
UMFPACK Version 3.2 User Guide

Timothy A. Davis
Dept. of Computer and Information Science and Engineering

Univ. of Florida, Gainesville, FL

January 1, 2002

Abstract
UMFPACK is a set of routines for solving unsymmetric sparse linear

systems,
Ax = b, using the Unsymmetric MultiFrontal method and direct sparse LU
factorization. It is written in ANSI/ISO C, with a MATLAB (Version 6.0
or 6.1) interface. UMFPACK relies on the Level-3 Basic Linear Algebra
Subprograms (dense matrix multiply) for its performance.

Copyrightc©2002 by Timothy A. Davis, University of Florida, davis@cise.ufl.edu.
All Rights Reserved.

UMFPACK License:
Your use or distribution of UMFPACK or any derivative code implies that you

agree to this License.
THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WAR-

RANTY EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
Permission is hereby granted to use or copy this program, provided that the

Copyright, this License, and the Availability of the original version is retained on
all copies. User documentation of any code that uses this code or any derivative
code must cite the Copyright, this License, the Availability note, and ”Used by
permission.” If this code or any derivative code is accessible from within MAT-
LAB, then typing ”help umfpack” must cite the Copyright, and ”type umfpack”
must also cite this License and the Availability note. Permission to modify the
code and to distribute modified code is granted, provided the Copyright, this Li-
cense, and the Availability note are retained, and a notice that the code was mod-
ified is included. This software was developed with support from the National
Science Foundation, and is provided to you free of charge.

1

Acknowledgments:
This work was supported by the National Science Foundation, under grants

DMS-9504974 and DMS-9803599.

2

Contents

1 Overview 6

2 Availability 7

3 Using UMFPACK in MATLAB 7

4 Using UMFPACK in a C program 10
4.1 The size of an integer. 10
4.2 Primary routines, and a simple example. 11
4.3 Alternative routines. 13
4.4 Matrix manipulation routines. 14
4.5 Getting the contents of opaque objects. 16
4.6 Reporting routines . 16
4.7 Utility routines . 18
4.8 Control parameters. 18
4.9 Larger examples. 19

5 Synopsis of all C-callable routines (int version) 20
5.1 Primary routines. 20
5.2 Alternative routines. 20
5.3 Matrix manipulation routines. 20
5.4 Getting the contents of opaque objects. 21
5.5 Reporting routines . 21

6 Synopsis of all C-callable routines (long version) 21
6.1 Primary routines. 22
6.2 Alternative routines. 22
6.3 Matrix manipulation routines. 22
6.4 Getting the contents of opaque objects. 22
6.5 Reporting routines . 23

7 Synopsis of utility routines 23

8 Installation 23

9 Future work 25

3

10 The primary UMFPACK routines 28
10.1 umfpacksymbolic and umfpackl symbolic 28
10.2 umfpacknumeric and umfpackl numeric 35
10.3 umfpacksolve and umfpackl solve 44
10.4 umfpackfree symbolic and umfpackl free symbolic 49
10.5 umfpackfree numeric and umfpackl free numeric 50

11 Alternatives routines 51
11.1 umfpackdefaults and umfpackl defaults 51
11.2 umfpackqsymbolic and umfpackl qsymbolic. 52
11.3 umfpackwsolve and umfpackl wsolve 55

12 Matrix manipulation routines 58
12.1 umfpackcol to triplet and umfpackl col to triplet 58
12.2 umfpacktriplet to col and umfpackl triplet to col 60
12.3 umfpacktranspose and umfpackl transpose. 64

13 Getting the contents of opaque objects 67
13.1 umfpackget lunz and umfpackl get lunz 67
13.2 umfpackget numeric and umfpackl get numeric 69
13.3 umfpackget symbolic and umfpackl get symbolic 72

14 Reporting routines 77
14.1 umfpackreport status and umfpackl report status 77
14.2 umfpackreport control and umfpackl report control 79
14.3 umfpackreport info and umfpackl report info 80
14.4 umfpackreportmatrix and umfpackl reportmatrix 82
14.5 umfpackreportnumeric and umfpackl reportnumeric. 86
14.6 umfpackreportperm and umfpackl reportperm 88
14.7 umfpackreport symbolic and umfpackl report symbolic. 90
14.8 umfpackreport triplet and umfpackl report triplet 92
14.9 umfpackreport vector and umfpackl report vector 95

15 Utility routines 97
15.1 umfpacktimer . 97

16 umfpack.h include file 98

17 Demo C main program,umfpack demo.c 104

4

18 Configuration file umf config.h 119

5

1 Overview

UMFPACK Version 3.2 is a set of routines for solving systems of linear equations,
Ax = b, whenA is sparse and unsymmetric. It is based on the Unsymmetric
MultiFrontal method [4, 5], which factorizesPAQ into the productLU, whereL
andU are lower and upper triangular, respectively, andP areQ are permutation
matrices. BothP andQ are chosen to reduce fill-in (new nonzeros inL and
U that are not present inA). The permutationP has the dual role of reducing
fill-in and maintaining numerical accuracy (via relaxed partial pivoting and row
interchanges).

UMFPACK first finds a column pre-ordering that reduces fill-in, without re-
gard to numerical values, with a modified version of COLAMD [6, 7, 23]. The
method finds a symmetric permutationQ of the matrixATA (without forming
ATA explicitly). This is a good choice forQ, since the Cholesky factors of
(AQ)T(AQ) are an upper bound (in terms of nonzero pattern) of the factorU for
the unsymmetric LU factorization (PAQ = LU) regardless of the choice ofP
[16, 17, 19].

Next, the method breaks the factorization of the matrixA down into a se-
quence of dense rectangular frontal matrices. The frontal matrices are related
to each other by a supernodal column elimination tree, in which each node in
the tree represents one frontal matrix. This analysis phase also determines upper
bounds on the memory usage, the floating-point operation count, and the number
of nonzeros in the LU factors.

UMFPACK factorizes eachchainof frontal matrices in a single working array,
similar to how the unifrontal method [14] factorizes the whole matrix. A chain of
frontal matrices is a sequence of fronts where the parent of fronti is i+1 in the
supernodal column elimination tree. UMFPACK is an outer-product based, right-
looking method. At thek-th step of Gaussian elimination, it represents the updated
submatrixAk as an implicit summation of a set of dense submatrices (referred to
aselements, borrowing a phrase from finite-element methods) that arise when the
frontal matrices are factorized and their pivot rows and columns eliminated.

Each frontal matrix represents the elimination of one or more columns; each
column ofA will be eliminated in a specific frontal matrix, and which frontal
matrix will be used for each column is determined by the pre-analysis phase. The
pre-analysis phase also determines the worst-case size of each frontal matrix so
that they can hold any candidate pivot column and any candidate pivot row. From
the perspective of the analysis phase, any candidate pivot column in the frontal
matrix is identical (in terms of nonzero pattern), and so is any row. However,

6

the numerical factorization phase has more information than the analysis phase.
It uses this information to reorder the columns within each frontal matrix to re-
duce fill-in. Similarly, since the number of nonzeros in each row and column are
maintained (more precisely, COLMMD-style approximate degrees [18]), a pivot
row can be selected based on sparsity-preserving criteria (low degree) as well as
numerical considerations (relaxed threshold partial pivoting). This information
about row and column degrees is not available to left-looking methods such as
SuperLU [10] or MATLAB’s LU [18, 21].

More details of the method, including experimental results, are described in
[3, 2], available at www.cise.ufl.edu/tech-reports.

2 Availability

UMFPACK Version 3.2 is available at www.cise.ufl.edu/research/sparse, and has
been submitted as a collected algorithm of the ACM [3, 2]. It makes use of a
modified version of COLAMD V2.0 by Timothy A. Davis, Stefan Larimore, John
Gilbert, and Esmond Ng. The original COLAMD V2.0 is available in MAT-
LAB V6.0 (or later), and at www.cise.ufl.edu/research/sparse. These codes are
also available in Netlib [12] at www.netlib.org. Prior versions of UMFPACK, co-
authored with Iain Duff, are available at www.cise.ufl.edu/research/sparse and as
MA38 (functionally equivalent to Version 2.2.1) in the Harwell Subroutine Li-
brary.

3 Using UMFPACK in MATLAB

The easiest way to use UMFPACK is within MATLAB. This discussion assumes
that you have MATLAB Version 6.0 or later (which includes the BLAS, and the
colamd ordering routine). To compile the UMFPACK mexFunction, you can ei-
ther typemake umfpack in the Unix system shell, or typeumfpack make in
MATLAB (which should work on any system, including Windows). See Section8
for more details on how to install UMFPACK. Once installed, the UMFPACK
mexFunction can analyze, factor, and solve linear systems. Table1 summarizes
some of the more common uses of UMFPACK within MATLAB.

UMFPACK requiresA to be square, sparse, nonsingular and not complex,
and it requiresb to be a dense column vector (and not complex). This is more
restrictive than what you can do with MATLAB’s backslash orLU. Future releases

7

Table 1: Using UMFPACK’s MATLAB interface

Function Using UMFPACK MATLAB 6.0 equivalent

SolveAx = b. x = umfpack (A,’\’,b) ; x = A \ b ;

Solve Ax = b using
a different column pre-
ordering.

S = spones (A) ;
Q = symamd (S+S’) ;
x = umfpack (A,Q,’\’,b) ;

spparms (’autommd’,0) ;
S = spones (A) ;
Q = symamd (S+S’) ;
x = A (:,Q) \ b ;
x (Q) = x ;
spparms (’autommd’,1) ;

SolveATxT = bT. x = umfpack (b,’/’,A) ; x = b / A ;

Factorize A, then solve
Ax = b. [L,U,P,Q] = umfpack (A) ;

x = U \ (L \ (b (P))) ;
x (Q) = x ;

Q = colamd (A) ;
[L,U,P] = lu (A (:,Q)) ;
x = U \ (L \ (P*b)) ;
x (Q) = x ;

8

of UMFPACK may remove some of these restrictions.
MATLAB’s [L,U,P] = lu (A) returns a lower triangularL, an upper tri-

angularU, and a permutation matrixP such thatP*A is equal toL*U . UMFPACK
behaves differently; it returnsP andQsuch thatA (P,Q) is equal toL*U , where
P andQare permutation vectors. If you prefer permutation matrices, use the fol-
lowing MATLAB code:

[L,U,P,Q] = umfpack (A) ;
n = size (A,1) ;
I = speye (n) ;
P = I (P,:) ;
Q = I (:,Q) ;

Now P*A*Q is equal toL*U . Note thatx = umfpack (A, ’ \’, b) re-
quires thatb be a dense column vector. If you wish to use the LU factors from
UMFPACK to solve a linear system,Ax = b whereb is a either a dense or sparse
matrix with more than one column, do this:

[L,U,P,Q] = umfpack (A) ;
x = U \ (L \ (b (P,:))) ;
x (Q,:) = x ;

The above two examples do not make use of the iterative refinement that is
built into x = umfpack (A, ’ \’, b) however.

Since the numeric factorization refines its column pre-ordering, theQin [L,U,P,Q]
= umfpack (A) and[Q,F,C] = umfpack (A, ’symbolic’) will in
general be different.

There are more options; you can provide your own column pre-ordering (in
which case UMFPACK does not call COLAMD), you can modify other control
settings (similar to thespparms in MATLAB), and you get various statistics
on the analysis, factorization, and solution of the linear system. Typehelp
umfpack details andhelp umfpack report in MATLAB for more in-
formation. Two demo m-files are provided. Just typeumfpack simple and
umfpack demo to run them. They roughly correspond to the C programsumfpack simple.c
andumfpack demo.c . You may want to typemore on before running the
umfpack simple demo since it generates lots of output.

A simple M-file (umfpack btf) is provided that first permutes the matrix to
upper block triangular form, using MATLAB’sdmperm routine. It solvesAx =
b; the LU factors are not returned. Its usage is simple:x = umfpack btf
(A, b) . Typehelp umfpack btf for more options.

9

One issue you may encounter is how UMFPACK allocates its memory when
being used in a mexFunction. One part of its working space is of variable size. The
symbolic analysis phase determines an upper bound on the size of this memory,
but not all of this memory will typically be used in the numerical factorization.
UMFPACK tries to allocate a decent amount of working space (70% of the up-
per bound, by default), with some elbow room so that it can run more efficiently.
If this fails, it reduces its request and uses less memory. However,mxMalloc
aborts theumfpack mexFunction if it fails, so this strategy doesn’t work in MAT-
LAB. The strategy works fine whenmalloc is used instead. If you run out of
memory in MATLAB, try reducingControl(7) to be less than 0.70, and try
again. Alternatively, setControl(7) to 1.0 or 1.05 to avoid all reallocations of
memory. Typehelp umfpack details andumfpack report for more
information, and refer to theControl [UMFPACK ALLOCINIT] parameter
described inumfpack numeric in Section10, below.

There is a solution to this problem, but it relies on undocumented internal
routines. See the-DMATHWORKSoption in umf config.h in Section18 for
details.

Memory allocation on a PC is notoriously bad, so I recommend settingControl(7)
to a non-default value of 1.0 or even 1.05. This will avoid most reallocations of
memory.

4 Using UMFPACK in a C program

The C-callable UMFPACK library consists of 24 user-callable routines and one
include file. Twenty-three of the routines come in dual versions, with differ-
ent sizes of integers. All user-callable routine names begin withumfpack or
umfpack l ; other routine names beginning withumf or umfl are internal to
the package, and should not be called by the user. The include fileumfpack.h ,
listed in Section16, must be included in any C program that uses UMFPACK.

4.1 The size of an integer

There are two versions of each user-callable routine (except for one routine). The
routine names starting with justumfpack use int integer arguments; those
starting withumfpack l uselong integer arguments. If you compile UMF-
PACK in the standard ILP32 mode (32-bitint ’s, long ’s, an pointers) then the
versions are essentially identical. You will be able to solve problems using up to

10

4GB of memory. If you compile UMFPACK in the standard LP64 mode, the size
of anint remains 32-bits, but the size of along and a pointer both get promoted
to 64-bits. In the LP64 mode, theumfpack l * routines can solve huge prob-
lems (not limited to 4GB), limited of course by the amount of available memory.
The only drawback to the 64-bit mode is that few BLAS libraries support 64-bit
integers. This limits the performance you will obtain.

Both versions are discussed below. Use only one version for any one problem;
do not attempt to use one version to analyze the matrix and another version to
factorize the matrix, for example.

4.2 Primary routines, and a simple example

Five primary UMFPACK routines are required to solveAx = b. They are fully
described in Section10:

• umfpack symbolic , umfpack l symbolic :

Pre-orders the columns ofA to reduce fill-in, based on its sparsity pattern
only, finds the supernodal column elimination tree, and post-orders the tree.
Returns an opaqueSymbolic object as avoid * pointer. The object
contains the symbolic analysis and is needed for the numerical factoriza-
tion. This routine requires onlyO(|A|) space, where|A| is the number of
nonzero entries in the matrix. It computes upper bounds on the nonzeros
in L andU, the floating-point operations required, and the memory usage
of umfpack numeric . TheSymbolic object is small; it contains just
the column pre-ordering, the supernodal column elimination tree, and in-
formation about each frontal matrix, and is no larger than about6n integers
(whereA is n-by-n). The matrix must be structurally non-singular (more
precisely, each row and column must have at least one entry).

• umfpack numeric , umfpack l numeric :

Numerically factorizes a sparse matrix intoPAQ = LU. Requires the sym-
bolic ordering and analysis computed byumfpack symbolic orumfpack qsymbolic .
Returns an opaqueNumeric object as avoid * pointer. The object con-
tains the numerical factorization and is used byumfpack solve . You can
factorize a new matrix with a different values (but identical pattern) as the
matrix analyzed byumfpack symbolic or umfpack qsymbolic by

11

re-using theSymbolic object (this feature is available when using UMF-
PACK in a C program, but not in MATLAB). The matrix must be non-
singular.

• umfpack solve , umfpack l solve :

Solves a sparse linear system (Ax = b, ATx = b, or systems involving just
L orU), using the numeric factorization computed byumfpack numeric .
Iterative refinement with sparse backward error [1] is used by default.

• umfpack free symbolic , umfpack l free symbolic :

Frees theSymbolic object created byumfpack symbolic orumfpack qsymbolic .

• umfpack free numeric , umfpack l free numeric :

Frees theNumeric object created byumfpack numeric .

Be careful not to free aSymbolic object withumfpack free numeric .
Nor should you attempt to free aNumeric object withumfpack free symbolic .
Failure to free these objects will lead to memory leaks.

The matrixA is represented in compressed column form, which is identical
to the sparse matrix representation used by MATLAB. It consists of three arrays,
where the matrix isn-byn, with nz entries. For theint version of UMFPACK:

int Ap [n+1] ;
int Ai [nz] ;
double Ax [nz] ;

For thelong version of UMFPACK:

long Ap [n+1] ;
long Ai [nz] ;
double Ax [nz] ;

All nonzeros are entries, but an entry may be numerically zero. The row in-
dices of entries in columnj are stored inAi[Ap[j] ... Ap[j+1]-1] . The
corresponding numerical values are stored inAx[Ap[j] ... Ap[j+1]-1] .

No duplicate row indices may be present, and the row indices in any given
column must be sorted in ascending order. The first entryAp [0] must be zero.
The total number of entries in the matrix is thusnz = Ap [n] . Except for the
fact that extra zero entries can be included, there is thus a unique compressed
column representation of any given matrixA.

Here is a simple main program,umfpack simple.c , that illustrates the
basic usage of UMFPACK.

12

#include <stdio.h>
#include "umfpack.h"

int n = 5 ;
int Ap [] = {0, 2, 5, 9, 10, 12} ;
int Ai [] = { 0, 1, 0, 2, 4, 1, 2, 3, 4, 2, 1, 4} ;
double Ax [] = {2., 3., 3., -1., 4., 4., -3., 1., 2., 2., 6., 1.} ;
double b [] = {8., 45., -3., 3., 19.} ;
double x [5] ;

int main (int argc, char **argv)
{

double *Control = (double *) NULL, *Info = (double *) NULL ;
int i ;
void *Symbolic, *Numeric ;
(void) umfpack_symbolic (n, Ap, Ai, &Symbolic, Control, Info) ;
(void) umfpack_numeric (Ap, Ai, Ax, Symbolic, &Numeric, Control, Info) ;
umfpack_free_symbolic (&Symbolic) ;
(void) umfpack_solve ("Ax=b", Ap, Ai, Ax, x, b, Numeric, Control, Info) ;
umfpack_free_numeric (&Numeric) ;
for (i = 0 ; i < n ; i++) printf ("x [%d] = %g\n", i, x [i]) ;
return (0) ;

}

It solves the same linear system as theumfpack simple.m MATLAB m-
file. TheAp, Ai , andAx arrays represent the matrix

A =


2 3 0 0 0
3 0 4 0 6
0 −1 −3 2 0
0 0 1 0 0
0 4 2 0 1

 .

and the solution isx = [1 2 3 4 5]T. The program uses default control settings
and does not return any statistics about the ordering, factorization, or solution
(Control andInfo are both(double *) NULL).

4.3 Alternative routines

Three alternative routines are provided that modify UMFPACK’s default behavior.
They are fully described in Section11:

• umfpack defaults , umfpack l defaults :

13

Sets the default control parameters in theControl array. These can then
be modified as desired before passing the array to the other UMFPACK
routines. Control parameters are fully described in Section11.1. One par-
ticular parameter deserves special notice. UMFPACK uses relaxed par-
tial pivoting, where a candidate pivot entry is numerically acceptable if
its magnitude is greater than or equal to a tolerance parameter times the
magnitude of the largest entry in the same column. The parameterInfo
[UMFPACKPIVOT TOLERANCE]has a default value of 0.1. This may be
too small for some matrices, particularly for ill-conditioned or poorly scaled
ones. With the default pivot tolerance and default iterative refinement,x =
umfpack (A, ’ \’, b) is just as accurate asx = A\b in MATLAB
for nearly all matrices.

• umfpack qsymbolic , umfpack l qsymbolic :

An alternative toumfpack symbolic . Allows the user to specify his
or her own column pre-ordering, rather than using the default COLAMD
pre-ordering.

• umfpack wsolve , umfpack l wsolve :

An alternative toumfpack solve which does not dynamically allocate
any memory. Requires the user to pass several additional size-n work ar-
rays.

4.4 Matrix manipulation routines

The compressed column data structure is compact, and simplifies the UMFPACK
routines that operate on the sparse matrixA. However, it can be inconvenient for
the user to generate. Section12 presents the details of routines for manipulating
sparse matrices intriplet form, compressed column form, and compressed row
form (the transpose of the compressed column form). The triplet form of a matrix
consists of three arrays. For theint version of UMFPACK:

int Ti [nz] ;
int Tj [nz] ;
double Tx [nz] ;

For thelong version:

14

long Ti [nz] ;
long Tj [nz] ;
double Tx [nz] ;

The k -th triplet is (i, j, aij), wherei = Ti [k] , j = Tj [k] , andaij =
Tx [k] . The triplets can be in any order in theTi , Tj , andTx arrays, and
duplicate entries may exist. Any duplicate entries are summed when the triplet
form is converted to compressed column form. This is a convenient way to create
a matrix arising in finite-element methods, for example.

Three routines are provided for manipulating sparse matrices:

• umfpack triplet to col , umfpack l triplet to col :

Converts a triplet form of a matrix to compressed column form (ready for in-
put toumfpack symbolic , umfpack qsymbolic , andumfpack numeric).
Identical toA = spconvert (i,j,x) in MATLAB, except that zero
entries are not removed, so that the pattern of entries in the compressed col-
umn form ofA are fully under user control. This is important if you want
to factorize a new matrix with theSymbolic object from a prior matrix
with the same pattern as the new one. MATLAB never stores explicitly zero
entries.

• umfpack col to triplet , umfpack l col to triplet :

The opposite ofumfpack triplet to col . Identical to[i,j,x] =
find (A) in MATLAB, except that numerically zero entries may be in-
cluded.

• umfpack transpose , umfpack l transpose :

Transposes and optionally permutes a column form matrix [22]. Identical
to B = A (P,Q)’ in MATLAB, except for the presence of numerically
zero entries.

It is quite easy to add matrices in triplet form, transpose them, and permute
them. See the discussion inumfpack triplet to col in Section12for more
details. All of the matrix manipulation routines can correctly operate on singular
matrices.

15

4.5 Getting the contents of opaque objects

There are cases where the user would like to do more with the LU factorization of
a matrix than solve a linear system. The opaqueSymbolic andNumeric ob-
jects are just that - opaque. In addition, the LU factors are stored in theNumeric
object in a compact way that does not store all of the row and column indices [15].
These objects may not be dereferenced by the user, and even if they were, it would
be difficult for a typical user to understand how the LU factors are stored. Thus,
three routines are provided for copying their contents into user-provided arrays
using simpler data structures. They are fully described in Section13:

• umfpack get lunz , umfpack l get lunz :

Returns the number of nonzeros inL andU.

• umfpack get numeric , umfpack l get numeric :

CopiesL, U, P, andQ from theNumeric object into arrays provided by
the user. The matrixL is returned in compressed row form (with the column
indices in each row sorted in ascending order). The matrixU is returned in
compressed column form (also with sorted columns). There are no explicit
zero entries inL andU, but such entries may exist in theNumeric object.
The permutationsP andQ are represented as permutation vectors, whereP
[k] = i means that rowi of the original matrix is thek -th pivot row (or
thek -th row ofPAQ), and whereQ [k] = j means that columnj of the
original matrix is thek -th pivot column. This is identical to how MATLAB
uses permutation vectors.

• umfpack get symbolic , umfpack l get symbolic :

Copies the contents of theSymbolic object (the initial column preorder-
ing, and supernodal column elimination tree, and information about each
frontal matrix) into arrays provided by the user.

UMFPACK itself does not make use of the output of theumfpack get *
routines; they are provided solely for returning the contents of the opaqueSymbolic
andNumeric objects to the user.

4.6 Reporting routines

None of the UMFPACK routines discussed so far prints anything, even when an
error occurs. UMFPACK provides you with nine routines for printing the input

16

and output arguments (including theControl settings andInfo statistics) of
UMFPACK routines discussed above. They are fully described in Section14:

• umfpack report status , umfpack l report status :

Prints the status (return value) of otherumfpack * routines.

