant expression (for example, 22, '2500
or '10011010B).There is a special presence_indicator: OTHERWISE. This indicates the default union
member in union.

The difference between the TAG and CROSSTAG concept is that in case of TAG the field
identifier is inside the field to be identified. In case of CROSSTAG the field identifier

NOTE can either precede or succeed the union field it refers to. If the field identifier
succeeds the union, they must be in the same record, the union field must be
mandatory and all of its embedded types must have the same fixed size.

Examples:

type union AnyPdu {
PduTypel typel,
PduType2 type2,
PduType3 type3

}

with { variant "" }
type record PduWithId {
INT1 protocolld,

AnyPdu pdu

}

with {
variant (pdu) "CROSSTAG(typel, { protocolld = 1,
protocolld = 11 };

type2, protocolld = 2;
type3, protocolld = 3)"
¥

REPEATABLE

Attribute syntax: REPEATABLE (<parameter>)

105

Parameters allowed: yes, no
Default value: none
Can be used with: record/set of type fields of a set.

Description: The element of the set can be in any order. The REPEATABLE attribute controls whether
the element of the record or set of can be mixed with other elements of the set or they are grouped
together.

NOTE It has no effect during encoding.

Examples:

// Three records and a set are defined as follows:

type record R1{

0CT1 header,

0CT1 data

} with {variant "PRESENCE(header="AA'0)"}

type record of R1 R1list;

type record R2{

0CT1 header,

0CT1 data

} with {variant "PRESENCE(header='11'0)"}

type record R3{

0CT1 header,

0CT1 data

} with {variant "PRESENCE(header='22'0)"}

type set S1 {
R2 field1,

R3 field2,
R11list field3
}

with {variant (field3) "REPEATABLE(yes)"}

//The following encoded values have equal meaning:
// (The value of R1 is indicated in bold.)
//examplel: 1145**AAQTAA02AA03**2267

//example2: 114**5AA01**2267**AA02AAQ3**
//example3: **AAQ1**2267**AA02**1145*AA03*

The decoded value of S1 type:

{

106

fieldT:={
header:='11'0,
data:="'45'0

+

field2:={
header:='22'0,
data:="67'0

+

field3:={

{header:="AA"'0,data:="'01'0},
{header:="AA'0,data:="02"'0},
{header:="AA'0,data:="03'0}
}

}

type set S2 {
R2 field1,

R3 field2,
R1list field3

+
with {variant (field3) "REPEATABLE(no)"}

//0nly the examplel is a valid encoded value for S2, because
//the elements of the field3 must be groupped together.

FORCEOMIT

Attribute syntax: FORCEOMIT (<parameter>)

Parameters allowed: list of TTCN-3 field identifiers (can also be nested)
Default value: none

Can be used with: fields of a record/set.

Description: Forces the lower-level optional field(s) specified by the parameters to always be
omitted.

It has no effect during encoding. It only affects the specified fields (which are
NOTE probably in a different type definition) if they are decoded as part of the type this

instruction is applied to.

Examples:

type record InnerRec {
integer opt1 optional,
integer opt2 optional,

107

integer opt3 optional,
integer mand

}

// Note: decoding a value of type InnerRec alone does not force any of the
// fields mentioned in the variants below to be omitted

type record OuterRec? {
integer f1,
InnerRec f2,

integer f3
}
with {
variant (f2) "FORCEOMIT(opt1)"
}
// Decoding '0102030405'0 into a value of type OuterRecl results in:
/7 {
// 1 =1,
// f2 := { opt1 := omit, opt2 := 2, opt3 := 3, mand := 4 },
// f3 :=5
//}

type record OuterRec2 {
QuterRec? f
}
with {
variant (f) "FORCEOMIT(f2.opt2)"
}

// Decoding '01020304'0 into a value of type OuterRec2 results in:
/7 {

/] f = {

// f1 :=1,

// f2 := { opt1 := omit, opt2 := omit, opt3 := 2, mand := 3 },
// f3 =4

// %}

/1}

type record OuterRec3 {
QuterRec1 f1,
QuterRec1 f2
+
with {
variant (f1) "FORCEOMIT(f2.opt2, f2.opt3)"
variant (f2) "FORCEOMIT(f2.opt2), FORCEOMIT(f2.opt3)"
}

// Decoding '010203040506'0 into a value of type OuterRec3 results in:
/7 {
/1=

108

// f1:=1,

// f2 := { opt1 := omit, opt2 := omit, opt3 := omit, mand := 2 },
// f3 :=3

/l Y,

/] 12 = {

// f1 := 4,

// f2 := { opt1 := omit, opt2 := omit, opt3 := omit, mand := 5 },
// f3 := 6

//}

/1}

Type-specific attributes

IntX

Attribute syntax: IntX

Default value: none

Can be used with: integer types

Description: Encodes an integer value as the IntX type in the ETSI Common Library (defined in ETSI
TS 103 097).

This is a variable length encoding for integers. Its length depends on the encoded value (but is
always a multiple of 8 bits).

The data starts with a series of ones followed by a zero. This represents the length of the encoded
value: the number of ones is equal to the number of additional octets needed to encode the value
besides those used (partially) to encode the length. The following bits contain the encoding of the
integer value (as it would otherwise be encoded).

Comment: Since the length of the encoding is variable, attribute FIELDLENGTH is ignored.
Furthermore, IntX also sets BITORDER and BITORDERINFIELD to msb, and BYTEORDER to first, overwriting
any manual settings of these attributes.

Only attribute COMP can be used together with IntX (if it’s set to signbit, then the sign bit will be the
first bit after the length).

Restrictions: Using IntX in a record or set with FIELDORDER set to 1sb is only supported if the IntX
field starts at the beginning of a new octet. A compiler error is displayed otherwise. The IntX field
may start anywhere if the parent record/setls FIELDORDER is set to msb.

Examples:

109

// Example 1: Standalone IntX integer type with no sign bit:
type integer IntX_unsigned with { variant "IntX" }

// Encoding integer 10:
// 00001010
// N length bit (there are no ones as no additional octets are needed)

// Encoding integer 2184:
// 10001000 10001000
// ™M length bits (one extra octet is needed after the partial length octet)

// Example 2: Standalone IntX integer type with sign bit:

type integer IntX_signed with { variant "IntX, COMP(signbit)" }
// Encoding integer -2184:

// 10101000 10001000

// length bits AA

// N sign bit

// Example 3: Standalone IntX integer type with 2's complement:
type integer IntX_compl with { variant "IntX, COMP(2scompl)" }
// Encoding integer -2184:

// 10110111 01111000

// M length bits

// Example 4: IntX integer record field (starting in a partial octet):
type record RecIntXPartial {

integer 1,

integer ix,

bitstring bs

}

with {

variant "FIELDORDER(msb)";

variant (i) "FIELDLENGTH(12), BITORDER(msb)";

variant (i) "BYTEORDER(first), BITORDERINFIELD(msb)";
variant (ix) "IntX";

variant (bs) "FIELDLENGTH(8)";

}

// Encoding record value { i := 716, ix := 716, bs := '10101010'B }:

// 00101100 11001000 00101100 11001010 10100000

[/ NMANANAN AAAN field “i' (same encoding as ‘ix', but with no length bits)

// field “ix' AMA AMMAAAAN AAAA (the first 2 bits are the length bits)

// field “bs' AAAA AAAA

// Note: setting the record's FIELDORDER to ‘1sb' in this case is not supported
// and would cause the mentioned compiler error.

110

Obsolete Attributes

This section describes the obsolete attributes. These attributes are kept for compatibility reason.
The usage of the obsolete attributes is not recommended in new developments.

BITORDERINOCTET

The attribute has the same meaning and syntax as BITORDER. In new developments only the attribute
BITORDER may be used.

TOPLEVEL BITORDER

Attribute syntax: TOPLEVEL(BITORDER(<parameter>))
Parameters allowed: msb, 1sb

Default value: msb

Can be used with: a toplevel type.

Description: This attribute specifies the order of the bits within an octet. When set to 1sb, the first
bit sent will be the least significant bit of the original byte.

Comment:

Example:

type record WholePDU {
Field1 field1,
Field2 field2

}

with { variant "TOPLEVEL(BITORDER(1sb))" }
const WholePDU c_pdu := {

"12'0,

"12'0

}

//Encoding of c_pdu will result in '4848'0.

4.23.5. TTCN-3 Types and Their Attributes
This section lists the TTCN-3 types along with the attributes allowed to be used with the types.
BITSTRING

Coding: The bitstring is represented by its binary value. The LSB of the binary form of a bitstring is
concatenated to the LSB of the bitfield. If the length of the bitstring is shorter than the specified
FIELDLENGTH, aligning is governed by the attribute ALIGN. The FIELDLENGTH default value for
bitstring typeis variable.

111

Attributes allowed:

* ALIGN (0),

BITORDER (@),

BITORDERINFIELD (0),

BYTEORDER (@),

FIELDLENGTH (@),
* N bit / unsigned N bit (0).

Example:

//Example number 1): variable length bitstring
const bitstring c_mystring:="1011000101'B

//The resulting bitfield: 1011000101

//The encoding will have the following result:
// 11000101

V/ARRE 10

//Example number 2): fixed length bitstring

type bitstring BIT7 with { variant "FIELDLENGTH(7)" }
const BIT7 c_ourstring:='0101'B

//The resulting bitfield: 0000101

//Example number 3): left aligned bitstring
type bitstring BIT7align with {

variant "FIELDLENGTH(7), ALIGN(left)" }

const BIT7align c_yourstring:='0101'B

//The resulting bitfield: 0101000

BOOLEAN

Coding: The boolean value true coded as '1’B,the boolean value false coded as '0’B.If FIELDLENGTH is
specified, the given number of ones (true) or zeros (false) is coded. If the decoded bitfield is zero
the decoded value will be false otherwise true. The default FIELDLENGTH for boolean type is 1.

Attributes allowed: FIELDLENGTH (@), N bit (0).

Examples:

//Example number 1): boolean coded with default length
const boolean c_myvar:=true

//The resulting bitfield: 1

//Example number 2): boolean coded with fixed length
type boolean Mybool with { variant "FIELDLENGTH(8)"}
const Mybool c_ourvar:=true

//The resulting bitfield: 11111111

112

CHARSTRING

Coding: The characters are represented by their ASCII binary value. The first character is put into
the first octet of the bitfield. The second character is put into the second octet of the bitfield and so
on. Thus, the first character is put first into the buffer. If the actual value of charstring is shorter
than the specified FIELDLENGTH, aligning is governed by the attribute ALIGN. The default FIELDLENGTH
for bitstring type is variable. The FIELDLENGTH is measured in chars.

Attributes allowed:

* ALIGN (0),

BITORDER (0),

BITORDERINFIELD (@),

BYTEORDER (@),

FIELDLENGTH (@),

N bit (0)

Examples:

113

//Example number 1): variable length charstring
const charstring c_mystring:="Hello"

//The resulting bitfield: 01101111 01101100 01101100
// 01100101 01001000

//The encoding will have the following result:

// 01001000 "H"

// 01100101 "e"

// 01101100 "1"

// 01101100 "1"

// 01101111 "o"

//Example number 2): fixed length charstring

type charstring CHR6 with { variant "FIELDLENGTH(6)" }

const CHR6 c_yourstring:="Hello"

//The resulting bitfield: 00000000 01101111 01101100 01101100
// 01100101 01001000

//The encoding will have the following result:
// 01001000 "H"
// 01100101 "e"
// 01101100 "1"
// 01101100 "1"
// 01101111 "o"
// 00000000 " "

//Example number 3): left aligned charstring
type charstring CHR6align with {

variant "FIELDLENGTH(6), ALIGN(left)" }

const CHR6align c_string:="Hello"

//The resulting bitfield: 01101111 01101100 01101100 01100101
// 01001000 00000000

//The encoding will have the following result:

// 00000000 " "

// 01001000 "H"

// 01100101 "e"

// 01101100 "1"

// 01101100 "1"

// 01101111 "o"

ENUMERATED

Coding: The enumerated type is coded as an integer value. This numerical value is used during
encoding. The default FIELDLENGTH for enumerated type is the minimum number of bits required to
display the highest enumerated value.

Attributes allowed:

» BITORDER (0),

114

BITORDERINFIELD (0),

BYTEORDER (@),
compP (0),

FIELDLENGTH (@),
* N bit / unsigned N bit (0).

Example:

type enumerated Enumm {zero, one, two, three, four, five}
const Enumm myenum:=two

//The maximum enumerated value: 5 (five)
//Minimum 3 to represent 5.

//The FIELDLENGTH will be 3

//The resulting bitfield: 010

type enumerated Enum { zero(2), one(23), two(4), three(1), four(@), five(5) }
const Enum c_myenum:=two

//The maximum enumerated value: 23 (one)
//Minimum 5 bits are needed to represent 23.
//The FIELDLENGTH will be 5

//The resulting bitfield: 00010

FLOAT

Coding: The float value is represented according to IEEE 754 standard. The FORMAT attribute
specifies the number of the bits used in exponent and mantissa. IEEE754 double: The float value is
encoded as specified in IEEE754 standard using 1 sign bit, 11 exponent bits and 52 bits for mantissa.
IEEE754 float: The float value is encoded as specified in IEEE754 standard using 1 sign bit, 8
exponent bits and 23 bits for mantissa. The default FORMAT for float is IEEE754 double.

Attributes allowed:

BITORDER (@),

BITORDERINFIELD (0),

BYTEORDER (@),

FORMAT (@)

Example:

//S - sign bit
//E - exponent bits
//M - mantissa bits

115

//Example number 1): single precision float
type float SingleFloat

with {

variant "FORMAT(IEEE754 float)"

}

const SingleFloat c_float:=1432432.125
//The resulting bitfield: 10000001 11011011 10101110 01001001
// MMMMMMMM MMMMMMMM EMMMMMMM SEEEEEEE

//The encoding will have the following result:
// 01001001 SEEEEEEE
// 10101110 EMMMMMMM
// 11011011 MMMMMMMM
// 10000001 MMMMMMMM

//The encoding will result in the octetstring '49AEDB81'0

//Example number 2): double precision float
type float DoubleFloat

with {

variant "FORMAT(IEEE754 double)"

}

const DoubleFloat c¢_floatd:=1432432.112232

//The resulting bitfield:
//82 3c bb 1c70 db 35 41
//10000010 00111100 10111011 00011100
//01110000 11011011 00110101 01000001
//MMMMMMMM - MMMMMMMM - MMMMMMMM - MMMMMMMM
//MMMMMMMM - MMMMMMMM - EEEEMMMM SEEEEEEE

//The encoding will have the following result:

// 01000001 SEEEEEEE
// 00110101 EEEEMMMM
// 11011011 MMMMMMMM
// 01110000 MMMMMMMM
// 00011100 MMMMMMMM
// 10111011 MMMMMMMM
// 00111100 MMMMMMMM
// 10000010 MMMMMMMM

//The encoding will result in the octetstring

// "4135DB701CBB3C82'0

HEXSTRING

Coding: The hexadecimal digit is represented by its binary value. The first hexadecimal digit is put

116

into the lower nibble of first octet of the bitfield. The second hexadecimal digit is put into the higher
nibble of first octet of the bitfield. The 3™ hexadecimal digit is put into the lower nibble of second
octet of bitfield and so on. Thus, the first hexadecimal digit is put first into the buffer. Is the actual
length of hexstring shorter than the specified by FIELDLENGTH, aligning is governed by the attribute
ALIGN. The default FIELDLENGTH value for hexstring type is variable. In this case, FIELDLENGTH is
measured in hexdigits.

Attributes allowed:

ALIGN (),

BITORDER (0),

BITORDERINFIELD (@),

BYTEORDER (@),

FIELDLENGTH (@),

N bit (0).

Example:

//Example number 1): variable length hexstring
const hexstring c_mystring:="5AF'H

//The resulting bitfield: 1111 10100101

//The encoding will have the following result:
// 10100101 A5

/A1 LF

//Example number 2): fixed length hexstring

type hexstring HEX4 with { variant "FIELDLENGTH(4)" }
const HEX4 c_yourstring:="'5AF'H

//The resulting bitfield: 00001111 10100101

//The encoding will have the following result:

// 10100101 A5

// 00001111 OF

//Example number 3): left aligned hexstring
type hexstring HEX4align with {

variant "FIELDLENGTH(4), ALIGN(left)" }

const HEX4align c_ourstring:="5AF'H

//The resulting bitfield: 11111010 01010000
//The encoding will have the following result:
// 01010000 50

// 11111010 FA

INTEGER

Coding: The LSB of the binary form of an integer is concatenated to the LSB of the bitfield. The

117

value of the attribute COMP determines how the value of an integer type will be coded to binary
form. The integer is always of fixed length and fills the space specified by FIELDLENGTH. The default
value of FIELDLENGTH for integer is 8 bit. The ALIGN attribute has no meaning for integer.

Attributes allowed:

» BITORDER (0),

BITORDERINFIELD (@),

BYTEORDER (@),

ComMP (0),

FIELDLENGTH (@),

IntX (0),
* N bit / unsigned N bit (0).

