
Manual for version 1.2.7

Written by Dimitri van Heesch

c
�

1997-2001

CONTENTS 1

Contents

I User Manual 4

1 Installation 4

2 Getting started 10

3 Documenting the code 13

4 Lists 19

5 Grouping 20

6 Including formulas 23

7 Graphs and diagrams 24

8 Preprocessing 26

9 Linking to external documentation 29

10 Frequently Asked Questions 30

11 Troubleshooting 32

II Reference Manual 34

12 Features 34

13 Doxygen History 35

14 Doxygen usage 37

15 Doxytag usage 38

16 Doxysearch usage 40

17 Doxywizard usage 42

18 Installdox usage 42

19 Output Formats 43

20 Automatic link generation 43

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

CONTENTS 2

21 Configuration 47

22 Special Commands 65

23 HTML Commands 92

24 Internationalization 93

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

CONTENTS 1

Doxygen license

Copyright c
�

1997-2001 by Dimitri van Heesch.

Permission to use, copy, modify, and distribute this software and its documentation under the terms of
the GNU General Public License is hereby granted. No representations are made about the suitability
of this software for any purpose. It is provided ”as is” without express or implied warranty. See the
GNU General Public License for more details.

Documents produced by Doxygen are derivative works derived from the input used in their production;
they are not affected by this license.

Introduction

Doxygen is a documentation system for C++, Java, IDL (Corba, Microsoft and KDE-DCOP flavors) and
C.

It can help you in three ways:

1. It can generate an on-line documentation browser (in HTML) and/or an off-line reference manual (in
LATEX) from a set of documented source files. There is also support for generating output in RTF (MS-
Word), Postscript, hyperlinked PDF, compressed HTML, and Unix man pages. The documentation is
extracted directly from the sources, which makes it much easier to keep the documentation consistent
with the source code.

2. Doxygen can be configured to extract the code structure from undocumented source files. This can
be very useful to quickly find your way in large source distributions. The relations between the
various elements are be visualized by means of include dependency graphs, inheritance diagrams,
and collaboration diagrams, which are all generated automatically.

3. You can even ‘abuse’ doxygen for creating normal documentation (as I did for this manual).

Doxygen is developed under Linux, but is set-up to be highly portable. As a result, it runs on most other
UNIX flavors as well. Furthermore, an executable for Windows 9x/NT is also available.

This manual is divided into two parts, each of which is divided into several sections.

The first part forms a user manual:

� Section Installation discusses how to download, compile and install doxygen for your platform.
� Section Getting started tells you how to generate your first piece of documentation quickly.
� Section Documenting the code demonstrates the various ways that code can be documented.
� Section Lists show various ways to create lists.
� Section Grouping shows how to group things together.
� Section Including formulas shows how to insert formulas in the documentation.
� Section Graphs and diagrams describes the diagrams and graphs that doxygen can generate.
� Section Preprocessing explains how doxygen deals with macro definitions.
� Section Linking to external documentation explains how to let doxygen create links to externally

generated documentation.
� Section Frequently Asked Questions gives answers to frequently asked questions.
� Section Troubleshooting tells you what to do when you have problems.

The second part forms a reference manual:

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

mailto:dimitri@stack.nl
http://www.gnu.org/copyleft/gpl.html
http://www.linux.org
http://www.stack.nl/~dimitri/doxygen/download.html

CONTENTS 2

� Section Features presents an overview of what Doxygen can do.
� Section Doxygen History shows what has changed during the development of Doxygen and what

still has to be done.
� Section Doxygen usage shows how to use the doxygen program.
� Section Doxytag usage shows how to use the doxytag program.
� Section Doxysearch usage shows how to use the doxysearch program.
� Section Doxywizard usage shows how to use the doxywizard program.
� Section Installdox usage shows how to use the installdox script that is generated by Doxygen if

you use tag files.
� Section Output Formats shows how to generate the various output formats supported by Doxygen.
� Section Automatic link generation shows how to put links to files, classes, and members in the doc-

umentation.
� Section Configuration shows how to fine-tune doxygen, so it generates the documentation you want.
� Section Special Commands shows an overview of the special commands that can be used within the

documentation.
� Section HTML Commands shows an overview of the HTML commands that can be used within the

documentation.
� Section Internationalization explains how to add support for new output languages.

Projects using doxygen

I have compiled a list of projects that use doxygen (see http://www.stack.nl/ � dimitri/doxygen/projects.html).
If you know other projects, let me know and I’ll add them.

Future work

Although doxygen is used successfully by a lot of people already, there is al-
ways room for improvement. Therefore, I have compiled a todo/wish list (see
http://www.stack.nl/ � dimitri/doxygen/todo.html) of possible and/or requested
enhancements.

Acknowledgements

Thanks go to:

� Malte Zöckler and Roland Wunderling, authors of DOC++. The first version of Doxygen borrowed
some code of an old version of DOC++. Although I have rewritten practically all code since then,
DOC++ has still given me a good start in writing Doxygen.

� All people at Troll Tech, for creating a beautiful GUI Toolkit (which is very useful as a Win-
dows/Unix platform abstraction layer :-)

� My brother Frank for rendering the logos.
� Harm van der Heijden for adding HTML help support.
� Wouter Slegers for registering the www.doxygen.org domain.
� Parker Waerchter for adding the RTF output generator.
� Joerg Baumann, for adding conditional documentation blocks, PDF links, and the configuration

generator.
� Matthias Andree for providing a .spec script for building rpms from the sources.
� Tim Mensch for adding the todo command.
� Ken Wong for providing the HTML tree view code.

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

http://www.stack.nl/~fidget/index.html

CONTENTS 3

� Jens Breitenstein, Christophe Bordeaux, Samuel Hägglund, Xet Erixon, Vlastimil Havran, Petr
Prikryl, Ahmed Also Faisal, Alessandro Falappa, Kenji Nagamatsu, Francisco Oltra Thennet, Olli
Korhonen, Boris Bralo, Nickolay Semyonov, Richard Kim, Földvári György, Grzegorz Kowal, and
Wang Weihan for providing translations into various languages.

� The Comms group of Symbian for donating me an ultra cool Revo plus organizer!
� The band Porcupine Tree for providing hours of great music to listen to while coding.
� many, many others for suggestions, patches and bug reports.

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

http://www.symbian.com
http://www.psion.com/revoplus
http://www.porcupinetree.com

4

Part I

User Manual

1 Installation

First go to the download page (http://www.stack.nl/ � dimitri/doxygen/download.html)
to get the latest distribution, if you did not have it already.

This section is divided into the following subsections:

� Compiling from source on Unix
� Installating the binaries on Unix
� Known compilation problems for Unix
� Compiling from source on Windows
� Installating the binaries on Windows
� Tools used to develop doxygen

1.1 Compiling from source on Unix

If you downloaded the source distribution, you need at least the following to build the executable:

� The GNU tools flex, bison and make
� In order to generate a Makefile for your platform, you need perl (see http://www.perl.com).

To take full advantage of doxygen’s features the following additional tools should be installed.

� Troll Tech’s GUI toolkit version 2.x.y Qt (see http://www.trolltech.com/products/qt.html).
This is needed to build the GUI front-end.

� A LATEX distribution: for instance teTeX 1.0.

This is needed for generating LaTeX, Postscript, and PDF output.
� the Graph visualization toolkit version 1.5

Needed for the include dependency graphs, the graphical inheritance graphs, and the collaboration
graphs.

� The ghostscript interpreter.

Compilation is now done by performing the following steps:

1. Unpack the archive, unless you already have done that:

gunzip doxygen-$VERSION.src.tar.gz # uncompress the archive
tar xf doxygen-$VERSION.src.tar # unpack it

2. Run the configure script:

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

http://www.stack.nl/~dimitri/doxygen/download.html
ftp://prep.ai.mit.edu/pub/gnu
http://www.perl.com
http://www.trolltech.com/products/qt.html
http://www.tug.org
http://www.research.att.com/sw/tools/graphviz/

1.1 Compiling from source on Unix 5

sh ./configure

The script tries to determine the platform you use, the make tool (which must be GNU make) and
the perl interpreter. It will report what it finds.

To override the auto detected platform and compiler you can run configure as follows:

configure --platform platform-type

See the PLATFORMS file for a list of possible platform options.

If you have Qt-2.1.x installed and want to build the GUI front-end, you should run the configure
script with the --with-doxywizard option:

configure --with-doxywizard

For an overview of other configuration options use

configure --help

3. Compile the program by running make:

make

The program should compile without problems and three binaries (doxygen, doxytag, and
doxysearch) should be available in the bin directory of the distribution.

4. Optional: Generate the user manual.

make docs

To let doxygen generate the HTML documentation.

Note:
you will need the stream editor sed for this, but this should be available on any Unix platform.

The HTML directory of the distribution will now contain the html documentation (just point a HTML
browser to the file index.html in the html directory).

5. Optional: Generate a postscript and pdf version of the manual. (you will need latex and dvips
and the ghostscript package for this).

make pdf

The postscript manual doxygen manual.ps will be located in the latex directory of the distribu-
tion. Just send it to a postscript printer to print it or use ghostview to view it.

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

1.2 Installating the binaries on Unix 6

1.2 Installating the binaries on Unix

If you downloaded the binary distribution for Unix, you can install doxygen by typing:

./configure
make install

Binaries are installed in the directory �
prefix � /bin Documentation and examples in the directory

�
prefix � /doc/doxygen

�
prefix � defaults to /usr but can be changed with the --prefix option of the configure script.

Alternatively, you can also copy the binaries from the bin directory manually to some bin directory in
your search path. This is sufficient to use doxygen.

Note:
You need the GNU install tool for this to work. Other install tools may put the binaries in the wrong
directory!

If you have a RPM or DEP package, then please follow the standard installation procedure that is required
for these packages.

1.3 Known compilation problems for Unix

Qt problems

The Qt include files and libraries are not a sub directory of the directory pointed to by QTDIR on some
systems. (for instance on Red Hat 6.0 includes are in /usr/include/qt and libs are in /usr/lib)

The solution: goto the root of the doxygen distribution and do:

mkdir qt
cd qt
ln -s your-qt-include-dir-here include
ln -s your-qt-lib-dir-here lib
export QTDIR=$PWD

If you have a csh-like shell you should use setenv QTDIR $PWD instead of the export command
above.

Now install doxygen as described above.

Latex problems

the file a4wide.sty is not available for all distributions. If your distribution does not have it please select
another paper type in the config file (see the PAPER TYPE tag in the config file).

HP-UX & Digital Unix problems

If you are compiling for HP-UX with aCC and you get this error:

/opt/aCC/lbin/ld: Unsatisfied symbols:
alloca (code)

then you should (according to Anke Selig) edit ce parse.cpp and replace

extern "C" {
void *alloca (unsigned int);

};

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

1.3 Known compilation problems for Unix 7

with

#include <alloca.h>

If that does not help, try removing ce parse.cpp and let bison rebuilt it (this worked for me).

If you are compiling for Digital Unix, the same problem can be solved (according to Barnard Schmallhof)
by replacing the following in ce parse.cpp:

#else /* not GNU C. */
#if (!defined (__STDC__) && defined (sparc)) || defined (__sparc__) || defined (__sparc) || defined (__sgi)
#include <alloca.h>

with

#else /* not GNU C. */
#if (!defined (__STDC__) && defined (sparc)) || defined (__sparc__) || defined (__sparc) || defined (__sgi) || defined (__osf__)
#include <alloca.h>

Alternatively, one could fix the problem at the bison side. Here is patch for bison.simple (provided by
Andre Johansen):

--- bison.simple˜ Tue Nov 18 11:45:53 1997
+++ bison.simple Mon Jan 26 15:10:26 1998
@@ -27,7 +27,7 @@
#ifdef __GNUC__
#define alloca __builtin_alloca
#else /* not GNU C. */

-#if (!defined (__STDC__) && defined (sparc)) || defined (__sparc__) || defined (__sparc) || defined (__sgi)
+#if (!defined (__STDC__) && defined (sparc)) || defined (__sparc__) || defined (__sparc) || defined (__sgi) || defined (__alpha)
#include <alloca.h>
#else /* not sparc */
#if defined (MSDOS) && !defined (__TURBOC__)

The generated scanner.cpp that comes with doxygen is build with this patch applied.

Sun compiler problems

I tried compiling doxygen only with Sun’s C++ WorkShop Compiler version 5.0 (I used ./configure
--platform solaris-cc)

Qt-2.x.x is required for this compiler (Qt-1.44 has problems with the bool type).

Compiling the doxygen binary went ok, but while linking doxytag I got a lot of link errors, like these:

QList<PageInfo>::__vtbl /home/dimitri/doxygen/objects/SunWS_cache/CC_obj_6/6c3eO4IogMT2vrlGCQUQ.o
[Hint: try checking whether the first non-inlined, non-pure virtual function of class QList<PageInfo> is defined]

These are generated because the compiler is confused about the object sharing between doxygen and
doxytag. To compile doxytag and doxysearch anyway do:

rm -rf objects
mkdir objects
cd src
gmake -f Makefile.doxytag
gmake -f Makefile.doxysearch

when configuring with --static I got:

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

1.4 Compiling from source on Windows 8

Undefined first referenced
symbol in file

dlclose /usr/lib/libc.a(nss_deffinder.o)
dlsym /usr/lib/libc.a(nss_deffinder.o)
dlopen /usr/lib/libc.a(nss_deffinder.o)

Manually adding -Bdynamic after the target rule in Makefile.doxygen and Makefile.doxytag
will fix this:

$(TARGET): $(OBJECTS) $(OBJMOC)
$(LINK) $(LFLAGS) -o $(TARGET) $(OBJECTS) $(OBJMOC) $(LIBS) -Bdynamic

GNU 2.7.2.x compiler problems

Older versions of the GNU compiler have problems with constant strings containing characters with char-
acter codes larger than 127. Therefore the compiler will fail to compile some of the translator xx.h files.
A workaround, if you are planning to use the English translation only, is to configure doxygen with the
--english-only option.

1.4 Compiling from source on Windows

Currently, I have only compiled doxygen for Windows using Microsoft’s Visual C++ (version 6.0). For
other compilers you may need to edit the perl script in wintools/make.pl a bit. Let me know what
you had to change if you got Doxygen working with another compiler.

Since Windows comes without all the nice tools that Unix users are used to, you need to install a number
of these tools before you can compile doxygen for Windows.

Here is what is required:

� An unzip/untar tool like WinZip to unpack the tar source distribution. This can be found at
http://www.winzip.com/

The good, tested, and free alternative is the tar utility supplied with cygwin tools. Anyway,
the cygwin’s flex, bison, and sed are also recommended below.

� Microsoft Visual C++ (I only tested with version 6.0). Use the vcvars32.bat batch file to set the
environment variables (if you did not select to do this automatically during installation).

Borland C++ or MINGW (see http://www.mingw.org) are also supported.
� Perl 5.0 or higher for Windows. This can be download from:
http://www.ActiveState.com/Products/ActivePerl/

� The GNU tools flex, bison, and sed. To get these working on Windows you should install the
cygwin tools (see http://sources.redhat.com/cygwin/)

Alternatively, you can also choose to download only a small subset (see
http://www.doxygen.org/dl/cygwin tools.zip) of the cygwin tools that I put
together just to compile doxygen.

Make sure the BISONLIB environment variable points to the location where the files
bison.simple and bison.hairy are located. For instance if these files are in
c: � tools � cygwin � share then BISONLIB should be set to //c/tools/cygwin/share/

Also make sure the tools are available from a dos box, by adding the directory they are in to the
search path.

For those of you who are very new to cygwin (if you are going to install it from scratch), you
should notice that there is an archive file bootstrap.zip which also contains the tar utility

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

http://www.winzip.com/
http://sourceware.cygnus.com/cygwin/
http://www.mingw.org
http://www.ActiveState.com/Products/ActivePerl/
http://sources.redhat.com/cygwin/
http://www.doxygen.org/dl/cygwin_tools.zip

1.4 Compiling from source on Windows 9

(tar.exe), gzip utilities, and the cygwin1.dll core. This also means that you have the tar
in hands from the start. It can be used to unpack the tar source distribution instead of using WinZip
– as mentioned at the beginning of this list of steps.

� From Doxygen-1.2.2-20001015 onwards, the distribution includes the part of Qt-2.x.x that is needed
for to compile doxygen, doxytag, and doxysearch. The Windows specific part were also created. As
a result doxygen can be compiled on systems without X11 or the commerical version of Qt.

For doxywizard, a complete Qt library this is still a requirement however. You may be interested in
the professional license of Qt for Windows

(see http://www.trolltech.com/products/qt.html). If you donate me a professional
license I’ll port doxywizard for you :-)

� To generate LaTeX documentation or formulas in HTML you need the tools: latex, dvips and
gswin32. To get these working under Windows install the fpTeX distribution You can download it
at: ftp://ctan.tug.org/tex-archive/systems/win32/web2c/fptex-0.3/

Make sure the tools are available from a dos box, by adding the directory they are in to the search
path.

For your information, the LaTeX is freely available set of so called macros and styles on the top of
the famous TeX program (by famous Donald Knuth) and the accompanied utilities (all available for
free). It is used to for high quality typesetting. The result – in the form of so called DVI (DeVice
Independent) file – can be printed or displayed on various devices preserving exactly the same look
up to the capability of the device. The dvips allows you to convert the dvi to the high quality
PostScript (i.e. PostScript that can be processed by utilities like psnup, psbook, psselect, and
others). The derived version of TeX (the pdfTeX) can be used to produce PDF output instead of DVI,
or the PDF can be produced from PostScript using the utility ps2pdf.

� If you want to generate compressed HTML help (see GENERATE HTMLHELP) in the
config file, then you need the Microsoft HTML help workshop. You can download it at:
http://msdn.microsoft.com/library/tools/htmlhelp/wkshp/download main.htm

� If you used WinZip to extract the tar archive it will (apparently) not create empty folders, so you
have to add the folders objects and bin manually in the root of the distribution before compiling.

� the Graph visualization toolkit version 1.5

Needed for the include dependency graphs, the graphical inheritance graphs, and the collaboration
graphs.

Compilation is now done by performing the following steps:

1. Open a dos box. Make sure all tools (i.e. nmake, latex, gswin32, dvips, sed, flex, bison,
cl, rm, and perl), are accessible from the command-line (add them to the PATH environment
variable if needed).

Notice: The use of LaTeX is optional and only needed for compilation of the documentation into
PostScript or PDF. It is not needed for compiling the doxygen’s binaries.

2. goto the doxygen root dir and type:

make.bat msvc

This should build the executables doxygen.exe, doxytag.exe, and doxysearch.exe using
Microsoft’s Visual C++ compiler (The compiler should not produce any serious warnings or errors).

You can use also the bcc argument to build executables using the Borland C++ compiler, or mingw
argument to compile using GNU gcc.

3. To build the examples, go to the examples subdirectory and type:

nmake

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

http://www.trolltech.com/products/qt.html
ftp://ctan.tug.org/tex-archive/systems/win32/web2c/fptex-0.3/
http://msdn.microsoft.com/library/tools/htmlhelp/wkshp/download_main.htm
http://www.research.att.com/sw/tools/graphviz/

1.5 Installating the binaries on Windows 10

4. To generate the doxygen documentation, go to the doc subdirectory and type:

nmake

The generated docs int HTML are located in the .. � html subdirectory.

The sources for LaTeX documentation are located in .. � latex subdirectory. From those sources,
the DVI, PostScript, and PDF documentation can be generated.

1.5 Installating the binaries on Windows

There is no fancy installation procedure at the moment (If anyone wants to add it please let me know).

To install doxygen, just copy the binaries from the bin directory to a location somewhere in the path.
Alternatively, you can include the bin directory of the distribution to the path.

1.6 Tools used to develop doxygen

Doxygen was developed and tested under Linux using the following open-source tools:

� EGCS version 2.91.66
� GNU flex version 2.5.4
� GNU bison version 1.25
� GNU make version 3.76.1
� Perl version 5.005 02
� VIM version 5.4
� Netscape 4.61
� Troll Tech’s tmake version 1.3 (included in the distribution)
� teTeX version 0.9
� CVS 1.10.7

2 Getting started

The executable doxygen is the main program that parses the sources and generates the documentation.
See section Doxygen usage for more detailed usage information.

The executable doxytag is only needed if you want to generate references to external documentation (i.e.
documentation that was generated by doxygen) for which you do not have the sources or to create a search
index for the search engine. See section Doxytag usage for more detailed usage information.

The executable doxysearch is only needed if you want to use the search engine. See section
Doxysearch usage for more detailed usage information.

Optionally, the executable doxywizard is a GUI front-end for editing the configuration files that are used
by doxygen.

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

2.1 Step 1: Creating a configuration file 11

2.1 Step 1: Creating a configuration file

Doxygen uses a configuration file to determine all of its settings. Each project should get its own configura-
tion file. A project can consist of a single source file, but can also be an entire source tree that is recursively
scanned.

To simplify the creation of a configuration file, doxygen can create a template configuration file for you.
To do this call doxygen with the -g option:

doxygen -g <config-file>

where � config-file � is the name of the configuration file. If you omit the file name, a file named Doxy-
file will be created. If a file with the name � config-file � already exists, doxygen will rename it to

� config-file � .bak before generating the configuration template. If you use - (i.e. the minus sign) as the
file name then doxygen will try to read the configuration file from standard input (stdin).

The configuration file has a format that is similar to that of a (simple) Makefile. It contains of a number of
assignments (tags) of the form:

TAGNAME = VALUE or

TAGNAME = VALUE1 VALUE2 ...

You can probably leave the values of most tags in a generated template configuration file to their default
value.

The INPUT tag is the only tag for which you are required to provide a value. See section Configuration for
more details about the configuration file. For a small project consisting of a few C and/or C++ source and
header files, you can add the names of the files after the INPUT tag.

