Mission Critical Linux
Kimberlite Design Specification

Authors

Tim Burke purke@mclinux.com
Ron Lawrencelawrence@mclinux.coijn
Jeff Moyer (noyer@mclinux.com
Greg Myrdall (yrdall@mclinux.corm
Richard Rabbatrébbat@mclinux.coin
Brian Stevensgtevens@mclinux.com
Dave Winchell yinchell@mclinux.com

Last Revision: June 28, 2000

mIBSIDI’l

“ﬂll critical
linux

Mission Critical Linux, LLC

100 Foot of John Street

Lowell, MA 01852

Tel: 978-446-9166 Fax: 978—-446-9470

Copyright © 2000, Mission Critical Linux, Inc.

Mission Critical Linux
Kimberlite Design Specification

This document is provided "as is' without warranty of any kind, either expressed or
implied, including, but not limited to, the implied warranties of merchantability, fitness
for a particular purpose, or non—infringement. Mission Critical Linux, Inc. assumes no
responsibility for errors or omissions in this document or other documents which are
referenced by or linked to this document.

References to corporations or individuals, their services and products, are provided "as
is" without warranty of any kind, either expressed or implied. In no event shall Mission
Critica Linux, Inc. be liable for any special, incidental, indirect or consequential
damages of any kind, or any damages whatsoever, including, without limitation, those
resulting from loss of use, data or profits, whether or not advised of the possibility of
damage, and on any theory of liability, arising out of or in connection with the use or
performance of thisinformation.

Copyright © 2000, Mission Critical Linux, Inc.

100 Foot of John Street, Lowell MA 01852 USA

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.1 or any later version published by the
Free Software Foundation; with the Invariant Sections being "GNU Free Documentation
License", "Authors', with the Front—Cover Texts being "Title", and with no Back—Cover
Texts. A copy of the license is included in the section entitled "GNU Free
Documentation License".

Copyright © 2000, Mission Critical Linux, Inc. 2

GNU Free Documentation License

Copyright (C) 2000 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document
"free" in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for
their work, while not being considered responsible for modifications made by others.

This Licenseis akind of "copyleft", which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by the
copyright holder saying it can be distributed under the terms of this License. The
"Document”, below, refers to any such manual or work. Any member of the public isa
licensee, and is addressed as "you".

A "Modified Verson" of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or trandated into another
language.

A "Secondary Section" is a named appendix or a front—-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’ s overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (For example, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding

Copyright © 2000, Mission Critical Linux, Inc. 3

them.

The "Invariant Sections' are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License.

The "Cover Texts' are certain short passages of text that are listed, as Front—Cover Texts
or Back—Cover Texts, in the notice that says that the Document is released under this
License.

A "Transparent” copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, whose contents can be
viewed and edited directly and straightforwardly with generic text editors or (for images
composed of pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or for automatic
trandation to a variety of formats suitable for input to text formatters. A copy madein an
otherwise Transparent file format whose markup has been designed to thwart or
discourage subsequent modification by readers is not Transparent. A copy that is not
"Transparent” is called "Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard—conforming smple HTML designed for human
modification. Opague formats include PostScript, PDF, proprietary formats that can be
read and edited only by proprietary word processors, SGML or XML for which the DTD
and/or processing tools are not generally available, and the machine-generated HTML
produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, "Title Page"
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license notice
saying this License applies to the Document are reproduced in all copies, and that you
add no other conditions whatsoever to those of this License. You may not use technical
measures to obstruct or control the reading or further copying of the copies you make or
distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditionsin section
3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

Copyright © 2000, Mission Critical Linux, Inc. 4

3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the copies in covers
that carry, clearly and legibly, all these Cover Texts. Front—Cover Texts on the front
cover, and Back—Cover Texts on the back cover. Both covers must also clearly and
legibly identify you as the publisher of these copies. The front cover must present the full
title with all words of thetitle equally prominent and visible. Y ou may add other material
on the covers in addition. Copying with changes limited to the covers, as long as they
preserve the title of the Document and satisfy these conditions, can be treated as verbatim
copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the
first oneslisted (as many asfit reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opague
copy, or state in or with each Opagque copy a publicly—accessible computer—network
location containing a complete Transparent copy of the Document, free of added
material, which the general network—using public has access to download anonymously
at no charge using public—standard network protocols. If you use the latter option, you
must take reasonably prudent steps, when you begin distribution of Opaque copies in
guantity, to ensure that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an Opague copy (directly
or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under
precisaly this License, with the Modified Version filling the role of the Document, thus
licensing distribution and modification of the Modified Version to whoever possesses a
copy of it. In addition, you must do these thingsin the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a
previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of

Copyright © 2000, Mission Critical Linux, Inc. 5

the principal authors of the Document (all of its principal authors, if it has less than
five).

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve al the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required
Cover Texts given in the Document’ s license notice.

H. Include an unaltered copy of this License.

|. Preserve the section entitled "History"”, and its title, and add to it an item stating at
least the title, year, new authors, and publisher of the Modified Version as given on
the Title Page. If there is no section entitled "History" in the Document, create one
stating the title, year, authors, and publisher of the Document as given on its Title
Page, then add an item describing the Modified Version as stated in the previous
sentence.

J. Preserve the network location, if any, given in the Document for public accessto a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the "History"
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

K. In any section entitled "Acknowledgements' or "Dedications', preserve the
section’s title, and preserve in the section al the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve al the Invariant Sections of the Document, unaltered in their text and in
thelr titles. Section numbers or the equivaent are not considered part of the section
titles.

M. Delete any section entitled "Endorsements’. Such a section may not be included in
the Modified Version.

N. Do not retitle any existing section as "Endorsements’ or to conflict in title with any
Invariant Section.

If the Modified Version includes new front—matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the

Document, you may at your option designate some or all of these sections as invariant.
To do this, add their titlesto the list of Invariant Sections in the

Modified Version's license notice. These titles must be distinct from any other section
titles.

You may add a section entitled "Endorsements’, provided it contains nothing but

endorsements of your Modified Version by various parties for example, statements of
peer review or that the text has been approved by an organization as the authoritative

Copyright © 2000, Mission Critical Linux, Inc. 6

definition of a standard.

You may add a passage of up to five words as a Front—Cover Text, and a passage of up
to 25 words as a Back—Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front—Cover Text and one of Back—Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previoudy added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but you
may replace the old one, on explicit permission from the previous publisher that added
the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to
use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unigue by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections entitled "History" in the various
original documents, forming one section entitted "History"; likewise combine any
sections entitled "Acknowledgements', and any sections entitled "Dedications'. You
must delete all sections entitled "Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you follow
the rules of this License for verbatim copying of each of the documents in all other
respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted
document, and follow this License in al other respects regarding verbatim copying of

Copyright © 2000, Mission Critical Linux, Inc. 7

that document.
7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on avolume of a storage or distribution medium, does not as a
whole count as a Modified Version of the Document, provided no compilation copyright
is clamed for the compilation. Such a compilation is caled an "aggregate', and this
License does not apply to the other self—contained works thus compiled with the
Document, on account of their being thus compiled, if they are not themselves derivative
works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one quarter of the entire aggregate, the Document’s
Cover Texts may be placed on covers that surround only the Document within the
aggregate. Otherwise they must appear on covers around the whole aggregate.

8. TRANSLATION

Trandation is considered a kind of modification, so you may distribute trand ations of the
Document under the terms of section 4. Replacing Invariant Sections with trandlations
requires specia permission from their copyright holders, but you may include
trandations of some or al Invariant Sections in addition to the original versions of these
Invariant Sections. You may include a trandation of this License provided that you also
include the original English version of this License. In case of a disagreement between
the trandation and the original English version of this License, the original English
version will prevail.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressy
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyl eft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License "or any later version” applies
to it, you have the option of following the terms and conditions either of that specified

Copyright © 2000, Mission Critical Linux, Inc. 8

version or of any later version that has been published (not as a draft) by the Free
Software Foundation. If the Document does not specify aversion number of this License,

you may choose any version ever published (not as a draft) by the Free Software
Foundation.

Copyright © 2000, Mission Critical Linux, Inc.

Table of Contents

01070 PP P PP PPTPPPPP 13
P20 £SO URROTRR 13
3ME0r DeSIgN COMPONENTS......cciiuiieiiieeiieeeiteeeereeesieeessreeesaeessseeesbeeesseesssseessssesesseessnns 13
. IHOSE MEMDEISNIP. ...eeiiieie et 13
3.1.INOdE SElf MONITOIING. ... veeeieieeeiie e 14
3.1.2Monitoring Other Cluster MembErS.........cooiiiiiiiieiee e 14
3.1.2.1Monitoring via Shared State Partition.............ccocceeevieeiniieeeniee e 14
3.1.2.2Heartbeat PINGING.......cooiiireiiiiieeeiie ettt 14
3.1.2.3Mechanism to Break Out of Inconclusive States............ccoovveeeeiiiieneennns 14
A T2 =0 IS 0] =0 =TSR 15
ADESIGN APPIOBCN. ...t nes 16
A.1DESIGN PrOS/CONS......ciiiiiieeiiiiiee e eiee st stee sttt sttt s b e e e s beeenne e e snseeesnneeeans 19
SMESSAGING SUDSYSIEM......coiiiieiie ettt ees 21
DL LOVEIVIBIW. ..ttt ettt ettt e e bt e e s ab e e s abe e e sabe e e enbe e e e st e e e neeeennneeenneeas 21
5.2DESIGN GOAIS..... . eeeeitieiieieeeitee e eee ettt et e et e et et e e e b e e be e e re e e ere e e e reeeennes 21
5.3MeSsage SErVIiCe INLEINEIS.......coeeiiiiie e 21

o3 @0 0! [0S Lo o TR RTRR 22
(GTIeTo o [gTo [T o] =T PSR 22
B. LOVEIVIBW. ...ttt ettt et e e sttt e bt e e st e e e bt e e e bt e e snbeeeembeeesnbeeesnneeeane 22
B. 2l NEEINAIS.... et rra e nr e nnae e e nnrea s 22
GTRC 7N RS 23
TSEIVICE MANAGEYeei ittt ettt sttt e et e e st e e s st e e e anbe e e snbeeesbeeesnreeennrenas 23
T LOVEIVIBW. ...ttt ettt e e et e st e e et e e st e e e mbe e e e nbe e e snbeeesnbeeesnbeeesnneeeann 23

B 1= Lo o PRSP ORPRRN 23
7.2.1Shared Service INformation DisSK..........ccueeiiieeniieeniieeiie e 23
7.2.1.1Service 1dentifier (ID).......cooiueeiiieeeee e 23
7.2.1.2500VICE OWNEYeiiiiieeeiie ettt ettt et e sttt et e st e e st e e e e nnte e e snneeennneeas 24
7.2.1.3SEIVICE SHALES......eeeeeieieeeeee ettt st e e s ne e ne e nees 24
7.2.1.4Service Information LOCKING.ccocuviiiiiiiiiiiieeiiee e 25

7. 2.2INITTAIHZBLION. ..ot neee s 25
7.2.3Cluster Node State Change EVENES..........cooieiieiiieee e 25
7.2.4Service Placement POLICY........coouiii i 25

7. 24 1Preferred NOUE.......coocueee e 25
7.2.4.2Relocate when Preferred Node Joinsthe Cluster..........cocovviieviiieenenen, 26
7.2.4.3Service Start ArDItration...........ooceeeiiiiie i 26
7.2.5Service Start and SOP OPEratioNS.........c.vveeeiieeeeriiieeeiiieeesiee e seeeens 27
7.2.5.1Start and SIOP FallUIrES.........cveiiiiieece e 27
7.3Service Resources and Configuration File............oooeieiiii i 27
BHeartheat MeChaniSM............ooiiii e 32
S0 A 011 0o L8 o o] TN USROS 32
8.2DeSIgN CONSIAEIAIONS.......ceeiiiieeieiiieeeiee ettt ee et e e s s e e s saaeeennneens 32
8.3Implementation DELaIlS..........ccueiiiiiieiiie s 32
OShared State DisK Partition..........cooceeeiiiieiiiieiee e 33
9.1Where to Place the Shared State Disk Partition?............cccooceeeeinieeenniieeeeee e, 33
9.25hared DisK ProtECLIONS..........cueiiiiieiiiiee sttt 35

Copyright © 2000, Mission Critical Linux, Inc. 10

0.2.1SOftWAIE PrOECLIONS. ... oot e e e e e e e e e e e e e e e eeeenans 35

0.2.2Hardware ProtECLIONS..........ccoiuieeiiiiieestieesiee e sttt ee et e e ee e s e s sneeeennees 36

(SIS 1@ o (010 g1 == 1 010 o PR 36
9.3.1StartQUOrUMDEEMON() { -+ e euveeeeeeeeeiieeeitee ettt 36