Example:

118

//Example number 1)

type integer Int12
with{ variant "FIELDLENGTH(12)"}
const Int12 c_myint:=1052

//The resulting bitfield is 010000011100
//The encoding will have the following result:
// 00011100

// +.0100

//The same result represented as octetstring: '1C.4'0
//Example number 2)

type integer Int12sg
with{ variant "FIELDLENGTH(12), COMP(signbit)"}
const Int12sg c_mysignedint:=-1052

//The resulting bitfield: 110000011100

//The encoding will have the following result:

// 00011100

// ++.1100

//The same result represented as octetstring: '1C.C'0

//Example number 3)

type integer Int12c

with{ variant "FIELDLENGTH(12), COMP(2scompl)"}

const int12c c_hisint:=-1052

//The resulted bitfield: 101111100111

//The encoding will have the following result:

// 11100111

/7 1011

//The same result represented as octetstring: 'E7.B'0

OCTETSTRING

Coding: The octets are represented by their binary value. The first octet is put into first octet of
bitfield. The second octet is put second octet of bitfield and so on. Thus, the first octet is put first
into the buffer. If the length of the octetstring is shorter than the specified FIELDLENGTH, aligning is
governed by the attribute ALIGN. The default FIELDLENGTH value for octetstring type is variable. In
this case, FIELDLENGTH is measured in octets.

Attributes allowed:

* ALIGN (0),
» BITORDER (0),
» BITORDERINFIELD (0),

119

» BYTEORDER (0),
* FIELDLENGTH (0),
* N bit (0).

Example:

//Example number 1): variable length octetstring
const octetstring c_mystring:="25AF'0

//The resulting bitfield: 10101111 00100101
//The encoding will have the following result:
// 00100101 25

// 10101111 AF

//Example number 2): fixed length octetstring

type octetstring OCT3 with { variant "FIELDLENGTH(3)" }
const OCT3 c_yourstring:="25AF'H

//The resulting bitfield: 00000000 10101111 00100101
//The encoding will have the following result:

// 00100101 25

// 10101111 AF

// 00000000 00

//Example number 3): left aligned octetstring
type octetstring 0CT3align with {

variant "FIELDLENGTH(3), ALIGN(left)" }

const 0CT3align c_string:="25AF'H

//The resulting bitfield: 10101111 00100101 00000000
//The encoding will have the following result:

// 00000000 00

// 00100101 25

// 10101111 AF

SET

Encoding: During encoding the fields present are encoded one by one. If TAG is specified for one
field, the value of the key field is checked for a valid value. If a valid value is not found, the value of
the key field will be substituted with a valid key value.

Decoding: The fields can be received in any order. If TAG is specified, the value of the key field
identifies the fields. If TAG is not specified for any field, the decoder tries to decode a field. If the
decoding is successful, the decoder assumes that the field was received. The matching algorithm is
the following: First try to identify the received fields by TAGs; if it fails, try to decode the fields; if it
fails and OTHERWISE is specified in TAG, try that field; if it fails: unknown field is received. If all
mandatory fields have already been decoded, then the set is successfully decoded, else the decoding
of set has failed.

120

RECORD

Encoding: The fields present are encoded one by one. The value of length and pointer fields are
calculated and substituted. If TAG, CROSSTAG or PRESENCE are specified for one field, the value of the
key field is checked for a valid value. If a valid value is not found, the value of key field will be
substituted with a valid key value. Finally, the extension bits are set.

Decoding: Fields are decoded one by one. The presence of optional fields is determined by the
attributes TAG, PRESENCE, by extension bits and by the value of the length field. The chosen field of
union is determined by CROSSTAG, if present. The value of pointer field is used to determine the
beginning of the pointed field. Have all of the mandatory fields been received and successfully
decoded, the decoding of the record is successful.

RECORD OF, SET OF

Encoding: The elements of record of or set of are encoded one by one. Finally, the extension bits
are set, if needed.

Decoding: The items of record of or set of are decoded one by one. The number of items is
determined by the attribute FIELDLENGTH, by extension bits or the number of available bits in buffer.
The decoding of record of or set of is successful if at least one item has been decoded.

UNION

Encoding: The chosen field will be encoded according to its own encoding rules. If TAG is specified
for this field, the value of the key field is checked for a valid value. If a valid value is not found, the
value of the key field will be substituted with a valid key value.

Decoding: The decoder tries to identify the received union field. If TAG is present, the decoder uses
the value of the key fields to identify the fields. If TAG is not present, the decoder tries to decode the
fields and if it succeeds, the decoder assumes that field is received. If the decoding of field is not
successful, the decoder checks the next field. The decoding of the union will be unsuccessful if none
of the fields can be decoded.

Examples:

121

type record Rec{
0CT1 key,
0CT1 values

}

type union MyUnion{

Rec field1,

Rec field2,

Rec field3

} with { variant "TAG(fieldl,{key = '56'0, key="7A"'}; field2, key = 'FF'; field3,{key
= 'A4'0, key = '99'0})"

}

//Example number 1): successful encoding
const MyUnion c_PDU:={

field1:={ key:="7A'0, values:='B2'0}

by

//Chosen field: field1

//Value of key field: '7A'0; valid

//No substitution will take place.

//The encoding will have the following result:
// 01111010 7A

// 10110010 B2

//Example number 2): key field substituted

const MyUnion c_PDU2:={
field1:={ key:='00'0, values:="B2'0}
+

//Chosen field: field1

//Value of key field: '00'0 not valid

//The value of key field will be substituted with:'56'0
//The encoding will have the following result:

// 01010110 56

// 10110010 B2

UNIVERSAL CHARSTRING

Coding: The characters are first converted to UTF-8 format, and the resulting octets are encoded as
if they were an octetstring. That is, the octets are represented by their binary value. The first octet
is put into the first octet of the bit field. The second octet is put into the second octet of the bit field,
and so on. Thus, the first octet is put first into the buffer.

The RAW encoding of a universal charstring value with no non-ASCII characters is equal to the
RAW encoding of a charstring containing the same characters (with the same attributes).

If the length of the UTF-8 encoded universal charstring is shorter than the specified FIELDLENGTH,
aligning is governed by the attribute ALIGN. The default FIELDLENGTH for the universal charstring

122

type is variable. The FIELDLENGTH is measured in UTF-8 octets.
Attributes allowed:

* ALIGN (0),

BITORDER (0),

BITORDERINFIELD (0),

BYTEORDER (0),

FIELDLENGTH (0),

N bit (0).

Examples:

123

//Example number 1): variable length universal charstring
const universal charstring c_mystring := "sepr" & char(0, 0, 1, 113);

//The encoding will have the following result:

// 01110011 "s"

// 01100101 "e"

// 01110000 "p"

// 01110010 "r"

// 11000101 C5

// 10110001 B1 C5B1 is the UTF-8 encoding of char(@, @, 1, 113)

//Example number 2): fixed length universal charstring
type universal charstring USTR8 with { variant "FIELDLENGTH(8)" }
const USTR8 c_yourstring := "sepr" & char(0, 0, 1, 113);

//The encoding will have the following result:

// 01110011 "s"

// 01100101 "e"

// 01110000 "p"

// 01110010 "r"

// 11000101 C5

// 10110001 B1 C5B1 is the UTF-8 encoding of char(@, @, 1, 113)
// 00000000 " "

// 00000000 " "

//Example number 3): left aligned universal charstring
type universal charstring USTR8align with {

variant "FIELDLENGTH(8), ALIGN(left)" }

const USTR8align c_string := "sepr" & char(0, 0, 1, 113);
//The encoding will have the following result:

// 00000000 " "

// 00000000 " "

// 01110011 "s"

// 01100101 "e"

// 01110000 "p"

// 01110010 "r"

// 11000101 C5

// 10110001 B1 C5B1 is the UTF-8 encoding of char(@, @, 1, 113)

4.24. TEXT Encoder and Decoder

The TEXT encoder and decoder are general purpose functionalities developed originally for
handling verbose and tokenized protocols.

The encoder converts abstract TTCN-3 structures (or types) into a bitstream suitable for serial
transmission. The decoder, on the contrary, converts the received bitstream into values of abstract
TTCN-3 structures.

124

TITAN provides a special encoding scheme for coding elements into a textual representation. This is
called TEXT and is used like encoding "TEXT".

This section covers the attributes controlling the coding process and BNF specification of the
attributes.

Error encountered during the encoding or decoding process are handled as defined in section
"Setting error behavior" in [16].

4.24.1. Attributes

An attribute determines coding and encoding rules.

the section 27.5 of the TTCN-3 standard ([1]) states that an attribute is used to refine
the current encoding scheme defined with the keyword encode. Because of

NOTE backward compatibility the presence of the encode attribute is not required, but
might result in a compile time warning (which in the future might turn into an
error).

BEGIN

Role: The BEGIN attribute defines the leading token of the type.
Format: BEGIN(token_to_encode, <matching_exp>,<modifier>)

Description: The attribute defines the leading token of the type. This token defines the beginning of
the value of the type and will be written into the encoded string before the value of the type is
encoded. BEGIN can be used with any type.

Parameters: token_to_encode
The token is used during encoding.

Mandatory.matching_exp

This TTCN-3 character pattern is used during decoding to identify the leading token of the type. The
format of the parameter is described in clause B.1.5 of the TTCN-3 standard ([1]). This parameter is
optional; when omitted, the parameter token_to_encode will be used as the matching pattern.

modifier

Modifies the behavior of the matching algorithm. Optional parameter. When omitted the default
value will be used. The available modifiers:

* case_sensitive The matching is case sensitive. Default value.

* case_insensitive The matching is case insensitive.

Example:

125

//SIP header Subject header:

type record Subject{
charstring subject_value

}

with { variant "BEGIN('Subject: ','
(Subject[T#(,):[TG N]|"

(s 14Ol 8GO
case_insensitive)"

}

var Subject v_subj:= "the_subject";

//The encoded string will be: "Subject: the subject"
//The decoder will accept the long (Subject: the subject)
//and the short (s: the subject) format regardless

//of the case of the character of the header.

END
Role: The END attribute defines the closing token of the type.
Format: END(token_to_encode, <matching exp>,<modifier>)

Description: The attribute defines the closing token of the type. This token defines the end of the
value of the type and will be written into the encoded string after the encoded value of the type. END
can be used with any type.

Parameters: token_to_encode
The token used during encoding. Mandatory.

matching_exp

This TTCN-3 character pattern is used during decoding to identify the leading token of the type. The
format of the parameter is described in clause B.1.5 of the TTCN-3 standard ([1]). This parameter is
optional; when omitted, the token_to_encode will be used as matching pattern.

modifier

Modifies the behavior of the matching algorithm. Optional parameter. When omitted, the default
value will be used. The available modifiers:

* case_sensitive: The matching is case sensitive. Default value.

* case_insensitive: The matching is case insensitive.

Example:

126

//SIP header Subject header:

type record Subject{
charstring subject_value

}

with { variant "BEGIN('Subject: ','
(Subject[1#(,):[1#(,))|"

(s 14Ol 8GO
case_insensitive)";

variant "ENDC"',"([D (L) ")"

}

var Subject v_subj:= "the_subject";

//The encoded string will be: "Subject: the_subject"

//The decoder will accept both "Subject: the_subject" and //"Subject: the_subject"
format.

SEPARATOR
Role: The attribute SEPARATOR defines the field separator token of the type.
Format: SEPARATOR(token to encode, <matching exp>,<modifier>)

Description: The attribute defines the field separator token of the type. This token separates the
value of fields and will be written into the encoded string between the fields of the type. SEPARATOR
can be used with any type.

Parameters: token_to_encode
The token used during encoding. Mandatory.

matching_exp

This TTCN-3 character pattern is used during decoding to identify the leading token of the type. The
format of the parameter is described in clause B.1.5 of the TTCN-3 standard ([1]). Optional
parameter. When omitted, the token to encode will be used as matching pattern.

modifier

Modifies the behavior of the matching algorithm. Optional parameter. When omitted, the default
value will be used. The available modifiers:

* case_sensitive The matching is case sensitive. Default value.

* case_insensitive The matching is case insensitive.

Example:

127

type record Rec_1{
charstring field_1,
charstring field_2

}

with {

variant "BEGIN('Header: ")"
variant "SEPARATOR(';")"

}

var Rec_1 v_rec:={field1:="value field1",
field2:="value_field2"}

//The encoded will result in the string:
//"Header: value_fieldl; value_field2"

TEXT CODING

Role: The attribute TEXT_CODING defines the encoding and decoding rules of the value
Format: TEXT_CODING(encoding_rule,<decoding_rule>,<matching_exp>,<modifier>)
Description: The attribute controls the encoding and the decoding of the values.

Parameters: encoding_rule
Controls the encoding of the value. For syntax see the two tables below.

decoding_rule
Controls the decoding of the value. For syntax see the two tables below.

matching_exp
TTCN-3 character pattern, used during decoding to identify the value of the type. The format of the
parameter is described in clause B.1.5 of the TTCN-3 standard ([1]). Optional parameter.

modifier

Modifies the behavior of the matching algorithm. Optional parameter. When omitted, the default
value will be used. The available modifiers:

* case_sensitive The matching is case sensitive. Default value.

* case_insensitive The matching is case insensitive.

Table 7. Format of encoding_rule and decoding_rule

Type encoding_rule decoding rule

charstring The format of encoding_rule: The format of decoding_rule:
attr=value[;attr=value] attr=value[;attr=value]
Usable attributes: length, Usable attributes: length,
convert, just convert

128

Type

integer

boolean

enumerated

set ofrecord of

structured types

encoding_rule

The format of the encoding
rule:

attr=value[;attr=value]
Usable attributes: length,
leading@

The encoded value of true and
false value:
true:'token'[;false:'token']
The default encoded value of
true is 'true'; the default
encoded value of false is 'false’

The encoded value of

enumeration:

value: 'token'[;value: 'token']
The default encoded value of

enumerations is the TTCN-3

identifier of the enumerations.

Not applicable

Not applicable

Table 8. Attributes used with encoding_rule and decoding rule

attr
length

convert

just

leading@

Description

Determines the length
of the coded value.

Converts string values
to lower or upper case
during encoding or
decoding.

If the string is shorter
than the value defined
by the length attribute,
just controls the
justification of the
value.

Controls the presence
of the leading zeros of
the coded integer value.

Parameter

value

lower_case, upper_case

decoding rule

The format of the decoding
rule:
attr=value[;attr=value]
Usable attribute: length

The matching pattern of the
value true and false:
true:{'pattern'[,modifier]}[;f
alse:{'pattern'[,modifier]}]
The default decoding method is
case sensitive

The matching pattern of
enumerations:
value:{'pattern'[,modifier]}[;
value:{'pattern'[,modifier]}]
The default decoding method is
case sensitive.

The format of the decoding
rule:
attr=value[;attr=value]
Usable attribute: repeatable

Not applicable

Default value

number of charactersof
value

no conversion

left, right, center left

true, false

false

129

attr Description Parameter Default value

repeatable The attribute true, false false
repeatable controls
whether the element of
the record of or set of
can be mixed with
other elements of the
set or they are grouped
together.

Example:

//Example number 1): integer with leading zero
type integer My_int with {

variant "TEXT_CODING(length=5;1eading@=true)"

}

var My_int v_a:=4;

// The encoded value: '00004'

//Example number 2): integer without leading zero
type integer My_int2 with {

variant "TEXT_CODING(length=5)"

by

var My_int2 v_aa:=4;

// The encoded value: ' 4'

//Example number 3): character string
type charstring My_char with {

variant "TEXT_CODING(length=5)"

}

var My_char v_aaa:="str';
// The encoded value: ' str'
//Example number 4): centered character string

type charstring My_char2 with {
variant "TEXT_CODING(length=5;just=center)"
}

var My_char2 v_aaaa:='str';
// The encoded value: ' str
//Example number 5): character string converted to upper case
type charstring My_char3 with {

variant "TEXT_CODING(length=5;convert=upper_case)"

+

var my_char3 v_b:="str';

// The encoded value: ' STR'

130

//Example number 6): case converted character string

type charstring My_char4 with {
variant "TEXT_CODING(convert=upper_case,convert=1lower_case)

}

var My_char4 v_bb:="str';

// The encoded value: 'STR'

// The decoded value: 'str'

//Example number 6): boolean

type boolean My_bool with {

variant "TEXT_CODING(true:'good';false:'bad"')"

}

var my_bool v_bbb=false;
// The encoded value: 'bad'

4.24.2. BNF of the Attributes

COMMA = ","
SEMI = n ; n

token = any valid character literal, must be escaped

pattern = valid TTCN-3 character pattern, the reference is not supported

number = positive integer number

enumerated = the name of the enumerated value

attributes = attribute *(COMMA attribute)

attribute = begin-attr / end-attr / separator-attr / coding-attr

begin-attr = "BEGIN(" encode-token [COMMA [match-expr] [COMMA modifier]] ")"
end-attr = "END(" encode-token [COMMA [match-expr] [COMMA modifier]] ")"

separator-attr = "SEPARATOR(" encode-token [COMMA [match-expr] [COMMA modifier]]
Il)ll

coding-attr = "TEXT_CODING(" [[encoding-rules] [COMMA [decoding-rules] [COMMA match-
expr [COMMA modifier] 711 ™)"

encode-token = token

match-expr = pattern

modifier = "case_sensitive" / "case_insensitive"

131

encoding-rules = encoding-rule *(SEMI encoding-rule)

encoding-rule = attr-def / enc-enum / enc-bool

decoding-rules = decoding-rule *(SEMI decoding-rule)

decoding-rule = attr-def / dec-enum / dec-bool

attr-def = ("length=" number)/ ("convert=" ("lower_case" / "upper_case"))/ ("just="

("left"/"right"/"center"))/ ("leading@=" ("true"/"false"))/ ("repeatable="
("true"/"false"))

enc-enu = enumerated ":" encode-token

enc-bool = ("true:" encode-token) / ("true:" encode-token)

dec-enum = enumerated ":" "{" [match-expr] [COMMA modifier] "}"

dec-bool = (true ":" "{" [match-expr] [COMMA modifier] "}")/(false ":" "{" [match-

expr] [COMMA modifier] "}")

4.25. XML Encoder and Decoder

The XML encoder and decoder are handling XML-based protocols. The encoder converts abstract
TTCN-3 structures (or types) into an XML representation. The decoder converts the XML data into
values of abstract TTCN-3 structures.