If you have a larger project consisting of a source directory or tree this may become tiresome. In this case
you should put the root directory or directories after the INPUT tag, and add one or more file patterns to
the FILE PATTERNS tag (for instance � .cpp � .h). Only files that match one of the patterns will be
parsed (if the patterns are omitted all files will be parsed). For recursive parsing of a source tree you must
set the RECURSIVE tag to YES. To further fine-tune the list of files that is parsed the EXCLUDE and
EXCLUDE PATTERNS tags can be used.

If you start using doxygen for an existing project (thus without any documentation that doxygen is aware
of), you can still get an idea of what the documented result would be. To do so, you must set the
EXTRACT ALL tag in the configuration file to YES. Then, doxygen will pretend everything in your
sources is documented. Please note that warnings of undocumented members will not be generated as
long as EXTRACT ALL is set to YES.

To analyse an existing piece of software it is useful to cross-reference a (documented) entity with its defini-
tion in the source files. Doxygen will generate such cross-references if you set the SOURCE BROWSER
tag to YES. It can also include the sources directly into the documentation by setting INLINE SOURCES
to YES (this can be handly for code reviews for instance).

2.2 Step 2: Running doxygen

To generate the documentation you can now enter:

doxygen <config-file>

Doxygen will create a html, rtf, latex and/or man directory inside the output directory. As the names
suggest the html directory contain the generated documentation in HTML, RTF, LATEX and Unix-Man
page format.

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

2.3 Step 3: Documenting the sources 12

The default output directory is the directory in which doxygen is started. The directory to which the
output is written can be changed using the OUTPUT DIRECTORY, HTML OUTPUT, RTF OUTPUT,
LATEX OUTPUT, and MAN OUTPUT tags of the configuration file. If the output directory does not
exist, doxygen will try to create it for you.

The generated HTML documentation can be viewed by pointing a HTML browser to the index.html
file in the html directory. For the best results a browser that supports cascading style sheets (CSS) should
be used (I’m currently using Netscape 4.61 to test the generated output).

The generated LATEX documentation must first be compiled by a LATEX compiler. (I use teTeX distribu-
tion version 0.9 that contains TEX version 3.14159). To simplify the process of compiling the generated
documentation, doxygen writes a Makefile into the latex directory. By typing make in the latex
directory the dvi file refman.dvi will be generated (provided that you have a make tool called make of
course). This file can then be viewed using xdvi or converted into a postscript file refman.ps by typing
make ps (this requires dvips). To put 2 pages on one physical page use make ps 2on1 instead. The
resulting Postscript file can be send to a postscript printer. If you do not have a postscript printer, you can
try to use ghostscript to convert postscript into something your printer understands. Conversion to PDF is
also possible if you have installed the ghostscript interpreter; just type make pdf (or make pdf 2on1).
To get the best results for PDF output you should set the PDF HYPERLINKS tag to YES.

The generated man pages can be viewed using the man program. You do need to make sure the man
directory is in the man path (see the MANPATH environment variable). Note that there are some limitations
to the capabilities of the man page format, so some information (like class diagrams, cross references and
formulas) will be lost.

2.3 Step 3: Documenting the sources

Although documenting the source is presented as step 3, in a new project this should of course be step 1.
Here I assume you already have some code and you want doxygen to generate a nice document describing
the API and maybe the internals as well.

If the EXTRACT ALL option is set to NO in the configuration file (the default), then doxygen will only
generate documentation for documented members, files, classes and namespaces. So how do you document
these? For members, classes and namespaces there are basically two options:

1. Place a special documentation block in front of the declaration or definition of the member, class
or namespace. For file, class and namespace members it is also allowed to place the documention
directly after the member. See section Special documentation blocks to learn more about special
documentation blocks.

2. Place a special documentation block somewhere else (another file or another location) and put a
structural command in the documentation block. A structural command links a documentation block
to a certain entity that can be documented (e.g. a member, class, namespace or file). See section
Structural commands to learn more about structural commands.

Files can only be documented using the second option. The text inside a special documentation block is
parsed before it is written to the HTML and/or LATEX output files.

During parsing the following steps take place:

� The special commands inside the documentation are executed. See section Special Commands for
an overview of all commands.

� If a line starts with some whitespace followed by one or more asterixes (�) then the whitespace and
asterixes are removed.

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

13

� All resulting blank lines are treated as a paragraph separators. This saves you from placing new-
paragraph commands yourself in order to make the generated documentation readable.

� Links are created for words corresponding to documented classes.
� Links to members are created when certain patterns are found in the text. See section

Automatic link generation for more information on how the automatic link generation works.
� HTML tags that are in the documentation are interpreted and converted to LATEX equivalents for the

LATEX output. See section HTML Commands for an overview of all supported HTML tags.

3 Documenting the code

3.1 Special documentation blocks

The following types of special documentation blocks are supported by doxygen:

� The Qt style, where special documentation blocks look like:
/*!
... text ...

*/

and the one line version:
//! ... one line of text ...

� The JavaDoc style, where special documentation blocks look like:
/**
* ... text ...
*/

and the one line version:
/// ... one line of text ...

Doxygen only allows one brief and one detailed description. If there is one brief description before a
declaration and one before a definition, only the one before the declaration will be used. If the same
situation occurs for a detailed description, the one before the definition is preferred and the one before the
declaration will be ignored.

Here is an example of a documented piece of C++ code using the Qt style:

//! A test class.
/*!

A more elaborate class description.
*/

class Test
{

public:

//! An enum.
/*! More detailed enum description. */
enum TEnum {

TVal1, /*!< Enum value TVal1. */
TVal2, /*!< Enum value TVal2. */
TVal3 /*!< Enum value TVal3. */

}
//! Enum pointer.

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

3.1 Special documentation blocks 14

/*! Details. */
*enumPtr,
//! Enum variable.
/*! Details. */
enumVar;

//! A constructor.
/*!

A more elaborate description of the constructor.
*/
Test();

//! A destructor.
/*!

A more elaborate description of the destructor.
*/
˜Test();

//! A normal member taking two arguments and returning an integer value.
/*!

\param a an integer argument.
\param s a constant chararcter pointer.
\return The test results
\sa Test(), ˜Test(), testMeToo() and publicVar()

*/
int testMe(int a,const char *s);

//! A pure virtual member.
/*!

\sa testMe()
\param c1 the first argument.
\param c2 the second argument.

*/
virtual void testMeToo(char c1,char c2) = 0;

//! A public variable.
/*!

Details.
*/
int publicVar;

//! A function variable.
/*!

Details.
*/
int (*handler)(int a,int b);

};

The one-line comments should contain a brief description, whereas the multi-line comment blocks contain
a more detailed description. Note that consecutive one-line comments are merged together in one brief
description. The brief descriptions are included in the member overview of a class, namespace or file and
are printed using a small italic font (this description can be hidden by setting BRIEF MEMBER DESC to
NO in the config file). By default the brief descriptions become the first sentence of the detailed descrip-
tions (but this can be changed by setting the REPEAT BRIEF tag to NO). Both the brief and the detailed
descriptions are optional for the Qt style.

By default a JavaDoc style documentation block behaves the same way as a Qt style documentation
block. This is not according the JavaDoc specification however, where the first sentence of the docu-
mentation block is automatically treated as a brief description. To enable this behaviour you should set
JAVADOC AUTOBRIEF to YES in the configuration file. If you enable this option and want to put a dot
in the middle of a sentence without ending it, you should put a backslash and a space after it. Here is an
example:

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

3.1 Special documentation blocks 15

/** Brief description (e.g.\ using only a few words). Details follow. */

Here is the same piece of code as shown above, this time documented using the JavaDoc style and
JAVADOC AUTOBRIEF set to YES:

/**
* A test class. A more elaborate class description.
*/

class Test
{

public:

/**
* An enum.
* More detailed enum description.
*/

enum TEnum {
TVal1, /**< enum value TVal1. */
TVal2, /**< enum value TVal2. */
TVal3 /**< enum value TVal3. */

}
*enumPtr, /**< enum pointer. Details. */
enumVar; /**< enum variable. Details. */

/**
* A constructor.
* A more elaborate description of the constructor.
*/

Test();

/**
* A destructor.
* A more elaborate description of the destructor.
*/

˜Test();

/**
* a normal member taking two arguments and returning an integer value.
* @param a an integer argument.
* @param s a constant chararcter pointer.
* @see Test()
* @see ˜Test()
* @see testMeToo()
* @see publicVar()
* @return The test results
*/
int testMe(int a,const char *s);

/**
* A pure virtual member.
* @see testMe()
* @param c1 the first argument.
* @param c2 the second argument.
*/
virtual void testMeToo(char c1,char c2) = 0;

/**
* a public variable.
* Details.
*/
int publicVar;

/**

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

3.2 Structural commands 16

* a function variable.
* Details.
*/
int (*handler)(int a,int b);

};

Unlike most other documentation systems, doxygen also allows you to put the documentation of members
(including global functions) in front of the definition. This way the documentation can be placed in the
source file instead of the header file. This keeps the header file compact, and allows the implementer of the
members more direct access to the documentation. As a compromise the brief description could be placed
before the declaration and the detailed description before the member definition.

Note:
Each entity can only have one brief and one detailed description. If you specify more than one com-
ment block of the same type, only one will be used, and all others are ignored!

3.2 Structural commands

So far we have assumed that the documentation blocks are always located in front of the declaration or
definition of a file, class or namespace or in front of one of its members. Although this is often comfortable,
it may sometimes be better to put the documentation somewhere else. For some types of documentation
blocks (like file documentation) this is even required. Doxygen allows you to put your documentation
blocks practically anywhere (the exception is inside the body of a function or inside a normal C style
comment block), as long as you put a structural command inside the documentation block.

Structural commands (like all other commands) start with a backslash (�), or an at-sign (@) in JavaDoc style,
followed by a command name and one or more parameters. For instance, if you want to document the class
Test in the example above, you could have also put the following documentation block somewhere in the
input that is read by doxygen:

/*! \class Test
\brief A test class.

A more detailed class description.
*/

Here the special command � class is used to indicate that the comment block contains documentation for
the class Test. Other structural commands are:

� � struct to document a C-struct.
� � union to document a union.
� � enum to document an enumeration type.
� � fn to document a function.
� � var to document a variable or typedef or enum value.
� � def to document a #define.
� � file to document a file.
� � namespace to document a namespace.

See section Special Commands for detailed information about these and other commands. Note that the
documentation block belonging to a file should always contain a structural command.

To document a member of a C++ class, you must also document the class itself. The same holds for
namespaces. To document a global C function, typedef, enum or preprocessor definition you must first

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

3.2 Structural commands 17

document the file that contains it (usually this will be a header file, because that file contains the information
that is exported to other source files).

Let’s repeat that, because it is often overlooked: to document global objects (functions, typedefs, enum,
macros, etc), you must document the file in which they are defined. In other words, there must at least be a

/*! \file */

or a

/** @file */

line in this file.

Here is an example of a C header named structcmd.h that is documented using structural commands:

/*! \file structcmd.h
\brief A Documented file.

Details.
*/

/*! \def MAX(a,b)
\brief A macro that returns the maximum of \a a and \a b.

Details.
*/

/*! \var typedef unsigned int UINT32
\brief A type definition for a .

Details.
*/

/*! \var int errno
\brief Contains the last error code.

\warning Not thread safe!
*/

/*! \fn int open(const char *pathname,int flags)
\brief Opens a file descriptor.

\param pathname The name of the descriptor.
\param flags Opening flags.

*/

/*! \fn int close(int fd)
\brief Closes the file descriptor \a fd.
\param fd The descriptor to close.

*/

/*! \fn size_t write(int fd,const char *buf, size_t count)
\brief Writes \a count bytes from \a buf to the filedescriptor \a fd.
\param fd The descriptor to write to.
\param buf The data buffer to write.
\param count The number of bytes to write.

*/

/*! \fn int read(int fd,char *buf,size_t count)
\brief Read bytes from a file descriptor.
\param fd The descriptor to read from.
\param buf The buffer to read into.
\param count The number of bytes to read.

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

3.3 Documenting compound members. 18

*/

#define MAX(a,b) (((a)>(b))?(a):(b))
typedef unsigned int UINT32;
int errno;
int open(const char *,int);
int close(int);
size_t write(int,const char *, size_t);
int read(int,char *,size_t);

Note:
Because each comment block in the example above contains a structural command, all the comment
blocks could be moved to another location or input file (the source file for instance), without affecting
the generated documentation. The disadvantage of this approach is that prototypes are duplicated, so
all changes have to be made twice!

3.3 Documenting compound members.

If you want to document the members of a file, struct, union, class, or enum, and you want to put the
documentation for these members inside the compound, it is sometimes desired to place the documentation
block after the member instead of before. For this purpose doxygen has the following additional comment
blocks:

/*!< ... */

This block can be used to put a Qt style documentation blocks after a member. The one line version look
as follows:

//!< ...

There are also JavaDoc versions:

/**< ... */

and

///< ...

Note that these blocks have the same structure and meaning as the special comment blocks above only the
� indicates that the member is located in front of the block instead of after the block.

Here is an example of the use of these comment blocks:

/*! A test class */

class Test
{

public:
/** An enum type.
* The documentation block cannot be put after the enum!
*/

enum EnumType
{

int EVal1, /**< enum value 1 */
int EVal2 /**< enum value 2 */

};
void member(); //!< a member function.

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

19

protected:
int value; /*!< an integer value */

};

Warning:
These blocks can only be used to document members. They cannot be used to document files, classes,
unions, structs, groups, namespaces and enums themselves. Furthermore, the structural commands
mentioned in the previous section (like � class) are ignored inside these comment blocks.

4 Lists

Doxygen has a number of ways to create lists of items.

Using dashes

By putting a number of column-aligned minus signs at the start of a line, a bullet list will automatically be
generated. Numbered lists can also be generated by using a minus followed by a hash. Nesting of lists is
allowed.

Here is an example:

/*!
* A list of events:
* - mouse events
* -# mouse move event
* -# mouse click event\n
* More info about the click event.
* -# mouse double click event
* - keyboard events
* -# key down event
* -# key up event
*
* More text here.
*/

The result will be:

A list of events:

� mouse events

1. mouse move event

2. mouse click event
More info about the click event.

3. mouse double click event
� keyboard events

1. key down event

2. key up event

More text here.

If you use tabs within lists, please make sure that TAB SIZE in the configuration file is set to the correct
tab size.

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

20

Using HTML commands

If you like you can also use HTML commands inside the documentation blocks. Using these commands
has the advantage that it is more natural for list items that consists of multiple paragraphs.

Here is the above example with HTML commands:

/*!
* A list of events:
*
* mouse events
*
* mouse move event
* mouse click event\n
* More info about the click event.
* mouse double click event
*
* keyboard events
*
* key down event
* key up event
*
*
* More text here.
*/

Note:
The the indent here is not important.

Using � arg or @li

For compatibility with the Troll Tech’s internal documentation tool and with KDoc, doxygen has two
commands that can be used to create simple not nested lists.

See � arg and � li for more info.

5 Grouping

Doxygen has two mechanisms to group things together. One mechanism works at a global level, creating a
new page for each group. These groups are called ”modules” in the documentation. The other mechanism
works within a member list of some compound entity, and is refered to as a ”member group”.

5.1 Modules

Modules are a way to group things together on a separate page. You can document a group as a whole, as
well as all individual members. Members of a group can be files, namespaces, classes, functions, variables,
enums, typedefs, and defines, but also other groups.

To define a group, you should put the � defgroup command in a special comment block. The first argument
of the command is a label that should uniquely identify the group. You can make an entity a member of a
specific group by putting a � ingroup command inside its documentation block.

To avoid putting � ingroup commands in the documentation of each member you can also group members
together by the open marker @

�
before the group and the closing marker @ � after the group. The markers

can be put in the documentation of the group definition or in a separate documentation block.

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

5.1 Modules 21

Groups can also be nested using these grouping markers.

Note that compound entities (like classes, files and namespaces) can be put into multiple groups, but mem-
bers (like variable, functions, typedefs and enums) can only be a member of one group (this restriction is
to avoid ambiguous linking targets).

Example:
/** @defgroup group1 The First Group
* This is the first group
* @{
*/

/** @brief class C1 in group 1 */
class C1 {};

/** @brief class C2 in group 1 */
class C2 {};

/** function in group 1 */
void func() {}

/** @} end of group1 */

/**
* @defgroup group2 The Second Group
* This is the second group
*/

/** @defgroup group3 The Third Group
* This is the third group
*/

/** @defgroup group4 The Fourth Group
* @ingroup group3
* Group 4 is a subgroup of group 3
*/

/**
* @ingroup group2
* @brief class C3 in group 2
*/
class C3 {};

/** @ingroup group2
* @brief class C4 in group 2
*/
class C4 {};

/** @ingroup group3
* @brief class C5 in @link group3 the third group@endlink.
*/
class C5 {};

/** @ingroup group1 group2 group3 group4
* namespace N1 is in four groups
* @sa @link group1 The first group@endlink, group2, group3, group4
*
* Also see @ref mypage2
*/
namespace N1 {};

/** @file
* @ingroup group3
* @brief this file in group 3

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

5.2 Member Groups 22

*/

/** @defgroup group5 The Fifth Group
* This is the fifth group
* @{
*/

/** @page mypage1 This is a section in group 5
* Text of the first section
*/

/** @page mypage2 This is another section in group 5
* Text of the second section
*/

/** @} */

/** @addtogroup group1
*
* More documentation for the first group.
* @{
*/

/** another function in group 1 */
void func2() {}

/** yet another function in group 1 */
void func3() {}

/** @} */

5.2 Member Groups

If a compound (e.g. a class or file) has many members, it is often desired to group them together. Doxygen
already automatically groups things together on type and protection level, but maybe you feel that this is
not enough or that that default grouping is wrong. For instance, because you feel that members of different
(syntactic) types belong to the same (semantic) group.

A member group is defined by a

//@{
...

//@}

block or a

/*@{*/
...

/*@}*/

block if you prefer C style comments. Note that the members of the group should be physcially inside the
member group’s body.

Before the opening marker of a block a separate comment block may be placed. This block should contain
the @name (or � name) command and is used to specify the header of the group. Optionally, the comment
block may also contain more detailed information about the group.

Nesting of member groups is not allowed.

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

23

If all members of a member group inside a class have the same type and protection level (for instance all
are static public members), then the whole member group is displayed as a subgroup of the type/protection
level group (the group is displayed as a subsection of the ”Static Public Members” section for instance).
If two or more members have different types, then the group is put at the same level as the automatically
generated groups. If you want to force all member-groups of a class to be at the top level, you should put a

� nosubgrouping command inside the documentation of the class.

Example:
/** A class. Details */
class Test
{
public:

//@{
/** Same documentation for both members. Details */
void func1InGroup1();
void func2InGroup1();
//@}

/** Function without group. Details. */
void ungroupedFunction();
void func1InGroup2();

protected:
void func2InGroup2();

};

void Test::func1InGroup1() {}
void Test::func2InGroup1() {}

/** @name Group2
* Description of group 2.
*/
//@{
/** Function 2 in group 2. Details. */
void Test::func2InGroup2() {}
/** Function 1 in group 2. Details. */
void Test::func1InGroup2() {}
//@}

/*! \file
* docs for this file
*/

//@{
//! one description for all members of this group
//! (because DISTRIBUTE_GROUP_DOC is YES in the config file)
#define A 1
#define B 2
void glob_func();
//@}

Here Group1 is displayed as a subsection of the ”Public Members”. And Group2 is a separate section
because it contains members with different protection levels (i.e. public and protected).

6 Including formulas

Doxygen allows you to put LATEX formulas in the output (this works only for the HTML and LATEX formats,
not for the man page output). To be able to include formulas (as images) in the HTML documentation, you
will also need to have the following tools installed

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

24

� latex: the LATEX compiler, needed to parse the formulas. To test I have used the teTeX 0.9 distri-
bution.

� dvips: a tool to convert dvi files to postscript files I have used version 5.86 from Radical Eye
software for testing.

� gs: the ghostscript interpreter for converting postscript files to bitmaps. I have used Aladdin
Ghostscript 5.10 for testing.

There are two ways to include formulas in the documentation.

1. Using in-text formulas that appear in the running text. These formulas should be put between a pair
of � f$ commands, so

The distance between \f$(x_1,y_1)\f$ and \f$(x_2,y_2)\f$ is
\f$\sqrt{(x_2-x_1)ˆ2+(y_2-y_1)ˆ2}\f$.

results in:

The distance between ���������	��
 and ����
�����
�
 is � ����
�������

�� ����
����	��

 .
2. Unnumbered displayed formulas that are centered on a separate line. These formulas should be put

between � f � [and � f �] commands. An example:

\f[
|I_2|=\left| \int_{0}ˆT \psi(t)

\left\{
u(a,t)-
\int_{\gamma(t)}ˆa
\frac{d\theta}{k(\theta,t)}
\int_{a}ˆ\theta c(\xi)u_t(\xi,t)\,d\xi

\right\} dt
\right|

\f]

results in: � �
 ��� ����� !#"$&% ��'�
)(+*)��,��-'�
.� !0/1	243�576�89 � 8 ��'�

!#:/<; ��=�
>* 3 ��=?�-'�
 6 =�@ 6 '

�����
Formulas should be valid commands in LATEX’s math-mode.

Warning:
Currently, doxygen is not very fault tolerant in recovering from typos in formulas. It may have to be
necessary to remove the file formula.repository that is written in the html directory to a rid of
an incorrect formula

7 Graphs and diagrams

Doxygen has build-in support to generate inheritance diagrams for C++ classes.

Doxygen can use the ”dot” tool from graphviz 1.5 to generate more advanced diagrams & graphs. Graphviz
is an open-sourced, cross-platform graph drawing toolkit from AT&T and Lucent Bell Labs and can be
found at http://www.research.att.com/sw/tools/graphviz/

If you have the ”dot” tool available in the path, you can set HAVE DOT to YES in the configuration file to
let doxygen use it.

Doxygen uses the ”dot” tool to generate the following graphs:

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

http://www.research.att.com/sw/tools/graphviz/

25

� if GRAPHICAL HIERARCHY is set to YES, a graphical representation of the class hierarchy will
be drawn, along with the textual one. Currently this feature is supported for HTML only.