SRS IZ@ U 1o (110010 =TeTo)Y/ I PR 36
9.3.3StOPQUOTUMA() {-eeeneeeeeiee ittt ree e 37
9.3.4checkPartNer ACHIVE() { .. o o veee e 37
9.3.5SN00LPAINEN() { -.eeeieeeeeieee i 37
10POWEr SWITCN OPLIONS.......eeieeiiieeiiie ettt e e saa e sse e e nnee e e nneeeennes 38
10.1BACKGIOUNG........eeiiiiieitiee ettt et e s e ense e e snneeennneen 38
JO.2PUMPOSE. ...ttt ettt e ettt e e e ekt e e e e aee e e e e e nbe e e e e anane e e e e annne e e e e annneeeeeannnneeeeans 38
10.2.10BSENVALIONS.......eeiie ittt e e e e e s e e e e sre e e e rae e e e 38
LO.3ASSUMPLIONS.eeeeetieeeiteeestetee e siteeesstee e sbeeesbsaeeessbeeesaseeessseeeansseeeannaeeensseessnnenannn 39
10.4Example Implementation: The RPS—-10 Switch Behavior...........cccoccveeiiiiieeennn 39
10.5Power Switch Related Failure SCenarios..........oooueveiieeiiien e 40
LO5.1SCENAIMO A ..ottt e e e e e e e et e e e e ab b e e ena e e e e e nae e e e 40
1O.5.2SCENAIMO B....oooeee et 40
10.5.2.1SCENAMO Bl....coc ettt e 40
10.5.2.2SCENAMO B2......ccee ettt e 40
10.5.2.3SCENANMO B3......c. ettt 41
LO.5.3SCENAIMO C..ooeeee ettt e e e e e et e e e e sna e e e e e e rae e e e e 41
10.5.4SCENAIMO D....c.eeee ettt e a e 41
L1O.5.5SCENAMO En ...ttt 41
10.5.6Service Availability DISIUPLIONS.......c.ceeiiiereiiireniee e 41
10.6IMPIEMENLBLION.eeeeeiiee ettt e e e e e abe e e ssneeesnseeesseeeeneeas 41
11DUMPS @GN0 PANICS.......eeiiiiieeiiie e stee e siee ettt e et e e st e e s ta e e s saaeessseeeennseeennseeennns 42
12Cluster Startup/SHULAOWN SCIPES....coivieeiiiie e eeee e 43
O 10 S (= g = USSP 43
12 2CTUSIEY SEOP....eeeeueeieeutieeeiieesiee e st e e st e e st e e e s abe e e sste e e s st e e sseeeenseeeesaeesnseeesnnnenennn 44
12.2.1Additional Information and PartiCularities............ccceveeiierinieeniee e 44
R O 1S (= g (= = | PSSP 45
L3FAIUINE SCONAIIOS. ... eeeeiueeeeiiieeeieee ettt e ettt e ettt et e e ssae e e ssbe e e snbeeesnbeeesabeeesseeesneeesneeens 45
13.1Scenario: Two Nodes Up — Pull SCSI Cable from One Node...............cccuueeee. 45
13.2Scenario: Two Servers Up — Pull Cluster Shared State DisK.........cccvvveeeeeecnnnee. 45
13.3Scenario: Split—-Mirror Scenario: Mirrored Shared State Partition....................... 46
13.4Scenario: Network Cable Pull(s) When Running ClUStEr...........ccccceriiiieeiieeenes 46
13.5Scenario: Two Node Boot: Full Network Outage or All Hardware Fully
(@01 = (0] 1 7= RSP RTRR a7
13.6SCENANTO: SEIVEN HANGS. .. .coeieeiiiiieiiie ettt sttt s esnae e s nnee s 47
13.7SCENAINTO: SEIVEN PaNICS.......ceiiiiiieiiiiieiieeesiiee e sitee et e s e s ne e e s nneessnneee s 48
13.8Scenario: Cluster DaemON DIES........ccoiuiiiiieiiie e 48
13.9Scenario: Site POWEr OULAGE.covuiieiiiie ettt s neee 48
13.10Scenario: Planned Maintenance (TBD).......coocuviviiiiieniiiee e 49
13.11Scenario: Clean SNULAOWN.........cooiiiiiiiie et 49
13.12Scenario: Storage Outage — Data DiSK........ceovuuveeiiiiieen e 50
LAREFEIENCE. ...ttt e e e e e et e e e e et et e e e et it e e e e e anreeeeenraeeeeaaan 51
15Appendix A. Messaging SUDSYSEEM AP ... e 52

Copyright © 2000, Mission Critical Linux, Inc. 11

15.1SerVEr—SIAE ROULINGES. ...t e e e e e e e e e e e e e eeenan 55

15.2CHENt—SIAE ROULINES........ccueieiiieeeeeiie ettt see e e s e e snee e sneee e e 56
16Appendix B. POWEr SWITCH APlooiiiee e 57
16. DI SCUSSI ON....eeeeteeeeeteeeitee e et e e e tee st e e st e e s seesabe e e s mbe e e e nbeeenbeeeanbeeeanseeanseeeanseeeanneeas 57
17Appendix C. Disk LOCKING SUDSYSIEM........ueiiiiiieiiiie e 59
L7 LOVEIVIEW. ..ttt eiee ettt et e e st e e e et e e e bt e e e steesneeeanseessaeeensseeennneeeanes 59
A N PP PPRPPRRRR 59
17.2.1L.0CKING PriMITIVES........eiiiiiieiiie ettt s 59
A O | = RPN 59
17.3L0cKing AIQOMTTRMS........eoiiiie e e 59
RS T\ [0 o (= oo GRS 59
17.3.2DHSK LOCK. ..cceeeieeitieeetee ettt ettt et e st e s e e s snt e e e nnneeennneeas 59
17.4Scalability IMPliCALTONS........coiieiiiie e 60
18Appendix D. State Diagram for Service Manager..........cceeveeeiieeenieeesiee e 61
18.1ComMPlete State DIagraM.........eeeiuireiiieesieeeeeriiee et e sieee e saee e e st e be e e sreeesneeeenes 61
18.2Service Start ArbDItraiON........cooueeeiiie e 62
18.3State: Stopped, Event: HOSE DOWN........ccoviiiiiieieeee e 63
18.4State: Stopped, Event: HOSt UP.......oceeiiiieiiie e 63
18.5State: Stopping, Event: HOSE DOWN..........cciiiiiiiieiiie et 64
18.6State: Stopping, EVENt: HOSE UP....cooveiiiiiiiieiee e 64
18.7State: Starting, Event: HOSt DOWN..........coiiiiiiiie e 65
18.8State: Starting, EVent: HOSE UP.....coouiiiiiie et 65
18.9State: Running, Event: HOSE DOWN..........cooiiiiiiieiieiie e 66
18.10State: Running, EVENt: HOSE UP.......ooiiiiiiiiieie e s 66
18.11State Diagram for Service TaKEOVET.........cocoeeiieeiiiieiee e 67
18.12State Diagram for GiVING UP SENVICE.......ccouiiiiie e 68
19Appendix E. Design Notes on Disk—Based Configuration Database................c.......... 69
19.1Probl &M SEALEMENL.......ccieieeiiiee ettt ae e neee 69
19.2Implementation OPLIONS.........cueeiiieieiie e eiee e siee e e e sree s e e e sseeeeneeas 69
19.3Implementation APPrOBCN.........eii e eiee ettt ne e neeas 69
19.4L ow—Level IMPlemeNntatioN..........ccocueeeiiiieiiee e 69
19.5Higher—Level Implementation............cooceiiiriiiiiiiie e 70
19.6USAgE INSIIUCLIONS......oeiueiieiiiiriie ettt sttt st e st e e st esnn e e snne e e anneeas 70
20Appendix F. DeSigN AILEIrNELIVES..........cueeiiiieeiieeiiee et eeee et seee e see e eeeesnees 72
21APPENAIX G LEXICON.ceieiieiiiieetieeaieee s e eitee st e et e e s te e e sbee e s e sste e e snre e e snbeeesnteeesnreeess 73

Copyright © 2000, Mission Critical Linux, Inc. 12

1 Purpose

The purpose of this specification is to describe the architectural model for Kimberlite, a
cluster implementation to be offered by Mission Critical Linux, Inc. The specification
focuses on the magor design topics a a high level. Limited historica background
information is provided to capture the motivation for certain design decisions.

2 Goals

The project goals are:

1. Provide high availability for atargeted solution space.
2. Ensure data integrity.

3. Use commodity hardware.

4. Fast time-to—market.

We will initially focus our efforts on deploying highly available NFS servers and
database servers. Of secondary priority will be support for highly available "production
services' such as FTP, telnet, Samba, DNS, mail and print services.

3 Major Design Components
In order to provide a cluster implementation, the main design challenges are:

1. Host membership: this involves knowing which nodes are considered to be cluster
members.

2. Shared storage: infrastructure to ensure that the disk devices are accessed by only one
server at a time; and that I/O requests cannot be initiated in an unsynchronized
manner.

3. Services Infrastructure: ability to define high availability services and provide a means
of having them stopped and started in response to cluster state transitions.

4. System Management: alowing the specification of configuration and tuning
parameters, as well as monitoring current operational status.

The following sections highlight the challenges of each of the above major design
components. While the fundamental goals of each of these components may appear to be
simple, there are deceptively complex issuesinvolved in assuring correct operation.

3.1 Host Membership

Host membership isimplemented as a peer agorithm. This approach is preferred asit is
problematic to develop a centralized algorithm. The following are the key building
blocks of the host membership algorithm:

1. Node self monitoring

2. Each node monitors other cluster members

3. Mechanism to break out of inconclusive states.

Each of these componentsis detailed in the following sections.

Copyright © 2000, Mission Critical Linux, Inc. 13

3.1.1 Node Self Monitoring

Asdetailed later, a foundation component is the "Quorum” disk partition (also referred to
as shared dtate disk) used to represent a node's status. On a frequent basis, each node
updates its own timestamp on the shared state partition, as well as monitors the partner’s
state. If a node is unable to access the shared state partition (i.e. SCSI cable pull), that
node will take itself out of the cluster by rebooting itself. Inability to access the shared
state partition at cluster startup time will cause a node to not commence cluster operation.

Each node also periodically monitors the status of the remote power switch (detailed
later). Thisaffects policy decisions as to whether services can be safely failed over.

3.1.2 Monitoring Other Cluster Members

Each node monitors the status of other cluster members in order to determine when
service state transitions are warranted. Example service state transitions include:

Cluster node startup

Cluster node shutdown (planned and unplanned)
Based on a node’ s state transitions, services will be started up and balanced according to
placement policy.
There are two means of monitoring the state of other members:

Monitoring status information in the shared state partition

Heartbeat pinging over Ethernet and serial ports.

3.1.2.1 Monitoring via Shared State Partition

Each node has specific areas on the shared state partition where it represents its current
state (UP/DOWN) as well as a timestamp field that gets updated periodically. A node
whose state is UP and fails to update its timestamp within a specified grace period will be
considered failed and forcibly removed from the cluster via a remote power cycle. In
this manner, the shared state partition is the cornerstone of the host membership
algorithm. The cluster will ill remain operational even in the event of outage of all
heartbeat channels.

3.1.2.2 Heartbeat Pinging

Cluster nodes aso monitor each other through a set of "heartbeat channels’, which can
include any number of Ethernet connections (both LAN-based as well as point—to—
point). Additionally, we support point—to—point serial connections as heartbeat channels.

The heartbeat pinging algorithm serves as policy input to the host membership agorithm.
In this model, the redundant heartbeat channels independently monitor connection status.
The status of each channel is then OR-ed together to surmise if a node appears active
from a heartbeat perspective. The heartbeat derived node status is queried in the event
that the "Monitoring via Shared State Partition" suspects the other node to be failed.

3.1.2.3 Mechanism to Break Out of Inconclusive States
The most problematic cluster scenario is the case of a hung node. In this situation, a

Copyright © 2000, Mission Critical Linux, Inc. 14

node would fail all monitoring checks (both shared state partition and heartbeat pinging).
Here the surviving cluster member would takeover services formerly provided by the
hung node. At this point, the hung node could become "un—hung" at any time and issue
/O operations to the shared storage disks associated with highly available cluster
services (i.e. NFS exported filesystems or databases). Such uncoordinated 1/0O access to
the same partition results in data corruption. Therefore it is critical that one definitively
knows that a failed node is not at risk of emitting 1/O operations before services can be
safely failed over. Thisisreferred to as"I/O Barrier" (also known as"1/0 Fencing").

The mechanism we have chosen to protect against a failed node from emitting /0O
operations is to use a power switch that is controlled by a serial connection. This allows
each node to power cycle the other in the event of afailure scenario.

3.2 Shared Storage

Clustered web servers which support "static content” are well suited to the current LVS
(Linux Virtual Server) [3] project. In this model, each cluster member has a copy of
effectively read—only data which is returned to web clients. For e-commerce sites, static
content support is deficient as they have dynamic content. An example of dynamic
content would be an online shopping site. This requires that al of these servers of
dynamic web content interact with acommon back end data store.

The back end data store can be implemented by a variety of approaches, such as.

NFS
Pros: NFS support exists and isrelatively mature in Linux.

Cons: NFS is not a very optima algorithm. It provides weak client—-side
coherency. However for relatively low to moderate transaction rates its
performance may be acceptable.

File Copying — Via approaches such asrdist , and rsync , you can make a copy of

your transaction data over to other cluster members.

Pros: the technology exists today and is mature

Cons: Performance is unacceptable to handle anything other than trivially small
transaction rates. Basically only useful for updating the static content on an
infrequent basis.

Database Examples include mySQL, PostgreSQL, Oracle, Sybase and IBM DB/2.
Pros: when going through the raw device it is performance optimal by avoiding the
filesystem buffer cache.

Cons:. there can be only one cluster member at a time which is the database server.
Other cluster members could be backup servers to takeover in the event of failure
of the active server.

The Kimberlite implementation provides a high availability framework for coordinated
access to shared storage. Shared physical storage is required for the cluster shared state
partition and is aso used for highly avalable cluster services. The cluster
implementation provides primitives which are utilized by services requiring access to
shared storage. Highlightsinclude:

» Service start/stop infrastructure guaranteeing that a service is only running on one

Copyright © 2000, Mission Critical Linux, Inc. 15

node at atime.

* Filesystem mount and unmount mechanisms associated with service start/stop. This
includes escalating levels of "forced unmount”.

* A low-leve lock synchronization mechanism layered on top of the shared state disk
primitives. This is used by the service start/stop infrastructure to protect against
inherent race conditions.

The driver requirements for shared storage are smply the ability to support multi—
initiator configurations. Our initial efforts will focus on using shared SCSI buses. There
is nothing inherent in the architecture which would preclude qualifying on FibreChannel.

We do not rely on SCSI reservations or any other low—level storage substrate mechanism
to reserve devices, or otherwise try to block 1/O operations from failed nodes.
Historically, usage of SCSI reservations has proven problematic in terms of device
gualification. While there are inherent benefits to the finer granularity that SCSI
reservations could afford, we intentionally wanted to avoid as many hardware
dependencies as possible in an attempt to produce an expedient and reliable
implementation.

A beneficial side—effect of not relying on SCSI reservations isthat it enables us to have a
single physical disk being associated with more than one highly available cluster service.
Contrast that to SCSI reservation based schemes whereby separate partitions on the same
disk cannot be associated with more than one independent service as typicaly SCS|
reservations are at the device level (not partition level).

4 Design Approach

The main solution attributes for our implementation are as follows:

Focusing on a 2—-node solution where it is required that a service be provided by a
single node at atime. Shared storage for cluster services. (We will separately consider
the LV S-like situations where it is acceptable to have multiple servers concurrently.
Consequently, LVS may be appropriate for web servers, while this single server
infrastructure would be appropriate for Database or NFS servers.)

Redundant communication paths (serial, SCSI and Ethernet) used to assist in
determining node membership.

Shared disk partition used to maintain shared state such as who's-serving—what as
well as acting as a quorum device for node membership. Shared disk redundancy is
made possible via redundant multi—ported RAID controller.

Each cluster node is plugged into a power switch with a serial port connector. The
serial port connector is connected to the other cluster node so that it can shoot the
other cluster node as an I/O Barrier. Note: it is assumed that each cluster member and
the remote power switch it is controlling will be on the same power (strip). This way
if someone powers down node 1, then it won't be powering down the power switch
that node O is controlling. 1n addition, it is assumed that each cluster member (and its
power switch) will be on a separate electrical circuit.