• umfpack report info , umfpack l report info :

Prints the statistics returned in theInfo array byumfpack *symbolic ,
umfpack numeric , andumfpack *solve .

• umfpack report control , umfpack l report control :

Prints theControl settings.

• umfpack report matrix , umfpack l report matrix :

Verifies and prints a compressed column-form or compressed row-form
sparse matrix.

• umfpack report triplet , umfpack l report triplet :

Verifies and prints a matrix in triplet form.

• umfpack report symbolic , umfpack l report symbolic :

Verifies and prints aSymbolic object.

• umfpack report numeric , umfpack l report numeric :

Verifies and prints aNumeric object.

• umfpack report perm , umfpack l report perm :

Verifies and prints a permutation vector.

• umfpack report vector , umfpack l report vector :

Verifies and prints a real vector.

The umfpack report * routines behave slightly differently when com-
piled into the C-callable UMFPACK library than when used in the MATLAB
mexFunction. MATLAB stores its sparse matrices using the same compressed
column data structure discussed above, where row and column indices are in the
range0 to n-1 , but it prints them as if they are in the range1 to n. The UMF-
PACK mexFunction behaves the same way.

17

You can control how much theumfpack report * routines print by modi-
fying theControl [UMFPACK PRL] parameter. Its default value isUMFPACKDEFAULTPRL
which is equal to 1. Here is a summary of how the routines use this print level
parameter:

• umfpack report status , umfpack l report status :

No output if the print level is 0 or less, even when an error occurs. If
1, then error messages are printed, and nothing is printed if the status is
UMFPACKOK. If 2 or more, then the status is always printed. If 4 or more,
then the UMFPACK Copyright is printed. If 6 or more, then the UMF-
PACK License is printed. See also the first page of this User Guide for the
Copyright and License.

• umfpack report control , umfpack l report control :

No output if the print level is 1 or less. If 2 or more, all ofControl is
printed.

• umfpack report info , umfpack l report info :

No output if the print level is 1 or less. If 2 or more, all ofInfo is printed.

• all otherumfpack report * routines:

If the print level is 2 or less, then these routines return silently without
checking their inputs. If 3 or more, the inputs are fully verified and a short
status summary is printed. If 4, then the first few entries of the input argu-
ments are printed. If 5, then all of the input arguments are printed.

4.7 Utility routines

UMFPACK includes a routine that returns the time used by the process,umfpack timer .
The routine uses eithergetrusage (which is preferred), or the ANSI Cclock
routine if that is not available. It is fully described in Section15. It is the only rou-
tine that is identical in bothint andlong versions (there is noumfpack l timer
routine).

4.8 Control parameters

UMFPACK uses an optionaldouble array,Control , to modify its control pa-
rameters. These may be modified by the user (seeumfpack defaults and

18

Table 2: UMFPACK Control parameters
MATLAB ANSI C default description
Used by reporting routines:
Control(1) Control[UMFPACK PRL] 1 printing level
Used byumfpack *symbolic:
Control(2) Control[UMFPACK DENSEROW] 0.2 dense row threshold
Control(3) Control[UMFPACK DENSECOL] 0.2 dense column threshold
Used byumfpack *numeric:
Control(4) Control[UMFPACK PIVOT TOLERANCE] 0.1 partial pivoting tolerance
Control(5) Control[UMFPACK BLOCKSIZE] 24 BLAS block size
Control(6) Control[UMFPACK RELAXEDAMALGAMATION] 0.25 amalgamation
Control(7) Control[UMFPACK ALLOCINIT] 0.7 initial memory allocation
Control(13) Control[UMFPACK PIVOT OPTION] 0 symmetric pivot preference
Control(14) Control[UMFPACK RELAXED2AMALGAMATION] 0.1 amalgamation
Control(15) Control[UMFPACK RELAXED3AMALGAMATION] 0.125 amalgamation
Used byumfpack *solve:
Control(8) Control[UMFPACK IRSTEP] 2 max iter. refinement steps
Can only be changed at compile time:
Control(9) Control[UMFPACK COMPILEDWITH BLAS] - true if BLAS is used
Control(10) Control[UMFPACK COMPILEDFORMATLAB] - true for mexFunction
Control(11) Control[UMFPACK COMPILEDWITH GETRUSAGE] - true if getrusage used
Control(12) Control[UMFPACK COMPILEDIN DEBUGMODE] - true if debug mode enabled

umfpack l defaults). Each user-callable routine includes a complete de-
scription of how each control setting modifies its behavior. Table2 summarizes
the entire contents of theControl array. Future versions may make use of ad-
ditional entries in theControl array. Note that ANSI C uses 0-based indexing,
while MATLAB user’s 1-based indexing. Thus,Control(1) in MATLAB is
the same asControl[0] or Control[UMFPACK PRL] in ANSI C.

4.9 Larger examples

A full example of all user-callable UMFPACK routines (theint routines) is
available in the C main program,umfpack demo.c listed in Section17. A
nearly identical program that uses thelong integer version of UMFPACK is in
umfpack l demo.c . Another example is the UMFPACK mexFunction,umfpackmex.c .
The mexFunction accesses only the user-callable C interface to UMFPACK. The
only features that it does not use are the support for the triplet form (MATLAB’s
sparse arrays are already in the compressed column form) and the ability to reuse
theSymbolic object to numerically factorize a matrix whose pattern is the same

19

as a prior matrix analyzed byumfpack symbolic or umfpack qsymbolic .
The latter is an important feature, but the mexFunction does not return its opaque
Symbolic andNumeric objects to MATLAB. Instead, it gets the contents of
these objects after extracting them via theumfpack get * routines, and returns
them as MATLAB sparse matrices.

5 Synopsis of all C-callable routines (int version)

Each subsection, below, summarizes the input variables, output variables, return
values, and calling sequences of the routines in one category. Variables with the
same name as those already listed in a prior category have the same size and type.

5.1 Primary routines
#include "umfpack.h"
int status, n, nz, Ap [n+1], Ai [nz] ;
double Control [UMFPACK_CONTROL], Info [UMFPACK_INFO], Ax [nz], X [n], B [n] ;
void *Symbolic, *Numeric ;
char *sys ;

status = umfpack_symbolic (n, Ap, Ai, &Symbolic, Control, Info) ;
status = umfpack_numeric (Ap, Ai, Ax, Symbolic, &Numeric, Control, Info) ;
status = umfpack_solve (sys, Ap, Ai, Ax, X, B, Numeric, Control, Info) ;
umfpack_free_symbolic (&Symbolic) ;
umfpack_free_numeric (&Numeric) ;

5.2 Alternative routines
int Qinit [n], Wi [n] ;
double W [n], Y [n], Z [n], S [n] ;

umfpack_defaults (Control) ;
status = umfpack_qsymbolic (n, Ap, Ai, Qinit, &Symbolic, Control, Info) ;
status = umfpack_wsolve (sys, Ap, Ai, Ax, X, B, Numeric, Control, Info,

Wi, W, Y, Z, S) ;

5.3 Matrix manipulation routines
int Ti [nz], Tj [nz], Bp [n+1], Bi [max(n,nz)], P [n], Q [n], Cp [n+1], Ci [nz] ;
double Tx [nz], Cx [nz], Bx [nz] ;

20

status = umfpack_col_to_triplet (n, Ap, Tj) ;
status = umfpack_triplet_to_col (n, nz, Ti, Tj, Tx, Bp, Bi, Bx) ;
status = umfpack_transpose (n, Ap, Ai, Ax, P, Q, Cp, Ci, Cx) ;

5.4 Getting the contents of opaque objects
int lnz, unz, Lp [n+1], Li [lnz], Up [n+1], Ui [unz] ;
double Lx [lnz], Ux [unz] ;
int nfr, nchains, nsparse_col, Qtree [n], Front_npivots [n], Front_parent [n],

Chain_start [n], Chain_maxrows [n], Chain_maxcols [n] ;

status = umfpack_get_lunz (&lnz, &unz, &n, Numeric) ;
status = umfpack_get_numeric (Lp, Li, Lx, Up, Ui, Ux, P, Q, Numeric) ;
status = umfpack_get_symbolic (&n, &nz, &nfr, &nchains, &nsparse_col,

Qtree, Front_npivots, Front_parent, Chain_start, Chain_maxrows,
Chain_maxcols, Symbolic) ;

Note: thensparse col argument is no longer relevant. It is always equal
to n in this version.

5.5 Reporting routines
char *name, *form ;

umfpack_report_status (Control, status) ;
umfpack_report_control (Control) ;
umfpack_report_info (Control, Info) ;
status = umfpack_report_matrix (name, n, Ap, Ai, Ax, form, Control) ;
status = umfpack_report_numeric (name, Numeric, Control) ;
status = umfpack_report_perm (name, n, P, Control) ;
status = umfpack_report_symbolic (name, Symbolic, Control) ;
status = umfpack_report_triplet (name, n, nz, Ti, Tj, Tx, Control) ;
status = umfpack_report_vector (name, n, X, Control) ;

6 Synopsis of all C-callable routines (long version)

Each subsection, below, summarizes the input variables, output variables, return
values, and calling sequences of the routines in one category. Variables with the
same name as those already listed in a prior category have the same size and type.
Note that the include file,umfpack.h , is the same for bothint and long
versions of UMFPACK.

21

6.1 Primary routines
#include "umfpack.h"
long status, n, nz, Ap [n+1], Ai [nz] ;
double Control [UMFPACK_CONTROL], Info [UMFPACK_INFO], Ax [nz], X [n], B [n] ;
void *Symbolic, *Numeric ;
char *sys ;

status = umfpack_l_symbolic (n, Ap, Ai, &Symbolic, Control, Info) ;
status = umfpack_l_numeric (Ap, Ai, Ax, Symbolic, &Numeric, Control, Info) ;
status = umfpack_l_solve (sys, Ap, Ai, Ax, X, B, Numeric, Control, Info) ;
umfpack_l_free_symbolic (&Symbolic) ;
umfpack_l_free_numeric (&Numeric) ;

6.2 Alternative routines
long Qinit [n], Wi [n] ;
double W [n], Y [n], Z [n], S [n] ;

umfpack_l_defaults (Control) ;
status = umfpack_l_qsymbolic (n, Ap, Ai, Qinit, &Symbolic, Control, Info) ;
status = umfpack_l_wsolve (sys, Ap, Ai, Ax, X, B, Numeric, Control, Info,

Wi, W, Y, Z, S) ;

6.3 Matrix manipulation routines
long Ti [nz], Tj [nz], Bp [n+1], Bi [max(n,nz)], P [n], Q [n], Cp [n+1], Ci [nz] ;
double Tx [nz], Cx [nz], Bx [nz] ;

status = umfpack_l_col_to_triplet (n, Ap, Tj) ;
status = umfpack_l_triplet_to_col (n, nz, Ti, Tj, Tx, Bp, Bi, Bx) ;
status = umfpack_l_transpose (n, Ap, Ai, Ax, P, Q, Cp, Ci, Cx) ;

6.4 Getting the contents of opaque objects
long lnz, unz, Lp [n+1], Li [lnz], Up [n+1], Ui [unz] ;
double Lx [lnz], Ux [unz] ;
long nfr, nchains, nsparse_col, Qtree [n], Front_npivots [n], Front_parent [n],

Chain_start [n], Chain_maxrows [n], Chain_maxcols [n] ;

status = umfpack_l_get_lunz (&lnz, &unz, &n, Numeric) ;
status = umfpack_l_get_numeric (Lp, Li, Lx, Up, Ui, Ux, P, Q, Numeric) ;
status = umfpack_l_get_symbolic (&n, &nz, &nfr, &nchains, &nsparse_col,

Qtree, Front_npivots, Front_parent, Chain_start, Chain_maxrows,

22

Chain_maxcols, Symbolic) ;

Note: thensparse col argument is no longer relevant. It is always equal
to n in this version.

6.5 Reporting routines
char *name, *form ;

umfpack_l_report_status (Control, status) ;
umfpack_l_report_control (Control) ;
umfpack_l_report_info (Control, Info) ;
status = umfpack_l_report_matrix (name, n, Ap, Ai, Ax, form, Control) ;
status = umfpack_l_report_numeric (name, Numeric, Control) ;
status = umfpack_l_report_perm (name, n, P, Control) ;
status = umfpack_l_report_symbolic (name, Symbolic, Control) ;
status = umfpack_l_report_triplet (name, n, nz, Ti, Tj, Tx, Control) ;
status = umfpack_l_report_vector (name, n, X, Control) ;

7 Synopsis of utility routines

This routine is the same in bothint andlong versions of UMFPACK.

double t ;

t = umfpack_timer () ;

8 Installation

UMFPACK comes with aMakefile for compiling the C-callableumfpack.a
library and theumfpack mexFunction on Unix. System-dependent configura-
tions are controlled by theMakefile , and defined inumf config.h listed in
Section18. You should not have to modifyumf config.h .

To compileumfpack.a on most Unix systems, all you need to do is to
type make. This will use the generic configuration, inMake.generic . The
three demo programs will be executed, and the output ofumfpack demo.c
and umfpack l demo.c will be compared withumfpack demo.out and
umfpack l demo.out . These two demo programs are identical, except that

23

umfpack demo.c uses theint version, whileumfpack l demo.out uses
the long version of UMFPACK. Expect to see a few differences, such as resid-
ual norms, compile-time control settings, and perhaps memory usage differences.
(The Compaq Alpha uses the LP64 model by default, so if you’re using that com-
puter compare your output with the 64-bit Solaris output inumfpack demo.out64
andumfpack l demo.out64). The BLAS [9, 11, 24] will not be used, so the
performance of UMFPACK will not be as high as possible. For better perfor-
mance, edit theMakefile and un-comment theinclude Make.* statement
that is specific to your computer. For example,

include Make.generic
include Make.linux
include Make.sgi
include Make.solaris
include Make.alpha
include Make.rs6000

will include the Solaris-specific configurations, which uses the Sun Perfor-
mance Library BLAS (sunperf), and compiler optimizations that are different
than the generic settings. If you change theMakefile or your system-specific
Make.* file, be sure to typemake purge before recompiling. Here are the
various parameters that you can control in yourMake.* file; more details are in
umf config.h listed in Section18:

• CC = your C compiler, usually,cc . If you don’t modify this string at all
in your Make.* , then themake program will use your default C compiler
(if make is installed properly).

• RANLIB = your system’sranlib program, if needed.

• CFLAGS = optimization flags, such as-O .

• CONFIG = configuration settings.

• LIB = your libraries, such as-lm or -lblas .

TheCONFIGstring can include combinations of the following:

• -DNBLASif you do not have any BLAS at all. By default,umf config.h
assumes you have some version of the BLAS. The BLAS are de-selected in
Make.generic with the statementCONFIG = -DNBLAS.

24

• -DNCBLASif you do not have the C-BLAS [24]. The interface to the C-
BLAS is identical on any system (Unix or Windows). By default,umf config.h
assumes you have the C-BLAS, except for Solaris (which hassunperf)
and MATLAB, which has its own BLAS for compiling the MATLAB mex-
Function on any system.

• -DNSUNPERFif you are on Solaris but do not havesunperf .

• -DLONGBLASif your BLAS can takelong integer input arguments. If
not defined, then theumfpack l * version of UMFPACK that useslong
integers does not call the BLAS.

• -DGETRUSAGEif you have thegetrusage function. This should exist
on any UNIX system.

• Options for controlling how C calls the Fortran BLAS:-DBLAS BY VALUE,
-DBLAS NOUNDERSCORE, and-DBLAS CHARARG. These are set au-
tomatically for Sun Solaris, SGI Irix, Red Hat Linux, Compaq Alpha, and
AIX (the IBM RS 6000).

To compile theumfpack mexFunction on Unix, typemake umfpack . The
MATLAB mex command will select the appropriate compiler and compiler flags
for your system, and the BLAS internal to MATLAB will be used. Themexopts.sh
file in your UMFPACK directory has been modified from the MATLAB default;
the unmodified version is inmexopts.sh.orig for comparison.

If you’re running Windows, and all you want to do is use UMFPACK in MAT-
LAB, then just typeumfpack make in MATLAB. MATLAB Version 6.0 or
higher is required. You won’t be able to use the BLAS when compiling with the
lcc compiler provided with MATLAB Version 6.0); you will get an error stating
that dgemmis undefined. There is no work-around for this problem. Either use a
different C compiler, or don’t use the BLAS.

9 Future work

Here are a few features that are not in UMFPACK Version 3.2, in no particular
order. They may appear in a future release of UMFPACK. If you are interested,
let me know and I could consider including them:

1. Future versions may have different defaultControl parameters.

25

2. a condition number estimator. You can write your own in MATLAB by
making a copy of the built-in MATLABcondest.m routine and replacing
LU with umfpack . Be sure to do so only if your MATLAB license allows
you to, and do not distribute the derivative MATLAB code without direct
permission from The Mathworks, Inc.

3. an estimate of the 1-norm ofPAQ− LU.
Seeftp://ftp.mathworks.com/pub/contrib/v4/linalg/normest1.m
for a similar algorithm that computes the 1-norm estimate ofσI + AAT −
LLT. It can easily be modified to compute the 1-norm estimate ofPAQ−
LU. See also [8].

4. a complex version.

5. when using iterative refinement, the residualAx − b could be returned
by umfpack solve (umfpack wsolve already does so, but this is not
documented).

6. the solve routines could handle multiple right-hand sides, and sparse right-
hand sides.

7. an option to redirect the error and diagnostic output to something other than
standard output.

8. permutation to block-triangular-form [13] for the C-callable interface.

9. the symbolic and numeric factorization could handle singular matrices, just
like MATLAB’s LU.

10. the ability to use user-providedmalloc , free , andrealloc memory
allocation routines. Note that UMFPACK makes very few calls to these
routines.

11. the ability to use user-provided work arrays, so thatmalloc , free , and
realloc realloc are not called. Theumfpack wsolve routine is one
example.

12. future versions may return more statistics in theInfo array, and they may
use more entries in theControl array.

26

13. use a method that takes time proportional to the number of nonzeros in
A to analyzeA when Qinit is provided (or whenQinit is not pro-
vided andumf colamd ignores ”dense” rows) [20]. The current method
in umf analyze.c takes time proportional to the number of nonzeros in
the upper bound ofU.

14. an option of extracting the diagonal ofU (or other subsets ofL andU) from
theNumeric object without having to extract the entire LU factorization.

15. a Fortran interface (this would probably require modifying UMFPACK to
use user-provided work arrays).

16. a C++ interface.

17. a parallel version using MPI.

27

10 The primary UMFPACK routines

The include files are the same for bothint and long versions of UMFPACK.
The generic integer type isInt , which is anint or long , depending on which
version of UMFPACK you are using.

10.1 umfpack symbolic and umfpack l symbolic
int umfpack_symbolic
(

int n,
const int Ap [],
const int Ai [],
void **Symbolic,
const double Control [UMFPACK_CONTROL],
double Info [UMFPACK_INFO]

) ;

long umfpack_l_symbolic
(

long n,
const long Ap [],
const long Ai [],
void **Symbolic,
const double Control [UMFPACK_CONTROL],
double Info [UMFPACK_INFO]

) ;

int Syntax:

#include "umfpack.h"
void *Symbolic ;
int n, *Ap, *Ai, status ;
double Control [UMFPACK_CONTROL], Info [UMFPACK_INFO] ;
status = umfpack_symbolic (n, Ap, Ai, &Symbolic, Control, Info) ;

long Syntax:

#include "umfpack.h"
void *Symbolic ;
long n, *Ap, *Ai, status ;
double Control [UMFPACK_CONTROL], Info [UMFPACK_INFO] ;
status = umfpack_l_symbolic (n, Ap, Ai, &Symbolic, Control, Info) ;

28

Purpose:

Given nonzero pattern of a sparse matrix A in column-oriented form,
umfpack_symbolic performs a column pre-ordering to reduce fill-in
(using UMF_colamd, modified from colamd V2.0 for UMFPACK), and a symbolic
factorization. This is required before the matrix can be numerically
factorized with umfpack_numeric. If you wish to bypass the UMF_colamd
pre-ordering, use umfpack_qsymbolic instead.

Returns:

The status code is returned. See Info [UMFPACK_STATUS], below.

Arguments:

Int n ; Input argument, not modified.

A is an n-by-n matrix. Restriction: n > 0.

Int Ap [n+1] ; Input argument, not modified.

Ap is an integer array of size n+1. On input, it holds the "pointers"
for the column form of the sparse matrix A. Column j of the matrix A
is held in Ai [(Ap [j]) ... (Ap [j+1]-1)]. The first entry, Ap [0],
must be zero, and Ap [j] < Ap [j+1] must hold for all j in the range
0 to n-1. The value nz = Ap [n] is thus the total number of entries
in the pattern of the matrix A. nz must be greater than zero.

Int Ai [nz] ; Input argument, not modified, of size nz = Ap [n].

The nonzero pattern (row indices) for column j is stored in
Ai [(Ap [j]) ... (Ap [j+1]-1)]. The row indices in a given column j
must be in ascending order, and no duplicate row indices may be present.
Row indices must be in the range 0 to n-1 (the matrix is 0-based).
See umfpack_triplet_to_col for how to sort the columns of a matrix
and sum up the duplicate entries. See umfpack_report_matrix for how to
print the matrix A.

void **Symbolic ; Output argument.

**Symbolic is the address of a (void *) pointer variable in the user’s
calling routine (see Syntax, above). On input, the contents of this
variable are not defined. On output, this variable holds a (void *)
pointer to the Symbolic object (if successful), or (void *) NULL if
a failure occurred.

29

double Control [UMFPACK_CONTROL] ; Input argument, not modified.

If a (double *) NULL pointer is passed, then the default control
settings are used. Otherwise, the settings are determined from the
Control array. See umfpack_defaults on how to fill the Control
array with the default settings. The following Control parameters
are used:

Control [UMFPACK_DENSE_ROW]: rows with more than
max (16, Control [UMFPACK_DENSE_ROW] * 16 * sqrt (n))
entries (after "dense" columns are removed) are ignored in the
column pre-ordering, UMF_colamd. Default: 0.2.

Control [UMFPACK_DENSE_COL]: columns with more than
max (16, Control [UMFPACK_DENSE_COL] * 16 * sqrt (n))
entries are placed placed last in the column pre-ordering by
UMF_colamd. Default: 0.2.

Control [UMFPACK_BLOCK_SIZE]: the block size to use for Level-3 BLAS
in the subsequent numerical factorization (umfpack_numeric).
A value less than 1 is treated as 1. Default: 24. Modifying this
parameter affects when updates are applied to the working frontal
matrix, and can indirectly affect fill-in and operation count.
As long as the block size is large enough (8 or so), this parameter
has modest effect on performance. In Version 3.0, this parameter
was an input to umfpack_numeric, and had a default value of 16.
On a Sun UltraSparc, a block size of 24 is better for larger
matrices (16 is better for smaller ones, but not by much). In the
current version, it is required in the symbolic analysis phase, and
is thus an input to this phase.

double Info [UMFPACK_INFO] ; Output argument, not defined on input.

Contains statistics about the symbolic analysis. If a (double *) NULL
pointer is passed, then no statistics are returned in Info (this is not
an error condition). The entire Info array is cleared (all entries set
to -1) and then the following statistics are computed:

Info [UMFPACK_STATUS]: status code. This is also the return value,
whether or not Info is present.

UMFPACK_OK

Each column of the input matrix contained row indices

30

in increasing order, with no duplicates. Only in this case
does umfpack_symbolic compute a valid symbolic factorization.
For the other cases below, no Symbolic object is created
(*Symbolic is (void *) NULL).

UMFPACK_ERROR_jumbled_matrix

Columns of input matrix were jumbled (unsorted columns or
duplicate entries).

UMFPACK_ERROR_n_nonpositive

n is less than or equal to zero.

UMFPACK_ERROR_singular_matrix

Matrix is singular.

UMFPACK_ERROR_nz_negative

Number of entries in the matrix is negative.

UMFPACK_ERROR_Ap0_nonzero

Ap [0] is nonzero.

UMFPACK_ERROR_col_length_negative

A column has a negative number of entries.

UMFPACK_ERROR_row_index_out_of_bounds

A row index is out of bounds.

