
Package ‘ncdfCF’
June 15, 2025

Type Package

Title Easy Access to NetCDF Files with CF Metadata Conventions

Version 0.6.1

Description Network Common Data Form ('netCDF') files are widely used for
scientific data. Library-level access in R is provided through packages
'RNetCDF' and 'ncdf4'. Package 'ncdfCF' is built on top of 'RNetCDF' and
makes the data and its attributes available as a set of R6 classes that are
informed by the Climate and Forecasting Metadata Conventions. Access to the
data uses standard R subsetting operators and common function forms.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.2

Imports abind, CFtime (>= 1.6), methods, R6, RNetCDF, stringr

Collate 'AOI.R' 'AOImethod.R' 'CFArray.R' 'CFAuxiliaryLongLat.R'
'CFAxis.R' 'CFAxisCharacter.R' 'CFAxisDiscrete.R'
'CFAxisLatitude.R' 'CFAxisLongitude.R' 'CFAxisNumeric.R'
'CFAxisTime.R' 'CFAxisVertical.R' 'CFBounds.R'
'CFCellMeasure.R' 'CFDataset.R' 'CFGridMapping.R' 'CFLabel.R'
'NCObject.R' 'CFObject.R' 'CFResource.R' 'CFVariable.R'
'CFVariableBase.R' 'CFVariableL3b.R' 'NCDimension.R'
'NCGroup.R' 'NCUDT.R' 'NCVariable.R' 'makeCFObjects.R'
'ncdfCF-package.R' 'readCF.R' 'utils.R' 'wkt2.R' 'zzz.R'

Suggests data.table, knitr, rmarkdown, terra, testthat (>= 3.0.0)

VignetteBuilder knitr

Depends R (>= 3.5)

URL https://github.com/R-CF/ncdfCF

BugReports https://github.com/R-CF/ncdfCF/issues

Config/testthat/edition 3

Config/Needs/website rmarkdown

NeedsCompilation no

1

https://github.com/R-CF/ncdfCF
https://github.com/R-CF/ncdfCF/issues

2 Contents

Author Patrick Van Laake [aut, cre, cph]

Maintainer Patrick Van Laake <patrick@vanlaake.net>

Repository CRAN

Date/Publication 2025-06-15 15:50:02 UTC

Contents
aoi . 3
CFArray . 4
CFAuxiliaryLongLat . 7
CFAxis . 9
CFAxisCharacter . 13
CFAxisDiscrete . 15
CFAxisLatitude . 17
CFAxisLongitude . 18
CFAxisNumeric . 20
CFAxisTime . 22
CFAxisVertical . 25
CFBounds . 26
CFCellMeasure . 28
CFDataset . 30
CFGridMapping . 33
CFLabel . 35
CFObject . 36
CFResource . 39
CFVariable . 41
CFVariableBase . 44
CFVariableL3b . 47
dim.AOI . 49
dim.CFAxis . 50
makeAxis . 50
makeDiscreteAxis . 51
makeGroup . 52
makeLatitudeAxis . 52
makeLongitudeAxis . 53
makeTimeAxis . 53
names.CFDataset . 54
NCDimension . 55
NCGroup . 56
NCObject . 61
NCUDT . 64
NCVariable . 65
open_ncdf . 67
peek_ncdf . 67
str.CFAxis . 68
str.CFDataset . 69
[.CFVariable . 69

aoi 3

[.CFVariableL3b . 70
[[.CFDataset . 72

Index 73

aoi Area of Interest

Description

This function constructs the area of interest of an analysis. It consists of an extent and a resolution
of longitude and latitude, all in decimal degrees.

The AOI is used to define the subset of data to be extracted from a data variable that has an auxiliary
longitude-latitude grid (see the CFAuxiliaryLongLat class) at a specified resolution. The data vari-
able thus has a primary coordinate system where the horizontal components are not a geographic
system of longitude and latitude coordinates.

Usage

aoi(lonMin, lonMax, latMin, latMax, resX, resY)

Arguments

lonMin, lonMax, latMin, latMax
The minimum and maximum values of the longitude and latitude of the AOI, in
decimal degrees. The longitude values must agree with the range of the longi-
tude in the data variable to which this AOI will be applied, e.g. [-180,180] or
[0,360].

resX, resY The separation between adjacent grid cell, in the longitude and latitude direc-
tions respectively, in decimal degrees. The permitted values lie within the range
[0.01 ... 10]. If resY is missing it will use the value of resX, yielding square
grid cells.

Details

Following the CF Metadata Conventions, axis coordinates represent the center of grid cells. So
when specifying aoi(20, 30, -10, 10, 1, 2), the south-west grid cell coordinate is at (20.5, -9).
If the axes of the longitude-latitude grid have bounds, then the bounds will coincide with the AOI
and the CFVariable$subset() method that uses the AOI will attach those bounds as attributes to
the resulting array.

If no resolution is specified, it will be determined from the separation between adjacent grid cells in
both longitude and latitude directions in the middle of the area of interest. If no extent is specified
(meaning, none of the values; if some but not all values are specified an error will be thrown),
then the whole extent of the variable is used, extended outwards by the bounds if they are set or
half the resolution otherwise. Thus, to get the entire extent of the variable but in a longitude-
latitude grid and with a resolution comparable to the resolution at the original Cartesian coordinate
system of the variable, simply pass aoi() as an argument to CFVariable$subset(). Note that any

4 CFArray

missing arguments are calculated internally and stored in the returned object, but only after the call
to CFVariable$subset().

Caching:
In data collections that are composed of multiple data variables in a single netCDF resource, a
single auxiliary longitude-latitude grid may be referenced by multiple data variables, such as in
ROMS data which may have dozens of data variables using a shared grid. When subsetting with
an AOI, the instance of this class is cached to improve performance. The successive calls to
CFVariable$subset() should use the same object returned from a single call to this function for
this caching to work properly.

Value

The return value of the function is an R6 object which uses reference semantics. Making changes to
the returned object will be visible in all copies made of the object.

Examples

(aoi <- aoi(20, 60, -40, -20, 0.5))

CFArray Array data extracted from a CF data variable

Description

This class holds the data that is extracted from a CFVariable using the data(), subset() or
profile() method. The instance of this class will additionally have the axes and other relevant
information such as its attributes (as well as those of the axes) and the coordinate reference system.

Otherwise, a CFArray is detached from the data set where it was derived from. It is self-contained in
the sense that all its constituent parts (axes, bounds, attributes, etc) are available and directly linked
to the instance. For performance reasons, axes and their parts (e.g. bounds) are shared between
instances of CFArray and CFVariable.

The class has a number of utility functions to extract the data in specific formats:

• raw(): The data without any further processing. The axes are as they are stored in the netCDF
resource; there is thus no guarantee as to how the data is organized in the array. Dimnames
will be set.

• array(): An array of the data which is organized as a standard R array with the axes of the
data permuted to Y-X-others and Y-values in decreasing order. Dimnames will be set.

• terra(): The data is returned as a terra::SpatRaster (3D) or terra::SpatRasterDataset
(4D) object, with all relevant structural metadata set. Package terra must be installed for this
to work.

• data.table(): The data is returned as a data.table, with all data points on individual rows.
Metadata is not maintained. Package data.table must be installed for this to work.
The temporal axis of the data, if present, may be summarised using the summarise() method.
The data is returned as a new CFArray instance.
In general, the metadata from the netCDF resource will be lost when exporting to a different
format insofar as those metadata are not recognized by the different format.

https://www.myroms.org

CFArray 5

Super classes

ncdfCF::CFObject -> ncdfCF::CFVariableBase -> CFArray

Active bindings

dimnames (read-only) Retrieve dimnames of the data object.

Methods

Public methods:
• CFArray$new()

• CFArray$print()

• CFArray$raw()

• CFArray$array()

• CFArray$append()

• CFArray$terra()

• CFArray$data.table()

• CFArray$save()

• CFArray$clone()

Method new(): Create an instance of this class.

Usage:
CFArray$new(name, group, values, values_type, axes, crs, attributes)

Arguments:
name The name of the object.
group The group that this data should live in. This is usually an in-memory group, but it could

be a regular group if the data is prepared for writing into a new netCDF file.
values The data of this object. The structure of the data depends on the method that produced

it.
values_type The unpacked netCDF data type for this object.
axes A list of CFAxis descendant instances that describe the axes of the argument values.
crs The CFGridMapping instance of this data object, or NULL when no grid mapping is avail-

able.
attributes A data.frame with the attributes associated with the data in argument values.

Returns: An instance of this class.

Method print(): Print a summary of the data object to the console.

Usage:
CFArray$print(...)

Arguments:
... Arguments passed on to other functions. Of particular interest is width = to indicate a

maximum width of attribute columns.

Method raw(): Retrieve the data in the object exactly as it was produced by the operation on
CFVariable.

6 CFArray

Usage:
CFArray$raw()

Returns: The data in the object. This is usually an array with the contents along axes varying.

Method array(): Retrieve the data in the object in the form of an R array, with axis ordering
Y-X-others and Y values going from the top down.

Usage:
CFArray$array()

Returns: An array of data in R ordering.

Method append(): Append the data from another CFArray instance to the current instance,
along one of the axes. The operation will only succeed if the axes other than the one to ap-
pend along have the same coordinates and the coordinates of the axis to append along have to be
monotonically increasing or decreasing after appending.

Usage:
CFArray$append(from, along)

Arguments:
from The CFArray instance to append from.
along The name of the axis to append along. This must be a single character string and the

named axis has to be present both in self and in the CFArray instance in argument from.

Returns: self, invisibly, with the arrays from self and from appended.

Method terra(): Convert the data to a terra::SpatRaster (3D) or a terra::SpatRasterDataset
(4D) object. The data will be oriented to North-up. The 3rd dimension in the data will become
layers in the resulting SpatRaster, any 4th dimension the data sets. The terra package needs to
be installed for this method to work.

Usage:
CFArray$terra()

Returns: A terra::SpatRaster or terra::SpatRasterDataset instance.

Method data.table(): Retrieve the data in the object in the form of a data.table. The
data.table package needs to be installed for this method to work.

Usage:
CFArray$data.table(var_as_column = FALSE)

Arguments:
var_as_column Logical to flag if the name of the variable should become a column (TRUE) or

be used as the name of the column with the data values (FALSE, default). Including the name
of the variable as a column is useful when multiple data.tables are merged into one.

Returns: A data.table with all data points in individual rows. All axes will become columns.
Two attributes are added: name indicates the long name of this data variable, units indicates
the physical unit of the data values.

Method save(): Save the data object to a netCDF file.

Usage:

CFAuxiliaryLongLat 7

CFArray$save(fn, pack = FALSE)

Arguments:

fn The name of the netCDF file to create.
pack Logical to indicate if the data should be packed. Packing is only useful for numeric data;

packing is not performed on integer values. Packing is always to the "NC_SHORT" data
type, i.e. 16-bits per value.

Returns: Self, invisibly.

Method clone(): The objects of this class are cloneable with this method.

Usage:
CFArray$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

CFAuxiliaryLongLat CF auxiliary longitude-latitude variable

Description

This class represents the longitude and latitude variables that compose auxiliary coordinate variable
axes for X-Y grids that are not longitude-latitude.

The class provides access to the data arrays for longitude and latitude from the netCDF resource,
as well as all the details that have been associated with both axes. Additionally, this class can
generate the index to extract values on a long-lat grid of the associated X-Y grid data variable using
a user-selectable extent and resolution.

Auxiliary longitude-latitude grids are only supported for reading from a netCDF resource. Creating
an instance manually therefore has no practical purpose.

Super class

ncdfCF::CFObject -> CFAuxiliaryLongLat

Public fields

varLong The NCVariable instance of the longitude values.

varLat The NCVariable instance of the latitude values.

boundsLong The CFBounds instance for the longitude values of the grid.

boundsLat The CFBounds instance for the latitude values of the grid.

axis_order Either c("X", "Y") (default) or c("Y", "X") to indicate the orientation of the latitude
and longitude grids.

8 CFAuxiliaryLongLat

Active bindings

friendlyClassName (read-only) A nice description of the class.

name (read-only) The name of the auxiliary lon-lat grid.

aoi Set or retrieve the AOI for the long-lat grid.

lon (read-only) Retrieve the longitude grid.

lat (read-only) Retrieve the latitude grid.

extent (read-only) Retrieve the extent of the longitude and latitude grids, including bounds if they
have been set. The extent is reported as a numeric vector of the four elements minumum and
maximum longitude and minimum and maximum latitude.

dim (read-only) The dimensions of the longitude and latitude grids.

dimids (read-only) The dimids of the longitude and latitude grids.