4.25.1. General Rules and Restrictions

The TTCN-3 standard defines a mechanism using attributes to define encoding variants. The
attributes concerning the XML encoding are standardized in [4] (annex B of the standard lists the
attributes and their effects).

Faults in the XML encoding/decoding process are set to error by default, but it can be modified with
the errorbehavior TTCN-3 attribute. (Codec error handling)

4.25.2. Attributes

The following sections describe the TTCN-3 attributes that influence the XML coding.
Abstract

Attribute syntax: abstract

Applicable to (TTCN-3) Fields of unions

Description This attribute shall be generated for each field with the XSD attribute "abstract’ set to
true (usually during type substitution or element substitution). It can be used to distinguish XML
messages with valid type or element substitutions from XML documents containing invalid

132

substitutions.

If the decoder finds an XML element or xsi:type attribute corresponding to an abstract union field,
a coding error is displayed. The attribute has no effect on encoding.

Any element

Attribute syntax:

anyElement [except ('freetext' | unqualified) | from [unqualified ,] [{ 'freetext'
, 'freetext'] 1]

Applicable to (TTCN-3) Fields of structured types generated for the XSD any element

Description One TTCN-3 attribute shall be generated for each field corresponding to an XSD any
element. The freetext part(s) shall contain the URI(s) identified by the namespace attribute of the
XSD any element. The namespace attribute may also contain wildcard. They shall be mapped as
given in the following table:

Table 9. XSD namespace attributes

Value of the XSDnamespace Except or from clause in the Remark

attribute TTCN-3 attribute

##any <nor except neither from clause
present>

##local from unqualified

##other except '<target namespace of the Also disallows unqualified
ancestor schema element of the elements, i.e. elements without
given any element>' a target namespace

##other except unqualified In the case no target namespace

is ancestor schema element of
the given any element

##targetNamespace from '<target namespace of the
ancestor schema element of the
given any element >’

"http://www.w3.0rg/1999/xhtm from

1 ##targetNamespace" “http://www.w3.0rg/1999/xhtml'
, '<target namespace of the
ancestor schema element of the
given any element >’

The abstract value of the field will be encoded as an XML element in place of an XML element that
would be generated for the field (ignoring the name of the field). During decoding, the abstract
value of the field will contain the entire XML element.

Example:

133

type record AEProduct {
charstring name,
integer price,
universal charstring info
}
with {
variant (info) "anyElement from 'http://www.example.com/A",
“'http://www.example.com/B', unqualified"
}
const AEProduct aep := {
name := "Trousers",
price := 20,
info "<xyz:color xmlns:xyz=""http://www.example.com/A
available=""true"">red</xyz:color>"

}

/* XML encoding:

<AEProduct>

<name>Trousers</name>

<price>20</price>

<xyz:color xmlns:xyz="http://www.example.com/A" available="true">red</xyz:color>
</AEProduct>
*/

Any attributes

Attribute syntax:

anyAttributes[except 'freetext' | from [unqualified ,] { 'freetext', } 'freetext']

Applicable to (TTCN-3) Fields of structured types generated for the XSD anyAttribute element

Description This TTCN-3 attribute can be applied to a field which is of type record of universal
charstring. Each component shall contain a valid XML attribute (name/value pair), optionally
preceded by a namespace identifier (URI). The encoder shall remove the URI and insert it as a
namespace declaration into the enclosing XML element, followed by the content of the universal
charstring as an XML attribute. The decoder should recover each attribute into a component of the
record of, preceded by its namespace URI if applicable. The mapping of namespaces behaves in the
same way as the anyElement TTCN-3 attribute.

Example:

134

type record of universal charstring AttrlList;
type record AAProduct {
AttrlList info,
charstring name,
integer price
}
with {
variant (info) "anyAttributes from 'http://www.example.com/A",
"'http://www.example.com/B', unqualified"
}

const AAProduct aap := {
info := {
"http://www.example.com/A size=""small""",
"http://www.example.com/B color=""red""",

Ilava_i'l-ab'l-e:ll Ilyesllllll}’
name := "Trousers",
price:= 20

}

/* XML encoding:
<AAProduct

xmlns:b@="http://www.example.com/A" b@:size="small"
xmlns:b1="http://www.example.com/B" b1:color="red" available="yes">
<name>Trousers</name>

<price>20</price>
</AAProduct>
*/

Attribute

Attribute syntax: attribute

Applicable to (TTCN-3) Top-level type definitions and fields of structured types generated for XSD
attribute elements.

Description This encoding instruction causes the instances of the TTCN3 type or field to be encoded
and decoded as attributes.

Comment Titan currently requires during decoding that attributes are present in the same order as
they are declared in the enclosing record/set.

Example

135

type charstring Color

with {
variant "attribute"
}
type record Product {
Color color,

charstring material,
charstring name,
integer price

}
with {
variant (available) "attribute"
}
const Product shoes := {
color := "blue",
material := "suede",
name := "Shoes",
price:= 25

+
/* XML encoding
<Product color="blue" material="suede">
<name>Shoes</name>
<price>25</price>
</Product>
*/

AttributeFormQualified
Attribute syntax: attributeFormQualified

Applicable to (TTCN-3) Modules

Description This encoding instruction cause names of XML attributes that are instances of TTCN-3
definitions in the given module to be encoded as qualified names. At decoding time qualified names
are expected as valid attribute names.

Control namespace identification
Attribute syntax: controlNamespace 'freetext' prefix 'freetext'
Applicable to (TTCN-3) Module

Description The control namespace is the namespace to be used for the type identification
attributes and schema instances (e.g. in the special XML attribute value "xsi:nil". It shall be specified
globally, with an encoding instruction attached to the TTCN-3 module.The first freetext component
identifies the namespace (normally http:/www.w3.0rg/2001/XMLSchema-instance' is used), the
second freetext component identifies the namespace prefix (normally "xsi' is used).

Please see the example for nillable elements, for example usage of controlNamespace.

136

Block
Attribute syntax: block
Applicable to (TTCN-3) Fields of unions

Description This attribute shall be generated for each field referred to by XSD block attributes
(usually during type substitution or element substitution). It can be used to distinguish XML
messages with valid type or element substitutions from XML documents containing invalid
substitutions.

If the decoder finds an XML element or xsi:type attribute corresponding to a blocked union field, a
coding error is displayed. The attribute has no effect on encoding.

Default for empty
Attribute syntax: defaultForEmpty as 'freetext'

Applicable to (TTCN-3) TTCN-3 components generated for XSD attribute or element elements with a
fixed or default attribute.

Description The 'freetext' component shall designate a valid value of the type to which the encoding
instruction is attached to. This encoding instruction has no effect on the encoding process and
causes the decoder to insert the value specified by freetext if the corresponding attribute or element
is omitted in the received XML document.

Example

137

type record DFEProduct {
charstring color,
charstring name,

float price,

charstring currency

}

with {
variant (color) "attribute";
variant (currency) "defaultForEmpty as ‘US Dollars"';

}

const DFEProduct rval := {
color := "red",

name := "shirt",

price := 12.33,

currency := "US Dollars"

}

/* The following XML fragment will be decoded to the value of rval:

<DFEProduct color="red">
<name>shirt</name>
<price>12.33</price>
<currency/>
</DFEProduct>

*/

TITAN allows the usage of constants and module parameters instead of the text
value of the encoding instruction. The type of the field must be compatible with the
type of the constant or module parameter. The form where constants and module
parameters are allowed looks like this:

NOTE

variant "defaultForEmpty as reference";

where reference is a constant or a module parameter. (Notice the missing apostrophe).

For example:

138

const integer c_int := 3;const charstring c_str := "abc";

type record MyRecord {
integer 1,
charstring cs,
float f

by

with {
variant (i) "defaultForEmpty as c_int"; // allowed
variant (cs) "defaultForEmpty as c_str"; // allowed
variant (f) "defaultForEmpty as c_str"; // not allowed
// incompatible types

}

Element
Attribute syntax: element

Applicable to (TTCN-3): Top-level type definitions generated for XSD element elements that are
direct children of a schema element.

Description: This encoding instruction causes the instances of the TTCN3 type to be encoded and
decoded as XML elements.

Comment: This is the default behaviour. TTCN-3 types are encoded as elements unless altered by an
encoding instruction. This encoding instruction can be used to cancel that effect.

ElementFormQualified
Attribute syntax: elementFormQualified
Applicable to (TTCN-3): Modules

Description: This encoding instruction causes tags of XML local elements and templates of XSD
definitions in the given module to be encoded as qualified names, and inserts the namespace
specification in the encoded XML. Tags of XML global elements are always encoded as qualified
names, regardless of elementFormQualified. At decoding time only qualified names are accepted as
valid element tag names.

Embed values
Attribute syntax: embedValues

Applicable to (TTCN-3): TTCN-3 record types generated for XSD complexType-s and complexContent-s
with the value of the mixed attribute "true".

Description: The encoder shall encode the record type to which this attribute is applied in a way
that produces the same result as the following procedure: first a partial encoding of the record is
produced, ignoring the embed_values field. The first string of the embed_values field (the first record
of element) shall be inserted at the beginning of the partial encoding, before the start-tag of the first

139

XML element (if any). Each subsequent string shall be inserted between the end-tag of the XML
element and the start-tag of the next XML element (if any), until all strings are inserted. In the case
the maximum allowed number of strings is present in the TTCN-3 value (the number of the XML
elements in the partial encoding plus one) the last string will be inserted after end-tag of the last
element (to the very end of the partial encoding). The following special cases apply:

1. At decoding, strings before, in-between and following the XML elements shall be collected as
individual components of the embed_values field.If no XML elements are present, and there is
also a defaultForEmptyencoding instruction on the sequence type, and the encoding is empty, a
decoder shall interpret it as an encoding for the freetext part specified in the
defaultForEmptyencoding instruction and assign this abstract value to the first (and only)
component of the embed_values field.

2. If the type also has the useNilencoding instruction and the optional component is absent, then
the embedValues encoding instruction has no effect.

3. If the type has a useNilencoding instruction and if a decoder determines, by the absence of a nil
identification attribute (or its presence with the value false) that the optionalcomponent is
present, then item a) above shall apply.

NOTE Titan currently does not decode the values of the embed_values member. They will
appear as empty strings.
Example

type record EmbProduct {

record of universal charstring embed_values,
universal charstring companyName,

universal charstring productColor,

universal charstring productName

}

with {
variant "embedValues"

}

const EmbProduct rval := {
embed_values := {"My Company", "produces",
ompanyName := "ABC",

, "which is very popular"},

productColor := "red",
productName := "shirt"
}

/* XML encoding
<EmbProduct>My
Company<companyName>AB(C</companyName>produces<productColor>red</productColor>

<productName>shirt</productName>which is very popular</EmbProduct>

*/

140

Form
Attribute syntax: form as (qualified | unqualified)

Applicable to (TTCN-3): Top-level type definitions generated for XSD attribute elements and fields of
structured type definitions generated for XSD attribute or element elements.

Description: This encoding instruction designates that names of XML attributes or tags of XML local
elements corresponding to instances of the TTCN-3 type or field of type to which the form encoding
instruction is attached, shall be encoded as qualified or unqualified names respectively and at
decoding qualified or unqualified names shall be expected respectively as valid attribute names or
element tags.

List
Attribute syntax: list
Applicable to (TTCN-3): Record-of types mapped from XSD simpleType-s derived as a list type.

Description: This encoding instruction designates that the record of type shall be handled as an XSD
list type, namely, record of elements of instances shall be combined into a single XML list value
using a single SP(32) (space) character as separator between the list elements. At decoding the XML
list value shall be mapped to a TTCN-3 record of value by separating the list into its itemType
elements (the whitespaces between the itemType elements shall not be part of the TTCN-3 value).

Example

type record of integer Pi;
with {
variant "list"

}

const Pi digits := {
3, 14, 15, 9, 26

}

/* XML encoding

<S>3 14 15 9 26</S>
*/

Name

Attribute syntax:

name (as ("freetext" | changeCase) | all as changeCase), wherechangeCase := (
capitalized | uncapitalized | lowercased | uppercased)

Applicable to (TTCN-3): Type or field of structured type. The form when freetext is empty shall be
applied to fields of union types with the "useUnion" encoding instruction only

141

Description: The name encoding instruction is used when the name of the XML element or attribute
differs from the name of the TTCN3 definition or field. The name resulted from applying the name
encoding attribute shall be used as the non-qualified part of the name of the corresponding XML
attribute or element tag.

When the "name as "freetext" form is used, freetext shall be used as the attribute name or element
tag, instead of the name of the related TTCN-3 definition (e.g. TTCN-3 type name or field name).

The "name as "" (i.e. freetext is empty) form designates that the TTCN-3 field corresponds to an XSD
unnamed type, thus its name shall not be used when encoding and decoding XML documents.

The "name as capitalized" and "name as uncapitalized" forms identify that only the first character
of the related TTCN3 type or field name shall be changed to lower case or upper case respectively.

The "name as lowercased" and "name as uppercased" forms identify that each character of the
related TTCN3 type or field name shall be changed to lower case or upper case respectively.

non

The "name all as capitalized”, "name all as uncapitalized", "name as lowercased" and "name as
uppercased" forms has effect on all direct fields of the TTCN-3 definition to which the encoding
instruction is applied (e.g. in case of a structured type definition to the names of its fields in a non-
recursive way but not to the name of the definition itself and not to the name of fields embedded to
other fields).

Example

type record S {
charstring r,
charstring blue,
charstring black
}

with {
variant (r) "name as ‘Red"';
variant (blue) "name as uppercased";

variant (black) "name as capitalized";

}

const NM outfit := { r := "shirt", blue := "trousers", black := "shoes" }
/* XML encoding

<S>

<Red>shirt</Red>

<BLUE>trousers</BLUE>

<Black>shoes</Black>

</S>

*/

142

Namespace identification
Attribute syntax: namespace as 'freetext' [prefix "freetext"]

Applicable to (TTCN-3): Modules; fields of record types generated for attribute_s of _complexTypes
taken in to complexType definitions by referencing attributeGroup(s), defined in schema elements
with a different (but not absent) target namespace and imported into the schema element which is
the ancestor of the complexType.

Description: The first freetext component identifies the namespace to be used in qualified XML
attribute names and element tags at encoding, and to be expected in received XML documents. The
second freetext component is optional and identifies the namespace prefix to be used at XML
encoding. If the prefix is not specified, the encoder shall either identify the namespace as the
default namespace (if all other namespaces involved in encoding the XML document have prefixes)
or shall allocate a prefix to the namespace (if more than one namespace encoding instructions are
missing the prefix part).

Example

type record S {
charstring firstName,
charstring lastName,
charstring middleInitial

}

with { variant "namespace as ‘http://www.example.org/test' prefix ‘tst"' }
const S jrh := { "John", "Doe", "M" }

/* XML encoding

<tst:S xmlns:tst="http://www.example.org/test">
<firstName>John</firstName>
<lastName>Doe</1astName>
<middleInitial>M</middleInitial>

</tst:S>

*/

Nillable elements
Attribute syntax: useNil

Applicable to (TTCN-3): Top-level record types or record fields generated for nillable XSD element
elements.

Description: The encoding instruction designates that the encoder, when the optional field of the
record (corresponding to the nillable element) is omitted, shall produce the XML element with the
xsi:nil="true" attribute and no value. When the nillable XML element is present in the received XML
document and carries the xsimnil="true" attribute, the optional field of the record in the
corresponding TTCN-3 value shall be omitted. If the nillable XML element carries the xsi:nil="true"

143

attribute and has children (either any character or element information item) at the same time, the
decoder shall initiate a test case error.

Example

144

module UseNil {
type record Size {
integer sizeval optional

}

with { variant "useNil" }

type record NilProduct {
charstring name,
ProductColor color,

Size size
}
const NilProduct absent := {
name := "no shirt",
color := red,
size := { omit }
}
const NilProduct present := {
name := "shirt",
color := red,
size = {10 }
}
}
with {
encode "XML";
variant "controlNamespace "http://www.w3.org/2001/XMLSchema-instance' prefix 'xsi'"
}

/* XML encoding of absent:

<Product xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<name>no shirt</name>

<color>red</color>

<size xsi:nil="true"/>

</Product>

XML encoding of present:
<Product xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<name>shirt</name>

<color>red</color>
<size xsi:nil="false">10</size>
</Product>

Another possible XML encoding of present:
<Product xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<name>shirt</name>
<color>red</color>
<size>10</size>
</Product>
*/

145

Text

Attribute syntax:

text ("name" as ("freetext"|) | all as changeCase)

where change(Case has been defined as seen here.

Applicable to (TTCN-3) Enumeration types generated for XSD enumeration facets where the
enumeration base is a string type, and the name(s) of one or more TTCN-3 enumeration values are
different from the related XSD enumeration item. Also applies to XSD.Boolean types, instances of
XSD.Boolean types.