UMFPACK_ERROR_out_of_memory

Insufficient memory to perform the symbolic analysis.

UMFPACK_ERROR_argument_missing

One or more required arguments (Ap and/or Ai) is missing.

UMFPACK_ERROR_internal_error

Something very serious went wrong. This is a bug.

31

Please contact the author (davis@cise.ufl.edu).

Info [UMFPACK_N]: the value of the input argument n.

Info [UMFPACK_NZ]: the number of entries in the input matrix (Ap [n]).

Info [UMFPACK_SIZE_OF_UNIT]: the number of bytes in a Unit,
for memory usage statistics below.

Info [UMFPACK_SIZE_OF_INT]: the number of bytes in an int.

Info [UMFPACK_SIZE_OF_LONG]: the number of bytes in a long.

Info [UMFPACK_SIZE_OF_POINTER]: the number of bytes in a void *
pointer.

Info [UMFPACK_SIZE_OF_ENTRY]: the number of bytes in a numerical entry.

Info [UMFPACK_NDENSE_ROW]: number of "dense" rows in A. These rows are
ignored when the column pre-ordering is computed in UMF_colamd.
If > 0, then the matrix had to be re-analyzed by UMF_analyze, which
does not ignore these rows. Note that all rows are stored in the
same data structure, regardless of whether they are "sparse",
"dense", or "empty".

Info [UMFPACK_NEMPTY_ROW]: number of "empty" rows in A. These are
rows whose entries are all in "dense" columns. Any given row
is classified as either "dense" or "empty" or "sparse".

Info [UMFPACK_NDENSE_COL]: number of "dense" columns in A.
These columns are ordered last in the factorization.
Any given column is classified as either "dense" or "empty" or
"sparse". All columns are stored in the same data structure,
however (Version 3.0 stored dense columns in a separate dense
array, but this is no longer true for Version 3.1 and following).

Info [UMFPACK_NEMPTY_COL]: number of "empty" columns in A. These are
columns whose entries are all in "dense" rows. These columns are
ordered last in the factorization, along with "dense" columns.

Info [UMFPACK_SYMBOLIC_DEFRAG]: number of garbage collections
performed in UMF_colamd, the column pre-ordering routine, and in
UMF_analyze, which is called if UMF_colamd isn’t, or if UMF_colamd
ignores one or more "dense" rows.

32

Info [UMFPACK_SYMBOLIC_PEAK_MEMORY]: the amount of memory (in Units)
required for umfpack_symbolic to complete. This is roughly
2.2*nz + (20 to 25)*n integers, depending on the matrix. This
count includes the size of the Symbolic object itself, which is
reported in Info [UMFPACK_SYMBOLIC_SIZE].

Info [UMFPACK_SYMBOLIC_SIZE]: the final size of the Symbolic object (in
Units). This is fairly small, roughly (1 to 6)*n integers,
depending on the matrix.

Info [UMFPACK_VARIABLE_INIT_ESTIMATE]: the Numeric object contains two
components. The first is fixed in size (O (n) information, plus
the "dense" part of the LU factors). The second part holds the
sparse LU factors and the contribution blocks from factorized
frontal matrices. This part changes in size during factorization.
Info [UMFPACK_VARIABLE_INIT_ESTIMATE] is the exact size (in Units)
required for this second variable-sized part in order for the
numerical factorization to start.

Info [UMFPACK_VARIABLE_PEAK_ESTIMATE]: the estimated peak size (in
Units) of the variable-sized part of the Numeric object. This is
usually an upper bound, but that is not guaranteed.

Info [UMFPACK_VARIABLE_FINAL_ESTIMATE]: the estimated final size (in
Units) of the variable-sized part of the Numeric object. This is
usually an upper bound, but that is not guaranteed. It holds just
the sparse LU factors.

Info [UMFPACK_NUMERIC_SIZE_ESTIMATE]: an estimate of the final size (in
Units) of the entire Numeric object (both fixed-size and variable-
sized parts), which holds the LU factorization (including the L, U,
P and Q matrices).

Info [UMFPACK_PEAK_MEMORY_ESTIMATE]: an estimate of the total amount of
memory (in Units) required by umfpack_symbolic and umfpack_numeric
to perform both the symbolic and numeric factorization. This is the
larger of the amount of memory needed in umfpack_numeric itself, and
the amount of memory needed in umfpack_symbolic
(Info [UMFPACK_SYMBOLIC_PEAK_MEMORY]). The count includes the size
of both the Symbolic and Numeric objects themselves.

Info [UMFPACK_FLOPS_ESTIMATE]: an estimate of the total floating-point
operations required to factorize the matrix. This is a "true"
theoretical estimate of the number of flops that would be performed
by a flop-parsimonious sparse LU algorithm. It assumes that no

33

extra flops are performed except for what is strictly required to
compute the LU factorization. It ignores, for example, the flops
performed by umfpack_numeric to add contribution blocks of frontal
matrices together. If L and U are the upper bound on the pattern
of the factors, then this flop count estimate can be represented in
Matlab as:

Lnz = full (sum (spones (L))) - 1 ; % nz in each col of L
Unz = full (sum (spones (U’)))’ - 1 ; % nz in each row of U
flops = 2*Lnz*Unz + sum (Lnz) ;

The flop counts include add, subtract, multiply, and divide. They
exclude max, absolute value computations, and comparisons.

The actual "true flop" count found by umfpack_numeric will be less
than this estimate.

Info [UMFPACK_LNZ_ESTIMATE]: an estimate of the number of nonzeros in
L, including the diagonal. Since L is unit-diagonal, the diagonal
of L is not stored. This estimate is a strict upper bound on the
actual nonzeros in L to be computed by umfpack_numeric.

Info [UMFPACK_UNZ_ESTIMATE]: an estimate of the number of nonzeros in
U, including the diagonal. This estimate is a strict upper bound on
the actual nonzeros in U to be computed by umfpack_numeric.

Info [UMFPACK_SYMBOLIC_TIME]: The time taken by umfpack_symbolic, in
seconds. In the ANSI C version, this may be invalid if the time
taken is more than about 36 minutes, because of wrap-around in
the ANSI C clock () function. Compile UMFPACK with -DGETRUSAGE
if you have the more accurate getrusage () function.

At the start of umfpack_symbolic, all of Info is set of -1, and then
after that only the above listed Info [...] entries are accessed.
Future versions might modify different parts of Info.

34

10.2 umfpack numeric and umfpack l numeric
int umfpack_numeric
(

const int Ap [],
const int Ai [],
const double Ax [],
void *Symbolic,
void **Numeric,
const double Control [UMFPACK_CONTROL],
double Info [UMFPACK_INFO]

) ;

long umfpack_l_numeric
(

const long Ap [],
const long Ai [],
const double Ax [],
void *Symbolic,
void **Numeric,
const double Control [UMFPACK_CONTROL],
double Info [UMFPACK_INFO]

) ;

int Syntax:

#include "umfpack.h"
void *Symbolic, *Numeric ;
int *Ap, *Ai, status ;
double *Ax, Control [UMFPACK_CONTROL], Info [UMFPACK_INFO] ;
status = umfpack_numeric (Ap, Ai, Ax, Symbolic, &Numeric, Control, Info) ;

long Syntax:

#include "umfpack.h"
void *Symbolic, *Numeric ;
long *Ap, *Ai, status ;
double *Ax, Control [UMFPACK_CONTROL], Info [UMFPACK_INFO] ;
status = umfpack_l_numeric (Ap, Ai, Ax, Symbolic, &Numeric, Control, Info) ;

Purpose:

Given a sparse matrix A in column-oriented form, and a symbolic analysis
computed by umfpack_symbolic, the umfpack_numeric routine performs the
numerical factorization, PAQ=LU, where P and Q are permutation matrices
(represented as permutation vectors), L is unit-lower triangular, and U

35

is upper triangular. This is required before the system Ax=b (or other
related linear systems) can be solved. umfpack_numeric can be called
multiple times for each call to umfpack_symbolic, to factorize a sequence
of matrices with identical nonzero pattern. Simply compute the Symbolic
object once, with umfpack_*symbolic, and reuse it for subsequent matrices.
umfpack_numeric safely detects if the pattern changes, and sets an
appropriate error code.

Returns:

The status code is returned. See Info [UMFPACK_STATUS], below.

Arguments:

Int Ap [n+1] ; Input argument, not modified.

This must be identical to the Ap array passed to umfpack_symbolic.
The value of n is what was passed to umfpack_symbolic (this is held in
the Symbolic object).

Int Ai [nz] ; Input argument, not modified, of size nz = Ap [n].

This must be identical to the Ai array passed to umfpack_symbolic.

Not all changes to Ai and Ap are detected; if the matrix has the same
number of nonzeros and can be factorized in the existing frontal
matrices as defined in the Symbolic object, then umfpack_numeric will
not complain, and will successfully factorize the matrix and return a
valid Numeric object.

double Ax [nz] ; Input argument, not modified, of size nz = Ap [n].

The numerical values of the sparse matrix A. The nonzero pattern (row
indices) for column j is stored in Ai [(Ap [j]) ... (Ap [j+1]-1)], and
the corresponding numerical values are stored in
Ax [(Ap [j]) ... (Ap [j+1]-1)].

void *Symbolic ; Input argument, not modified.

The Symbolic object, which holds the symbolic factorization computed by
umfpack_symbolic. The Symbolic object is not modified by
umfpack_numeric.

void **Numeric ; Output argument.

36

**Numeric is the addres of a (void *) pointer variable in the user’s
calling routine (see Syntax, above). On input, the contents of this
variable are not defined. On output, this variable holds a (void *)
pointer to the Numeric object (if successful), or (void *) NULL if
a failure occurred.

double Control [UMFPACK_CONTROL] ; Input argument, not modified.

If a (double *) NULL pointer is passed, then the default control
settings are used. Otherwise, the settings are determined from the
Control array. See umfpack_defaults on how to fill the Control
array with the default settings. The following Control parameters
are used:

Control [UMFPACK_PIVOT_TOLERANCE]: relative pivot tolerance for
threshold partial pivoting with row interchanges. In any given
column, an entry is numerically acceptable if it is greater than or
equal to Control [UMFPACK_PIVOT_TOLERANCE] times the largest
absolute value in the column. A value of 1.0 gives true partial
pivoting. A value of zero is treated as 1.0. Default: 0.1.
Smaller values tend to lead to sparser LU factors, but the solution
to the linear system can become inaccurate. Larger values can lead
to a more accurate solution (but not always), and usually an
increase in the total work.

Control [UMFPACK_RELAXED_AMALGAMATION]: This controls the creation of
"elements" (small dense submatrices) that are formed when a frontal
matrix is factorized. A new element is created if the current one,
plus the new pivot, contains "too many" explicitly zero numerical
entries. The two elements are merged if the number of extra zero
entries is < Control [UMFPACK_RELAXED_AMALGAMATION] times the
size of the merged element. A lower setting
decreases fill-in, but run-time and memory usage can increase.
A larger setting increases fill-in (because the extra zeros are
treated as normal entries during pivot selection), but this can
lead to an increase in run-time but (paradoxically) a decrease in
memory usage (one merged elements can take less space than two
separate elements). Except for the initial column ordering,
this parameter has the most impact on the run-time, fill-in,
operation count, and memory usage.
Default: 0.25, which is fine for nearly all matrices.
(For nearly all matrices, different values of this parameter can
decrease the run-time by at most 5%, but can also dramatically
increase the run time for some matrices).

37

Control [UMFPACK_RELAXED2_AMALGAMATION]: This, along with the block
size (Control [UMFPACK_BLOCK_SIZE]), controls how often the
pending updates are applied when the next pivot entry resides in
the current frontal matrix. If the number of zero entries in the
LU part of the current frontal matrix would exceed this parameter
times the size of the LU part, then the pending updates are applied
before the next pivot is included in the frontal matrix.
Default: 0.20 (that is, more than 10% zero entries causes the
pending updates to be applied). This input parameter is new
since Version 3.1.

Control [UMFPACK_RELAXED3_AMALGAMATION]: This, along with the block
size (Control [UMFPACK_BLOCK_SIZE]), controls how often the
pending updates are applied when the next pivot entry does NOT reside
in the current frontal matrix. If the number of zero entries in the
LU part of the current frontal matrix would exceed this parameter
times the size of the LU part, then the pending updates are applied
before the next pivot is included in the frontal matrix.
Default: 0.10 (that is, more than 10% zero entries causes the
pending updates to be applied). This input parameter is new
since Version 3.1.

Control [UMFPACK_ALLOC_INIT]: When umfpack_numeric starts, it allocates
memory for the Numeric object. Part of this is of fixed size
(approximately n double’s + 12*n integers).
The remainder is of variable size, which grows to hold the LU
factors and the frontal matrices created during factorization.
A estimate of the upper bound is computed by umfpack_symbolic, and
returned by umfpack_*symbolic in
Info [UMFPACK_VARIABLE_PEAK_ESTIMATE]. umfpack_numeric initially
allocates space for the variable-sized part equal to this estimate
times Control [UMFPACK_ALLOC_INIT]. Typically, umfpack_numeric
needs only about half the estimated memory space, so a setting of
0.5 or 0.6 often provides enough memory for umfpack_numeric to
factorize the matrix with no subsequent increases in the size of
this block. A value less than zero is treated as zero (in which
case, just the bare minimum amount of memory needed to start the
factorization is initially allocated). The bare initial memory
required is returned by umfpack_*symbolic in
Info [UMFPACK_VARIABLE_INIT_ESTIMATE] (which in fact not an
estimate, but exact). If the variable-size part of the Numeric
object is found to be too small sometime after numerical
factorization has started, the memory is increased in size by a
factor of 1.2. If this fails, the request is reduced by a factor
of 0.95 until it succeeds, or until it determines that no increase

38

in size is possible. Garbage collection then occurs. These two
factors (1.2 and 0.95) are fixed control parameters defined in
umf_internal.h and cannot be changed at run-time. You would need
to edit umf_internal.h to modify them. If you do this, be sure that
the two factors are greater than 1 and less than 1, respectively.

The strategy of attempting to malloc a working space, and re-trying
with a smaller space, may not work under Matlab, since mxMalloc
aborts the mexFunction if it fails. I may try to address this is
issue in a future release - in the mean time, decrease
Control [UMFPACK_ALLOC_INIT] if you run out of memory in Matlab.

Default initial allocation size: 0.7. Thus, with the default
control settings, the upper-bound is reached after two reallocations
(0.7 * 1.2 * 1.2 = 1.008).

Changing this parameter has no affect on fill-in or operation count.
It has a small impact on run-time (the extra time required to do
the garbage collection and memory reallocation).

Control [UMFPACK_PIVOT_OPTION]: If this is nonzero, then entries on
the diagonal of A are given preference over off-diagonal entries.
This can improve the fill-in on matrices with symmmetric nonzero
pattern. Default: 0 (do not give preference to the diagonal of A).
This parameter was added for UMFPACK Version 3.1.

double Info [UMFPACK_INFO] ; Output argument.

Contains statistics about the numeric factorization. If a
(double *) NULL pointer is passed, then no statistics are returned in
Info (this is not an error condition). The following statistics are
computed in umfpack_numeric:

Info [UMFPACK_STATUS]: status code. This is also the return value,
whether or not Info is present.

UMFPACK_OK

Numeric factorization was successful. Only in this case
does umfpack_numeric compute a valid numeric factorization.
For the other cases below, no Numeric object is created
(*Numeric is (void *) NULL).

UMFPACK_ERROR_out_of_memory

39

Insufficient memory to complete the numeric factorization.

UMFPACK_ERROR_argument_missing

One or more required arguments (Ap, Ai, and/or Ax) are missing.

UMFPACK_ERROR_singular_matrix

The input matrix is singular.

UMFPACK_ERROR_invalid_Symbolic_object

Symbolic object provided as input is invalid.

UMFPACK_ERROR_different_pattern

The pattern (Ap and/or Ai) has changed since the call to
umfpack_*symbolic which produced the Symbolic object.

Info [UMFPACK_N]: the value of n stored in the Symbolic object.

Info [UMFPACK_NZ]: the number of entries in the input matrix.
This value is obtained from the Symbolic object.

Info [UMFPACK_SIZE_OF_UNIT]: the number of bytes in a Unit, for memory
usage statistics below.

Info [UMFPACK_VARIABLE_INIT]: the initial size (in Units) of the
variable-sized part of the Numeric object. If this differs from
Info [UMFPACK_VARIABLE_INIT_ESTIMATE], then the pattern (Ap and/or
Ai) has changed since the last call to umfpack_*symbolic, which is
an error condition.

Info [UMFPACK_VARIABLE_PEAK]: the peak size (in Units) of the
variable-sized part of the Numeric object. This size is the amount
of space actually used inside the block of memory, not the space
allocated via UMF_malloc. You can reduce UMFPACK’s memory
requirements by setting Control [UMFPACK_ALLOC_INIT] to the ratio
Info [UMFPACK_VARIABLE_PEAK] / Info[UMFPACK_VARIABLE_PEAK_ESTIMATE].
This will ensure that no memory reallocations occur (you may want to
add 0.001 to make sure that integer roundoff does not lead to a
memory size that is 1 Unit too small; otherwise, garbage collection
and reallocation will occur).

Info [UMFPACK_VARIABLE_FINAL]: the final size (in Units) of the

40

variable-sized part of the Numeric object. It holds just the
sparse LU factors.

Info [UMFPACK_NUMERIC_SIZE]: the actual final size (in Units) of the
entire Numeric object, including the final size of the variable
part of the object. Info [UMFPACK_NUMERIC_SIZE_ESTIMATE],
an estimate, was computed by umfpack_symbolic. The estimate is
normally an upper bound on the actual final size, but this is not
guaranteed.

Info [UMFPACK_PEAK_MEMORY]: the actual peak memory usage (in Units) of
both umfpack_symbolic and umfpack_numeric. An estimate,
Info [UMFPACK_PEAK_MEMORY_ESTIMATE], was computed by
umfpack_symbolic. The estimate is normally an upper bound on the
actual peak usage, but this is not guaranteed. With testing on
hundreds of matrix arising in real applications, I have never
observed a matrix where this estimate or the Numeric size estimate
was less than the actual result, but this is theoretically possible.
Please send me one if you find such a matrix.

Info [UMFPACK_FLOPS]: the actual count of the (useful) floating-point
operations performed. An estimate, Info [UMFPACK_FLOPS_ESTIMATE],
was computed by umfpack_symbolic. The estimate is guaranteed to be
an upper bound on this flop count. The flop count excludes
"useless" flops on zero values, flops performed during the pivot
search (for tentative updates and assembly of candidate columns),
and flops performed to add frontal matrices together. It does
include the flops performed to factorize the "dense" and "empty"
columns.

Info [UMFPACK_LNZ]: the actual nonzero entries in final factor L,
including the diagonal. This excludes any zero entries in L,
although some of these are stored in the Numeric object. It does
include entries in "dense" or "empty" columns. The
Info [UMFPACK_LU_ENTRIES] statistic does account for all
explicitly stored zeros, however. Info [UMFPACK_LNZ_ESTIMATE],
an estimate, was computed by umfpack_symbolic. The estimate is
guaranteed to be an upper bound on Info [UMFPACK_LNZ].

Info [UMFPACK_UNZ]: the actual nonzero entries in final factor U,
including the diagonal. This excludes any zero entries in U,
although some of these are stored in the Numeric object. It does
include entries in "dense" or "empty" columns. The
Info [UMFPACK_LU_ENTRIES] statistic does account for all
explicitly stored zeros, however. Info [UMFPACK_UNZ_ESTIMATE],

41

an estimate, was computed by umfpack_symbolic. The estimate is
guaranteed to be an upper bound on Info [UMFPACK_UNZ].

Info [UMFPACK_NUMERIC_DEFRAG]: The number of garbage collections
performed during umfpack_numeric, to compact contents of the
variable-sized workspace used by umfpack_numeric. No estimate was
computed by umfpack_symbolic. In the current version of UMFPACK,
garbage collection is performed and then the memory is reallocated,
so this statistic is the same as Info [UMFPACK_NUMERIC_REALLOC],
below. It may differ in future releases.

Info [UMFPACK_NUMERIC_REALLOC]: The number of times that the Numeric
object was increased in size from its initial size. A rough upper
bound on the peak size of the Numeric object was computed by
umfpack_symbolic, so reallocations should be rare. However, if
umfpack_numeric is unable to allocate that much storage, it reduces
its request until either the allocation succeeds, or until it gets
too small to do anything with. If the memory that it finally got
was small, but usable, then the reallocation count could be high.
No estimate of this count was computed by umfpack_symbolic.

Info [UMFPACK_NUMERIC_COSTLY_REALLOC]: The number of times that the
system realloc () library routine had to move the workspace.
Realloc can sometimes increase the size of a block of memory
without moving it, which is much faster. This statistic will
always be <= Info [UMFPACK_NUMERIC_REALLOC]. If your memory space
is fragmented, then the number of "costly" realloc’s will be equal
to Info [UMFPACK_NUMERIC_REALLOC].

Info [UMFPACK_COMPRESSED_PATTERN]: The number of integers used to
represent the pattern of "sparse" part L and U. The "sparse" part
of L and U excludes entries on the diagonal, which is stored
separately. It excludes entries in the "dense" and "empty"
columns. Those are stored together in a single dense array of
size n by (Info [UMFPACK_NDENSE_COL] + Info [UMFPACK_NEMPTY_COL]),
and no integers are required to represent their pattern.

Info [UMFPACK_LU_ENTRIES]: The total number of numerical values that
are stored for the LU factors, including the dense array for "dense"
and "empty" columns. Some of the values may be explicitly zero.

Info [UMFPACK_NUMERIC_TIME]: The time taken by umfpack_numeric, in
seconds. In the ANSI C version, this may be invalid if the time
taken is more than about 36 minutes, because of wrap-around in
the ANSI C clock () function. Compile UMFPACK with -DGETRUSAGE

42

if you have the more accurate getrusage () function.

Only the above listed Info [...] entries are accessed. The remaining
entries of Info are not accessed or modified by umfpack_numeric.
Future versions might modify different parts of Info.

43

10.3 umfpack solve and umfpackl solve
int umfpack_solve
(

const char sys [],
const int Ap [],
const int Ai [],
const double Ax [],
double X [],
const double B [],
void *Numeric,
const double Control [UMFPACK_CONTROL],
double Info [UMFPACK_INFO]

) ;

long umfpack_l_solve
(

const char sys [],
const long Ap [],
const long Ai [],
const double Ax [],
double X [],
const double B [],
void *Numeric,
const double Control [UMFPACK_CONTROL],
double Info [UMFPACK_INFO]

) ;

int Syntax:

#include "umfpack.h"
void *Numeric ;
int status, *Ap, *Ai ;
char *sys ;
double *B, *X, *Ax, Info [UMFPACK_INFO], Control [UMFPACK_CONTROL] ;
status = umfpack_solve (sys, Ap, Ai, Ax, X, B, Numeric, Control, Info) ;

long Syntax:

#include "umfpack.h"
void *Numeric ;
long status, *Ap, *Ai ;
char *sys ;
double *B, *X, *Ax, Info [UMFPACK_INFO], Control [UMFPACK_CONTROL] ;
status = umfpack_l_solve (sys, Ap, Ai, Ax, X, B, Numeric, Control, Info);

44

Purpose:

Given LU factors computed by umfpack_numeric (PAQ=LU) and the
right-hand-side, B, solve a linear system for the solution X. Iterative
refinement is optionally performed. This routine dynamically allocates
workspace of size O(n).

Returns:

The status code is returned. See Info [UMFPACK_STATUS], below.

Arguments:

char sys [] ; Input argument, not modified.

A string that defines which system to solve. Iterative refinement can
be optionally performed when the sys argument is:

"Ax=b"
"A’x=b"

For these values of the sys argument, iterative refinement is not
performed (Control [UMFPACK_IRSTEP], Ap, Ai, and Ax are ignored):

"P’Lx=b"
"L’Px=b"
"UQ’x=b"
"QU’x=b"
"Lx=b"
"L’x=b"
"Ux=b"
"U’x=b"

Int Ap [n+1] ; Input argument, not modified.
Int Ai [nz] ; Input argument, not modified.
double Ax [nz] ; Input argument, not modified.