Methods

Public methods:

• CFAuxiliaryLongLat$new()

• CFAuxiliaryLongLat$print()

• CFAuxiliaryLongLat$brief()

• CFAuxiliaryLongLat$sample_index()

• CFAuxiliaryLongLat$grid_index()

• CFAuxiliaryLongLat$clear_cache()

• CFAuxiliaryLongLat$clone()

Method new(): Creating a new instance. It should normally not be useful to create an instance
of this class other than upon reading a netCDF resource.

Usage:
CFAuxiliaryLongLat$new(varLong, varLat, boundsLong, boundsLat)

Arguments:

varLong, varLat The NCVariable instances with the longitude and latitude grid values, re-
spectively.

boundsLong, boundsLat The bounds of the grid cells for the longitude and latitude, respec-
tively, if set.

Method print(): Summary of the auxiliary longitude-latitude variable printed to the console.

Usage:
CFAuxiliaryLongLat$print()

Method brief(): Some details of the auxiliary longitude-latitude grid.

Usage:
CFAuxiliaryLongLat$brief()

Returns: A 2-row data.frame with some details of the grid components.

CFAxis 9

Method sample_index(): Return the indexes into the X (longitude) and Y (latitude) axes of the
original data grid of the points closest to the supplied longitudes and latitudes, up to a maximum
distance.

Usage:
CFAuxiliaryLongLat$sample_index(x, y, maxDist = NULL)

Arguments:
x, y Vectors of longitude and latitude values in decimal degrees, respectively.
maxDist Numeric value in decimal degrees of the maximum distance between the sampling

point and the closest grid cell. If omitted (default), the distance is calculated from the
nominal resolution of the grids.

Returns: A matrix with two columns X and Y and as many rows as arguments x and y. The X
and Y columns give the index into the grid of the sampling points, or c(NA, NA) is no grid point
is located within the maxDist distance from the sampling point.

Method grid_index(): Compute the indices for the AOI into the data grid.
Usage:
CFAuxiliaryLongLat$grid_index()

Returns: An integer matrix with the dimensions of the AOI, where each grid cell gives the
linear index value into the longitude and latitude grids.

Method clear_cache(): Clears the cache of pre-computed grid index values if an AOI has been
set.

Usage:
CFAuxiliaryLongLat$clear_cache(full = FALSE)

Arguments:
full Logical (default = FALSE) that indicates if longitude and latitude grid arrays should be

cleared as well to save space. These will then be re-read from file if a new AOI is set.

Method clone(): The objects of this class are cloneable with this method.
Usage:
CFAuxiliaryLongLat$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

CFAxis CF axis object

Description

This class is a basic ancestor to all classes that represent CF axes. More useful classes use this class
as ancestor.

This super-class does manage the "coordinates" of the axis, i.e. the values along the axis. This could
be the values of the axis as stored on file, but it can also be the values from an auxiliary coordinate
set, in the form of a CFLabel instance. The coordinate set to use in display, selection and processing
is selectable through methods and fields in this class.

10 CFAxis

Super class

ncdfCF::CFObject -> CFAxis

Public fields

NCdim The NCDimension that stores the netCDF dimension details.

orientation A character "X", "Y", "Z" or "T" to indicate the orientation of the axis, or an empty
string if not known or different.

bounds The boundary values of this axis, if set.

Active bindings

friendlyClassName (read-only) A nice description of the class.

dimid (read-only) The netCDF dimension id of this axis.

length (read-only) The declared length of this axis.

values (read-only) Retrieve the raw values of the axis. In general you should use the coordinates
field rather than this one.

coordinates (read-only) Retrieve the coordinate values of the active coordinate set from the axis.

auxiliary Set or retrieve auxiliary coordinates for the axis. On assignment, the value must be an
instance of CFLabel or a CFAxis descendant, which is added to the end of the list of coordinate
sets. On retrieval, the active CFLabel or CFAxis instance or NULL when the active coordinate
set is the primary axis coordinates.

coordinate_names Retrieve the names of the coordinate sets defined for the axis, as a character
vector. The first element in the vector is the name of the axis and it refers to the values of the
coordinates as stored in the netCDF file. Following elements refer to auxiliary coordinates.

active_coordinates Set or retrieve the name of the coordinate set to use with the axis for printing
to the console as well as for processing methods such as subset().

unlimited (read-only) Logical to indicate if the axis has an unlimited dimension.

Methods

Public methods:
• CFAxis$new()

• CFAxis$print()

• CFAxis$brief()

• CFAxis$shard()

• CFAxis$peek()

• CFAxis$time()

• CFAxis$identical()

• CFAxis$can_append()

• CFAxis$subset()

• CFAxis$indexOf()

• CFAxis$write()

CFAxis 11

• CFAxis$clone()

Method new(): Create a new CF axis instance from a dimension and a variable in a netCDF
resource. This method is called upon opening a netCDF resource by the initialize() method
of a descendant class suitable for the type of axis.
Creating a new axis is more easily done with the makeAxis() function.

Usage:
CFAxis$new(nc_var, nc_dim, orientation)

Arguments:
nc_var The NCVariable instance upon which this CF axis is based.
nc_dim The NCDimension instance upon which this CF axis is based.
orientation The orientation of the axis: "X", "Y", "Z" "T", or "" when not known or relevant.

Returns: A basic CFAxis object.

Method print(): Prints a summary of the axis to the console. This method is typically called
by the print() method of descendant classes.

Usage:
CFAxis$print(...)

Arguments:
... Arguments passed on to other functions. Of particular interest is width = to indicate a

maximum width of attribute columns.

Returns: self, invisibly.

Method brief(): Some details of the axis.

Usage:
CFAxis$brief()

Returns: A 1-row data.frame with some details of the axis.

Method shard(): Very concise information on the axis. The information returned by this
function is very concise and most useful when combined with similar information from other
axes.

Usage:
CFAxis$shard()

Returns: Character string with very basic axis information.

Method peek(): Retrieve interesting details of the axis.

Usage:
CFAxis$peek(with_groups = TRUE)

Arguments:
with_groups Should group information be included? The safe option is TRUE (default) when

the netCDF resource has groups because names may be duplicated among objects in differ-
ent groups.

Returns: A 1-row data.frame with details of the axis.

12 CFAxis

Method time(): Return the CFTime instance that represents time. This method is only useful for
CFAxisTime instances having time information. This stub is here to make the call to this method
succeed with no result for the other descendant classes.

Usage:
CFAxis$time()

Returns: NULL

Method identical(): Tests if the axis passed to this method is identical to self. This only
tests for generic properties - class, length and name

• with further assessment done in sub-classes.

Usage:
CFAxis$identical(axis)

Arguments:

axis The CFAxis instance to test.

Returns: TRUE if the two axes are identical, FALSE if not.

Method can_append(): Tests if the axis passed to this method can be appended to self. This
only tests for generic properties - class, mode of the values and name - with further assessment
done in sub-classes.

Usage:
CFAxis$can_append(axis)

Arguments:

axis The CFAxis descendant instance to test.

Returns: TRUE if the passed axis can be appended to self, FALSE if not.

Method subset(): Return an axis spanning a smaller coordinate range. This method is "virtual"
in the sense that it does not do anything other than return NULL. This stub is here to make the call to
this method succeed with no result for the CFAxis descendants that do not implement this method.

Usage:
CFAxis$subset(group, rng = NULL)

Arguments:

group The group to create the new axis in.
rng The range of indices whose values from this axis to include in the returned axis. If the

value of the argument is NULL, return the entire axis.

Returns: NULL

Method indexOf(): Find indices in the axis domain. Given a vector of numerical, timestamp or
categorical coordinates x, find their indices in the coordinates of the axis.
This is a virtual method. For more detail, see the corresponding method in descendant classes.

Usage:
CFAxis$indexOf(x, method = "constant", rightmost.closed = TRUE)

Arguments:

CFAxisCharacter 13

x Vector of numeric, timestamp or categorial coordinates to find axis indices for. The times-
tamps can be either character, POSIXct or Date vectors. The type of the vector has to
correspond to the type of the axis values.

method Single character value of "constant" or "linear".
rightmost.closed Whether or not to include the upper limit. Default is TRUE.

Returns: Numeric vector of the same length as x.

Method write(): Write the axis to a netCDF file, including its attributes.

Usage:
CFAxis$write(nc = NULL)

Arguments:

nc The handle of the netCDF file opened for writing or a group in the netCDF file. If NULL,
write to the file or group where the axis was read from (the file must have been opened for
writing). If not NULL, the handle to a netCDF file or a group therein.

Returns: Self, invisibly.

Method clone(): The objects of this class are cloneable with this method.

Usage:
CFAxis$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

CFAxisCharacter CF character axis object

Description

This class represent CF axes that use categorical character labels as coordinate values. Note that
this is different from a CFLabel, which is associated with an axis but not an axis itself.

This is an extension to the CF Metadata Conventions. As per CF, axes are required to have numerical
values, which is relaxed here.

Super classes

ncdfCF::CFObject -> ncdfCF::CFAxis -> CFAxisCharacter

Active bindings

friendlyClassName (read-only) A nice description of the class.

dimnames (read-only) The coordinates of the axis as a character vector.

14 CFAxisCharacter

Methods

Public methods:
• CFAxisCharacter$new()

• CFAxisCharacter$brief()

• CFAxisCharacter$identical()

• CFAxisCharacter$append()

• CFAxisCharacter$indexOf()

• CFAxisCharacter$clone()

Method new(): Create a new instance of this class.
Creating a new character axis is more easily done with the makeAxis() function.

Usage:
CFAxisCharacter$new(nc_var, nc_dim, orientation, values)

Arguments:
nc_var The netCDF variable that describes this instance.
nc_dim The netCDF dimension that describes the dimensionality.
orientation The orientation (X, Y, Z, or T) or "" if different or unknown.
values The character coordinates of this axis.

Method brief(): Some details of the axis.

Usage:
CFAxisCharacter$brief()

Returns: A 1-row data.frame with some details of the axis.

Method identical(): Tests if the axis passed to this method is identical to self.

Usage:
CFAxisCharacter$identical(axis)

Arguments:
axis The CFAxisCharacter instance to test.

Returns: TRUE if the two axes are identical, FALSE if not.

Method append(): Append a vector of values at the end of the current values of the axis.

Usage:
CFAxisCharacter$append(from)

Arguments:
from An instance of CFAxisCharacter whose values to append to the values of self.

Returns: A new CFAxisCharacter instance with values from self and the from axis appended.

Method indexOf(): Find indices in the axis domain. Given a vector of character strings x, find
their indices in the coordinates of the axis.

Usage:
CFAxisCharacter$indexOf(x, method = "constant", rightmost.closed = TRUE)

CFAxisDiscrete 15

Arguments:

x Vector of character strings to find axis indices for.
method Ignored.
rightmost.closed Ignored.

Returns: Numeric vector of the same length as x. Values of x that are not equal to a coordinate
of the axis are returned as NA.

Method clone(): The objects of this class are cloneable with this method.

Usage:
CFAxisCharacter$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

CFAxisDiscrete CF discrete axis object

Description

This class represent discrete CF axes, i.e. those axes whose coordinate values do not represent a
physical property. The coordinate values are ordinal values equal to the index into the axis.

Super classes

ncdfCF::CFObject -> ncdfCF::CFAxis -> CFAxisDiscrete

Active bindings

friendlyClassName (read-only) A nice description of the class.

dimnames (read-only) The coordinates of the axis as an integer vector, or labels for every axis
element if they have been set.

Methods

Public methods:

• CFAxisDiscrete$new()

• CFAxisDiscrete$print()

• CFAxisDiscrete$brief()

• CFAxisDiscrete$append()

• CFAxisDiscrete$indexOf()

• CFAxisDiscrete$subset()

• CFAxisDiscrete$write()

• CFAxisDiscrete$clone()

16 CFAxisDiscrete

Method new(): Create a new instance of this class.
Creating a new discrete axis is more easily done with the makeDiscreteAxis() function.

Usage:
CFAxisDiscrete$new(nc_var, nc_dim, orientation, dim_only = FALSE)

Arguments:
nc_var The netCDF variable that describes this instance.
nc_dim The netCDF dimension that describes the dimensionality.
orientation The orientation (X, Y, Z, or T) or "" if different or unknown.
dim_only Flag if this axis only has a dimension on file but no NC variable.

Method print(): Summary of the axis printed to the console.