Design Assumption: An assumption is being made that support for multiple servicesis

Copyright © 2000, Mission Critical Linux, Inc. 16

a requirement. The reason the multiple service distinction becomes important is
because it adds complexity over a single service model. Examples of the areas of
compIeX|ty introduced with multiple services are:
Service Load balancing. (Particularly as nodes come and go.)
Shooting a failed node. When you have a single service model, if one node
determines that the other has failed it can safely shoot the other node prior to taking
over the service. For cases where you have more than one service, the shooting
scenario is more complicated to handle in an optimized manner. Thisis due to the
fact that 2 nodes could each be servicing different services and shooting down the
other node to safely bring up Service 1 would also take down Service 2.

Copyright © 2000, Mission Critical Linux, Inc. 17

external Net

Firewall O Firewall 1
active standby
LVS 0 LVS 1
HTTP O HTTP 1 HTTP 2 HTTP 3
Storage Storage
Servers Servers
1
1
| ScCsi
1
1
1
1
1
: disk O
| disk 1
__________________ - -
1
v |
Power 4
Switch #0 Power
Switch #1
electricity

electricity

Figure 4.1. Design Goal of Kimberlite

The design requirement is that we will support more than one service. This alows both
cluster members to be providing services in an active/active manner (rather than an
active/passive model).

There are mainly 4 main components:

1. Service Manager: responds to changes in membership status by initiating service
start/stop.

Copyright © 2000, Mission Critical Linux, Inc. 18

2. Quorum Daemon: Ensures that all nodes that are allowed to run services have
sufficient quorum to be cluster members. Low level services maintaining shared
cluster state and configuration and determining host membership. The Quorum
Daemon performs all cluster inter—node coordination via a shared storage disk (i.e.
not over standard communications channels).

3. Heartbeat Mechanism: The Heartbeat provides status of communication channels
(seriad and Ethernet channels) to the Quorum Daemon as input for making
membership decisions.

4. System Management and Configuration: TBA.

Virtually all of our cluster implementation is implemented entirely outside of the kernel.
All of the daemons are user space utilities written in C. There are several portions of the
Service Manager infrastructure written as (ksh) shell scripts. Portions of the
management/configuration infrastructure are a'so scripted in Tcl aswell asHTML for the
GUI. Based on these dependencies, we require the systems to be ingtalled with the
optional packages containing support for ksh & Tcl.

In addition, we are using the SWIG library [4]. SWIG is a software development tool
that connects programs written in C, C++, and Objective-C with a variety of high—level
programming languages. SWIG is primarily used with common scripting languages such
as Perl, Python, and Tcl/Tk. In our case, it takes the declarations in the C header files
and uses them to generate the wrappers that Tcl/Tk needs to access the underlying API.
Ensure that Swig isinstalled on your system and isin the search path of tools used during
the build process.

The only kernel level requirements are:

1. Raw I/O patch — in order to be able to access araw device (i.e. bypassing the memory
resident buffer cache), the RAW /O kernel patch must be applied. This patch is
available for both 2.2 and 2.3 variants. The raw 1/O patch was not implemented by
Mission Critical Linux, Inc., and isreadily available.

2. Optional kernel patch to facilitate crash dump support, that we have developed at
Mission Critical Linux. The protection against unsynchronized I/O operations by
failed nodes consists of power cycling the partner node any time it has not shutdown
cleanly. One case of unclean shutdown is when a system panics. Normally in the
event of a panic you want the ability to save a crash dump for post—mortem diagnosis.
Power cycling a failed node gets in the way of crash dumps as the memory resident
system snapshot gets erased on power cycle. Mission Critical Linux is developing a
kernel patch whereby when a node panics it will send a message over the heartbeat
serial channel to the partner node. Upon receipt of this message the partner will safely
conclude that the partner node is Down and that there is no need to shoot the partner.

By limiting our kernel dependencies, the Mission Critical Linux cluster implementation
can be deployed on awide range of Linux distributions.

4.1 Design Pros/Cons
Pros:

Copyright © 2000, Mission Critical Linux, Inc. 19

Gets usin the cluster space for shared storage in atimely manner.
Provides strong data integrity semantics.
Cons:
- Initial implementation restricted to 2—node clusters (for the storage server layer).
Requires additional hardware, athough there are numerous vendors for power
switches; so, it’s by no means a custom piece.
Doesn't protect against operator error. For example an administrator on Nodel
could see that a filesytem on the shared storage isn’'t currently mounted on this
node and manually mount it. Similarly someone could dd, fsck, newfs. But one
could argue that many of the same holes exist on a single system.

Communication Services
k Heartbeat
Daemon
Quorum

Daemon
k Service
Manager

I Disk Library '
: Power Mgt oo :
' Daemon Confouai :
I - Configuration :

Cluster Configuration

System Library

Management

Figure 4.2. Subsystem Communication.

Figure 4.2 depicts the set of daemons and services comprising the cluster infrastructure.
Interconnecting lines and arrows highlight the daemon interactions.

The communication services are used by al daemons and associated subsystems.

The Disk Services Library provides low—level locking primitives that facilitate locking
across the cluster as well as among multiple processes on a single node. The Locking
library is discussed extensively in Appendix C. The Service Manager uses the Disk
Services Library for on—disk service states. The configuration library uses the Disk
Services Library to store cluster configuration information ensuring a consistent view by
all cluster members.

Cluster System Management is done with the help of the Configuration Library. The

Configuration Library writes to/ reads from the Cluster Configuration file, a part of the
Disk Services Library. We use syslog to handle all issues of message logging.

Copyright © 2000, Mission Critical Linux, Inc. 20

Communication between the man subsystems uses the Communication Services
Subsystem, described in the next section.

Refer to Appendix F for a summary of alternative design approaches that were
considered prior to settling on this selected model.

5 Messaging Subsystem

5.1 Overview

The messaging subsystem provides a means for cluster daemons to communicate with
each other. It isonly a basic communications library that operates on file descriptors.
The current implementation uses TCP/IP for the underlying protocol. Over this, thereis
a protocol spoken by the library, and above this there is the inter—daemon
communications protocol. This document will focus only on the message service layer.

5.2 Design Goals

The goal of this implementation is to provide a smple means for daemons to
communicate, while allowing as much flexibility for the underlying protocol layer and
manipulation by the users of the library. This means that if at some point in the future
we decided TCP/IP was not a good protocol to use, it could easily be changed. It also
means that any functionality not directly implemented in the library API could be
provided by any user. For example, if the application needed to check return values from
select() , it should be able to do this on its own. The library’s API is detailed in
Appendix A.

5.3 Message Service Internals

Internal to the messaging library, there are a few key data—structures which keep state
information for connections. Whenever a connection is made and a file descriptor
allocated from the system, the library adds the file descriptor to a list. In the list, we
document the file descriptor and its associated state. Thus, a file descriptor which is
alocated for listening is put in the LISTEN state. A file descriptor returned from an
open call is put in the CONNECTED state, and so on. Upon calling msg_close() on
afile descriptor, its entry in thistable is removed.

In the interest of performance, the library also keeps a list of properly formed addresses
used to contact the other processes or the other node. This is much better than forming
the destination address every time a call to msg_open() ismade. It aso keepsusfrom
performing unnecessary memory allocations and frees, thus helping overall performance
of the subsystem. These addresses are indexed in a central data structure by the process
id discussed in Appendix A, Section 15.1

Finally, we have the messaging protocol itself. Thisis a very simple protocol designed

only to pass data with as little overhead as possible. The message header consists of a
version number and a size field that represents the size of the payload. This header is

Copyright © 2000, Mission Critical Linux, Inc. 21

placed on the message before it is sent out, and is stripped off at the other end of the
connection before the data is passed up to the caller.

5.4 Conclusion

The resulting interface defined provides an easy to use and very flexible method for
communicating between cluster daemons, and even between nodes. It has proven to be
easy to change the underlying protocol, as it was initially written to use unix domain
sockets. Thus, the design goals were achieved, and the end result is a solid, easily—
maintained messaging library.

6 Logging Library

6.1 Overview

Logging functions in much the same way assyslogd . Therearelibrary callsto get and
set the current logging level, as well as to log a message. Logging levels are set on a
per—daemon granularity, as specified in the cluster configuration file. These levelsare as
described in sys/syslog.h

#define LOG_EMERG 0 /* system is unusable */

#define LOG_ALERT 1 /* action must be taken immediately */
#define LOG_CRIT 2 [* critical conditions */

#define LOG_ERR 3 /* error conditions */

#define LOG_WARNING 4 /* warning conditions */

#define LOG_NOTICE 5 /* normal but significant condition */
#define LOG_INFO 6 /* informational */

#define LOG_DEBUG 7 I* debug-level messages */

To change the level, one may run the provided clu_config utility. For example, to
change the service manager logging level to 3, one may execute, assuming that the cluter
configuration file caled in this case cluster.cfg is in the /etc/opt/cluster/
directory:

clu_config —f /etc/opt/cluster/cluster.cfg —o

letc/opt/cluster/cluster.cfg —p svemgr%loglLevel 3

Messages are timestamped, and preceded with a string describing the daemon from
which the message comes with the associated PID.

6.2 Internals

The logging facility is made up of two components, the client side library, and the
logging daemon. The library filters messages based on severity, thus allowing for a per—
application logging level. It then uses syslog for thelogging. To define what file the
cluster log goesto, one needs to edit /etc/syslog.conf and add one line as follows:
local4.* —/var/log/cluster

Notice that we use local4, 4 chosen at random. The user can change this number in the
cluster database, should this conflict with any existing applications on the system. The
user loglevelsfor syslog are local 1-7.

Copyright © 2000, Mission Critical Linux, Inc. 22

6.3 API

int clu_set | oglevel (int severity)

int clu_get _|oglevel (void)

i Pt do_clulog(int severity, int wite_to_cons, const char
*fmt, ...

#define clulog(x,fm,args...) do_clulog(x,O,fnt, ##args)
#define clulog_and print(x, fm, args...) do_clulog(x, 1,
fnt, ##args)

The primary interface is a function called clulog() . This function takes a severity
level, and a format string with arguments. clu_set _loglevel() is used to set the
severity at which messages are logged (or filtered, depending on how you look at it). Its
return value is the last logging level. To retrieve the current cluster logging level, use

clu_get_loglevel() . The logging levels represent exactly those used by sydog.
Any function wishing to use these calls should include sys/syslog.h
clu_log_and_print() is provided mainly for applications that do not remove

themselves from the controlling terminal and wish to have messages printed to stdout
This call takes the same arguments as clulog()

7 Service Manager

7.1 Overview

The Service Manager is a daemon that runs on all nodes of the cluster to manage
availability of cluster services. It ensures that each service is running only once in the
cluster and chooses a cluster node if more than one are available to run a service. The
Service Manager has been designed to run in a cluster larger than two nodes, however, it
has only been tested in a two node environment.

7.2 Design

7.2.1 Shared Service Information Disk
The Service Manager uses the disk state library to manage and view service state

information. This library provides a getServiceStatus() interface to get service
information and a setServiceStatus() interface to modify service information.
The library also provides the function call removeService() . This information is

stored on a shared disk within the cluster that is viewable by al cluster nodes. Thereis
one view of the states of all servicesthat al nodes can see. Theinformation that is stored
for each service is. service identifier, service state, and service owner. Changes to these
fields on the shared disk are done only with the service information cluster lock.

7.2.1.1 Service Identifier (ID)

The service identifier is a number to identify this service across the cluster. The number
is defined in the cluster configuration and assigned to a service file when the service is
created. Thisunique number is generated by the service add tool.

Copyright © 2000, Mission Critical Linux, Inc. 23

7.2.1.2 Service Owner

The service owner is the cluster node that currently owns the state of the service. Only
one cluster node can operate on a service at atime, and thus, an owner is defined for this.
A cluster node might only own the service for a short time to transition it to another state
or it may be running the service and own it for months.

7.2.1.3 Service States

The service state defines the state that the service is currently in. This state may be a
transient state or a persistent state. Please refer to Appendix D for a complete state

diagram.
Table 7.1. Service State Description.
Name Description

Service Stopped A service that isin the stopped state is a service that is not running

on any cluster node and is a candidate to run. A service in the
PPED X . .

SVE_STO stopped state does not have an owner assigned to it and all of its
resources are not configured on any cluster node.

Service Starting A sarvicein the starting state is a service that has been requested to

SVC_STARTING

start on a cluster node. It isin this state until either the start of the
service is successful or it fails. Thisis a transent state and it is
owned by the cluster node starting the service.

Service Running

A service in the running state is a service that has al of its
resources configured on a cluster node. Thisis a persistent state in

SVC _DISABLING

SVC_RUNNING which the cluster node that owns the resources owns the service.

Service Stopping | A service in the stopping state is a service that has been requested
to stop on a cluster node. It isin this state until either the stop of

SVC_STOPPING the service is successful or it fails. Thisisatransent state and it is
owned by the cluster node stopping the service.

Service Disabling |A service in the disabling state is the same as a service in the

stopping state except the resulting state will be SVC_DISABLED
This is a trangent state which is requested by a cluster system
administrator. Disabling a service means to stop the service and
not start it unless requested by the cluster system administrator.

Service Disabled
SVC_DISABLED

A service in the disabled dtate is the same as a service in the
stopped state except the service will not be started unless requested
by the cluster system administrator. In normal operation the
Service Manager will skip over any service in the disabled state
and not change its state.

Service Error
SVC_ERROR

A servicein the error state is a service in which its state can not be
determined. Moving the service out of the error state requires
cluster system administrative intervention. It is unclear what
resources associated with the service might still be configured on a
cluster node.

Copyright © 2000, Mission Critical Linux, Inc.

24

7.2.1.4 Service Information Locking

Access to this shared service information requires locking as more than one process may
try and change this information at the same time. This can be from different cluster
nodes or from more than one process on the same system. The Service Manager uses the
clu_lock() and clu_unlock() interfaces provided by the cluster lock subsystem
to coordinate service state change requests. The Service Manager may read service
information without a lock; however, it will always request a service information cluster
lock before changing it. Refer to Appendix C for details on the locking synchronization
primitives.

7.2.2 Initialization

On startup, the Service Manager initiaizes the service state information on the shared
service disk. If the Service Manager is not running, cluster services should not be
running either. Thus, when the Service Manager starts, it checks the state of all services
and if any are claimed to be in an active state on itself it will stop those services and
change their stateto SVC_STOPPED

After service initialization, the Service Manager contacts the Quorum Daemon via the
Message Service to let the Quorum Daemon know it is ready to manage services. The
first message the Service Manager expects from the Quorum Daemon is a loca
NODE_URevent. Until this event happens all other events are ignored by the Service
Manager. The Service Manager will not respond to any node change event until it knows
itisup and running locally.