If iterative refinement is requested (Control [UMFPACK_IRSTEP] >= 1 and
Ax=b or A’x=b is being solved), then these arrays must be identical to
the same ones passed to umfpack_numeric. The umfpack_solve routine
does not check the contents of these three arguments, so the results
are undefined if Ap, Ai, and/or Ax are modified between the calls the
umfpack_numeric and umfpack_solve. These three arrays do not need to
be present (NULL pointers can be passed) if Control [UMFPACK_IRSTEP] is
zero, or if a system other than Ax=b or A’x=b is being solved.

45

double X [n] ; Output argument.

The solution to the linear system.

double B [n] ; Input argument, not modified.

The right-hand side vector, b, stored as a conventional array of size n.
This routine does not solve for multiple right-hand-sides, nor does it
allow b to be stored in a sparse-column form.

void *Numeric ; Input argument, not modified.

Numeric must point to a valid Numeric object, computed by
umfpack_numeric.

double Control [UMFPACK_CONTROL] ; Input argument, not modified.

If a (double *) NULL pointer is passed, then the default control
settings are used. Otherwise, the settings are determined from the
Control array. See umfpack_defaults on how to fill the Control
array with the default settings. The following Control parameters
are used:

Control [UMFPACK_IRSTEP]: The maximum number of iterative refinement
steps to attempt. A value less than zero is treated as zero. If
less than 1, or if Ax=b or A’x=b is not being solved, then the Ap,
Ai, and Ax arguments are not accessed. Default: 2.

double Info [UMFPACK_INFO] ; Output argument.

Contains statistics about the solution factorization. If a
(double *) NULL pointer is passed, then no statistics are returned in
Info (this is not an error condition). The following statistics are
computed in umfpack_solve:

Info [UMFPACK_STATUS]: status code. This is also the return value,
whether or not Info is present.

UMFPACK_OK

The linear system was successfully solved.

UMFPACK_ERROR_out_of_memory

46

Insufficient memory to solve the linear system.

UMFPACK_ERROR_argument_missing

One or more required arguments are missing. The B, X, and
sys arguments are always required. Info and Control are
not required. Ap, Ai, and Ax are required if Ax=b or A’x=b
is to be solve and the (default) iterative refinement is
requested.

UMFPACK_ERROR_invalid_Numeric_object

The Numeric object is not valid.

Info [UMFPACK_N]: the value of n stored in the Numeric object.

Info [UMFPACK_NZ]: the number of entries in the input matrix, Ap [n],
if iterative refinement is requested (sys is "Ax=b" or "A’x=b"
and Control [UMFPACK_IRSTEP] >= 1).

Info [UMFPACK_IR_TAKEN]: The number of iterative refinement steps
effectively taken. The number of steps attempted may be one more
than this; the refinement algorithm backtracks if the last
refinement step worsens the solution. This is set to -1 if
iterative refinement was not requested.

Info [UMFPACK_IR_ATTEMPTED]: The number of iterative refinement steps
attempted. The number of times a linear system was solved is one
more than this (once for the initial Ax=b, and once for each Ay=r
solved for each iterative refinement step attempted). This
statistic is set to -1 if iterative refinement was not requested.

Info [UMFPACK_OMEGA1]: sparse backward error estimate, omega1, if
iterative refinement was performed, or -1 if iterative refinement
not performed.

Info [UMFPACK_OMEGA2]: sparse backward error estimate, omega2, if
iterative refinement was performed, or -1 if iterative refinement
not performed.

Info [UMFPACK_SOLVE_FLOPS]: the number of floating point operations
performed to solve the linear system. This includes the work
taken for all iterative refinement steps, including the backtrack
(if any).

47

Info [UMFPACK_SOLVE_TIME]: The time taken by umfpack_solve, in
seconds. In the ANSI C version, this may be invalid if the time
taken is more than about 36 minutes, because of wrap-around in
the ANSI C clock () function. Compile UMFPACK with -DGETRUSAGE
if you have the more accurate getrusage () function.

Only the above listed Info [...] entries are accessed. The remaining
entries of Info are not accessed or modified by umfpack_solve.
Future versions might modify different parts of Info.

48

10.4 umfpack free symbolic and umfpack l free symbolic
void umfpack_free_symbolic
(

void **Symbolic
) ;

void umfpack_l_free_symbolic
(

void **Symbolic
) ;

int Syntax:

#include "umfpack.h"
void *Symbolic ;
umfpack_free_symbolic (&Symbolic) ;

long Syntax:

#include "umfpack.h"
void *Symbolic ;
umfpack_l_free_symbolic (&Symbolic) ;

Purpose:

Deallocates the Symbolic object and sets the Symbolic handle to NULL.
This routine is the only valid way of destroying the Symbolic object;
any other action (such as using "free (Symbolic) ;" or not freeing Symbolic
at all) will lead to memory leaks.

Arguments:

void **Symbolic ; Input argument, deallocated and Symbolic is
set to (void *) NULL on output.

Symbolic must point to a valid Symbolic object, computed by
umfpack_symbolic. No action is taken if Symbolic is a (void *) NULL
pointer.

49

10.5 umfpack free numeric and umfpack l free numeric
void umfpack_free_numeric
(

void **Numeric
) ;

void umfpack_l_free_numeric
(

void **Numeric
) ;

int Syntax:

#include "umfpack.h"
void *Numeric ;
umfpack_free_numeric (&Numeric) ;

long Syntax:

#include "umfpack.h"
void *Numeric ;
umfpack_l_free_numeric (&Numeric) ;

Purpose:

Deallocates the Numeric object and sets the Numeric handle to NULL.
This routine is the only valid way of destroying the Numeric object;
any other action (such as using "free (Numeric) ;" or not freeing Numeric
at all) will lead to memory leaks.

Arguments:

void **Numeric ; Input argument, deallocated and Numeric is
set to (void *) NULL on output.

Numeric must point to a valid Numeric object, computed by
umfpack_numeric. No action is taken if Numeric is a (void *) NULL
pointer.

50

11 Alternatives routines

11.1 umfpack defaults and umfpack l defaults
void umfpack_defaults
(

double Control [UMFPACK_CONTROL]
) ;

void umfpack_l_defaults
(

double Control [UMFPACK_CONTROL]
) ;

int Syntax:

#include "umfpack.h"
double Control [UMFPACK_CONTROL] ;
umfpack_defaults (Control) ;

long Syntax:

#include "umfpack.h"
double Control [UMFPACK_CONTROL] ;
umfpack_l_defaults (Control) ;

Purpose:

Sets the default control parameter settings.

Arguments:

double Control [UMFPACK_CONTROL] ; Output argument.

Control is set to the default control parameter settings. You can
then modify individual settings by changing specific entries in the
Control array. If Control is a (double *) NULL pointer, then
umfpack_defaults returns silently (no error is generated, since
passing a NULL pointer for Control to any UMFPACK routine is valid).

51

11.2 umfpack qsymbolic and umfpack l qsymbolic
int umfpack_qsymbolic
(

int n,
const int Ap [],
const int Ai [],
const int Qinit [],
void **Symbolic,
const double Control [UMFPACK_CONTROL],
double Info [UMFPACK_INFO]

) ;

long umfpack_l_qsymbolic
(

long n,
const long Ap [],
const long Ai [],
const long Qinit [],
void **Symbolic,
const double Control [UMFPACK_CONTROL],
double Info [UMFPACK_INFO]

) ;

int Syntax:

#include "umfpack.h"
void *Symbolic ;
int n, *Ap, *Ai, *Qinit, status ;
double Control [UMFPACK_CONTROL], Info [UMFPACK_INFO] ;
status = umfpack_qsymbolic (n, Ap, Ai, Qinit, &Symbolic, Control, Info) ;

long Syntax:

#include "umfpack.h"
void *Symbolic ;
long n, *Ap, *Ai, *Qinit, status ;
double Control [UMFPACK_CONTROL], Info [UMFPACK_INFO] ;
status = umfpack_l_qsymbolic (n, Ap, Ai, Qinit, &Symbolic, Control, Info) ;

Purpose:

Given the nonzero pattern of a sparse matrix A in column-oriented form, and
a sparsity preserving column preordering Qinit, umfpack_qsymbolic performs
the symbolic factorization of A*Qinit (or A (:,Qinit) in Matlab notation).
It also computes the column elimination tree post-ordering. This is

52

identical to umfpack_symbolic, except that colamd is not called and the
user input column order Qinit is used instead. Note that in general, the
Qinit passed to umfpack_qsymbolic will differ from the final Q found in
umfpack_numeric, because of the column etree postordering done in
umfpack_qsymbolic and sparsity-preserving modifications made within each
frontal matrix during umfpack_numeric.

*** WARNING *** A poor choice of Qinit can easily cause umfpack_numeric to
use a huge amount of memory and do a lot of work. The "default" symbolic
analysis method is umfpack_symbolic, not this routine. If you use this
routine, the performance of UMFPACK is your responsibility; UMFPACK will
not try to second-guess a poor choice of Qinit. If you are unsure about
the quality of your Qinit, then call both umfpack_symbolic and
umfpack_qsymbolic, and pick the one with lower estimates of work and
memory usage (Info [UMFPACK_FLOPS_ESTIMATE] and
Info [UMFPACK_PEAK_MEMORY_ESTIMATE]). Don’t forget to call
umfpack_free_symbolic to free the Symbolic object that you don’t need.

Returns:

The value of Info [UMFPACK_STATUS]; see below.

Arguments:

All arguments are the same as umfpack_symbolic, except for the following:

Int Qinit [n] ; Input argument, not modified.

The user’s fill-reducing initial column preordering. This must be a
permutation of 0..n-1. If Qinit [k] = j, then column j is the kth
column of the matrix A (:,Qinit) to be factorized. If Qinit is an
(Int *) NULL pointer, then colamd is called instead. In fact,

Symbolic = umfpack_symbolic (n, Ap, Ai, Control, Info) ;

is identical to

Symbolic = umfpack_qsymbolic (n, Ap, Ai, (Int *) NULL, Control, Info) ;

double Control [UMFPACK_CONTROL] ; Input argument, not modified.

Identical to umfpack_symbolic if Qinit is (Int *) NULL. Otherwise,
if Qinit is present, it is identical to umfpack_symbolic except for the
following:

53

Control [UMFPACK_DENSE_ROW]: ignored.

Control [UMFPACK_DENSE_COL]: Let j be the leftmost column in
A (:,Qinit) with more entries than the value determined by the
dense column control parameter (see umfpack_symbolic), or j=n if
there is no such column. Columns j through n-1 are all treated as
"dense", and factorized in a (n-j)-by-n dense array. When
determining Qinit, be sure the "dense" columns of A (:,Qinit) are
as far to the right as possible.

double Info [UMFPACK_INFO] ; Output argument, not defined on input.

Identical to umfpack_symbolic if Qinit is (Int *) NULL. Otherwise,
if Qinit is present, it is identical to umfpack_symbolic except for the
following:

Info [UMFPACK_NDENSE_ROW]: zero
Info [UMFPACK_NEMPTY_ROW]: zero
Info [UMFPACK_NDENSE_COL]: n-j, where j is defined above.
Info [UMFPACK_NEMPTY_COL]: zero

54

11.3 umfpack wsolve and umfpackl wsolve
int umfpack_wsolve
(

const char sys [],
const int Ap [],
const int Ai [],
const double Ax [],
double X [],
const double B [],
void *Numeric,
const double Control [UMFPACK_CONTROL],
double Info [UMFPACK_INFO],
int Wi [],
double W [],
double Y [],
double Z [],
double S []

) ;

long umfpack_l_wsolve
(

const char sys [],
const long Ap [],
const long Ai [],
const double Ax [],
double X [],
const double B [],
void *Numeric,
const double Control [UMFPACK_CONTROL],
double Info [UMFPACK_INFO],
long Wi [],
double W [],
double Y [],
double Z [],
double S []

) ;

int Syntax:

#include "umfpack.h"
void *Numeric ;
int status, *Ap, *Ai ;
char *sys ;
double *B, *X, *Ax, Info [UMFPACK_INFO], Control [UMFPACK_CONTROL] ;
int *Wi ;

55

double *W, *Y, *Z, *S ;
status = umfpack_wsolve (sys, Ap, Ai, Ax, X, B, Numeric, Control, Info,

Wi, W, Y, Z, S) ;

long Syntax:

#include "umfpack.h"
void *Numeric ;
long status, *Ap, *Ai ;
char *sys ;
double *B, *X, *Ax, Info [UMFPACK_INFO], Control [UMFPACK_CONTROL] ;
long *Wi ;
double *W, *Y, *Z, *S ;
status = umfpack_l_wsolve (sys, Ap, Ai, Ax, X, B, Numeric, Control, Info,

Wi, W, Y, Z, S) ;

Purpose:

Given LU factors computed by umfpack_numeric (PAQ=LU) and the
right-hand-side, B, solve a linear system for the solution X. Iterative
refinement is optionally performed. This routine is identical to
umfpack_solve, except that it does not dynamically allocate any workspace.
When you have many linear systems to solve, this routine is slightly faster
than umfpack_solve, since the workspace (Wi, W, Y, Z, and S) needs to be
allocated only once, prior to calling umfpack_wsolve.

Returns:

The status code is returned. See Info [UMFPACK_STATUS], below.

Arguments:

char sys [] ; Input argument, not modified.
Int Ap [n+1] ; Input argument, not modified.
Int Ai [nz] ; Input argument, not modified.
double Ax [nz] ; Input argument, not modified.
double X [n] ; Output argument.
double B [n] ; Input argument, not modified.
void *Numeric ; Input argument, not modified.
double Control [UMFPACK_CONTROL] ; Input argument, not modified.
double Info [UMFPACK_INFO] ; Output argument.

The above arguments are identical to umfpack_solve, except that the
error code UMFPACK_ERROR_out_of_memory will not be returned in
Info [UMFPACK_STATUS], since umfpack_wsolve does not allocate any

56

memory.

Int Wi [2*n] ; Workspace.
double W [n] ; Workspace.
double Y [n] ; Workspace, only needed for iterative refinement.
double Z [n] ; Workspace, only needed for iterative refinement.
double S [n] ; Workspace, only needed for iterative refinement.

The Wi, W, Y, Z, and S arguments are workspace used by umfpack_wsolve.
Their contents are undefined on output.

57

12 Matrix manipulation routines

12.1 umfpack col to triplet and umfpack l col to triplet
int umfpack_col_to_triplet
(

int n,
const int Ap [],
int Tj []

) ;

long umfpack_l_col_to_triplet
(

long n,
const long Ap [],
long Tj []

) ;

int Syntax:

#include "umfpack.h"
int n, *Tj, *Ap, status ;
status = umfpack_col_to_triplet (n, Ap, Tj) ;

long Syntax:

#include "umfpack.h"
long n, *Tj, *Ap, status ;
status = umfpack_l_col_to_triplet (n, Ap, Tj) ;

Purpose:

Converts a column-oriented matrix to a triplet form. Only the column
pointers, Ap, are required, and only the column indices of the triplet form
are constructed. This routine is the opposite of umfpack_triplet_to_col.
The matrix may be singular.

Returns:

UMFPACK_OK if successful
UMFPACK_ERROR_argument_missing if Ap or Tj is missing
UMFPACK_ERROR_n_nonpositive if n <= 0
UMFPACK_ERROR_Ap0_nonzero if Ap [0] != 0
UMFPACK_ERROR_nz_negative if Ap [n] < 0
UMFPACK_ERROR_col_length_negative if Ap [j] > Ap [j+1] for any j in the

58

range 0 to n-1.
Empty rows, unsorted columns, and duplicate entries do not cause an error
(these would only be evident by examining Ai). Empty columns are OK.

Arguments:

Int n ; Input argument, not modified.

A is an n-by-n matrix. Restriction: n > 0.

Int Ap [n+1] ; Input argument, not modified.

The column pointers of the column-oriented form of the matrix. See
umfpack_symbolic for a description. The number of entries in
the matrix is nz = Ap [n]. Restrictions on Ap are the same as those
for umfpack_transpose. Ap [0] must be zero, nz must be >= 0, and
Ap [j] <= Ap [j+1] and Ap [j] <= Ap [n] must be true for all j in the
range 0 to n-1. Empty columns are OK (that is, Ap [j] may equal
Ap [j+1] for any j in the range 0 to n-1).

Int Tj [nz] ; Output argument.

Tj is an integer array of size nz on input, where nz = Ap [n].
Suppose the column-form of the matrix is held in Ap, Ai, and Ax
(see umfpack_symbolic for a description). Then on output, the triplet
form of the same matrix is held in Ai (row indices), Tj (column
indices), and Ax (numerical values). Note, however, that this routine
does not require Ai and Ax in order to do the conversion.

59

12.2 umfpack triplet to col and umfpack l triplet to col
int umfpack_triplet_to_col
(

int n,
int nz,
const int Ti [],
const int Tj [],
const double Tx [],
int Bp [],
int Bi [],
double Bx []

) ;

long umfpack_l_triplet_to_col
(

long n,
long nz,
const long Ti [],
const long Tj [],
const double Tx [],
long Bp [],
long Bi [],
double Bx []

) ;

int Syntax:

#include "umfpack.h"
int n, nz, *Ti, *Tj, *Bp, *Bi, status ;
double *Tx, *Bx ;
status = umfpack_triplet_to_col (n, nz, Ti, Tj, Tx, Bp, Bi, Bx) ;

long Syntax:

#include "umfpack.h"
long n, nz, *Ti, *Tj, *Bp, *Bi, status ;
double *Tx, *Bx ;
status = umfpack_l_triplet_to_col (n, nz, Ti, Tj, Tx, Bp, Bi, Bx) ;

Purpose:

Converts a sparse matrix from "triplet" form to compressed-column form.

The triplet form of a matrix is a very simple data structure for basic
sparse matrix operations. For example, suppose you wish to factorize a

60

matrix A coming from a finite element method, in which A is a sum of
dense submatrices, A = E1 + E2 + E3 + The entries in each element
matrix Ei can be concatenated together in the three triplet arrays, and
any overlap between the elements will be correctly summed by
umfpack_triplet_to_col.

Transposing a matrix in triplet form is simple; just interchange the
use of Ti and Tj.

Permuting a matrix in triplet form is also simple. If you want the matrix
PAQ, or A (P,Q) in Matlab notation, where P [k] = i means that row i of
A is the kth row of PAQ and Q [k] = j means that column j of A is the kth
column of PAQ, then do the following. First, create inverse permutations
Pinv and Qinv such that Pinv [i] = k if P [k] = i and Qinv [j] = k if
Q [k] = j. Next, for the mth triplet (Ti [m], Tj [m], Tx [m]), replace
Ti [m] with Pinv [Ti [m]] and replace Tj [m] with Qinv [Tj [m]].

If you have a column-form matrix with duplicate entries or unsorted
columns, you can sort it and sum up the duplicates by first converting it
to triplet form with umfpack_col_to_triplet, and then coverting it back
with umfpack_triplet_to_col.

You can print the input triplet form with umfpack_report_triplet, and
the output matrix with umfpack_report_matrix.

The matrix may be singular (nz can be zero, and empty rows and/or columns
may exist).

Returns:

UMFPACK_OK if successful.
UMFPACK_ERROR_argument_missing if Bp, Bi, Ti, and/or Tj are missing.
UMFPACK_ERROR_n_nonpositive if n <= 0.
UMFPACK_ERROR_nz_negative if nz < 0.
UMFPACK_ERROR_invalid_triplet if for any k, Ti [k] and/or Tj [k] are not in

the range 0 to n-1.
UMFPACK_ERROR_out_of_memory if unable to allocate sufficient workspace.

Arguments:

Int n ; Input argument, not modified.

A is an n-by-n matrix. Restriction: n > 0. All row and column indices
in the triplet form must be in the range 0 to n-1.

61

Int nz ; Input argument, not modified.

The number of entries in the triplet form of the matrix. Restriction:
nz >= 0.

Int Ti [nz] ; Input argument, not modified.
Int Tj [nz] ; Input argument, not modified.
double Tx [nz] ; Input argument, not modified.

Ti, Tj, and Tx hold the "triplet" form of a sparse matrix. The kth
nonzero entry is in row i = Ti [k], column j = Tj [k], and has a
numerical value of a_ij = Tx [k]. The row and column indices i and j
must be in the range 0 to n-1. Duplicate entries may be present; they
are summed in the output matrix. This is not an error condition.
The "triplets" may be in any order. Tx is optional; if Tx and/or Bx
are not present (a (double *) NULL pointer), then Bx is not computed.

Int Bp [n+1] ; Output argument, not modified.

Bp is an integer array of size n+1 on input.
On output, Bp holds the "pointers" for the column form of the sparse
matrix A. Column j of the matrix A is held in
Bi [(Bp [j]) ... (Bp [j+1]-1)]. The first entry, Bp [0], is zero, and
Bp [j] <= Bp [j+1] holds for all j in the range 0 to n-1. The value
nz2 = Bp [n] is thus the total number of entries in the pattern of the
matrix A. Equivalently, the number of duplicate triplets is
nz - Bp [n].

Int Bi [max(n,nz2)] ; Output argument, not modified.

Bi is an integer array of size max (n,nz2) on input, where nz2 <= nz.
Bi is also used as workspace during the conversion, and for this use
the size of Bi must also be at least n.

The nonzero pattern (row indices) for column j is stored in
Bi [(Bp [j]) ... (Bp [j+1]-1)]. The row indices in a given column j
are in ascending order, and no duplicate row indices are present.
Row indices are in the range 0 to n-1 (the matrix is 0-based).

double Bx [nz2] ; Output argument, not modified, of size nz2 = Bp [n].

Bx is a double array of size nz2 on input, where nz2 <= nz. Bx is
optional; if Tx and/or Bx are not present (a (double *) NULL pointer),
then Bx is not computed. If present, Bx holds the numerical values of
the sparse matrix A. The nonzero pattern (row indices) for column j is

62

stored in Bi [(Bp [j]) ... (Bp [j+1]-1)], and the corresponding
numerical values are stored in Bx [(Bp [j]) ... (Bp [j+1]-1)].

63

12.3 umfpack transpose and umfpackl transpose
int umfpack_transpose
(

int n,
const int Ap [],
const int Ai [],
const double Ax [],
const int P [],
const int Q [],
int Cp [],
int Ci [],
double Cx []

) ;

long umfpack_l_transpose
(

long n,
const long Ap [],
const long Ai [],
const double Ax [],
const long P [],
const long Q [],
long Cp [],
long Ci [],
double Cx []

) ;

int Syntax:

#include "umfpack.h"
int n, status, *Ap, *Ai, *P, *Q, *Cp, *Ci ;
double *Ax, *Cx ;
status = umfpack_transpose (n, Ap, Ai, Ax, P, Q, Cp, Ci, Cx) ;

long Syntax:

#include "umfpack.h"
long n, status, *Ap, *Ai, *P, *Q, *Cp, *Ci ;
double *Ax, *Cx ;
status = umfpack_l_transpose (n, Ap, Ai, Ax, P, Q, Cp, Ci, Cx) ;

Purpose:

Transposes and optionally permutes a sparse matrix in row or column-form,
C = (PAQ)’. In Matlab notation, C = (A (P,Q))’. Alternatively, this

64

routine can be viewed as converting A (P,Q) from column-form to row-form,
or visa versa. Empty rows and columns may exist.
The matrix A may be singular.

umfpack_transpose is useful if you want to factorize A’ instead of A.
Factorizing A’ instead of A can be much better, particularly if AA’ is much
sparser than A’A. You can still solve Ax=b if you factorize A’, by solving
with the sys argument "A’x=b" in umfpack_*solve.

The input A and output C can be printed with umfpack_report matrix, and the
permutation vectors can be printed with umfpack_report_perm.

Returns:

UMFPACK_OK if successful.
UMFPACK_ERROR_out_of_memory if umfpack_transpose fails to allocate a

size-n workspace.
UMFPACK_ERROR_argument_missing if Ai, Ap, Ci, and/or Cp are missing.
UMFPACK_ERROR_n_nonpositive if n <= 0.
UMFPACK_ERROR_invalid_permutation if P and/or Q are invalid.
UMFPACK_ERROR_nz_negative if Ap [n] < 0.
UMFPACK_ERROR_Ap0_nonzero if Ap [0] != 0.
UMFPACK_ERROR_col_length_negative if Ap [j] > Ap [j+1] for any j in the

range 0 to n-1.
UMFPACK_ERROR_row_index_out_of_bounds if any row index i is < 0 or >= n.
UMFPACK_ERROR_jumbled_matrix if the row indices in any column are not in

ascending order.