Usage:
CFAxisDiscrete$print(...)

Arguments:
... Arguments passed on to other functions. Of particular interest is width = to indicate a

maximum width of attribute columns.

Returns: self, invisibly.

Method brief(): Some details of the axis.

Usage:
CFAxisDiscrete$brief()

Returns: A 1-row data.frame with some details of the axis.

Method append(): Append a vector of values at the end of the current values of the axis. In a
discrete axis the values are always a simple sequence so the appended values extend the sequence,
rather than using the values from axis from.

Usage:
CFAxisDiscrete$append(from)

Arguments:
from An instance of CFAxisDiscrete whose length to add to the length of self.

Returns: A new CFAxisDiscrete with the combined length of self and the from axis.

Method indexOf(): Find indices in the axis domain. Given a vector of numerical values x, find
their indices in the values of the axis. In effect, this returns index values into the axis, but outside
values will be dropped.

Usage:
CFAxisDiscrete$indexOf(x, method = "constant", rightmost.closed = TRUE)

Arguments:
x Vector of numeric values to find axis indices for.
method Ignored.
rightmost.closed Ignored.

Returns: Numeric vector of the same length as x. Values of x outside of the range of the values
in the axis are returned as NA.

CFAxisLatitude 17

Method subset(): Return an axis spanning a smaller coordinate range. This method returns an
axis which spans the range of indices given by the rng argument.

Usage:
CFAxisDiscrete$subset(group, rng = NULL)

Arguments:

group The group to create the new axis in.
rng The range of indices from this axis to include in the returned axis.

Returns: A CFAxisDiscrete instance covering the indicated range of indices. If the value of
the argument is NULL, return the entire axis.

Method write(): Write the axis to a netCDF file, including its attributes, but only if it has an
associated NC variable in the file.

Usage:
CFAxisDiscrete$write(nc = NULL)

Arguments:

nc The handle of the netCDF file opened for writing or a group in the netCDF file. If NULL,
write to the file or group where the axis was read from (the file must have been opened for
writing). If not NULL, the handle to a netCDF file or a group therein.

Returns: Self, invisibly.

Method clone(): The objects of this class are cloneable with this method.

Usage:
CFAxisDiscrete$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

CFAxisLatitude Latitude CF axis object

Description

This class represents a latitude axis. Its values are numeric. This class adds some logic that is
specific to latitudes, such as their range, orientation and meaning.

Super classes

ncdfCF::CFObject -> ncdfCF::CFAxis -> ncdfCF::CFAxisNumeric -> CFAxisLatitude

Active bindings

friendlyClassName (read-only) A nice description of the class.

18 CFAxisLongitude

Methods

Public methods:

• CFAxisLatitude$new()

• CFAxisLatitude$subset()

• CFAxisLatitude$clone()

Method new(): Create a new instance of this class.
Creating a new latitude axis is more easily done with the makeLatitudeAxis() function.

Usage:
CFAxisLatitude$new(nc_var, nc_dim, values)

Arguments:

nc_var The netCDF variable that describes this instance.
nc_dim The netCDF dimension that describes the dimensionality.
values The coordinates of this axis.

Method subset(): Return an axis spanning a smaller coordinate range. This method returns an
axis which spans the range of indices given by the rng argument.

Usage:
CFAxisLatitude$subset(group, rng = NULL)

Arguments:

group The group to create the new axis in.
rng The range of values from this axis to include in the returned axis.

Returns: A CFAxisLatitude instance covering the indicated range of indices. If the value of
the argument is NULL, return the entire axis.

Method clone(): The objects of this class are cloneable with this method.

Usage:
CFAxisLatitude$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

CFAxisLongitude Longitude CF axis object

Description

This class represents a longitude axis. Its values are numeric. This class is used for axes that
represent longitudes. This class adds some logic that is specific to longitudes, such as their range,
orientation and their meaning. (In the near future, it will also support selecting data that crosses the
0-360 degree boundary.)

CFAxisLongitude 19

Super classes

ncdfCF::CFObject -> ncdfCF::CFAxis -> ncdfCF::CFAxisNumeric -> CFAxisLongitude

Active bindings

friendlyClassName (read-only) A nice description of the class.

Methods

Public methods:

• CFAxisLongitude$new()

• CFAxisLongitude$subset()

• CFAxisLongitude$clone()

Method new(): Create a new instance of this class.
Creating a new longitude axis is more easily done with the makeLongitudeAxis() function.

Usage:
CFAxisLongitude$new(nc_var, nc_dim, values)

Arguments:

nc_var The netCDF variable that describes this instance.
nc_dim The netCDF dimension that describes the dimensionality.
values The coordinates of this axis.

Method subset(): Return an axis spanning a smaller coordinate range. This method returns an
axis which spans the range of indices given by the rng argument.

Usage:
CFAxisLongitude$subset(group, rng = NULL)

Arguments:

group The group to create the new axis in.
rng The range of values from this axis to include in the returned axis.

Returns: A CFAxisLongitude instance covering the indicated range of indices. If the value of
the argument is NULL, return the entire axis.

Method clone(): The objects of this class are cloneable with this method.

Usage:
CFAxisLongitude$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

20 CFAxisNumeric

CFAxisNumeric Numeric CF axis object

Description

This class represents a numeric axis. Its values are numeric. This class is used for axes with numeric
values but without further knowledge of their nature. More specific classes descend from this class.

Super classes

ncdfCF::CFObject -> ncdfCF::CFAxis -> CFAxisNumeric

Active bindings

friendlyClassName (read-only) A nice description of the class.

dimnames (read-only) The coordinates of the axis as a vector. These are by default the values of
the axis, but it could also be a set of auxiliary coordinates, if they have been set.

Methods

Public methods:
• CFAxisNumeric$new()

• CFAxisNumeric$print()

• CFAxisNumeric$brief()

• CFAxisNumeric$range()

• CFAxisNumeric$indexOf()

• CFAxisNumeric$identical()

• CFAxisNumeric$append()

• CFAxisNumeric$subset()

• CFAxisNumeric$clone()

Method new(): Create a new instance of this class.
Creating a new axis is more easily done with the makeAxis() function.

Usage:
CFAxisNumeric$new(nc_var, nc_dim, orientation, values)

Arguments:

nc_var The netCDF variable that describes this instance.
nc_dim The netCDF dimension that describes the dimensionality.
orientation The orientation (X, Y, Z, or T) or "" if different or unknown.
values The coordinates of this axis.

Method print(): Summary of the axis printed to the console.

Usage:

CFAxisNumeric 21

CFAxisNumeric$print(...)

Arguments:

... Arguments passed on to other functions. Of particular interest is width = to indicate a
maximum width of attribute columns.

Returns: self, invisibly.

Method brief(): Some details of the axis.

Usage:
CFAxisNumeric$brief()

Returns: A 1-row data.frame with some details of the axis.

Method range(): Retrieve the range of coordinate values in the axis.

Usage:
CFAxisNumeric$range()

Returns: A numeric vector with two elements with the minimum and maximum values in the
axis, respectively.

Method indexOf(): Retrieve the indices of supplied coordinates on the axis. If the axis has
bounds then the supplied coordinates must fall within the bounds to be considered valid.

Usage:
CFAxisNumeric$indexOf(x, method = "constant", rightmost.closed = TRUE)

Arguments:

x A numeric vector of coordinates whose indices into the axis to extract.
method Extract index values without ("constant", the default) or with ("linear") fractional parts.
rightmost.closed Whether or not to include the upper limit. This parameter is ignored for

this class, effectively it always is TRUE.

Returns: A vector giving the indices in x of valid coordinates provided. Values of x outside of
the range of the coordinates in the axis are returned as NA.

Method identical(): Tests if the axis passed to this method is identical to self.

Usage:
CFAxisNumeric$identical(axis)

Arguments:

axis The CFAxisNumeric or sub-class instance to test.

Returns: TRUE if the two axes are identical, FALSE if not.

Method append(): Append a vector of values at the end of the current values of the axis.

Usage:
CFAxisNumeric$append(from)

Arguments:

from An instance of CFAxisNumeric or any of its descendants whose values to append to the
values of self.

22 CFAxisTime

Returns: A new CFAxisNumeric or descendant instance with values from self and the from
axis appended.

Method subset(): Return an axis spanning a smaller coordinate range. This method returns an
axis which spans the range of indices given by the rng argument.

Usage:
CFAxisNumeric$subset(group, rng = NULL)

Arguments:
group The group to create the new axis in.
rng The range of indices whose values from this axis to include in the returned axis.

Returns: A CFAxisNumeric instance covering the indicated range of indices. If the value of
the argument is NULL, return the entire axis.

Method clone(): The objects of this class are cloneable with this method.

Usage:
CFAxisNumeric$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

CFAxisTime Time axis object

Description

This class represents a time axis. The functionality is provided by the CFTime class in the CFtime
package.

Super classes

ncdfCF::CFObject -> ncdfCF::CFAxis -> CFAxisTime

Active bindings

friendlyClassName (read-only) A nice description of the class.

dimnames (read-only) The coordinates of the axis as a character vector.

Methods

Public methods:
• CFAxisTime$new()

• CFAxisTime$print()

• CFAxisTime$brief()

• CFAxisTime$time()

• CFAxisTime$identical()

CFAxisTime 23

• CFAxisTime$append()

• CFAxisTime$indexOf()

• CFAxisTime$slice()

• CFAxisTime$subset()

• CFAxisTime$write()

• CFAxisTime$clone()

Method new(): Create a new instance of this class.
Creating a new time axis is more easily done with the makeTimeAxis() function.

Usage:
CFAxisTime$new(nc_var, nc_dim, values)

Arguments:
nc_var The netCDF variable that describes this instance.
nc_dim The netCDF dimension that describes the dimensionality.
values The CFTime instance that manages this axis.

Method print(): Summary of the time axis printed to the console.

Usage:
CFAxisTime$print(...)

Arguments:
... Arguments passed on to other functions. Of particular interest is width = to indicate a

maximum width of attribute columns.

Returns: self, invisibly.

Method brief(): Some details of the axis.

Usage:
CFAxisTime$brief()

Returns: A 1-row data.frame with some details of the axis.

Method time(): Retrieve the CFTime instance that manages the values of this axis.

Usage:
CFAxisTime$time()

Returns: An instance of CFTime.

Method identical(): Tests if the axis passed to this method is identical to self.

Usage:
CFAxisTime$identical(axis)

Arguments:
axis The CFAxisTime instance to test.

Returns: TRUE if the two axes are identical, FALSE if not.

Method append(): Append a vector of time values at the end of the current values of the axis.

Usage:

24 CFAxisTime

CFAxisTime$append(from)

Arguments:
from An instance of CFAxisTime whose values to append to the values of self.

Returns: A new CFAxisTime instance with values from self and the from axis appended.

Method indexOf(): Retrieve the indices of supplied values on the time axis.

Usage:
CFAxisTime$indexOf(x, method = "constant", rightmost.closed = FALSE)

Arguments:
x A vector of timestamps whose indices into the time axis to extract.
method Extract index values without ("constant", the default) or with ("linear") fractional parts.
rightmost.closed Whether or not to include the upper limit. Default is FALSE.

Returns: An integer vector giving the indices in the time axis of valid values in x, or NA if the
value is not valid.

Method slice(): Retrieve the indices of the time axis falling between two extreme values.

Usage:
CFAxisTime$slice(x, rightmost.closed = FALSE)

Arguments:
x A vector of two timestamps in between of which all indices into the time axis to extract.
rightmost.closed Whether or not to include the upper limit. Default is FALSE.

Returns: An integer vector giving the indices in the time axis between values in x, or integer(0)
if none of the values are valid.

Method subset(): Return an axis spanning a smaller coordinate range. This method returns an
axis which spans the range of indices given by the rng argument.

Usage:
CFAxisTime$subset(group, rng = NULL)

Arguments:
group The group to create the new axis in.
rng The range of indices whose values from this axis to include in the returned axis.

Returns: A CFAxisTime instance covering the indicated range of indices. If the value of the
argument is NULL, return the entire axis.

Method write(): Write the axis to a netCDF file, including its attributes. If the calendar name
is "gregorian", it will be set to the functionally identical calendar "standard" as the former is
deprecated.

Usage:
CFAxisTime$write(nc = NULL)

Arguments:
nc The handle of the netCDF file opened for writing or a group in the netCDF file. If NULL,

write to the file or group where the axis was read from (the file must have been opened for
writing). If not NULL, the handle to a netCDF file or a group therein.

CFAxisVertical 25

Returns: Self, invisibly.