7.2.3 Cluster Node State Change Events

The Service Manager waits for host event changes to manage service state changes. The
Quorum Daemon is responsible for sending these host events to the Service Manager.
When a host comes up (HOST_UP or goes down (HOST_DOWNhe Quorum Daemon
sends a message to the Service Manager via the Message Service specifying the node 1D
that went down and its new state. On recelving these events the Service Manager
determines if it should start or stop services localy. Service state changing depends on
the service placement policy and the current nodes that are up in the cluster.

7.2.4 Service Placement Policy

The service placement policy is the guideline for where the Service Manager should start
aservice. Services can have preferred nodes or start on any node available. Through the
use of these placement policies, the system administrator can effectively establish aform
of load balancing.

7.2.4.1 Preferred Node

Services can have a Preferred Node defined. This means that if there is more than one
node in the cluster, the service will start on the preferred node. If the preferred node is

Copyright © 2000, Mission Critical Linux, Inc. 25

not available to run cluster services the Service Manager will start the service on another
cluster node.

7.2.4.2 Relocate when Preferred Node Joins the Cluster

A service may aso relocate to the preferred node if it becomes available. Thisisreferred
to as "relocate when preferred node joins the cluster”. The Service Manager on the
cluster node running the service stops the service on receipt of the NODE_URevent from
the Quorum Daemon. The preferred node coming up will fork off a process to wait for
the stop of the service before starting it. If the stop never completes, this forked process
will time—out.

7.2.4.3 Service Start Arbitration

Service start arbitration is done by the Service Manager when it needs to determine if it
should start a service. When the Service Manager decides that a service needs to start, it
runs the arbitrateService() call. This function returns a boolean indicating if it
should start the service.

Services in the SVC_DISABLEDand SVC_ERRORtate are not started as described by
these states in section 7.2.1.3.

If a service is active (in the SVC_STOPPING SVC_RUNNINGor SVC_STARTING
state) and the owner is in the HOST _DOWMate the service needs to be started.

Likewise, if the serviceisin SVC_STOPPEB™ate it requires starting. In these cases the
Service Manager first decidesif the preferred node isin HOST_UPstate and, if it is, lets
that node start the service. If the local cluster node is the preferred node, then the

Service Manager starts the service locally.

If the node state transition given to the Service Manager is a HOST_UPevent then it
determines if the service relocates when a preferred node joins the cluster. The Service
Manager uses the same logic to determine which server is the preferred node. The only
difference here is that the starting node must wait for the service to stop before it can
start the service. The Service Manager on the cluster node running the service will be in
the process of stopping the service as it also gets the HOST_URevent declaring that the
preferred node has booted. If the service isin SVC_STARTINGstate, the service will
not be stopped and relocated when the preferred node joins the cluster. It may have
taken a long time for the service to start and avoids the Service Manager from ping—
ponging a service betweeen two nodes.

If the service does not have a preferred node, then al cluster nodes are candidates to start
the service. The cluster node that acquires the service information lock first will start the
service. If a system is heavily loaded this will alow for systems with lighter system
loads to start the service.

Copyright © 2000, Mission Critical Linux, Inc. 26

7.2.5 Service Start and Stop Operations

Services are associated with start and stop configuration scripts. These are shell scripts
which are forked off by the Service Manager, so more than one start or stop of different
services can occur at atime.

When a start is requested by the Service Manager all of the resources for a service are
configured. If some resources are aready configured the start is deemed successful. All
that is important is that the local node owns the resource. This also helpsin the failure
cases below.

When a stop is requested by the Service Manager all of the resources for a service are
deconfigured.

7.2.5.1 Start and Stop Failures

When a service starts or stops, these operations can fail. In these cases, the following
genera guidelines are followed.

If a service is stopping, but fails, the service is then started. |If the subsequent service
start fails, the cluster node is rebooted. This allows another cluster node to make the
service avallable. Thisis necessary to avoid having a service in an indeterminate state,
possibly resulting in service unavailability.

If aservice is starting and it fails the service is then stopped. If the subsequent service
stop fails, the service is put into the SVC_ERRORtate. The service is put into the
SVC_ERRORtate because it is not clear from the Service Managers perspective how
much of the service start and stop and been completed. There may be resources on the
system that can not be configured on more than one system at atime. A service in the
SVC_ERRORstate requires cluster system administration intervention. The cluster
system administrator needs to remove all resources associated with the service in the
cluster node that it failed on. A node reboot would remove all resources, but is not
necessary. When this is done, the service may be manually moved out of the
SVC_ERRORate into the SVC_STARTINGstate and started on another cluster node.

7.3 Service Resources and Configuration File

A service description consists of a definition of resources that are associated with that
service. The services section islocated in the cluster configuration file, cluster.cfg

All entries after this label until end of file or another label are related to services. Each
service has a section in the service definition section that defines all of the configuration
information and resources assigned to it. The service description beings with a the string
"start service# " and ends with the string "end service# ". The '#' is the
number of the service entry and is referred to as the "service ID". Service numbers
should be assigned sequentially, beginning with O.

Note: the service ID for each service must be unique in the cluster configuration file (two
services cannot contain the same service D).

Copyright © 2000, Mission Critical Linux, Inc. 27

It is important to note that all service attribute names must be correctly spelled and are
case sengtive. If not correctly entered into the service description the Service Manager
will not be able to find the settings or resources defined for the service. Also make sure

that the name used in start and stop sections are the same (i.e. "start service0", "end
serviceQ").

Following is a definition of al service fields and valid values that can exist within the
"start service# "and"end service# " strings of aservice.

Table 7.2. Service Resources Description.

Name Description

name = "string" Each service has a name that is a character string. This name
is a human readable handle for the service. The Service
Manager and other components in the cluster use the service
identifier to refer to aservice.

The service name is the only required attribute of a service
that the user isrequired to define.

di sabl ed = yes or no |The service disabled setting is the manner in which a cluster
system administrator can keep a service in the stopped state.
In general the Service Manager wants to have services
running if they are not. This option allows the administrator
to keep a service stopped for maintenance or any other
reason.

ﬁggfeifgfdmgg; The preferred node setting defines a cluster node that the
service prefers to run on, if the nodeisup. If the node is not
up the service will run on any other node with equal priority.

[)g'eggg{ e(_mPregf ers ﬁgN If a service has a preferred node, then it can relocate to that

- node when the node becomes a cluster member (is up). This
allows a service to aways relocate to the preferred node
whenever it isamember of the cluster.

Copyright © 2000, Mission Critical Linux, Inc. 28

Name

Description

user Scri pt
="/ pat hnane"

Customization of a service can be done using a user—defined
script. This script isrun at service start time and service stop
time. It contains specific instructions and information about
the service to start applications or configure the service. The
script is similar to the scripts found in /etc/rc.d./init.d. The
value of this entry is a fully qualified (starts with "/")
pathname of the script. The script is caled with $1=start or
stop and $2=service name.

On service start the user script is run after al other resources
have been started. On service stop the user script is run first
before al other resources have been removed.

Following is a sample user script:
#1/ bi n/ bash
acti on=$1
svcNanme=$2
case $action in
"start’)

echo "Runni ng user start script for service
$svcNane"
"stop’)

echo

$svcNane"

"Running user stop script for service

esac

start networ k#
i pAddress = w. X.y.z

net mask =
255. 255. 255. 0

br oadcast =
W. X.y. 255

end net wor k#

A network section exists in a service description entry to
define an IP address for that service. If more than one IP
addresses is to be configured for a service there will be
multiple entries starting with networkO and incrementaly
increasing. Within each section there is an attribute called
"IpAddress’ which takes a dotted decimal IP address as a
vaue. This IP address will then be aliased to a physica
network interface on the cluster member upon which the
service is currently running. This is a "floating IP" address
which is distinct from a fixed IP address associated with a
system’ s network interface.

When a user assigns an dlias to a network interface, it does
not inherit the IP settings of the interface. If none are
specified, the service manager will find the appropriate
netmask and broadcast address.

However, the user may, if he/she wishes so, override these
values by specifying the netmask and broadcast address of a
servicein thisresource.

Copyright © 2000, Mission Critical Linux, Inc.

29

Name

Description

start device#

name =
"/ devi ce_pat hnane"

start mount
nane = "/ pat hnane"
options = nount
options as in
/etc/fstab, e.g.
rw, nosuid
forceUnmount = yes
or no
end nount

owner =
/ et c/ password nane

group = /etc/group
name

nuneri cal
e.g. 0755

node =
node,

end devi ce#

A device section exists in a service description entry to
define devices and its associated attributes and configuration
for aservice. If more than one device isto be configured for
a service then there will be multiple entries starting with
deviceO and incrementally increasing. Each device section
must contain a device name. This is a fully qualified
pathname of the device (e.q./ dev/ sdal).

If this deviceis file system based then a mount point needs to
be defined. A mount subsection defines all of the mount
attributes for a device.

A mount name is required for afile system based device and
is a fully qualified pathname of the mount point (e.g.
[var/cluster/ mt/nyservice/usr/foo). Any
mount options that are desired are defined in the options
attribute. If the mount point should be unmounted with
"force" then the attribute forceUnmount can be defined as
yes. The force unmount option kills all processes on a mount
if an umount request fails.

Each device can have permissions associated with it. These
are owner, group, and mode. These are norma file
permissions that one would use with chown, chgr p, and
chnod. If thedeviceisafile system based device then these
permissions will be applied to the mount point (as defined in
the mount subsection of the service). If the service is a raw
device then the permissions are applied to the device (e.g.
[dev/ sdal).

Notee if raw devices ae used then the
/etc/rc.d/init.d/ raw o file must be modified to
map the device names to the raw device names. Details for
this can be found in the "Kimberlite Cluster Installation and
Administration [5]" manual.

The following is an example service section in the cluster configuration file.

[servi ces]

start serviceO
name = kinberlite
di sabl ed = no
preferredNode = cluster_nodel

rel ocat eOnPr ef err edNodeBoot =

yes

user Scri pt=/var/cluster/scripts/kinberlite

start networkO

i pAddress =

Copyright © 2000, Mission Critical Linux, Inc.

192. 168. 1. 160

30

end net wor kO

start networkl
I pAddress = 10.0. 0. 160
st op networkl

start deviceO
name = /dev/sdal
start nount
name = /usr/projects/kinberlite
options = rw, nosuid
forceUnnmount = yes
end nount
owner = kinberlite
group = cluster
node = 755
end devi ce0

start devicel
name = /dev/sdb3
end devicel
end service0

start servicel _
nane = testService
end servicel

8 Heartbeat Mechanism

8.1 Introduction

The Heartbeat daemon monitors the status of cluster members from a high-level
communication perspective. Heartbeat works by having hosts communicate over a set of
redundant communication paths. The paths considered in our implementation include
Ethernet and seria ports. The Quorum Daemon performs additional membership
monitoring as well using a disk partition on a shared SCSI bus. Heartbeat actively
monitors the communication paths such that it can provide input to the Quorum Daemon
in quorum determination.

8.2 Design Considerations

In considering Linux—HA [1] "Heartbeat" code, developed by the Linux—HA project, it
became apparent that some design decisions that were made in Linux—HA could not be
accommodated in our design. In particular, we wanted to de—couple service management
from host membership services. Linux—HA makes service decisions solely on the
communication channel state, which can cause data integrity issues under certain failure
scenarios. Some attributes are broadcast over subnets, making that incompatible with a
possible scenario involving multiple clusters on one subnet. By de—coupling service
management from communication channel monitoring, we were able to properly
implement quorum and 1/O barriers in the Quorum Daemon layer and use it to drive

Copyright © 2000, Mission Critical Linux, Inc. 31

service placement.

Heartbeat has knowledge of the cluster configuration and communicates with other nodes
over different channels. It communicates over the Ethernet lines using UDP, and over
serid linesin raw mode. A node heartbeats to other nodes every 2 seconds (configurable
parameter with default setting) and gives up after 5 tries (configurable parameter with
default setting), thereby allowing the other node several opportunities to respond to it,
before declaring it Off-line over a particular channel.

8.3 Implementation Details

The "Heartbeat" daemon runs on every cluster node. A daemon running on a certain
node monitors the other node(s) by pinging them over multiple physical access lines,
mainly the seria line, the private Ethernet link and the public network.

In order to build knowledge of the cluster configuration, Heartbeat makes use of
functionality provided by get_clu_cfg() . This function reads a configuration file
(the default or a user—provided file). It sets up the name of the cluster and its members,
determines the identity of the node reading the configuration file, scans in channel
configurations (both network and seria interfaces). The function get_clu_cfg()

also has some error—checking functionality to make sure that the configuration in the file
is consistent with actual hardware.

Other issues and details about the implementation are discussed at length in the Quorum
Daemon section.

9 Shared State Disk Partition

There is a shared disk partition that can be concurrently accessed by both cluster nodes
(consequently, it is accessed as a raw device, not a mounted filesystem in order to, for
example, eliminate any cache-ins by the nodes). Thereis a section of this partition used
to represent cluster global state information for each node. Each node writes the
following information:
- Node status a node marks its own UP/DOWN state. This is necessary to facilitate
clean shutdown.
Activity timestamp: The activity timestamp is updated by each node on a periodic
basis. The frequency is configurable with a default period of every 5 seconds. This
represents the system’'s timestamp. If a node is active, it results in this timestamp
changing (increasing) over time. (Recall that each node has its own activity
timestamp.)
Service descriptions Each service has a corresponding on—disk representation. This
provides a means for cluster members to have "shared state" describing the status of
each service. This stateis used to control service startup placement.
Node locking status Each cluster node has a disk resident lock data structure. Thisis
used to seridlize access across nodes to the service description entries. This
synchronization ensures that a service's state is only modified by a single cluster
member.

Copyright © 2000, Mission Critical Linux, Inc. 32

Cluster Configuration "database": in order to ensure that all cluster nodes have a
common view of cluster configuration information (i.e. Subsystem parameters, service
descriptions), we represent this information in the shared disk. This avoids complex
synchronization issues inherent with alternative approaches such as maintaining
consistency among copies of configuration files residing on loca filesystems of each
cluster member. Refer to Appendix E for details.

There is aso an area of the partition in which each node represents a list of the services
that it is currently serving.

The scheme has separate portions which are write—only to each node. For example,
Node 0 may write itsinfo to block X, while Node 1 would read block X. This can help
mitigate read/modify/write problems if both nodes tried to concurrently read/write the
same block.