Arguments:

Int n ; Input argument, not modified.

A is an n-by-n matrix. Restriction: n > 0.

Int Ap [n+1] ; Input argument, not modified.

The column pointers of the column-oriented form of the matrix A. See
umfpack_symbolic for a description. The number of entries in
the matrix is nz = Ap [n]. Ap [0] must be zero, Ap [n] must be > 0, and
Ap [j] <= Ap [j+1] and Ap [j] <= Ap [n] must be true for all j in the
range 0 to n-1. Empty columns are OK (that is, Ap [j] may equal Ap
[j+1] for any j in the range 0 to n-1).

Int Ai [nz] ; Input argument, not modified, of size nz = Ap [n].

65

The nonzero pattern (row indices) for column j is stored in
Ai [(Ap [j]) ... (Ap [j+1]-1)]. The row indices in a given column j
must be in ascending order, and no duplicate row indices may be present.
Row indices must be in the range 0 to n-1 (the matrix is 0-based).

double Ax [nz] ; Input argument, not modified, of size nz = Ap [n].

If present, these are the numerical values of the sparse matrix A.
The nonzero pattern (row indices) for column j is stored in
Ai [(Ap [j]) ... (Ap [j+1]-1)], and the corresponding numerical values
are stored in Ax [(Ap [j]) ... (Ap [j+1]-1)]. If Ax and/or Cx are not
present, then the output Cx [...] is not computed, and only the pattern
is transposed. This is not an error condition.

Int P [n] ; Input argument, not modified.

The permutation vector P is defined as P [k] = i, where the original
row i of A is the kth row of PAQ. If you want to use the identity
permutation for P, simply pass (Int *) NULL for P. This is not an error
condition.

Int Q [n] ; Input argument, not modified.

The permutation vector Q is defined as Q [k] = j, where the original
column j of A is the kth column of PAQ. If you want to use the identity
permutation for Q, simply pass (Int *) NULL for Q. This is not an error
condition.

Int Cp [n+1] ; Output argument.

The column pointers of the matrix C = (A (P,Q))’, in the same form
as the column pointers Ap for the matrix A.

Int Ci [nz] ; Output argument.

The row indices of the matrix C = (A (P,Q))’, in the same form
as the row indices Ai for the matrix A.

double Cx [nz] ; Output argument.

If present, these are the numerical values of the sparse matrix C,
in the same form as the values Ax of the matrix A. If Ax and/or Cx
are not present, then the output Cx [...] is not computed, and only
the pattern is transposed. This is not an error condition.

66

13 Getting the contents of opaque objects

13.1 umfpack get lunz and umfpack l get lunz
int umfpack_get_lunz
(

int *lnz,
int *unz,
int *n,
void *Numeric

) ;

long umfpack_l_get_lunz
(

long *lnz,
long *unz,
long *n,
void *Numeric

) ;

int Syntax:

#include "umfpack.h"
void *Numeric ;
int status, lnz, unz, n ;
status = umfpack_get_lunz (&lnz, &unz, &n, Numeric) ;

long Syntax:

#include "umfpack.h"
void *Numeric ;
long status, lnz, unz, n ;
status = umfpack_l_get_lunz (&lnz, &unz, &n, Numeric) ;

Purpose:

Determines the size and number of nonzeros in the LU factors held by the
Numeric object. These are also the sizes of the output arrays required
by umfpack_get_numeric.

This routine may seem redundant, since n is a value originally passed to
umfpack_symbolic by the user, and lnz and unz are available from the Info
array. However, the Info array is not always returned (its use is
optional). This routine is also useful in the context of many sparse linear
systems, with many Numeric handles. The user could store an array of

67

Numeric objects in an array of (void *) pointers, for example. The Info
array is re-initialized each time an UMFPACK routine is called, and thus the
lnz and unz information could be lost. Lnz and unz can differ from
different calls to umfpack_numeric with different numerical values (Ax),
even when using the same Symbolic object. This routine allows the LU
factors to be extracted from the Numeric object (with umfpack_get_numeric)
without the use of the corresponding Info array.

Returns:

UMFPACK_OK if successful.
UMFPACK_ERROR_invalid_Numeric_object if Numeric is not a valid object.
UMFPACK_ERROR_argument_missing if lnz, unz, or n are (Int *) NULL

Arguments:

Int *lnz ; Output argument.

The number of nonzeros in L, including the diagonal (which is all
one’s). This value is the required size of the Li and Lx arrays as
computed by umfpack_get_numeric. The value of lnz is identical to
Info [UMFPACK_LNZ], if that value was returned by umfpack_numeric.

Int *unz ; Output argument.

The number of nonzeros in U, including the diagonal. This value is the
required size of the Ui and Ux arrays as computed by
umfpack_get_numeric. The value of unz is identical to
Info [UMFPACK_UNZ], if that value was returned by umfpack_numeric.

Int *n ; Output argument.

The order of the L and U matrices. The size of Lp and Up, as required
by umfpack_get_numeric, is n+1, and the size of P and Q are n. The
value of n is identical to that passed to umfpack_symbolic.

void *Numeric ; Input argument, not modified.

Numeric must point to a valid Numeric object, computed by
umfpack_numeric.

68

13.2 umfpack get numeric and umfpack l get numeric
int umfpack_get_numeric
(

int Lp [],
int Li [],
double Lx [],
int Up [],
int Ui [],
double Ux [],
int P [],
int Q [],
void *Numeric

) ;

long umfpack_l_get_numeric
(

long Lp [],
long Li [],
double Lx [],
long Up [],
long Ui [],
double Ux [],
long P [],
long Q [],
void *Numeric

) ;

int Syntax:

#include "umfpack.h"
void *Numeric ;
int *Lp, *Li, *Up, *Ui, *P, *Q, status ;
double *Lx, *Ux ;
status = umfpack_get_numeric (Lp, Li, Lx, Up, Ui, Ux, P, Q, Numeric) ;

long Syntax:

#include "umfpack.h"
void *Numeric ;
long *Lp, *Li, *Up, *Ui, *P, *Q, status ;
double *Lx, *Ux ;
status = umfpack_l_get_numeric (Lp, Li, Lx, Up, Ui, Ux, P, Q, Numeric) ;

Purpose:

69

This routine copies the LU factors and permutation vectors from the Numeric
object into user-accessible arrays. This routine is not needed to solve a
linear system. Note that the output arrays Lp, Li, Lx, Up, Ui, Ux, P, and
Q are not allocated by umfpack_get_numeric; they must exist on input.

Returns:

Returns UMFPACK_OK if successful. Returns UMFPACK_ERROR_out_of_memory
if insufficient memory is available for the 2*n integer workspace that
UMFPACK_get_numeric allocates to construct L and/or U. Returns
UMFPACK_ERROR_invalid_Numeric_object if the Numeric object provided as
input is invalid.

Arguments:

Int Lp [n+1] ; Output argument.
Int Li [lnz] ; Output argument.
double Lx [lnz] ; Output argument.

The matrix L is returned in compressed-row form. The column indices
of row i and corresponding numerical values are in:

Li [Lp [i] ... Lp [i+1]-1]
Lx [Lp [i] ... Lp [i+1]-1]

respectively. Each row is stored in sorted order, from low column
indices to higher. The last entry in each row is the diagonal, which
is numerically equal to one. The sizes of Lp, Li, and Lx are returned
by umfpack_get_lunz. If any one of the Lp, Li, or Lx arrays are not
present, the L matrix is not returned. This is not an error condition.
Thus, if you do not want the L matrix returned, simply pass
(Int *) NULL for Lp and Li, and (double *) NULL for Lx.
The L matrix can be printed if n, Lp, Li, and Lx are passed to
umfpack_report_matrix (using the "row" form).

Int Up [n+1] ; Output argument.
Int Ui [unz] ; Output argument.
double Ux [unz] ; Output argument.

The matrix U is returned in compressed-column form. The row indices
of column j and corresponding numerical values are in

Ui [Up [j] ... Up [j+1]-1]
Ux [Up [j] ... Up [j+1]-1]

70

respectively. Each column is stored in sorted order, from low row
indices to higher. The last entry in each column is the diagonal. The
sizes of Up, Ui, and Ux are returned by umfpack_get_lunz. If any one of
the Up, Ui, or Ux arrays are not present, the U matrix is not returned.
This is not an error condition. Thus, if you do not want the U matrix
returned, simply pass (Int *) NULL for Up and Ui, and (double *) NULL
for Ux. The U matrix can be printed if n, Up, Ui, and Ux are passed to
umfpack_report_matrix (using the "column" form).

Int P [n] ; Output argument.

The permutation vector P is defined as P [k] = i, where the original
row i of A is the kth pivot row in PAQ. If you do not want the P vector
to be returned, simply pass (Int *) NULL for P. This is not an error
condition. You can print P and Q with umfpack_report_perm.

Int Q [n] ; Output argument.

The permutation vector Q is defined as Q [k] = j, where the original
column j of A is the kth pivot column in PAQ. If you not want the Q
vector to be returned, simply pass (Int *) NULL for Q. This is not
an error condition. Note that Q is not necessarily identical to
Qtree, the column preordering held in the Symbolic object. Refer to
the description of Qtree and Front_npivots in umfpack_get_symbolic for
details.

void *Numeric ; Input argument, not modified.

Numeric must point to a valid Numeric object, computed by
umfpack_numeric.

71

13.3 umfpack get symbolic and umfpack l get symbolic
int umfpack_get_symbolic
(

int *n,
int *nz,
int *nfr,
int *nchains,
int *nsparse_col,
int Qtree [],
int Front_npivots [],
int Front_parent [],
int Chain_start [],
int Chain_maxrows [],
int Chain_maxcols [],
void *Symbolic

) ;

long umfpack_l_get_symbolic
(

long *n,
long *nz,
long *nfr,
long *nchains,
long *nsparse_col,
long Qtree [],
long Front_npivots [],
long Front_parent [],
long Chain_start [],
long Chain_maxrows [],
long Chain_maxcols [],
void *Symbolic

) ;

int Syntax:

#include "umfpack.h"
int status, n, nz, nfr, nchains, nsparse_col, *Qtree,

*Front_npivots, *Front_parent, *Chain_start, *Chain_maxrows,
*Chain_maxcols ;

void *Symbolic ;
status = umfpack_get_symbolic (&n, &nz, &nfr, &nchains, &nsparse_col,

Qtree, Front_npivots, Front_parent, Chain_start, Chain_maxrows,
Chain_maxcols, Symbolic) ;

long Syntax:

72

#include "umfpack.h"
long status, n, nz, nfr, nchains, nsparse_col, *Qtree,

*Front_npivots, *Front_parent, *Chain_start, *Chain_maxrows,
*Chain_maxcols ;

void *Symbolic ;
status = umfpack_l_get_symbolic (&n, &nz, &nfr, &nchains, &nsparse_col,

Qtree, Front_npivots, Front_parent, Chain_start, Chain_maxrows,
Chain_maxcols, Symbolic) ;

Purpose:

Copies the contents of the Symbolic object into simple integer arrays
accessible to the user. This routine is not needed to factorize
and/or solve a sparse linear system using UMFPACK. Note that the output
arrays Qtree, Front_npivots, Front_parent, Chain_start, Chain_maxrows,
and Chain_maxcols are not allocated by umfpack_get_symbolic; they must
exist on input.

The Symbolic object is small. It size, in integers, is
(3*nchains + n + 2*nfr + 20), which is no greater than 6*n+20. The object
holds the initial column permutation, the supernodal column elimination
tree, and information about each frontal matrix. You can print it with
umfpack_report_symbolic.

Returns:

Returns UMFPACK_OK if successful, UMFPACK_ERROR_invalid_Symbolic_object
if Symbolic is an invalid object.

Arguments:

Note that if any of the output arguments are (Int *) NULL pointers, then
that argument is not returned. This is not an error condition. Thus,
if you do not want a particular component of the Symbolic object to be
returned to you, simply pass a (Int *) NULL pointer for that particular
output argument.

Int *n ; Output argument.

The dimension of the matrix A analyzed by the call to umfpack_symbolic
that generated the Symbolic object.

Int *nz ; Output argument.

73

The number of nonzeros in A.

Int *nfr ; Output argument.

The number of frontal matrices that will be used by umfpack_numeric
to factorize the matrix A. One or more pivots are contained in each
frontal matrix, and the total number of pivots in the frontal matrices
is n (see the description of nsparse_col, below).
Thus, nfr is in the range 1 to n.

Int *nchains ; Output argument.

The frontal matrices are related to one another by the supernodal
column elimination tree. Each node in this tree is one frontal matrix.
The tree is partitioned into a set of disjoint paths, and a frontal
matrix chain is one path in this tree. Each chain is factorized using
a unifrontal technique, with a single working array that holds each
frontal matrix in the chain, one at a time. nchains is in the range
1 to nfr.

Int *nsparse_col ; Output argument.

This is equal to n. It differed from n in Version 3.0.

Int Qtree [n] ; Output argument.

The initial column permutation. If Qtree [k] = j, then this means that
column j is the kth pivot column in the preordered matrix.
Qtree is not necessarily the same as the final
column permutation Q, computed by umfpack_numeric. The numeric
factorization may reorder the pivot columns within each frontal matrix
to reduce fill-in.

Int Front_npivots [nfr] ; Output argument.

This array should be of size at least n, in order to guarantee that it
will be large enough to hold the output. Only the first nfr entries
are used, however. The kth frontal matrix holds Front_npivots [k] pivot
columns. Thus, the first frontal matrix, front 0, is used to factorize
the first Front_npivots [0] columns; these correspond to the original
columns Qtree [0] through Qtree [Front_npivots [0]-1]. The next frontal
matrix is used to factorize the next Front_npivots [1] columns, which
are thus the original columns Qtree [Front_npivots [0]] through
Qtree [Front_npivots [0] + Front_npivots [1] - 1], and so on.
The sum of Front_npivots [0..nfr-1] is equal to n.

74

Any modifications that umfpack_numeric makes to the initial column
permutation are constrained to within each frontal matrix. Thus,
for the first frontal matrix, Q [0] through Q [Front_npivots [0]-1] is
some permutation of the columns Qtree [0] through
Qtree [Front_npivots [0]-1]. For second frontal matrix,
Q [Front_npivots [0]] through Q [Front_npivots [0] + Front_npivots[1]-1]
is some permutation of the same portion of Qtree, and so on. All pivot
columns are numerically factorized within the frontal matrix originally
determined by the symbolic factorization; there is no delayed pivoting
across frontal matrices.

Int Front_parent [nfr] ; Output argument.

This array should be of size at least n, in order to guarantee that it
will be large enough to hold the output. Only the first nfr entries
are used, however. Front_parent [0..nfr-1] holds the supernodal column
elimination tree. Each node in the tree corresponds to a single frontal
matrix. The parent of node f is Front_parent [f].

Int Chain_start [nchains+1] ; Output argument.

This array should be of size at least n+1, in order to guarantee that it
will be large enough to hold the output. Only the first nchains+1
entries are used, however. The kth frontal matrix chain consists of
frontal matrices Chain_start [k] through Chain_start [k+1]-1. Thus,
Chain_start [0] is always 0, and Chain_start [nchains] is the total
number of frontal matrices, nfr. For two adjacent fronts f and f+1
within a single chain, f+1 is always the parent of f (that is,
Front_parent [f] = f+1).

Int Chain_maxrows [nchains] ; Output argument.
Int Chain_maxcols [nchains] ; Output argument.

These arrays should be of size at least n, in order to guarantee that
they will be large enough to hold the output. Only the first nchains
entries of Chain_maxrows and Chain_maxcols are used, however. The kth
frontal matrix chain requires a single working array of dimension
Chain_maxrows [k] by Chain_maxcols [k], for the unifrontal technique
that factorizes the frontal matrix chain. Since the symbolic
factorization only provides an upper bound on the size of each frontal
matrix, not all of the working array is necessarily used during the
numerical factorization.

Note that the upper bound on the number of rows and columns of each

75

frontal matrix is computed by umfpack_symbolic, but all that is
required by umfpack_numeric is the maximum of these two sets of
values for each frontal matrix chain. Thus, the size of each
individual frontal matrix is not preserved in the Symbolic object.

void *Symbolic ; Input argument, not modified.

The Symbolic object, which holds the symbolic factorization computed by
umfpack_symbolic. The Symbolic object is not modified by
umfpack_get_symbolic.

76

14 Reporting routines

14.1 umfpack report status and umfpack l report status
void umfpack_report_status
(

const double Control [UMFPACK_CONTROL],
int status

) ;

void umfpack_l_report_status
(

const double Control [UMFPACK_CONTROL],
long status

) ;

int Syntax:

#include "umfpack.h"
double Control [UMFPACK_CONTROL] ;
int status ;
umfpack_report_status (Control, status) ;

long Syntax:

#include "umfpack.h"
double Control [UMFPACK_CONTROL] ;
long status ;
umfpack_l_report_status (Control, status) ;

Purpose:

Prints the status (return value) of other umfpack_* routines.

Arguments:

double Control [UMFPACK_CONTROL] ; Input argument, not modified.

If a (double *) NULL pointer is passed, then the default control
settings are used. Otherwise, the settings are determined from the
Control array. See umfpack_defaults on how to fill the Control
array with the default settings. The following Control parameters
are used:

Control [UMFPACK_PRL]: printing level.

77

0 or less: no output, even when an error occurs
1: error messages only
2 or more: print status, whether or not an error occured
4 or more: also print the UMFPACK Copyright
6 or more: also print the UMFPACK License
Default: 1

Int status ; Input argument, not modified.

The return value from another umfpack_* routine.

78

14.2 umfpack report control and umfpack l report control
void umfpack_report_control
(

const double Control [UMFPACK_CONTROL]
) ;

void umfpack_l_report_control
(

const double Control [UMFPACK_CONTROL]
) ;

int Syntax:

#include "umfpack.h"
double Control [UMFPACK_CONTROL] ;
umfpack_report_control (Control) ;

long Syntax:

#include "umfpack.h"
double Control [UMFPACK_CONTROL] ;
umfpack_l_report_control (Control) ;

Purpose:

Prints the current control settings. Note that with the default print
level, nothing is printed. Does nothing if Control is (double *) NULL.

Arguments:

double Control [UMFPACK_CONTROL] ; Input argument, not modified.

If a (double *) NULL pointer is passed, then the default control
settings are used. Otherwise, the settings are determined from the
Control array. See umfpack_defaults on how to fill the Control
array with the default settings. The following Control parameters
are used:

Control [UMFPACK_PRL]: printing level.

1 or less: no output
2 or more: print all of Control
Default: 1

79

14.3 umfpack report info and umfpack l report info
void umfpack_report_info
(

const double Control [UMFPACK_CONTROL],
const double Info [UMFPACK_INFO]

) ;

void umfpack_l_report_info
(

const double Control [UMFPACK_CONTROL],
const double Info [UMFPACK_INFO]

) ;

int Syntax:

#include "umfpack.h"
double Control [UMFPACK_CONTROL], Info [UMFPACK_INFO] ;
umfpack_report_info (Control, Info) ;

long Syntax:

#include "umfpack.h"
double Control [UMFPACK_CONTROL], Info [UMFPACK_INFO] ;
umfpack_l_report_info (Control, Info) ;

Purpose:

Reports statistics from the umfpack_*symbolic, umfpack_numeric, and
umfpack_*solve routines.

Arguments:

double Control [UMFPACK_CONTROL] ; Input argument, not modified.

If a (double *) NULL pointer is passed, then the default control
settings are used. Otherwise, the settings are determined from the
Control array. See umfpack_defaults on how to fill the Control
array with the default settings. The following Control parameters
are used:

Control [UMFPACK_PRL]: printing level.

0 or less: no output, even when an error occurs
1: error messages only
2 or more: error messages, and print all of Info

80

Default: 1

double Info [UMFPACK_INFO] ; Input argument, not modified.

Info is an output argument of several UMFPACK routines.
The contents of Info are printed on standard output.

81

14.4 umfpack report matrix and umfpack l report matrix
int umfpack_report_matrix
(

const char name [],
int n,
const int Ap [],
const int Ai [],
const double Ax [],
const char form [],
const double Control [UMFPACK_CONTROL]

) ;

long umfpack_l_report_matrix
(

const char name [],
long n,
const long Ap [],
const long Ai [],
const double Ax [],
const char form [],
const double Control [UMFPACK_CONTROL]

) ;

int Syntax:

#include "umfpack.h"
int n, *Ap, *Ai, status ;
double *Ax, Control [UMFPACK_CONTROL] ;
status = umfpack_report_matrix ("A", n, Ap, Ai, Ax, "column", Control) ;

or:
status = umfpack_report_matrix ("A", n, Ap, Ai, Ax, "row", Control) ;

long Syntax:

#include "umfpack.h"
long n, *Ap, *Ai, status ;
double *Ax, Control [UMFPACK_CONTROL] ;
status = umfpack_l_report_matrix ("A", n, Ap, Ai, Ax, "column", Control) ;

or:
status = umfpack_l_report_matrix ("A", n, Ap, Ai, Ax, "row", Control) ;

Purpose:

Verifies and prints a row or column-oriented sparse matrix.

82

Returns:

UMFPACK_OK if Control [UMFPACK_PRL] <= 2 (the input is not checked).

Otherwise:

UMFPACK_OK if the matrix is valid and non-singular.

UMFPACK_ERROR_singular_matrix if the matrix is structurally singular but
otherwise valid. It has one or more rows or columns with no entries.
This test is made without considering the numerical values, but by just
looking at the pattern of the entries. Thus, all structurally singular
matrices are numerically singular, but not all numerically singular
matrices are structurally singular. The matrix may be operated on by
the matrix manipulation routines (umfpack_transpose,
umfpack_col_to_triplet) but it may not be analyzed by umfpack_*symbolic
or factorized by umfpack_numeric).

UMFPACK_ERROR_n_nonpositive if n <= 0.
UMFPACK_ERROR_argument_missing if Ap and/or Ai are missing.
UMFPACK_ERROR_nz_negative if Ap [n] < 0.
UMFPACK_ERROR_Ap0_nonzero if Ap [0] is not zero.
UMFPACK_ERROR_col_length_negative if Ap [j+1] < Ap [j] for any j in the

range 0 to n-1.
UMFPACK_ERROR_out_of_memory if out of memory.
UMFPACK_ERROR_row_index_out_of_bounds if any row index in Ai is not in

the range 0 to n-1.
UMFPACK_ERROR_jumbled_matrix if the row indices in any column are not in

ascending order, or contain duplicates.

Arguments:

char name [] ; Input argument, not modified.

The name of the matrix. This is optional; no name is printed if
a (char *) NULL pointer is passed.

Int n ; Input argument, not modified.

A is an n-by-n matrix. Restriction: n > 0.

Int Ap [n+1] ; Input argument, not modified.

Ap is an integer array of size n+1. If the form argument is "column",
then on input, it holds the "pointers" for the column form of the

83

sparse matrix A. The row indices of column j of the matrix A are held
in Ai [(Ap [j]) ... (Ap [j+1]-1)]. If form is "row", then Ap holds the
row pointers. The column indices of row j of the matrix are held
in Ai [(Ap [j]) ... (Ap [j+1]-1)].

The first entry, Ap [0], must be zero, and Ap [j] <= Ap [j+1] must hold
for all j in the range 0 to n-1. The value nz = Ap [n] is thus the
total number of entries in the pattern of the matrix A.
Restriction: Ap [0] == 0 and Ap [n] > 0.

Int Ai [nz] ; Input argument, not modified, of size nz = Ap [n].

If form is "column", then the nonzero pattern (row indices) for column
j is stored in Ai [(Ap [j]) ... (Ap [j+1]-1)]. Row indices must be in
the range 0 to n-1 (the matrix is 0-based).

If form is "row", then the nonzero pattern (column indices) for row
j is stored in Ai [(Ap [j]) ... (Ap [j+1]-1)]. Column indices must be in
the range 0 to n-1 (the matrix is 0-based).

double Ax [nz] ; Input argument, not modified, of size nz = Ap [n].

The numerical values of the sparse matrix A.