Method clone(): The objects of this class are cloneable with this method.

Usage:
CFAxisTime$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

CFAxisVertical Parametric vertical CF axis object

Description

This class represents a parametric vertical axis. It is defined through an index value that is contained
in the axis, with additional NCVariable instances that hold ancillary data with which to calculate
dimensional axis values. It is used in atmosphere and ocean data sets. Non-parametric vertical axes
are stored in an CFAxisNumeric instance.

Super classes

ncdfCF::CFObject -> ncdfCF::CFAxis -> ncdfCF::CFAxisNumeric -> CFAxisVertical

Public fields

parameter_name The ’standard_name’ attribute of the NCVariable that identifies the parametric
form of this axis.

computed_name The standard name for the computed values of the axis.

computed_units The unit of the computed values of the axis.

Active bindings

friendlyClassName (read-only) A nice description of the class.

formula_terms A data.frame with the "formula_terms" to calculate the parametric axis values.

dimnames (read-only) The coordinates of the axis.

Methods

Public methods:
• CFAxisVertical$new()

• CFAxisVertical$clone()

Method new(): Create a new instance of this class.

Usage:
CFAxisVertical$new(nc_var, nc_dim, values, standard_name)

26 CFBounds

Arguments:

nc_var The netCDF variable that describes this instance.
nc_dim The netCDF dimension that describes the dimensionality.
values The coordinates of this axis.
standard_name Character string with the "standard_name" that defines the meaning, and pro-

cessing of coordinates, of this axis.

Method clone(): The objects of this class are cloneable with this method.

Usage:
CFAxisVertical$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

https://cfconventions.org/Data/cf-conventions/cf-conventions-1.12/cf-conventions.html#parametric-
vertical-coordinate

CFBounds CF bounds variable

Description

This class represents the bounds of an axis or an auxiliary longitude-latitude grid.

The class manages the bounds information for an axis (2 vertices per element) or an auxiliary
longitude-latitude grid (4 vertices per element).

Super class

ncdfCF::CFObject -> CFBounds

Public fields

NCdim The NCDimension that stores the netCDF dimension details of the bounds dimension (as
opposed to the dimension of the associated axis).

Active bindings

friendlyClassName (read-only) A nice description of the class.

coordinates (read-only) Retrieve the boundary values.

CFBounds 27

Methods

Public methods:
• CFBounds$new()

• CFBounds$print()

• CFBounds$range()

• CFBounds$sub_bounds()

• CFBounds$write()

• CFBounds$clone()

Method new(): Create an instance of this class.

Usage:
CFBounds$new(nc_var, nc_dim, values)

Arguments:

nc_var The NC variable that describes this instance.
nc_dim The NC dimension that defines the vertices of the bounds.
values A matrix with the bounds values.

Method print(): Print a summary of the object to the console.

Usage:
CFBounds$print(...)

Arguments:

... Arguments passed on to other functions. Of particular interest is width = to indicate a
maximum width of attribute columns.

Method range(): Retrieve the lowest and highest value in the bounds.

Usage:
CFBounds$range()

Method sub_bounds(): Return bounds spanning a smaller coordinate range.
This method returns bounds which spans the range of indices given by the rng argument.

Usage:
CFBounds$sub_bounds(group, rng)

Arguments:

group The group to create the new bounds in.
rng The range of values from this bounds object to include in the returned object.

Returns: A CFBounds instance covering the indicated range of indices.

Method write(): Write the bounds variable to a netCDF file. This method should not be called
directly; instead, CFArray::save() will call this method automatically.

Usage:
CFBounds$write(h, object_name)

Arguments:

28 CFCellMeasure

h The handle to a netCDF file open for writing.
object_name The name of the object that uses these bounds, usually an axis but could also be

an auxiliary CV or a parametric Z axis.

Method clone(): The objects of this class are cloneable with this method.

Usage:
CFBounds$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

CFCellMeasure CF cell measure variable

Description

This class represents a CF cell measure variable, the object that indicates the area or volume of
every grid cell in referencing data variables.

If a cell measure variable is external to the current file, an instance will still be created for it, but the
user must link the external file to this instance before it can be used in analysis.

Public fields

group The NCGroup that this object is located in.

measure The measure of this instance. Either "area" or "volume".

name The name of this instance, which must refer to a NC variable or an external variable.

Methods

Public methods:
• CFCellMeasure$new()

• CFCellMeasure$print()

• CFCellMeasure$data()

• CFCellMeasure$register()

• CFCellMeasure$link()

• CFCellMeasure$clone()

Method new(): Create an instance of this class.

Usage:
CFCellMeasure$new(grp, measure, name = NULL, nc_var = NULL, axes = NULL)

Arguments:
grp The group that this CF cell measure variable lives in.
measure The measure of this object. Must be either of "area" or "volume".
name The name of the cell measure variable. May be omitted if argument nc_var is specified.

CFCellMeasure 29

nc_var The netCDF variable that defines this CF cell measure object. NULL for an external
variable.

axes List of CFAxis instances that describe the dimensions of the cell measure object. NULL for
an external variable.

Returns: An instance of this class.

Method print(): Print a summary of the cell measure variable to the console.

Usage:
CFCellMeasure$print(...)

Arguments:

... Arguments passed on to other functions. Of particular interest is width = to indicate a
maximum width of attribute columns.

Method data(): Retrieve the values of the cell measure variable.

Usage:
CFCellMeasure$data()

Returns: The values of the cell measure as a CFArray instance.

Method register(): Register a CFVariable which is using this cell measure variable. A check
is performed on the compatibility between the data variable and this cell measure variable.

Usage:
CFCellMeasure$register(var)

Arguments:

var A CFVariable instance to link to this instance.

Returns: Self, invisibly.

Method link(): Link the cell measure variable to an external netCDF resource. The resource
will be opened and the appropriate data variable will be linked to this instance. If the axes or other
properties of the external resource are not compatible with this instance, an error will be raised.

Usage:
CFCellMeasure$link(resource)

Arguments:

resource The name of the netCDF resource to open, either a local file name or a remote URI.

Returns: Self, invisibly.

Method clone(): The objects of this class are cloneable with this method.

Usage:
CFCellMeasure$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

30 CFDataset

CFDataset CF data set

Description

This class represents a CF data set, the object that encapsulates a netCDF resource. You should
never have to instantiate this class directly; instead, call open_ncdf() which will return an instance
that has all properties read from the netCDF resource. Class methods can then be called, or the base
R functions called with this instance.

The CF data set instance provides access to all the objects in the netCDF resource, organized in
groups.

Public fields

name The name of the netCDF resource. This is extracted from the URI (file name or URL).

keep_open Logical flag to indicate if the netCDF resource has to remain open after reading the
metadata. This should be enabled typically only for programmatic access or when a remote
resource has an expensive access protocol (i.e. 2FA). The resource has to be explicitly closed
with close() after use. Note that when a data set is opened with keep_open = TRUE the
resource may still be closed by the operating system or the remote server.

root Root of the group hierarchy through which all elements of the netCDF resource are accessed.
It is strongly discouraged to manipulate the objects in the group hierarchy directly. Use the
provided access methods instead.

file_type The type of data in the netCDF resource, if identifiable. In terms of the CF Metadata
Conventions, this includes discrete sampling geometries (DSG). Other file types that can be
identified include L3b files used by NASA and NOAA for satellite imagery (these data sets
need special processing), and CMIP5, CMIP6 and CORDEX climate projection data.

Active bindings

friendlyClassName (read-only) A nice description of the class.

resource (read-only) The connection details of the netCDF resource. This is for internal use only.

uri (read-only) The connection string to the netCDF resource.

conventions (read-only) Returns the conventions that this netCDF resource conforms to.

var_names (read-only) Vector of names of variables in this data set.

axis_names (read-only) Vector of names of axes in this data set.

Methods

Public methods:
• CFDataset$new()

• CFDataset$print()

• CFDataset$hierarchy()

• CFDataset$objects_by_standard_name()

CFDataset 31

• CFDataset$has_subgroups()

• CFDataset$find_by_name()

• CFDataset$variables()

• CFDataset$axes()

• CFDataset$attributes()

• CFDataset$attribute()

• CFDataset$clone()

Method new(): Create an instance of this class.

Usage:
CFDataset$new(name, resource, keep_open, format)

Arguments:

name The name that describes this instance.
resource An instance of CFResource that links to the netCDF resource.
keep_open Logical. Should the netCDF resource be kept open for further access?
format Character string with the format of the netCDF resource as reported by the call opening

the resource.

Method print(): Summary of the data set printed to the console.

Usage:
CFDataset$print(...)

Arguments:

... Arguments passed on to other functions. Of particular interest is width = to indicate a
maximum width of attribute columns.

Method hierarchy(): Print the group hierarchy to the console.

Usage:
CFDataset$hierarchy()

Method objects_by_standard_name(): Get objects by standard_name. Several conventions
define standard vocabularies for physical properties. The standard names from those vocabularies
are usually stored as the "standard_name" attribute with variables or axes. This method retrieves
all variables or axes that list the specified "standard_name" in its attributes.

Usage:
CFDataset$objects_by_standard_name(standard_name)

Arguments:

standard_name Optional, a character string to search for a specific "standard_name" value in
variables and axes.

Returns: If argument standard_name is provided, a character vector of variable or axis
names. If argument standard_name is missing or an empty string, a named list with all "stan-
dard_name" attribute values in the the netCDF resource; each list item is named for the variable
or axis.

32 CFDataset

Method has_subgroups(): Does the netCDF resource have subgroups? Newer versions of
the netcdf library, specifically netcdf4, can organize dimensions and variables in groups. This
method will report if the data set is indeed organized with subgroups.

Usage:
CFDataset$has_subgroups()

Returns: Logical to indicate that the netCDF resource uses subgroups.

Method find_by_name(): Find an object by its name. Given the name of a CF data variable or
axis, possibly preceded by an absolute group path, return the object to the caller.

Usage:
CFDataset$find_by_name(name, scope = "CF")

Arguments:
name The name of a CF data variable or axis, with an optional absolute group path.
scope The scope to look for the name. Either "CF" (default) to search for CF variables or axes,

or "NC" to look for groups or NC variables.

Returns: The object with the provided name. If the object is not found, returns NULL.

Method variables(): This method lists the CF data variables located in this netCDF resource,
including those in subgroups.

Usage:
CFDataset$variables()

Returns: A list of CFVariable instances.

Method axes(): This method lists the axes located in this netCDF resource, including axes in
subgroups.

Usage:
CFDataset$axes()

Returns: A list of CFAxis descendants.

Method attributes(): List all the attributes of a group. This method returns a data.frame
containing all the attributes of the indicated group.

Usage:
CFDataset$attributes(group)

Arguments:
group The name of the group whose attributes to return. If the argument is missing, the global

attributes will be returned.

Returns: A data.frame of attributes.

Method attribute(): Retrieve global attributes of the data set.

Usage:
CFDataset$attribute(att, field = "value")

Arguments:
att Vector of character strings of attributes to return.

CFGridMapping 33

field The field of the attribute to return values from. This must be "value" (default) or "type".

Returns: If the field argument is "type", a character string. If field is "value", a single value
of the type of the attribute, or a vector when the attribute has multiple values. If no attribute is
named with a value of argument att NA is returned.

Method clone(): The objects of this class are cloneable with this method.

Usage:
CFDataset$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

CFGridMapping CF grid mapping object

Description

This class contains the details for a coordinate reference system, or grid mapping in CF terms, of a
data variable.

When reporting the coordinate reference system to the caller, a character string in WKT2 format is
returned, following the OGC standard.

Super class

ncdfCF::CFObject -> CFGridMapping

Public fields

grid_mapping_name The name of the grid mapping.

Active bindings

friendlyClassName (read-only) A nice description of the class.

Methods

Public methods:
• CFGridMapping$new()

• CFGridMapping$print()

• CFGridMapping$brief()

• CFGridMapping$wkt2()

• CFGridMapping$write()

• CFGridMapping$clone()

Method new(): Create a new instance of this class.

Usage:

34 CFGridMapping

CFGridMapping$new(nc_var, name)

Arguments:

nc_var The netCDF variable that describes this instance.
name The formal grid mapping name from the attribute.

Method print(): Prints a summary of the grid mapping to the console.

Usage:
CFGridMapping$print()

Method brief(): Retrieve a 1-row data.frame with some information on this grid mapping.

Usage:
CFGridMapping$brief()

Method wkt2(): Retrieve the CRS string for a specific variable.