We provide a partition initiadlization utility that is used at install time. The utility is
invoked by running ’diskutil -l . This initializes the partition to indicate that
nobody is serving anything. In this manner the partition contents aren’t random garbage
which could cause the algorithms to make incorrect assumptions.

9.1 Where to Place the Shared State Disk Partition?

One option isto have asingle partition which represents all services.
Pros: Simplifies design to have everything in one place
Cons: Single point of failure. Therefore we require a redundant RAID controller.
We also maintain a shadow copy (detailed later).

Another option isto have a separate partition per service
Pros: Not a single point of failure in that loss of a partition will only impact a
single service. However, this still represents a single point of failure per individual
service.
Pros. Suppose you had lots of storage that necessitated usage of more than one
SCSI bus. Consider the case where the shared state partition is on Bus O (accessed
by SCSI Adapter 0) , while the data resides on disks on both Bus 0 and Bus 1
(accessed by SCSI Adapter 1). Now suppose that SCSI Adapter O fails (or has its
cable unplugged). In this case the host would no longer be able to serve the
service, and idedlly it should intelligently fail it over to the other cluster server who
may have connectivity to the storage. In order to make such a scheme work, we
would need to have a separate shared state partition on each shared SCSI bus (on a
bus granularity; not a service granularity).
Cons: Increases management complexity
Cons: Increases processing overhead and code complexity. For example, you have
to update Heartbeat intervals and service state in multiple locations. To ascertain
the state of a potentially failed partner node you have to collect potentialy
inconsistent state data.

Our design model consists of a single logical shared state partition, which is physically
mirrored, rather than separate partitions per service. Having a single shared state

Copyright © 2000, Mission Critical Linux, Inc. 33

partition makes for a smple algorithm for the Quorum Daemon to determine if the other
host is down. We support more than one shared storage SCSI bus for capacity purposes.
However, there is a single shared state partition. To eliminate this from being a single
point of failure, it can be configured as a redundant RAID volume, as detailed in section
9.1.

Beyond the number of partitions there is also the question of whether the shared state
dISk partition should be on an entirely separate physical disk.
Pros. Avoids controller optimizations governing head seeks from starving out access
to the activity timer region. Example: Oracle running on a disk heavily using a
second partition of the disk could queue enough 1/O’s to keep the heads out of the
infrequently used shared state partition.
Cons. Costs you awhole disk.
Fortunately the design affords the flexibility of either having the shared state partition
being on the same or different disks from the services. Thiswill allow us to support both
configurations and make recommendations based on our experiences.

NOTE: Having multiple nodes concurrently accessing a disk on a shared SCSI bus
requires the kernel be configured with "Raw /0" support. Without Raw 1/O support,
reads and writes would be cached in the memory resident buffer cache. This would
result in a node not seeing the writes posted by another node. Such behavior precludes
correct concurrent access. Fortunately, Linux does provide Raw 1/O support as patches
in both 2.2— and 2.3-based kernels.

9.2 Shared Disk Protections

A foundation component of the cluster design is the representation of cluster state
information on shared storage disks. This state information includes node states
(up/down), service descriptions, lock synchronization primitives, etc. Since the shared
cluster state as represented on disk is vital to correct operation, the implementation goes
to great lengths to protect the integrity and availability of this shared state information.
This section highlights the provisions for not making this shared disk a single point of
failure.

9.2.1 Disk Access Library

There are a set of APIs provided which are used to access the various "data structures’
represented on the disk. Examplesinclude APIsto access:

* Member state information

» Service descriptions

» Configuration database

These disk access APIs abstract the callers from low level details such as:

* Knowing the physical layout of the partition to determine where the requested data
resides.

* Performs validation checks, including checksums.

» Repairs corrupted data using the shadow partition copy.

Copyright © 2000, Mission Critical Linux, Inc. 34

* Meeting the stringent requirements for accessing a device using rawio. (This includes
transaction size and alignment.)

Note: The disk access APIs are not currently safe for usage in multi—threaded
applications or forked instances inheriting common file descriptors. In order to safely
call the disk access APIsin these situations, it is necessary to bracket the calls by calling
the provided lock synchronization primitives (documented separately later).

9.2.2 Software Protections

Each piece of cluster state information is represented on the disk in separate 512-byte
blocks. In addition to the state information itself, we also store some meta—data
information in each "structure”. This meta—data information includes:

1. A magic number — particular to each type of state information.

2. A version number — alowing for inter—operability with future rel eases.

3. A checksum — used to detect corruption of the data structure.

The following describes how the redundant shared state partitions are used to achieve
maximal fault tolerance. Each write of cluster shared state information to the shared
state partitions is issued to both the "primary” and "shadow" partition and the checksum
is set appropriately. Failure of either of these 2 writes will cause a node to remove itself
from the cluster. The read path for cluster shared state information will randomly issue
the read request to either the primary or shadow copy. Upon success the datais returned.
In the event of failure (detected by checksum and/or magic number discrepancy) a read
will be issued to the other shared state partition. |f this succeeds, the failed copy will be
written with the repaired data.

As a result of the read/repair algorithm, the shared state partitions become self-
correcting asthey areread. There may be portions of shared state information which are
infrequently read. One such example is the partition header which is typically only read
in once as a cluster member is started. Such infrequently accessed data would not
automatically be repaired if it were not read in periodically. In order to close this
window of vulnerability where in the face of error you are down to a single partition, the
entire shared state partition is periodically read in. This scan of the share state partition
is performed by reading in only one of the categories of shared state information per
interval. There are 5 such categories. The current scan rate is every 30 seconds,
resulting in afull sweep of the partition every 2.5 minutes.

The main goal of the shadowing scheme for cluster state information is to protect against
user/operator error. A user performing a ‘mkfs or ‘dd' accidentally to one of the two
guorum partitions is one such error. In this case, since two copies existed, reads to the
corrupted partition will fail, but reads to the other partition will be retrieved properly.
When the cluster updates its state information on both partitions of the quorum disk, it
will write correct information to the corrupt partition.

If the partitions are placed on separate disks with no RAID redundancy, on different
SCSI buses, one could fall in the pathological double failure whereby each system could

Copyright © 2000, Mission Critical Linux, Inc. 35

access only one of the partitions. This would cause each system to assume the other is
down. In addition, separate disks with no RAID redundancy will lead to the whole
system going down (since we always want to write to both partitions).

9.2.3 Hardware Protections

This is the case where a SCSI disk fails, a SCSI adapter fails and the system is not
capable of accessing the disk. Through the usage of a RAID box with redundant
controllers and appropriate RAID redundancy (such as mirroring) the individual disk that
the shared state information resides on is not a single point of failure.

In a multi—ported RAID controller configuration, should a node lose connectivity to the
shared state disks (i.e. SCSI cable pull or PCI adapter failure), that node will remove
itself from the cluster (and/or) be power cycled by the surviving node. In this case the
partner node will continue to provide cluster services.

9.3 Quorum Daemon

The primary roles of the Quorum Daemon are:

1. to ensure that only nodes with quorum are alowed to be active cluster members.

2. to provide |/O Barriers necessary to ensure data integrity.

3. To represent shared cluster state by representing node status as well as describing
services state.

The Quorum Daemon will be implemented as a user level utility. The current design
requires "Raw 1/0O" access, the implementation of which is discussed in the previous
section in terms of kernel level requirements.

The Quorum Daemon will be started up by the cluster initialization scripts (detailed in a
later section). The Quorum Daemon will perform a set of initialization tasks such as:

9.3.1 StartQuorumbDaemon() {

If the Quorum Daemon is unable to access the shared state partition (i.e. SCSI cable
pull, adapter failure), it will return an error status. The result is that this node will
then fail to become a cluster member.

Any other mop—ups which may need to be done to remove any state from previous
boots, for example, to initialize the node’ s own state and lock structure.

Commence timestamp pinging by calling Quor undBody () .

9.3.2 QuorumdBody() {

This routine contains a loop that runs until the Quorum Daemon is stopped as part of a

clean cluster shutdown. The following steps will be performed periodically.

- This daemon will update its activity timestamp even if it is not currently serving any
services. If the update to the timestamp fails (after afew retries) the Quorum Daemon
will reboot the system as current cluster semantics cannot be assured.

Both SM and PowerD update QuorumD every 30 seconds that they are operational. If

Copyright © 2000, Mission Critical Linux, Inc. 36

QuorumD does not hear from SM in two minutes, it will reboot. If it doesn’t hear
from Powerd in 2 minutes, it will only log errors.

Call CheckPartnerActive(); detailed later.

See if there are any messages sent by other cluster daemons or management/
monitoring utilities.

}

9.3.3 StopQuorumd() {

Terminate child quorumD sub—process
Mark disk state as down so that partner does not shoot that member node that
guorumd was running on.
Notify the Service Manager that we are down. The SM could already be stopped,
which is OK. Thereis no need to do thisif the daemon has initiated this, as it would
be in response to a Service Manager request.
Stop power daemon.

+ Perform final cleanup

}

9.3.4 checkPartnerActive() {

/l Thisisalow level disk based "Heartbeat" mechanism used to determineif a
/I partner node is ill alive. Sinceit isdisk based it isinherently of longer duration
/ than the comparable network—based Heartbeat schemes.
Read in partner’ s status block from shared partition
Repeated 1/0 errors will cause a node to shut itself down
If the partner’s state is stopped, no additional checks are performed.
Otherwise, the state isn’t down. See if the timestamp has changed.
If the timestamp hasn’t changed, bump a counter. If after a few iterations, it still
isn't incrementing, consider the partner failed. In this case, contact Heartbeat to
see if it considers the partner to be alive*. If so, give the partner longer before
shooting it, call shootPartner() — described later.
If the timestamp is changing, mark the partner’s state as up. Note: it is therefore
not a strict requirement that all cluster member’'s systems clocks be closely
synchronized.

}

* Note: allowing the partner extratime beyond the normal polling frequency to update its
timestamp before shooting it is done to avoid prematurely declaring a node down
during aspikein 1/O or system activity.

9.3.5 shootPartner() {

Check power switch status
If (OK) {
Power cycle partner
Set ON—disk state at partner to DOWN
revoke any synchronization locks held by the failed node.

Copyright © 2000, Mission Critical Linux, Inc. 37

}

Notify Service Manager that partner is DOWN
return (SUCCESS)
Else{
Il power switch failed
if (power switch returned error) {
/I do nothing because we can’'t safely shoot partner
/l and takeover services
return (FAIL)
}
if (status command timed out) {
if ((we have "recently” —configurable— successfully
retrieved status from power switch) & &
(heartbeat indicates power down)) {
[/ assume partner and its power switch have lost power
set on—disk state of partner to DOWN
Notify SM
return (SUCCESS)
}
}
return (FAIL)

10 Power Switch Options

10.1 Background
Investigating the options for remote power switches. These efforts included:

Hardware switch selection. Factors include: price, reliability, amperage/voltage
requirements, rack mounting. Next section discusses the RPS-10 Switch that we use.
We considered UPS/Switch combinations but considered them too expensive, with
unneeded features, and usually more switchable outlets than needed.

Failure scenarios for the switch itself are considered separately in alater section.
Development of an API that the other cluster software components can call into to do:
status reporting (is there a remote switch present and reporting operational status), on,
off, toggle, etc., as explained in Appendix B.

Thereisaso a"lower level" into which various remote switch types can be used with
the appropriate "driver"—like code. This "driver"—like code provides the device
specific abstraction from the upper level API; thereby allowing us to accommodate a
range of remote switch types.

10.2 Purpose

I/0O Barrier — used to ensure that a failed node does not write data to shared disk. Hung
node is the problematic case.

Copyright © 2000, Mission Critical Linux, Inc. 38

10.2.1 Observations:
Necessary for service takeover from failed nodes

can safely takeover services which have been cleanly stopped
upon regoining, a node can safely takeover services for which it was the previous

server
’
/ P
’
’

Swi t ch/ Swit ch/
Hub 0

heart beat

RO

1
1
1
1
]
1
Node 0 serial Node 1
1
1
1
1
1
1
1
1
1

1
AL D v
Power B Power
Switch #0 Switch #1
C

electricity E electricity

Figure 10.1. Hardware Setup and Failure Points.

10.3 Assumptions

1
2.

3.

. Itispossible to query the switch to determine its status in detail.

There will only be one switch managed by this interface. That switch will control
power to one machine.

Only one process will ever attempt to communicate with the switch at any given time,
i.e. there are no contention issues related to which process controls the switch.

Nothing is assumed in the interface about the nature of the communication channel to
the switch. The implementation hides the details of the communication channel.
Power switch has a single power cycle command for atomicity

Power switch has status command + return status from power cycle command.

Copyright © 2000, Mission Critical Linux, Inc. 39

10.4 Example Implementation: The RPS—-10 Switch Behavior

The RPS-10 can be controlled over a seria line. It responds with a string "RPS-10
ready\n", when the corresponding serial port file, e.g. /dev/ttySO isfirst opened. Thereis
a delay before the initial response string is displayed. It is on the order of 10 sec.
Normally the switch doesn’t respond when the serial port is opened, and must be queried
toseeif itisaive.

When no power is supplied to the switch, it does not respond to commands over the
seria port. Thereis no other indication. If thereis no response to a command or query
then this can be taken to be a possible indication that power is not supplied to the switch.
When power is removed from the switch, the condition of the switch after power is re-
supplied is dependent upon the position of a dip switch. Depending on the position of
the switch, the device will power on in the condition that it was in when powered off, or
will power on closed. For our purposes the dip switch will be positioned so that the
switch is closed, i.e. supplying power to its load, when power isinitially supplied to the
switch.

When the serid line is disconnected, the switch remains in the position that it was in at
the time of the disconnect. The switch remains in that same position after the seria line
IS reconnected.

The power toggle delay can be configured to be 5 sec. or 10 sec.

After a command is sent to the switch, the switch will respond with the current switch
position, i.e. the position after the command has completed. Then the switch will send
"Complete\n" through the serial port.

Since the only indication of failure is that the switch does not respond in atimely way,
time—outs must be supported in software.

10.5 Power Switch Related Failure Scenarios
The letters for the scenarios correspond to the failure pointsin the figure above.

10.5.1 Scenario A

Failure: Node gets unplugged from power switch, or node gets powered off.
Response: Node 1 successfully shoots down Node 0 and takes over services.

10.5.2 Scenario B
Power switch fails. We take three cases under consideration.

10.5.2.1 Scenario B1

Failure: Switch fails such that node O gets powered OFF from previously ON, and power
switch doesn’t respond to serial commands.