Warning: When you have a very large class hierarchy where many classes derive from a common
base class, the resulting image may become too big to handle for some browsers.

� if CLASS GRAPH is set to YES, a graph will be generated for each documented class showing the
direct and indirect inheritance relations. This disables the generation of the build-in class inheritance
diagrams.

� if INCLUDE GRAPH is set to YES, an include dependency graph is generated for each documented
file that includes at least one other file. This feature is currently supported for HTML and RTF only.

� if COLLABORATION GRAPH is set to YES, a graph is drawn for each documented class and struct
that shows:

– the inheritance relations with base classes.
– the usage relations with other structs & classes (e.g. class A has a member variable m a of type

class B, then A has an arrow to B with m a as label).

The elements in the class diagrams in HTML and RTF have the following meaning:

� A yellow box indicates a class. A box can have a little marker in the lower right corner to indicate
that the class contains base classes that are hidden. For the class diagrams the maximum tree width
is currently 8 elements. If a tree wider some nodes will be hidden. If the box is filled with a dashed
pattern the inheritance relation is virtual.

� A white box indicates that the documentation of the class is currently shown.
� A grey box indicates an undocumented class.
� A solid dark blue arrow indicates public inheritance.
� A dashed dark green arrow indicates protected inheritance.
� A dotted dark green arrow indicates private inheritance.

The elements in the class diagram in LATEX have the following meaning:

� A white box indicates a class. A marker in the lower right corner of the box indicates that the class
has base classes that are hidden. If the box has a dashed border this indicates virtual inheritance.

� A solid arrow indicates public inheritance.
� A dashed arrow indicates protected inheritance.
� A dotted arrow indicated private inheritance.

The elements in the graphs generated by the dot tool have the following meaning:

� A white box indicates a class or struct or file.
� A box with a red border indicates a node that has more arrows than are shown! In order words:

the graph is truncated with respect to this node. The reason a graph is sometimes truncated is too
prevent images from becoming too large. For the graphs generated with dot doxygen tries to limit
the width of the resulting image to 1024 pixels.

� A black box indicates that the class’ documentation is currently shown.
� A dark blue arrow indicates an include relation (for the include dependency graph) or public inher-

itance (for the other graphs).
� A dark green arrow indicates protected inheritance.
� A dark red arrow indicates private inheritance.
� A purple dashed arrow indicated a ”usage” relation, the edge of the arrow is labled with the vari-

able(s) responsible for the relation. Class A uses class B, if class A has a member variable m of type
C, where B is a subtype of C (e.g. C could be B, B � , T �

B � �).

Here are a couple of header files that together show the various diagrams that doxygen can generate:

diagrams a.h

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

26

#ifndef _DIAGRAMS_A_H
#define _DIAGRAMS_A_H
class A { public: A *m_self; };
#endif

diagrams b.h

#ifndef _DIAGRAMS_B_H
#define _DIAGRAMS_B_H
class A;
class B { public: A *m_a; };
#endif

diagrams c.h

#ifndef _DIAGRAMS_C_H
#define _DIAGRAMS_C_H
#include "diagrams_c.h"
class D;
class C : public A { public: D *m_d; };
#endif

diagrams d.h

#ifndef _DIAGRAM_D_H
#define _DIAGRAM_D_H
#include "diagrams_a.h"
#include "diagrams_b.h"
class C;
class D : virtual protected A, private B { public: C m_c; };
#endif

diagrams e.h

#ifndef _DIAGRAM_E_H
#define _DIAGRAM_E_H
#include "diagrams_d.h"
class E : public D {};
#endif

8 Preprocessing

Source files that are used as input to doxygen can be parsed by doxygen’s build-in C-preprocessor.

By default doxygen does only partial preprocessing. That is, it evaluates conditional compilation statements
(like #if) and evaluates macro definitions, but it does not perform macro expansion.

So if you have the following code fragment

#define VERSION 200
#define CONST_STRING const char *

#if VERSION >= 200
static CONST_STRING version = "2.xx";

#else
static CONST_STRING version = "1.xx";

#endif

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

27

Then by default doxygen will feed the following to its parser:

#define VERSION
#define CONST_STRING

static CONST_STRING version = "2.xx";

You can disable all preprocessing by setting ENABLE PREPROCESSING to NO in the configuation file.
In the case above doxygen will then reads both statements!

In case you want to expand the CONST STRING macro, you should set the MACRO EXPANSION tag in
the config file to YES. Then the result after preprocessing becomes:

#define VERSION
#define CONST_STRING

static const char * version = "1.xx";

Note that doxygen will now expand all macro definitions (recursively if needed). This is often too much.
Therefore, doxygen also allows you to expand only those defines that you explicitly specify. For this
you have to set the EXPAND ONLY PREDEF tag to YES and specify the macro definitions after the
PREDEFINED or EXPAND AS DEFINED tag.

As an example, suppose you have the following obfuscated code fragment of an abstract base class called
IUnknown:

/*! A reference to an IID */
#ifdef __cplusplus
#define REFIID const IID &
#else
#define REFIID const IID *
#endif

/*! The IUnknown interface */
DECLARE_INTERFACE(IUnknown)
{

STDMETHOD(HRESULT,QueryInterface) (THIS_ REFIID iid, void **ppv) PURE;
STDMETHOD(ULONG,AddRef) (THIS) PURE;
STDMETHOD(ULONG,Release) (THIS) PURE;

};

without macro expansion doxygen will get confused, but we may not want to expand the REFIID macro,
because it is documented and the user that reads the documentation should use it when implementing the
interface.

By setting the following in the config file:

ENABLE_PREPROCESSING = YES
MACRO_EXPANSION = YES
EXPAND_ONLY_PREDEF = YES
PREDEFINED = "DECLARE_INTERFACE(name)=class name" \

"STDMETHOD(result,name)=virtual result name" \
"PURE= = 0" \
THIS_= \
THIS= \
__cplusplus

we can make sure that the proper result is fed to doxygen’s parser:

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

28

/*! A reference to an IID */
#define REFIID

/*! The IUnknown interface */
class IUnknown
{

virtual HRESULT QueryInterface (REFIID iid, void **ppv) = 0;
virtual ULONG AddRef () = 0;
virtual ULONG Release () = 0;

};

Note that the PREDEFINED tag accepts function like macro definitions (like DECLARE INTERFACE),
normal macro substitutions (like PURE and THIS) and plain defines (like cplusplus).

Note also that preprocessor definitions that are normally defined automatically by the preprocessor (like
cplusplus), have to be defined by hand with doxygen’s parser (this is done because these defines are

often platform/compiler specific).

In some cases you may want to substitute a macro name or function by something else without exposing
the result to further macro substitution. You can do this but using the := operator instead of =

As an example suppose we have the following piece of code:

#define QList QListT
class QListT
{
};

Then the only way to get doxygen interpret this as a class definition for class QList is to define:

PREDEFINED = QListT:=QList

Here is example provided by Valter Minute that helps doxygen to wade through the boilerplate code in
Microsoft’s ATL library:

PREDEFINED = DECLARE_REGISTRY_RESOURCEID=// \
DECLARE_PROTECT_FINAL_CONSTRUCT=// \
BEGIN_COM_MAP=/* \
END_COM_MAP=*/// \
BEGIN_PROP_MAP=/* \
END_PROP_MAP=*/// \
BEGIN_MSG_MAP=/* \
END_MSG_MAP=*/// \
DECLARE_VIEW_STATUS=// \
"STDMETHOD(a)=HRESULT a" \
"ATL_NO_VTABLE= "\
"__declspec(a)= "\
BEGIN_CONNECTION_POINT_MAP=/* \
END_CONNECTION_POINT_MAP=*/// \
"DECLARE_AGGREGATABLE(Class)= " \
"DECLARE_REGISTRY_RESOURCEID(id)= "

As you can see doxygen’s preprocessor is quite powerful, but if you want even more flexibility you can
always write an input filter and specify it after the INPUT FILTER tag.

If you are unsure what the effect of doxygen’s preprocessing will be you can run doxygen as follows:

doxygen -d Preprocessor

This will instruct doxygen to dump the input sources to standard output after preprocessing has been done
(Hint: set QUIET = YES and WARNINGS = NO in the configuration file to disable any other output).

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

29

9 Linking to external documentation

If your project depends on external libraries or tools, there are several reasons to not include all sources for
these with every run of doxygen:

Disk space: Some documentation may be available outside of the output directory of doxygen already,
for instance somewhere on the web. You may want to link to these pages instead of generating the
documentation in your local output directory.

Compilation speed: External projects typically have a different update frequency from your own project.
It does not make much sense to let doxygen parse the sources for these external project over and over
again, even if nothing has changed.

Memory: For very large source trees, letting doxygen parse all sources may simply take too much of your
system’s memory. By dividing the sources into several ”packages”, the sources of one package can
be parsed by doxygen, while all other packages that this package depends on, are linked in externally.
This saves a lot of memory.

Availability: For some projects that are documented with doxygen, the sources may just not be available.

If any of the above apply, you can use doxygen’s tag file mechanism. A tag file is basically a compact
representation of the entities found in the external sources. Doxygen can both generate and read tag files.

To generate a tag file for your project, simply put the name of the tag file after the GENERATE TAGFILE
option in the configuration file.

To combine the output of one or more external projects with you own project you should specify the name
of the tag files after the TAGFILES option in the configuration file.

A tag file does not contain information about where the external documentation is located. This could be a
directory or an URL. So when you include a tag file you have to specify where the external documentation
is located. There are two ways to do this:

At configuration time: just assign the location of the output to the tag files specified after the TAGFILES
configuration option. If you use a relative path it should be relative with respect to the directory
where the html output of your project is generated.

After compile time: if you do not assign a location to a tag file, doxygen will generate dummy links for all
external HTML references. It will also generate a perl script called installdox in the HTML output
directory. This script should be run to replace the dummy links with real links for all generated
HTML files.

Example:
Suppose you have a projectproj that uses two external projects called ext1 andext2. The directory
structure looks as follows:

<root>
+- proj
| +- html HTML output directory for proj
| +- src sources for proj
| |- proj.cpp
+- ext1
| +- html HTML output directory for ext1
| |- ext1.tag tag file for ext1
+- ext2
| +- html HTML output directory for ext2
| |- ext2.tag tag file for ext2
|- proj.cfg doxygen configuration file for proj
|- ext1.cfg doxygen configuration file for ext1
|- ext2.cfg doxygen configuration file for ext2

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

30

Then the relevant parts of the configuration files look as follows:
proj.cfg:

OUTPUT_DIRECTORY = proj
INPUT = proj/src
TAGFILES = ext1/ext1.tag=../../ext1/html \

ext2/ext2.tag=../../ext2/html

ext1.cfg:

OUTPUT_DIRECTORY = ext1
GENERATE_TAGFILE = ext1/ext1.tag

ext2.cfg:

OUTPUT_DIRECTORY = ext2
GENERATE_TAGFILE = ext2/ext2.tag

In some (hopefully exceptional) cases you may have the documentation generated by doxygen, but not the
sources nor a tag file. In this case you can use the doxytag tool to extract a tag file from the generated
HTML sources. This tool depends on the particular structure of the generated output and on some special
markers that are generated by doxygen. Since this type of extraction is brittle and error prone I suggest
you to only use this approach if there is no alternative. The doxytag tool may even become obsolete in the
future.

10 Frequently Asked Questions

1. How do get information on the index page in HTML?
You should use the � mainpage command inside a comment block like this:

/*! \mainpage My Personal Index Page
*
* \section intro Introduction
*
* This is the introduction.
*
* \section install Installation
*
* \subsection step1 Step 1: Opening the box
*
* etc...
*/

2. Help, some/all of the members of my class / file / namespace are not documented?

Check the following:

(a) Is your class / file / namespace documented? If not, it will not be extracted from the sources
unless EXTRACT ALL is set to YES in the config file.

(b) Are the members private? If so, you must set EXTRACT PRIVATE to YES to make them
appear in the documentation.

(c) Is there a function macro in your class that does not end with a semicolon (e.g. MY -
MACRO())? If so then you have to instruct doxygen’s preprocessor to remove it.
This typically boils down to the following settings in the config file:

ENABLE_PREPROCESSING = YES
MACRO_EXPANSION = YES
EXPAND_ONLY_PREDEF = YES
PREDEFINED = MY_MACRO()=

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

31

Please read the preprocessing section of the manual for more information.

3. When I set EXTRACT ALL to NO non of my functions are shown in the documentation.

In order for global functions, variables, enums, typedefs, and defines to be documented you should
document the file in which these commands are located using a comment block containing a � file (or
@file) command.

Alternatively, you can put all members in a group (or module) using the � ingroup command and then
document the group using a comment block containing the � defgroup command.

4. How can I make doxygen ignore some code fragment?
You can use Doxygen’s preprocessor for this: If you put

#ifndef DOXYGEN_SHOULD_SKIP_THIS

/* code that must be skipped by Doxygen */

#endif /* DOXYGEN_SHOULD_SKIP_THIS */

around the blocks that should be hidden and put:

PREDEFINED = DOXYGEN_SHOULD_SKIP_THIS

in the config file then all blocks should be skipped by Doxygen as long as PREPROCESSING =
YES.

5. How can I change what’s after the #include in the class documentation?

You can document your class like

/*! \class MyClassName include.h path/include.h
*
* Docs for MyClassName
*/

To make doxygen put

include
�
path/include.h �

in the documentation of the class MyClassName regardless of the name of the actual header file in
which the definition of MyClassName is contained.
If you want doxygen to show that the include file should be included using brackets you should type:

/*! \class MyClassName include.h "path/include.h"
*
* Docs for MyClassName
*/

6. How can I use tag files in combination with compressed HTML
If you want to refer from one compressed HTML file a.chm to another compressed HTML file
called b.chm, the link in a.chm must have the following format:

Unfortunately this only works if both compressed HTML files are in the same directory.

As a result you must rename the generated index.chm files for all projects into something unique
and put all .chm files in one directory.
Suppose you have a project a referring to a project b using tag file b.tag, then you could rename
the index.chm for project a into a.chm and the index.chm for project b into b.chm. In the
configuration file for project a you write:

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

32

TAGFILES = b.tag=b.chm::

or you can use installdox to set the links as follows:

installdox -lb.tag@b.chm::

7. I don’t like the quick index that is put above each HTML page, what do I do?

You can disable the index by setting DISABLE INDEX to YES. Then you can put in your own
header file by writing your own header and feed that to HTML HEADER.

8. The overall HTML output looks different, while I only wanted to use my own html header file
You probably forgot to include the stylesheet doxygen.css that doxygen generates. You can
include this by putting

<LINK HREF="doxygen.css" REL="stylesheet" TYPE="text/css">

In the HEAD section of the HTML page.

9. Why does doxygen use Qt?

The most important reason is to have a platform abstraction for most Unices and Windows by means
of the QFile, QFileInfo, QDir, QDate, QTime and QIODevice classes. Another reason is for the nice
and bug free utility classes, like QList, QDict, QString, QArray, QTextStream, QRegExp, QXML
etc.

The GUI front-end doxywizard uses Qt for... well... the GUI!

10. How can I exclude all test directories from my directory tree?

Simply put an exclude pattern like this in the configuration file:

EXCLUDE_PATTERNS = */test/*

11. Doxygen automatically generates a link to the class MyClass somewhere in the running text.
How do I prevent that at a certain place?

Put a % in front of the class name. Like this: %MyClass. Doxygen will then remove the % and keep
the word unlinked.

12. Help! I get the cryptic message ”input buffer overflow, can’t enlarge buffer because scanner
uses REJECT”

This error happens when doxygen lexical scanner has a rules that matches more than 16K input
character in one go. I’ve seen this happening on a very large generated file (� 16K lines), where the
built-in preprocessor converted it into an empty file (with � 16K of newlines). Another case where
this might happen is if you have lines in you code with more than 16K characters.

11 Troubleshooting

Known problems:

� Doxygen is not a real compiler, it is only a lexical scanner. This means that it can and will not detect
errors in your source code.

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

33

� Since it impossible to test all possible code fragments, it is very well possible, that some valid piece
of C/C++ code is not handled properly. If you find such a piece, please send it to me, so I can
improve doxygen’s parsing capabilities. Try to make the piece of code you send as small as possible,
to help me narrow down the search.

� Using declarations for member are not yet supported. They are simply ignored. Using declarations
for class and using directives are supported however.

� Doxygen does not work properly if there are multiple classes, structs or unions with the same name
in your code. It should not crash however, rather it should ignore all of the classes with the same
name except one.

� Some commands do not work inside the arguments of other commands. Inside a HTML link (i.e � a
href=”...” � ... � a �) for instance other commands (including other HTML commands) do not work!
The sectioning commands are an important exception.

� Redundant braces can confuse doxygen in some cases. For example:

void f (int);

is properly parsed as a function declaration, but
const int (a);

is also seen as a function declaration with name int, because only the syntax is analysed, not the
semantics. If the redundant braces can be detected, as in

int *(a[20]);

then doxygen will remove the braces and correctly parse the result.
� Not all names in code fragments that are included in the documentation are replaced by links (for

instance when using SOURCE BROWSER = YES). This also holds for the ”Referenced by” list that
is generated for each function.

For a part this is because the code parser isn’t smart enough at the moment. I’ll try to improve this
in the future. But even with these improvements not everthing can be properly linked to the corre-
sponding documentation, because of possible ambiguities or lack of information about the context
in which the code fragment is found.

� It is not possible to insert a non-member function f in a class A using the � relates command, if class
A already has a member with name f and the same argument list.

� There is only very limited support for member specialization at the moment. It only works if there
is a specialized template class as well.

� Not all special commands are properly translated to RTF.

How to help

The development of Doxygen highly depends on your input!

If you are trying Doxygen let me know what you think of it (do you miss certain features?). Even if you
decide not to use it, please let me know why.

How to report a bug

I would appreciate an e-mail if you have found a bug, or if you have ideas (or even better some code or
a patch) how to fix existing bugs and limitations. For patches please use ”diff -u” or include the files you
modified. If you send more than one file please tar or zip everything, so I only have to save and download
one file.

Always try to include the following information in your bug report:

� The version of doxygen you are using (for instance 1.2.4).
� The name and version number of your operating system (for instance SuSE Linux 6.4)

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

34

� It is usually a good idea to send along the configuation file as well, but please use doxygen with the
-s flag while generating it to keep it small.

� The easiest way for me to solve bugs is if you can send me a small example demonstrating the
problem you have. Please make sure the example is valid source code (could potentially compile)
and that the problem is really captured by the example (I often get examples that do not trigger the
actual bug!).

If you send only a (vague) description of a bug, you are usually not very helpful and will costs me much
more time to figure out what you mean. In the worst-case your bug report may even be completely ignored
by me!

My e-mail address: dimitri@stack.nl

Part II

Reference Manual

12 Features

� Requires very little overhead from the writer of the documentation. Plain text will do, but for more
fancy or structured output HTML tags and/or some of doxygen’s special commands can be used.

� Supports C++, (Corba, Microsoft, and KDE-DCOP) Java, IDL and C sources.
� Supports documentation of files, namespaces, classes, structs, unions, templates, variables, func-

tions, typedefs, enums and defines.
� JavaDoc (1.1), Qt-Doc, and KDOC compatible.
� Automatically generates class diagrams in HTML (as clickable image maps) and LATEX (as encapsu-

lated postscript images).
� Uses the dot tool of the Graphviz tool kit to generate include dependency graphs, collaboration

diagrams, and graphical class hierarchy graphs.
� Allows you to put documentation in the header file (before the declaration of an entity), source file

(before the definition of an entity) or in a separate file.
� Can generate a list of all members of a class (including any inherited members) along with their

protection level.
� Outputs documentation in on-line format (HTML and UNIX man page) and off-line format (LATEX)

and RTF simultaniously (any of these can be disabled if desired). All formats are optimized for ease
of reading.

Furthermore, compressed HTML can be generated from HTML output using Microsoft’s HTML
help workshop (Windows only) and PDF can be generated from the LATEX output.

� Includes a full C preprocessor to allow proper parsing of conditional code fragments and to allow
expansion of all or part of macros definitions.

� Automatically detects public, protected and private sections, as well as the Qt specific signal and
slots sections. Extraction of private class members is optional.

� Automatically generates references to documented classes, files, namespaces and members. Doc-
umentation of global functions, globals variables, typedefs, defines and enumerations is also sup-
ported.

� References to base/super classes and inherited/overridden members are generated automatically.
� Includes a fast, rank based search engine to search for strings or words in the class and member

documentation.

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

mailto:dimitri@stack.nl
mailto:dimitri@stack.nl

35

� You can type normal HTML tags in your documentation. Doxygen will convert them to their equiv-
alent LATEX and man-page counterparts automatically.

� Allows references to documentation generated for other projects (or another part of the same project)
in a location independent way.

� Allows inclusion of source code examples that are automatically cross-referenced with the documen-
tation.

� Inclusion of undocumented classes is also supported, allowing to quickly learn the structure and
interfaces of a (large) piece of code without looking into the implementation details.

� Allows automatic cross-referencing of (documented) entities with their definition in the source code.
� All source code fragments are syntax highlighted for ease of reading.
� Allows inclusion of function/member/class definitions in the documentation.
� All options are read from an easy to edit and (optionally) annotated configuration file.
� Documentation and search engine can be transferred to another location or machine without regen-

erating the documentation.
� Can cope with large projects easily.

Although doxygen can be used in any C or C++ project, it was specifically designed to be used for projects
that make use of Troll Tech’s Qt toolkit. I have tried to make doxygen ‘Qt-compatible’. That is:
Doxygen can read the documentation contained in the Qt source code and create a class browser that looks
very similar to the one that is generated by Troll Tech. Doxygen understands the C++ extensions used by
Qt such as signals and slots.

Doxygen can also automatically generate links to existing documentation that was generated with Doxygen
or with Qt’s non-public class browser generator. For a Qt based project this means that whenever you refer
to members or classes belonging to the Qt toolkit, a link will be generated to the Qt documentation. This
is done independent of where this documentation is located!