Usage:
CFGridMapping$wkt2(axis_info)

Arguments:

axis_info A list with information that describes the axes of the CFVariable or CFArray in-
stance to describe.

Returns: A character string with the CRS in WKT2 format.

Method write(): Write the CRS object to a netCDF file.

Usage:
CFGridMapping$write(h)

Arguments:

h Handle to the netCDF file opened for writing.

Returns: Self, invisibly.

Method clone(): The objects of this class are cloneable with this method.

Usage:
CFGridMapping$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

https://docs.ogc.org/is/18-010r11/18-010r11.pdf

CFLabel 35

CFLabel CF label object

Description

This class represent CF labels, i.e. an NC variable of character type that provides a textual label
for a discrete or general numeric axis. See also CFAxisCharacter, which is an axis with character
labels.

Super class

ncdfCF::CFObject -> CFLabel

Public fields

NCdim The NCDimension that stores the netCDF dimension details.

Active bindings

friendlyClassName (read-only) A nice description of the class.

coordinates (read-only) The label set as a vector.

length (read-only) The number of labels in the set.

dimid (read-only) The netCDF dimension id of this label set.

Methods

Public methods:
• CFLabel$new()

• CFLabel$print()

• CFLabel$subset()

• CFLabel$write()

• CFLabel$clone()

Method new(): Create a new instance of this class.

Usage:
CFLabel$new(nc_var, nc_dim, values)

Arguments:

nc_var The netCDF variable that describes this instance.
nc_dim The netCDF dimension that describes the dimensionality.
values Character vector of the label values.

Method print(): Prints a summary of the labels to the console.

Usage:
CFLabel$print(...)

36 CFObject

Arguments:

... Arguments passed on to other functions. Of particular interest is width = to indicate a
maximum width of attribute columns.

Returns: self, invisibly.

Method subset(): Retrieve a subset of the labels.

Usage:
CFLabel$subset(grp, rng)

Arguments:

grp The group to create the new label object in.
rng The range of indices to retrieve.

Returns: A CFLabel instance, or NULL if the rng values are invalid.

Method write(): Write the labels to a netCDF file, including its attributes.

Usage:
CFLabel$write(nc)

Arguments:

nc The handle of the netCDF file opened for writing or a group in the netCDF file. If NULL,
write to the file or group where the labels were read from (the file must have been opened
for writing). If not NULL, the handle to a netCDF file or a group therein.

Returns: Self, invisibly.

Method clone(): The objects of this class are cloneable with this method.

Usage:
CFLabel$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

CFObject CF base object

Description

This class is a basic ancestor to all classes that represent CF objects, specifically data variables and
axes. More useful classes use this class as ancestor.

Public fields

NCvar The NCVariable instance that this CF object represents.

CFObject 37

Active bindings

friendlyClassName (read-only) A nice description of the class.

id (read-only) The identifier of the CF object.

name (read-only) The name of the CF object.

fullname (read-only) The fully-qualified name of the CF object.

group Retrieve the NCGroup that this object is located in.

attributes Set or retrieve a data.frame with the attributes of the CF object.

Methods

Public methods:
• CFObject$new()

• CFObject$attribute()

• CFObject$print_attributes()

• CFObject$set_attribute()

• CFObject$append_attribute()

• CFObject$delete_attribute()

• CFObject$write_attributes()

• CFObject$add_coordinates()

• CFObject$clone()

Method new(): Create a new CF object instance from a variable in a netCDF resource. This
method is called upon opening a netCDF resource. It is rarely, if ever, useful to call this constructor
directly from the console. Instead, use the methods from higher-level classes such as CFVariable.

Usage:
CFObject$new(nc_var)

Arguments:

nc_var The NCVariable instance upon which this CF object is based.

Returns: A CFobject instance.

Method attribute(): Retrieve attributes of any CF object.

Usage:
CFObject$attribute(att, field = "value")

Arguments:

att Vector of character strings of attributes to return.
field The field of the attribute to return values from. This must be "value" (default) or "type".

Returns: If the field argument is "type", a character string. If field is "value", a single value
of the type of the attribute, or a vector when the attribute has multiple values. If no attribute is
named with a value of argument att NA is returned.

Method print_attributes(): Print the attributes of the CF object to the console.

Usage:

38 CFObject

CFObject$print_attributes(width = 50L)

Arguments:

width The maximum width of each column in the data.frame when printed to the console.

Method set_attribute(): Add an attribute. If an attribute name already exists, it will be
overwritten.

Usage:
CFObject$set_attribute(name, type, value)

Arguments:

name The name of the attribute. The name must begin with a letter and be composed of letters,
digits, and underscores, with a maximum length of 255 characters. UTF-8 characters are
not supported in attribute names.

type The type of the attribute, as a string value of a netCDF data type.
value The value of the attribute. This can be of any supported type, including a vector or list

of values. Matrices, arrays and like compound data structures should be stored as a data
variable, not as an attribute and they are thus not allowed. In general, an attribute should be
a character value, a numeric value, a logical value, or a short vector or list of any of these.
Values passed in a list will be coerced to their common mode.

Returns: Self, invisibly.

Method append_attribute(): Append the text value of an attribute. If an attribute name
already exists, the value will be appended to the existing value of the attribute. If the attribute
name does not exist it will be created. The attribute must be of "NC_CHAR" or "NC_STRING"
type; in the latter case having only a single string value.

Usage:
CFObject$append_attribute(name, value, sep = "; ", prepend = FALSE)

Arguments:

name The name of the attribute. The name must begin with a letter and be composed of letters,
digits, and underscores, with a maximum length of 255 characters. UTF-8 characters are
not supported in attribute names.

value The character value of the attribute to append. This must be a character string.
sep The separator to use. Default is "; ".
prepend Logical to flag if the supplied value should be placed before the existing value. De-

fault is FALSE.

Returns: Self, invisibly.

Method delete_attribute(): Delete an attribute. If an attribute name is not present this
method simply returns.

Usage:
CFObject$delete_attribute(name)

Arguments:

name The name of the attribute to delete.

Returns: Self, invisibly.

CFResource 39

Method write_attributes(): Write the attributes of this object to a netCDF file.

Usage:
CFObject$write_attributes(nc, nm)

Arguments:
nc The handle to the netCDF file opened for writing.
nm The NC variable name or "NC_GLOBAL" to write the attributes to.

Returns: Self, invisibly.

Method add_coordinates(): Add names of axes to the "coordinates" attribute, avoiding dupli-
cates and retaining previous values.

Usage:
CFObject$add_coordinates(crds)

Arguments:
crds Vector of axis names to add to the attribute.

Returns: Self, invisibly.

Method clone(): The objects of this class are cloneable with this method.

Usage:
CFObject$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

CFResource NetCDF resource object

Description

This class contains the connection details to a netCDF resource.

There is a single instance of this class for every netCDF resource, owned by the CFDataset instance.
The instance is shared by other objects, specifically NCGroup instances, for access to the underlying
resource for reading of data.

This class should never have to be accessed directly. All access is handled by higher-level methods.

Public fields

error Error message, or empty string.

Active bindings

friendlyClassName (read-only) A nice description of the class.

handle (read-only) The handle to the netCDF resource.

uri (read-only) The URI of the netCDF resource, either a local filename or the location of an online
resource.

40 CFResource

Methods

Public methods:

• CFResource$new()

• CFResource$close()

• CFResource$group_handle()

• CFResource$clone()

Method new(): Create a connection to a netCDF resource. This is called by open_ncdf() when
opening a netCDF resource; you should never have to call this directly.

Usage:

CFResource$new(uri)

Arguments:

uri The URI to the netCDF resource.

Returns: An instance of this class.

Method close(): Closing an open netCDF resource. It should rarely be necessary to call this
method directly.

Usage:

CFResource$close()

Method group_handle(): Every group in a netCDF file has its own handle, with the "root"
group having the handle for the entire netCDF resource. The handle returned by this method is
valid only for the named group.

Usage:

CFResource$group_handle(group_name)

Arguments:

group_name The absolute path to the group.

Returns: The handle to the group.

Method clone(): The objects of this class are cloneable with this method.

Usage:

CFResource$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

CFVariable 41

CFVariable CF data variable

Description

This class represents the basic structure of a CF data variable, the object that provides access to an
array of data.

The CF data variable instance provides access to all the details that have been associated with the
data variable, such as axis information, grid mapping parameters, etc. The actual data array can be
accessed through the data() and subset() methods of this class.

Super classes

ncdfCF::CFObject -> ncdfCF::CFVariableBase -> CFVariable

Active bindings

friendlyClassName (read-only) A nice description of the class.

gridLongLat The grid of longitude and latitude values of every grid cell when the main variable
grid has a different coordinate system.

crs_wkt2 (read-only) Retrieve the coordinate reference system description of the variable as a
WKT2 string.

Methods

Public methods:
• CFVariable$new()

• CFVariable$print()

• CFVariable$brief()

• CFVariable$shard()

• CFVariable$peek()

• CFVariable$data()

• CFVariable$subset()

• CFVariable$clone()

Method new(): Create an instance of this class.

Usage:
CFVariable$new(nc_var, axes)

Arguments:
nc_var The netCDF variable that defines this CF variable.
axes List of CFAxis instances that describe the dimensions.

Returns: An instance of this class.

Method print(): Print a summary of the data variable to the console.

42 CFVariable

Usage:
CFVariable$print(...)

Arguments:

... Arguments passed on to other functions. Of particular interest is width = to indicate a
maximum width of attribute columns.

Method brief(): Some details of the data variable.

Usage:
CFVariable$brief()

Returns: A 1-row data.frame with some details of the data variable.

Method shard(): The information returned by this method is very concise and most useful
when combined with similar information from other variables.

Usage:
CFVariable$shard()

Returns: Character string with very basic variable information.

Method peek(): Retrieve interesting details of the data variable.

Usage:
CFVariable$peek(with_groups = TRUE)

Arguments:

with_groups Should group information be included? The save option is TRUE (default) when
the netCDF resource has groups because names may be duplicated among objects in differ-
ent groups.

Returns: A 1-row data.frame with details of the data variable.

Method data(): Retrieve all data of the variable.

Usage:
CFVariable$data()

Returns: A CFArray instance with all data from this variable.

Method subset(): This method extracts a subset of values from the array of the variable, with
the range along each axis to extract expressed in coordinate values of the domain of each axis.

Usage:
CFVariable$subset(..., .aoi = NULL, rightmost.closed = FALSE)

Arguments:

... One or more arguments of the form axis = range. The "axis" part should be the name of
an axis or its orientation X, Y, Z or T. The "range" part is a vector of values representing
coordinates along the axis where to extract data. Axis designators and names are case-
sensitive and can be specified in any order. If values for the range per axis fall outside of
the extent of the axis, the range is clipped to the extent of the axis.

CFVariable 43

.aoi Optional, an area-of-interest instance of class AOI created with the aoi() function to
indicate the horizontal area that should be extracted. The longitude and latitude coordinates
must be included; the X and Y resolution will be calculated if not given. When provided,
this argument will take precedence over the corresponding axis information for the X and Y
axes in the subset argument. You must use the argument name when specifying this, like
.aoi = my_aoi, to avoid the argument being treated as an axis name.

rightmost.closed Single logical value to indicate if the upper boundary of range in each
axis should be included. You must use the argument name when specifying this, like
rightmost.closed = TRUE, to avoid the argument being treated as an axis name.

Details: The range of values along each axis to be subset is expressed in coordinates of the
domain of the axis. Any axes for which no selection is made in the ... argument are extracted
in whole. Coordinates can be specified in a variety of ways that are specific to the nature of the
axis. For numeric axes it should (resolve to) be a vector of real values. A range (e.g. 100:200),
a vector (c(23, 46, 3, 45, 17), a sequence (seq(from = 78, to = 100, by = 2), all work.
Note, however, that only a single range is generated from the vector so these examples resolve
to (100, 200), (3, 46), and (78, 100), respectively. For time axes a vector of character
timestamps, POSIXct or Date values must be specified. As with numeric values, only the two
extreme values in the vector will be used.
If the range of coordinate values for an axis in argument ... extend the valid range of the axis
in x, the extracted data will start at the beginning for smaller values and extend to the end for
larger values. If the values envelope the valid range the entire axis will be extracted in the result.
If the range of coordinate values for any axis are all either smaller or larger than the valid range
of the axis then nothing is extracted and NULL is returned.
The extracted data has the same dimensional structure as the data in the variable, with degenerate
dimensions dropped. The order of the axes in argument ... does not reorder the axes in the
result; use the CFArray$array() method for this.
As an example, to extract values of a variable for Australia for the year 2020, where the first
axis in x is the longitude, the second axis is the latitude, both in degrees, and the third (and
final) axis is time, the values are extracted by x$subset(X = c(112, 154), Y = c(-9, -44),
T = c("2020-01-01", "2021-01-01")). You could take the longitude-latitude values from
sf::st_bbox() or terra::ext() if you have specific spatial geometries for whom you want to
extract data. Note that this works equally well for projected coordinate reference systems - the
key is that the specification in argument ... uses the same domain of values as the respective
axes in x use.

