Package ‘peruse’
October 14, 2022

Title A Tidy API for Sequence Iteration and Set Comprehension

Version 0.3.1

Description A friendly API for sequence iteration and set comprehension.

License GPL-2

URL https://github.com/jacgoldsm/peruse,

https://jacgoldsm.github.io/peruse/

BugReports https://github.com/jacgoldsm/peruse/issues

Encoding UTF-8
Imports rlang
Depends magrittr
LazyData true
RoxygenNote 7.1.1

Suggests testthat, purrr

NeedsCompilation no
Author Jacob Goldsmith [aut, cre]

Maintainer Jacob Goldsmith <jacobg314@hotmail.com>

Repository CRAN

Date/Publication 2021-03-08 07:20:02 UTC

R topics documented:

current . . .

is_Iterator

Iterator . . .

yield

https://github.com/jacgoldsm/peruse
https://jacgoldsm.github.io/peruse/
https://github.com/jacgoldsm/peruse/issues

2 current

Index 10
clone clone

Description

Clone an Iterator, making an exact copy that can then be modified separately. This is a simple

wrapper around rlang: :env_clone(). Optionally, override old initial parameters.

Usage
clone(iter, ...)
Arguments
iter an Iterator object
optionally override the $initial parameters in iter
Value

a copy of the Iterator passed as a parameter

Examples

it <- Iterator({m <- m + n}, list(m =0, n=1), m)
other <- clone(it)

yield_next(it)

current(other) == current(it) # false

it2 <- clone(other, n = 5)
yield_next(it2)
it2$initial$n # 5

current Get the current value of an Iterator without changing its state

Description

An Iterator yields a variable every time yield_next() is called. Get the current value of that

variable without changing the state of the Iterator.

Usage

current(iter)

is_Iterator 3

Arguments

iter An Iterator object

Value

The current value of iter

is_Iterator Test if an object is an Iterator

Description

Test if an object is an Iterator

Usage

is_Iterator(list)

Arguments
list Object to test
Iterator Making an Irregular Sequence Iterator
Description

Create an Iterator object, where the user defines a sequence and a set of initial values, and then calls
yield_next() to generate the next element of the sequence. Iterators are R environments, which
means they are modified in place, even when passed as arguments to functions. To make a copy of
an Iterator that can be modified separately, see clone().

Usage

Iterator(result, initial, yield)

Arguments
result R expression to run each time ’yield_next’ is called
initial named list or vector; declare and initialize every variable that appears in ’result’
yield variable to yield when ’yield_next()’ is called

Value

An environment object of S3 type Iterator

4 move

Note

The expression to be evaluated can include constant values not defined in $initial as long as they
are defined in the enclosure of where yield_next() is called, not where the Iterator is created. These
values will not vary from iteration to iteration (unless you do something strange in the code, like
including <<- in $result.)

See Also

yield_next(), yield_while(), current() rlang: :qg_show()

Examples

#Create the Collatz sequence starting with 50 and print out the first 30 elements
collatz <- Iterator({
if (n %% 2==0) n<-n/ 2elsen<-nx3 +1
}
initial = c(n = 50),
yield = n)

seq <- yield_more(collatz, 30)

If you want to define the expression outside the Iterator, use [quote()] and “!!*:
expr <- quote(if (n %% 2 == @) n <-n / 2 else n <- nx3 + 1)
collatz <- Iterator(!!expr,

c(n = 50),

n)

using objects defined outside ‘$initial*:
Note that ‘n‘ in ‘$initial‘ overrides the global ‘n®
m <- 100
n<-10
it <- Iterator({out <- n + m},
initial = c(n = -10),
yield = out)

yield_next(it)

environments are modified in place, so be aware:
it <- Iterator({m <- m + 13}, c(m = @), m)

other <- it

yield_next(it)

current(other)

move Increment an Iterator Without Returning the Value(s)

range 5

Description
Increments the Iterator without returning anything. move_more () repeats move_next() a specified

number of times. move_while() repeats move_next () until a condition is met. Refer to the number
of the current iteration with . iter.

Usage

move_next(iter)
move_more(iter, more = 1L)

move_while(iter, cond)

Arguments
iter An Iterator object object
more How many times to iterate
cond A quoted logical expression involving some variable(s) in iter$initial, so
that move_next () continues being called while the expression returns TRUE
Examples

primes <- 2:10000 %>%
that_for_all(range(2, .x)) %>%
we_have(~.x %% .y != 0, "Iterator"”)
current(primes)
move_more(primes, 100)
current(primes)

range Python-style range function

Description

Wrapper around base: : seq() that replaces the maximal end value with the supremum and returns
an empty vector if b <= a, in the style of Python’s range (). Note that peruse: : range views end as
a supremum, not a maximum, thus range(a,b) is equivalent to the set [a,b) when a < b or {} when
b>=a.

Usage

range(a, b, ...)

Arguments

a minimum
b supremum

other params passed to base: :seq()

See Also

base: :seq()

Examples

range(1,5)
range(9,10)
range(1,6, by = 2)

sets

sets R Set Comprehension

Description

Set comprehension with the magrittr Pipe. Always use the basic syntax:

X %>% that_for_all(.y) %>%we_have_x(f(.x, .y)), but see the examples for more detail.

Usage

that_for_all(.x, .y)

that_for_any(.x, .y)

we_have(that_for, formula, result = "vector")
Arguments
X A set, represented as either an atomic vector or a list
.y A set to compare to . X
that_for A list passed to we_have ()—can be ignored with proper syntax
formula A function, lambda, or formula. Must be understood by rlang: :as_function()

result Should the expression return a vector or an Iterator?

sets 7

Details

formula can be anything that is recognized as a function by rlang::as_function(). See the
examples for how to specify the end of a sequence when used with an Iterator.