13 Doxygen History

Version 1.2.0

Major new features:

� Support for RTF output.
� Using the dot tool of the AT&T’s GraphViz package, doxygen can now generate inheritance dia-

grams, collaboration diagrams, include dependency graphs, included by graphs and graphical inher-
itance overviews.

� Function arguments can now be documentation with separate comment blocks.
� Initializers and macro definitions are now included in the documentation.
� Variables and typedefs are now put in their own section.
� Old configuration files can be upgraded using the -u option without loosing any changes.
� Using the � if and � endif commands, doxygen can conditionally include documentation blocks.
� Added Doc++ like support for member grouping.
� Doxygen now has a GUI front-end called doxywizard (based on Qt-2.1)
� All info about configuration options is now concentrated in a new tool called configgen. This tool

can generate the configuration parser and GUI front-end from source templates.
� Better support for the using keyword.
� New transparent mini logo that is put in the footer of all HTML pages.
� Internationalization support for the Polish, Portuguese and Croatian language.
� Todo list support.

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

http://www.trolltech.com/products/qt.html

36

� If the source browser is enabled, for a function, a list of function whose implementation calls that
function, is generated.

� All source code fragments are now syntax highlighted in the HTML output. The colors can be
changed using cascading style sheets.

Version 1.0.0

Major new features:

� Support for templates and namespaces.
� Internationalization support. Currently supported languages are: English, Czech, German, Spanish,

Finnish, French, Italian, Japanse, Dutch, and Swedish.
� Automatic generation of inheritance diagrams for sub & super classes.
� Support for man page, compressed HTML help, and hyperlinked PDF output.
� Cross-referencing documentation with source code and source inlining.
� LaTeX formulas can be included in the documentation.
� Support for parsing Corba & Microsoft IDL.
� Images can be included in the documentation.
� Improved parsing & preprocessing.

Version 0.4

Major new features:

� LaTeX output generation.
� Full JavaDoc support.
� Build-in C-preprocessor for correct conditional parsing of source code that is read by Doxygen.
� Build-in HTML to LaTeX converter. This allows you to use HTML tags in your documentation,

while doxygen still generates proper LaTeX output.
� Many new commands (there are now more than 60!) to document more entities, to make the docu-

mentation look nicer, and to include examples or pieces of examples.
� Enum types, enum values, typedefs, defines, and files can now be documented.
� Completely new documentation, that is now generated by Doxygen.
� A lot of small examples are now included.

Version 0.3

Major new features:

� A search engine doxysearch, that allows you to search through the generated documentation.
� A configuration file instead of command-line options. A default configuration file can be generated

by doxygen.
� Added an option to generate output for undocumented classes.
� Added an option to generate output for private members.
� Every page now contains a condensed index page, allowing much faster navigation through the

documentation.
� Global and member variables can now be documented.
� A project name can now given, which will be included in the documentation.

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

file:doxysearch_usage.html
file:doxygen_usage.html

37

Version 0.2

Major new features:

� Blocks of code are now parsed. Function calls and variables are replaced by links to their documen-
tation if possible.

� Special example documentation block added. This can be used to provide cross references between
the documentation and some example code.

� Documentation blocks can now be placed inside the body of a class.
� Documentation blocks with line range may now be created using special //! C++ line comments.
� Unrelated members can now be documented. A page containing a list of these members is generated.
� Added an � include command to insert blocks of source code into the documentation.
� Warnings are generated for members that are undocumented.
� You can now specify your own HTML headers and footers for the generated pages.
� Option added to generated indices containing all external classes instead of only the used ones.

Version 0.1

Initial version.

14 Doxygen usage

Doxygen is a command line based utility. Calling doxygen with the --help option at the command line
will give you a brief description of the usage of the program.

All options consist of a leading character -, followed by one character and one or more arguments depend-
ing on the option.

To generate a manual for your project you typically need to follow these steps:

1. You document your source code with special documentation blocks (see section
Special documentation blocks).

2. You generate a configuration file (see section Configuration) by calling doxygen with the -g option:

doxygen -g <config_file>

3. You edit the configuration file so it matches your project. In the configuration file you can specify
the input files and a lot of optional information.

4. You let doxygen generate the documentation, based on the settings in the configuration file:

doxygen <config_file>

If you have a configuration file generated with an older version of doxygen that you can upgrade it to the
current version by running doxygen with the -u option.

doxygen -u <config_file>

All configuration settings in the orginal configuration file will be copied to the new configuration file. Any
new options will have their default value. Note that comments that you may have added in the original
configuration file will be lost.

If you want to fine-tune the way the output looks, doxygen allows you generate default style sheet, header,
and footer files that you can edit afterwards:

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

38

� For HTML output, you can generate the default header file (see HTML HEADER), the default footer
(see HTML FOOTER), and the default style sheet (see HTML STYLESHEET), using the following
command:
doxygen -w html header.html footer.html stylesheet.css

� For LaTeX output, you can generate the first part of refman.tex (see LATEX HEADER) and the
style sheet included by that header (normally doxygen.sty), using:
doxygen -w latex header.tex doxygen.sty

� For RTF output, you can generate the default style sheet file (see RTF STYLESHEET FILE) using:
doxygen -w rtf rtfstyle.cfg

Note:

� If you do not want documentation for each item inside the configuration file then you can use the
optional -s option. This can use be used in combination with the -u option, to add or strip the
documentation from an existing configuration file. Please use the -s this option if you send me a
configuration file as part of a bug report!

� To make doxygen read/write to standard input/output instead of from/to a file, use - for the file name.

If you also want to use the search engine, you should look at section Doxysearch usage.

15 Doxytag usage

Doxytag is a small command line based utility. It has two functions:

� Doxytag can generate tag files. These tag files can be used with doxygen to generate references to
external documentation (i.e. documentation not contained in the input files that are used by doxygen).
A tag file contains information about files, classes and members documented in external documen-
tation. Doxytag extracts this information directly from the HTML files. This has the advantage that
you do not need to have the sources from which the documentation was extracted. If you do have
the sources it is better to let doxygen generate the tag file by putting the name of the tag file after
GENERATE TAGFILE in the configuration file.

� Doxytag can generate a search index for the documentation generated with doxygen or for the Qt
documentation. See the documentation of doxysearch for more information on how to do this. A
search index contains information about all the words (and all substrings thereof) that are contained
in the documentation. For each string the index contains the set of documentation blocks that contain
the string and the frequency of occurrence. This way doxysearch can search for words very
quickly (most queries are processed within a few milliseconds on my system.)

In both cases the input of doxytag consists of a set of HTML files.

Important:
If you use tag files or use a search engine, the links that are generated by doxygen will contain dummy
links. You have to run the installdox script to change these dummy links into real links. See
Installdox usage for more information. The use of dummy links may seem redundant, but it is really
useful, if you want to move the external documentation to another location. Then the documentation
does not need to be regenerated by doxygen, only installdox has to be run.

Note:
Because the HTML files are expected to have a certain structure, only HTML files generated with
doxygen or with Qt’s class browser generator can be used. Doxytag only reads the HTML files, they
are not altered in any way.

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

file:doxygen_usage.html
file:doxysearch_usage.html

39

Doxytag expects a list of all HTML files that form the documentation or a directory that contains all HTML
files. If neither is present doxytag will read all files with a .html extension from the current directory. If
doxytag is used with the -t flag it generates a tag file.

Example 1:
Suppose the file example.cpp from the examples directory that is listed below is included in
some package for which you do not have the sources. Fortunately, the distributor of the packages
included the HTML documentation that was generated by doxygen in the package.

/** A Test class.
* More details about this class.
*/

class Test
{
public:

/** An example member function.
* More details about this function.
*/

void example();
};

void Test::example() {}

/** \example example_test.cpp
* This is an example of how to use the Test class.
* More details about this example.
*/

Now you can create a tag file from the HTML files in the package by typing:

doxytag -t example.tag example/html

from the examples directory. Finally you can use this tag file with your own piece of code, such as
done in the following example:

/*! A class that is inherited from the external class Test.
*/

class Tag : public Test
{
public:

/*! an overloaded member. */
void example();

};

Doxygen will now include links to the external package in your own documentation. Because the tag
file does not specify where the documentation is located, you will have to specify that by running the
installdox script that doxygen generates (See section Installdox usage for more information).

Note that this is actually a feature because if you (or someone else) moves the external documentation to
a different directory or URL you can simply run the script again and all links in the HTML files will be
updated.

Example 2:
To generate a tag file of the Qt documentation you can do the following:

doxytag -t qt.tag $QTDIR/html

A typical example to use doxytag to generate a search index is:

doxytag -s search.idx

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

40

Note:
In the current version of doxygen, the search index must be called search.idx.

16 Doxysearch usage

Doxysearch is a small, fast and highly portable search engine that allows you to search for strings or words
in the documentation generated by doxygen or in the Qt documentation (see below). Doxysearch must
be run as a CGI binary. This implies the following:

� There must be a HTTP daemon running on the system where you want to install the documentation
(the target)

� You must have permission to install and execute a CGI binary on the target.

Ask you system administrator or provider if you are unsure if this is possible.

In order to be able to search fast and efficient, doxysearch does not search the generated documentation
directly. Instead, it uses an index file, that should be generated with doxytag. The index file is extracted
from the generated HTML files and contains all words and substrings of words present in the HTML files,
in a compact form, together with their frequencies and links. Although I tried to store all information as
compactly as possible, the size of the index is still quite large. Usually it is about the same size as the
original HTML files.

I have tried to make the search engine highly portable, because it must run on the target system. As a result
doxysearch does not require the Qt library. All that is required to build doxysearch is a C++ compiler. If
you are using g++ for example, you can build the search engine manually, by typing:

g++ doxysearch.cpp -o doxysearch

Generating the search engine

To include a search engine in the documentation generated by doxygen follow these steps:

1. Generate a configuration file with doxygen using the -g option, if you haven’t done this already.

2. Edit the search engine section (see section Search engine options of the configuration file). Make
sure the SEARCHENGINE tag is set to YES and that all paths are correct.

3. Use doxygen to generate the documentation. Apart from the documentation, Doxygen will create
the following files:

� A small shell script. The name of the script is determined by the CGI NAME tag in the configu-
ration file. The script is a small wrapper that calls doxysearch with the correct parameters.
Using this script allows multiple search engines for different projects to be present in one di-
rectory.

� search.cfg: this file is a small configuration file for the search engine. It contains two lines
of text. The first line should be the absolute URL to the documentation. The second line should
be the absolute URL to the CGI script. This information is taken from the configuration file.

� search.gif: this is the image that is used for the search button.

Note:
On the Windows platform Unix shell scripts cannot be used. In fact the HTTP daemon that I
tried (apache for Windows) only recognized .cgi files that were renamed executables (so DOS

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

file:doxygen_usage.html
file:doxytag_usage.html
file:doxygen_usage.html
file:doxygen_usage.html

41

batch files do not seem to work either). Therefore, on Windows a small C program will be
generated by doxygen. You should compile and link the program with your favourite compiler
and change the extension of the executable from .exe to .cgi.

4. Copy (or move) the CGI script to the directory where the CGI binaries are located. This is usually
a special directory on your system or in your home directory. Consult the manual of your HTTP
daemon or your system administrator to find out where this directory resides on your system.

5. Goto the directory where the generated HTML files are located and run doxytag as follows:

doxytag -s search.idx

This will create a search index with the name search.idx. Currently the index file must be called
like this.

6. If you change the location of the search engine or the documentation and you do not want to re-
generate the HTML output, you can simply edit the generated search.cfg file and run the generated
installdox script to correct the links in the documentation.

Creating a search engine to search in the Qt documentation

Using doxytag and doxysearch it is possible to create a search engine for the Qt documentation,
without needing the sources! This can be done by carefully following these steps:

1. Goto the html directory of the Qt-distribution:

cd $QTDIR/html

2. Generate the search index by typing:

doxytag -s search.idx

in the directory where the HTML files are located. This will parse all files and build a search
index. Apart from the file search.idx two other files will be generated: search.gif and
search.cgi

Note:
Doxytag requires quite a large amount of memory to generate the search index (about 30 Mb on
my Linux box)! The resulting index file requires about 3 Mb space on your disk.

3. Edit the shell script search.cgi with a text editor.

Fill in the absolute path to the doxysearch binary after the DOXYSEARCH= tag. On my system
this becomes:

DOXYSEARCH=/usr/local/bin/doxysearch

Fill in the absolute path to the qt documentation after the DOXYPATH= tag. On my system this
becomes:

DOXYPATH=/usr/local/qt/html

4. CGI binaries are usually located in a special directory. Consult the manual of your HTTP daemon or
your system administrator to find out, where this directory resides on your system. Copy (or move)
the search.cgi script to this directory. If needed you may change the name of the script. On my
system, this becomes:

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

file:installdox_usage.html

42

cp search.cgi /usr/local/lib/httpd/cgi-bin/

5. Create a text-file with the name search.cfg. On the first line, you must put the absolute URL
to the Qt documentation. Since, I only use the search engine on my own standalone system, I use
the file: protocol. On the second line, you must put the absolute URL to the cgi script. On my
system the resulting file looks like this:

file:///usr/local/qt/html
http://blizzard/cgi-bin/search.cgi

6. Add a link to the search engine in the Qt documentation. On my system, I have put a line

Search the documentation<a>

in the additional information section of the index.html file.

7. Start your favourite web browser and click on the link. If everything is ok, you should get a page
where you can enter search terms.

17 Doxywizard usage

Doxywizard is a GUI front-end for creating and editing configuration files that are used by doxygen.

Doxywizard consists of a single executable that, when started, pops up a window.

The main window has a number of tab field, one for each section in the configuration file. Each tab-field
contains a number of lines, one for each configuration option in that section.

The kind of input widget depends on the type of the configuration option.

� For each boolean option (those options that are answered with YES or NO in the configuration file)
there is a check-box.

� For items taking one of a fixed set of values (like OUTPUT LANGUAGE) a combo box is used.
� For items taking an integer value from a range, a spinbox is used.
� For free form string-type options there is a one line edit field
� For options taking a lists of strings, a one line edit field is available, with a ‘+’ button to add this

string to the list and a ‘-’ button to remove the selected string from the list. There is also a button
with a circular ”refresh” arrow that, when pressed, replaces the selected item in the list with the
string entered in the edit field.

� For file and folder entries, there are special buttons that start a file dialog.

18 Installdox usage

Installdox is a perl script that is generated by doxygen whenever tag files are used (See TAGFILES
in section External reference options) or the search engine is enabled (See SEARCHENGINE in section
Search engine options). The script is located in the same directory where the HTML files are located.

Its purpose is to set the location of the external documentation for each tag file and to set the correct links
to the search engine at install time.

Calling installdox with option -h at the command line will give you a brief description of the usage of
the program.

The following options are available:

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

43

-l �
tagfile � @ �

location � Each tag file contains information about the files, classes and members
documented in a set of HTML files. A user can install these HTML files anywhere on his/her hard
disk or web site. Therefore installdox requires the location of the documentation for each tag file

�
tagfile � that is used by doxygen. The location �

location � can be an absolute path or a
URL.

Note:
Each � tagfile � must be unique and should only be the name of the file, not including the path.

-q When this option is specified, installdox will generate no output other than fatal errors.

Optionally a list of HTML files may be given. These files are scanned and modified if needed. If this list is
omitted all files in the current directory that end with .html are used.

The installdox script is unique for each generated class browser in the sense that it ‘knows’ what tag
files are used. It will generate an error if the -l option is missing for a tag file or if an invalid tag file is
given.

19 Output Formats

The following output formats are directly supported by doxygen:

HTML Generated if GENERATE HTML is set to YES in the configuration file.

LATEX Generated if GENERATE LATEX is set to YES in the configuration file.

Man pages Generated if GENERATE MAN is set to YES in the configuration file.

RTF Generated if GENERATE RTF is set to YES in the configuration file.

Note that the RTF output probably only looks nice with Microsoft’s Word 97. If you have success
with other programs, please let me know.

The following output formats are indirectly supported by doxygen:

Compressed HTML (a.k.a. Windows 98 help) Generated by Microsoft’s HTML Help workshop from
the HTML output if GENERATE HTMLHELP is set to YES.

Postscript Generated from the LATEX output by running make ps in the output directory. For the best
results PDF HYPERLINKS should be set to NO.

PDF Generated from the LATEX output by running make pdf in the output directory. In order to get
hyperlinks in the pdf file, PDF HYPERLINKS should be set to YES in the configuration file.

20 Automatic link generation

Most documentation systems have special ‘see also’ sections where links to other pieces of documentation
can be inserted. Although doxygen also has a command to start such a section (See section � sa), it does
allow you to put these kind of links anywhere in the documentation. For LATEX documentation a reference
to the page number is written instead of a link. Furthermore, the index at the end of the document can be

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

20.1 Links to web pages and mail addresses 44

used to quickly find the documentation of a member, class, namespace or file. For man pages no reference
information is generated.

The next sections show how to generate links to the various documented entities in a source file.

20.1 Links to web pages and mail addresses

Doxygen will automatically replace any URLs and mail addresses found in the documentation by links (in
HTML).

20.2 Links to classes.

All words in the documentation that correspond to a documented class will automatically be replaced by
a link to the page containing the documentation of the class. If you want to prevent that a word that
corresponds to a documented class is replaced by a link you should put a % in front of the word.

20.3 Links to files.

All words that contain a dot (.) that is not the last character in the word are considered to be file names.
If the word is indeed the name of a documented input file, a link will automatically be created to the
documentation of that file.

20.4 Links to functions.

Links to functions are created if one of the following patterns is encountered:

1. �
functionName � "(" �

argument-list � ")"

2. �
functionName � "()"

3. "::" �
functionName �

4. (�
className � "::")n �

functionName � "(" �
argument-list � ")"

5. (�
className � "::")n �

functionName � "()"

6. (�
className � "::")n �

functionName �

where n � 0.

Note 1:
The patterns above should not contain spaces, tabs or newlines.

Note 2:
For JavaDoc compatibility a # may be used instead of a :: in the patterns above.

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

20.5 Links to variables, typedefs, enum types, enum values and defines. 45

Note 3:
In the documentation of a class containing a member foo, a reference to a global variable is made using
foo, whereas #foo will link to the member.

For non overloaded members the argument list may be omitted.

If a function is overloaded and no matching argument list is specified (i.e. pattern 2 or 5 is used), a link
will be created to the documentation of one of the overloaded members.

For member functions the class scope (as used in patterns 4 to 6) may be omitted, if:

1. The pattern points to a documented member that belongs to the same class as the documentation
block that contains the pattern.

2. The class that corresponds to the documentation blocks that contains the pattern has a base class that
contains a documented member that matches the pattern.

20.5 Links to variables, typedefs, enum types, enum values and defines.

All of these entities can be linked to in the same way as described in the previous section. For sake of
clarity it is advised to only use patterns 3 and 6 in this case.

Example:
/*! \file autolink.cpp
Testing automatic link generation.

A link to a member of the Test class: Test::member,

More specific links to the each of the overloaded members:
Test::member(int) and Test#member(int,int)

A link to a protected member variable of Test: Test#var,

A link to the global enumeration type #GlobEnum.

A link to the define #ABS(x).

A link to the destructor of the Test class: Test::˜Test,

A link to the typedef ::B.

A link to the enumeration type Test::EType

A link to some enumeration values Test::Val1 and ::GVal2
*/

/*!
Since this documentation block belongs to the class Test no link to
Test is generated.

Two ways to link to a constructor are: #Test and Test().

Links to the destructor are: #˜Test and ˜Test().

A link to a member in this class: member().

More specific links to the each of the overloaded members:
member(int) and member(int,int).

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

20.5 Links to variables, typedefs, enum types, enum values and defines. 46

A link to the variable #var.

A link to the global typedef ::B.

A link to the global enumeration type #GlobEnum.

A link to the define ABS(x).

A link to a variable \link #var using another text\endlink as a link.

A link to the enumeration type #EType.

A link to some enumeration values: ::Val1 and ::GVal1.

And last but not least a link to a file: autolink.cpp.

\sa Inside a see also section any word is checked, so EType,
Val1, GVal1, ˜Test and member will be replaced by links in HTML.

*/

class Test
{
public:

Test(); //!< constructor
˜Test(); //!< destructor
void member(int); /**< A member function. Details. */
void member(int,int); /**< An overloaded member function. Details */

/** An enum type. More details */
enum EType {

Val1, /**< enum value 1 */
Val2 /**< enum value 2 */

};

protected:
int var; /**< A member variable */

};

/*! details. */
Test::Test() { }

/*! details. */
Test::˜Test() { }

/*! A global variable. */
int globVar;

/*! A global enum. */
enum GlobEnum {

GVal1, /*!< global enum value 1 */
GVal2 /*!< global enum value 2 */

};

/*!
* A macro definition.
*/
#define ABS(x) (((x)>0)?(x):-(x))

typedef Test B;

/*! \fn typedef Test B
* A type definition.
*/

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

20.6 typedefs. 47

20.6 typedefs.

Typedefs that involve classes, structs and unions, like

typedef struct StructName TypeName

create an alias for StructName, so links will be generated to StructName, when either StructName itself or
TypeName is encountered.

Example:
/*! \file restypedef.cpp
* An example of resolving typedefs.
*/

/*! \struct CoordStruct
* A coordinate pair.
*/
struct CoordStruct
{
/*! The x coordinate */
float x;
/*! The y coordinate */
float y;

};

/*! Creates a type name for CoordStruct */
typedef CoordStruct Coord;

/*!
* This function returns the addition of \a c1 and \a c2, i.e:
* (c1.x+c2.x,c1.y+c2.y)
*/
Coord add(Coord c1,Coord c2)
{
}

21 Configuration

21.1 Format

A configuration file is a free-form ASCII text file with a structure that is similar to that of a Makefile. It
is parsed by doxygen. The file may contain tabs and newlines for formatting purposes. The statements
in the file are case-sensitive. Comments may be placed anywhere within the file (except within quotes).
Comments begin with the # character and end at the end of the line.