Auxiliary coordinate variables:
A special case exists for variables where the horizontal dimensions (X and Y) are not in lon-
gitude and latitude coordinates but in some other coordinate system. In this case the netCDF
resource may have so-called auxiliary coordinate variables for longitude and latitude that are
two grids with the same dimension as the horizontal axes of the data variable where each pixel
gives the corresponding value for the longitude and latitude. If the variable has such auxiliary
coordinate variables then they will be used automatically if, and only if, the axes are labeled
in argument ... as X and Y. The resolution of the grid that is produced by this method is auto-
matically calculated. If you want to subset those axes then specify values in decimal degrees;
if you want to extract the full extent, specify NA for both X and Y. Note that if you want to
extract the data in the original grid, you should use the horizontal axis names in argument

Returns: A CFArray instance, having an array with its axes and attributes of the variable, or
NULL if one or more of the selectors in the ... argument fall entirely outside of the range of the
axis. Note that degenerate dimensions (having length(.) == 1) are dropped from the array but

44 CFVariableBase

the corresponding axis is maintained in the result as a scalar axis.

Method clone(): The objects of this class are cloneable with this method.

Usage:
CFVariable$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

CFVariableBase Base ancestor of CFVariable and CFArray

Description

This class is a basic ancestor to CFVariable and CFArray. It should not be instantiated directly, use
the descendant classes instead.

This class provides access to common properties of data variables and the data they contain.

Super class

ncdfCF::CFObject -> CFVariableBase

Public fields

axes List of instances of classes descending from CFAxis that are the axes of the data object. If
there are any scalar axes, they are listed after the axes that associate with the dimensions of the
data. (In other words, axes 1..n describe the 1..n data dimensions, while any axes n+1..m
are scalar axes.)

crs The coordinate reference system of this variable, as an instance of CFGridMapping. If this
field is NULL, the horizontal component of the axes are in decimal degrees of longitude and
latitude.

cell_measure The CFCellMeasure object of this variable, if defined.

Methods

Public methods:
• CFVariableBase$new()

• CFVariableBase$time()

• CFVariableBase$summarise()

• CFVariableBase$profile()

• CFVariableBase$clone()

Method new(): Create an instance of this class.

Usage:
CFVariableBase$new(var, axes, crs)

CFVariableBase 45

Arguments:
var The NC variable that describes this data object.
axes A list of CFAxis descendant instances that describe the axes of the data object.
crs The CFGridMapping instance of this data object, or NULL when no grid mapping is avail-

able.

Returns: An instance of this class.

Method time(): Return the time object from the axis representing time.

Usage:
CFVariableBase$time(want = "time")

Arguments:
want Character string with value "axis" or "time", indicating what is to be returned.

Returns: If want = "axis" the CFAxisTime axis; if want = "time" the CFTime instance of the
axis, or NULL if the variable does not have a "time" axis.

Method summarise(): Summarise the temporal domain of the data, if present, to a lower reso-
lution, using a user-supplied aggregation function.
Attributes are copied from the input data variable or data array. Note that after a summarisa-
tion the attributes may no longer be accurate. This method tries to sanitise attributes (such as
removing scale_factor and add_offset, when present, as these will no longer be appropriate
in most cases) but the onus is on the calling code (or yourself as interactive coder). Attributes like
standard_name and cell_methods likely require an update in the output of this method, but the
appropriate new values are not known to this method. Use CFArray$set_attribute() on the
result of this method to set or update attributes as appropriate.

Usage:
CFVariableBase$summarise(name, fun, period, era = NULL, ...)

Arguments:
name Character vector with a name for each of the results that fun returns. So if fun has 2

return values, this should be a vector of length 2. Any missing values are assigned a default
name of "result_#" (with ’#’ being replaced with an ordinal number).

fun A function or a symbol or character string naming a function that will be applied to each
grouping of data. The function must return an atomic value (such as sum() or mean()), or a
vector of atomic values (such as range()). Lists and other objects are not allowed and will
throw an error that may be cryptic as there is no way that this method can assert that fun
behaves properly so an error will pop up somewhere, most probably in unexpected ways.
The function may also be user-defined so you could write a wrapper around a function like
lm() to return values like the intercept or any coefficients from the object returned by calling
that function.

period The period to summarise to. Must be one of either "day", "dekad", "month", "quarter",
"season", "year". A "quarter" is the standard calendar quarter such as January-March, April-
June, etc. A "season" is a meteorological season, such as December-February, March-May,
etc. (any December data is from the year preceding the January data). The period must be
of lower resolution than the resolution of the time axis.

era Optional, integer vector of years to summarise over by the specified period. The extreme
values of the years will be used. This can also be a list of multiple such vectors. The
elements in the list, if used, should have names as these will be used to label the results.

46 CFVariableBase

... Additional parameters passed on to fun.

Returns: A CFData object, or a list thereof with as many CFData objects as fun returns values.

Method profile(): This method extracts profiles of values from the array of the variable, with
the location along each axis to extract expressed in coordinate values of each axis.

Usage:
CFVariableBase$profile(..., .names = NULL, .as_table = FALSE)

Arguments:

... One or more arguments of the form axis = location. The "axis" part should be the name
of an axis or its orientation X, Y, Z or T. The "location" part is a vector of values representing
coordinates along the axis where to profile. A profile will be generated for each of the
elements of the "location" vectors in all arguments.

.names A character vector with names for the results. The names will be used for the CFArray
instances, or as values for the "location" column of the data.table if argument .as_table
is TRUE. If the vector is shorter than the longest vector of locations in the ... argument, a
name "location_#" will be used, with the # replaced by the ordinal number of the vector
element.

.as_table Logical to flag if the results should be CFArray instances (FALSE, default) or a single
data.table (TRUE). If TRUE, all ... arguments must have the same number of elements,
use the same axes and the data.table package must be installed.

Details: The coordinates along each axis to be sampled are expressed in values of the domain
of the axis. Any axes which are not passed as arguments are extracted in whole to the result.
If bounds are set on the axis, the coordinate whose bounds envelop the requested coordinate is
selected. Otherwise, the coordinate along the axis closest to the supplied value will be used. If
the value for a specified axis falls outside the valid range of that axis, NULL is returned.
A typical case is to extract the temporal profile as a 1D array for a given location. In this case,
use arguments for the latitude and longitude on an X-Y-T data variable: profile(lat = -24,
lon = 3). Other profiling options are also possible, such as a 2D zonal atmospheric profile at a
given longitude for an X-Y-Z data variable: profile(lon = 34).
Multiple profiles can be extracted in one call by supplying vectors for the indicated axes:
profile(lat = c(-24, -23, -2), lon = c(5, 5, 6)). The vectors need not have the same
length, unless .as_table = TRUE. With unequal length vectors the result will be a list of CFAr-
ray instances with different dimensionality and/or different axes.

Auxiliary coordinate variables (CFVariable only):
A special case exists for variables where the horizontal dimensions (X and Y) are not in lon-
gitude and latitude coordinates but in some other coordinate system. In this case the netCDF
resource may have so-called auxiliary coordinate variables. If the data variable has such aux-
iliary coordinate variables then they will be used automatically if, and only if, the axes are
specified as X and Y. Note that if you want to profile the data in the original grid units, you
should specify the horizontal axis names.

Returns: If .as_table = FALSE, a CFArray instance, or a list thereof with each having one
profile for each of the elements in the "location" vectors of argument ... and named with the
respective .names value. If .as_table = TRUE, a data.table with a row for each element along
all profiles, with a ".variable" column using the values from the .names argument.

Method clone(): The objects of this class are cloneable with this method.

CFVariableL3b 47

Usage:
CFVariableBase$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

CFVariableL3b CF data variable for the NASA L3b format

Description

This class represents a CF data variable that provides access to data sets in NASA level-3 binned
format, used extensively for satellite imagery.

Super classes

ncdfCF::CFObject -> ncdfCF::CFVariableBase -> ncdfCF::CFVariable -> CFVariableL3b

Public fields

variable The name of the variable contained in this L3b data.

index The index data of the L3b structure.

Methods

Public methods:
• CFVariableL3b$new()

• CFVariableL3b$as_matrix()

• CFVariableL3b$data()

• CFVariableL3b$subset()

• CFVariableL3b$clone()

Method new(): Create an instance of this class.

Usage:
CFVariableL3b$new(grp, units)

Arguments:
grp The group that this CF variable lives in. Must be called "/level-3_binned_data".
units Vector of two character strings with the variable name and the physical units of the data

variable in the netCDF resource.

Returns: An instance of this class.

Method as_matrix(): Read all the data from the file and turn the data into a matrix. If an aoi
is specified, the data will be subset to that area.
This method returns a bare-bones matrix without any metadata or other identifying information.
Use method data(), subset() or the [operator rather than this method to obtain a more infor-
mative result.

48 CFVariableL3b

Usage:
CFVariableL3b$as_matrix(aoi = NULL)

Arguments:
aoi An instance of class AOI, optional, to select an area in latitude - longitude coordinates.

Returns: A matrix with the data of the variable in raw format.

Method data(): Retrieve all data of the L3b variable.

Usage:
CFVariableL3b$data()

Returns: A CFArray instance with all data from this L3b variable.

Method subset(): This method extracts a subset of values from the data of the variable, with
the range along both axes expressed in decimal degrees.

Usage:
CFVariableL3b$subset(..., .aoi = NULL, rightmost.closed = FALSE)

Arguments:
... One or more arguments of the form axis = range. The "axis" part should be the name of

axis longitude or latitude or its orientation X or Y. The "range" part is a vector of values
representing coordinates along the axis where to extract data. Axis designators and names
are case-sensitive and can be specified in any order. If values for the range of an axis fall
outside of the extent of the axis, the range is clipped to the extent of the axis.

.aoi Optional, an area-of-interest instance of class AOI created with the aoi() function to
indicate the horizontal area that should be extracted. The longitude and latitude coordinates
must be included; the X and Y resolution will be calculated if not given. When provided,
this argument will take precedence over the ... argument.

rightmost.closed Single logical value to indicate if the upper boundary of range in each axis
should be included.

Details: The range of values along both axes of latitude and longitude is expressed in deci-
mal degrees. Any axes for which no information is provided in the subset argument are ex-
tracted in whole. Values can be specified in a variety of ways that should (resolve to) be a
vector of real values. A range (e.g. 100:200), a vector (c(23, 46, 3, 45, 17), a sequence
(seq(from = 78, to = 100, by = 2), all work. Note, however, that only a single range is
generated from the vector so these examples resolve to (100, 200), (3, 46), and (78, 100),
respectively.
If the range of values for an axis in argument subset extend the valid range of the axis in x,
the extracted slab will start at the beginning for smaller values and extend to the end for larger
values. If the values envelope the valid range the entire axis will be extracted in the result. If the
range of subset values for any axis are all either smaller or larger than the valid range of the
axis in x then nothing is extracted and NULL is returned.
The extracted data has the same dimensional structure as the data in the variable, with degenerate
dimensions dropped. The order of the axes in argument subset does not reorder the axes in the
result; use the CFArray$array() method for this.

Returns: A CFArray instance, having an array with axes and attributes of the variable, or NULL
if one or more of the elements in the ... argument falls entirely outside of the range of the axis.
Note that degenerate dimensions (having length(.) == 1) are dropped from the array but the
corresponding axis is maintained in the result as a scalar axis.

dim.AOI 49

Method clone(): The objects of this class are cloneable with this method.

Usage:

CFVariableL3b$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

https://oceancolor.gsfc.nasa.gov/resources/docs/technical/ocean_level-3_binned_data_products.pdf

dim.AOI The dimensions of the grid of an AOI

Description

This method returns the dimensions of the grid that would be created for the AOI.

Usage

S3 method for class 'AOI'
dim(x)

Arguments

x An instance of the AOI class.

Value

A vector of two values giving the longitude and latitude dimensions of the grid that would be created
for the AOI.