Description When name is used, it shall be generated for the differing enumerated values only. The
name shall be the identifier of the TTCN-3 enumerated value the given instruction relates to. If the
difference is that the first character of the XSD enumeration item value is a capital letter while the
identifier of the related TTCN-3 enumeration value starts with a small letter, the "text "name' as
capitalized" form shall be used. Otherwise, freetext shall contain the value of the related XSD
enumeration item. If the first characters of all XSD enumeration items are capital letters, while the
names of all related TTCN-3 enumeration values are identical to them except the case of their first
characters, the "text all as capitalized" form shall be used. The encoding instruction designates that
the encoder shall use freetext or the capitalized name(s) when encoding the TTCN-3 enumeration
value(s) and vice versa. When the text encoding attribute is used with XSD.Boolean types, the
decoder shall accept all four possible XSD boolean values and map the received value 1 to the
TTCN-3 boolean value true and the received value 0 to the TTCN-3 boolean value false. When the
text encoding attribute is used on the instances of the XSD.Boolean type, the encoder shall encode
the TTCN3 values according to the encoding attribute (i.e. true as 1 and false as 0).

Comment For XSD.Boolean types, either of the forms "text 'true' as "1" and "text 'false' as '0' implies
the other, i.e. Titan considers that both have been specified. Together, these two forms have the
same effect as "text" (detailed in the last paragraph of Description).

Example

146

type enumerated ProductColor { red(@), light_green(1), blue(2) }
with {

variant "text ‘red' as uppercased";

variant "text ‘light_green' as ‘Light Green"'

variant "text ‘blue' as capitalized"

lis

type boolean Availability
with {

variant "text"

}

type record T {
ProductColor color,
Availability available

}

const T prod := {
color := light_green,
available := true

}

/* XML encoding

<S>

<color>Light Green</color>

<available>1</available>
</S>

*/

Untagged
Attribute syntax: untagged

Applicable to (TCN-3): Type; or field of a record, set, union; or the embedded type of a record-of or
set-of. This encoding instruction is ignored if applied to a type which is encoded as the top-level
type, unless the top-level type is a union or anytype. It will take effect when a field of this type is
encoded as a component of the enclosing structured type.

Description: The encoding instruction designates that the encoder shall omit the tag.

Example: "untagged" applied to a field.

147

type *record* Prod {
charstring name,
float price,
charstring description

}

With {
variant (description) "untagged"

}

const Prod prod := {

name := "Danish Blue",

price := 3.49,

description := "Soft blue cheese"

}

/* generated XML:

<Prod>

<name>Danish Blue</name>
<price>3.490000</price>
Soft blue cheese</Prod>
*/

Example: "untagged" applied to a union type.
type *union* ProdUnion {

Prod prod1,

0therProd prod?

}

with {

variant "untagged"

Y*const* ProdUnion produnion := { prodl := {
name := "ProdName",

price := 66,

description := "The best product" }

}

/* generated XML:
<Prod>
<name>ProdName</name>
<price>66</price>

The best product</Prod>
*/

Use number
Attribute syntax: useNumber
Applicable to (TTCN-3) Enumeration types generated for XSD enumeration facets where the

enumeration base is integer

148

Description The encoding instruction designates that the encoder shall use the integer values
associated to the TTCN-3 enumeration values to produce the value of the corresponding XML
attribute or element (as opposed to the names of the TTCN-3 enumeration values) and the decoder
shall map the integer values in the received XML attribute or element to the appropriate TTCN-3
enumeration values.

Example

type enumerated ProductColor { red(@), green(1), blue(2) }
with {
variant "useNumber"

}

type record NrProduct {
charstring name,
ProductColor color,
integer size

}

const NrProduct rval := {
name := "shirt",

color := red,

size := { sizeval := 10 }

/* XML encoding:
<NrProduct>
<name>shirt</name>
<color>0</color>
<size>10</size>
</NrProduct>

*/

Use order
Attribute syntax: useOrder

Applicable to (TTCN-3) Record type definition, generated for XSD complexType-s with all constructor

Description The encoding instruction designates that the encoder shall encode the values of the
fields corresponding to the children elements of the all constructor according to the order
identified by the elements of the order field. At decoding, the received values of the XML elements
shall be placed in their corresponding record fields and a new record of element shall be inserted
into the order field for each XML element processed (the final order of the record of elements shall
reflect the order of the XML elements in the encoded XML document).

Example

149

type record UOProduct {

record of enumerated { id, name, price, color } order,
integer id,

charstring name,

float price,

charstring color

}

with {
variant "useOrder";

}

const UOProduct rval := {
order := { id, color, price, name },

id := 100,

name := "shirt",
price := 12.23,
color := "red"

}

/* XML encoding:
<UOProduct>
<1d>100</id>
<color>red</color>

<price>12.230000</price>
<name>shirt</name>
</UOProduct>

*/

Use union
Attribute syntax: useUnion
Applicable to (TTCN-3) unions (all alternatives of the union must be character-encodable)

Description The encoding instruction designates that the encoder shall not use the start-tag and the
end-tag around the encoding of the selected alternative (field of the TTCN-3 union type). A type
identification attribute (xsi:type, where xsi is the prefix of the control namespace) can be used to
identify the selected alternative, or the encoding of the alternatives must be distinct enough that
the decoder can determine the selected field based solely on its value. The decoder shall place the
received XML value into the corresponding alternative of the TTCN-3 union type, based on the
received value and the type identification attribute, if present. The encoder will always use the type
identification attribute to identify the selected field whenever possible. If the union has the
attribute or untagged encoding instructions, or is the component of a record of or set of with the Tist
encoding instruction, then the insertion of the type identification attribute is not possible.

Comment There is no check implemented to ensure the fields are sufficiently distinct. If no type
identification attribute is present, the first field (in the order of declaration) that manages to
successfully decode the XML value will be the selected alternative.

150

Restrictions The use of the XSD type QName or other unions with the useType or useUnion coding
instructions as alternatives are not supported. The useType or useUnion coding instructions cannot
be applied to anytype.

Example 1

type union Productld {
integer c1,
integer c2,
integer c3

}

with {
variant "useUnion"

}

const Product rval := {
id := { c2 := 100 },
price := 25.34,

color := "green"

}

/*

<Product xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<id xsi:type="c2">100</id>

<price>2.534E1</price>

<color>green</color>

</Product>

*/

Example 2

type union IntStr {
integer int,
charstring str

}

with {
variant "useUnion"

}

type record Data {
IntStr atr,
record of IntStr values

}

with {
variant(atr) "attribute";
variant(values) "list";

}

151

{

const Data d :

atr := { int := 26 },

values := { { str := "abe" }, { str := "x" }, { int := -7 } }
}

/*

<Data xmlns:xsi=‘http://www.w3.0rg/2001/XMLSchema-instance' atr='26">
<values>abc x -7</values>

</Data>

*/

Use type
Attribute syntax: useType
Applicable to (TTCN-3) unions

Description The encoding instruction designates that the encoder shall not use the start-tag and the
end-tag around the encoding of the selected alternative (field of the TTCN-3 union type), a type
identification attribute (xsi:type, where xsi is the prefix of the control namespace) will be used to
identify the selected alternative. This attribute may be omitted in the case of the first alternative.
The decoder shall place the received XML value into the corresponding alternative of the TTCN-3
union type, based on the received value and the type identification attribute. The first alternative
will be selected if this attribute is not present. The encoder will never insert the type identification
attribute for the first alternative. Any attributes the selected alternative might have will be inserted
to the union’s XML tag instead (after the type identification attribute, if it exists).

The useType or useUnion coding instructions cannot be applied to anytype.

Example

type record Shirt {
charstring color,
charstring make,
integer size

}

type record Trousers {

boolean available,

charstring color,

charstring make

} with {

variant(available) "attribute"

}

type record Shoes {
boolean available,
string color,
integer size

152

} with {
variant(available) "attribute"

}

type union Product {
Shirt shirt,
Trousers trousers,
Shoes shoes

} with {

variant "useType"

}

const Product pr1 := {
shoes := {

available := false,
color := "red",

size := 0

}

}
/*

<Product xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance' xsi:type="'shoes'
available="false'>

<color>red</color>
<size>9</size>
</Product>

*/

const Product pr2 := {
shirt := {

color := "red",

make := "ABC Company",
size := 0

}

}

/*

<Product xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance'>
<color>red</color>

<make>ABC Company</make>

<size>9</size>

</Product>

*/

Whitespace control
Attribute syntax: whitespace (preserve | replace | collapse)

Applicable to (TTCN-3) String types or fields of structured types generated for XSD components with
the whitespace facet.

153

Description The encoding instruction designates that the encoder shall normalize the encoded XML
values corresponding to the TTCN-3 construct with the whitespace encoding instruction, and the
received XML value shall be normalized before decoding as below.

* preserve: no normalization shall be done, the value is not changed.

* replace: all occurrences of HT(9) (horizontal tabulation), LF(10) (line feed) and CR(13) (carriage
return) shall be replaced with an SP(32) (space) character.

* collapse: after the processing implied by replace, contiguous sequences of SP(32) (space)
characters are collapsed to a single SP(32) (space) character, and leading and trailing SP(32)
(space) characters are removed.

Example 1

type charstring R

with {

variant "whiteSpace replace”

}

const R rval := "First Line Second Line";

/* The following is a possible XML encoding of ‘rval'. During decoding it will be
normalized to the value of ‘rval'.

<R>First

Line

Second

Line</R>

*/

Example 2

type charstring C

with {

variant "whiteSpace collapse”

}

const C cval := "First Line Second Line";

/* The follwing is a possible XML encoding of ‘cval'. During decoding it will be
normalized to the value of ‘cval'.

<C>

First Line
Second Line
</C>

*/

4.25.3. External functions

XML encoder / decoder functions must have the “encode(XER)” / “decode(XER)” attribute set.

154

The following XML coding options can be specified: XER_BASIC, XER_EXTENDED, XER_CANONICAL. These
can be used by writing for example: “encode(XER:XER_EXTENDED)” /
“decode(XER:XER_EXTENDED)”.

Faults in the XML encoding/decoding process produce errors by default, but this can be modified
with the errorbehavior attribute. (Codec error handling)

XML encoder functions can also have the “printing(compact)” or “printing(pretty)” attributes. This
specifies whether the encoder should add extra white spaces to the XML code or not. This attribute
cannot be set at module level.

If compact printing is selected no white spaces are added to the XML code, making it as short as
possible, except at the end of the XML code there will always be a new-line character.

Pretty printing makes the code easier to read by adding spaces, new lines and indenting.

For example:

external function f_enc_MyRecord(in MyRecord par) return octetstring with { extension
"prototype(convert) encode(XER:XER_EXTENDED) printing(pretty)" }

external function f_dec_MyRecord(in MyRecord par) return octetstring with { extension
"prototype(convert) decode(XER:XER_EXTENDED) printing(pretty)" }

4.26. JSON Encoder and Decoder

The JSON encoder and decoder handles JSON-based protocols. The encoder converts abstract TTCN-
3 structures (or types) into a JSON representation (see RFC 7159). The decoder converts JSON data
into values of abstract TTCN-3 structures.

This section covers the coding rules in general, the attributes controlling them and the encoder /
decoder external functions.

4.26.1. General rules and restrictions

You can use the encoding rules defined in this section to encode and decode the following TTCN-3
types:

* anytype

e array

* bitstring

* boolean

* charstring

* enumerated

* float

* hexstring

155

#codec-error-handling

* integer

* objid

* octetstring

e record, set

* record of, set of

* union

* universal charstring

* verdicttype
The rules also apply to the following ASN.1 types (if imported to a TTCN-3 module):

« ANY

* BIT STRING

* BOOLEAN

* BMPString

* CHOICE, open type (in instances of parameterized types)
* ENUMERATED

* GeneralString

* GraphicString

» IA5String

* INTEGER

* NULL

* NumericString

* OBJECT IDENTIFIER
* OCTET STRING

* PrintableString

* RELATIVE-OID

* SEQUENCE, SET
 SEQUENCE OF, SET OF
* TeletexString

* UniversalString

» UTF8String

* VideotexString

* VisibleString

JSON encoding and decoding is allowed for types with the attribute encode "JSON". The basic types
specified in the list above support JSON encoding and decoding by default.

156

The attribute encode "JSON" can also be set globally (at module level), allowing JSON coding for all
types defined in that module.

Types imported from ASN.1 modules (from the list above) automatically have JSON coding allowed
and cannot have JSON variant attributes.

When using legacy codec handling the encode attribute can be omitted if the type has at least one
JSON variant attribute (see here).

Additional requirements for JSON encoding and decoding when using legacy codec handling:

* in case of records, sets, unions and ASN.1 open types every field must also support JSON coding;

* in case of array, record of and set of structures the element type must also support JSON coding.

Basic types

The basic TTCN-3 types are encoded as JSON values.

All integer values and most float values are encoded as JSON numbers. The special float values
infinity, -infinity and not_a_number are encoded as JSON strings.

Boolean values are encoded with the JSON literals true and false.

Bitstring, hexstring and octetstring values (and values of the ASN.1 ANY type) appear as JSON
strings containing the bits or hex digits as characters.

Charstrings, universal charstrings and values of ASN.1 string types are encoded as JSON strings.
Charstrings appear exactly like in TTCN-3. Universal charstrings will appear in UTF-8 encoding.
JSON strings may contain the escaped character \u followed by 4 hex digit characters, the decoder
will convert this into the character represented by the hex digits.

Object identifiers are encoded as JSON strings containing the components (in number form)
separated by dots.

Verdicttype and enumerated types are encoded as JSON strings. The string contains the name of the
verdict type or enumerated value.

The ASN.1 NULL value is encoded with the JSON literal null.

the JSON decoder ignores all type restrictions and will successfully decode values
that contradict them (e.g.: a record of/set of type with the length (3..5) restriction

NOTE will successfully decode an array of 8 elements), with the exception of arrays. The
restrictions of ASN.1 string types are ignored aswell (e.g.: NumericStrings can decode
strings containing letters).

Structured types

Array, record of and set of structures are encoded as JSON arrays. Their elements will appear in the
order they appear in TITAN.

157

Records and sets are encoded as JSON objects. The JSON object will contain the field name and
value pairs of each field in the order they are declared in. Omitted optional fields will be skipped.

The decoder will accept the record / set field name and value pairs in any order, but every non-
optional field must be present. Optional fields that do not appear in the JSON object will be omitted.

Unions, anytypes and ASN.1 open types are encoded as JSON objects. The object will contain one
name-value pair: the name of the selected field and its value.

4.26.2. Attributes

The following sections describe the TTCN-3 attributes that influence JSON coding (only affects
TTCN-3 types, ASN.1 types cannot have attributes that influence JSON coding).

All JSON attributes begin with the word JSON followed by a colon (JSON:<attribute>). Any number of
white spaces (spaces and tabs only) can be added between each word or identifier in the attribute
syntax, but at least one is necessary if the syntax does not specify a separator (a comma or a colon).
The attribute can also start and end with white spaces.

Alternatively the syntaxes defined in [25] can also be used, for the supported attributes (without the
need for the JSON: prefix).

Example:
variant(field1) "JSON:omit as null"; // ok
variant(field2) " JSON : omit as null "; // ok (extra spaces)
variant(field3) "JSON : omit as null"; // ok (with tabs)
variant(field4) "JSON:omitasnull"; // not ok

Omit as null
Attribute syntax: omit as null
Applicable to (TTCN-3): Optional fields of records and sets

Description: If set, the value of the specified optional field will be encoded with the JSON literal null
if the value is omitted. By default omitted fields (both their name and value) are skipped entirely.
The decoder ignores this attribute and accepts both versions.

Example:

158

type record PhoneNumber {
integer countryPrefix optional,
integer networkPrefix,
integer localNumber
} with {
variant(countryPrefix) "JSON:omit as null"
}
var PhoneNumber pn := { omit, 20, 1234567 }
// JSON code with the attribute:
// {"countryPrefix":null, "networkPrefix":20, "localNumber":1234567}
// JSON code without the attribute:
// {"networkPrefix":20, "localNumber":1234567}

Name as ...
Attribute syntax: name as <alias>
Applicable to (TTCN-3): Fields of records, sets and unions

Description: Gives the specified field a different name in the JSON code. The encoder will use this
alias instead of the field’s name in TTCN-3, and the decoder will look for this alias when decoding
this field. The syntax of the alias is the same as the syntax of an identifier in TITAN (regex: [A-Za-
z][A-Za-z0-9_]*).

Example:

type union PersionID {
integer numericID,
charstring email,
charstring name
} with {
variant(numericID) "JSON:name as ID";
variant(email) "JSON:name as Email";
variant(name) "JSON:name as Name";
}
type record of PersionID PersionIDs;
var persionIDs pids := { { numericID := 189249214 }, { email := "jdoe@mail.com" }, {
name := "John Doe" } };
// JSON code:
// [{"ID":189249214},{"Email":"jdoe@mail.com"},{"Name":"John Doe"}]

As value
Attribute syntax: as value
Applicable to (TTCN-3): Unions, the anytype, or records or sets with one mandatory field

Description: The union, record, set or anytype will be encoded as a JSON value instead of as a JSON
object with one name-value pair (the name of the selected field in case of unions and the anytype,

159

or the name of the one field in case of records and sets will be omitted, as well as the surrounding
braces). This allows the creation of heterogenous arrays in the JSON document (e.g.
["text",10,true,null]).Since the field name no longer appears in the JSON document, the decoder will
determine the selected field (in case of unions and the anytype) based on the type of the value. The
first field (in the order of declaration) that can successfully decode the value will be the selected
one.