The file essentially consists of a list of assignment statements. Each statement consists of a TAG NAME
written in capitals, followed by the = character and one or more values. If the same tag is assigned more
than once, the last assignment overwrites any earlier assignment. For options that take a list as their
argument, the += operator can be used instead of = to append new values to the list. Values are sequences

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

21.1 Format 48

of non-blanks. If the value should contain one or more blanks it must be surrounded by quotes (”...”).
Multiple lines can be concatenated by inserting a backslash (�) as the last character of a line. Environment
variables can be expanded using the pattern $(ENV VARIABLE NAME).

You can also include part of a configuration file from another configuration file using a @INCLUDE tag as
follows:

@INCLUDE = config_file_name

The include file is searched in the current working directory. You can also specify a list of directories that
should be searched before looking in the current working directory. Do this by putting a @INCLUDE PATH
tag with these paths before the @INCLUDE tag, e.g:

@INCLUDE_PATH = my_config_dir

The configuration options can be divided into several categories. Below is an alphabetical index of the tags
that are recognized followed by the descriptions of the tags grouped by category.

ALIASES 21.2

ALLEXTERNALS 21.11

ALPHABETICAL INDEX 21.5

ALWAYS DETAILED SEC 21.2

BIN ABSPATH 21.13

BINARY TOC 21.6

BRIEF MEMBER DESC 21.2

CASE SENSE NAMES 21.2

CGI NAME 21.13

CGI URL 21.13

CLASS DIAGRAMS 21.2

CLASS GRAPH 21.12

COLLABORATION GRAPH 21.12

COLS IN ALPHA INDEX 21.5

COMPACT LATEX 21.7

COMPACT RTF 21.8

DISABLE INDEX 21.6

DISTRIBUTE GROUP DOC 21.2

DOC ABSPATH 21.13

DOC URL 21.13

DOT PATH 21.12

ENABLE PREPROCESSING 21.10

ENUM VALUES PER LINE 21.6

ENABLED SECTIONS 21.2

EXAMPLE PATH 21.4

EXAMPLE PATTERNS 21.4

EXCLUDE 21.4

EXCLUDE PATTERNS 21.4

EXPAND AS DEFINED 21.10

EXPAND ONLY PREDEF 21.10

EXT DOC PATHS 21.13

EXTRA PACKAGES 21.7

EXTRACT ALL 21.2

EXTRACT PRIVATE 21.2

EXTRACT STATIC 21.2

FILE PATTERNS 21.4

FILTER SOURCE FILES 21.4

FULL PATH NAMES 21.2

GENERATE BUGLIST 21.2

GENERATE CHI 21.6

GENERATE HTML 21.6

GENERATE HTMLHELP 21.6

GENERATE LATEX 21.7

GENERATE LEGEND 21.12

GENERATE MAN 21.9

GENERATE RTF 21.8

GENERATE TAGFILE 21.11

GENERATE TESTLIST 21.2

GENERATE TODOLIST 21.2

GENERATE TREEVIEW 21.6

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

21.2 General options 49

GRAPHICAL HIERARCHY 21.12

HAVE DOT 21.12

HIDE SCOPE NAMES 21.2

HIDE UNDOC CLASSES 21.2

HIDE UNDOC MEMBERS 21.2

HTML ALIGN MEMBERS 21.6

HTML FOOTER 21.6

HTML HEADER 21.6

HTML OUTPUT 21.6

HTML STYLESHEET 21.6

IGNORE PREFIX 21.5

IMAGE PATH 21.4

INCLUDE GRAPH 21.12

INCLUDE PATH 21.10

INHERIT DOCS 21.2

INLINE INFO 21.2

INLINE SOURCES 21.2

INPUT 21.4

INPUT FILTER 21.4

INTERNAL DOCS 21.2

JAVADOC AUTOBRIEF 21.2

LATEX BATCHMODE 21.7

LATEX HEADER 21.7

LATEX OUTPUT 21.7

MACRO EXPANSION 21.10

MAN EXTENSION 21.9

MAN OUTPUT 21.9

MAX DOT GRAPH HEIGHT 21.12

MAX DOT GRAPH WIDTH 21.12

MAX INITIALIZER LINES 21.2

OPTIMIZE OUTPUT FOR C 21.2

OUTPUT DIRECTORY 21.2

OUTPUT LANGUAGE 21.2

PAPER TYPE 21.7

PDF HYPERLINKS 21.7

PERL PATH 21.11

PREDEFINED 21.10

PROJECT NAME 21.2

PROJECT NUMBER 21.2

QUIET 21.3

RECURSIVE 21.4

REPEAT BRIEF 21.2

RTF EXTENSIONS FILE 21.8

RTF HYPERLINKS 21.8

RTF OUTPUT 21.8

RTF STYLESHEET FILE 21.8

SEARCH INCLUDES 21.10

SEARCHENGINE 21.13

SHORT NAMES 21.2

SHOW INCLUDE FILES 21.2

SHOW USED FILES 21.2

SORT MEMBER DOCS 21.2

SOURCE BROWSER 21.2

STRIP CODE COMMENTS 21.2

STRIP FROM PATH 21.2

TAB SIZE 21.2

TAGFILES 21.11

TOC EXPAND 21.6

TREEVIEW WIDTH 21.6

VERBATIM HEADERS 21.2

WARN FORMAT 21.3

WARN IF UNDOCUMENTED 21.3

WARN LOGFILE 21.3

WARNINGS 21.3

21.2 General options

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

21.2 General options 50

PROJECT NAME The PROJECT NAME tag is a single word (or a sequence of words surrounded by
double-quotes) that should identify the project for which the documentation is generated. This name
is used in the title of most generated pages and in a few other places.

PROJECT NUMBER The PROJECT NUMBER tag can be used to enter a project or revision number. This
could be handy for archiving the generated documentation or if some version control system is used.

OUTPUT DIRECTORY The OUTPUT DIRECTORY tag is used to specify the (relative or absolute) path
into which the generated HTML and Latex documentation will be written. If a relative path is en-
tered, it will be relative to the location where doxygen was started. If left blank the current directory
will be used.

OUTPUT LANGUAGE The OUTPUT LANGUAGE tag is used to specify the language in which all docu-
mentation generated by doxygen is written. Doxygen will use this information to generate all con-
stant output in the proper language. The default language is English, other supported languages are:
Dutch, French, Italian, Czech, Swedish, German, Finnish, Hungarian, Japanese, Korean, Spanish,
Russian, Croatian, Polish and Portuguese.

EXTRACT ALL If the EXTRACT ALL tag is set to YES doxygen will assume all entities in documentation
are documented, even if no documentation was available. Private class members and static file
members will be hidden unless the EXTRACT PRIVATE and EXTRACT STATIC tags are set to
YES

Note:
This will also disable the warnings about undocumented members that are normally produced
when WARNINGS is set to YES

EXTRACT PRIVATE If the EXTRACT PRIVATE tag is set to YES all private members of a class will be
included in the documentation.

EXTRACT STATIC If the EXTRACT STATIC tag is set to YES all static members of a file will be in-
cluded in the documentation.

HIDE UNDOC MEMBERS If the HIDE UNDOC MEMBERS tag is set to YES, Doxygen will hide all undoc-
umented members inside documented classes or files. If set to NO (the default) these members will
be included in the various overviews, but no documentation section is generated. This option has no
effect if EXTRACT ALL is enabled.

HIDE UNDOC CLASSES If the HIDE UNDOC CLASSESS tag is set to YES, Doxygen will hide all un-
documented classes. If set to NO (the default) these classes will be included in the various overviews.
This option has no effect if EXTRACT ALL is enabled.

BRIEF MEMBER DESC If the BRIEF MEMBER DESC tag is set to YES (the default) Doxygen will in-
clude brief member descriptions after the members that are listed in the file and class documentation
(similar to JavaDoc). Set to NO to disable this.

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

21.2 General options 51

REPEAT BRIEF If the REPEAT BRIEF tag is set to YES (the default) Doxygen will prepend the brief
description of a member or function before the detailed description

Note:
If both HIDE UNDOC MEMBERS and BRIEF MEMBER DESC are set to NO, the brief descrip-
tions will be completely suppressed.

ALWAYS DETAILED SEC If the ALWAYS DETAILED SEC and REPEAT BRIEF tags are both set to
YES then Doxygen will generate a detailed section even if there is only a brief description.

FULL PATH NAMES If the FULL PATH NAMES tag is set to YES Doxygen will prepend the full path
before files name in the file list and in the header files. If set to NO the shortest path that makes the
file name unique will be used

STRIP FROM PATH If the FULL PATH NAMES tag is set to YES then the STRIP FROM PATH tag can
be used to strip a user defined part of the path. Stripping is only done if one of the specified strings
matches the left-hand part of the path.

INTERNAL DOCS The INTERNAL DOCS tag determines if documentation that is typed after a � internal
command is included. If the tag is set to NO (the default) then the documentation will be excluded.
Set it to YES to include the internal documentation.

CLASS DIAGRAMS If the CLASS DIAGRAMS tag is set to YES (the default) Doxygen will generate a
class diagram (in Html and LATEX) for classes with base or super classes. Setting the tag to NO turns
the diagrams off.

SOURCE BROWSER If the SOURCE BROWSER tag is set to YES then a list of source files will be gener-
ated. Documented entities will be cross-referenced with these sources.

INLINE SOURCES Setting the INLINE SOURCES tag to YES will include the body of functions,
classes and enums directly into the documentation.

STRIP CODE COMMENTS Setting the STRIP CODE COMMENTS tag to YES (the default) will instruct
doxygen to hide any special comment blocks from generated source code fragments. Normal C and
C++ comments will always remain visible.

CASE SENSE NAMES If the CASE SENSE NAMES tag is set to NO (the default) then Doxygen will only
generate file names in lower case letters. If set to YES upper case letters are also allowed. This is
useful if you have classes or files whose names only differ in case and if your file system supports
case sensitive file names.

SHORT NAMES If the SHORT NAMES tag is set to YES, doxygen will generate much shorter (but less
readable) file names. This can be useful is your file systems doesn’t support long names like on
DOS, Mac, or CD-ROM.

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

21.2 General options 52

HIDE SCOPE NAMES If the HIDE SCOPE NAMES tag is set to NO (the default) then Doxygen will show
members with their full class and namespace scopes in the documentation. If set to YES the scope
will be hidden.

VERBATIM HEADERS If the VERBATIM HEADERS tag is set the YES (the default) then Doxygen will
generate a verbatim copy of the header file for each class for which an include is specified. Set to
NO to disable this.

See also:
Section � class.

SHOW INCLUDE FILES If the SHOW INCLUDE FILES tag is set to YES (the default) then Doxygen
will put list of the files that are included by a file in the documentation of that file.

JAVADOC AUTOBRIEF If the JAVADOC AUTOBRIEF is set to YES then Doxygen will interpret the
first line (until the first dot) of a JavaDoc-style comment as the brief description. If set to NO (the
default), the Javadoc-style will behave just like the Qt-style comments.

INHERIT DOCS If the INHERIT DOCS tag is set to YES (the default) then an undocumented member
inherits the documentation from any documented member that it reimplements.

INLINE INFO If the INLINE INFO tag is set to YES (the default) then a tag [inline] is inserted in the
documentation for inline members.

SORT MEMBER DOCS If the SORT MEMBER DOCS tag is set to YES (the default) then doxygen will sort
the (detailed) documentation of file and class members alphabetically by member name. If set to NO
the members will appear in declaration order.

DISTRIBUTE GROUP DOC If member grouping is used in the documentation and the DISTRIBUTE -
GROUP DOC tag is set to YES, then doxygen will reuse the documentation of the first member in
the group (if any) for the other members of the group. By default all members of a group must be
documented explicitly.

TAB SIZE the TAB SIZE tag can be used to set the number of spaces in a tab. Doxygen uses this value
to replace tabs by spaces in code fragments.

ENABLED SECTIONS The ENABLED SECTIONS tag can be used to enable conditional documentation
sections, marked by � if � section-label � ... � endif blocks.

GENERATE TODOLIST The GENERATE TODOLIST tag can be used to enable (YES) or disable (NO)
the todo list. This list is created by putting � todo commands in the documentation.

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

21.3 Options related to warning and progress messages 53

GENERATE TESTLIST The GENERATE TESTLIST tag can be used to enable (YES) or disable (NO)
the test list. This list is created by putting � test commands in the documentation.

GENERATE BUGLIST The GENERATE BUGLIST tag can be used to enable (YES) or disable (NO) the
bug list. This list is created by putting � bug commands in the documentation.

ALIASES This tag can be used to specify a number of aliases that acts as commands in the documenta-
tion. An alias has the form

name=value

For example adding

"sideeffect=\par Side Effects:\n"

will allow you to put the command � sideeffect (or @sideeffect) in the documentation, which will
result in a user defined paragraph with heading ”Side Effects:”. You can put � n’s in the value part of
an alias to insert newlines.

MAX INITIALIZER LINES The MAX INITIALIZER LINES tag determines the maximum number
of lines that the initial value of a variable or define can be. If the initializer consists of more lines than
specified here it will be hidden. Use a value of 0 to hide initializers completely. The appearance of the
value of individual variables and defines can be controlled using � showinitializer or � hideinitializer
command in the documentation.

OPTIMIZE OUTPUT FOR C Set the OPTIMIZE OUTPUT FOR C tag to YES if your project consists of
C sources only. Doxygen will then generate output that is more tailored for C. For instance some of
the names that are used will be different. The list of all members will be omitted, etc.

SHOW USED FILES Set the SHOW USED FILES tag to NO to disable the list of files generated at the
bottom of the documentation of classes and structs. If set to YES the list will mention the files that
were used to generate the documentation.

21.3 Options related to warning and progress messages

QUIET The QUIET tag can be used to turn on/off the messages that are generated to standard output by
doxygen. Possible values are YES and NO, where YES implies that the messages are off. If left blank
NO is used.

WARNINGS The WARNINGS tag can be used to turn on/off the warning messages that are generated to
standard error by doxygen. Possible values are YES and NO, where YES implies that the warnings
are on. If left blank NO is used.

Tip: Turn warnings on while writing the documentation.

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

21.4 Input related options 54

WARN IF UNDOCUMENTED If WARN IF UNDOCUMENTED is set to YES, then doxygen will generate
warnings for undocumented members. If EXTRACT ALL is set to YES then this flag will automati-
cally be disabled.

WARN FORMAT The WARN FORMAT tag determines the format of the warning messages that doxygen can
produce. The string should contain the $file, $line, and $text tags, which will be replaced by
the file and line number from which the warning originated and the warning text.

WARN LOGFILE The WARN LOGFILE tag can be used to specify a file to which warning and error
messages should be written. If left blank the output is written to stderr.

21.4 Input related options

INPUT The INPUT tag is used to specify the files and/or directories that contain documented source
files. You may enter file names like myfile.cpp or directories like /usr/src/myproject.
Separate the files or directories with spaces.

Note: This tag (and only this tag) is required.

FILE PATTERNS If the value of the INPUT tag contains directories, you can use the FILE PATTERNS
tag to specify one or more wildcard patterns (like � .cpp and � .h) to filter out the source-files in
the directories. If left blank all files are included (i.e. wildcard �).

RECURSIVE The RECURSIVE tag can be used to specify whether or not subdirectories should be
searched for input files as well. Possible values are YES and NO. If left blank NO is used.

EXCLUDE The EXCLUDE tag can be used to specify files and/or directories that should excluded from
the INPUT source files. This way you can easily exclude a subdirectory from a directory tree whose
root is specified with the INPUT tag.

EXCLUDE PATTERNS If the value of the INPUT tag contains directories, you can use the EXCLUDE -
PATTERNS tag to specify one or more wildcard patterns to exclude certain files from those directo-
ries.

EXAMPLE PATH The EXAMPLE PATH tag can be used to specify one or more files or directories that
contain example code fragments that are included (see the � include command in section � include).

EXAMPLE PATTERNS If the value of the EXAMPLE PATH tag contains directories, you can use the
EXAMPLE PATTERNS tag to specify one or more wildcard pattern (like � .cpp and � .h) to filter out
the source-files in the directories. If left blank all files are included.

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

21.5 Alphabetical index options 55

IMAGE PATH The IMAGE PATH tag can be used to specify one or more files or directories that contain
images that are to be included in the documentation (see the � image command).

INPUT FILTER The INPUT FILTER tag can be used to specify a program that doxygen should invoke
to filter for each input file. Doxygen will invoke the filter program by executing (via popen()) the
command:

<filter> <input-file>

where � filter � is the value of the INPUT FILTER tag, and � input-file � is the name of an input
file. Doxygen will then use the output that the filter program writes to standard output.

FILTER SOURCE FILES If the FILTER SOURCE FILES tag is set to YES, the input filter (if set using
INPUT FILTER) will be used to filter the input files when producing source files to browse.

21.5 Alphabetical index options

ALPHABETICAL INDEX If the ALPHABETICAL INDEX tag is set to YES, an alphabetical index of all
compounds will be generated. Enable this if the project contains a lot of classes, structs, unions or
interfaces.

COLS IN ALPHA INDEX If the alphabetical index is enabled (see ALPHABETICAL INDEX) then the
COLS IN ALPHA INDEX tag can be used to specify the number of columns in which this list will
be split (can be a number in the range [1..20])

IGNORE PREFIX In case all classes in a project start with a common prefix, all classes will be put under
the same header in the alphabetical index. The IGNORE PREFIX tag can be used to specify a prefix
(or a list of prefixes) that should be ignored while generating the index headers.

21.6 HTML related options

GENERATE HTML If the GENERATE HTML tag is set to YES (the default) Doxygen will generate HTML
output

HTML OUTPUT The HTML OUTPUT tag is used to specify where the HTML docs will be put. If a relative
path is entered the value of OUTPUT DIRECTORY will be put in front of it. If left blank ‘html’ will
be used as the default path.

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

21.6 HTML related options 56

HTML HEADER The HTML HEADER tag can be used to specify a user defined HTML header file for each
generated HTML page. To get valid HTML the header file should contain at least a �

HTML � and
a �

BODY � tag, but it is good idea to include the style sheet that is generated by doxygen as well.
Minimal example:

<HTML>
<HEAD>

<TITLE>My title</TITLE>
<LINK HREF="doxygen.css" REL="stylesheet" TYPE="text/css">

</HEAD>
<BODY BGCOLOR="#FFFFFF">

If the tag is left blank doxygen will generate a standard header.

The following commands have a special meaning inside the header: $title, $datetime,
$date, $doxygenversion, $projectname, $projectnumber. Doxygen will replace
them by respectively the title of the page, the current date and time, only the current date, the
version number of doxygen, the project name (see PROJECT NAME), or the project number (see
PROJECT NUMBER).

See also section Doxygen usage for information on how to generate the default header that doxygen
normally uses.

HTML FOOTER The HTML FOOTER tag can be used to specify a user defined HTML footer for each
generated HTML page. To get valid HTML the header file should contain at least a �

/BODY � and
a �

/HTML � tag. A minimal example:

</BODY>
</HTML>

If the tag is left blank doxygen will generate a standard footer.

The following commands have a special meaning inside the header: $title, $datetime,
$date, $doxygenversion, $projectname, $projectnumber. Doxygen will replace
them by respectively the title of the page, the current date and time, only the current date, the
version number of doxygen, the project name (see PROJECT NAME), or the project number (see
PROJECT NUMBER).

See also section Doxygen usage for information on how to generate the default footer that doxygen
normally uses.

HTML STYLESHEET The HTML STYLESHEET tag can be used to specify a user defined cascading style
sheet that is used by each HTML page. It can be used to fine-tune the look of the HTML output. If
the tag is left blank doxygen will generate a default style sheet.

See also section Doxygen usage for information on how to generate the style sheet that doxygen
normally uses.

HTML ALIGN MEMBERS If the HTML ALIGN MEMBERS tag is set to YES, the members of classes, files
or namespaces will be aligned in HTML using tables. If set to NO a bullet list will be used.

Note: Setting this tag to NO will become obsolete in the future, since I only intent to support and test
the aligned representation.

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

21.7 LaTeX related options 57

GENERATE HTMLHELP If the GENERATE HTMLHELP tag is set to YES then doxygen generates
three additional HTML index files: index.hhp, index.hhc, and index.hhk. The in-
dex.hhp is a project file that can be read by Microsoft HTML help workshop (see
http://msdn.microsoft.com/library/tools/htmlhelp/wkshp/download main.htm) on Windows.

The HTML workshop contains a compiler that can convert all HTML output generated by doxygen
into a single compressed HTML file (.chm). Compressed HTML files are now used as the Windows
98 help format, and will replace the old windows help format (.hlp) on all Windows platforms in
the future. Compressed HTML files also contain an index, a table of contents, and you can search
for words in the documentation (which basically renders doxysearch obsolete on Windows). The
HTML workshop also contains a viewer for compressed HTML files.

GENERATE CHI If the GENERATE HTMLHELP tag is set to YES, the GENERATE CHI flag controls if a
separate .chi index file is generated (YES) or that it should be included in the master .chm file (NO).

BINARY TOC If the GENERATE HTMLHELP tag is set to YES, the BINARY TOC flag controls whether
a binary table of contents is generated (YES) or a normal table of contents (NO) in the .chm file.

TOC EXPAND The TOC EXPAND flag can be set YES to add extra items for group members to the table
of contents of the Html help documentation and to the tree view.

DISABLE INDEX If you want full control over the layout of the generated HTML pages it might be
necessary to disable the index and replace it with your own. The DISABLE INDEX tag can be used
to turn on/off the condensed index at top of each page. A value of NO (the default) enables the index
and the value YES disables it.

ENUM VALUES PER LINE This tag can be used to set the number of enum values (range [1..20]) that
doxygen will group on one line in the generated HTML documentation.

GENERATE TREEVIEW If the GENERATE TREEVIEW tag is set to YES, a side pannel will be generated
containing a tree-like index structure (just like the one that is generated for HTML Help). For this
to work a browser that supports JavaScript and frames is required (for instance Netscape 4.0+ or
Internet explorer 4.0+).