If form is "row", then the nonzero pattern (row indices) for column j
is stored in Ai [(Ap [j]) ... (Ap [j+1]-1)], and the corresponding
numerical values are stored in Ax [(Ap [j]) ... (Ap [j+1]-1)].

If form is "column", then the nonzero pattern (column indices) for row j
is stored in Ai [(Ap [j]) ... (Ap [j+1]-1)], and the corresponding
numerical values are stored in Ax [(Ap [j]) ... (Ap [j+1]-1)].

No numerical values are printed if Ax is a (double *) NULL pointer.

char *form ; Input argument, not modified.

The matrix is in row-oriented form if form is "row". Otherwise,
the matrix is in column-oriented form. The form argument may be
(char *) NULL, in which case the matrix is in column-oriented form.

double Control [UMFPACK_CONTROL] ; Input argument, not modified.

If a (double *) NULL pointer is passed, then the default control
settings are used. Otherwise, the settings are determined from the
Control array. See umfpack_defaults on how to fill the Control

84

array with the default settings. The following Control parameters
are used:

Control [UMFPACK_PRL]: printing level.

2 or less: no output. returns silently without checking anything.
3: fully check input, and print a short summary of its status
4: as 3, but print first few entries of the input
5: as 3, but print all of the input
Default: 1

85

14.5 umfpack report numeric and umfpack l report numeric
int umfpack_report_numeric
(

const char name [],
void *Numeric,
const double Control [UMFPACK_CONTROL]

) ;

long umfpack_l_report_numeric
(

const char name [],
void *Numeric,
const double Control [UMFPACK_CONTROL]

) ;

int Syntax:

#include "umfpack.h"
void *Numeric ;
double Control [UMFPACK_CONTROL] ;
int status ;
status = umfpack_report_numeric ("Numeric", Numeric, Control) ;

long Syntax:

#include "umfpack.h"
void *Numeric ;
double Control [UMFPACK_CONTROL] ;
long status ;
status = umfpack_l_report_numeric ("Numeric", Numeric, Control) ;

Purpose:

Verifies and prints a Numeric object. This routine checks the object more
carefully than the computational routines. Normally, this check is not
required, since umfpack_numeric either returns (void *) NULL, or a valid
Numeric object. However, if you suspect that your own code has corrupted
the Numeric object (by overruning memory bounds, for example), then this
routine might be able to detect a corrupted Numeric object. Since this
is a complex object, not all such user-generated errors are guaranteed to
be caught by this routine.

Returns:

UMFPACK_OK if Control [UMFPACK_PRL] <= 2 (the input is not checked).

86

Otherwise:

UMFPACK_OK if the Numeric object is valid.
UMFPACK_ERROR_invalid_Numeric_object if the Numeric object is invalid.
UMFPACK_ERROR_out_of_memory if out of memory.

Arguments:

char name [] ; Input argument, not modified.

The name of the Numeric object. This is optional; no name is printed
if a (char *) NULL pointer is passed.

void *Numeric ; Input argument, not modified.

The Numeric object, which holds the numeric factorization computed by
umfpack_numeric.

double Control [UMFPACK_CONTROL] ; Input argument, not modified.

If a (double *) NULL pointer is passed, then the default control
settings are used. Otherwise, the settings are determined from the
Control array. See umfpack_defaults on how to fill the Control
array with the default settings. The following Control parameters
are used:

Control [UMFPACK_PRL]: printing level.

2 or less: no output. returns silently without checking anything.
3: fully check input, and print a short summary of its status
4: as 3, but print first few entries of the input
5: as 3, but print all of the input
Default: 1

87

14.6 umfpack report perm and umfpack l report perm
int umfpack_report_perm
(

const char name [],
int n,
const int P [],
const double Control [UMFPACK_CONTROL]

) ;

long umfpack_l_report_perm
(

const char name [],
long n,
const long P [],
const double Control [UMFPACK_CONTROL]

) ;

int Syntax:

#include "umfpack.h"
int n, *P, status ;
double Control [UMFPACK_CONTROL] ;
status = umfpack_report_perm ("P", n, P, Control) ;

long Syntax:

#include "umfpack.h"
long n, *P, status ;
double Control [UMFPACK_CONTROL] ;
status = umfpack_l_report_perm ("P", n, P, Control) ;

Purpose:

Verifies and prints a permutation vector.

Returns:

UMFPACK_OK if Control [UMFPACK_PRL] <= 2 (the input is not checked).

Otherwise:

UMFPACK_OK if the permutation vector is valid (this includes that case
when P is (Int *) NULL, which is not an error condition.

UMFPACK_ERROR_n_nonpositive if n <= 0.

88

UMFPACK_ERROR_out_of_memory if out of memory.
UMFPACK_ERROR_invalid_permutation if P is not a valid permutation vector.

Arguments:

char name [] ; Input argument, not modified.

The name of the permutation vector. This is optional; no name is
printed if a (char *) NULL pointer is passed.

Int n ; Input argument, not modified.

P is an integer vector of size n. Restriction: n > 0.

Int P [n] ; Input argument, not modified.

A permutation vector of size n. If P is not present (a (Int *) NULL
pointer, then P is assumed to be the identity permutation. This is
consistent with its use as an input argument to umfpack_qsymbolic.
If P is present, the entries in P must range between 0 and n-1, and no
duplicates may exists.

double Control [UMFPACK_CONTROL] ; Input argument, not modified.

If a (double *) NULL pointer is passed, then the default control
settings are used. Otherwise, the settings are determined from the
Control array. See umfpack_defaults on how to fill the Control
array with the default settings. The following Control parameters
are used:

Control [UMFPACK_PRL]: printing level.

2 or less: no output. returns silently without checking anything.
3: fully check input, and print a short summary of its status
4: as 3, but print first few entries of the input
5: as 3, but print all of the input
Default: 1

89

14.7 umfpack report symbolic and umfpack l report symbolic
int umfpack_report_symbolic
(

const char name [],
void *Symbolic,
const double Control [UMFPACK_CONTROL]

) ;

long umfpack_l_report_symbolic
(

const char name [],
void *Symbolic,
const double Control [UMFPACK_CONTROL]

) ;

int Syntax:

#include "umfpack.h"
void *Symbolic ;
double Control [UMFPACK_CONTROL] ;
int status ;
status = umfpack_report_symbolic ("Symbolic", Symbolic, Control) ;

long Syntax:

#include "umfpack.h"
void *Symbolic ;
double Control [UMFPACK_CONTROL] ;
long status ;
status = umfpack_l_report_symbolic ("Symbolic", Symbolic, Control) ;

Purpose:

Verifies and prints a Symbolic object. This routine checks the object more
carefully than the computational routines. Normally, this check is not
required, since umfpack_*symbolic either returns (void *) NULL, or a valid
Symbolic object. However, if you suspect that your own code has corrupted
the Symbolic object (by overruning memory bounds, for example), then this
routine might be able to detect a corrupted Symbolic object. Since this is
a complex object, not all such user-generated errors are guaranteed to be
caught by this routine.

Returns:

UMFPACK_OK if Control [UMFPACK_PRL] is <= 2 (no inputs are checked).

90

Otherwise:

UMFPACK_OK if the Symbolic object is valid.
UMFPACK_ERROR_invalid_Symbolic_object if the Symbolic object is invalid.
UMFPACK_ERROR_out_of_memory if out of memory.

Arguments:

char name [] ; Input argument, not modified.

The name of the Symbolic object. This is optional; no name is printed
if a (char *) NULL pointer is passed.

void *Symbolic ; Input argument, not modified.

The Symbolic object, which holds the symbolic factorization computed by
umfpack_symbolic.

double Control [UMFPACK_CONTROL] ; Input argument, not modified.

If a (double *) NULL pointer is passed, then the default control
settings are used. Otherwise, the settings are determined from the
Control array. See umfpack_defaults on how to fill the Control
array with the default settings. The following Control parameters
are used:

Control [UMFPACK_PRL]: printing level.

2 or less: no output. returns silently without checking anything.
3: fully check input, and print a short summary of its status
4: as 3, but print first few entries of the input
5: as 3, but print all of the input
Default: 1

91

14.8 umfpack report triplet and umfpack l report triplet
int umfpack_report_triplet
(

const char name [],
int n,
int nz,
const int Ti [],
const int Tj [],
const double Tx [],
const double Control [UMFPACK_CONTROL]

) ;

long umfpack_l_report_triplet
(

const char name [],
long n,
long nz,
const long Ti [],
const long Tj [],
const double Tx [],
const double Control [UMFPACK_CONTROL]

) ;

int Syntax:

#include "umfpack.h"
int n, nz, *Ti, *Tj, status ;
double *Tx, Control [UMFPACK_CONTROL] ;
status = umfpack_report_triplet ("Triplet", n, nz, Ti, Tj, Tx, Control) ;

long Syntax:

#include "umfpack.h"
long n, nz, *Ti, *Tj, status ;
double *Tx, Control [UMFPACK_CONTROL] ;
status = umfpack_l_report_triplet ("Triplet", n, nz, Ti, Tj, Tx, Control) ;

Purpose:

Verifies and prints a matrix in triplet form.

Returns:

UMFPACK_OK if Control [UMFPACK_PRL] <= 2 (the input is not checked).

92

Otherwise:

UMFPACK_OK if the Triplet matrix is OK.
UMFPACK_ERROR_argument_missing if Ti and/or Tj are missing.
UMFPACK_ERROR_n_nonpositive if n <= 0.
UMFPACK_ERROR_nz_negative if nz < 0.
UMFPACK_ERROR_invalid_triplet if any row or column index in Ti and/or Tj

is not in the range 0 to n-1.

Arguments:

char name [] ; Input argument, not modified.

The name of the matrix. This is optional; no name is printed if
a (char *) NULL pointer is passed.

Int n ; Input argument, not modified.

A is an n-by-n matrix.

Int nz ; Input argument, not modified.

The number of entries in the triplet form of the matrix.

Int Ti [nz] ; Input argument, not modified.
Int Tj [nz] ; Input argument, not modified.
double Tx [nz] ; Input argument, not modified.

Ti, Tj, and Tx hold the "triplet" form of a sparse matrix. The kth
nonzero entry is in row i = Ti [k], column j = Tj [k], and has a
numerical value of a_ij = Tx [k]. The row and column indices i and j
must be in the range 0 to n-1. Duplicate entries
may be present; they are summed in the output matrix. This is not an
error condition. The "triplets" may be in any order. Tx is optional;
if Tx is not present (a (double *) NULL pointer), then the numerical
values are not printed.

double Control [UMFPACK_CONTROL] ; Input argument, not modified.

If a (double *) NULL pointer is passed, then the default control
settings are used. Otherwise, the settings are determined from the
Control array. See umfpack_defaults on how to fill the Control
array with the default settings. The following Control parameters
are used:

93

Control [UMFPACK_PRL]: printing level.

2 or less: no output. returns silently without checking anything.
3: fully check input, and print a short summary of its status
4: as 3, but print first few entries of the input
5: as 3, but print all of the input
Default: 1

94

14.9 umfpack report vector and umfpack l report vector
int umfpack_report_vector
(

const char name [],
int n,
const double X [],
const double Control [UMFPACK_CONTROL]

) ;

long umfpack_l_report_vector
(

const char name [],
long n,
const double X [],
const double Control [UMFPACK_CONTROL]

) ;

int Syntax:

#include "umfpack.h"
int n, status ;
double *X, Control [UMFPACK_CONTROL] ;
status = umfpack_report_vector ("X", n, X, Control) ;

long Syntax:

#include "umfpack.h"
long n, status ;
double *X, Control [UMFPACK_CONTROL] ;
status = umfpack_l_report_vector ("X", n, X, Control) ;

Purpose:

Verifies and prints a real vector.

Returns:

UMFPACK_OK if Control [UMFPACK_PRL] <= 2 (the input is not checked).

Otherwise:

UMFPACK_OK if the vector is valid.
UMFPACK_ERROR_argument_missing if X is missing.
UMFPACK_ERROR_n_nonpositive if n <= 0.

95

Arguments:

char name [] ; Input argument, not modified.

The name of the vector. This is optional; no name is
printed if a (char *) NULL pointer is passed.

Int n ; Input argument, not modified.

X is a real vector of size n. Restriction: n > 0.

double X [n] ; Input argument, not modified.

A real vector of size n. X must not be (double *) NULL.

double Control [UMFPACK_CONTROL] ; Input argument, not modified.

If a (double *) NULL pointer is passed, then the default control
settings are used. Otherwise, the settings are determined from the
Control array. See umfpack_defaults on how to fill the Control
array with the default settings. The following Control parameters
are used:

Control [UMFPACK_PRL]: printing level.

2 or less: no output. returns silently without checking anything.
3: fully check input, and print a short summary of its status
4: as 3, but print first few entries of the input
5: as 3, but print all of the input
Default: 1

96

15 Utility routines

15.1 umfpack timer
double umfpack_timer (void) ;

Syntax (for both int and long versions):

#include "umfpack.h"
double t ;
t = umfpack_timer () ;

Purpose:

Returns the CPU time used by the process. Includes both "user" and "system"
time (the latter is time spent by the system on behalf of the process, and
is thus charged to the process).

This routine uses the Unix getrusage () routine, if available. It is not
subject to overflow. If getrusage () is not available, the portable ANSI
C clock () routine is used instead. Unfortunately, clock () overflows
if the CPU time exceeds 2147 seconds (about 36 minutes) when
sizeof (clock_t) is 4 bytes. If you have getrusage (), be sure to compile
UMFPACK with the -DGETRUSAGE flag set; see umf_config.h and the User Guide
for details.

Arguments:

None.

97

16 umfpack.h include file
/*

This is the umfpack.h include file, and should be included in all user code
that uses UMFPACK. Do not include any of the umf_* header files in user
code. All routines in UMFPACK starting with "umfpack_" are user-callable
(the 24 routines listed below). All other routines are prefixed "umf_",
and are not user-callable.

*/

#ifndef UMFPACK_H
#define UMFPACK_H

/* -- */
/* size of Info and Control arrays */
/* -- */

#define UMFPACK_INFO 90
#define UMFPACK_CONTROL 20

/* -- */
/* User-callable routines */
/* -- */

/* Primary routines: */
#include "umfpack_symbolic.h"
#include "umfpack_numeric.h"
#include "umfpack_solve.h"
#include "umfpack_free_symbolic.h"
#include "umfpack_free_numeric.h"

/* Alternative routines: */
#include "umfpack_defaults.h"
#include "umfpack_qsymbolic.h"
#include "umfpack_wsolve.h"

/* Matrix manipulation routines: */
#include "umfpack_triplet_to_col.h"
#include "umfpack_col_to_triplet.h"
#include "umfpack_transpose.h"

/* Getting the contents of the Symbolic and Numeric opaque objects: */
#include "umfpack_get_lunz.h"
#include "umfpack_get_numeric.h"
#include "umfpack_get_symbolic.h"

98

/* Reporting routines (the above 14 routines print nothing): */
#include "umfpack_report_status.h"
#include "umfpack_report_info.h"
#include "umfpack_report_control.h"
#include "umfpack_report_matrix.h"
#include "umfpack_report_triplet.h"
#include "umfpack_report_symbolic.h"
#include "umfpack_report_numeric.h"
#include "umfpack_report_perm.h"
#include "umfpack_report_vector.h"

/* Utility routines: */
#include "umfpack_timer.h"

/* -- */
/* Version, copyright, and license */
/* -- */

#define UMFPACK_VERSION "UMFPACK V3.2"

#define UMFPACK_COPYRIGHT \
"UMFPACK: Copyright (c) 2002 by Timothy A. Davis, University of Florida,\n" \
"davis@cise.ufl.edu. All Rights Reserved.\n"

#define UMFPACK_LICENSE \
"\nUMFPACK License:\n" \
"\n" \
" Your use or distribution of UMFPACK or any derivative code implies that\n"\
" you agree to this License.\n" \
"\n" \
" THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY\n" \
" EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.\n" \
"\n" \
" Permission is hereby granted to use or copy this program, provided\n" \
" that the Copyright, this License, and the Availability of the original\n" \
" version is retained on all copies. User documentation of any code that\n"\
" uses this code or any derivative code must cite the Copyright, this\n" \
" License, the Availability note, and \"Used by permission.\" If this\n" \
" code or any derivative code is accessible from within MATLAB, then\n" \
" typing \"help umfpack\" must cite the Copyright, and \"type umfpack\"\n" \
" must also cite this License and the Availability note. Permission to\n" \
" modify the code and to distribute modified code is granted, provided\n" \
" the Copyright, this License, and the Availability note are retained,\n" \

99

" and a notice that the code was modified is included. This software\n" \
" was developed with support from the National Science Foundation, and\n" \
" is provided to you free of charge.\n" \
"\n" \
"Availability: http://www.cise.ufl.edu/research/sparse\n" \
"\n"

/* -- */
/* contents of Info */
/* -- */

/* Note that umfpack_report.m must coincide with these definitions. */

/* returned by all routines that use Info: */
#define UMFPACK_STATUS 0
#define UMFPACK_N 1
#define UMFPACK_NZ 2

/* computed in UMFPACK_*symbolic and UMFPACK_numeric: */
#define UMFPACK_SIZE_OF_UNIT 3

/* computed in UMFPACK_*symbolic: */
#define UMFPACK_SIZE_OF_INT 4
#define UMFPACK_SIZE_OF_LONG 5
#define UMFPACK_SIZE_OF_POINTER 6
#define UMFPACK_SIZE_OF_ENTRY 7
#define UMFPACK_NDENSE_ROW 8
#define UMFPACK_NEMPTY_ROW 9
#define UMFPACK_NDENSE_COL 10
#define UMFPACK_NEMPTY_COL 11
#define UMFPACK_SYMBOLIC_DEFRAG 12
#define UMFPACK_SYMBOLIC_PEAK_MEMORY 13
#define UMFPACK_SYMBOLIC_SIZE 14
#define UMFPACK_SYMBOLIC_TIME 15

/* Info [16..19] unused */

/* estimates computed in UMFPACK_*symbolic: */
#define UMFPACK_NUMERIC_SIZE_ESTIMATE 20
#define UMFPACK_PEAK_MEMORY_ESTIMATE 21
#define UMFPACK_FLOPS_ESTIMATE 22
#define UMFPACK_LNZ_ESTIMATE 23
#define UMFPACK_UNZ_ESTIMATE 24
#define UMFPACK_VARIABLE_INIT_ESTIMATE 25

100

#define UMFPACK_VARIABLE_PEAK_ESTIMATE 26
#define UMFPACK_VARIABLE_FINAL_ESTIMATE 27
#define UMFPACK_MAX_FRONT_SIZE_ESTIMATE 28

/* Info [29..39] unused */

/* exact values, (estimates shown above) computed in UMFPACK_numeric: */
#define UMFPACK_NUMERIC_SIZE 40
#define UMFPACK_PEAK_MEMORY 41
#define UMFPACK_FLOPS 42
#define UMFPACK_LNZ 43
#define UMFPACK_UNZ 44
#define UMFPACK_VARIABLE_INIT 45
#define UMFPACK_VARIABLE_PEAK 46
#define UMFPACK_VARIABLE_FINAL 47
#define UMFPACK_MAX_FRONT_SIZE 48

/* Info [49..59] unused */

/* computed in UMFPACK_numeric: */
#define UMFPACK_NUMERIC_DEFRAG 60
#define UMFPACK_NUMERIC_REALLOC 61
#define UMFPACK_NUMERIC_COSTLY_REALLOC 62
#define UMFPACK_COMPRESSED_PATTERN 63
#define UMFPACK_LU_ENTRIES 64
#define UMFPACK_NUMERIC_TIME 65

/* Info [66..79] unused */

/* computed in UMFPACK_solve: */
#define UMFPACK_IR_TAKEN 80
#define UMFPACK_IR_ATTEMPTED 81
#define UMFPACK_OMEGA1 82
#define UMFPACK_OMEGA2 83
#define UMFPACK_SOLVE_FLOPS 84
#define UMFPACK_SOLVE_TIME 85

/* Info [86..89] unused */

/* Unused parts of Info may be used in future versions of UMFPACK. */

/* -- */
/* contents of Control */
/* -- */

101

/* used in all UMFPACK_report_* routines: */
#define UMFPACK_PRL 0

/* used in UMFPACK_*symbolic only: */
#define UMFPACK_DENSE_ROW 1
#define UMFPACK_DENSE_COL 2

/* used in UMFPACK_numeric only: */
#define UMFPACK_PIVOT_TOLERANCE 3
#define UMFPACK_BLOCK_SIZE 4
#define UMFPACK_RELAXED_AMALGAMATION 5
#define UMFPACK_ALLOC_INIT 6
#define UMFPACK_PIVOT_OPTION 12
#define UMFPACK_RELAXED2_AMALGAMATION 13
#define UMFPACK_RELAXED3_AMALGAMATION 14

/* used in UMFPACK_*solve only: */
#define UMFPACK_IRSTEP 7

/* compile-time settings - Control [8..11] cannot be changed at run time: */
#define UMFPACK_COMPILED_WITH_BLAS 8
#define UMFPACK_COMPILED_FOR_MATLAB 9
#define UMFPACK_COMPILED_WITH_GETRUSAGE 10
#define UMFPACK_COMPILED_IN_DEBUG_MODE 11

/* Control [15...19] unused */

/* Unused parts of Control may be used in future versions of UMFPACK. */

/* -- */
/* default values of Control [0..7,12..13]: */
/* -- */

/* Note that the default block sized changed for Version 3.1 and following. */

#define UMFPACK_DEFAULT_PRL 1
#define UMFPACK_DEFAULT_DENSE_ROW 0.2
#define UMFPACK_DEFAULT_DENSE_COL 0.2
#define UMFPACK_DEFAULT_PIVOT_TOLERANCE 0.1
#define UMFPACK_DEFAULT_BLOCK_SIZE 24
#define UMFPACK_DEFAULT_RELAXED_AMALGAMATION 0.25
#define UMFPACK_DEFAULT_RELAXED2_AMALGAMATION 0.1
#define UMFPACK_DEFAULT_RELAXED3_AMALGAMATION 0.125

102

#define UMFPACK_DEFAULT_ALLOC_INIT 0.7
#define UMFPACK_DEFAULT_IRSTEP 2
#define UMFPACK_DEFAULT_PIVOT_OPTION 0

/* default values of Control [0..7,12..13] may change in future versions */
/* of UMFPACK. */

/* -- */
/* status codes */
/* -- */

#define UMFPACK_OK (0)
#define UMFPACK_ERROR_out_of_memory (-1)
#define UMFPACK_ERROR_singular_matrix (-2)
#define UMFPACK_ERROR_invalid_Numeric_object (-3)
#define UMFPACK_ERROR_invalid_Symbolic_object (-4)
#define UMFPACK_ERROR_argument_missing (-5)
#define UMFPACK_ERROR_n_nonpositive (-6)
#define UMFPACK_ERROR_nz_negative (-7)
#define UMFPACK_ERROR_jumbled_matrix (-8)
#define UMFPACK_ERROR_Ap0_nonzero (-9)
#define UMFPACK_ERROR_row_index_out_of_bounds (-10)
#define UMFPACK_ERROR_different_pattern (-11)
#define UMFPACK_ERROR_col_length_negative (-12)
#define UMFPACK_ERROR_invalid_system (-13)
#define UMFPACK_ERROR_invalid_triplet (-14)
#define UMFPACK_ERROR_invalid_permutation (-15)
#define UMFPACK_ERROR_problem_too_large (-16)
#define UMFPACK_ERROR_internal_error (-911)

#endif /* UMFPACK_H */

103

17 Demo C main program,umfpack demo.c

Theumfpack l demo.c is identical except that all the routine names are changed,
andlong ’s are used instead ofint ’s.

/*
A demo of UMFPACK Version 3.2: See umfpack_demo.m for a (roughly)
equivalent Matlab version. The only difference is that while the Matlab
umfpack mexFunction provides separate access to umfpack_symbolic, via
umfpack (A, ’symbolic’), it does not use its output for a subsequent
numerical factorization. Thus, you will find that the output of this
program and the Matlab diary are slightly different. The Matlab output also
uses 1-based matrix row and column indices, not 0-based (the internal
represention is the same).