Response: Node 1 can't talk to power switch. If the power switch has been recently
contacted, Node 1 assumes that Node 0 is without power (not that the serial cable has
been pulled) and takes over services. Otherwise, Node 1 cannot safely ascertain the state
of Node 0 so it cannot safely take over Node O’ s services.

Copyright © 2000, Mission Critical Linux, Inc. 40

10.5.2.2 Scenario B2

Failure: Switch fails such that node O remains powered ON, but power switch does not
respond to commands (status or cycle) from serial port.

Response: Node 1 is unable to conclude the state of Node 0 and it will not take over
services. No action taken.

10.5.2.3 Scenario B3

Failure: The switch lies! It reports successful power cycle or status when in fact it realy
didn’t power cycle.

Response: In this case, Node 1 will take over services from Node 0. Should Node O
come out of a hung state and resume pinging the disk (updating its timestamp), Node 1
will detect that Node 0 is using an old incarnation number and Node 1 will then reboot.

10.5.3 Scenario C

Failure: Power switch gets unplugged from the electric outlet: the node powers down
and doesn’t respond to serial commands.
Response: Same as scenario B1

10.5.4 Scenario D

Failure: Seria port gets unplugged, or the serial port controller fails

Response: Verify recent power switch connectivity to know that we haven't lost the
power switch; if so, safely assume partner is dead. If there has been no recent
connectivity to the power switch and the partner node appears to be down, services
cannot be safely failed over.

10.5.5 Scenario E

Failure: Electricity goes out: Since we assume that the power switches are plugged into
separate circuits (power grids), then if a circuit breaker blows, this leaves the other
node/switch up.

Response: Same as scenario B1.

10.5.6 Service Availability Disruptions

Note: These service disruptions are the result of double—fault scenarios.

Scenario D: serial cable to power switch fails and a node hangs

Scenario B2: power switch fails to communicate over seria line while stuck in ON
position

Both of these result in Node 1 continuing to run the services it had, but it will not take
over services from Node O.

The risk of Scenario D can be reduced by printing error logs anytime we can't talk to the
switch; this clearly does not completely eliminate the risk. Additionally, the system
monitoring user—interface will display an indication of the power switch status. By
checking to see that we have recently successfully probed the power switch, we increase
the probability of knowing that we are not in failure scenario D.

Copyright © 2000, Mission Critical Linux, Inc. 41

Note To bound the number of 1/0O's that get emitted when a node hangs, check
incarnation number of node to see when it un—hangs. In this case, shut yourself down.

10.6 Implementation
1. Node will join cluster even if (powerSwitchStatus() '= SUCCESS)

2. Power Daemon periodicaly monitors ability to communicate with power switch. It
records a timestamp of the last successful contact.

3. Quorum Daemon {
if (other node has stopped updating timestamp) {
notifyServiceManager = TRUE;
/Il contact Heartbeat Daemon to seeiif it still sees the other
/I communication channels as aive. If so, wait before shooting partner.
if (shootPartner() '= SUCCESS) {
notifyServiceManager = FALSE;
}

if (notifyServiceManager == TRUE) {
/I Initiate Service takeover
save off incarnation number of failed node
set partner’ s disk state to DOWN
notify Service Manager of partner down

}
} I* if (other node has stopped updating timestamp) */
}

4. Service Manager (Partner Down Notification) {
for each (service) {
if (service.server == partner) {
/I simplified way
service takeover;

11 Dumps and Panics

There is a very unpleasant side—effect of shooting a failed node via power cycle.
Specificaly, this would likely preclude the ability to take a dump. Consider the
following scenario:

A node panics, thereby inducing a network and storage partition.

The surviving node shoots the panicking node.

The panic node gets power cycled which obliterates the kernel state from memory;

Copyright © 2000, Mission Critical Linux, Inc. 42

thereby precluding its preserving a dump upon reboot.

So how can we improve upon this? The following are some ideas Dave Winchell & Tim

Burke cooked up.

+ One could use hardware much more exotic than a power switch to incapacitate the
other node. In theinterest of sticking with commodity components and keeping costs
down, there weren’t any obvious options.

An aternative scheme was to use the serial port as a means of communicating to the
other node that "I’m in the process of a panic”, aong with a periodic indication "that
I’'m still in panic”, culminated with a "I’m done panicking and calling reboot now".
Usage of the seria port is based on its ability to operate in polled mode (not requiring
interrupts); making it callable from the panic code. (Actualy, since ‘savecore' isn't
performed on the panic side, the time it takes to get through the panic code shouldn’t
be that long. We may be able to achieve the same results by smply sending over a
single message like "l just did a panic and am about to reboot — so leave me alone"
message. Here, you'd just need the time it takes to declare a node dead be long
enough to include the time it takes on average to get through the panic code.)

The surviving node would notice that the other node is in panic and not power cycle
it. There would be some (configurable) time limit to how long it will give the panic
sequence to conclude. If the surviving node hears from the other node that it has
initiated the reboot, then it can safely assume that its safe to failover the services
without power cycling.

We considered having the panic code modify the shared state partition to reflect the
fact that the node was in a panic situation. This approach was dismissed because it
requires too many system services which could not be depended upon in a panic
context.

Pros: Allows dumps to work

Cons: Could increase the service failover time. Added implementation work.

12 Cluster Startup/Shutdown Scripts

12.1 Cluster Start

In order to orchestrate the proper startup sequence, there will be a cluster
Startup/Shutdown script in SYSTEM V Init sequence. This script "cl uster start”
will then automatically be called appropriately. The order of startup is:

1. Power Daemon

2. Heartbeat

3. Quorum Daemon (has dependency on Power daemon)

4. Service Manager (dependency on Quorum daemon)

Behavior in the case of failure to start any of the daemons is dependent on what daemon
actually dies. The following table briefly explains the result of any failure.

Table 12.1. Behavior of Cluster in event of a Failure when starting Daemon(s).

Copyright © 2000, Mission Critical Linux, Inc. 43

Daemon Behavior

Power Daemon Services that have been cleanly stopped can be run on this node.
However in the event of failure of the partner (unclean stop), no
services will be failed over as data integrity cannot be ensured.

Heartbeat Services will continue to start and be failed over. Failover times
will decrease.

Quorum Daemon The node will never declare itself a cluster member.
Consequently no services will start.

Service Manager No services will be started

12.2 Cluster Stop

Cluster shutdown proceeds in the opposite order as startup. It begins with the Service
Manager attempting to cleanly stop all services.

Stopping the cluster daemons is not a ssimple matter of sending them akill signal. Thisis
due to the fact that the daemons must be cleanly shutdown in order to stop all running
services and mark the node's state as down. Failure to shutdown cleanly will result in
the other cluster member to detect the instability and shoot the other node.

The stop sequenceis as follows:

1. Cdl a utility (stopcluster) which sends a message (via the cluster messaging service)
to the service manager. Upon receipt of this message, SM will cleanly stop all
services.

2. After SM has cleanly stopped al services it sends a message to the Quorum Daemon
telling it to cleanly shutdown. To do this, Quorum Daemon marks its state on the
shared disk partition as being down.

3. Quorum Daemon sends a message to the power daemon telling it to shutdown.

4. Heartbeat getskilled off.

12.2.1 Additional Information and Particularities

When onerunsthe "cl ust er st op” command to initiate cluster shutdown, it initiates
the chain of messages by calling a utility st opcl ust er ; and also killing the Heartbeat
daemon. After going through those steps, the cl ust er script completes. Meanwhile,
off in the background, the SM is busy stopping services (which could take a while
depending on the type and number of services). Consequently, one may run "cl ust er
st op", and before that process exits, if he/sheruns"cl ust er st at us”, thenin this
instance, it is likely that some daemons remain for the duration it takes for the clean
shutdown sequence to compl ete.

If the SM is unable to cleanly stop all services, then it would not be safe for any running

services to be taken over by the other cluster member. For thisreason, if SM is unable to
stop all of its services it does not send the terminate message to the Quorum Daemon.

Copyright © 2000, Mission Critical Linux, Inc. 44

12.3 Cluster Restart

The current cluster can be 'restarted’ without an intervening reboot. We intend to revisit
whether there are any possible negative implications for service availability.

If one wants to accomplish the equivalent of a cluster restart, the following steps should
be taken:

1. Stop the cluster services and daemons (via“‘cl ust er st op‘)

2. Verify that al the cluster daemons have stopped (via‘cl ust er st at us‘). Do not
attempt to start the cluster daemons if the stop has failed to terminate all the daemons.
(Should you find yourself in this situation, a system reboot is warranted).

3. Start cluster daemons and services (via‘cl uster start”).

13 Failure Scenarios

The previous sections may not be completely clear on the desired behavior in the case of
a faillure. So to help illustrate the point, the following use case scenarios attempt to
describe the high level sequence of eventsin response to various node failures.

13.1 Scenario: Two Nodes Up — Pull SCSI Cable from One Node

1. Quorum Daemon can’'t update its own timestamp and attemps to shutdown cleanly by
executing a "shutdown —r now".
2. meanwhile, other node's Quorum Daemon times out the other based on disk
inactivity:
- seesthat other node' s state asin cluster
Quorum Daemon on survivor calls Heartbeat when it sees no disk activity prior to
shooting it
QD shoots other node. N.B.: if we can ping over network, wait longer before
shooting to allow clean shutdown
Heartbeat detects NET_DOWN
Quorum Daemon notifies SM that partner is down
SM takes over services

Shutting down a node will probably be interrupted by the other node shooting it. Thisis
a tradeoff relating to failover times. If you grant longer failover times, there will be a
clean shutdown. In practice though, given a SCSI outage the cluster stop sequence is
likely to stall while attempting to stop services (on the now inaccessible shared disk). It
is unlikely that the service faillover constraints would ever be long enough to perform a
complete clean shutdown. The end result is that in the face of SCSI inaccessibility a
node will get as much shutdown initiated prior to being shot with the understanding that
anode doesn't get far in the shutdown for short failover times.

13.2 Scenario: Two Servers Up — Pull Cluster Shared State Disk

It is possible —and very likely— that the shared state partition is not the only partition on
the disk. With this setup, pulling the disk may lead to loss of accessto data or to services
altogether, running on the other partitions.

Copyright © 2000, Mission Critical Linux, Inc. 45

To eliminate this scenario as a SPOF, the quorum partitions should be mirrored at the
RAID controller level.
The following behavior will occur upon complete inaccessibility of the quorum
partitions.
1. both nodes fail to update their timestamp; both exec "shutdown —r now"
2. nodes reboot
cluster startup fails due to inability to access disk. Nodes fully boot but don’'t start
any HA services

Note (v.1.0) Cluster activity has stopped and will require manual intervention to start. It
isn't polling while waiting for SCSI cable to be plugged in and then automatically startup
cluster services. At this point, both nodes will be up, but neither will be running the
cluster daemons and providing cluster services. It is up to the system administrator to
notice the outage and take the necessary corrective action (such as plugging the disk back
in and rebooting).

13.3 Scenario: Split—Mirror Scenario: Mirrored Shared State Partition

Figure 13.1. Scenario that Leads to Split—Mirror.

We assume in this scenario two SCSI buses as shown in figure 13.1. Every SCSI bus
connects both nodes and a disk. In this scenario we lose connectivity between Node 1
and Disk 0, and Node 0 and Disk 1 respectively. Thisis not an SPOF.

This double outage will cause the nodes to shoot each others

Upon reboot they could both become the server

Ideas and issuesonsider dual ported raid box for shared state partition redundancy
Improvementcheck for network connectivity; if so, it would be smart for them to both
get out of the cluster and require manual intervention

13.4 Scenario: Network Cable Pull(s) When Running Cluster

if (asubset of the redundant network links survive) {
nothing happens, no external events generated

}
ese{

Copyright © 2000, Mission Critical Linux, Inc. 46

Il net partitioned
Heartbeat does the following:
Node O: setsinternal network state about node 1 to partitioned.
Node 1: setsinternal network state about node 1 to partitioned.
}
Note that this state is not published and no action/message exchange happens between
HB and any other daemon or process. When Quorum Daemon cannot see the shared
state disk partition, it will ask HB for its view of the network. Heartbeat in this case will
reply that the network is partitioned. Quorum Daemon would notify the Service
Manager that would take appropriate action.
If HB has set the network to partitioned but QD can see the quorum partition, then
nothing happens and services continue running uninterrupted.

13.5 Scenario: Two Node Boot: Full Network Outage or All

Hardware Fully Operational
The fact that there's a network outage makes it no different than a normal startup

sequence. The following table depicts a timeline where entries on the same horizontal
line represent concurrent activity.

Table 13.1. Behavior of nodes at Boot time.

Node 1
Start Cluster Script

Node O
Start Cluster Script

Start Quorum Daemon

Start Quorum Daemon

Start Heartbeat Start Heartbeat

DiskService State, reset Service Status DiskService State, reset Service Status
Check Power Switch Check Power Switch

Cal sMm Cal sMm

Basicaly, it relies on the disk locking mechanism: one starts services before the other;
both are still cluster members. The node would stop all services for which it is not the
preferred node. The preferred node will start those services.

13.6 Scenario: Server Hangs
Say server 0 hangs

Node 1 notices node 0's disk timestamp stopped (Quorum Daemon)
Node 1’ s Heartbeat also reports node 0 is DOWN

Node 1 shoots node 0 (Quorum Daemon)

Node 1 modifies node 0's on—disk state as DOWN
Node 1's Quorum Daemon calls SM to tell it that node 0 is DOWN
SM restarts services on 1 after resetting disk service state

Copyright © 2000, Mission Critical Linux, Inc.

a7

13.7 Scenario: Server Panics

Node 0 panics
Node 1 shoots it.
Refer to the "Dumps and Panics' section for detail.

13.8 Scenario: Cluster Daemon Dies.

There are multiple daemons that can die. Thisis different from table 12.1 describing the
startup procedure and the behavior when a daemon fails to start. The behavior and
remedial in each case are as follows:

Table 13.1. Daemon Failure Scenarios

Deamon Behavior

Power Daemon The system will continue to run and provide the same services it
was aready running. Furthermore, if the other node goes down
cleanly, it can takeover those services. However when powerd is
down, the system is unable to power cycle the other node which
implies that it is unable to takeover services in the event of a node
failure.

Heartbeat The cluster service survives. In this case, Quorum Daemon will not
lengthen the duration allowed before shooting the partner in the
event that the partner stops updating its disk timestamp.

Quorum Manager | Disk timestamp stops.
Partner shootsit.

Service Manager | No additional services will be stopped or started on this node.

13.9 Scenario: Site Power Outage

Both nodes lose power at the same time, and we assume that they get power restored at
the same time and boot up ssimultaneoudly.