TREEVIEW WIDTH If the treeview is enabled (see GENERATE TREEVIEW) then this tag can be used to
set the initial width (in pixels) of the frame in which the tree is shown.

21.7 LaTeX related options

GENERATE LATEX If the GENERATE LATEX tag is set to YES (the default) Doxygen will generate
Latex output.

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

http://msdn.microsoft.com/library/tools/htmlhelp/wkshp/download_main.htm

21.7 LaTeX related options 58

LATEX OUTPUT The LATEX OUTPUT tag is used to specify where the LATEX docs will be put. If a
relative path is entered the value of OUTPUT DIRECTORY will be put in front of it. If left blank
‘latex’ will be used as the default path.

COMPACT LATEX If the COMPACT LATEX tag is set to YES Doxygen generates more compact LATEX
documents. This may be useful for small projects and may help to save some trees in general.

PAPER TYPE The PAPER TYPE tag can be used to set the paper type that is used by the printer. Possible
values are:

� a4 (210 x 297 mm).
� a4wide (same as a4, but including the a4wide package).
� letter (8.5 x 11 inches).
� legal (8.5 x 14 inches).
� executive (7.25 x 10.5 inches)

If left blank a4wide will be used.

EXTRA PACKAGES The EXTRA PACKAGES tag can be used to specify one or more LATEX package
names that should be included in the LATEX output. To get the times font for instance you can specify

EXTRA_PACKAGES = times

If left blank no extra packages will be included.

LATEX HEADER The LATEX HEADER tag can be used to specify a personal LATEX header for the gener-
ated latex document. The header should contain everything until the first chapter.

If it is left blank doxygen will generate a standard header. See section Doxygen usage for information
on how to let doxygen write the default header to a separate file.

Note:
Only use a user defined header if you know what you are doing!

The following commands have a special meaning inside the header: $title, $datetime,
$date, $doxygenversion, $projectname, $projectnumber. Doxygen will replace
them by respectively the title of the page, the current date and time, only the current date, the
version number of doxygen, the project name (see PROJECT NAME), or the project number (see
PROJECT NUMBER).

PDF HYPERLINKS If the PDF HYPERLINKS tag is set to YES, the LaTeX that is generated is prepared
for conversion to pdf (using ps2pdf). The pdf file will contain links (just like the HTML output)
instead of page references This makes the output suitable for online browsing using a pdf viewer.

LATEX BATCHMODE If the LATEX BATCHMODE tag is set to YES, doxygen will add the � batchmode.
command to the generated LATEX files. This will instruct LATEX to keep running if errors occur, instead
of asking the user for help. This option is also used when generating formulas in HTML.

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

21.8 RTF related options 59

21.8 RTF related options

GENERATE RTF If the GENERATE RTF tag is set to YES Doxygen will generate RTF output. The RTF
output is optimised for Word 97 and may not look too pretty with other readers/editors.

RTF OUTPUT The RTF OUTPUT tag is used to specify where the RTF docs will be put. If a relative path
is entered the value of OUTPUT DIRECTORYwill be put in front of it. If left blank rtf will be used
as the default path.

COMPACT RTF If the COMPACT RTF tag is set to YES Doxygen generates more compact RTF docu-
ments. This may be useful for small projects and may help to save some trees in general.

RTF HYPERLINKS If the RTF HYPERLINKS tag is set to YES, the RTF that is generated will con-
tain hyperlink fields. The RTF file will contain links (just like the HTML output) instead of page
references. This makes the output suitable for online browsing using Word or some other Word
compatible reader that support those fields.

note:
wordpad (write) and others do not support links.

RTF STYLESHEET FILE Load stylesheet definitions from file. Syntax is similar to doxygen’s config
file, i.e. a series of assigments. You only have to provide replacements, missing definitions are set to
their default value.

See also section Doxygen usage for information on how to generate the default style sheet that doxy-
gen normally uses.

RTF EXTENSIONS FILE Set optional variables used in the generation of an rtf document. Syntax is
similar to doxygen’s config file. A template extensions file can be generated using doxygen -e
rtf extensionFile.

21.9 Man page related options

GENERATE MAN If the GENERATE MAN tag is set to YES (the default) Doxygen will generate man pages
for classes and files.

MAN OUTPUT The MAN OUTPUT tag is used to specify where the man pages will be put. If a relative
path is entered the value of OUTPUT DIRECTORY will be put in front of it. If left blank ‘man’
will be used as the default path. A directory man3 will be created inside the directory specified by
MAN OUTPUT.

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

21.10 Preprocessor related options 60

MAN EXTENSION The MAN EXTENSION tag determines the extension that is added to the generated
man pages (default is the subroutine’s section .3)

21.10 Preprocessor related options

ENABLE PREPROCESSING If the ENABLE PREPROCESSING tag is set to YES (the default) Doxygen
will evaluate all C-preprocessor directives found in the sources and include files.

MACRO EXPANSION If the MACRO EXPANSION tag is set to YESDoxygen will expand all macro names
in the source code. If set to NO (the default) only conditional compilation will be performed. Macro
expansion can be done in a controlled way by setting EXPAND ONLY PREDEF to YES.

EXPAND ONLY PREDEF If the EXPAND ONLY PREDEF and MACRO EXPANSION tags are both set to
YES then the macro expansion is limited to the macros specified with the PREDEFINED and EX-
PAND AS DEFINED tags.

SEARCH INCLUDES If the SEARCH INCLUDES tag is set to YES (the default) the includes files in the
INCLUDE PATH (see below) will be search if a #include is found.

INCLUDE PATH The INCLUDE PATH tag can be used to specify one or more directories that contain
include files that are not input files but should be processed by the preprocessor.

PREDEFINED The PREDEFINED tag can be used to specify one or more macro names that are defined
before the preprocessor is started (similar to the -D option of gcc). The argument of the tag is a list
of macros of the form: name or name=definition (no spaces). If the definition and the = are
omitted =1 is assumed.

EXPAND AS DEFINED If the MACRO EXPANSION and EXPAND PREDEF ONLY tags are set to YES
then this tag can be used to specify a list of macro names that should be expanded. The macro
definition that is found in the sources will be used. Use the PREDEFINED tag if you want to use a
different macro definition.

21.11 External reference options

TAGFILES The TAGFILES tag can be used to specify one or more tagfiles.

See section Doxytag usage for more information about the usage of tag files.

Optionally an initial location of the external documentation can be added for each tagfile. The format
of a tag file without this location is as follows:

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

21.12 Dot options 61

TAGFILES = file1 file2 ...

Adding location for the tag files is done as follows:

TAGFILES = file1=loc1 "file2 = loc2" ...

where loc1 and loc2 can be relative or absolute paths or URLs, If a location is present for each
tag, the installdox tool (see section Installdox usage for more information) does not have to be run
to correct the links.

Note:
Each tag file must have a unique name (where the name does not include the path) If a tag file is
not located in the directory in which doxygen is run, you must also specify the path to the tagfile
here.

GENERATE TAGFILE When a file name is specified after GENERATE TAGFILE, doxygen will create
a tag file that is based on the input files it reads. See section Doxytag usage for more information
about the usage of tag files.

ALLEXTERNALS If the ALLEXTERNALS tag is set to YES all external class will be listed in the class
index. If set to NO only the inherited external classes will be listed.

PERL PATH The PERL PATH should be the absolute path and name of the perl script interpreter (i.e. the
result of ‘which perl’).

21.12 Dot options

HAVE DOT If you set the HAVE DOT tag to YES then doxygen will assume the dot tool is available from
the path. This tool is part of Graphviz, a graph visualization toolkit from AT&T and Lucent Bell
Labs. The other options in this section have no effect if this option is set to NO (the default)

CLASS GRAPH If the CLASS GRAPH and HAVE DOT tags are set to YES then doxygen will generate a
graph for each documented class showing the direct and indirect inheritance relations. Setting this
tag to YES will force the the CLASS DIAGRAMS tag to NO.

COLLABORATION GRAPH If the COLLABORATION GRAPH and HAVE DOT tags are set to YES then
doxygen will generate a graph for each documented class showing the direct and indirect implemen-
tation dependencies (inheritance, containment, and class references variables) of the class with other
documented classes.

INCLUDE GRAPH If the ENABLE PREPROCESSING, INCLUDE GRAPH, and HAVE DOT tags are set
to YES then doxygen will generate a graph for each documented file showing the direct and indirect
include dependencies of the file with other documented files.

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

http://www.research.att.com/sw/tools/graphviz/

21.13 Search engine options 62

INCLUDED BY GRAPH If the ENABLE PREPROCESSING, INCLUDED BY GRAPH, and HAVE DOT
tags are set to YES then doxygen will generate a graph for each documented header file showing
the documented files that directly or indirectly include this file.

GRAPHICAL HIERARCHY If the GRAPHICAL HIERARCHY and HAVE DOT tags are set to YES then
doxygen will graphical hierarchy of all classes instead of a textual one.

DOT PATH This tag can be used to specify the path where the dot tool can be found. If left blank, it is
assumed the dot tool can be found on the path.

MAX DOT GRAPH HEIGHT The MAX DOT GRAPH HEIGHT tag can be used to set the maximum allows
height (in pixels) of the graphs generated by dot. If a graph becomes larger than this value, doxygen
will try to truncate the graph, so that it fits within the specified constraint. Beware that most browsers
cannot cope with very large images.

MAX DOT GRAPH WIDTH The MAX DOT GRAPH WIDTH tag can be used to set the maximum allowed
width (in pixels) of the graphs generated by dot. If a graph becomes larger than this value, doxygen
will try to truncate the graph, so that it fits within the specified constraint. Beware that most browsers
cannot cope with very large images.

GENERATE LEGEND If the GENERATE LEGEND tag is set to YES (the default) Doxygen will generate
a legend page explaining the meaning of the various boxes and arrows in the dot generated graphs.

21.13 Search engine options

SEARCHENGINE The SEARCHENGINE tag specifies whether or not a search should be used. Possible
values are YES and NO. If set to NO or left blank, the values of all other tags in this section will be
ignored.

CGI NAME The CGI NAME tag should be the name of the CGI script that starts the search engine (doxy-
search) with the correct parameters. A script with this name will be generated by doxygen.

CGI URL The CGI URL tag should be the absolute URL to the directory where the cgi binaries are
located. See the documentation of your http daemon for details.

DOC URL The DOC URL tag should be the absolute URL to the directory where the documentation is
located. If left blank the absolute path to the documentation, with file:// prepended to it, will be
used. This is correct for local viewing only.

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

21.13 Search engine options 63

DOC ABSPATH The DOC ABSPATH tag should be the absolute path to the directory where the documen-
tation is located. If left blank the directory on the local machine will be used.

BIN ABSPATH The BIN ABSPATH tag must point to the directory where the doxysearch binary is in-
stalled.

EXT DOC PATHS The EXT DOC PATHS tag can be used to specify one or more paths to documentation
generated for other projects. This allows doxysearch to search the documentation for these projects
as well. All paths must be absolute.

Examples

Suppose you have a simple project consisting of two files: a source file example.cc and a header file
example.h. Then a minimal configuration file is as simple as:

INPUT = example.cc example.h

Assuming the example makes use of Qt classes and perl is located in /usr/bin, a more realistic config-
uration file would be:

PROJECT_NAME = Example
INPUT = example.cc example.h
WARNINGS = YES
TAGFILES = qt.tag
PERL_PATH = /usr/bin/perl
SEARCHENGINE = NO

To generate the documentation for the QdbtTabular package I have used the following configuration
file:

PROJECT_NAME = QdbtTabular
OUTPUT_DIRECTORY = html
WARNINGS = YES
INPUT = examples/examples.doc src
FILE_PATTERNS = *.cc *.h
INCLUDE_PATH = examples
TAGFILES = qt.tag
PERL_PATH = /usr/local/bin/perl
SEARCHENGINE = YES
CGI_NAME = search.cgi
CGI_URL = http://www.stack.nl/˜dimitri/cgi-bin
DOC_URL = http://www.stack.nl/˜dimitri/qdbttabular
DOC_ABSPATH = /home/dimitri/.html/qdbttabular
BIN_ABSPATH = /home/dimitri/bin

To regenerate the Qt-1.44 documentation from the sources, you could use the following config file:

PROJECT_NAME = Qt
OUTPUT_DIRECTORY = qt_docs
HIDE_UNDOC_MEMBERS = YES
HIDE_UNDOC_CLASSES = YES
ENABLE_PREPROCESSING = YES
MACRO_EXPANSION = YES
EXPAND_ONLY_PREDEF = YES
SEARCH_INCLUDES = YES
FULL_PATH_NAMES = YES
STRIP_FROM_PATH = $(QTDIR)/

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

http://www.stack.nl/~dimitri/qdbttabular/index.html

21.13 Search engine options 64

PREDEFINED = USE_TEMPLATECLASS Q_EXPORT= \
QArrayT:=QArray \
QListT:=QList \
QDictT:=QDict \
QQueueT:=QQueue \
QVectorT:=QVector \
QPtrDictT:=QPtrDict \
QIntDictT:=QIntDict \
QStackT:=QStack \
QDictIteratorT:=QDictIterator \
QListIteratorT:=QListIterator \
QCacheT:=QCache \
QCacheIteratorT:=QCacheIterator \
QIntCacheT:=QIntCache \
QIntCacheIteratorT:=QIntCacheIterator \
QIntDictIteratorT:=QIntDictIterator \
QPtrDictIteratorT:=QPtrDictIterator

INPUT = $(QTDIR)/doc \
$(QTDIR)/src/widgets \
$(QTDIR)/src/kernel \
$(QTDIR)/src/dialogs \
$(QTDIR)/src/tools

FILE_PATTERNS = *.cpp *.h q*.doc
INCLUDE_PATH = $(QTDIR)/include
RECURSIVE = YES

For the Qt-2.1 sources I recommand to use the following settings:

PROJECT_NAME = Qt
PROJECT_NUMBER = 2.1
HIDE_UNDOC_MEMBERS = YES
HIDE_UNDOC_CLASSES = YES
SOURCE_BROWSER = YES
INPUT = $(QTDIR)/src
FILE_PATTERNS = *.cpp *.h q*.doc
RECURSIVE = YES
EXCLUDE_PATTERNS = *codec.cpp moc_* */compat/* */3rdparty/*
ALPHABETICAL_INDEX = YES
COLS_IN_ALPHA_INDEX = 3
IGNORE_PREFIX = Q
ENABLE_PREPROCESSING = YES
MACRO_EXPANSION = YES
INCLUDE_PATH = $(QTDIR)/include
PREDEFINED = Q_PROPERTY(x)= \

Q_OVERRIDE(x)= \
Q_EXPORT= \
Q_ENUMS(x)= \
"QT_STATIC_CONST=static const " \
_WS_X11_ \
INCLUDE_MENUITEM_DEF

EXPAND_ONLY_PREDEF = YES
EXPAND_AS_DEFINED = Q_OBJECT_FAKE Q_OBJECT ACTIVATE_SIGNAL_WITH_PARAM \

Q_VARIANT_AS

Here Doxygen’s preprocessor is used to substitute some macro names that are normally substituted by the
C preprocessor, but without doing full macro expansion.

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

65

22 Special Commands

All commands in the documentation start with a backslash (�) or an at-sign (@). If you prefer you can
replace all commands starting with a backslash below, by their counterparts that start with an at-sign.

Some commands have one or more arguments. Each argument has a certain range:

� If � sharp � braces are used the argument is a single word.
� If (round) braces are used the argument extends until the end of the line on which the command was

found.
� If

�
curly � braces are used the argument extends until the next paragraph. Paragraphs are delimited

by a blank line or by a section indicator.

If [square] brackets are used the argument is optional.

Here is an alphabetically sorted list of all commands with references to their documentation:

� a 22.64

� addindex 22.49

� addtogroup 22.1

� anchor 22.50

� arg 22.65

� attention 22.24

� author 22.25

� b 22.66

� brief 22.26

� bug 22.27

� c 22.67

� class 22.2

� code 22.68

� date 22.28

� def 22.3

� defgroup 22.4

� deprecated 22.29

� dontinclude 22.56

� e 22.69

� em 22.70

� endcode 22.71

� endhtmlonly 22.72

� endif 22.30

� endlatexonly 22.73

� endlink 22.51

� endverbatim 22.74

� enum 22.5

� example 22.6

� exception 22.31

� f$ 22.75

� f[22.76

� f] 22.77

� file 22.7

� fn 22.8

� hideinitializer 22.9

� htmlinclude 22.63

� htmlonly 22.78

� if 22.32

� image 22.79

� include 22.57

� ingroup 22.10

� internal 22.11

� invariant 22.33

� latexonly 22.80

� li 22.81

� line 22.58

� link 22.52

� mainpage 22.12

� name 22.13

� namespace 22.14

� nosubgrouping 22.15

� note 22.34

� overload 22.16

� p 22.82

� page 22.17

� par 22.35

� param 22.36

� post 22.37

� pre 22.38

� ref 22.53

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

22.1 � addtogroup � name � 66

� relates 22.18

� remarks 22.39

� return 22.40

� retval 22.41

� sa 22.42

� section 22.54

� showinitializer 22.19

� since 22.43

� skip 22.59

� skipline 22.60

� struct 22.20

� subsection 22.55

� test 22.44

� throw 22.45

� todo 22.46

� typedef 22.21

� union 22.22

� until 22.61

� var 22.23

� verbatim 22.83

� verbinclude 22.62

� version 22.47

� warning 22.48

� $ 22.87

� @ 22.85

� � 22.84

� & 22.86

� � 22.89

� � 22.90

� # 22.88

The following subsections provide a list of all commands that are recognized by Doxygen. Unrecognized
commands are treated as normal text.

Structural indicators

22.1 � addtogroup � name �
Add extra documentation to a group � name � that was previously defined using � defgroup. This command
can also be used to add a number of entities to an existing group using @

�
and @ � like this:

/*! \addtogroup mygrp
* Additional documentation for group ‘mygrp’
* @{
*/

/*!
* A function
*/

void func1()
{
}

/*! Another function */
void func2()
{
}

/*! @} */

See also � defgroup and � ingroup.

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

22.2 � class � name � [� header-file �] [� header-name �] 67

22.2 � class � name � [� header-file �] [� header-name �]

Indicates that a comment block contains documentation for a class with name � name � . Optionally a
header file and a header name can be specified. If the header-file is specified, a link to a verbatim copy of
the header will be included in the HTML documentation. The � header-name � argument can be used to
overwrite the name of the link that is used in the class documentation to something other than � header-
file � . This can be useful if the include name is not located on the default include path (like � X11/X.h �).
With the � header-name � argument you can also specify how the include statement should look like, by
adding either quotes or sharp brackets around the name. Sharp brackets are used if just the name is given.

Example:
/* A dummy class */

class Test
{
}

/*! \class Test class.h "inc/class.h"
* \brief This is a test class.
*
* Some details about the Test class
*/

22.3 � def � name �
Indicates that a comment block contains documentation for a #define macro.

Example:
/*! \file define.h

\brief testing defines

This is to test the documentation of defines.
*/

/*!
\def MAX(x,y)
Computes the maximum of \a x and \a y.

*/

/*!
Computes the absolute value of its argument \a x.

*/
#define ABS(x) (((x)>0)?(x):-(x))
#define MAX(x,y) ((x)>(y)?(x):(y))
#define MIN(x,y) ((x)>(y)?(y):(x)) /*!< Computes the minimum of \a x and \a y. */

22.4 � defgroup � name � (group title)

Indicates that a comment block contains documentation for a group of classes, files or namespaces. This
can be used to categorize classes, files or namespaces, and document those categories. You can also use
groups as members of other groups, thus building a hierarchy of groups.

The � name � argument should an single word identifier.

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

22.5 � enum � name � 68

See also:
section � ingroup

22.5 � enum � name �
Indicates that a comment block contains documentation for an enumeration, with name � name � . If the
enum is a member of a class and the documentation block is located outside the class definition, the scope of
the class should be specified as well. If a comment block is located directly in front of an enum declaration,
the � enum comment may be omitted.

Note:
The type of an anonymous enum cannot be documented, but the values of an anonymous enum can.

Example:
class Test
{
public:

enum TEnum { Val1, Val2 };
};

/*! \class Test
* The class description.
*/

/*! \enum Test::TEnum
* A description of the enum type.
*/

/*! \var Test::TEnum Test::Val1
* The description of the first enum value.
*/

22.6 � example � file-name �
Indicates that a comment block contains documentation for a source code example. The name of the
source file is � file-name � . The text of this file will be included in the documentation, just after the
documentation contained in the comment block. All examples are placed in a list. The source code is
scanned for documented members and classes. If any are found, the names are cross-referenced with the
documentation. Source files or directories can be specified using the EXAMPLE PATH tag of Doxygen’s
configuration file.

If � file-name � itself is not unique for the set of example files specified by the EXAMPLE PATH tag, you
can include part of the absolute path to disambiguate it.

If more that one source file is needed for the example, the � include command can be used.

Example:
/** A Test class.
* More details about this class.
*/

class Test

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

22.7 � file [� name �] 69

{
public:

/** An example member function.
* More details about this function.
*/

void example();
};

void Test::example() {}

/** \example example_test.cpp
* This is an example of how to use the Test class.
* More details about this example.
*/

Where the example file example test.cpp looks as follows:

void main()
{
Test t;
t.example();

}

See also:
section � include.

22.7 � file [� name �]

Indicates that a comment block contains documentation for a source or header file with name � name � .
The file name may include (part of) the path if the file-name alone is not unique. If the file name is omitted
(i.e. the line after � file is left blank) then the documentation block that contains the � file command will
belong to the file it is located in.

Important:
The documentation of global functions, variables, typedefs, and enums will only be included in the
output if the file they are in is documented as well.

Example:
/** \file file.h
* A brief file description.
* A more elaborated file description.
*/

/**
* A global integer value.
* More details about this value.
*/
extern int globalValue;

22.8 � fn (function declaration)

Indicates that a comment block contains documentation for a function (either global or as a member of a
class). This command is needed if a comment block is not placed in front of the function declaration or

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

22.9 � hideinitializer 70

definition. If your comment block is in front of the function declaration or definition this command can
(and to avoid redundancy should) be ommitted.