Handling missing values in these expressions is possible and sometimes desirable but potentially
painful because NA values can’t be compared with normal operators. See the README for a de-
tailed example.

Note that . x %>% that_for_all(.y) is vacuously true if .y is empty, while . x %>% that_for_any(.y)
is vacuously false if .y is empty.

Value

For that_for_all() and that_for_any(), an object of S3 class that_for_all or that_for_any. For
we_have(), a vector of the same type as . x if return == 'vector' and an Iterator object if return
== "Tterator"'.

Note

if .y is an numeric vector, you probably want a value obtained from range(start, end) rather than
start:end or seq.int(start,end), as when start is greater than end you want an empty vector
rather than counting backwards. Note that range() views end as a supremum, not a maximum,
thus range(a,b) is equivalent to the set [a,b) when a < b or the empty set when b >= a.

Also note that there is some indirection in the way that .x and .y are referenced in the formula.
In the function we_have(), the actual name of the two sets is .x and .y. That is what makes the
function interface work, e.g. function(.x, .y) .x - .y. On the other hand, purrr-style lambda
expressions, e.g. ~.x - .y, use positional arguments, where . x is the first argument and .y is the
second argument, no matter their names. Because those are actually their names, this difference
should never matter.

See Also

The implementation of these functions involves code adapted from purrr: :every() and purrr: : some(),
by Lionel Henry, Hadley Wickham, and RStudio, available under the MIT license.

Examples

2:100 %>% that_for_all(range(2, .x)) %>% we_have(function(.x, .y) .x %% .y !=0) #is the same as
2:100 %>% that_for_all(range(2, .x)) %>% we_have(~.x %% .y) # @ = F, (not 0) =T

#c.f.

primes <- 2:100 %>% that_for_all(range(2, .x)) %>% we_have(~.x %% .y, "Iterator”)
yield_next(primes)

primes2 <- clone(primes)

Refer to the vector .x with ‘.x_vector® and the current index of that vector with *.i‘
For example, to yield to the end of the sequence:

yield_while(primes, .x_vector[.i] <= length(.x_vector))

*.finished® is an alias for ‘.x_vector[.i] > length(.x_vector)"

Equivalent to previous expression:

yield_while(primes2, !.finished)

{c("I", "Don't", "wan't", "chicken") %>%

8 yield

that_for_all("\"'") %>%
we_have(~grepl(.y, .x))}
#Twin primes 1 through 100
primes <- 2:100 %>% that_for_all(range(2, .x)) %>% we_have(~.x %% .y)
primes %>% that_for_any(primes) %>% we_have(~abs(.x - .y) == 2)
#Prime numbers 1 through 100 that are two away from a square number
(2:100 %>% that_for_all(range(2, .x)) %>% we_have(~.x %% .y)) %>%
that_for_any(range(2, .x)) %>% we_have(~sqrt(.x + 2) == .y | sqrt(.x - 2) == .y)

yield Increment an Iterator and Return the Next Value(s)

Description

Finds the value of the next iteration(s) of an Iterator object and increments the Iterator to the next
value(s). yield_more() repeats yield_next() a specified number of times. Refer to the number
of the current iteration in yield_more() with .iter.

Usage

yield_next(iter)

yield_more(iter, more = 1L)

Arguments

iter An Iterator object

more How many values to yield
Value

An object of whatever type result evaluates to from the Iterator, or a vector of that type in the case
of yield_more(iter, more > 1L).

Examples

primes <- 2:10000 %>%
that_for_all(range(2, .x)) %>%
we_have(~.x %% .y != 0, "Iterator”)

sequence <- yield_more(primes, 100)

use ‘.iter" to reference the current iteration
rwd <- Iterator({
set.seed(seeds[.iter])
n <- n + sample(c(-1L, 1L), size = 1L, prob = c(0.25, 0.75))
3,
initial = list(n = @, seeds = 1:100),

yield_while 9

yield = n)

yield_more(rwd, 100)

yield_while vield_while

Description

Keep yielding the next element of an Iterator while a condition is met. A condition is a logical
expression involving variables in iter$initial or variables that are defined in the enclosure. Refer
to the number of the current iteration with . iter.

Usage

yield_while(iter, cond)

Arguments
iter An Iterator object
cond A logical expression involving some variable(s) in iter$initial or in the en-
closure, so that yield_next() continues being called while the expression re-
turns TRUE
Examples

collatz <- Iterator({
if (n %% 2==0) n<-n/ 2elsen<-n*x3 + 1
i
initial = list(n = 50),
yield = n)
yield_while(collatz, n != 1L)

p_success <- 0.5
threshold <- 100
seeds <- 1000:1e6
iter <- Iterator({
set.seed(seeds[.iter])

n <- n + sample(c(1,-1), 1, prob = c(p_success, 1 - p_success))

3

list(n = 0),

n)

sequence <- yield_while(iter, n <= threshold)

Index

<<-, 4
base::seq(), 6

clone, 2
clone(), 3
current, 2
current(), 4

is_Iterator,3
Iterator, 3

move, 4

move_more (move), 4

move_next (move), 4

move_while (move), 4

purrr::every(), 7
purrr::some(), 7

range, 5

range(), 7
rlang::as_function(), 6, 7
rlang::env_clone(), 2
rlang: :qq_show(), 4

sets, 6

that_for_all (sets), 6
that_for_any (sets), 6

we_have (sets), 6
we_have(), 6

yield, 8

yield_more (yield), 8
yield_next (yield), 8
yield_next(), 4
yield_while, 9
yield_while(), 4

10

	clone
	current
	is_Iterator
	Iterator
	move
	range
	sets
	yield
	yield_while
	Index