First, factor and solve a 5-by-5 system, Ax=b, using default parameters,

[2 3 0 0 0] [8] [1]
[3 0 4 0 6] [45] [2]

A = [0 -1 -3 2 0], b = [-3]. Solution is x = [3].
[0 0 1 0 0] [3] [4]
[0 4 2 0 1] [19] [5]

Then solve A’x=b, with solution:
x = [1.8158 1.4561 1.5000 -24.8509 10.2632]’

using the factors of A. Modify one entry (A (1,4) = 0, where the row and
column indices range from 0 to 4, obtaining the system:

[2 3 0 0 0] [8] [11.0]
[3 0 4 0 0] [45] [-4.6667]

A = [0 -1 -3 2 0], b = [-3]. Solution is x = [3.0].
[0 0 1 0 0] [3] [0.6667]
[0 4 2 0 1] [19] [31.6667]

The pattern of A has not changed (it has explicitly zero entry), so a
reanalysis with umfpack_symbolic does not need to be done (the Matlab
umfpack_demo.m will need to redo it, because the Matlab caller is not
provided with the Symbolic object). Refactorize (with umfpack_numeric),
and solve Ax=b. Note that the pivot ordering has changed. Next, change all
of the entries in A, but not the pattern. The system becomes

[2 13 0 0 0] [8] [8.5012]
[2 0 23 0 39] [45] [-0.6925]

A = [0 7 15 30 0], b = [-3]. Solution is x = [0.1667].
[0 0 18 0 0] [3] [-0.0218]

104

[0 10 18 0 37] [19] [0.6196]

Finally, compute B = A’, and do the symbolic and numeric factorization of B.
Factorizing A’ can sometimes be better than factorizing A itself (less work
and memory usage). Solve B’x=b twice; the solution is the same as the
solution to Ax=b for the above A.

*/

/* -- */
/* definitions */
/* -- */

#include <stdio.h>
#include <stdlib.h>
#include "umfpack.h"

#define ABS(x) ((x) >= 0 ? (x) : -(x))
#define MAX(a,b) (((a) > (b)) ? (a) : (b))
#ifndef TRUE
#define TRUE (1)
#endif
#ifndef FALSE
#define FALSE (0)
#endif

/* -- */
/* triplet form of the matrix. The triplets can be in any order. */
/* -- */

static int n = 5 ;
static int nz = 12 ;
static int Arow [] = { 0, 4, 1, 1, 2, 2, 0, 1, 2, 3, 4, 4} ;
static int Acol [] = { 0, 4, 0, 2, 1, 2, 1, 4, 3, 2, 1, 2} ;
static double Aval [] = {2., 1., 3., 4., -1., -3., 3., 6., 2., 1., 4., 2.} ;
static double b [] = {8., 45., -3., 3., 19.} ;
static double x [5] ;
static double r [5] ;

/* -- */
/* error: print a message and exit */
/* -- */

static void error
(

char *message

105

)
{

printf ("\n\n====== error: %s =====\n\n", message) ;
exit (1) ;

}

/* -- */
/* resid: compute the residual, r = Ax-b or r = A’x=b and return maxnorm (r) */
/* -- */

static double resid
(

int n,
int Ap [],
int Ai [],
double Ax [],
double x [],
double r [],
int transpose

)
{

int i, j, p ;
double norm ;

for (i = 0 ; i < n ; i++)
{

r [i] = -b [i] ;
}
if (transpose)
{

for (j = 0 ; j < n ; j++)
{

for (p = Ap [j] ; p < Ap [j+1] ; p++)
{

i = Ai [p] ;
r [j] += Ax [p] * x [i] ;

}
}

}
else
{

for (j = 0 ; j < n ; j++)
{

for (p = Ap [j] ; p < Ap [j+1] ; p++)

106

{
i = Ai [p] ;
r [i] += Ax [p] * x [j] ;

}
}

}
norm = 0. ;
for (i = 0 ; i < n ; i++)
{

norm = MAX (norm, ABS (r [i])) ;
}
return (norm) ;

}

/* -- */
/* main program */
/* -- */

/*ARGSUSED0*/ /* argc and argv are unused */
int main
(

int argc,
char **argv

)
{

double Info [UMFPACK_INFO], Control [UMFPACK_CONTROL], *Ax, *Bx, *Lx, *Ux,
*W, *Y, *Z, *S, t ;

int *Ap, *Ai, *Bp, *Bi, row, col, p, lnz, unz, nn, *Lp, *Li, *Ui, *Up,
*P, *Q, *Lj, i, j, k, anz, nfr, nchains, nsparse_col, *Qtree, fnpiv,
status, *Front_npivots, *Front_parent, *Chain_start, *Wi,
*Chain_maxrows, *Chain_maxcols ;

void *Symbolic, *Numeric ;

/* -- */
/* initializations */
/* -- */

t = umfpack_timer () ;

printf ("\n%s demo:\n", UMFPACK_VERSION) ;

/* get the default control parameters */
umfpack_defaults (Control) ;

107

/* change the default print level for this demo */
/* (otherwise, nothing will print) */
Control [UMFPACK_PRL] = 6 ;

/* print the license agreement */
umfpack_report_status (Control, UMFPACK_OK) ;
Control [UMFPACK_PRL] = 5 ;

/* print the control parameters */
umfpack_report_control (Control) ;

/* -- */
/* print A and b, and convert A to column-form */
/* -- */

/* print the right-hand-side */
(void) umfpack_report_vector ("b", n, b, Control) ;

/* print the triplet form of the matrix */
(void) umfpack_report_triplet ("A", n, nz, Arow, Acol, Aval, Control) ;

/* convert to column form */
Ap = (int *) malloc ((n+1) * sizeof (int)) ;
Ai = (int *) malloc (nz * sizeof (int)) ;
Ax = (double *) malloc (nz * sizeof (double)) ;
if (!Ap || !Ai || !Ax)
{

error ("out of memory") ;
}
status = umfpack_triplet_to_col (n, nz, Arow, Acol, Aval, Ap, Ai, Ax) ;
if (status != UMFPACK_OK)
{

umfpack_report_status (Control, status) ;
error ("umfpack_triplet_to_col failed") ;

}

/* print the column-form of A */
(void) umfpack_report_matrix ("A", n, Ap, Ai, Ax, "column", Control) ;

/* -- */
/* symbolic factorization */
/* -- */

status = umfpack_symbolic (n, Ap, Ai, &Symbolic, Control, Info) ;
if (status != UMFPACK_OK)

108

{
umfpack_report_info (Control, Info) ;
umfpack_report_status (Control, status) ;
error ("umfpack_symbolic failed") ;

}

/* print the symbolic factorization */
(void) umfpack_report_symbolic ("Symbolic factorization of A",

Symbolic, Control) ;

/* -- */
/* numeric factorization */
/* -- */

status = umfpack_numeric (Ap, Ai, Ax, Symbolic, &Numeric, Control, Info) ;
if (status != UMFPACK_OK)
{

umfpack_report_info (Control, Info) ;
umfpack_report_status (Control, status) ;
error ("umfpack_numeric failed") ;

}

/* print the numeric factorization */
(void) umfpack_report_numeric ("Numeric factorization of A",

Numeric, Control) ;

/* -- */
/* solve Ax=b */
/* -- */

status = umfpack_solve ("Ax=b", Ap, Ai, Ax, x, b, Numeric, Control, Info) ;
umfpack_report_info (Control, Info) ;
umfpack_report_status (Control, status) ;
if (status != UMFPACK_OK)
{

error ("umfpack_solve failed") ;
}
(void) umfpack_report_vector ("x (solution of Ax=b)", n, x, Control) ;
printf ("maxnorm of residual: %g\n\n", resid (n, Ap, Ai, Ax, x, r, FALSE)) ;

/* -- */
/* solve A’x=b */
/* -- */

status = umfpack_solve ("A’x=b", Ap, Ai, Ax, x, b, Numeric, Control, Info) ;

109

umfpack_report_info (Control, Info) ;
if (status != UMFPACK_OK)
{

error ("umfpack_solve failed") ;
}
(void) umfpack_report_vector ("x (solution of A’x=b)", n, x, Control) ;
printf ("maxnorm of residual: %g\n\n", resid (n, Ap, Ai, Ax, x, r, TRUE)) ;

/* -- */
/* modify one numerical value in the column-form of A */
/* -- */

/* change A (1,4), look for row index 1 in column 4. */
row = 1 ;
col = 4 ;
for (p = Ap [col] ; p < Ap [col+1] ; p++)
{

if (row == Ai [p])
{

printf ("\nchanging A (%d,%d) from %g", row, col, Ax [p]) ;
Ax [p] = 0.0 ;
printf (" to %g\n", Ax [p]) ;
break ;

}
}
(void) umfpack_report_matrix ("modified A", n, Ap, Ai, Ax, "column",

Control) ;

/* -- */
/* redo the numeric factorization */
/* -- */

/* The pattern (Ap and Ai) hasn’t changed, so the symbolic factorization */
/* doesn’t have to be redone, no matter how much we change Ax. */

/* We don’t need the Numeric object any more, so free it. */
umfpack_free_numeric (&Numeric) ;

/* Note that a memory leak would have occured if the old Numeric */
/* had not been free’d with umfpack_free_numeric above. */
status = umfpack_numeric (Ap, Ai, Ax, Symbolic, &Numeric, Control, Info) ;
if (status != UMFPACK_OK)
{

umfpack_report_info (Control, Info) ;
umfpack_report_status (Control, status) ;

110

error ("umfpack_numeric failed") ;
}
(void) umfpack_report_numeric ("Numeric factorization of modified A",

Numeric, Control) ;

/* -- */
/* solve Ax=b, with the modified A */
/* -- */

status = umfpack_solve ("Ax=b", Ap, Ai, Ax, x, b, Numeric, Control, Info) ;
umfpack_report_info (Control, Info) ;
if (status != UMFPACK_OK)
{

umfpack_report_status (Control, status) ;
error ("umfpack_solve failed") ;

}
(void) umfpack_report_vector ("x (with modified A)", n, x, Control) ;
printf ("maxnorm of residual: %g\n\n", resid (n, Ap, Ai, Ax, x, r, FALSE)) ;

/* -- */
/* modify all of the numerical values of A, but not the pattern */
/* -- */

for (col = 0 ; col < n ; col++)
{

for (p = Ap [col] ; p < Ap [col+1] ; p++)
{

row = Ai [p] ;
printf ("changing A (%d,%d) from %g", row, col, Ax [p]) ;
Ax [p] = Ax [p] + col*10 - row ;
printf (" to %g\n", Ax [p]) ;

}
}
(void) umfpack_report_matrix ("completely modified A (same pattern)",

n, Ap, Ai, Ax, "column", Control) ;

/* -- */
/* redo the numeric factorization */
/* -- */

umfpack_free_numeric (&Numeric) ;
status = umfpack_numeric (Ap, Ai, Ax, Symbolic, &Numeric, Control, Info) ;
if (status != UMFPACK_OK)
{

umfpack_report_info (Control, Info) ;

111

umfpack_report_status (Control, status) ;
error ("umfpack_numeric failed") ;

}
(void) umfpack_report_numeric (
"Numeric factorization of completely modified A", Numeric, Control) ;

/* -- */
/* solve Ax=b, with the modified A */
/* -- */

status = umfpack_solve ("Ax=b", Ap, Ai, Ax, x, b, Numeric, Control, Info) ;
umfpack_report_info (Control, Info) ;
if (status != UMFPACK_OK)
{

umfpack_report_status (Control, status) ;
error ("umfpack_solve failed") ;

}
(void) umfpack_report_vector ("x (with completely modified A)",

n, x, Control) ;
printf ("maxnorm of residual: %g\n\n", resid (n, Ap, Ai, Ax, x, r, FALSE)) ;

/* -- */
/* free the symbolic and numeric factorization */
/* -- */

umfpack_free_symbolic (&Symbolic) ;
umfpack_free_numeric (&Numeric) ;

/* -- */
/* B = transpose of A */
/* -- */

Bp = (int *) malloc ((n+1) * sizeof (int)) ;
Bi = (int *) malloc (nz * sizeof (int)) ;
Bx = (double *) malloc (nz * sizeof (double)) ;
if (!Bp || !Bi || !Bx)
{

error ("out of memory") ;
}
status = umfpack_transpose (n, Ap, Ai, Ax, (int *) NULL, (int *) NULL,

Bp, Bi, Bx) ;
if (status != UMFPACK_OK)
{

umfpack_report_status (Control, status) ;
error ("umfpack_transpose failed") ;

112

}
(void) umfpack_report_matrix ("B (transpose of A)",

n, Bp, Bi, Bx, "column", Control) ;

/* -- */
/* symbolic factorization of B */
/* -- */

status = umfpack_symbolic (n, Bp, Bi, &Symbolic, Control, Info) ;
if (status != UMFPACK_OK)
{

umfpack_report_info (Control, Info) ;
umfpack_report_status (Control, status) ;
error ("umfpack_symbolic failed") ;

}
(void) umfpack_report_symbolic ("Symbolic factorization of B",

Symbolic, Control) ;

/* -- */
/* copy the contents of Symbolic into user arrays print them */
/* -- */

printf ("\nGet the contents of the Symbolic object for B:\n") ;
printf ("(compare with umfpack_report_symbolic output, above)\n") ;
Qtree = (int *) malloc (n * sizeof (int)) ;
Front_npivots = (int *) malloc (n * sizeof (int)) ;
Front_parent = (int *) malloc (n * sizeof (int)) ;
Chain_start = (int *) malloc ((n+1) * sizeof (int)) ;
Chain_maxrows = (int *) malloc (n * sizeof (int)) ;
Chain_maxcols = (int *) malloc (n * sizeof (int)) ;
if (!Qtree || !Front_npivots || !Front_parent || !Chain_start ||

!Chain_maxrows || !Chain_maxcols)
{

error ("out of memory") ;
}

status = umfpack_get_symbolic (&nn, &anz, &nfr, &nchains, &nsparse_col,
Qtree, Front_npivots, Front_parent, Chain_start,
Chain_maxrows, Chain_maxcols, Symbolic) ;

printf ("From the Symbolic object, B is of dimension n = %d\n", nn) ;
printf (" with nz = %d, number of fronts = %d,\n", nz, nfr) ;
printf (" number of frontal matrix chains = %d\n", nchains) ;

printf ("\nPivot columns in each front, and parent of each front:\n") ;

113

k = 0 ;
for (i = 0 ; i < nfr ; i++)
{

fnpiv = Front_npivots [i] ;
printf (" Front %d: parent front: %d number of pivots: %d\n",

i, Front_parent [i], fnpiv) ;
for (j = 0 ; j < fnpiv ; j++)
{

col = Qtree [k] ;
printf (

" %d-th pivot column is column %d in original matrix\n",
k, col) ;

k++ ;
}

}

printf ("\nNote that the column ordering, above, will be refined\n") ;
printf ("in the numeric factorization below. The assignment of pivot\n") ;
printf ("columns to frontal matrices will always remain unchanged.\n") ;

printf ("\nTotal number of pivot columns in frontal matrices: %d\n", k) ;

printf ("\nFrontal matrix chains:\n") ;
for (j = 0 ; j < nchains ; j++)
{

printf (" Frontal matrices %d to %d are factorized in a single\n",
Chain_start [j], Chain_start [j+1] - 1) ;

printf (" working array of size %d-by-%d\n",
Chain_maxrows [j], Chain_maxcols [j]) ;

}

/* -- */
/* numeric factorization of B */
/* -- */

status = umfpack_numeric (Bp, Bi, Bx, Symbolic, &Numeric, Control, Info) ;
if (status != UMFPACK_OK)
{

error ("umfpack_numeric failed") ;
}
(void) umfpack_report_numeric ("Numeric factorization of B",

Numeric, Control) ;

/* -- */
/* extract the LU factors of B and print them */

114

/* -- */

if (umfpack_get_lunz (&lnz, &unz, &nn, Numeric) != UMFPACK_OK)
{

error ("umfpack_get_lunz failed") ;
}
Lp = (int *) malloc ((n+1) * sizeof (int)) ;
Li = (int *) malloc (lnz * sizeof (int)) ;
Lx = (double *) malloc (lnz * sizeof (double)) ;
Up = (int *) malloc ((n+1) * sizeof (int)) ;
Ui = (int *) malloc (unz * sizeof (int)) ;
Ux = (double *) malloc (unz * sizeof (double)) ;
P = (int *) malloc (n * sizeof (int)) ;
Q = (int *) malloc (n * sizeof (int)) ;
if (!Lp || !Li || !Lx || !Up || !Ui || !Ux || !P || !Q)
{

error ("out of memory") ;
}
status = umfpack_get_numeric (Lp, Li, Lx, Up, Ui, Ux, P, Q, Numeric) ;
if (status != UMFPACK_OK)
{

error ("umfpack_get_numeric failed") ;
}
(void) umfpack_report_matrix ("L (lower triangular factor of B)",

n, Lp, Li, Lx, "row", Control) ;
(void) umfpack_report_matrix ("U (upper triangular factor of B)",

n, Up, Ui, Ux, "column", Control) ;
(void) umfpack_report_perm ("P", n, P, Control) ;
(void) umfpack_report_perm ("Q", n, Q, Control) ;

/* -- */
/* convert L to triplet form and print it */
/* -- */

printf ("\nConverting L to triplet form, and printing it:\n") ;
Lj = (int *) malloc (lnz * sizeof (int)) ;
if (!Lj)
{

error ("out of memory") ;
}
if (umfpack_col_to_triplet (n, Lp, Lj) != UMFPACK_OK)
{

error ("umfpack_col_to_triplet failed") ;
}
(void) umfpack_report_triplet ("L, in triplet form", n, lnz, Li, Lj, Lx,

115

Control) ;

/* -- */
/* solve B’x=b */
/* -- */

status = umfpack_solve ("A’x=b", Bp, Bi, Bx, x, b, Numeric, Control, Info) ;
umfpack_report_info (Control, Info) ;
if (status != UMFPACK_OK)
{

umfpack_report_status (Control, status) ;
error ("umfpack_solve failed") ;

}
(void) umfpack_report_vector ("x (solution of B’x=b)", n, x, Control) ;
printf ("maxnorm of residual: %g\n\n", resid (n, Bp, Bi, Bx, x, r, TRUE)) ;

/* -- */
/* solve B’x=b again, using umfpack_wsolve instead */
/* -- */

printf ("\nSolving B’x=b again, using umfpack_wsolve instead:\n") ;
Wi = (int *) malloc (n * sizeof (int)) ;
W = (double *) malloc (n * sizeof (double)) ;
Y = (double *) malloc (n * sizeof (double)) ;
Z = (double *) malloc (n * sizeof (double)) ;
S = (double *) malloc (n * sizeof (double)) ;
if (!Wi || !W || !Y || !Z || !S)
{

error ("out of memory") ;
}

status = umfpack_wsolve ("A’x=b", Bp, Bi, Bx, x, b, Numeric, Control, Info,
Wi, W, Y, Z, S) ;

umfpack_report_info (Control, Info) ;
if (status != UMFPACK_OK)
{

umfpack_report_status (Control, status) ;
error ("umfpack_wsolve failed") ;

}
(void) umfpack_report_vector ("x (solution of B’x=b)", n, x, Control) ;
printf ("maxnorm of residual: %g\n\n", resid (n, Bp, Bi, Bx, x, r, TRUE)) ;

/* -- */
/* free everything */
/* -- */

116

/* This is not strictly required since the process is exiting and the */
/* system will reclaim the memory anyway. It’s useful, though, just as */
/* a list of what is currently malloc’ed by this program. Plus, it’s */
/* always a good habit to explicitly free whatever you malloc. */

free (Ap) ;
free (Ai) ;
free (Ax) ;

free (Bp) ;
free (Bi) ;
free (Bx) ;

free (Qtree) ;
free (Front_npivots) ;
free (Front_parent) ;
free (Chain_start) ;
free (Chain_maxrows) ;
free (Chain_maxcols) ;

free (Lp) ;
free (Li) ;
free (Lx) ;

free (Up) ;
free (Ui) ;
free (Ux) ;

free (P) ;
free (Q) ;

free (Lj) ;

free (Wi) ;
free (W) ;
free (Y) ;
free (Z) ;
free (S) ;

umfpack_free_symbolic (&Symbolic) ;
umfpack_free_numeric (&Numeric) ;

/* -- */
/* print the total time spent in this demo */

117

/* -- */

t = umfpack_timer () - t ;
printf ("\numfpack demo complete. Total time: %5.2f (seconds)\n", t) ;
return (0) ;

}

118

18 Configuration file umf config.h

/*
This file controls the compile-time configuration of UMFPACK. Modify the
Makefile, the architecture-dependent Make.* file, and this file if
necessary, to control these options. The following compile-time flags are
available:

-DNBLAS

BLAS mode. If -DNBLAS is set, then no BLAS will be used. Vanilla
C code will be used instead. This is portable, and easier to
install, but you won’t get the best performance.

If -DNBLAS is not set, then externally-available BLAS routines
(dgemm, dger, and dgemv or the equivalent C-BLAS routines) will be
used. This will give you the best performance, but perhaps at the
expense of portability.

The default is to use the BLAS, for both the C-callable umfpack.a
library and the Matlab mexFunction. If you have trouble installing
UMFPACK, set -DNBLAS.

-DNCBLAS

If -DNCBLAS is set, then the C-BLAS will not be called. This is the
default when compiling the Matlab mexFunction, or when compiling
umfpack.a on Sun Solaris or SGI IRIX.

If -DNCBLAS is not set, then the C-BLAS interface to the BLAS is
used. If your vendor-supplied BLAS library does not have a C-BLAS
interface, you can obtain the ATLAS BLAS, available at
http://www.netlib.org/atlas.

Using the C-BLAS is the default when compiling umfpack.a on all
architectures except Sun Solaris (the Sun Performance Library is
somewhat faster). The ANSI C interface to the BLAS is fully
portable.

This flag is ignored if -DNBLAS is set.

-DLONGBLAS

If not defined, then the BLAS are not called in the long integer
version of UMFPACK (the umfpack_l_* routines). The most common

119

definitions of the BLAS, unfortunately, use int arguments, and
are thus not suitable for use in the LP64 model. Only the Sun
Performance Library, as far as I can tell, has a version of the
BLAS that allows long integer (64-bit) input arguments. This
flag is set automatically in Sun Solaris if you are using the
Sun Performance BLAS. You can set it yourself, too, if your BLAS
routines can take long integer input arguments.

-DNSUNPERF

Applies only to Sun Solaris. If -DNSUNPERF is set, then the Sun
Performance Library BLAS will not be used.

The Sun Performance Library BLAS is used by default when compiling
the C-callable umfpack.a library on Sun Solaris.

This flag is ignored if -DNBLAS is set.

-DNSCSL

Applies only to SGI IRIX. If -DSCSL is set, then the SGI SCSL
Scientific Library BLAS will not be used.

The SGI SCSL Scientific Library BLAS is used by default when
compiling the C-callable umfpack.a library on SGI IRIX.

This flag is ignored if -DNBLAS is set.

-DGETRUSAGE

If -DGETRUSAGE is set, then your system’s getrusage routine will be
used for getting the process CPU time. Otherwise the ANSI C clock
routine will be used. The default is to use getrusage on Sun
Solaris, SGI Irix, Linux, and AIX (IBM RS 6000) and to use clock on
all other architectures.

C-to-Fortran interface, for the Fortran BLAS (these are set automatically
for the C-BLAS or Sun Performance BLAS):

-DBLAS_BY_VALUE if scalars are passed by value, not reference
-DBLAS_NO_UNDERSCORE if no underscore should be appended
-DBLAS_CHAR_ARG if BLAS options are single char’s, not strings

You should normally not set these flags yourself:

120

-DMATLAB_MEX_FILE

This flag is turned on when compiling the umfpack mexFunction for
use in Matlab. When compiling the Matlab mexFunction, the Matlab
BLAS are used by default (this is set in the Makefile).

-DMATHWORKS

This flag is turned on when compiling umfpack as a built-in routine
in Matlab. It can also be used when compiling umfpack as a
mexFunction. Internal routines utMalloc, utFree, utRealloc, and
utPrintf are used, and the "util.h" file is included. This avoids
the problem discussed in the User Guide regarding memory allocation
in Matlab. utMalloc returns NULL on failure, instead of terminating
the mexFunction (which is what mxMalloc does). However, the ut*
routines are not documented by The MathWorks, Inc., so I cannot
guarantee that you will always be able to use them.