This attribute can also be applied to fields of records, sets or unions, or to the element types of
records of, sets of or arrays, if they meet the mentioned restrictions. In this case these fields or
elements are encoded as JSON values when they are encoded as part of their larger structure (but
the types of these fields or elements might be encoded as JSON objects when encoded alone, or as
parts of other structures).

Pay close attention to the order of the fields when using this attribute on unions and
the anytype. It’s a good idea to declare more restrictive fields before less restrictive

NOTE ones (e.g.: hexstring is more restrictive than universal charstring, because hexstring
can only decode hex digits, whereas universal charstring can decode any character;
see also examples below).

Examples:

// Example 1: unions
type union U1 { // good order of fields
integer 1,
float f,
octetstring os,
charstring cs

} with {
variant "JSON : as value"

}

type union U2 { // bad order of fields
float f,
integer 1,

charstring cs,
octetstring os

} with {
variant "JSON : as value"

}

type record of U1 RoUT;
type record of U2 RoU2;

var RoUT v_roul :={ {1i:=10 }, { f :=6.4 %}, { os := "1ED5'0 }, { cs := "hello" }
};
var RoU2 v_rou2 :={ {1i:=10 }, { f :=6.4 %}, { os := "1ED5'0 }, { cs := "hello" }
b

// Both v_roul and v_rou2 will be encoded into:

160

// [10,6.4,"1ED5", "hello"]

// This JSON document will be decoded into v_roul, when decoding as type RoU1,

// however it will not be decoded into v_rou2, when decoding as RoU2, instead // the
float field will decode both numbers and the charstring field will

// decode both strings: { { f :=10.0 }, { f :=6.4}, { c¢s := "1ED5" },

// { c¢s := "hello" } };

// Example 2: record with one field
type record R {
integer field
}
with {
variant "JSON: as value"
}
type record of R RoR;
const RoR c_recs := { { field := 3 }, { field :=6 } };
// is encoded into: [3,6]

// Example 3: anytype (this can only be done as a field or element of a
// structure, since coding instructions cannot be defined for the anytype)
module MyModule {
type record AnyRec {
anytype val

}
with {
variant (val) "JSON: as value";
variant (val) "JSON: name as value";
}

const AnyRec c_val := { val := { charstring := "abc" } };
// is encoded into: {"value":"abc"}

} // end of module
with {
extension "anytype integer, charstring"

}

Default
Attribute syntax: default(<value>)
Applicable to (TTCN-3): Fields of records and sets

Description: The decoder will set the given value to the field if the field does not appear in the JSON
document.

Legacy version: If the attribute has the JSON: default(<value>) format, the <value> contains the
JSON encoding of a value of the field’s type (only basic types are allowed). String types don’t need
the starting and ending quotes. The only allowed structured value is the empty structure value {},
which can be set for record of and set of types, as well as empty record and set types.

New (standard-compliant) version: If the attribute has the default(<value>) format (i.e. no JSON:

161

prefix), the <value> contains a TTCN-3 value of the field’s type (all JSON-encodable types are
allowed, and the value can also contain references to global values).

In both cases all JSON escaped characters can be used in <value>, plus the escape sequence \) will
add a) (right round bracket) character. An un-escaped) character in the <value> is interpreted as
the end of the attribute.

Optional fields with a default value will be set to omit if the field is set to null in JSON code, and will
use the default value if the field does not appear in the JSON document.

Example (legacy version):

type record Product_legacy {
charstring name,
float price,
octetstring id optional,
charstring from
 with {
variant(id) "JSON : default (FFFF)"
variant(from) "JSON:default(Hungary)"

}

// { "name" : "Shoe", "price" : 29.50 } will be decoded into:
// { name := "Shoe", price := 29.5, id := 'FFFF'0, from := "Hungary" }

// { "name" : "Shirt", "price" : 12.99, "id" : null } will be decoded into:
// { name := "Shirt", price := 12.99, id := omit, from := "Hungary" }

Example (new version):

162

type record Product {
charstring name,
float price,
octetstring id optional,
charstring origin,
universal charstring text
¥
with {
variant(id) "default ('FFFF'0)"
variant(origin) "default(""Hungary"")"
variant(text) "default (char(1,2,3,4\) & char(5,6,7,8\) & ""?2"")"
}

// { "name" : "Shirt", "price" : 12.99, "id" : null } will be decoded into:
// { name := "Shirt", price := 12.990000, id := omit, origin := "Hungary",
// text := char(1, 2, 3, 4) & char(b, 6, 7, 8) & "?" }

type record Shopping_cart {

charstring name,

Product product
} with {

variant(product) "default ({""Shirt"", 12.99, omit, ""Hungary"", ""available"" })"
}

// { "name" : "test shopper" } will be decoded into:
// { name := "test shopper", product := { name := "Shirt", price := 12.990000,
// id := omit, origin := "Hungary", text := "available" } }

const Product c_defaultProduct := {

name := "Size ""M"" Shirt",
price := 12.99,
id := omit,
origin := "Hungary",
text := "available"
}

type record Shopping_cart_2 {

charstring name,

Product product
} with {

variant(product) "default (c_defaultProduct)"
}

// { "name" : "test shopper" } will be decoded into:

// { name := "test shopper", product := { name := "Size \"M\" Shirt", price :=
12.990000,

// id := omit, origin := "Hungary", text := "available" } }

Extend

163

Attribute syntax: extend(<key>):(<value>)
Applicable to (TTCN-3): Any type

Description: Extends the JSON schema segment generated for this type with the specified key-value
pair. The <value> is inserted as a string value.

Both <key> and <value> are strings that can contain any character of a JSON string, plus the escape
sequence ')' can be used to add a *)' (right round bracket) character.

This attribute can be set multiple times for a type, each key-value pair is inserted as a field to the
end of the type’s schema. Extending a schema with multiple fields with the same key produces a
warning. Using one of the keywords used in the generated schema also produces a warning.

This attribute only influences schema generation. It has no effect on encoding or decoding values.
Metainfo for unbound

Attribute syntax metainfo for unbound

Applicable to (TTCN-3) Records, sets and fields of records and sets

Description Allows the encoding and decoding of unbound fields with the help of a meta info field.
The attribute can be set to fields individually, or to the whole record/set (which is equal to setting
the attribute for each of its fields).

The encoder sets the field’s value in JSON to null and inserts an extra (meta info) field into the JSON
object. The meta info field’s name is metainfo <fieldname>, where <fieldname> is the name of the
unbound field (or its alias, if the name as -:- attribute is set). Its value is unbound (as a JSON string).

The decoder accepts the meta info field regardless of its position in the JSON object (it can even
appear before the field it refers to). If the meta info field’s value is not unbound, or it refers to a field
that does not exist or does not have this attribute set, then an encoding error is displayed. The
referenced field must either be null or a valid JSON value decodable by the field.

Example:

164

// Example 1: meta info for a single field
type record Rec {
integer num,
charstring str
by
with {
variant(str) "JSON: metainfo for unbound";

}

// { num := 6, str := <unbound> } 1is encoded into:
// {"num":6,"str":null, "metainfo str":"unbound"}

// Example 2: meta info for the whole set (with "name as" and optional field)
type set Set {

integer num,

charstring str,

octetstring octets optional

}

with {
variant " JSON : metainfo for unbound ";
variant (num) " JSON : name as int ";

}

// { num := <unbound>, str := "abc", octets := <unbound> } is encoded into:
// {"int":null, "metainfo int":"unbound","str":"abc", "octets":null,

// "metainfo octets":"unbound"}

// Example 3: other values accepted by the decoder
// (these cannot be produced by the encoder)

// { "int" : 3, "str" : "abc", "octets" : "1234", "metainfo int" : "unbound" }
// is decoded into: { num := <unbound>, str := "abc", octets := '1234'0 }

// {"metainfo int" : "unbound", "int" : null, "str" : "abc", "octets" : "1234"}
// is decoded into: { num := <unbound>, str := "abc", octets := '1234'0 }

As number
Attribute syntax: as number
Applicable to (TTCN-3): Enumerated types

Description: If set, the enumerated value’s numeric form will be encoded as a JSON number,
instead of its name form as a JSON string.

Similarly, the decoder will only accept JSON numbers equal to an enumerated value, if this attribute
is set.

Example:

165

type enumerated Length { Short (@), Medium, Long(10) }
with {
variant "JSON: as number"

}

type record of Length Lengths;

const Lengths c_len := { Short, Medium, Long };
// is encoded into: [0, 1, 10]

Chosen
Attribute syntax: chosen (<parameters>)
Applicable to (TTCN-3): Union fields of records and sets

Description: This attribute indicates that the fields of the target union will be encoded without field
names (as if the union had the attribute as value), and that the selected field in the union will be
determined by the values of other fields in the parent record/set, as described by the rules in the
attribute’s parameters.

The attribute’s parameters are a list of rules, separated by semicolons (;). Each rule consists of a
field name from the union (or omit, if the union is an optional field in the parent record/set), and a
condition (or list of conditions). If the condition is true, then the specified field will be selected (or
the field will be omitted). If there are multiple conditions, then only one of them needs to be true
for the specified field to be selected.

The rules have the following syntax:

<field or omit>, <condition>;

if there’s only one condition, or

<field or omit>, { <condition1>, <condition2>, ... };

if there are multiple conditions.

The syntax of a condition is

<field reference> = <value>

or the keyword otherwise (which is true if all other conditions are false).

The <field reference> is a reference to a field within the record/set. It can contain multiple field
names to indicate an embedded field, but it cannot contain array indexes.

The <value> can be any value of a built-in type.

The rules do not affect JSON encoding, only decoding (i.e. this attribute is equivalent to the attribute
as value, when encoding).

Example:

166

type record PduWithId {

integer protocolld,
Choices field optional

}
with {
variant (field) "chosen (typel, { protocolld = 1, protocolld = 11 };
type2, protocolld = 2;
type3, protocolld = 3;
omit, otherwise)";
// variant (protocolld) "default (2)";
}

type union Choices {

StructTypel typel,
StructType2 type2,
StructType3 type3

}
// When decoding a value of type PduWithId, typel will be selected if
// protocolld is 1 or 11, type2 if protocolld is 2, type3 if protocolld is 3,
// and the field will be omitted in all other cases.
// For example { "protocolId" : 2, "field" : { ... } } is decoded into:
// { protocolld := 2, field := { type2 :={ ... } } }
// Note: the conditions in the attribute are evaluated when the decoder reaches
// the union field, so the protocolld field must precede the union field in the
// JSON document. Otherwise the decoder will use whatever value the protocolld
// field had before decoding began (likely <unbound>, which will cause a DTE).
// Note: If the protocolld field had the attribute 'default' (see commented
// line in the example), then the default value would be used to determine the
// selected field in the union, if the protocolld field is not decoded before
// the union field.

As map

Attribute syntax: as map

Applicable to (TTCN-3): Record of/set of with a record/set element type, that has 2 fields, the first of
which is a non-optional universal charstring

Description: If set, the mentioned structure is encoded as a JSON object containing key-value pairs.
The universal charstrings in the element records/sets are the keys, and the second field in each
record/set contains the value. This allows the creation of heterogenous objects in the JSON
document (i.e. JSON objects with any combination of field names and values).

Affects both encoding and decoding.

Example:

167

type record MapItem {
universal charstring key,
integer value_ optional

}

type set of MapItem Map
with { variant "as map" }

const Map c_map := { { "one", 1}, { "two", 2 }, { "three", 3 }, { "zero", omit } };
// is encoded into: { "one" : 1, "two" : 2, "three" : 3, "zero" : null }

Text ... as ...
Attribute syntax: text '<enum text>' as '<new text>'
Applicable to (TTCN-3): Enumerated types

Description: This attribute can be used to change the encoding of certain enumerated values. Each
attribute changes the encoding of one enumerated option.

Affects both encoding and decoding.

Example:

type enumerated EnumNumber { One, Two, Three }
with {

variant "text 'One' as '1'";

variant "text 'Two' as '2'";

variant "text 'Three' as '3'";

}

type record of EnumNumber EnumNumberList;

const EnumNumberlist c_numbers := { One, Two, Three };
// 1is encoded into: ["1", "2", "3"]

Escape as

Attribute syntax: escape as (short | usi | transparent)
Default value: short

Applicable to (TTCN-3): charstrings and universal charstrings

Description: This attribute changes the method of escaping characters when encoding charstrings
and universal charstrings.

* short - Uses the JSON short escape sequences for any characters that have them (i.e. "\n', \t', \r',
\f', \b, \", '\\" and /), and uses USI-like escape sequences (i.e. '\u' followed by 4 hex digits
containing the character’s ASCII code) for all other characters between char(U0) and char(U1F),

168

and for char(U7F).

* usi - Uses USI-like escape sequences for all characters between char(U0) and char(U20), and for

"o

the characters '\", "\\' and char(U7F). Does not escape the character '/'.
* transparent - Identical to the short escaping method, except that the characters '\\' and '/ are not
escaped.

Example: The universal charstring "a\\b" & char(U7) & "c\td/e" is encoded as:

* short: "\"a\\\b\\u0007c\\td\\/e\"",
e usi: "\"a\\u005Chb\\u0007c\\u0009d/e\"",
* transparent: "\"a\\b\\u0007c\\td/e\"".

Certain specifics of how the usi escaping method should work are not
defined clearly in the TTCN-3 standard for using JSON in TTCN-3 ([25]),
depending on how these issue get resolved in the standard we might be
forced to change our implementation. (See http://oldforge.etsi.org/mantis/

IMPORTANT
view.php?id=7913 and http://oldforge.etsi.org/mantis/view.php?id=7914 for
more details.) TITAN currently does not escape the solidus character ('/), and
only uses the USI-like escape sequences for the characters listed in the JSON
module (in Annex A of [25]), with the exception of the solidus character.
Type indicators

Attribute syntax: JSON: (integer | number | string | array | object | objectMember | literal)
Applicable to (TTCN-3):

* JSON:integer: integers,

e JSON:number: floats,

* JSON:string: universal charstrings,
e JSON:array: record ofs

* JSON:object: records or sets with one optional field of record of/set of type, whose element type
has (or is valid for) the JSON:objectMember attribute;

» JSON:objectMember: records with two fields, the first one being a universal charstring;

* JSON:1literal: booleans or enumerated types with one enumerated item.

Description: These attributes indicate which JSON schema types are represented by the TTCN-3
types they are set for. They are only meant to be used in the JSON module from Annex A of the
standard for using JSON in TTCN-3 ([25]). Most of them don’t change anything in the encoding or
decoding of values, with the exceptions of JSON:object and JSON:1iteral (for enumerated types).

» JSON:object allows the creation of any valid JSON object, with user-defined field names and
values. The TTCN-3 value is a record or set with one optional field of record of or set of type.
Each of its elements represents one field in the JSON object. The empty JSON object ({}) is
represented by the omitted field of the top-level record/set. The encoding and decoding of every

169

http://oldforge.etsi.org/mantis/view.php?id=7913
http://oldforge.etsi.org/mantis/view.php?id=7913
http://oldforge.etsi.org/mantis/view.php?id=7914

other value functions as if the top-level record/set had the attribute as value, and its field had
the attribute as map.

* JSON:1literal, when applied to an enumerated type with one enumerated item, changes the
encoding of its one value to the JSON literal 'null'. Similarly, the decoder will only accept the
JSON value mull'. This attribute does not change the encoding or decoding of booleans.

4.26.3. External functions
JSON encoder / decoder functions must have the encode(JSON) / decode(JSON) attribute set.

Faults in the JSON encoding/decoding process produce errors by default, but this can be modified
with the errorbehavior attribute. (Codec error handling)

JSON encoder functions can also have the printing(compact) or printing(pretty) attributes. This
specifies whether the encoder should add extra white spaces to the JSON code or not. This attribute
cannot be set at module level.

If compact printing is selected (or if the printing attribute is not set) no white spaces are added to
the JSON code, making it as short as possible.

Pretty printing makes the code easier to read by adding spaces, new lines and indenting.

Example:

type enumerated Day { Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday
lis
type record Date {
charstring month,
integer dayIdx,
Day dayName
}
type record of Date Dates;
type record PhoneNumber {
integer countryPrefix optional,
integer networkPrefix,
integer localNumber
} with {
variant(countryPrefix) "JSON:omit as null"
}
type record Profile {
charstring name,
PhoneNumber phoneNo,
charstring emailAddr,
Dates meetings
} with {
variant(phoneNo) "JSON: name as phone";
variant(emailAddr) "JSON: name as email";
}
external function f_enc_profile(in Profile par) return octetstring
with { extension "prototype(convert) encode(JSON) printing(pretty)" }

170

#codec-error-handling

var Profile prof := { "John Doe", { omit, 20, 1234567 }, "jdoe@mail.com", { {
"December", 31, Saturday }, { "February", 7, Friday } } };
log(f_enc_profile(prof));

// JSON code:

/1 A4

// "name" : "John Doe",

// "phone" : {

// "countryPrefix" : null,
// "networkPrefix" : 20,

// "localNumber" : 1234567
// j¥

// "email" : "jdoe@mail.com",

// "meetings" : [

// {

// "month" : "December",
// "dayIdx" : 31,

// "dayName" : "Saturday"
// +

// {

// "month" : "February",
// "dayIdx" : 7,

// "dayName" : "Friday"
// }

//]

/1}

4.26.4. Converting TTCN-3 and ASN.1 types to a JSON schema

The TITAN compiler can convert type definitions in TTCN-3 and ASN.1 modules into a JSON schema
that validates the JSON encoding of these types.

the names of ASN.1 modules, types and fields will appear in TTCN-3 form (as if they
NOTE were imported into a TTCN-3 module). E.g.: the ASN.1 names Protocol-Elem and
value will appear as Protocol_Elem and value_ respectively.