Table 13.2. Node Behavior During Power Outage.

Node O Node 1
Start cluster daemons Start cluster daemons
—starts Quorum Daemon —Starts Quorum Daemon
See other node up See other node up

Thisworks. Now, in case node O starts up before node 1.

Table 13.3. Node behavior During Power Outage (continued).

Copyright © 2000, Mission Critical Linux, Inc. 438

— sees other node’ s disk state as up
— can access power switch

— observes that QM inactive

— shoots partner

Node O Node 1
Start cluster daemons Busy in fsck
— starts Quorum Daemon Still busy in fsck...

Start cluster daemons
— starts Quorum Daemon

— sets partner’ s disk state to stopped

Gets shot

— takeover services

Startsfsck over again
Boots and joins cluster

13.10 Scenario: Planned Maintenance (TBD)

The administrator decides to take down a cluster server for a planned activity. The SM
will be responsible for initiating a service stop on a per—service basis. Alternatively, the
administrator could manually initiate the relocation of an individual service. For each

service:

- The SM performs the application specific stop script (i.e. unmounting filesystems). It
waits for the completion of the stop script prior to calling the Quorum Daemon.

The Quorum Daemon marks in the shared state that it is no longer the server for this
particular service. (However it keeps its activity timer updating even if it currently
iSn't serving any services.)

Upon return of a success status from the Quorum Daemon, the SM of the former
server contacts the SM on the other node to initiate a service start.

13.11 Scenario: Clean Shutdown

During a normal system shutdown, the Service Manager’s stop function will be called
(triggered by SYSTEM V Init—based stop scripts).
For each service, SM will perform a clean shutdown:
First, the application specific stop script (i.e. unmount, stop database)
Second, the Disk Library’s Stop service function will be called for each service to
set the shared disk state to indicate that it is not the server.
The Stop script would next cause Quorum Daemon to stop, which marks the node
state as DOWN.
Quorum Daemon on other node notices that the partner node state is DOWN and
notifies the Service Manager.
The SM running on the other cluster member would then pickup the services after
they have completed the stop on the original server.

Copyright © 2000, Mission Critical Linux, Inc. 49

13.12 Scenario: Storage Outage — Data Disk

This case describes the behavior when a disk associated with a shared service becomes
inaccessible. Assumption: access to the shared state disk is intact.

Here the application encounters 1/0 errors, but the Quorum Daemon (and consequently
the SM) are oblivious to the error. For this reason, we recommend mirroring at the
RAID controller level.

For the first "release” we aren’t doing anything to address this problem. This is another
case of a tradeoff between High—Availability and hardware expense. For subsequent
releases, we could get more into service monitoring. In that case we could be "pinging"
all the devices associated with a service and possibly shutdown the service.

This scenario would benefit from tighter integration whereby the Quorum Daemon could

register for error notifications from the low—level (SCSI) device drivers. Since that
support is not available in the current SCSI drivers we' re not pursuing this route.

Copyright © 2000, Mission Critical Linux, Inc. 50

14 Reference

[1]
[2]
[3]
[4]
[5]

High—Availability Linux Project at http://linux—ha.org.

Timeout Devices, Inc. At http://www.timeoutdevices.com.

Linux Virtual Server at http://LinuxVirtual Server.org.

Swig information and documentation available at http://www.swig.org.

Sorensen, Karla. Kimberlite Cluster Installation and Administration. June 2000.
Available at http://oss.miss oncriticallinux.com.

Copyright © 2000, Mission Critical Linux, Inc. 51

15 Appendix A. Messaging Subsystem API

The API provides the following functions.

Function calls and Description
nmsg_handl e t nsg_open(nsg_addr t dest, int nodeid)

Description:
Open a communication path to the daemon associated with dest on node 'nodeid.’
Arguments:
dest Addressto which the connection ismade. Currently, one of:
PROCI D_HEARTBEAT
PROCI D_SVCMER
PROCI D_QUORUND
PROCI D_ADM ND
nodei d Node where the daemon you wish to contact lives. This value corresponds
to that returned from get_clu_cfg(), in the lid field.
Return values:
Upon success, avalid file descriptor isreturned. —1 isreturned upon failure.

void nmsg_cl ose(nsg_handl e_t handl e)

Description:

Close an open msg_handle t. It is_required_ that you call this, as the msg svc keeps
internal tables of file descriptors and associated states.

Arguments:

handl e Handle returned by msg_open or msg_accept which you will no longer use.
Return Values:

None.

nmsg_handl e_t nmsg_listen(nsg_addr_t my_proc_id)
Description:

Create amsg_handle_t which is ready to accept incoming connections.
Arguments:

my_proc_id Addresson which to listen. PROCID XXX correspondsto a TCP/IP
port on which this daemon will listen.

Return Values:

On success, avalid file descriptor isreturned. On error, —1 isreturned.

nmsg_handl e t nsg_accept (nsg_handl e_t handl e)

Description:

Call accept on afile descriptor returned from msg_listen.

Arguments:

handl e Valid handle returned from msg_listen.

Return Values:

On success, a valid file descriptor is returned which describes the new communication
channel. On error, —1 isreturned.

Copyright © 2000, Mission Critical Linux, Inc. 52

Function calls and Description

nmsg_handl e t nsg_accept tinmeout(nmsg handle t handle, int
timeout)

Description:

Call accept on afile descriptor. If no connections are pending within timeout seconds,
the function returns.

Arguments:

handl e valid handle returned by msg_listen.

ti meout timein secondsto wait for a connection.

Return Values:

If a connection is pending, a valid file descriptor for that connection is returned. If no
connections are pending, O isreturned. On error, —1 is returned.

int nsg_send(nsg_handl e t handle, void *buf, ssize t count)

Description:

Send a message over the communications channel described by handle.

Arguments:

handl e Valid handle returned from msg_open or msg_accept|[_timeout].

buf Pointer to data to be sent.

count Number of bytesto send.

Return Values:

On success, the number of bytes successfully written is returned. On error, -1 is
returned, and errno is set according to write(2).

int _ nsg_send(nsg_handle t handle, void *buf, ssizet
count)

Description:

Send a message over the communications channel described by handle. Thiscall differs
from msg_send in that it does no sanity checking of internal file descriptor tables. Use
thiscall if you hand craft a connection, and would like the message service to take care
of the communications.

Arguments:
handl e Valid file descriptor.
buf Pointer to data to be sent.

count Number of bytesto send.

RETURN VALUES

On success, the number of bytes successfully written is returned. On error, -1 is
returned, and errno is set according to write(2).

Copyright © 2000, Mission Critical Linux, Inc. 53

Function calls and Description

ssize t nsg_receive(nsg _handle t handle, void *buf, ssize t
count)

Description:

Receive a message off of the communications channel described by handle.
Arguments:

handl e Valid handle returned by a call to msg_accept or msg_open.

buf Buffer into which the received datais copied.
count Number of bytesto read from msg_handle _t.
Return Values:

On success, the number of bytes successfully read isreturned. On error, —1isreturned,
and errno is set according to read(2).

ssize t _ nsg_receive(nsg_handl e t handl e, void *buf,
ssize_t count)

Description:

Receive a message off of the communications channel described by handle. This call
differs from msg_receive in that it does no sanity checking of interna file descriptor
tables. Usethiscall if you hand craft a connection, and would like the message service
to take care of communications.

Arguments:

handl e Valid file descriptor.

buf Buffer into which the received datais copied.
count Number of bytesto read from file descriptor.
Return Values:

On success, the number of bytes successfully read isreturned. On error, —1 is returned,
and errno is set according to read(2).

size_t nmsg_receive_tinmeout(nsg_handl e_t handle, void *buf,
size_t count, unsigned int timeout)

Description:

Receive a message on a given communications channel. If no message is available

within timeout seconds, the call returns.

Arguments:

handl e Valid file descriptor returned from a call to msg_open or
msg_accept|_timeout].

buf Buffer into which the received datais copied.

count Number of bytesto read from handle.

ti meout Timein secondsto wait for amessage to arrive.

Return Values:

If there is data to be read within timeout seconds, the number of bytes read is returned.

If the timeout expires before data is ready, O is returned. On error, -1 is returned and

errno is set according to one of select(2) or read(2).

Copyright © 2000, Mission Critical Linux, Inc. 54

Function calls and Description

ssize t nsg_peek(nsg_handle_t handle, void *buf, ssizet
count)

Description:

Check to seeif there is data to read from the socket, but do not retrieve the data. For a
more detailed explanation, see man 2 recv and search for MSG_PEEK.

Arguments:

handl e Handlereturned by msg_open or msg_accept.

buf Buffer into which the available datais copied

count Number of bytesto read.

Return Values:

On success, the number of bytes available for reading is returned, and buf is filled with
that number of bytes from the connection. O isreturned if there is nothing available for
reading. On error, —1isreturned.

ssize t _ nmsg peek(nmsg _handle t handle, void *buf, ssize t
count)

Description:

Check to seeif there is data to read from the socket, but do not retrieve the data. For a
more detailed explanation, see man 2 recv and search for MSG_PEEK. Thiscall differs
from msg_peek in that it does no sanity checks on the input parameters.

Arguments:

handl e Handlereturned by msg_open or msg_accept.

buf Buffer into which the available datais copied

count Number of bytesto read.

Return Values:

On success, the number of bytes available for reading is returned, and buf is filled with
that number of bytes from the connection. O isreturned if there is nothing available for
reading. On error, —1isreturned.

15.1 Server—-Side Routines

A typical server listens for connections, when a connection arrives, it reads the available
data, does some processing, perhaps sends a response, and then closes the connection.
The message service APl was designed with this model in mind. To create a
communications endpoint on which to listen, a server makesacall tonmsg_l i sten(),
passing its process identifier. Thisis not a PID, just an internal representation of the
services that currently exist. Associated with this identifier is an address which will be
used by the message layer, which in our caseis an IP address. The return value of this
function is a valid file descriptor. Any operations that can be performed on file
descriptors can thus be performed on the returned value.

Next, the message service provides awrapper to theaccept () system cal, aswell asa
wrapper that will do a sel ect () first. These functions are nsg_accept () and
nmsg_accept tinmeout (), respectively. The return value for nsg_accept () is
the same as that for the accept() system cal. The return value of

Copyright © 2000, Mission Critical Linux, Inc. 55

nsg_accept _timeout () is a bit different. It will be the same as those values
returned from accept () if thereisa pending connection, otherwise it will be the return
value of sel ect (). So, if aconnection is pending, afile descriptor will be returned to
the caller. If not, the return value of select is propagated. Generally, zero will be
returned, unless an error occurs, in which case the caller will be returned a negative one.

After asuccessful call to accept, the caller can read datawith thensg_r ecei ve() cal.
This call mimicsthe read system call in every respect. Thensg_wri t e() routine, thus,
mimics the write system call. All return values are identical to the corresponding system
calls, and that includes er r no values aswell.

To close a connection, the nsg_cl ose() routine is provided. It ssmply removes the
give handle from the message service' s internal data structures and issues a close on the
file descriptor.

15.2 Client—Side Routines

A typical network client will establish a communications channel to a server, send a
request, read a response, and close the connection. The calls to perform this are
nmsg_open(), nsg_send(), nsg_receive(), and nsg_cl ose() respectively.
nmsg_send(), nsg_recei ve(), and nsg_cl ose() are documented in the above
section, so only nsg_open() isdocumented here.

Thensg_open() routine takes two arguments. The first argument tells which process
or daemon on the system the client wishes to connect to, and the second argument
specifies what node in the cluster the process is running on. The node id can be obtained
fromtheget cl u_cfg() cal provided by the clustinfo subsystem.

Copyright © 2000, Mission Critical Linux, Inc. 56

16 Appendix B. Power Switch API

16.1 Discussion
The issues discussed in this section relate to Figure B.1.

N e

Uni ni tial i zed

PWR i ni t
Initialized
Swi t ch
Open
PWR_of f PVWR_on
Swi t ch
O osed ERROR

PWR_r eboot No i
Ti neout I meout

Figure B.1. Power Swnitch State Diagram.

All commands are synchronous, i.e., blocking.

Initialization. Assuming that processes will not contend for access to the remote
switch, and that there is only one such switch per machine, it is assumed that
initialization involves opening the serial device, creating a lock file for the device,
setting parameters on the serial device, and sending and receiving an initialization
string to/from the switch.

Status and results. Certain functions return a PWR_result, which is a set of flag bits
whose positions are taken from the PWR_result_codes enumeration. For each flag
position, the status is to be taken to be true, available, or on, as appropriate, for that
flag if its bit value is one, otherwise the status is to be taken to be false, unavailable,
or off.

Sequencing. After PWR _init has been called and returned PWR_TRUE, any of the
other functions may be called in any order. Redundant calls to functions will return
the status after the call regardless of whether the status of the switch changed as a
result of the call. For example, a call to PWR_off, followed after some interval by a
call to PWR_off will return true in each case if after the call, the switch isin the open
condition.

Time-outs. Synchronous calls block until they fail, succeed, or time—out. Currently,
the default time—out for initialization is 10 sec.; the default time-out for other
commandsis 1 sec. Time—outs may be atered through configuration file entries.

Note: The boolean type, enum PWR _bool ean { PWR FALSE, PWR TRUE }, and
theresult, i nt PWR _resul t, consist of the following bits:

Copyright © 2000, Mission Critical Linux, Inc. 57

PWR_SW TCH
PWR_ERROR
PWR_TI MEOUT

PR INIT

1, Switchisclosed=1/open=0.
2, A command has put the interface into an error condition.
4, The most recent command sent to the
switch timed out without a response.
8, 1if interface has been initialized.

The following table describes function calls and functionality.

Table B.1. Power Switch Function Call Description.

Function call

Description

PWR _confi gure

Configure the power interface. Currently there are three options

recognized:

1. power.device: the pathname of the serial port character special
devicefile.

2. power.init_timeout: the time—out, in sec., for initiaization.

3. power.timeout: the time—out, in sec., for non—initialization calls
through the interface.

PWR_configure() can be called with:

1. The name of a configuration file to read for parameters.

2. NULL, or

3. anull string.

PWR init

Initialize the power switch, and the communication paths to it.

PWR rel ease

Release resources associated with the module, and close the seria
device file. PWR_release should be called when the connection to
the power switch is no longer needed so that the seria port lock
file can be released.

PVWR_st at us

Query the switch to determine its current status, and its readiness
to carry out additional commands. Returns a PWR_result that
contains flags that indicate whether the switch is open or closed,
and whether the last command to the switch timed—out.