Examples

a <- aoi(30, 40, 10, 30, 0.1)
dim(a)

50 makeAxis

dim.CFAxis Axis length

Description

This method returns the lengths of the axes of a variable or axis.

Usage

S3 method for class 'CFAxis'
dim(x)

Arguments

x The CFVariable or a descendant of CFAxis.

Value

Vector of axis lengths.

Examples

fn <- system.file("extdata", "ERA5land_Rwanda_20160101.nc", package = "ncdfCF")
ds <- open_ncdf(fn)
t2m <- ds[["t2m"]]
dim(t2m)

makeAxis Create an axis

Description

With this method you can create an axis to use with new CFArray instances. Depending on the
orientation argument and the type of the values argument an instance of a class descending
from CFAxis will be returned.

Usage

makeAxis(name, group, orientation, values, bounds = NULL)

makeDiscreteAxis 51

Arguments

name Name of the axis.

group Group to place the axis in.

orientation The orientation of the axis. Must be one of "X", "Y", "Z", or "T" for longitude,
latitude, height or depth, and time axes, respectively. For any other axis, indicate
an empty string ""

values The coordinate values. In the case of an axis with orientation = "T" this must
be a CFTime instance.

bounds The bounds of the coordinate values, or NULL if not available.

Details

There are several restrictions on the combination of orientation and values arguments. Longi-
tude and latitude axes (orientation of "X" or "Y") must have numeric values. For a time axis
(orientation of "T") the values argument must be an instance of CFTime or CFClimatology.

Value

An instance of a class descending from CFAxis.

See Also

makeLongitudeAxis(), makeLatitudeAxis(), makeTimeAxis(), makeDiscreteAxis()

makeDiscreteAxis Create a discrete axis

Description

With this method you can create a discrete axis to use with new CFArray instances.

Usage

makeDiscreteAxis(name, group, length)

Arguments

name Name of the axis.

group Group to place the axis in.

length The length of the axis.

Value

A CFAxisDiscrete instance. The values will be a sequence of size length.

52 makeLatitudeAxis

makeGroup Create a group in memory to hold CF objects

Description

With this function a group is created in memory, i.e. not associated with a netCDF resource on
file. This can be used to prepare new CF objects before writing them to file. Extracting data from a
CFVariable into a CFArray instance will also create a virtual group.

Usage

makeGroup(id = -1L, name = "/", fullname = "/", parent = NULL)

Arguments

id The id of the group, default -1L.

name The name of the group, default "/".

fullname The full path and name of the group, default "/".

parent Optionally, a parent group to which the new group will be added as a child.

Value

A NCGroup instance.

makeLatitudeAxis Create a latitude axis

Description

With this method you can create a latitude axis to use with new CFArray instances.

Usage

makeLatitudeAxis(name, group, values, bounds)

Arguments

name Name of the axis.

group Group to place the axis in.

values The coordinate values.

bounds The bounds of the coordinate values, or NULL if not available.

Value

A CFAxisLatitude instance.

makeLongitudeAxis 53

makeLongitudeAxis Create a longitude axis

Description

With this method you can create a longitude axis to use with new CFArray instances.

Usage

makeLongitudeAxis(name, group, values, bounds = NULL)

Arguments

name Name of the axis.

group Group to place the axis in.

values The coordinate values.

bounds The bounds of the coordinate values, or NULL if not available.

Value

A CFAxisLongitude instance.

makeTimeAxis Create a time axis

Description

With this method you can create a time axis to use with new CFArray instances.

Usage

makeTimeAxis(name, group, values)

Arguments

name Name of the axis.

group Group to place the axis in.

values A CFTime instance with time values and optionally bounds set.

Value

A CFAxisTime instance.

54 names.CFDataset

names.CFDataset Names or dimension values of an CF object

Description

Retrieve the variable or dimension names of an ncdfCF object. The names() function gives the
names of the variables in the data set, prepended with the path to the group if the resource uses
groups. The return value of the dimnames() function differs depending on the type of object:

• CFDataset, CFVariable: The dimnames are returned as a vector of the names of the axes of
the data set or variable, prepended with the path to the group if the resource uses groups. Note
that this differs markedly from the base::dimnames() functionality.

• CFAxisNumeric, CFAxisLongitude, CFAxisLatitude, CFAxisVertical: The values of the
elements along the axis as a numeric vector.

• CFAxisTime: The values of the elements along the axis as a character vector containing times-
tamps in ISO8601 format. This could be dates or date-times if time information is available
in the axis.

• CFAxisCharacter: The values of the elements along the axis as a character vector.

• CFAxisDiscrete: The index values of the axis, from 1 to the length of the axis.

Usage

S3 method for class 'CFDataset'
names(x)

groups(x)

S3 method for class 'CFDataset'
groups(x)

Arguments

x An CFObject whose axis names to retrieve. This could be CFDataset, CFVariable,
or a class descending from CFAxis.

Value

A vector as described in the Description section.

Examples

fn <- system.file("extdata",
"pr_day_EC-Earth3-CC_ssp245_r1i1p1f1_gr_20230101-20231231_vncdfCF.nc",
package = "ncdfCF")

ds <- open_ncdf(fn)

CFDataset

NCDimension 55

dimnames(ds)

CFVariable
pr <- ds[["pr"]]
dimnames(pr)

CFAxisNumeric
lon <- ds[["lon"]]
dimnames(lon)

CFAxisTime
t <- ds[["time"]]
dimnames(t)

NCDimension NetCDF dimension object

Description

This class represents an netCDF dimensions. It contains the information on a dimension that is
stored in an netCDF file.

This class is not very useful for interactive use. Use the CFAxis descendent classes instead.

Super class

ncdfCF::NCObject -> NCDimension

Public fields

length The length of the dimension. If field unlim = TRUE, this field indicates the length of the
data in this dimension written to file.

unlim Logical flag to indicate if the dimension is unlimited, i.e. that additional data may be written
to file incrementing in this dimension.

Methods

Public methods:
• NCDimension$new()

• NCDimension$print()

• NCDimension$shard()

• NCDimension$write()

• NCDimension$clone()

Method new(): Create a new netCDF dimension. This class should not be instantiated directly,
create CF objects instead. This class is instantiated when opening a netCDF resource.

Usage:
NCDimension$new(id, name, length, unlim)

56 NCGroup

Arguments:
id Numeric identifier of the netCDF dimension.
name Character string with the name of the netCDF dimension.
length Length of the dimension.
unlim Is the dimension unlimited?

Returns: A NCDimension instance.

Method print(): Summary of the NC dimension printed to the console.

Usage:
NCDimension$print(...)

Arguments:
... Passed on to other methods.

Method shard(): Very concise information on the dimension. The information returned by
this function is very concise and most useful when combined with similar information from other
dimensions.

Usage:
NCDimension$shard()

Returns: Character string with very basic dimension information.

Method write(): Write the dimension to a netCDF file.

Usage:
NCDimension$write(h)

Arguments:
h The handle to the netCDF file to write.

Method clone(): The objects of this class are cloneable with this method.

Usage:
NCDimension$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

NCGroup NetCDF group

Description

This class represents a netCDF group, the object that holds elements like dimensions and variables
of a netCDF file. This class also holds references to any CF objects based on the netCDF elements
held by the group.

Direct access to groups is usually not necessary. The principal objects held by the group, CF data
variables and axes, are accessible via other means. Only for access to the group attributes is a
reference to a group required.

NCGroup 57

Super class

ncdfCF::NCObject -> NCGroup

Public fields

resource Access to the underlying netCDF resource. This can be NULL for instances created in
memory.

fullname The fully qualified absolute path of the group.

parent Parent group of this group, the owning CFDataset for the root group.

subgroups List of child NCGroup instances of this group.

NCvars List of netCDF variables that are located in this group.

NCdims List of netCDF dimensions that are located in this group.

NCudts List of netCDF user-defined types that are located in this group.

CFvars List of CF data variables in this group. There must be a corresponding item in NCvars for
each item in this list.

CFaxes List of axes of CF data variables in this group. There must be a corresponding item in
NCvars for each item in this list. Note that the CF data variable(s) that an axis is associated
with may be located in a different group. Also, objects that further describe the basic axis
definition, such as its bounds, labels, ancillary data, may be located in a different group; all
such elements can be accessed directly from the CFAxis instances that this list holds.

CFaux List of auxiliary coordinates located in this group. These could be CFLabel instances or an
axis.

CFlonglat List of CFAuxiliaryLongLat that hold longitude and latitude values for every grid point
in the data variable that references them.

CFmeasures List of cell measures variables in this group.

CFcrs List of grid mappings located in this group.

Active bindings

friendlyClassName (read-only) A nice description of the class.

handle (read-only) Get the handle to the netCDF resource for the group

root (read-only) Retrieve the root group.

data_set (read-only) Retrieve the CFDataset that the group belongs to.

Methods

Public methods:
• NCGroup$new()

• NCGroup$print()

• NCGroup$hierarchy()

• NCGroup$find_by_name()

• NCGroup$find_dim_by_id()

• NCGroup$has_name()

58 NCGroup

• NCGroup$unused()

• NCGroup$addAuxiliaryLongLat()

• NCGroup$addCellMeasure()

• NCGroup$fullnames()

• NCGroup$dimensions()

• NCGroup$variables()

• NCGroup$axes()

• NCGroup$grid_mappings()

• NCGroup$clone()

Method new(): Create a new instance of this class.

Usage:
NCGroup$new(id, name, fullname, parent, resource)

Arguments:
id The identifier of the group.
name The name of the group.
fullname The fully qualified name of the group.
parent The parent group of this group. the owning CFDataset for the root group.
resource Reference to the CFResource instance that provides access to the netCDF resource.

For in-memory groups this can be NULL.

Method print(): Summary of the group printed to the console.

Usage:
NCGroup$print(stand_alone = TRUE, ...)

Arguments:
stand_alone Logical to indicate if the group should be printed as an object separate from other

objects (TRUE, default), or print as part of an enclosing object (FALSE).
... Passed on to other methods.

Method hierarchy(): Prints the hierarchy of the group and its subgroups to the console, with
a summary of contained objects. Usually called from the root group to display the full group
hierarchy.

Usage:
NCGroup$hierarchy(idx = 1L, total = 1L)

Arguments:
idx, total Arguments to control indentation. Should both be 1 (the default) when called in-

teractively. The values will be updated during recursion when there are groups below the
current group.

Method find_by_name(): Find an object by its name. Given the name of an object, possibly
preceded by an absolute or relative group path, return the object to the caller. Typically, this
method is called programmatically; similar interactive use is provided through the [[.CFDataset
operator.

Usage:

NCGroup 59

NCGroup$find_by_name(name, scope = "CF")

Arguments:

name The name of an object, with an optional absolute or relative group path from the calling
group. The object must either an CF construct (data variable, axis, auxiliary axis, label, or
grid mapping) or an NC group, dimension or variable.

scope Either "CF" (default) for a CF construct, or "NC" for a netCDF group, dimension or
variable.

Returns: The object with the provided name in the requested scope. If the object is not found,
returns NULL.

Method find_dim_by_id(): Find an NC dimension object by its id. Given the id of a dimen-
sion, return the NCDimension object to the caller. The dimension has to be found in the current
group or any of its parents.

Usage:
NCGroup$find_dim_by_id(id)

Arguments:

id The id of the dimension.

Returns: The NCDimension object with an identifier equal to the id argument. If the object is
not found, returns NULL.

Method has_name(): Has a given name been defined in this group already?

Usage:
NCGroup$has_name(name, scope = "both")

Arguments:

name Character string. The name will be searched for, regardless of case.
scope Either "CF" for a CF construct, "NC" for a netCDF variable, or "both" (default) to test

both scopes.

Returns: TRUE if name is present in the group, FALSE otherwise.

Method unused(): Find NC variables that are not referenced by CF objects. For debugging
purposes only.

Usage:
NCGroup$unused()

Returns: List of NCVariable.

Method addAuxiliaryLongLat(): Add an auxiliary long-lat variable to the group. This method
creates a CFAuxiliaryLongLat from the arguments and adds it to the group CFlonglat list, but
only if the combination of lon, lat isn’t already present.

Usage:
NCGroup$addAuxiliaryLongLat(lon, lat, bndsLong, bndsLat)

Arguments:

lon, lat Instances of NCVariable having a two-dimensional grid of longitude and latitude val-
ues, respectively.

60 NCGroup

bndsLong, bndsLat Instances of CFBounds with the 2D bounds of the longitude and latitude
grid values, respectively, or NULL when not set.

Returns: self invisibly.

Method addCellMeasure(): Add a cell measure variable to the group.