Usage

The compiler option --ttcn2json shall be used for the conversion, followed by JSON schema
generator specific options and the list of TTCN-3 and ASN.1 file names.

The option -j restricts the TTCN-3 types used in the conversion: only those that have JSON coding
enabled will be converted. By default all TTCN-3 types that can be converted will be used. This
option does not affect ASN.1 types, these will always be converted.

If option -f is set, then the schema will only validate types that have JSON encoding and/or
decoding functions, otherwise all types it will validate all types included in the schema.

The options -A and -T can be used before each input file to specify its type (-A for ASN.1 files and -T
for TTCN-3 files). If a file is not preceeded by either of these option, then the compiler will attempt

171

to determine its type based on its contents.

The last parameter specifies the name of the JSON schema file if it is preceded by a dash (-).
Otherwise the name of the schema will be created using the first input file name (its .asn or .ttcn
extension will be replaced by .json, or, if it doesn’t have either of these extension, then .json will
simply be appended to its end).

Usage examples:compiler -ttcn2json -T modulel.ttcn -A module2.asn - schema.jsoncompiler
--ttcn2json -j modulel.ttcn module2.asn

The first example will generate the schema.json JSON document containing the schema, the second
one will generate modulel.json (and only JSON-encodable types will be included). These documents
will have the "pretty” printing format mentioned in 4.26.3.

Top level

On the top level the schema contains a JSON object with 2 properties.

The first property, "definitions", has the schema segments of the type definitions in the TTCN-3 and
ASN.1 modules as its value. This value is a JSON object with one property (key-value pair) for each
module. Each property has the module name as its key and an object containing the schema
segments for the types definied in that module as its key. Similarly, each type definition’s key is the
type name and its value is the type’s schema segment (these will be described in the next sections).

The second top level property is an "anyOf" structure, which contains references to the TTCN-3 and
ASN.1 types' schema segments under "definitions". The types listed here are the ones validated by
the schema. If the compiler option -f is set, then only the schema segments of types that have either
a JSON encoding or decoding function (or both) will be referenced (ASN.1 types can have JSON
encoding/decoding functions declared in TTCN-3 modules that import them). Extra information
related to the encoding/decoding function(s) is stored after each reference.

Example:

module MyModule {

type enumerated Height { Short, Medium, Tall };

type set Num {
integer num

}

external function f_enc_h(in Height h) return octetstring
with { extension "prototype(convert) encode(JSON)" }

external function f_dec_n(in octetstring o) return Num
with { extension "prototype(convert) decode(JSON)" }

} with {
encode "JSON"
}
// Generated JSON schema:
/14
// "definitions" : {
// "MyModule" : {
// "Height" : {

172

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
/7}

nyOf" :

"enum" : [
"Short",
"Medium",
"Tall"

1

"numericValues" : [
0,
[
2

]

iy
"Num" : {

"type" : "object",

"subType" : "set",

"properties" : {
"num" : {

"type" : "integer"

}

}

"additionalProperties" : false,

"required" : [

num

]

[

"$ref" : "#/definitions/MyModule/Height",
"encoding" : {
"prototype" : [
"convert",
"f_enc_h",
npn

"$ref" : "H#/definitions/MyModule/Num",
"decoding" : {
"prototype" : [
"convert",
"f_dec_n",

0

173

Rules and extra keywords

The JSON schema will be generated according to the rules of the IETF draft v4 (see http://json-
schema.org/documentation.html).

In addition to the "definitions" keyword specified above, the schema segments of the type
definitions can use the following extra keywords:

» "subType": distinguishes 2 or more types from each other, that otherwise have no other
differences in their schema segments (such as: charstring and universal charstring; record and
set; record of and set of)

» "fieldOrder": stores the order of the fields of a record or set (value: an array containing the field
names) - only needed if there are at least 2 fields

» "originalName": stores the original name of a record/set field (see here)

* "unusedAlias": stores the alias of a record/set/union field name, if it doesn’t appear under a
"properties" keyword (see here)

* "omitAsNull": specifies if the "omit as null" JSON encoding instruction is present for an optional
field of a record or set (see here and here)

e "numericValues": lists the numeric values of the enumerated items (in the same order as the
items themselves)

A schema segment is generated for each type that has its own definition in TTCN-3. References to
other types in TTCN-3 type definitions are converted into references in the JSON schema. Schema
segments for embedded TTCN-3 type definitions are defined inside their parent type’s schema
segment (see here and here for examples).

The examples in the following sections will only contain JSON schema segments, not complete
schemas (generated for one or more TTCN-3/ASN.1 type definitions, not the whole module). These
schema segments contain the type name and the schema that validates the type. In a complete JSON
schema these segments would be directly under the module’s property, which is under "definitions"
(for examples see section Top Level, types "Height" and "Num").

Schema segments for basic types

The JSON encoding of basic types is detailed in section Basic Types. Here are their schema
segments:

// integer(TTCN-3) and INTEGER(ANS.1):

/7 {

// "type" : "integer"

/] '}

// float(TTCN-3) and REAL(ASN.1):
/7 {

// "anyOf" : [

// {

// "type" : "number"
/! bs

// {

174

http://json-schema.org/documentation.html
http://json-schema.org/documentation.html

// "enum" : [

// "not_a_number",
// "infinity",

// "-infinity"

//]

// }

//]

//}

// boolean(TTCN-3) and BOOLEAN(ASN.T):
/7 A

// "type" : "boolean"

//}

// charstring(TTCN-3), NumericString(ASN.1), PrintableString(ASN.1),
// TA5String(ASN.1) and VisibleString(ASN.1):

/7 {

// "type" : "string",

// "subType" : "charstring"
/] '}

// universal charstring(TTCN-3), GeneralString(ASN.1), UTF8String(ASN.1),
// UniversalString(ASN.1), BMPString(ASN.1), GraphicString(ASN.1),
// TeletexString(ASN.1) and VideotexString(ASN.1):

/7 {

// "type" : "string",

// "subType" : "universal charstring"

//}

// bitstring(TTCN-3) and BIT STRING(ASN.1):

/7 {

// "type" : "string",

// "subType" : "bitstring",

// "pattern" : "A[01]*$"

//}

// hexstring(TTCN-3):

/7 {

// "type" : "string",

// "subType" : "hexstring",

// "pattern" : "A[0-9A-Fa-f]*g§"

//}

// octetstring(TTCN-3), OCTET STRING(ASN.1) and ANY(ASN.1):
/7 {

// "type" : "string",

// "subType" : "octetstring",

// "pattern" : "A([0-9A-Fa-f][0-9A-Fa-f])*$"
//}

// NULL(ASN.1):

/7 {

// "type" : "null"

/] '}

// objid(TTCN-3), OBJECT IDENTIFIER(ASN.1) and RELATIVE-OID(ASN.1):
/7 {

// "type" : "string",

// "subType" : "objid",

175

// "pattern” : "A[0-2][.]1[1-317[0-9]1([.]1[0-9]|([1-9][0-9]+))*$"

/1}

// verdicttype:

/1 A4

// "enum" : [
// "none",
// "pass”,
// "inconc",
// "fail",
// "error"
//]

//}

// Enumerated types are converted the same way as the verdicttype with the
// addition of the numeric values. Example:
// TTCN-3:
type enumerated Season {
spring (1), summer (2), fall (3), winter (4)
¥
// ASN.1:
Season ::= ENUMERATED {
spring (1), summer (2), fall (3), winter (4)

}

// JSON schema segment for type "Season":
// "Season" : {

// "enum" : [

// "spring",

// "summer",

// "fall",

// "winter"

// 1

// "numericValues" : [
// 1,

// 2,

// 3,

// 4

//}

Schema segments for records and sets

The JSON object type is used for records and sets. The "properties” keyword specifies the fields of
the record (each property’s key is the field name, and the value is the field’s schema segment).
Additional properties are not accepted ("additionalProperties" : false). The "required" keyword
determines which fields are mandatory (the names of all non-optional fields are listed here).

Optional fields have an "anyOf" structure directly under "properties" (instead of the field’s schema
segment). The "anyOf" structure contains the JSON null value and the field’s schema segment. The
"omitAsNull" keyword is used to specify how omitted optional values are encoded (after the
"anyOf" structure).

Examples:

176

// Example 1:
// TTCN-3:
type record Product {
charstring name,
float price,
octetstring id optional,
charstring from
}
// ASN.1:
Product ::= SEQUENCE {
name VisibleString,
price REAL,
id OCTET STRING OPTIONAL,
from VisibleString
}
// Schema segment for type "Product":
// "Product" : {
// "type" : "object",
// "subType" : "record",
// "properties" : {
// "name" : {
// "type" : "string",
// "subType" : "charstring"
// s
// "price" : {
// "any0f" : [
// {
// "type" : "number"
// I
// {
// "enum" : [
// "not_a_number",
// "infinity",
// "-infinity"
// }
// 1,
// +
// "id" 1 {
// "anyOf" : [
// {
// "type" : "null"
// Jis
// {
// "type" : "string",
// "subType" : "octetstring",
// "pattern" : "A([0-9A-Fa-f][0-9A-Fa-f])*$"
// },
// 1,
// "omitAsNull" : false
/! s

177

// "from" : {

// “type" : "string",

// "subType" : "charstring"
// }

// I

// "additionalProperties" : false,
// "fieldOrder" : [

// "name",

// "price",

// "id",

// "from"

// 1,

// "required" : [

// "name",

// "price",

// "from"

//]

/1 }

// Example 2: embedded type definition
// TTCN-3:
type set Barrels {
integer numBarrels,
record {
enumerated { Small, Medium, Large } size,
boolean filled
} barrelType
}
// ASN.1:
Barrels ::= SET {
numBarrels INTEGER,
barrelType SEQUENCE {
size ENUMERATED { Small, Medium, Large },
filled BOOLEAN
}

}
// JSON schema segment for type "Barrels":

// "Barrels" : {

// "type" : "object",

// "subType" : "set",

// "properties" : {

// "numBarrels" : {

// "type" : "integer"

// s

// "barrelType" : {

// "type" : "object",

// "subType" : "record",
// "properties" : {

// "size" : {

// "enum" : [

// "Small",
// "Medium",

178

// "Large"

// 1,

// "numericValues" : [
// 0,

// 1,

// 2

//]

// 1,

// "filled" : {

// "type" : "boolean"
// }

// +

// "additionalProperties" : false,
// "fieldOrder" : [

// "size",

// "filled"

// 1l

// "required" : [

// "size",

// "filled"

//]

// }

// H

// "additionalProperties" : false,
// "fieldOrder" : [

// "numBarrels"”,

// "barrelType"

// 1

// "required" : [

// "numBarrels",

// "barrelType"

//]

/1 }

// Example 3: separate type definitions and references
// (the module name is "MyModule")
// TTCN-3:
type enumerated Size { Small, Medium, Large };
type record BarrelType {
Size size,
boolean filled
}
type set Barrels {
integer numBarrels,
BarrelType barrelType
}
// ASN.1:
Size ::= ENUMERATED { Small, Medium, Large }
BarrelType ::= SEQUENCE {
size Size,
filled BOOLEAN
}

179

Barrels ::= SET {
numBarrels INTEGER,
barrelType BarrelType
}
// Schema segments for types "Size", "BarrelType" and "Barrels":
// "Size" : {
// "enum" : [

// "Small",

// "Medium",

// "Large"

// 1,

// "numericValues" : [

// 0,

// 1,

// 2

//]

//}

// "BarrelType" : {

// "type" : "object",

// "subType" : "record",

// "properties" : {

// "size" 1 {

// "$ref" : "#/definitions/MyModule/Size"
// s

// "filled" : {

// "type" : "boolean"
// }

// Iy

// "additionalProperties" : false,
// "fieldOrder" : [

// "size",

// "filled"

// 1,

// "required" : [

// "sjze",

// "filled"

//]

/1Y,

// "Barrels" : {

// "type" : "object",

// "subType" : "set",

// "properties" : {

// "numBarrels" : {

// "type" : "integer"
// g

// "barrelType" : {

// "$ref" : "#/definitions/MyModule/BarrelType"
// }

// H

// "additionalProperties" : false,
// "fieldOrder" : [

180

// "numBarrels",

// "barrelType"
// 1,

// "required" : [

// “numBarrels",
// "barrelType"
//]

/]}

Schema segments for records of, sets of and arrays

The JSON array type is used for records of, sets of and arrays. The "items" keyword specifies the
schema segment of the items. In case of arrays, the "minltems" and "maxItems" properties are set to
the array length.

Arrays are distinguishable from records of and sets of by the "minIltems" and "maxItems" keywords,
so there is no need for them to have the "subType" property.

Examples:

// Example 1:

// TTCN-3:

type record of bitstring Bits;

// ASN.1:

Bits ::= SEQUENCE OF BIT STRING
// Schema segment for type "Bits":

// "Bits" : {

// "type" : "array",

// "subType" : "record of",

// "items" : {

// "type" : "string",

// "subType" : "bitstring",
// "pattern" : "A[O1]*$"

// }

//}

// Example 2 (TTCN-3 only):
type integer Ints[4];
// Schema segment for type "Ints":

// "Ints" : {

// "type" : "array",

// "minItems" : 4,

// "maxItems" : 4,

// "items" : {

// "type" : "integer"
// }

/1}

// Example 3:

// reference to record type Num defined in section Top Level.
// TTCN-3:

type set of Num Nums;

181

// ASN.1:
Nums ::= SET OF Num
// JSON schema segment for type "Nums":

// "Nums" : {

// "type" : "array",

// "subType" : "set of",

// "jtems" : {

// "$ref" : "#/definitions/MyModule/Num"
// }

/1}

// Example 4:

// the same thing with Num as an embedded type
// TTCN-3:

type set of set { integer num } Nums;

// ASN.1:

Nums ::= SET OF SET { num INTEGER }

// JSON schema segment for type "Nums":

// "Nums" : {

// "type" : "array",

// "subType" : "set of",

// "items" : {

// "type" : "object",

// "subType" : "set",

// "properties" : {

// "num" : {

// "type" : "integer"
// }

// s

// "additionalProperties" : false,
// "required" : [

// “num"

//]

// }

//}

Schema segments for unions, anytype, selection type and open type

The "anyOf" structure is used for unions, open types and the anytype (if they have at least 2 fields).
Each item in the "anyOf" structure represents one field of the union; they are each a JSON object
with one key-value pair (one property). Same as with records, the "additionalProperties” keyword is
set to false, and the one property is marked as required.

Examples:

// Example 1: union

// TTCN-3:

type union Thing {
boolean b,
integer 1,
charstring cs,

182

record { integer num } rec
}
// ASN.1:
Thing ::= CHOICE {
b BOOLEAN,
i INTEGER,
cs VisibleString,
rec SEQUENCE { num INTEGER }
}
// Schema segment for type "Thing":
// "Thing" : {
// "any0f" : [
// {
// "type" : "object",
// "properties" : {
// "b" 1 {
// "type" : "boolean"
// }
// I
// "additionalProperties" : false,
// "required" : [
// "b"
//]
// s
// {
// "type" : "object",
// "properties" : {
// it |
// "type" : "integer"
// }
// I
// "additionalProperties" : false,
// "required" : [
// "t
//]
// s
// {
// "type" : "object",
// "properties" : {
// "es" i {
// "type" : "string",
// "subType" : "charstring"
// }
// +,
// "additionalProperties" : false,
// "required" : [
// "cs"
//]
/! I
// {
// "type" : "object",

183

// "properties" : {

// "rec" : {

// "type" : "object",

// "subType" : "record",
// "properties" : {

// "num" : {

// "type" : "integer"
// }

// g

// "additionalProperties" : false,
// "required" : [

// “num"

//]

// }

// }

// "additionalProperties" : false,
// "required" : [

// "rec"

//]

// }

//]

//}

// Example 2: anytype (TTCN-3 only)

module -+ {

} with {
extension "anytype integer,charstring"”
// the anytype must be referenced at least one,
// otherwise its schema segment won't be generated
}
// JSON schema segment for the anytype:
// "anytype" : {

// "anyOf" : [

// {

// "type" : "object",

// "properties" : {

// "integer" : {

// "type" : "integer"

// }

// lrs

// "additionalProperties" : false,
// "required" : [

// "integer"

//]

// g

// {

// "type" : "object",

// "properties" : {

// "charstring" : {

// "type" : "string",

// "subType" : "charstring"

184

// }

// I

// "additionalProperties" : false,
// "required" : [

// "charstring"

//]

// }

//]

//}

The ASN.1 selection type generates the same schema segment as the specified alternative of the
CHOICE would.