-DNDEBUG

Debugging mode (if NDEBUG is not defined). The default, of course,
is no debugging. Turning on debugging takes some work (see below).

*/

/* == */
/* === NDEBUG === */
/* == */

/*
UMFPACK will be exceedingly slow when running in debug mode. The next three
lines ensure that debugging is turned off. If you want to compile UMFPACK
in debugging mode, you must comment out the three lines below:

*/
#ifndef NDEBUG
#define NDEBUG
#endif

/*
Next, you must either remove the -DNDEBUG option in the Makefile, or simply
add the following line:

#undef NDEBUG
*/

121

/* == */
/* === Memory allocator === */
/* == */

/* The Matlab mexFunction uses Matlab’s memory manager, while the C-callable */
/* umfpack.a library uses the ANSI C malloc, free, and realloc routines. */

#ifdef MATLAB_MEX_FILE
#include "matrix.h"
#define ALLOCATE mxMalloc
#define FREE mxFree
#define REALLOCATE mxRealloc
#else
#ifdef MATHWORKS
#include "util.h"
/* Compiling UMFPACK as a built-in routine. */
/* Since UMFPACK carefully checks for out-of-memory after every allocation, */
/* we can use ut* routines here. */
#define ALLOCATE utMalloc
#define FREE utFree
#define REALLOCATE utRealloc
#else
#define ALLOCATE malloc
#define FREE free
#define REALLOCATE realloc
#endif
#endif

/* == */
/* === PRINTF macro === */
/* == */

/* All output goes through the PRINTF macro. Printing occurs only from the */
/* UMFPACK_report_* routines. */

#ifdef MATLAB_MEX_FILE
#include "mex.h"
#define PRINTF(params) { (void) mexPrintf params ; }
#else
#ifdef MATHWORKS
/* Already #included "util.h" above in Memory allocator section */
#define PRINTF(params) { (void) utPrintf params ; }

122

#else
#define PRINTF(params) { (void) printf params ; }
#endif
#endif

/* == */
/* === 0-based or 1-based printing == */
/* == */

#if defined (MATLAB_MEX_FILE) || defined (MATHWORKS)
/* In Matlab, matrices are 1-based to the user, but 0-based internally. */
/* One is added to all row and column indices when printing matrices */
/* in UMFPACK_report_*. */
#define INDEX(i) ((i)+1)
#else
/* In ANSI C, matrices are 0-based and indices are reported as such. */
#define INDEX(i) (i)
#endif

/* == */
/* === Architecture === */
/* == */

#if defined (__sun)
#define UMFPACK_ARCHITECTURE "Sun Solaris"
#endif

#if defined (__sgi)
#define UMFPACK_ARCHITECTURE "SGI Irix"
#endif

#if defined (__linux)
#define UMFPACK_ARCHITECTURE "Linux"
#endif

#if defined (_AIX)
#define UMFPACK_ARCHITECTURE "IBM AIX"
#endif

#if defined (__alpha)
#define UMFPACK_ARCHITECTURE "Compaq Alpha"
#endif

123

/* == */
/* === Timer == */
/* == */

/*
If you have the getrusage routine (all Unix systems I’ve test do), then use
that. Otherwise, use the ANSI C clock function. Note that on many
systems, the ANSI clock function wraps around after only 2147 seconds, or
about 36 minutes. BE CAREFUL: if you compare the run time of UMFPACK with
other sparse matrix packages, be sure to use the same timer. See
umfpack_timer.c for the timer used by UMFPACK.

*/

/* Sun Solaris, SGI Irix, Linux, Compaq Alpha, and IBM RS 6000 all have */
/* getrusage. It’s in BSD unix, so perhaps all unix systems have it. */
#if defined (__sun) || defined (__sgi) || defined (__linux) \
|| defined (__alpha) || defined (_AIX)
#define GETRUSAGE
#endif

/* == */
/* === BLAS === */
/* == */

/*
Determine if the BLAS exists for the long integer version. It exists if
LONGBLAS is defined in the Makefile, or if using the BLAS from the
Sun Performance Library, or SGI’s SCSL Scientific Library.

*/

#if !defined (MATLAB_MEX_FILE) && defined (__sun) && !defined (NSUNPERF)
#define BLAS_SUNPERF
#ifndef LONGBLAS
#define LONGBLAS
#endif
#endif

#if !defined (MATLAB_MEX_FILE) && defined (__sgi) && !defined (NSCSL)
#define BLAS_SCSL
#ifndef LONGBLAS
#define LONGBLAS
#endif
#endif

124

#if defined (DLONG) && !defined (LONGBLAS) && !defined (NBLAS)
#define NBLAS
#endif

/* -- */

#ifndef NBLAS

/*
If the compile-time flag -DNBLAS is defined, then the BLAS are not used,
portable vanilla C code is used instead, and the remainder of this file
is ignored.

Using the BLAS is much faster, but how C calls the Fortran BLAS is
machine-dependent and thus can cause portability problems. Thus, use
-DNBLAS to ensure portability (at the expense of speed).

Preferences:

*** The best interface to use, regardless of the option you select
below, is the standard C-BLAS interface. Not all vendor-supplied
BLAS libraries use this interface (as of April 2001). The only
problem with this interface is that it does not extend to the LP64
model.

1) most preferred: use the optimized vendor-supplied library (such as
the Sun Performance Library, or IBM’s ESSL). This is often the
fastest, but might not be portable and might not always be
available. When compiling a Matlab mexFunction it might be
difficult get the mex compiler script to recognize the vendor-
supplied BLAS (I was not able get my mexFunction to use the
Sun Performance Library BLAS, for example, because of linking
difficulties).

2) When compiling the UMFPACK mexFunction to use UMFPACK in Matlab, use
the BLAS provided by The Mathworks, Inc. This assumes you are using
Matlab V6 or higher, since the BLAS are not incorporated in V5 or
earlier versions. On my Sun workstation, the Matlab BLAS gave
slightly worse performance than the Sun Perf. BLAS. The advantage
of using the Matlab BLAS is that it’s available on any computer that
has Matlab V6 or higher. I have not tried using Matlab BLAS outside
of a mexFunction in a stand-alone C code, but Matlab (V6) allows for
this. This is well worth trying if you have Matlab and don’t want
to bother installing the ATLAS BLAS (option 3a, below). The only
glitch to this is that Matlab does not provide a portable interface

125

to the BLAS (an underscore is required for some but not all
architectures). These variations are taken into account in the
mexopts.sh file provided with UMFPACK.

3) Use a portable high-performance BLAS library:

(a) The ATLAS BLAS, available at http://www.netlib.org/atlas,
by R. Clint Whaley, Antoine Petitet, and Jack Dongarra.
This has a standard C interface, and thus the interface to it is
fully portable. Its performance rivals, and sometimes exceeds,
the vendor-supplied BLAS on many computers.

(b) The Fortran RISC BLAS by Michel Dayde’, Iain Duff, Antoine
Petitet, and Abderrahim Qrichi Aniba, available via anonymous
ftp to ftp.enseeiht.fr in the pub/numerique/BLAS/RISC directory,
See M. J. Dayde’ and I. S. Duff, "The RISC BLAS: A blocked
implementation of level 3 BLAS for RISC processors, ACM Trans.
Math. Software, vol. 25, no. 3., Sept. 1999. This will give
you good performance, but with the same C-to-Fortran portability
problems as option (1).

4) Use UMFPACK’s built-in vanilla C code by setting -DNBLAS at compile
time. The key advantage is portability, which is guaranteed if you
have an ANSI C compliant compiler. You also don’t need to download
any other package - UMFPACK is stand-alone. No Fortran is used
anywhere in UMFPACK. UMFPACK will be much slower than when using
options (1) through (3), however.

5) least preferred: use the standard Fortran implementation of the
BLAS, also available at Netlib (http://www.netlib.org/blas). This
will be no faster than option (4), and not portable because of
C-to-Fortran calling conventions. Don’t bother trying option (5).

The mechanics of how C calls the BLAS on various computers are as follows:

* C-BLAS (from the ATLAS library, for example):

The same interface is used on all computers. This is the default
(except on Sun Solaris, or when compiling the Matlab mexFunction).
SGI Irix provides a C-BLAS interface to its vendor-supplied BLAS.

* Defaults for calling the Fortran BLAS:
add underscore, pass scalars by reference, use string arguments.

* The Fortran BLAS on Sun Solaris (when compiling the Matlab mexFunction

126

or when using the Fortran RISC BLAS), SGI, Linux:
use defaults.

* Sun Solaris (when using the C-callable Sun Performance library):
no underscore, pass scalars by value, use character arguments.

* The Fortran BLAS (ESSL Library) on the IBM RS 6000:
no underscore, pass scalars by reference, use string arguments.

* The Fortran BLAS on the HP PA:
no underscore, pass scalars by reference, use string arguments.
This has not been tested. For the umfpack.a library, I recommend
using the C-BLAS in the ATLAS library instead. The Matlab
mexFunction needs to have the -DBLAS_NO_UNDERSCORE compile-time
flag set. I’ve modified the mexopts.sh file to do this, but have
not tested it.

* The Fortran BLAS on Windows:
no underscore, pass scalars by reference, use string arguments.
This has not been tested. For the umfpack.a library, I recommend
using the C-BLAS in the ATLAS library instead. The Mathworks-
provided lcc compiler prepends an underscore to all C routine names.
Thus, dgemm becomes _dgemm. However, the Mathworks BLAS library has
dgemm, not _dgemm. I’ve contacted Mathworks and so far there is
no work-around for this problem. Use another compiler. If you must
use lcc then either do not use the BLAS in Matlab or use the C-BLAS.

*/

#ifndef NCBLAS

/* -- */
/* use the C-BLAS (any computer) */
/* -- */

/* This is the default, except for Solaris and IRIX umfpack.a, and for the */
/* mexFunction on any architecture. */

/* If you use the ATLAS C-BLAS, then be sure to set the -I flag to */
/* -I/path/ATLAS/include, where /path/ATLAS is the ATLAS installation */
/* directory. Note that UMFPACK uses column-major storage for its dense */
/* matrices, but these are not visible to the user. */

127

#include "cblas.h"

#define BLAS_DGEMM_ROUTINE cblas_dgemm
#define BLAS_DGEMV_ROUTINE cblas_dgemv
#define BLAS_DGER_ROUTINE cblas_dger

#define BLAS_NO_TRANSPOSE CblasNoTrans
#define BLAS_TRANSPOSE CblasTrans

/* This argument is present only for the C-BLAS: */
#define BLAS_COLUMN_MAJOR_ORDER CblasColMajor,

#define BLAS_SCALAR(n) n
#define BLAS_INT_SCALAR(n) n

#else

/* No such argument when not using the C-BLAS */
#define BLAS_COLUMN_MAJOR_ORDER

/* -- */
/* use Fortran (or other architecture-specific) BLAS */
/* -- */

/* Determine which architecture we’re on and set options accordingly. */

#ifdef BLAS_SUNPERF
/* Sun Solaris sunperf library - the default for Solaris umfpack.a */
#include <sunperf.h>
#define BLAS_BY_VALUE
#define BLAS_NO_UNDERSCORE
#define BLAS_CHAR_ARG
#endif

#ifdef BLAS_SCSL
/* SGI SCSL library - the default for SGI umfpack.a */
#if defined (LP64)
#include <scsl_blas_i8.h>
#else
#include <scsl_blas.h>
#endif
#define BLAS_BY_VALUE
#define BLAS_NO_UNDERSCORE
#endif

128

/* The IBM RS 6000 does not add the underscore */
#if defined (_AIX)
#define BLAS_NO_UNDERSCORE
#endif

/*
Add your own architecture-dependent settings here.
For example, to call the Fortran BLAS on Windows, or HP PA:

#if defined (__win32) || defined (__hppa)
#define BLAS_NO_UNDERSCORE
#endif

*/

/* -- */
/* BLAS names */
/* -- */

#if defined (LP64) && defined (BLAS_SUNPERF)

/* 64-bit sunperf BLAS, for Sun Solaris only */
#define BLAS_DGEMM_ROUTINE dgemm_64
#define BLAS_DGEMV_ROUTINE dgemv_64
#define BLAS_DGER_ROUTINE dger_64

#else

/* naming convention (use underscore, or not) */
#ifdef BLAS_NO_UNDERSCORE
#define BLAS_DGEMM_ROUTINE dgemm
#define BLAS_DGEMV_ROUTINE dgemv
#define BLAS_DGER_ROUTINE dger
#else
/* default: add underscore */
#define BLAS_DGEMM_ROUTINE dgemm_
#define BLAS_DGEMV_ROUTINE dgemv_
#define BLAS_DGER_ROUTINE dger_
#endif

#endif /* LP64 && BLAS_SUNPERF */

/* -- */
/* BLAS scalars */

129

/* -- */

/* pass scalars by value or by reference */
#ifdef BLAS_BY_VALUE
#define BLAS_SCALAR(n) n
#else
/* default: pass scalars by reference */
#define BLAS_SCALAR(n) &(n)
#endif

#if defined (BLAS_SCSL) && defined (LP64)
#define BLAS_INT_SCALAR(n) ((long long) n)
#else
#define BLAS_INT_SCALAR(n) BLAS_SCALAR(n)
#endif

/* -- */
/* BLAS strings */
/* -- */

/* pass strings or single characters */
#ifdef BLAS_CHAR_ARG
#define BLAS_NO_TRANSPOSE ’N’
#define BLAS_TRANSPOSE ’T’
#else
/* default: use string arguments */
#define BLAS_NO_TRANSPOSE "N"
#define BLAS_TRANSPOSE "T"
#endif

#endif /* NCBLAS */

/* -- */
/* BLAS macros, for all interfaces */
/* -- */

/* C = C - A*B, where A is m-by-k, B is k-by-n, and leading dimension is d */
#define BLAS_DGEMM(m,n,k,A,B,C,d) \
{ \

double alpha = -1.0 ; \
double beta = 1.0 ; \

130

(void) BLAS_DGEMM_ROUTINE (BLAS_COLUMN_MAJOR_ORDER \
BLAS_NO_TRANSPOSE, BLAS_NO_TRANSPOSE, \
BLAS_INT_SCALAR (m), BLAS_INT_SCALAR (n), BLAS_INT_SCALAR (k), \
BLAS_SCALAR (alpha), \
A, BLAS_INT_SCALAR (d), B, BLAS_INT_SCALAR (d), BLAS_SCALAR (beta), \
C, BLAS_INT_SCALAR (d)) ; \

}

/* A = A - x*y’, where A is m-by-n with leading dimension d */
#define BLAS_DGER(m,n,x,y,A,d) \
{ \

double alpha = -1.0 ; \
Int incx = 1 ; \
(void) BLAS_DGER_ROUTINE (BLAS_COLUMN_MAJOR_ORDER \

BLAS_INT_SCALAR (m), BLAS_INT_SCALAR (n), BLAS_SCALAR (alpha), \
x, BLAS_INT_SCALAR (incx), y, BLAS_INT_SCALAR (d), A, BLAS_INT_SCALAR (d)) ; \

}

/* y = y - A’*x, where A is m-by-n with leading dimension d, */
/* and x and y are row vectors with stride d */
#define BLAS_DGEMV_ROW(m,n,A,x,y,d) \
{ \

double alpha = -1.0 ; \
double beta = 1.0 ; \
(void) BLAS_DGEMV_ROUTINE (BLAS_COLUMN_MAJOR_ORDER \

BLAS_TRANSPOSE, \
BLAS_INT_SCALAR (m), BLAS_INT_SCALAR (n), BLAS_SCALAR (alpha), \
A, BLAS_INT_SCALAR (d), x, BLAS_INT_SCALAR (d), BLAS_SCALAR (beta), \
y, BLAS_INT_SCALAR (d)) ; \

}

/* y = y - A*x, where A is m-by-n with leading dimension d, */
/* and x and y are column vectors with stride 1 */
#define BLAS_DGEMV_COL(m,n,A,x,y,d) \
{ \

double alpha = -1.0 ; \
double beta = 1.0 ; \
Int incx = 1 ; \
Int incy = 1 ; \
(void) BLAS_DGEMV_ROUTINE (BLAS_COLUMN_MAJOR_ORDER \

BLAS_NO_TRANSPOSE, \
BLAS_INT_SCALAR (m), BLAS_INT_SCALAR (n), BLAS_SCALAR (alpha), \

131

A, BLAS_INT_SCALAR (d), x, BLAS_INT_SCALAR (incx), BLAS_SCALAR (beta), \
y, BLAS_INT_SCALAR (incy)) ; \

}

#endif /* NBLAS */

132

References

[1] M. Arioli, J. W. Demmel, and I. S. Duff. Solving sparse linear systems with
sparse backward error.SIAM J. Matrix Anal. Applic., 10:165–190, 1989.

[2] T. A. Davis. Algorithm 8xx: UMFPACK V3.2, an unsymmetric-pattern
multifrontal method with a column pre-ordering strategy. Technical Report
TR-02-002, Univ. of Florida, CISE Dept., Gainesville, FL, January 2002.
(www.cise.ufl.edu/tech-reports. Submitted toACM Trans. Math. Softw.).

[3] T. A. Davis. A column pre-ordering strategy for the unsymmetric-pattern
multifrontal method. Technical Report TR-02-001, Univ. of Florida, CISE
Dept., Gainesville, FL, January 2002. (www.cise.ufl.edu/tech-reports. Sub-
mitted toACM Trans. Math. Softw.).

[4] T. A. Davis and I. S. Duff. An unsymmetric-pattern multifrontal method
for sparse LU factorization.SIAM J. Matrix Anal. Applic., 18(1):140–158,
1997.

[5] T. A. Davis and I. S. Duff. A combined unifrontal/multifrontal method for
unsymmetric sparse matrices.ACM Trans. Math. Softw., 25(1):1–19, 1999.

[6] T. A. Davis, J. R. Gilbert, S. I. Larimore, and E. G. Ng. Algorithm 8xx: CO-
LAMD, a column approximate minimum degree ordering algorithm. Tech-
nical Report TR-00-006, Univ. of Florida, CISE Dept., Gainesville, FL, Oc-
tober 2000. (www.cise.ufl.edu/tech-reports. Submitted toACM Trans. Math.
Softw.).

[7] T. A. Davis, J. R. Gilbert, S. I. Larimore, and E. G. Ng. A column
approximate minimum degree ordering algorithm. Technical Report TR-
00-005, Univ. of Florida, CISE Dept., Gainesville, FL, October 2000.
(www.cise.ufl.edu/tech-reports. Submitted toACM Trans. Math. Softw.).

[8] T. A. Davis and W. W. Hager. Modifying a sparse Cholesky factorization.
SIAM J. Matrix Anal. Applic., 20(3):606–627, 1999.

[9] M. J. Dayd́e and I. S. Duff. The RISC BLAS: A blocked implementation of
level 3 BLAS for RISC processors.ACM Trans. Math. Softw., 25(3), Sept.
1999.

133

[10] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W. H. Liu. A
supernodal approach to sparse partial pivoting.SIAM J. Matrix Anal. Applic.,
20(3):720–755, 1999. www.netlib.org.

[11] J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling. A set of level-
3 basic linear algebra subprograms.ACM Trans. Math. Softw., 16(1):1–17,
1990.

[12] J. J. Dongarra and E. Grosse. Distribution of mathematical software via
electronic mail.Comm. ACM, 30:403–407, 1987. www.netlib.org.

[13] I. S. Duff and J. K. Reid. An implementation of Tarjan’s algorithm for the
block triangularization of a matrix.ACM Trans. Math. Softw., 4(2):137–147,
1978.

[14] I. S. Duff and J. A. Scott. The design of a new frontal code for solving sparse
unsymmetric systems.ACM Trans. Math. Softw., 22(1):30–45, 1996.

[15] A. George and J. W. H. Liu.Computer Solution of Large Sparse Positive
Definite Systems. Englewood Cliffs, New Jersey: Prentice-Hall, 1981.

[16] A. George and E. G. Ng. An implementation of Gaussian elimination with
partial pivoting for sparse systems.SIAM J. Sci. Statist. Comput., 6(2):390–
409, 1985.

[17] A. George and E. G. Ng. Symbolic factorization for sparse Gaussian elim-
ination with partial pivoting.SIAM J. Sci. Statist. Comput., 8(6):877–898,
1987.

[18] J. R. Gilbert, C. Moler, and R. Schreiber. Sparse matrices in MATLAB:
design and implementation.SIAM J. Matrix Anal. Applic., 13(1):333–356,
1992.

[19] J. R. Gilbert and E. G. Ng. Predicting structure in nonsymmetric sparse
matrix factorizations. In A. George, J. R. Gilbert, and J. W.H. Liu, editors,
Graph Theory and Sparse Matrix Computation, Volume 56 of the IMA Vol-
umes in Mathematics and its Applications, pages 107–139. Springer-Verlag,
1993.

[20] J. R. Gilbert, E. G. Ng, and B. W. Peyton. An efficient algorithm to compute
row and column counts for sparse Cholesky factorization.SIAM J. Matrix
Anal. Applic., 15(4):1075–1091, 1994.

134

[21] J. R. Gilbert and T. Peierls. Sparse partial pivoting in time proportional to
arithmetic operations.SIAM J. Sci. Statist. Comput., 9:862–874, 1988.

[22] F. G. Gustavson. Two fast algorithms for sparse matrices: Multiplication and
permuted transposition.ACM Trans. Math. Softw., 4(3):250–269, 1978.

[23] S. I. Larimore. An approximate minimum degree column ordering algo-
rithm. Technical Report TR-98-016, Univ. of Florida, Gainesville, FL, 1998.
www.cise.ufl.edu/tech-reports.

[24] R. C Whaley, A. Petitet, and J. J. Dongarra. Automated emperical optimiza-
tion of software and the ATLAS project. Technical Report LAPACK Work-
ing Note 147, Computer Science Department, The University of Tennessee,
September 2000. www.netlib.org/atlas.

135

	Overview
	Availability
	Using UMFPACK in MATLAB
	Using UMFPACK in a C program
	The size of an integer
	Primary routines, and a simple example
	Alternative routines
	Matrix manipulation routines
	Getting the contents of opaque objects
	Reporting routines
	Utility routines
	Control parameters
	Larger examples

	Synopsis of all C-callable routines (int version)
	Primary routines
	Alternative routines
	Matrix manipulation routines
	Getting the contents of opaque objects
	Reporting routines

	Synopsis of all C-callable routines (long version)
	Primary routines
	Alternative routines
	Matrix manipulation routines
	Getting the contents of opaque objects
	Reporting routines

	Synopsis of utility routines
	Installation
	Future work
	The primary UMFPACK routines
	umfpack_symbolic and umfpack_l_symbolic
	umfpack_numeric and umfpack_l_numeric
	umfpack_solve and umfpack_l_solve
	umfpack_free_symbolic and umfpack_l_free_symbolic
	umfpack_free_numeric and umfpack_l_free_numeric

	Alternatives routines
	umfpack_defaults and umfpack_l_defaults
	umfpack_qsymbolic and umfpack_l_qsymbolic
	umfpack_wsolve and umfpack_l_wsolve

	Matrix manipulation routines
	umfpack_col_to_triplet and umfpack_l_col_to_triplet
	umfpack_triplet_to_col and umfpack_l_triplet_to_col
	umfpack_transpose and umfpack_l_transpose

	Getting the contents of opaque objects
	umfpack_get_lunz and umfpack_l_get_lunz
	umfpack_get_numeric and umfpack_l_get_numeric
	umfpack_get_symbolic and umfpack_l_get_symbolic

	Reporting routines
	umfpack_report_status and umfpack_l_report_status
	umfpack_report_control and umfpack_l_report_control
	umfpack_report_info and umfpack_l_report_info
	umfpack_report_matrix and umfpack_l_report_matrix
	umfpack_report_numeric and umfpack_l_report_numeric
	umfpack_report_perm and umfpack_l_report_perm
	umfpack_report_symbolic and umfpack_l_report_symbolic
	umfpack_report_triplet and umfpack_l_report_triplet
	umfpack_report_vector and umfpack_l_report_vector

	Utility routines
	umfpack_timer

	umfpack.h include file
	Demo C main program, umfpack_demo.c
	Configuration file umf_config.h