A full function declaration should be specified after the � fn command. The argument ends at the end of the
line.

Example:
class Test
{
public:

const char *member(char,int) throw(std::out_of_range);
};

const char *Test::member(char c,int n) throw(std::out_of_range) {}

/*! \class Test
* \brief Test class.
*
* Details about Test.
*/

/*! \fn const char *Test::member(char c,int n)
* \brief A member function.
* \param c a character.
* \param n an integer.
* \exception std::out_of_range parameter is out of range.
* \return a character pointer.
*/

See also:
section � var and � typedef.

22.9 � hideinitializer

By default the value of a define and the initializer of a variable are displayed unless they are longer than 30
lines. By putting this command in a comment block of a define or variable, the initializer always hidden.

See also:
section � showinitializer.

22.10 � ingroup (� groupname � [� groupname � � groupname �])

If the � ingroup command is placed in a comment block of a class, file or namespace, then it will be added
to the group or groups identified by � groupname � .

See also:
section � defgroup.

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

22.11 � internal 71

22.11 � internal

This command writes the message ‘For internal use only’ to the output. All text after a � internal
command is ignored.

22.12 � mainpage [(title)]

If the � mainpage command is placed in a comment block the block is used to customize the index page (in
HTML) or the first chapter (in LATEX).

The title argument is optional and replaces the default title that doxygen normally generates.

Here is an example:

/*! \mainpage My Personal Index Page
*
* \section intro Introduction
*
* This is the introduction.
*
* \section install Installation
*
* \subsection step1 Step 1: Opening the box
*
* etc...
*/

See also:
section � section, section � subsection and section � page.

22.13 � name (header)

This command turns a comment block into a header definition of a member group. The comment block
should be followed by a //@

�
... //@ � block containing the members of the group.

See section Member Groups for an example.

22.14 � namespace � name �
Indicates that a comment block contains documentation for a namespace with name � name � .

22.15 � nosubgrouping

This command can be put in the documentation of a class. It can be used in combination with member
grouping to avoid that doxygen puts a member group as a subgroup of a Public/Protected/Private/... section.

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

22.16 � overload [(function declaration)] 72

22.16 � overload [(function declaration)]

This command can be used to generate the following standard text for an overloaded member function:

‘This is an overloaded member function, provided for convenience. It differs from the above function only
in what argument(s) it accepts.’

If the documentation for the overloaded member function is not located in front of the function declaration
or definition, the optional argument should be used to specify the correct function.

Any other documentation that is inside the documentation block will by appended after the generated
message.

Note 1:
You are responsible that there is indeed an earlier documented member that is overloaded by this one.
To prevent that document reorders the documentation you should set SORT MEMBER DOCS to NO
in this case.

Note 2:
The � overload command does not work inside a one-line comment.

Example:
class Test
{
public:

void drawRect(int,int,int,int);
void drawRect(const Rect &r);

};

void Test::drawRect(int x,int y,int w,int h) {}
void Test::drawRect(const Rect &r) {}

/*! \class Test
* \brief A short description.
*
* More text.
*/

/*! \fn void Test::drawRect(int x,int y,int w,int h)
* This command draws a rectangle with a left upper corner at (\a x , \a y),
* width \a w and height \a h.
*/

/*!
* \overload void Test::drawRect(const Rect &r)
*/

22.17 � page � name � (title)

Indicates that a comment block contains a piece of documentation that is not directly related to one specific
class, file or member. The HTML generator creates a page containing the documentation. The LATEX
generator starts a new section in the chapter ‘Page documentation’.

Example:
/*! \page page1 A documentation page
This page contains the subsections \ref subsection1 and \ref subsection2.

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

22.18 � relates � name � 73

For more info see section \ref page2.
\subsection subsection1 The first subsection
Text.
\subsection subsection2 The second subsection
More text.

*/

/*! \page page2 Another page
Even more info.

*/

Note:
The � name � argument consists of a combination of letters and number digits. If you wish to use upper
case letters (e.g. MYPAGE1), or mixed case letters (e.g. MyPage1) in the � name � argument, you
should set CASE SENSE NAMES to YES. However, this is advisable only if your file system is case
sensitive. Otherwise (and for better portability) you should use all lower case letters (e.g. mypage1)
for � name � in all references to the page.

See also:
section � section, section � subsection, and section � ref.

22.18 � relates � name �
This command can be used in the documentation of a non-member function � name � . It puts the function
inside the ‘related function’ section of the class documentation. This command is useful for documenting
non-friend functions that are nevertheless strongly coupled to a certain class. It prevents the need of having
to document a file, but only works for functions.

Example:
/*!
* A String class.
*/

class String
{
friend int strcmp(const String &,const String &);

};

/*!
* Compares two strings.
*/

int strcmp(const String &s1,const String &s2)
{
}

/*! \relates String
* A string debug function.
*/

void stringDebug()
{
}

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

22.19 � showinitializer 74

22.19 � showinitializer

By default the value of a define and the initializer of a variable are only displayed if they are less than 30
lines long. By putting this command in a comment block of a define or variable, the initializer is shown
unconditionally.

See also:
section � hideinitializer.

22.20 � struct � name � [� header-file �] [� header-name �]

Indicates that a comment block contains documentation for a struct with name � name � . The arguments
are equal to the � class command.

See also:
section � class.

22.21 � typedef (typedef declaration)

Indicates that a comment block contains documentation for a typedef, typedef (either global or as a member
of a class). This command is equivalent to � var and � fn.

See also:
section � fn and � var.

22.22 � union � name � [� header-file �] [� header-name �]

Indicates that a comment block contains documentation for a union with name � name � . The arguments
are equal to the � class command.

See also:
section � class.

22.23 � var (variable declaration)

Indicates that a comment block contains documentation for a variable, enum value (either global or as a
member of a class). This command is equivalent to � typedef and � fn.

See also:
section � fn and � typedef.

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

22.24 � attention
�

attention text � 75

Section indicators

22.24 � attention
�

attention text �
Starts a paragraph where a message that needs attention may be entered. The paragraph will be indented.
The text of the paragraph has no special internal structure. All visual enhancement commands may be used
inside the paragraph. Multiple adjacent � attention commands will be joined into a single paragraph. The

� attention command ends when a blank line or some other sectioning command is encountered.

22.25 � author
�

list of authors �
Starts a paragraph where one or more author names may be entered. The paragraph will be indented.
The text of the paragraph has no special internal structure. All visual enhancement commands may be
used inside the paragraph. Multiple adjacent � author commands will be joined into a single paragraph and
separated by commas. Alternatively, one � author command may mention several authors. The � author
command ends when a blank line or some other sectioning command is encountered.

Example:
/*! \class WindowsNT
* \brief Windows Nice Try.
* \author Bill Gates
* \author Several species of small furry animals gathered together
* in a cave and grooving with a pict.
* \version 4.0
* \date 1996-1998
* \bug It crashes a lot and requires huge amounts of memory.
* \bug The class introduces the more bugs, the longer it is used.
* \warning This class may explode in your face.
* \warning If you inherit anything from this class, you’re doomed.
*/

class WindowsNT {};

22.26 � brief
�
brief description �

Starts a paragraph that serves as a brief description. For classes and files the brief description will be used
in lists and at the start of the documentation page. For class and file members, the brief description will be
placed at the declaration of the member and prepended to the detailed description. A brief description may
span several lines (although it is advised to keep it brief!). A brief description ends when a blank line or
another sectioning command is encountered. If multiple � brief commands are present they will be joined.
See section � author for an example.

Synonymous to � short.

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

22.27 � bug
�

bug description � 76

22.27 � bug
�

bug description �
Starts a paragraph where one or more bugs may be reported. The paragraph will be indented. The text of
the paragraph has no special internal structure. All visual enhancement commands may be used inside the
paragraph. Multiple adjacent � bug commands will be joined into a single paragraph. Each bug description
will start on a new line. Alternatively, one � bug command may mention several bugs. The � bug command
ends when a blank line or some other sectioning command is encountered. See section � author for an
example.

22.28 � date
�

date description �
Starts a paragraph where one or more dates may be entered. The paragraph will be indented. The text of
the paragraph has no special internal structure. All visual enhancement commands may be used inside the
paragraph. Multiple adjacent � date commands will be joined into a single paragraph. Each date description
will start on a new line. Alternatively, one � date command may mention several dates. The � date command
ends when a blank line or some other sectioning command is encountered. See section � author for an
example.

22.29 � deprecated
�

description �
Starts a paragraph indicating that this documentation block belongs to a deprecated entity. Can be used to
describe alternatives, expected life span, etc.

22.30 � endif

Ends a conditional section that was started with � if. For each � if one and only one matching � endif
must follow.

See also:
� if

22.31 � exception � exception-object � �
exception description �

Starts an exception description for an exception object with name � exception-object � . Followed by a
description of the exception. The existence of the exception object is not checked. The text of the paragraph
has no special internal structure. All visual enhancement commands may be used inside the paragraph.
Multiple adjacent � exception commands will be joined into a single paragraph. Each parameter description
will start on a new line. The � exception description ends when a blank line or some other sectioning
command is encountered. See section � fn for an example.

Note:
the tag � exceptions is a synonym for this tag.

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

22.32 � if � section-label � 77

22.32 � if � section-label �
Starts a conditional documentation section. The section ends with a matching � endif command.
A conditional section is disabled by default. To enable it you must put the section-label after the
ENABLED SECTIONS tag in the configuration file. Conditional blocks can be nested. A nested sec-
tion is only enabled if all enclosing sections are enabled as well.

Example:
/*! Uncoditionally shown documentation.
* \if Cond1
* Only included if Cond1 is set.
* \endif
* \if Cond2
* Only included if Cond2 is set.
* \if Cond3
* Only included if Cond2 and Cond3 are set.
* \endif
* More text.
* \endif
* Unconditional text.
*/

See also:
section � endif.

22.33 � invariant
�

description of invariant �
Starts a paragraph where the invariant of an entity can be described. The paragraph will be indented.
The text of the paragraph has no special internal structure. All visual enhancement commands may be
used inside the paragraph. Multiple adjacent � invariant commands will be joined into a single paragraph.
Each invariant description will start on a new line. Alternatively, one � invariant command may mention
several invariants. The � invariant command ends when a blank line or some other sectioning command is
encountered.

22.34 � note
�

text �
Starts a paragraph where a note can be entered. The paragraph will be indented. The text of the paragraph
has no special internal structure. All visual enhancement commands may be used inside the paragraph.
Multiple adjacent � note commands will be joined into a single paragraph. Each note description will start
on a new line. Alternatively, one � note command may mention several notes. The � note command ends
when a blank line or some other sectioning command is encountered. See section � par for an example.

22.35 � par [(paragraph title)]
�

paragraph �
If a paragraph title is given this command starts a paragraph with a user defined heading. The heading
extends until the end of the line. The paragraph following the command will be indented.

If no paragraph title is given this command will start a new paragraph. This will also work inside other
paragraph commands (like � param or � warning) without ending the that command.

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

22.36 � param � parameter-name �
�

parameter description � 78

The text of the paragraph has no special internal structure. All visual enhancement commands may be used
inside the paragraph. The � par command ends when a blank line or some other sectioning command is
encountered.

Example:
/*! \class Test
* Normal text.
*
* \par User defined paragraph:
* Contents of the paragraph.
*
* \par
* New paragraph under the same heading.
*
* \note
* This note consists of two paragraphs.
* This is the first paragraph.
*
* \par
* And this is the second paragraph.
*
* More normal text.
*/

class Test {};

22.36 � param � parameter-name � �
parameter description �

Starts a parameter description for a function parameter with name � parameter-name � . Followed by a
description of the parameter. The existence of the parameter is not checked. The text of the paragraph
has no special internal structure. All visual enhancement commands may be used inside the paragraph.
Multiple adjacent � param commands will be joined into a single paragraph. Each parameter description
will start on a new line. The � param description ends when a blank line or some other sectioning command
is encountered. See section � fn for an example.

22.37 � post
�

description of the postcondition �
Starts a paragraph where the postcondition of an entity can be described. The paragraph will be indented.
The text of the paragraph has no special internal structure. All visual enhancement commands may be used
inside the paragraph. Multiple adjacent � post commands will be joined into a single paragraph. Each post-
condition will start on a new line. Alternatively, one � post command may mention several postconditions.
The � post command ends when a blank line or some other sectioning command is encountered.

22.38 � pre
�

description of the precondition �
Starts a paragraph where the precondition of an entity can be described. The paragraph will be indented.
The text of the paragraph has no special internal structure. All visual enhancement commands may be
used inside the paragraph. Multiple adjacent � pre commands will be joined into a single paragraph. Each
precondition will start on a new line. Alternatively, one � pre command may mention several preconditions.
The � pre command ends when a blank line or some other sectioning command is encountered.

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

22.39 � remarks
�

remark text � 79

22.39 � remarks
�

remark text �
Starts a paragraph where one or more marks may be entered. The paragraph will be indented. The text
of the paragraph has no special internal structure. All visual enhancement commands may be used inside
the paragraph. Multiple adjacent � remark commands will be joined into a single paragraph. Each remark
will start on a new line. Alternatively, one � remark command may mention several remarks. The � remark
command ends when a blank line or some other sectioning command is encountered.

22.40 � return
�

description of the return value �
Starts a return value description for a function. The text of the paragraph has no special internal structure.
All visual enhancement commands may be used inside the paragraph. Multiple adjacent � return commands
will be joined into a single paragraph. The � return description ends when a blank line or some other
sectioning command is encountered. See section � fn for an example.

22.41 � retval � return value � �
description �

Starts a return value for a function with name � return value � . Followed by a description of the return
value. The text of the paragraph that forms the description has no special internal structure. All visual
enhancement commands may be used inside the paragraph. Multiple adjacent � retval commands will be
joined into a single paragraph. Each return value description will start on a new line. The � retval description
ends when a blank line or some other sectioning command is encountered.

22.42 � sa
�

references �
Starts a paragraph where one or more cross-references to classes, functions, methods, variables, files or
URL may be specified. Two names joines by either :: or # are understood as referring to a class and
one of its members. One of several overloaded methods or constructors may be selected by including a
parenthesized list of argument types after the method name.

Synonymous to � see.

See also:
section autolink for information on how to create links to objects.

22.43 � since
�

text �
This tag can be used to specify since when (version or time) an entity is available. The paragraph that
follows � since does not have any special internal structure. All visual enhancement commands may be used
inside the paragraph. The � since description ends when a blank line or some other sectioning command is
encountered.

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

22.44 � test
�

paragraph describing a test case � 80

22.44 � test
�

paragraph describing a test case �
Starts a paragraph where a test case can be described. The description will also add the test case to a
separate test list. The two instances of the description will be cross-referenced. Each test case in the test
list will be preceded by a header that indicates the origin of the test case.

22.45 � throw � exception-object � �
exception description �

Synonymous to � exception (see section � exception).

Note:
the tag � throws is a synonym for this tag.

22.46 � todo
�

paragraph describing what is to be done �
Starts a paragraph where a TODO item is described. The description will also add an item to a separate
TODO list. The two instances of the description will be cross-referenced. Each item in the TODO list will
be preceded by a header that indicates the origin of the item.

22.47 � version
�

version number �
Starts a paragraph where one or more version strings may be entered. The paragraph will be indented. The
text of the paragraph has no special internal structure. All visual enhancement commands may be used
inside the paragraph. Multiple adjacent � version commands will be joined into a single paragraph. Each
version description will start on a new line. Alternatively, one � version command may mention several
version strings. The � version command ends when a blank line or some other sectioning command is
encountered. See section � author for an example.

22.48 � warning
�

warning message �
Starts a paragraph where one or more warning messages may be entered. The paragraph will be indented.
The text of the paragraph has no special internal structure. All visual enhancement commands may be
used inside the paragraph. Multiple adjacent � warning commands will be joined into a single paragraph.
Each warning description will start on a new line. Alternatively, one � warning command may mention
several warnings. The � warning command ends when a blank line or some other sectioning command is
encountered. See section � author for an example.

Commands to create links

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

22.49 � addindex (text) 81

22.49 � addindex (text)

This command adds (text) to the LATEX index.

22.50 � anchor � word �
This command places an invisible, named anchor into the documentation to which you can refer with the

� ref command.

See also:
section � ref.

22.51 � endlink

This command ends a link that is started with the � link command.

See also:
section � link.

22.52 � link � link-object �
The links that are automatically generated by Doxygen always have the name of the object they point to as
link-text.

The � link command can be used to create a link to an object (a file, class, or member) with a user specified
link-text. The link command should end with an � endlink command. All text between the � link and

� endlink commands serves as text for a link to the � link-object � specified as the first argument of � link.

See section autolink for more information on automatically generated links and valid link-objects.

22.53 � ref � name � [”(text)”]

Creates a reference to a named section, subsection, page or anchor. For HTML documentation the reference
command will generate a link to the section. For a sections or subsections the title of the section will be
used as the text of the link. For anchor the optional text between quotes will be used or � name � if no text
is specified. For LATEX documentation the reference command will generate a section number for sections
or the text followed by a page number if � name � refers to an anchor.

See also:
Section � page for an example of the � ref command.

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

22.54 � section � section-name � (section title) 82

22.54 � section � section-name � (section title)

Creates a section with name � section-name � . The title of the section should be specified as the second
argument of the � section command.

Warning:
This command only works inside related page documentation and not in other documentation blocks!

See also:
Section � page for an example of the � section command.

22.55 � subsection � subsection-name � (subsection title)

Creates a subsection with name � subsection-name � . The title of the subsection should be specified as the
second argument of the � subsection command.

Warning:
This command only works inside related page documentation and not in other documentation blocks!

See also:
Section � page for an example of the � cmdsubsection command.

Commands for displaying examples

22.56 � dontinclude � file-name �
This command can be used to parse a source file without actually verbatim including it in the documen-
tation (as the � include command does). This is useful if you want to divide the source file into smaller
pieces and add documentation between the pieces. Source files or directories can be specified using the
EXAMPLE PATH tag of Doxygen’s configuration file.

The class and member declarations and definitions inside the code fragment are ‘remembered’ during the
parsing of the comment block that contained the � dontinclude command.

For line by line descriptions of source files, one or more lines of the example can be displayed using
the � line, � skip, � skipline, and � until commands. An internal pointer is used for these commands. The

� dontinclude command sets the pointer to the first line of the example.

Example:
/*! A test class. */

class Test
{
public:

/// a member function
void example();

};

/*! \page example

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

22.57 � include � file-name � 83

* \dontinclude example_test.cpp
* Our main function starts like this:
* \skip main
* \until {
* First we create a object \c t of the Test class.
* \skipline Test
* Then we call the example member function
* \line example
* After that our little test routine ends.
* \line }
*/

Where the example file example test.cpp looks as follows:

void main()
{
Test t;
t.example();

}

See also:
sections � line, � skip, � skipline, and � until.

22.57 � include � file-name �
This command can be used to include a source file as a block of code. The command takes the name of an
include file as an argument. Source files or directories can be specified using the EXAMPLE PATH tag of
Doxygen’s configuration file.

If � file-name � itself is not unique for the set of example files specified by the EXAMPLE PATH tag, you
can include part of the absolute path to disambiguate it.

Using the � include command is equivalent to inserting the file into the documentation block and surround-
ing it with � code and � endcode commands.

The main purpose of the � include command is to avoid code duplication in case of example blocks that
consist of multiple source and header files.

For a line by line description of a source files use the � dontinclude command in combination with the � line,
� skip, � skipline, and � until commands.

See also:
section � example and � dontinclude.

22.58 � line (pattern)

This command searches line by line through the example that was last included using � include or
� dontinclude until it finds a non-blank line. If that line contains the specified pattern, it is written to
the output.

The internal pointer that is used to keep track of the current line in the example, is set to the start of the line
following the non-blank line that was found (or to the end of the example if no such line could be found).

See section � dontinclude for an example.

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

22.59 � skip (pattern) 84

22.59 � skip (pattern)

This command searches line by line through the example that was last included using � include or
� dontinclude until it finds a line that contains the specified pattern.

The internal pointer that is used to keep track of the current line in the example, is set to the start of the line
that contains the specified pattern (or to the end of the example if the pattern could not be found).

See section � dontinclude for an example.

22.60 � skipline (pattern)

This command searches line by line through the example that was last included using � include or
� dontinclude until it finds a line that contains the specified pattern. It then writes the line to the output.

The internal pointer that is used to keep track of the current line in the example, is set to the start of the line
following the line that is written (or to the end of the example if the pattern could not be found).

Note:
The command:

\skipline pattern

is equivalent to:

\skip pattern
\line pattern

See section � dontinclude for an example.

22.61 � until (pattern)

This command writes all lines of the example that was last included using � include or � dontinclude to the
output, until it finds a line containing the specified pattern. The line containing the pattern will be written
as well.

The internal pointer that is used to keep track of the current line in the example, is set to the start of the line
following last written line (or to the end of the example if the pattern could not be found).

See section � dontinclude for an example.

22.62 � verbinclude � file-name �
This command includes the file � file-name � verbatim in the documentation. The command is equivalent
to pasting the file in the documentation and placing � verbatim and � endverbatim commands around it.

Files or directories that doxygen should look for can be specified using the EXAMPLE PATH tag of Doxy-
gen’s configuration file.

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

22.63 � htmlinclude � file-name � 85

22.63 � htmlinclude � file-name �
This command includes the file � file-name � as is in the HTML documentation. The command is equiv-
alent to pasting the file in the documentation and placing � htmlonly and � endhtmlonly commands around
it.

Files or directories that doxygen should look for can be specified using the EXAMPLE PATH tag of Doxy-
gen’s configuration file.

Commands for visual enhancements

22.64 � a � word �
Displays the argument � word � using a special font. Use this command to refer to member arguments in
the running text.

Example:
... the \a x and \a y coordinates are used to ...

This will result in the following text:
... the x and y coordinates are used to ...