Example:

// Continuing example 1 (ASN.1 only):

NumRec ::= rec < Thing

// JSON schema segment for type NumRec:
// "NumRec" : {

// "type" : "object",

// "subType" : "record",

// "properties" : {

// "num" @ {

// "type" : "integer"

// }

// I

// "additionalProperties" : false,
// "required" : [

// "num"

//]

/]}

Effect of coding instructions on the schema

For the list of JSON coding instructions see here. As mentioned before, only TTCN-3 types can have
coding instructions, ASN.1 types can’t.
* omit as null - its presence is indicated by the "omitAsNull" keyword (true, if it’s present)

* name as ... - the alias is used under "properties" instead of the field’s name in TTCN-3; the
original name is stored under the "originalName" key

* asvalue - the union’s "anyOf" structure contains the fields' schema segments instead of the JSON
objects with one property; the field’s name is stored under the "originalName" key

o default - specified by the "default" keyword
* extend - adds a custom key-value pair to the type’s schema segment

* as value + name as ... - the field name aliases are stored under the "unusedAlias" keyword, as
there are no more JSON objects with one property to store them in (they are also ignored by
both the schema and the encoder/decoder, and a compiler warning is displayed in this case)

185

* metainfo for unbound - is ignored by the schema generator

Examples:

// Example 1: omit as null
type record Rec {
integer num optional,
universal charstring str optional

} with {
variant(num) "JSON : omit as null"
}
// Schema segment for type "Rec":
// "Rec" : {
// "type" : "object",
// "subType" : "record",
// "properties" : {
// "num" : {
// "any0f" : [
// {
// “type" : "null"
// I
// {
// "type" : "integer"
// }
// 1,
// "omitAsNull" : true
// lrg
// "str" : {
// "any0f" : [
// {
// "type" : "null"
// I
// {
// "type" : "string",
// "subType" : "universal charstring"
// }
// 1,
// "omitAsNull" : false
// }
// I
// "additionalProperties" : false,
// "fieldOrder" : [
// "num",
// "str"
//]
//}

// Example 2: name as ...
type set Num {

integer num
+ with {

186

variant(num) "JSON : name as number"

by
// Schema segment for type "Num":

// "Num" : {

// "type" : "object",

// "subType" : "set",

// "properties" : {

// "number" : {

// "originalName" : "num",
// "type" : "integer"

// +

// I

// "additionalProperties" : false,
// "required" : [

// "number"

//]

//}

// Example 3: as value and name as ...
type union Thing {
boolean b,
integer 1,
charstring cs,
record { integer num } rec
} with {
variant "JSON : as value";
variant(i) "JSON : name as int";
variant(cs) "JSON : name as str";
}
// Schema segment for type "Thing":

// "Thing" : {

// "anyOf" : [

// {

// "originalName" : "b",
// "type" : "boolean"

// +

// {

// "originalName" : "i",
// "unusedAlias" : "int",
// "type" : "integer"

// +

// {

// "originalName" : "cs",
// "unusedAlias" : "str",
// "type" : "string",

// "subType" : "charstring"
// b

// {

// "originalName" : "rec",
// "type" : "object",

// "subType" : "record",
// "properties" : {

187

// "num" : {
// "type" : "integer"
// }
// lrs
// "additionalProperties" : false,
// "required" : [
// "num"
//]
// }
//]
/] '}
// Example 4: default
type record Rec {
integer num,
universal charstring str
} with {
variant(num) "JSON : default(@)";
variant(str) "JSON : default(empty)";

}

// JSON schema segment for type "Rec":
// "Rec" : {

// "type" : "object",

// "subType" : "record",

// "properties" : {

// "num" : {

// "type" : "integer",

// "default" : @

// s

// "str" : {

// "type" : "string",

// "subType" : "universal charstring",
// "default" : "empty"

// }

// I

// "additionalProperties" : false,
// "fieldOrder" : [

// "num",

// "str"

// 1,

// "required" : [

// "num",

// "str"

//]

//}

// Example 5: extend
type record Number {
integer val
} with {
variant "JSON:extend(comment):(first)";
variant " JSON : extend (comment) : (second (todo: add more fields\)) ";
variant "JSON: extend(description):(a record housing an integer)";

188

variant(val) "JSON: extend(description):(an integer)";
variant(val) "JSON: extend(subType):(positive integer)";

}

// Schema segment for type "Number":

// "Number" : {

// "type" : "object",

// "subType" : "record",

// "properties" : {

// "val" : {

// "type" : "integer",

// "description” : "an integer",

// "subType" : "positive integer"

// }

// I

// "additionalProperties" : false,

// "required" : [

// "val"

// 1

// "comment” : "first",

// "comment" : "second (todo: add more fields)",
// "description” : "a record housing an integer"
/] '}

// Displayed warnings:

// warning: JSON schema keyword 'subType' should not be used as the key of

// attribute 'extend'

// warning: Key 'comment' is used multiple times in 'extend' attributes of type
// '@MyModule.Number'

// (The multiple uses of 'description' don't generate a warning, since these

// belong to different types.)

External function properties in the schema

JSON encoding/decoding functions can only be declared in TTCN-3 modules, however they can be
defined for both TTCN-3 types and imported ASN.1 types.

Information related to a type’s JSON encoding/decoding external function is stored after the
reference to the type’s schema segment in the top level "anyOf" structure.

Extra JSON schema keywords for the external function properties:

* "encoding” and "decoding": stores the specifics of the encoding or decoding function as
properties (directly under the top level "anyOf", after the reference to the type’s schema
segment)

» "prototype": an array containing the prototype of the encoding function (as a string), the
function name, and the parameter names used in its declaration (directly under "encoding" or
"decoding")

* "printing": stores the printing settings (values: "compact" or "pretty"; directly under "encoding")

189

» "errorBehavior": an object containing the error behavior modifications as its properties, each
modification has the error type as key and the error handling as value (directly under
"encoding” or "decoding")

Example:

module Mod {

type record Rec {
integer num,
boolean b

}

external function f_enc(in Rec x) return octetstring with {
extension "prototype(convert) encode(JSON) printing(pretty)"

}

external function f_dec(in octetstring o, out Rec x) with {
extension "prototype(fast) decode(JSON)"
extension "errorbehavior (ALL:WARNING, INVAL_MSG:ERROR)"

}

} with {
encode "JSON"
}
// JSON schema:
/7 {
// "definitions" : {
// "Mod" : {
// "Rec" : {
// "type" : "object",
// "subType" : "record",
// "properties" : {
// "num" : {
// "type" : "integer"
// s
// "b" ¢ {
// "type" : "boolean"
// }
// H
// "additionalProperties" : false,
// "fieldOrder" : [
// "num",
// "b"
// 1
// "required" : [
// "num",
// "b"
//]
// }
// }
// H
// "any0f" : [

190

// {

// "$ref" : "#/definitions/Mod/Rec",
// "encoding" : {

// "prototype" : [

// "convert",

// "f _enc",

// "x"

// 1,

// "printing" : "pretty"
// lis

// "decoding" : {

// "prototype" : [

// "fast",

// "f_dec",

// "o",

// "x"

/7 1

// "errorBehavior" : {

// "ALL" : "WARNING",
// "INVAL_MSG" : "ERROR"
// }

// }

// }

//]

/] }

Schema segments for type restrictions

The compiler’s -ttcn2json option also generates schema segments for type restrictions (subtyping
constraints), even though these are ignored by the JSON encoder and decoder. Only restrictions of
TTCN-3 types are converted to JSON schema format, ASN.1 type restrictions are ignored.

The generated schema segments only contain basic JSON schema keywords, no extra keywords are
needed.

Table 10. Converting TTCN-3 type constraints to JSON schema segments

TTCN-3 type restriction JSON schema segment

Length restrictions of string types Keywords minLength and maxLength are used.
Length restrictions of array types Keywords minItems and maxItems are used.
Single values All single values (more specifically their JSON

encodings) are gathered into one JSON enum.
Keyword valuelList is used to store single values
of unions with the as value coding instruction
(encoded as if they did not have this coding
instruction).

191

TTCN-3 type restriction JSON schema segment

Value range restrictions of integers and floats = The keywords minimum and maximum are used
to specify the range, and keywords
exclusiveMinimum and exclusiveMaximum indicate
whether the limits are exclusive or not. All value
range and single value restrictions are placed in
an anyOf structure, if there are at least two value
ranges, or if there is one value range and at least
one single value.

Value range restrictions of charstrings and All value range restrictions are gathered into a
universal charstrings set expression in a JSON schema pattern.
String pattern restrictions The TTCN-3 pattern is converted into an

extended regular expression and inserted into
the schema as a JSON pattern. Since the pattern
is a JSON string, it cannot contain control
characters. These are replaced with the
corresponding JSON escape sequences, if
available, or with the escape sequence \u,
followed by the character’s ASCII code in 4
hexadecimal digits. Furthermore all backslashes
in the string are doubled.

These schema elements are inserted after the type’s schema segment. If the type’s schema segment
only contains a reference to another type (in case it’s a record/set/union field of a type with its own
definition or it’s an alias to a type with its own definition), then an all0f structure is inserted,
which contains the reference as its first element and the restrictions as its second element (since
the referenced type may contain some of the schema elements used in this type’s restrictions).

If the value list restriction contains references to other subtypes, then the schema segments of their
restrictions are inserted, too.

The JSON coding instructions as value (for unions) and name as::- (for records, sets and unions) are
taken into consideration when generating the schema elements for the single values.

All non-ASCII characters in universal charstring single values and patterns are inserted into the
schema in UTF-8 encoding.

Special cases:

1. The restrictions of floats are inserted at the end of the first element in the anyOf structure,
except those that are related to the special values (infinity, -infinity and not_a_number). The
enum containing the special values is changed, if any of the special values is not allowed by the
type’s restrictions. If neither of the special values are allowed, then the anyOf structure is
omitted, and the type’s schema only contains type : number, followed by the rest of the
restrictions. Similarly, if only special values are allowed by the restrictions, then the type’s
schema only contains the enum with the valid values.

2. If a verdicttype is restricted (with single values), then only the enum containing the list of single

192

values is generated (since it would conflict with the type’s schema segment, which is also an
enum).

3. If a single value restriction contains one or more omit values, then all possible JSON encodings
of the single value are inserted into the enum. There are 2" different encodings, where N is the
number of omits in the single value, since each omitted field can be encoded in 2 ways (by not
adding the field to the JSON object, or by adding the field with a null value).

4. Single value restrictions of unions with the as value coding instruction do not specify which
alternative the value was encoded from. Thus, the single values are generated a second time,
under the extra keyword valuelist, as if they belonged to a union without as value (with
alternative names). This second list does not contain all the combinations of omitted field
encodings (mentioned in the previous point), only the one, where omitted fields are not added
to their JSON objects.

Examples:

// Example 1: Type definition with value range restriction and its subtype
// with value list restriction

type integer PosInt (!@..infinity);

type PosInt PosIntValues (1, 5, 7, 10);

// Schema segment generated for type "PosInt":

// "PosInt" : {

// "type" : "integer",

// "minimum" : O,

// "exclusiveMinimum" : true
/1 }

// Schema segment generated for type "PosIntValues":
// "PosIntValues" : {

// "allof" : [

// {

// "$ref" : "#/definitions/MyModule/PosInt"
// o

// {

// "enum" : [

// 1,

// 5,

// 7,

// 10

//]

// }

// 1

//}

// Example 2: String type definitions with length, value range and pattern
// constraints
type charstring CapitallLetters ("A".."Z") length (1..6);
type charstring CharstringPattern
(pattern "*ab?*\?\(\+[0-9a-fA-F*?\n]#(2,4)\d\w\n\r\s\"x"\\d);

193

type universal charstring UnicodeStringRanges

("a".. "z", char(@, @, 1, 81)..char(0, 0, 1, 113));
type universal charstring UnicodePattern

(pattern "abc?\q{ @0, @, 1, 113 }z\\q1\q{0,0,0,2}");

// Schema segment generated for type "Capitalletters":
// "Capitalletters" : {

// "type" : "string",

// "subType" : "charstring",
// "minLength" : 1,

// "maxLength" : 6,

// "pattern" : "A[A-Z]*$"
//}

// Schema segment generated for type "CharstringPattern”:
// "CharstringPattern" : {

// "type" : "string",

// "subType" : "charstring",

// "pattern” : "A *¥ab A\F\\\\N(\\+[\n-\r*0-9?A-Fa-f]{2,4}[0-9][0-9A-Za-z]
//7INn-\rINFLNE-NT TV A" \\\\d$"

/1}

// Schema segment generated for type "UnicodeStringRanges":
// "UnicodeStringRanges" : {

// "type" : "string",

// "subType" : "universal charstring",
// "pattern" : "A[a-zG-G]*$"

//}

// Schema segment generated for type "UnicodePattern”:
// "UnicodePattern" : {

// "type" : "string",

// "subType" : "universal charstring",
// "pattern” : "Aabc.lz\\\\q1\u0002$"
//}

// Example 3: Array type definitions with length restrictions and
// restrictions for the element type

type record length (3..infinity) of PosInt PosIntList;

type set length (2) of integer OnesAndTwos (1, 2);

// Schema segment generated for type "PosIntList":
// "PosIntList" : {

// "type" : "array",

// "subType" : "record of",

// "items" : {

// "$ref" : "#/definitions/MyModule/PosInt"
/! H

// "minItems" : 3

//}

194

// Schema segment generated for type "OnesAndTwos":
// "OnesAndTwos" : {

// "type" : "array",

// "subType" : "set of",
// "items" : {

// "type" : "integer",
// "enum" : [

// 1,

// 2

//]

// I

// "minItems" : 2,

// "maxItems" : 2

//}

// Example 4: Float type definitions with all kinds of restrictions

type float RestrictedFloat (-infinity..-1.0, 0.0, 0.5, 1.0, not_a_number);
type float NegativeFloat (!-infinity..!0.0);

type float InfiniteFloat (-infinity, infinity);

// Schema segment generated for type "RestrictedFloat":
// "RestrictedFloat" : {

// "any0f" : [

// {

// “type" : "number",

// "any0f" : [

// {

// "enum" : [

// 0.000000,

// 0.500000,

// 1.000000,

//]

// I

// {

// "maximum" : -1.000000,
// "exclusiveMaximum" : false
// }

//]

// +

// {

// "enum" : [

// "not_a_number",

// "-infinity"

//]

// +

//]

//}

// Schema segment generated for type "NegativeFloat":
// "NegativeFloat" : {

195

// "type" : "number",

// "maximum" : 0.000000,
// "exclusiveMaximum" : true
// %}

// Schema segment generated for type "InfiniteFloat":
// "InfiniteFloat" : {

// "enum" : [

// "infinity",
// "-infinity"
// 1

/] }

// Example 5: verdicttype definition with restrictions (single values)
type verdicttype SimpleVerdict (pass, fail, error);

// Schema segment generated for type "SimpleVerdict":
// "SimpleVerdict" : {
// "enum" : [

// "pass”,
// "fail",
// "error"
//]

//}

// Example 6: Union type definition with the "as value" coding instruction and
// its subtypes (one of which references the other)
type union AsValueUnion {
integer 1,
charstring str
}
with {
variant "JSON: as value"

}

type AsValueUnion AsValueUnionValues (
{1i:=31},

{ str := "abc" }

)i

type AsValueUnion MoreAsValueUnionValues (
AsValueUnionValues,

{i:=67}

)i

// Schema segment generated for type "AsValueUnion":
// "AsValueUnion" : {

// "any0f" : [

// {

// "originalName" : "i",
// "type" : "integer"

196

//
//
//
//
//
//
//
//

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

{
"originalName" : "str",
"type" : "string",
"subType" : "charstring"
¥
]
}
Schema segment generated for type "AsValueUnionValues":
"AsValueUnionValues" : {
"allof" : [
{
"$ref"
T
{
"enum" : [
3,
"abc"
1,
"valuelist" : [
{
"i" 1 3
Jio
{
"str" : "abc"
}
]
¥
]
}

Schema segment generated for type "MoreAsValueUnionValues":
"MoreAsValueUnionValues" :

"al10f" : [
{
"$ref" :
lrg
{

"enum" :
3,
"abc
6

I,

"#/definitions/MyModule/AsValueUnion"

"#/definitions/MyModule/AsValueUnion"

[

"valuelist"

{
}I
{

}I

i

str

{

2L

13

abc

197

// {

// "i" 16
// }

//]

// }

//]

/1}

// Example 7: Record definition with field name aliases and extra restrictions
// to its fields, plus its subtype, which contains omit values
type record Rec {
PosIntValues val optional,
integer i (0..6-3),
octetstring os ('1010'0, '1001'0, '1100'0) optional
}
with {
variant(val) "JSON: name as posInt";
variant(i) "JSON: name as int";

}

type Rec RecValues (
{1,090, '1010'0 },
{5, 0, "1001'0 },
{7, 2, om1t +,
{ omit, 1, omit }

)i

// Schema segment generated for type "Rec":
// "Rec" : {

// "type" : "object",

// "subType" : "record",

// "properties" : {

// "posInt" : {

// "any0f" : [

// {

// "type" : "null"

// I

// "originalName" : "val",
// "#ref" : "#/definitions/MyModule/PosIntValues"
// }

// 1l

// "omitAsNull" : false

// +

// "int" @ {

// "originalName" : "i",

// "type" : "integer",

// "minimum" : 0,

// "exclusiveMinimum" : false,
// "maximum" : 3,

// "exclusiveMaximum" : false
// i

198

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

{
"type" : "null",
},
{
"type" : "string",
"subType" : "octetstring"”,
"pattern" : "A([0-9A-Fa-f][0-9A-Fa-f])*$",
"enum" : [
"1010",
"1001",
"1100"

}
]

}
}I

"omitAsNull" : false

"additionalProperties" : false,

"fieldOrder" : [

"posInt",
ll_intll,
"05"

1,

"required" : [
ll_intll

]

}

Schema segment for type "RecValues":

"RecValues" : {

"allof" : [
{
"$ref" : "#/definitions/MyModule/Rec"
+
{
"enum" : [
{
"posInt" : 1,
"int" : 0,
"os" : "1010"
I¥
{
"posInt" : 5,
"int" : 0,
"os" : "1001"
j¥
{
"posInt" : 7,
"int" : 2

199

// I

// {

// "posInt" : 7,
// "int" : 2,

// "os" : null
// I,

// {

// "int" 1,

// H

// {

// "posInt" : null,
// "int" 1 1

// I

// {

// "int" : 1,

// "os" : null
// I

// {

// "posInt" : null,
// "int" 1,

// "os" : null
// }

//]

// }

//]

/1 '}

4.26.5. Differences from the TTCN-3 standard

The JSON encoder and decoder work according to the rules defined in the JSON part of the TTCN-3
standard [25] with the following differences:

* No wrapper JSON object is added around the JSON representation of the encoded value, i.e. all
values are encoded as if they had the JSON variant attribute noType (from the standard).
Similarly, the decoder expects the JSON document to only contain the value’s JSON
representation (without the wrapper). If a wrapper object is desired, then the type in question
should be placed in a record, set or union.