PVWR _r eboot

Send a command to the switch that will cause the supplied system
to reboot. Normally, this means that the switch will be opened for
some period of time, after which it will be closed again. If the
switch is already open when the reboot command is issued, the
switch remains open for 5 or ten seconds, then closes.

PWR _of f

Send a command to the switch that will cause the switch to open,
removing power from the affected system.

PVWR_on

Send a command to the switch that will cause the switch to close,
supplying power to the affected system.

Copyright © 2000, Mission Critical Linux, Inc. 58

17 Appendix C. Disk Locking Subsystem

17.1 Overview

The disk locking subsystem provides a means for ensuring the data on the shared raw
partition is accessed atomically with respect to both multiple services on one node, and
multiple nodes accessing the same shared disk. The lock is needed whenever accessing
shared state data, whether for read or write, so that a consistent view of the cluster is
shared by all services on all nodes.

17.2 API

The locking API is simple, and should be familiar to those who have experience dealing
with spin—locks.

17.2.1 Locking Primitives

At the very basic level, we have a command to take the lock, and one to release it. The
lock is essentially a spin—lock. The function cl u_| ock() iscaled to take the cluster
lock, and the function cl u_unl ock() iscalled to release the same lock.

17.2.2 Callers

The service manager is the primary caler of the locking routines, as the SM is
responsible for maintaining service status information across the cluster. Noteworthy is
the case where the SM starts off several threads of execution, each which needs to access
the on—disk service database. In this case, severa threads will attempt to take the cluster
lock. To provide seriaization around the on—disk lock, we also implement a node lock,
discussed in the section 18.3.

17.3 Locking Algorithms

The locking algorithm is very basic, and works very well for a two node cluster. To
serialize access to the disk lock on a per—node basis, we have a node lock. Once a
process successfully takes the node lock, it may then attempt to get the disk lock. After
the disk lock isreleased, the node lock isreleased, and other callers can try for the lock.

17.3.1 Node Lock

The node lock provides seriaization on a per—node basis to the disk lock, as only one
caller per node can try for the disk lock at any given time. The node lock isimplemented
using the POSIX.1fcnt | () system call. Thereisapre—defined cluster lock file that is
used when taking and releasing the node lock. This lock must be held before the disk
lock can be taken, and must be held for the entire duration that the disk lock is held.
Oncethe disk lock is released, we may release the node lock.

17.3.2 Disk Lock
There are two lock blocks on the disk, one for each node. When attempting to get the

Copyright © 2000, Mission Critical Linux, Inc. 59

cluster lock, we ssimply write avalue of "1’ to our lock block, and follow that by a read
of the partner node’'s lock block. If itslock bit is not set, we can safely take the cluster
lock. If itslock bit is set, we implement a random back—off algorithm. After a random
period of time (not exceeding a predefined value), we try for the lock again. Thereisa
lock timeout that, when exceeded, causes the node to shoot down his partner. Thisisto
prevent the case where the partner node fails to release the cluster lock. Most notably,
this would be due to a bug in the cluster code, not a hung system. We have other
methods for detecting that a system is hung and cleaning up the on—disk data associated
with that member.

17.4 Scalability Implications

The lock code is presently hard coded to two nodes.

The locking algorithm now performs a synchronous write of 1 into this node's lock cell
and then reads the other node's cell. If the other node's cell is zero the lock is obtained

otherwise this node's cell is written synchronoudly to zero and a random delay ensues
before trying again.

For more than two nodes, the algorithm is the same except that in the read cycle all of the

other nodes lock cells are read in node number order. Then, they must al be zero to
obtain the lock.

Copyright © 2000, Mission Critical Linux, Inc. 60

18 Appendix D. State Diagram for Service Manager

18.1 Complete State Diagram

di sabl ed

state
transition
error? (8)

I cluster start I

v IinitlocaISrvcs()l
do not hing
dis:ble host
ok?
start
starting
N /\
host down N
N t host down
st opped stop
v N st op
di sabl i ng
start
ok?
N Y Y
start Sto N system N tart
Y Y N Y
user
transition reboot req
error? (6)
start
host
stop/ down runni ng
start
svc? (9)
st oppi ng h
sto ost
host p N Up
down do
not h| ng
stop/
start or
N stop error? (10)
start?
5 error
Y
error

* = Not | nplenented Yet

Numbers appearing in the state diagram refer to the blown—-up view shown in a later
section. The state diagram is blown up to several state diagrams represented in sections
18.2 through 18.10, asreferred to in thisfigure.

Copyright © 2000, Mission Critical Linux, Inc. 61

18.2 Service Start Arbitration

Is SVC

Di sabl ed? Do not start
N
Ijlstlsngg? Y Do not start
N
Y
Do not start

I's SVC Y Ifsa d Y Isfthed Y Am |
preferre preferre preferred Do not start
st opped? host set? host up? host ?
N N
Start Sve Start Svc Start Svc
Is SVC
owner
up?
Y
@ Y Do not start
N
Y Is a Y Y Am |
t|5 SVC7 preferred preferred Do not start
Stoppi ng: host set? host ?
N N N Y
Wit & Start Svc Wit & Start Svc Wit & Start Svc
Y
Do not start
N
Error:
Unknown SVC
State

Copyright © 2000, Mission Critical Linux, Inc. 62

18.3 State: Stopped, Event: Host Down

st opped

do not start

arbitrate
Svc Start

18.4 State: Stopped, Event: Host Up

Host Up

(Renot e
N host up)

arbitrate
Svc start

arbitrate
Svc start

| ocal ?

Copyright © 2000, Mission Critical Linux, Inc.

18.5 State: Stopping, Event: Host Down

st oppi ng

arbitrate
Svc Start

18.6 State: Stopping, Event: Host Up
m

do not start

t oppi ng

Up

(Renot e
host up)

am |
owner
of Svc?

Copyright © 2000, Mission Critical Linux, Inc.

N

18.7 State: Starting, Event: Host Down

> starting e

Do not
start

Host Down

(Renpt e

(Local
host down host down)

arbitrate
Svc start

| Wai t AndSt opSvc()

18.8 State: Starting, Event: Host Up

(Local
node up)

(Renot e

| ocal ? N node up)

gi ve up N
Svc?
Error: Svc
shoul d be Y
st opped
Wai t AndSt art Sve() Vi t AndSt opSvc()

Copyright © 2000, Mission Critical Linux, Inc.

65

18.9 State: Running, Event: Host Down

Host Down

(Renot e
host down)

am |
runni ng
the Svc?

arbitrate
svc start

18.10 State: Running, Event: Host Up

Error: Svc
shoul d be
St opped

wai t AndSt art Sve()

Copyright © 2000, Mission Critical Linux, Inc.

66

18.11 State Diagram for Service Takeover

Do not hi ng

svc
rel ocates

on preferred

node boot ?

Svc
prefers
up node?

Am |
preferred
node?

Is SVC
st oppi ng?

Wi t AndSt art Svc()

I's Svc

st opped? (Start SVO)

I's Svc
. i Error:
di sabl i ng t Unknown SVC
or disabl ed Stat e
or error?

Copyright © 2000, Mission Critical Linux, Inc.

18.12 State Diagram for Giving up Service

Do not hi ng

N

svec
rel ocates

on preferred

node boot ?

Svc
prefers
up node?

Wi t AndSt opSve()

(Stop SVO)
Is Svc
di sabl i ng :
¢ Error:
or disabled L Unknown SVC
or stopping State
or stopped

or error?

Copyright © 2000, Mission Critical Linux, Inc.

19 Appendix E. Design Notes on Disk—Based
Configuration Database

19.1 Problem Statement

All cluster members need access to a description of the cluster configuration information.

This configuration information contains:

1. Node specific configuration — for example, node name, what devices are associated
with the heartbeat channels and the device specia files representing the shared disk
partitions.

2. Cluster—wide configuration info. This principally includes the service descriptions.

19.2 Implementation Options

1. Represent al the configuration data in a file on each node’ s filesystem. While thisis
the simplest to initially implement, it requires the administrator to manually keep the
files in sync. Beyond manual copying we could implement infrastructure to try to
automatically copy the files between cluster members. This can quickly run into
problems in cases where all the cluster members are not up. In a worst case ping—
pong scenario with configuration modifications in—between you never really know
who has the most recent copy.

2. Since we aready have a shared disk for cluster state and runtime service descriptions
we can extend that model to having the configuration description residing on the
shared disk partition. The principal benefit is that there is only a single copy of the
configuration information which is shared among cluster members and therefore we
don’'t have to worry about keeping two separate copies in sync. Additionaly, it also
affords an opportunity to make configuration modifications to a down node (whereas
if the configuration file was on a file in the local filesystem of the down node you
likely do not have accessto it).

19.3 Implementation Approach

We have decided to implement approach #2; to have all cluster configuration information
represented on the shared state disk. (Actualy, it’snot realy ALL the information as the
gpecification of the shared state disk partitions must reside outside of the disk partitions
themselves.)

19.4 Low-Level Implementation

At the low-level, there are routines in the diskstate library (which supports all

reading/writing to the shared cluster partition) which provide the following support:

+ Ability to WRITE the configuration description in its entirety. There are no facilities
for writing only a portion of the configuration description.

+ Ability to READ the configuration description in its entirety. There are no facilities
for reading only a portion of the configuration description.

» Locking primitive to ensure that only one process in the cluster at a time is modifying
the configuration information.

Copyright © 2000, Mission Critical Linux, Inc. 69

Both checksumming and a shadow copy are transparent to the callers of the configuration
description READ/WRITE APIs.

19.5 Higher—Level Implementation

All of the cluster daemons and management utilities interact with the cluster
configuration information through the netaconfig library. This provides a
centralized location to abstract the fact that the configuration is now on a raw disk
partition rather than in afile in the local filesystem.

The following schemes can be used by met aconf i g and the management utilities to
safely access the configuration information:

« Take out the lock, read in the configuration information through the low—level API.

» Thenrelease the lock if there is no modification involved.

« If thereis modification involved, the lock must be released quickly:

* If you have the new values in hand (i.e. specified on the command line) then
modify the memory—resident configuration description and then write out the new
configuration description. Then release the lock.

 If you do not have the new values in hand (i.e. they are being prompted for) then
stash off a copy of the original configuration in memory and release the lock. Now
the user (gui) can modify a memory resident configuration description at their
leisure. When the user prompting is done (i.e. "Commit" button has been pressed)
then take out the lock, read in the configuration description from disk. Compare it
to your original snapshot; if it differs then there were 2 people attempting to
modify the configuration at the same time. In this (presumably rare) situation, tell
the user about the conflict and require them to start the configuration process all
over (rather than implementing a complex merging agorithm). If there are no
conflicts, write the new config and release the lock.

19.6 Usage Instructions

To use it, one needs to link in with the libdiskstate.a. The relevant source file
implementing the APIs is in diskstate/diskconfigdb.c. The following excerpts describe
the interface.

There will be a separate configuration file used to represent *bootstrap’ parameters. This

will include the definition of the cluster shared disk partitions. The remainder of the
cluster configuration parameters will reside on the shared disk.

Copyright © 2000, Mission Critical Linux, Inc. 70

Function Call

Functionality

ssize_t
get Dat abaselLengt h()

Returns the length of the current "data’ in the
configuration database.

Return values:

—-1. Unable to read a database header describing the
length. This occurs if the shared disk partition has never
been initialized or an 1/O error occurs.

0: the database is currently initialized, but is empty.

>0: the length of actual database contents

ssize_t

Write the service block out to disk. This routine also

wr i t eDat abase(char | provides the ability to delete (clear out) the contents of
I gﬁg?’h) ssize_t the database by passing in alength parameter of O.

Return values:

-1 onl/O error,

—2 on parameter error,

the number of bytes written on success
ssi ze_t Read in the configuration database off the shared disk
igg?gat 22?22(tchar and populate the user’s buffer with the data. This of

max_| engt h)

course requires that the user’s buffer is big enough to
hold the contents of the database. In order to facilitate
this, the user can first call getDatabasel ength(). Just to
avoid any buffer overflows, the max_length parameter
describes the user buffer size.

Note: the database is read in as a single "blob", there are
no facilities for retrieving a portion of the database (i.e.
Records).

Return values:

-1 onl/O error,

the number of bytesred on success.

Copyright © 2000, Mission Critical Linux, Inc. 71

20 Appendix F. Design Alternatives

Briefly, here are some alternative design approaches that we considered and ultimately
rejected.

Linux—HA Heartbeat [1] — heartbeat to other cluster member over redundant
communication channels (Ethernet and serial).
Pros: takes multiple communication channel outages to declare another host dead.
Uses commodity hardware.
Cons: Unable to distinguish between a remote node down from a network partition.
Thiswill result in the same service being run concurrently on several nodes.
Software Watchdog — using /dev/watchdog, reboot the system in response to a
cluster node becoming inactive.
Pros: No extra hardware
Cons: In the event of a system hang the softclock could become suspended in time
so a node may not know it was even hung. Very weak and unpredictable 1/0O
barrier semantics.
Pseudo Driver — insert a pseudo driver above all 1/O operations to shared cluster
storage. Have a background kernel thread which queries the PC’'s hardware clock
chip to see if too much time has elapsed; if so reboot. The pseudo driver would not
initiate any new |/O operations if the elapsed time has been too long.
Pros: no extra hardware
Cons: low level 1/O’s aready queued to the (SCSI) driver could be immediately
issued upon clearing of the hang.
Hardware Watchdog
Reference [2] discusses severa such devices — thisis basically a power strip with a
serial connector. When armed, if you don’t heartbeat it in the programmed time
interval, it will power cycle.
Pros: Effective 1/O Barrier
Cons: Difficult for the surviving cluster member to know that the other node has
taken itself out. Therefore its hard to know when its safe to startup the service
on the surviving node.
Another form of hardware watchdog | found is a PCI card. Arm it when starting
up cluster services and probe its 1/O space address. Failure of timely probes will
assert an externa pin on the card. Wire up this external pin to the system’s reset
switch. Some systems don’t have easy wire accessibility for their reset switch
which may require soldering this lead. In addition, device drivers and PCl dot
Space are a consideration.
SCSI Reservations
« Pros: Allows service level granularity. Effective I/O barrier.
Cons: Linux support is immature. Historically we found this often required a
narrow set of qualified disks & controllers to be operational. SCSI reservations
were a constant sore-spot. If we go this route it would likely require a dedicated
SCSI developer and would unlikely meet the targeted timeframes.

Copyright © 2000, Mission Critical Linux, Inc. 72

21 Appendix G. Lexicon

QD: Quorum Daemon
SM: Service Manager
SPOF: Single Point Of Failure

Copyright © 2000, Mission Critical Linux, Inc.

73