22.65 � arg
�

item-description �
This command has one argument that continues until the first blank line or until another � arg is encountered.
The command can be used to generate a simple, not nested list of arguments. Each argument should start
with a � arg command.

Example:
Typing:

\arg \c AlignLeft left alignment.
\arg \c AlignCenter center alignment.
\arg \c AlignRight right alignment

No other types of alignment are supported.

will result in the following text:
� AlignLeft left alignment.
� AlignCenter center alignment.
� AlignRight right alignment

No other types of alignment are supported.

Note:
For nested lists, HTML commands should be used.

Equivalent to � li

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

22.66 � b � word � 86

22.66 � b � word �
Displays the argument � word � using a bold font. Equivalent to � b � word � /b � .

22.67 � c � word �
Displays the argument � word � using a typewriter font. Use this to refer to a word of code. Equivalent to

� tt � word � /tt � .

Example:
Typing:

... This function returns \c void and not \c int ...

will result in the following text:
... This function returns void and not int ...

Equivalent to � p

22.68 � code

Starts a block of code. A code block is treated differently from ordinary text. It is interpreted as C/C++
code. The names of the classes and members that are documented are automatically replaced by links to
the documentation.

See also:
section � endcode, section � verbatim

22.69 � e � word �
Displays the argument � word � in italics. Use this command to emphasize words.

Example:
Typing:

... this is a \e really good example ...

will result in the following text:
... this is a really good example ...

Equivalent to � em

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

22.70 � em � word � 87

22.70 � em � word �
Displays the argument � word � in italics. Use this command to emphasize words.

Example:
Typing:

... this is a \em really good example ...

will result in the following text:
... this is a really good example ...

Equivalent to � e

22.71 � endcode

Ends a block of code.

See also:
section � code

22.72 � endhtmlonly

Ends a block of text that was started with a � htmlonly command.

See also:
section � htmlonly.

22.73 � endlatexonly

Ends a block of text that was started with a � latexonly command.

See also:
section � latexonly.

22.74 � endverbatim

Ends a block of text that was started with a � verbatim command.

See also:
section � verbatim.

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

22.75 � f$ 88

22.75 � f$

Marks the start and end of an in-text formula.

See also:
section formulas for an example.

22.76 � f[

Marks the start of a long formula that is displayed centered on a separate line.

See also:
section � f] and section formulas.

22.77 � f]

Marks the end of a long formula that is displayed centered on a separate line.

See also:
section � f[and section formulas.

22.78 � htmlonly

Starts a block of text that will be verbatim included in the generated HTML documentation only. The block
ends with a endhtmlonly command.

This command can be used to include HTML code that is too complex for Doxygen (i.e. applets, java-
scripts, and HTML tags that require attributes). You can use the � latexonly and � endlatexonly pair to
provide a proper LATEX alternative.

Note: environment variables (like $(HOME)) are resolved inside a HTML-only block.

See also:
section � htmlonly and section � latexonly.

22.79 � image � format � � file � [” � caption � ”] [� sizeindication � = � size �]

Inserts an image into the documentation. This command is format specific, so if you want to insert an
image for more than one format you’ll have to repeat this command for each format.

The first argument specifies the output format. Currently, the following values are supported: html and
latex.

The second argument specifies the file name of the image. Doxygen will look for files in the paths (or files)
that you specified after the IMAGE PATH tag. If the image is found it will be copied to the correct output

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

22.80 � latexonly 89

directory. If the image name contains spaces you’ll have to put quotes (”) around it. You can also specify
an absolute URL instead of a file name, but then doxygen does not copy the image or check its existance.

The third argument is optional and can be used to specify the caption that is displayed below the image.
This argument has to be specified between quotes even if it does not contain any spaces. The quotes are
stripped before the caption is displayed.

The fourth argument is also optional and can be used to specify the width or height of the image. This
is only useful for LATEX output (i.e. format=latex). The sizeindication can be either width or
height. The size should be a valid size specifier in LATEX (for example 10cm or 6in or a symbolic width
like � textwidth).

Here is example of a comment block:

/*! Here is a snapshot of my new application:
* \image html application.jpg
* \image latex application.eps "My application" width=10cm
*/

And this is an example of how the relevant part of the configuration file may look:

IMAGE_PATH = my_image_dir

Warning:
The image format for HTML is limited to what your browser supports. For LATEX the image format
must be an encapsulated postscipt (eps).
Doxygen does not check if the image is in the correct format. So you have to make sure this is the
case!

22.80 � latexonly

Starts a block of text that will be verbatim included in the generated LATEX documentation only. The block
ends with a endlatexonly command.

This command can be used to include LATEX code that is too complex for Doxygen (i.e. images, formu-
las, special characters). You can use the � htmlonly and � endhtmlonly pair to provide a proper HTML
alternative.

Note: environment variables (like $(HOME)) are resolved inside a LATEX-only block.

See also:
section � latexonly and section � htmlonly.

22.81 � li
�

item-description �
This command has one argument that continues until the first blank line or until another � li is encountered.
The command can be used to generate a simple, not nested list of arguments. Each argument should start
with a � li command.

Example:
Typing:

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

22.82 � p � word � 90

\li \c AlignLeft left alignment.
\li \c AlignCenter center alignment.
\li \c AlignRight right alignment

No other types of alignment are supported.

will result in the following text:
� AlignLeft left alignment.
� AlignCenter center alignment.
� AlignRight right alignment

No other types of alignment are supported.

Note:
For nested lists, HTML commands should be used.

Equivalent to � arg

22.82 � p � word �
Displays the parameter � word � using a typewriter font. You can use this command to refer to member
function parameters in the running text.

Example:
... the \p x and \p y coordinates are used to ...

This will result in the following text:
... the x and y coordinates are used to ...

Equivalent to � c

22.83 � verbatim

Starts a block of text that will be verbatim included in both the HTML and the LATEX documentation. The
block should end with a � endverbatim block. All commands are disabled in a verbatim block.

Warning:
Make sure you include a � endverbatim command for each � verbatim command or the parser will get
confused!

22.84 � �
This command writes a backslash character (�) to the HTML and LATEX output. The backslash has to be
escaped in some cases because Doxygen uses it to detect commands.

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

22.85 � @ 91

22.85 � @

This command writes an at-sign (@) to the HTML and LATEX output. The at-sign has to be escaped in some
cases because Doxygen uses it to detect JavaDoc commands.

22.86 � &

This command writes the & character to the HTML and LATEX output. This character has to be escaped
because it has a special meaning in HTML.

22.87 � $

This command writes the $ character to the HTML and LATEX output. This character has to be escaped in
some cases, because it is used to expand environment variables.

22.88 � #

This command writes the # character to the HTML and LATEX output. This character has to be escaped in
some cases, because it is used to refer to documented entities.

22.89 � � �
This command writes the � character to the HTML and LATEX output. This character has to be escaped
because it has a special meaning in HTML.

22.90 � � �
This command writes the � character to the HTML and LATEX output. This character has to be escaped
because it has a special meaning in HTML.

Commands included for Qt compatibility

The following commands are supported to remain compatible to the Qt class browser generator. Do not
use these commands in your own documentation.

� � annotatedclasslist
� � classhierarchy
� � define
� � functionindex
� � header
� � headerfilelist

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

92

� � inherit
� � l
� � postheader

23 HTML Commands

Here is a list of all HTML commands that may be used inside the documentation. Note that all attributes
of a HTML tag are ignored (the HREF and NAME attributes for the A tag are the only exception).

� �
A HREF="..." � Starts a HTML hyper-link (HTML only).

� �
A NAME="..." � Starts an named anchor (HTML only).

� �
/A � Ends a link or anchor (HTML only).

� �
B � Starts a piece of text displayed in a bold font.

� �
/B � Ends a �

B � section.
� �

BODY � Does not generate any output.
� �

/BODY � Does not generate any output.
� �

BR � Forces a line break.
� �

CENTER � starts a section of centered text.
� �

/CENTER � ends a section of centered text.
� �

CODE � Starts a piece of text displayed in a typewriter font.
� �

/CODE � End a �
CODE � section.

� �
DD � Starts an item description.

� �
DFN � Starts a piece of text displayed in a typewriter font.

� �
/DFN � Ends a �

DFN � section.
� �

DL � Starts a description list.
� �

/DL � Ends a description list.
� �

DT � Starts a item title.
� �

/DT � Does not generate any output.
� �

EM � Starts a piece of text displayed in an italic font.
� �

/EM � Ends a �
EM � section.

� �
FORM � Does not generate any output.

� �
/FORM � Does not generate any output.

� �
HR � Writes a horizontal ruler.

� �
H1 � Starts an unnumbered section.

� �
/H1 � Ends an unnumberd section.

� �
H2 � Starts an unnumbered subsection.

� �
/H2 � Ends an unnumbered subsection.

� �
H? � Where ? is one of

�
3,4,5,6 � , starts an unnumbered subsubsection using �

H3 � in HTML.
� �

/H? � Where ? is one of
�
3,4,5,6 � , ends an unnumbered subsubsection using �

H3 � in HTML.
� �

I � Starts a piece of text displayed in an italic font.
� �

INPUT � Does not generated any output.
� �

/I � Ends a �
I � section.

� �
IMG � This command is written with attributes to the HTML output only.

� �
LI � Starts a new list item.

� �
/LI � Does not generate any output.

� �
META � Does not generate any output.

� �
MULTICOL � ignored by Doxygen.

� �
/MUTLICOL � ignored by Doxygen.

� �
OL � Starts a numbered item list.

� �
/OL � Ends a numbered item list.

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

93

� �
P � Starts a new paragraph.

� �
/P � Does not generate any output.

� �
PRE � starts a preformatted fragment.

� �
/PRE � ends a preformatted fragment.

� �
SMALL � starts a section of text displayed in a smaller font.

� �
/SMALL � ends a �

SMALL � section.
� �

STRONG � starts a section of bold text.
� �

/STRONG � ends a section of bold text.
� �

SUB � Starts a piece of text displayed in subscript.
� �

/SUB � Ends a �
SUB � section.

� �
SUP � Starts a piece of text displayed in superscript.

� �
/SUP � Ends a �

/SUP � section.
� �

TABLE � starts a table, the available space of a page is always divided equally amount the columns.
� �

/TABLE � ends a table
� �

TD � Starts a new table element.
� �

/TD � Does not generate any output.
� �

TR � Starts a new table row.
� �

/TR � Does not generate any output.
� �

TT � Starts a piece of text displayed in a typewriter font.
� �

/TT � Ends a �
TT � section.

� �
UL � Starts an unnumbered item list.

� �
/UL � Ends an unnumbered item list.

� �
VAR � Starts a piece of text displayed in an italic font.

� �
/VAR � Ends a �

/VAR � section.

The special HTML character entities that are recognized by Doxygen:

� © the copyright symbol
� " a double quote
� &?uml; where ? is one of

�
A,E,I,O,U,Y,a,e,i,o,u,y � , writes a character with a diaeresis accent (like

ä).
� &?acute; where ? is one of

�
A,E,I,O,U,Y,a,e,i,o,u,y � , writes a character with a acute accent (like

á).
� &?grave; where ? is one of

�
A,E,I,O,U,a,e,i,o,u,y � , writes a character with a grave accent (like à).

� &?circ; where ? is one of
�
A,E,I,O,U,a,e,i,o,u,y � , writes a character with a circumflex accent (like

â).
� &?tilde; where ? is one of

�
A,N,O,a,n,o � , writes a character with a tilde accent (like ã).

� ß write a sharp s (i.e. ”s) to the output.
� &?cedil; where ? is one of

�
c,C � , writes a c-cedille (like ç).

� &?ring; where ? is one of
�
a,A � , writes an a with a ring (like å).

� a non breakable space.

24 Internationalization

Support for multiple languages

Doxygen has support for multiple languages. This means that the text fragments that doxygen generates
can changed into languages other than English (the default) at configuration time.

Currently, supported for over 20 languages is available.

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

94

Here is a list of the languages and their current maintainers:

Language Maintainer Contact address
German Jens Breitenstein Jens.Breitenstein@tlc.de
French Christophe Bordeux bordeux@lig.di.epfl.ch
Swedish Samuel Hägglund sahag96@nts.mh.se

XeT Erixon xet@hem.passagen.se
Czech Petr Prikryl prikrylp@skil.cz

Vlastimil Havran havran@fel.cvut.cz
Italian Ahmed Aldo Faisal aaf23@cam.ac.uk

Alessandro Falappa a.falappa@flashnet.it
Japanese Kenji Nagamatsu naga@joyful.club.ne.jp
Spanish Francisco Oltra Thennet foltra@puc.cl
Finnish Olli Korhonen Olli.Korhonen@ccc.fi
Russian Alexandr Chelpanov cav@cryptopro.ru
Korean Richard Kim ryk@dspwiz.com
Hungarian Fldvri Gyrgy foldvari@diatronltd.com
Croatian Boris Bralo boris.bralo@zg.tel.hr
Polish Grzegorz Kowal g kowal@poczta.onet.pl
Dutch Dimitri van Heesch dimitri@stack.nl

Most people on the list have indicated that they were also busy doing other things, so if you want to help
to speed things up please let them (or me) know.

If you want to add support for a language that is not yet listed please see the next section.

Adding a new language to doxygen

This short HOWTO explains how to add support for a new language to Doxygen:

Just follow these steps:

1. Tell me for which language you want to add support. If no one else is already working on support
for that language, you will be assigned as the maintainer for the language.

2. Create a copy of translator en.h and name it translator � your 2 letter counter code � .h I’ll use xx
in the rest of this document.

3. Edit language.cpp: Add a

#include<translator_xx.h>

in setTranslator() add

else if (L_EQUAL("your_language_name"))
{

theTranslator = new TranslatorYourLanguage;
}

after the if
�
... �

4. Edit libdoxygen.pro.in and add translator xx.h to the HEADERS line in the file doxygen.pro.

5. Edit translator xx.h:

� Rename TRANSLATOR EN H to TRANSLATOR XX H twice.
� Rename TranslatorEnglish to TranslatorYourLanguage

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

95

� In the member idLanguage() change ”english” into the name of the your language (use
lower case characters only). Depending on the language you may also wish to change the
member functions latexLanguageSupportCommand() and idLanguageCharset().

� Edit all the strings that are returned by the member functions that start with tr. Try to match
punctuation and capitals! To enter special characters (with accents) you can:

– Enter them directly if your keyboard supports that and you are using a Latin-1 font. Doxy-
gen will translate the characters to proper Latex and leave the Html and man output for
what it is (which is fine, if idLanguageCharset() is set correctly).

– Use html codes like ä for an a with an umlaut (i.e. ä). See the HTML specification
for the codes.

6. Run configure and make again from the root of the distribution, in order to regenerated the Makefiles.

7. Now you can use OUTPUT LANGUAGE = your language name in the config file to generate
output in your language.

8. Send translator xx.h to me so I can add it to doxygen.

Maintaining a language

As new versions of doxygen appear, new sentences will be added to the Translator interface class. Of
course these need to be translated as well (otherwise doxygen wouldn’t even compile!).

Waiting until all language maintainers have translated these new sentences and sent the results would not
be very practical for me.

Instead, a new class TranslatorAdapter x y z will be added to translator adapter.h (here x,y, and z corre-
spond to the current version of doxygen). And all translators that previous derived from Translator will
now derive from this adapter class.

The Adapter class contains the new sentences with default translations using the English translator (which
is always up to date). Instead of deriving your TranslatorXX class directly from Translator it will derive
from the intermediate class TranslatorAdapter x y z.

Thus, if a translator class inherits from a adapter class maintenance is needed. By looking at the adapter
class itself (and its base classes) you can easily see which methods need to be updated.

To update a language simply make your translator class derive from TranslatorAdapterBase and provide
translations for the methods that were previously provided by the adapter class (and its base classes).

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

Index
� #, 91
� $, 91
� &, 91
� � , 90
� � � , 91
� � � , 91
� a, 85
� addindex, 81
� addtogroup, 66
� anchor, 81
� arg, 85
� attention, 75
� author, 75
� b, 86
� brief, 75
� bug, 76
� c, 86
� class, 67
� code, 86
� date, 76
� def, 67
� defgroup, 67
� deprecated, 76
� dontinclude, 82
� e , 86, 87
� endcode, 87
� endhtmlonly, 87
� endif, 76
� endlatexonly, 87
� endlink , 81
� endverbatim, 87
� enum, 68
� example, 68
� exception, 76
� f$, 88
� f[, 88
� f], 88
� file, 69
� fn, 69
� hideinitializer, 70
� htmlinclude, 85
� htmlonly, 88
� if, 77
� image, 88
� include, 83
� ingroup, 70
� internal, 71
� invariant, 77
� latexonly, 89
� li, 89

� line, 83
� link, 81
� mainpage, 71
� namespace, 71
� note, 77
� overload, 72
� p, 90
� page, 72
� par, 77
� param, 78
� post, 78
� pre, 78
� ref, 81
� relates, 73
� remarks, 79
� return, 79
� retval, 79
� sa, 79
� section, 82
� showinitializer, 74
� since, 79
� skip, 84
� skipline, 84
� struct, 74
� subsection, 82
� test, 80
� throw, 80
� todo, 80
� typedef, 74
� union, 74
� until, 84
� var, 74
� verbatim, 90
� verbinclude, 84
� version, 80
� warning, 80

acknowledgements, 2
ALIASES, 53
ALLEXTERNALS, 61
ALPHABETICAL INDEX, 55
ALWAYS DETAILED SEC, 51

BIN ABSPATH, 63
BINARY TOC, 57
bison, 4
BRIEF MEMBER DESC, 50
browser, 12

CASE SENSE NAMES, 51
CGI NAME, 62

INDEX 97

CGI URL, 62
CLASS DIAGRAMS, 51
CLASS GRAPH, 61
COLLABORATION GRAPH, 61
COLS IN ALPHA INDEX, 55
COMPACT LATEX, 58
COMPACT RTF, 59

DISABLE INDEX, 57
DISTRIBUTE GROUP DOC, 52
Doc++, 2
DOC ABSPATH, 63
DOC URL, 62
DOT PATH, 62

ENABLE PREPROCESSING, 60
ENABLED SECTIONS, 52
ENUM VALUES PER LINE, 57
EXAMPLE PATH, 54
EXAMPLE PATTERNS, 54
EXCLUDE, 54
EXCLUDE PATTERNS, 54
EXPAND AS DEFINED, 60
EXPAND ONLY PREDEF, 60
EXT DOC PATHS, 63
EXTRA PACKAGES, 58
EXTRACT ALL, 50
EXTRACT PRIVATE, 50
EXTRACT STATIC, 50

features, 34
FILE PATTERNS, 54
FILTER SOURCE FILES, 55
flex, 4
FULL PATH NAMES, 51

GENERATE BUGLIST, 53
GENERATE CHI, 57
GENERATE HTML, 55
GENERATE HTMLHELP, 57
GENERATE LATEX, 57
GENERATE LEGEND, 62
GENERATE MAN, 59
GENERATE RTF, 59
GENERATE TAGFILE, 61
GENERATE TESTLIST, 53
GENERATE TODOLIST, 52
GENERATE TREEVIEW, 57
GPL, 1
GRAPHICAL HIERATCHY, 62

HAVE DOT, 61
HIDE SCOPE NAMES, 52
HIDE UNDOC CLASSES, 50
HIDE UNDOC MEMBERS, 50

HTML ALIGN MEMBERS, 56
HTML FOOTER, 56
HTML HEADER, 56
HTML OUTPUT, 55
HTML STYLESHEET, 56

IGNORE PREFIX, 55
IMAGE PATH, 55
INCLUDE GRAPH , 61
INCLUDE PATH, 60
INCLUDED BY GRAPH , 62
INHERIT DOCS, 52
INLINE INFO , 52
INLINE SOURCES, 51
INPUT, 54
INPUT FILTER, 55
installation, 4
INTERNAL DOCS, 51

JAVADOC AUTOBRIEF, 52

LaTeX, 12
LATEX BATCHMODE, 58
LATEX HEADER, 58
LATEX OUTPUT, 58
license, 1

MACRO EXPANSION, 60
make, 4
MAN OUTPUT, 59
MAX DOT GRAPH HEIGHT, 62
MAX DOT GRAPH WIDTH, 62
MAX EXTENSION, 60
MAX INITIALIZER LINES, 53

OPTIMIZE OUTPUT FOR C, 53
output formats, 43
OUTPUT DIRECTORY, 50
OUTPUT LANGUAGE, 50

PAPER TYPE, 58
parsing, 12
PDF HYPERLINKS, 58
perl, 4
PERL PATH, 61
PREDEFINED, 60
PROJECT NAME, 50
PROJECT NUMBER, 50

Qt, 4
QUIET, 53

RECURSIVE, 54
REPEAT BRIEF, 51
RTF HYPERLINKS, 59

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

INDEX 98

RTF OUTPUT, 59
RTF STYLESHEET FILE, 59

SEARCH INCLUDES , 60
SEARCHENGINE, 62
SHORT NAMES, 51
SHOW INCLUDE FILES, 52
SHOW USED FILES, 53
SORT MEMBER DOCS, 52
SOURCE BROWSER, 51
STRIP CODE COMMENTS, 51
STRIP FROM PATH, 51

TAB SIZE, 52
TAGFILES, 60
TOC EXPAND, 57
TREEVIEW WIDTH, 57

VERBATIM HEADERS, 52

WARN FORMAT, 54
WARN IF UNDOCUMENTED, 54
WARN LOGFILE, 54
WARNINGS, 53

User Manual for Doxygen 1.2.7, written by Dimitri van Heesch c
�

1997-2001

	I User Manual
	Installation
	Getting started
	Documenting the code
	Lists
	Grouping
	Including formulas
	Graphs and diagrams
	Preprocessing
	Linking to external documentation
	Frequently Asked Questions
	Troubleshooting

	II Reference Manual
	Features
	Doxygen History
	Doxygen usage
	Doxytag usage
	Doxysearch usage
	Doxywizard usage
	Installdox usage
	Output Formats
	Automatic link generation
	Configuration
	Special Commands
	HTML Commands
	Internationalization