* The JSON encoder and decoder only accept the variant attributes listed here. Some of these have
the same effect as variant attributes (with similar names) from the standard. The rest of the
variant attributes from the standard are not supported. See here regarding the variant
attributes normalize and errorbehavior (from the standard).

* The syntax of the JSON encode attribute is encode JSON. The attribute encode JSON RFC7159 is not
supported.

* The decoder converts the JSON number -0.0 ‘(in any form) to the TTCN-3 float '-0.0,
i.e. float values are decoded as if they had the JSON variant attribute useMinus (from the
standard).The same is not true for integers, since there is no integer value -0 in TITAN.

200

4.27. OER Encoder and Decoder

The OER (Octet Encoding Rules) encoder and decoder handles OER-based protocols. The encoder
converts abstract ASN.1 structures (or types) into an octetstring representation. The decoder
converts octetstring data into values of abstract ASN.1 structures. The encoding and decoding rules
of the structures can be found in the [20] standard.

This section covers the not supported parts of the standard and the encoder / decoder external
functions.

4.27.1. Not supported parts of the standard

Generally, TITAN does not have full ASN.1 support, therefore some parts of the OER coding are not
supported.

The following parts of the standard are not supported:

* In clause 12 (Encoding of real values) of the standard: the coding of real values, whether there
are any constraints or not on a REAL ASN.1 type, is handled as it is declared in the clause 12.4 of
the standard.

* Clause 23 and 24 are not supported.

* In clause 25 (Encoding of values of the embedded-pdv type): only the "general" case (sub clause
25.3) is supported. The "predefined" case (sub clause 25.2) will be handled as the "general" case.

* In clause 28 (Encoding of the unrestricted character string type): only the "general" case (sub
clause 28.3) is supported. The "predefined" case (sub clause 28.2) will be handled as the
"general” case.

* Clause 29 (Encoding of values of the time types) is not supported.

* Clause 31 (Canonical Octet Encoding Rules) is not fully supported, as currently there is no way
to choose BASIC-OER or CANONICAL-OER coding.

4.27.2. External functions
OER encoder / decoder functions must have the encode(0ER) / decode(0OER) attribute set.

Faults in the OER encoding/decoding process produce errors by default, but this can be modified
with the errorbehavior attribute. (Codec error handling)

4.28. PER Encoder and Decoder

The PER (Packed Encoding Rules) encoder and decoder handles PER-based protocols. The encoder
converts abstract ASN.1 structures (or types) into an octetstring representation. The decoder
converts octetstring data into values of abstract ASN.1 structures. The encoding and decoding rules
are described in [29].

This section covers clarifications and limitations compared to the standard and the encoder /
decoder external functions.

201

4.28.1. Clarifications and limitations compared to the standard

Generally, TITAN does not have full ASN.1 support, therefore some parts of the PER codec are not
supported.

The PER codec also uses the result of BER encoding for certain types, so certain limitations in the
BER codec will affect PER encoding, too. Most notably the BER codec doesn’t support the binary
encoding of REAL values, only the string-based encoding, because of this neither does the PER codec.

If an extension addition field (in a SEQUENCE or SET) is absent during decoding, then it will be set to
omit (if the field is OPTIONAL), or to its DEFAULT value (if it has one), otherwise it will be left unbound.

The data-value field of an EXTERNAL value is always encoded as an OCTET STRING (i.e. in the SEQUENCE
described in clause 29 of the standard the octet-aligned alternative is selected in all cases).

The ANY type is treated as an OCTET STRING in TITAN, so the PER encoding of its values uses the
encoding rules described for the OCTET STRING type.

While decoding an INTEGER, if the length determinant is zero, then the decoded INTEGER value will
also be zero.

If the decoder encounters an unknown extension addition in an ENUMERATED, SEQUENCE, SET or CHOICE,
then it will skip the extension addition (without producing an error) and continue decoding the
structure.

In the following example the encoding of a Seq2 value can be successfully decoded into a Seq1 value
(the extra extension addition fields are ignored):

202

Seq1 ::= SEQUENCE {
f1 [1] OCTET STRING,
f2 [0] OCTET STRING,
f3 [16] OCTET STRING OPTIONAL,

el OCTET STRING,
e2 [2] OCTET STRING,

f4 [15] OCTET STRING DEFAULT ''H
}

Seq2 ::= SEQUENCE {
1 [1] OCTET STRING,
f2 [@] OCTET STRING,
f3 [16] OCTET STRING OPTIONAL,

el OCTET STRING,
e2 [2] OCTET STRING,

[

g1 [3] OCTET STRING,

g2 [4] OCTET STRING OPTIONAL
11,

[
g3 [5] OCTET STRING,
g4 [6] OCTET STRING DEFAULT ''H

11,
e3 [7] INTEGER (2),

f4 [15] OCTET STRING DEFAULT ''H
}

4.28.2. External functions
PER encoder / decoder functions must have the encode(PER) / decode(PER) attribute set.

The following PER coding options can be specified: ALIGNED, UNALIGNED, BASIC, CANONICAL. These can
be used to set which version of PER the function should use: aligned / unaligned and basic /
canonical. If no coding options are specified, then the function will use unaligned, basic PER.

Most faults in the PER encoding / decoding process produce errors by default, but this can be
modified with the errorbehavior attribute. (Codec error handling)

If a value being encoded or the result of a decoding doesn’t comply to subtype constraints, then a
warning is produced by default.

4.29. Build Consistency Checks

Executable test suites are typically put together from many sources, some of which (test ports,
function libraries, etc.) are not written by the test writers themselves, but are developed

203

independently. Sometimes, a test suite requires an external component with a certain feature or
bug fix, or a certain minimum TITAN version. Building with a component which does not meet a
requirement, or an old TITAN version, typically results in malfunction during execution or cryptic
error messages during build. If version dependencies are specified explicitly, they can be checked
during build and the mismatches can be reported.

4.29.1. Version Information in TTCN-3 Files

TITAN allows test writers to specify that a certain TTCN-3 module requires a minimum version of
another TTCN-3 module or a minimum version of TITAN.

Format of Version Information

The format of the version information follows the format of Product Identity (Ericsson standard
version information [19]); a combination of letters and digits according to the template
pruductNumber/suffix RmXnn, where

* Product number identifies the product. It is 3 characters representing the ABC class, 3 digits
called the type number and 2 to 4 digits called the sequence number. This part is optional for
backward compatibility reasons.

» Suffix indicates new major versions, which are not backward compatible with previous
versions ("Revision suffix"). This part is optional for backward compatibility reasons.

¢ Ris the literal character "R’

* m is a single digit ("Revision digit"). It changes when the product (module) functionality is
extended with new features (switching to this version is possible, but switching back might not
be).

» X is an uppercase letter of the English alphabet (between A and Z inclusive) which changes
when the product (module) realization changes ("Revision letter"). The following letters are not
allowed: IOPQRW. Versions of a product where only this letter changes can be switched without
side effect.

* nn (optional) is a two-digit number ("Verification step") which specifies a prerelease, a version
made available during development.

If the final digits are not present, the version is considered a full release, which is a higher version
than any prerelease.

Example accepted formats: CRL 113 200/1 R9A; CRL 113 200 R9A; R9APlease note, that only these
are supported from the Ericsson Naming Scheme.

Here is a possible progression of release numbers, in strictly ascending order:

R1A01, R1A02..., R1A (first full release), R1B01, R1B02..., R1B, R1C, R2A, R2B01, R2B02..., R2B, R2C,
R3A, etc.

Required TITAN Version

A TTCN-3 module can specify the minimum required version of TITAN which can be used to
compile it. The format of the extension attribute is"requiresTITAN <version>". For example, the

204

following snippet:

module X {
S e

¥
with {
extension "requiresTITAN R8C";

}

specifies that module X has to be compiled with TITAN R8D (1.8.pl3) or later. Compiling the module
with a TITAN which does not satisfy the requirement will cause a compilation error, stating that the
version of the compiler is too low.

Compiling this module with TITAN R8B or below may result in a different compiler error, because
the syntax of the attribute is not understood by earlier versions.

Specifying the Version of a TTCN-3 Module

A module’s own version information can be specified in an extension attribute. The format of the
extension attribute is "version <version data>" that is, the literal string "version" followed by the
version information (R-state).

Example:

module supplier {
VAL

+

with {
extension "version R1A";

}

The version of the module should be set to match the R-state of the product it belongs to.

For backward compatibility, the lack of version information (no extension attribute with "version"
in the module’s "with" block) is equivalent to the highest possible version and satisfies any version
requirement.

Required Version of an Imported Module

The minimum version of an imported module can be specified with an extension attribute. The
format of the extension attribute is "requires <module name> <required version>" that is, the literal
string "requires" followed by the actual module name and required version.

Example:

205

module importer {

}

import from supplier all;

with {

}

extension "requires supplier R2A"

The module name must be one that is imported into the module. Specifying a module which is not
imported is flagged as an error.

In general, a module should require the full version of another module or TITAN (the R1A format).
Depending on a prerelease version should be avoided whenever possible.

4.29.2. Consistency Check in the Generated Code

A number of checks are performed during the build to ensure consistency of the TITAN compiler,
TITAN runtime, C++ compiler used during the build. The compiler generates checking code that
verifies:

206

The version of the TITAN compiler matches the version of the TITAN runtime

The platform on which the build is being performed matches the platform of the TITAN
compiler

The compiler used to build the TITAN compiler matches the compiler used to build the TITAN
runtime

Some of this information (in form of C++ preprocessor macros definitions and instructions) is
available to test port writers to express dependency on a particular TITAN version. When a C++
file includes a header generated by the TITAN compiler, that header includes the definitions for
the TITAN runtime, including version information. These macro dependencies can be used in
user-written C++ code.

TTCN3_VERSION is a C/C++ macro defined by the TITAN runtime headers. It contains an
aggregated value of the TITAN major version, minor version and patch level. So, to express that
a certain C++ file must be compiled together with TITAN R8C, the following code can be used:

#if TTCN3_VERSION < 10802
#error This file requires TITAN 1.8.2
tendif

There is a preprocessor macro defined in the makefile which identifies the platform (operating
system). It can be one of SOLARIS (for Solaris 6), SOLARISS8 (for Solaris 8 and above), LINUX,
WIN32. Platform-dependent code can be isolated using conditional compilation based on these
macro definitions.

If the TITAN runtime was compiled with the GNU Compiler Collection (GCC), the macro
GCC_VERSION is defined by the TITAN runtime headers. Its value is 10000 * (GCC major version)
+ 100 * (GCC minor version). For example, for GCC 3.4.6, GCC_VERSION will be defined to the
value 30400; for GCC 4.1.2 it will be 40100. The value of this macro is compared during C++

compilation to the version of the compiler that was used to build TITAN itself to ensure
consistency of the build. The GCC patch level is ignored for this comparison; code generated by
a compiler with the same major and minor version is considered compatible. User-written code
can use this value if it requires a certain version of the compiler. Alternatively, the predefined
macros of the GNU compiler (GNUC and GNUC_MINOR) can be used for this purpose.

o If the TITAN runtime was built with the SunPro compiler, the compiler itself defines the
__SUNPRO_CC macro. Please consult the compiler documentation for the possible values.

4.30. Negative Testing

4.30.1. Overview

As a TTCN-3 language extension Titan can generate invalid messages for the purpose of negative
testing. The purpose is to generate wrong messages that do not conform to a given type that the SUT
is expecting, and send them to the SUT and observe the SUT’s reaction. In Titan only the encoding is
implemented, the decoding of wrong messages is not in the scope of this feature.

In protocol testing the term of abstract syntax and transport syntax can be distinguished. In TTCN-3
abstract syntaxes are the data type definitions, while transport syntax is defined using with
attributes (encode, variant) that are attached to type definitions. The negative testing feature
defines modifications in the transport syntax, thus it does not affect TTCN-3 type definitions. This
means that the content of the values, which shall be called erroneous values and erroneous
templates, will not be modified; only their encoding will be. This encoding (transport syntax) is
determined by the with attributes attached to the type definition, in case of negative testing the
encoding of a value is modified by attaching special with attributes to the value which is to be
encoded. TTCN-3 with attributes can be attached only to module level constants and templates; this
is a limitation of the TTCN-3 standard.

Values and templates of the following structured types can be made erroneous:

* record

* set

* record of
* set of

* union
The corresponding ASN.1 types can also be used when imported from an ASN.1 module.

The following erroneous behaviors can be defined for the encoding of an erroneous value or
template:

* omit specified fields

* change the specified field’s value or both type and value

» omit all fields before or after the specified field

* insert a new field before or after the specified field

207

The inserted data can be either the value of a given constant or any "raw" binary data.

All encoding types (RAW, TEXT, BER, XER, JSON, OER) supported by TITAN can be used in negative
testing.

4.30.2. Syntax

Erroneous attributes follow the syntax laid out in section A.1.6.6 (with statement) of the TTCN-3
standard with the following modifications:

AttribKeyword ::= EncodeKeyword | VariantKeyword | DisplayKeyword | ExtensionKeyword |
OptionalKeyword |
ErroneousKeywordErroneousKeyword ::= "erroneous"

For an erroneous attribute the syntax of the AttribSpec, a free text within double quotes, is as
follows:

AttribSpecForErroneous := IndicatorKeyword ["(" RawKeyword ")"] ":=
TemplateInstance [AllKeyword]

IndicatorKeyword := "before" | "value" | "after"

RawKeyword := "raw

Example (the meaning of this code will be explained in the next chapter):

type record MyRec {
integer 1,
boolean b

}
const MyRec c_myrec := {i:=1,b:=true}
with {
erroneous (i) "before := 123"
erroneous (b) "value := omit"

}

4.30.3. Semantics

The Templatelnstance is defined in the TTCN-3 standard, however the compiler will accept only
constant values that have no matching symbols. The reason for using the TemplateInstance syntax
is that it can contain also a type reference, allowing to define both the value and its type.

208

For example:

template MyRec t_myrec := {i:=2,b:=false}
with {
erroneous (i) "after := MyRec.i:123"

erroneous (i) "before := MyInteger:123"

}

It is important to be able to specify the type of the inserted value because the encoding attributes
are attached to the type. In the example above two integer values were inserted, both integers have
the same value, however one has type MyRec.i and the other has type MyInteger, this will result in
different encodings of the same value if the encoding attributes for the two types are different. In
TTCN-3 the encoding attributes are specified using the with attribute syntax, in ASN.1 BER encoding
the tagging specifies the encoding attributes. If no type is given then the compiler will use the
default type if it can be determined.

For example:

erroneous (i) "value := 123"

NOTE The compiler will use the integer type and NOT the MyRec.i type.

Both references to constant values and literal values can be used:

const MyRec c_myrec := {i:=3,b:=true}

template MyRec t_myrec := {i:=2,b:=false}

with {
erroneous (i) "after := c_myrec" // type determined by the definition of c_myrec
erroneous (i) "before := MyRec: {i:=4,b:=true}" // type must be specified

}

One or more field qualifiers must be used in the AttribQualifier part. If more than one field is
specified, then the erroneous behavior will be attached to all specified fields, for example:

erroneous (i,b) "after := MyInteger:123"

In this case the value of 123 which has type MylInteger will be inserted both after field i and after
field b.

The field qualifiers may reference any field at any depth inside a structured type that can have
embedded other structured types. An example for ASN.1 types:

209

MyUnion ::= CHOICE { sof MySeqOf }

MySeqOf ::= SEQUENCE OF MySeq

MySeq ::= SEQUENCE { i INTEGER }

const MyUnion c_myunion := { -+ }

with { erroneous (sof[5].i) "value := 3.14" }
This also works in case of recursive types:
type record MyRRec { MyRRec r optional }

const MyRRec c_myrrec := { - }

with { erroneous (r.r.r.r.r) "value := omit" }

If the erroneous value does not contain a field which was referred by the erroneous qualifier then
the erroneous behavior specified for that field will have no effect. For example:

type union MyUni { integer i, boolean b }
const MyUni c_myuni := { i:=11}
with {
erroneous (i) "value := MyUni.i:22"
erroneous (b) "value := MyUni.b:false" // this rule has no effect

}

The reason for allowing the second rule is that the erroneous information can be transferred by
using assignment. By assigning an erroneous constant to a local variable in a testcase or function it
can be used with variables too. For example:

function func() {
var MyUni vl_myuni := c_myuni;
vl_myuni.b := true;
// now field b is selected in vl_myuni, therefore the erroneous rule on
// field b wi