Usage:
NCGroup$addCellMeasure(cm)

Arguments:

cm Instance of CFCellMeasure.

Returns: self invisibly.

Method fullnames(): This method lists the fully qualified name of this group, optionally
including names in subgroups.

Usage:
NCGroup$fullnames(recursive = TRUE)

Arguments:

recursive Should subgroups be scanned for names too (default is TRUE)?

Returns: A character vector with group names.

Method dimensions(): List all the dimensions that are visible from this group including those
that are defined in parent groups (by names not defined by any of their child groups in direct
lineage to the current group).

Usage:
NCGroup$dimensions()

Returns: A vector of NCDimension objects.

Method variables(): This method lists the CF data variables located in this group, optionally
including data variables in subgroups.

Usage:
NCGroup$variables(recursive = TRUE)

Arguments:

recursive Should subgroups be scanned for CF data variables too (default is TRUE)?

Returns: A list of CFVariable.

Method axes(): This method lists the axes located in this group, optionally including axes in
subgroups.

Usage:
NCGroup$axes(recursive = TRUE)

Arguments:

recursive Should subgroups be scanned for axes too (default is TRUE)?

Returns: A list of CFAxis descendants.

NCObject 61

Method grid_mappings(): This method lists the grid mappings located in this group, optionally
including grid mappings in subgroups.

Usage:
NCGroup$grid_mappings(recursive = TRUE)

Arguments:

recursive Should subgroups be scanned for grid mappings too (default is TRUE)?

Returns: A list of CFGridMapping instances.

Method clone(): The objects of this class are cloneable with this method.

Usage:
NCGroup$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

NCObject NetCDF base object

Description

This class is a basic ancestor to all classes that represent netCDF objects, specifically groups, di-
mensions, variables and the user-defined types in a netCDF file. More useful classes use this class
as ancestor.

The fields in this class are common among all netCDF objects. In addition, this class manages the
attributes for its descendent classes.

Public fields

id Numeric identifier of the netCDF object.

name The name of the netCDF object.

attributes data.frame with the attributes of the netCDF object.

Methods

Public methods:
• NCObject$new()

• NCObject$print_attributes()

• NCObject$attribute()

• NCObject$set_attribute()

• NCObject$append_attribute()

• NCObject$delete_attribute()

• NCObject$write_attributes()

• NCObject$add_coordinates()

62 NCObject

• NCObject$clone()

Method new(): Create a new netCDF object. This class should not be instantiated directly,
create descendant objects instead.

Usage:
NCObject$new(id, name)

Arguments:

id Numeric identifier of the netCDF object.
name Character string with the name of the netCDF object.

Method print_attributes(): This function prints the attributes of the netCDF object to the
console. Through object linkages, this also applies to the CF data variables and axes, which each
link to a netCDF object.

Usage:
NCObject$print_attributes(width = 50L)

Arguments:

width The maximum width of each column in the data.frame when printed to the console.

Method attribute(): This method returns an attribute of a netCDF object.

Usage:
NCObject$attribute(att, field = "value")

Arguments:

att Attribute name whose value to return.
field The field of the attribute to return values from. This must be "value" (default) or "type".

Returns: If the field argument is "type", a character string. If field is "value", a single value
of the type of the attribute, or a vector when the attribute has multiple values. If no attribute is
named with a value of argument att NA is returned.

Method set_attribute(): Add an attribute. If an attribute name already exists, it will be
overwritten.

Usage:
NCObject$set_attribute(name, type, value)

Arguments:

name The name of the attribute. The name must begin with a letter and be composed of letters,
digits, and underscores, with a maximum length of 255 characters. UTF-8 characters are
not supported in attribute names.

type The type of the attribute, as a string value of a netCDF data type or a user-defined type.
value The value of the attribute. This can be of any supported type, including a vector or list

of values. Matrices, arrays and like compound data structures should be stored as a data
variable, not as an attribute and they are thus not allowed. In general, an attribute should be
a character value, a numeric value, a logical value, or a short vector or list of any of these.
Values passed in a list will be coerced to their common mode.

Returns: Self, invisibly.

NCObject 63

Method append_attribute(): Append the text value of an attribute. If an attribute name
already exists, the value will be appended to the existing value of the attribute. If the attribute
name does not exist it will be created. The attribute must be of "NC_CHAR" or "NC_STRING"
type; in the latter case having only a single string value.

Usage:
NCObject$append_attribute(name, value, sep = "; ", prepend = FALSE)

Arguments:
name The name of the attribute. The name must begin with a letter and be composed of letters,

digits, and underscores, with a maximum length of 255 characters. UTF-8 characters are
not supported in attribute names.

value The character value of the attribute to append. This must be a character string.
sep The separator to use. Default is "; ".
prepend Logical to flag if the supplied value should be placed before the existing value. De-

fault is FALSE.
Returns: Self, invisibly.

Method delete_attribute(): Delete attributes. If an attribute name is not present this method
simply returns.

Usage:
NCObject$delete_attribute(name)

Arguments:
name Vector of names of the attributes to delete.
Returns: Self, invisibly.

Method write_attributes(): Write the attributes of this object to a netCDF file.
Usage:
NCObject$write_attributes(nc, nm)

Arguments:
nc The handle to the netCDF file opened for writing.
nm The NC variable name or "NC_GLOBAL" to write the attributes to.
Returns: Self, invisibly.

Method add_coordinates(): Add names of axes to the "coordinates" attribute, avoiding dupli-
cates and retaining previous values.

Usage:
NCObject$add_coordinates(crds)

Arguments:
crds Vector of axis names to add to the attribute.
Returns: Self, invisibly.

Method clone(): The objects of this class are cloneable with this method.
Usage:
NCObject$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

64 NCUDT

NCUDT NetCDF user-defined type

Description

This class represents user-defined types in a netCDF file. Interpretation of the UDT typically re-
quires knowledge of the data set or application.

Super class

ncdfCF::NCObject -> NCUDT

Public fields

clss The class of the UDT, one of "builtin", "compound", "enum", "opaque", or "vlen".

size Size in bytes of a single item of the type (or a single element of a "vlen").

basetype Name of the netCDF base type of each element ("enum" and "vlen" only).

value Named vector with numeric values of all members ("enum" only).

offset Named vector with the offset of each field in bytes from the beginning of the "compound"
type.

subtype Named vector with the netCDF base type name of each field of a "compound" type.

dimsizes Named list with array dimensions of each field of a "compound" type. A NULL length
indicates a scalar.

Methods

Public methods:
• NCUDT$new()

• NCUDT$clone()

Method new(): Create a new netCDF user-defined type. This class represents a user-defined
type. It is instantiated when opening a netCDF resource.

Usage:
NCUDT$new(id, name, clss, size, basetype, value, offset, subtype, dimsizes)

Arguments:
id Numeric identifier of the user-defined type.
name Character string with the name of the user-defined type.
clss The class of the UDT, one of "builtin", "compound", "enum", "opaque", or "vlen".
size Size in bytes of a single item of the type (or a single element of a "vlen").
basetype Name of the netCDF base type of each element ("enum" and "vlen" only).
value Named vector with numeric values of all members ("enum" only).
offset Named vector with the offset of each field in bytes from the beginning of the "com-

pound" type.

NCVariable 65

subtype Named vector with the netCDF base type name of each field of a "compound" type.
dimsizes Named list with array dimensions of each field of a "compound" type. A NULL length

indicates a scalar.

Returns: An instance of this class.

Method clone(): The objects of this class are cloneable with this method.

Usage:
NCUDT$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

NCVariable NetCDF variable

Description

This class represents a netCDF variable, the object that holds the properties and data of elements
like dimensions and variables of a netCDF file.

Direct access to netCDF variables is usually not necessary. NetCDF variables are linked from CF
data variables and axes and all relevant properties are thus made accessible.

Super class

ncdfCF::NCObject -> NCVariable

Public fields

group NetCDF group where this variable is located.

vtype The netCDF data type of this variable. This could be the packed type. Don’t check this field
but use the appropriate method in the class of the object whose data type you are looking for.

ndims Number of dimensions that this variable uses.

dimids Vector of dimension identifiers that this variable uses. These are the so-called "NUG coor-
dinate variables".

netcdf4 Additional properties for a netcdf4 resource.

Active bindings

CF List of CF objects that use this netCDF variable.

fullname (read-only) Name of the NC variable including the group path from the root group.

66 NCVariable

Methods

Public methods:

• NCVariable$new()

• NCVariable$print()

• NCVariable$shard()

• NCVariable$clone()

Method new(): Create a new netCDF variable. This class should not be instantiated directly,
they are created automatically when opening a netCDF resource.

Usage:
NCVariable$new(id, name, group, vtype, ndims, dimids)

Arguments:

id Numeric identifier of the netCDF object.
name Character string with the name of the netCDF object.
group The NCGroup this variable is located in.
vtype The netCDF data type of the variable.
ndims The number of dimensions this variable uses.
dimids The identifiers of the dimensions this variable uses.

Returns: An instance of this class.

Method print(): Summary of the NC variable printed to the console.

Usage:
NCVariable$print(...)

Arguments:

... Passed on to other methods.

Method shard(): Very concise information on the variable. The information returned by this
function is very concise and most useful when combined with similar information from other
variables.

Usage:
NCVariable$shard()

Returns: Character string with very basic variable information.

Method clone(): The objects of this class are cloneable with this method.

Usage:
NCVariable$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

open_ncdf 67

open_ncdf Open a netCDF resource

Description

This function will read the metadata of a netCDF resource and interpret the netCDF dimensions,
variables and attributes to generate the corresponding CF objects. The data for the CF variables is
not read, please see CFVariable for methods to read the variable data.

Usage

open_ncdf(resource, keep_open = FALSE)

Arguments

resource The name of the netCDF resource to open, either a local file name or a remote
URI.

keep_open Logical flag to indicate if the netCDF resource has to remain open after reading
the metadata. This should be enabled typically only for programmatic access
or when a remote resource has an expensive access protocol (i.e. 2FA). The
resource has to be explicitly closed with close() after use. Note that when a
data set is opened with keep_open = TRUE the resource may still be closed by
the operating system or the remote server.

Value

An CFDataset instance, or an error if the resource was not found or errored upon reading.

Examples

fn <- system.file("extdata",
"pr_day_EC-Earth3-CC_ssp245_r1i1p1f1_gr_20230101-20231231_vncdfCF.nc",
package = "ncdfCF")

(ds <- open_ncdf(fn))

peek_ncdf Examine a netCDF resource

Description

This function will read a netCDF resource and return a list of identifying information, including
data variables, axes and global attributes. Upon returning the netCDF resource is closed.

Usage

peek_ncdf(resource)

68 str.CFAxis

Arguments

resource The name of the netCDF resource to open, either a local file name or a remote
URI.

Details

If you find that you need other information to be included in the result, open an issue.

Value

A list with elements "variables", "axes" and global "attributes", each a data.frame.

Examples

fn <- system.file("extdata",
"pr_day_EC-Earth3-CC_ssp245_r1i1p1f1_gr_20230101-20231231_vncdfCF.nc",
package = "ncdfCF")

peek_ncdf(fn)

str.CFAxis Compact display of an axis.

Description

Compact display of an axis.

Usage

S3 method for class 'CFAxis'
str(object, ...)

Arguments

object A CFAxis instance or any descendant.

... Ignored.

https://github.com/R-CF/ncdfCF/issues

str.CFDataset 69

str.CFDataset Compact display of a CFDataset

Description

Compact display of a CFDataset

Usage

S3 method for class 'CFDataset'
str(object, ...)

Arguments

object A CFDataset instance.

... Ignored.

[.CFVariable Extract data for a variable

Description

Extract data from a CFVariable instance, optionally sub-setting the axes to load only data of inter-
est.

Usage

S3 method for class 'CFVariable'
x[i, j, ..., drop = FALSE]

Arguments

x An CFVariable instance to extract the data of.

i, j, ... Expressions, one for each axis of x, that select a number of elements along each
axis. If any expressions are missing, the entire axis is extracted. The values
for the arguments may be an integer vector or a function that returns an integer
vector. The range of the values in the vector will be used. See examples, below.

drop Logical, ignored. Axes are never dropped. Any degenerate dimensions of the
array are returned as such, with dimnames and appropriate attributes set.

70 [.CFVariableL3b

Details

If all the data of the variable in x is to be extracted, simply use [] (unlike with regular arrays, this
is required, otherwise the details of the variable are printed on the console).

The indices into the axes to be subset can be specified in a variety of ways; in practice it should (re-
solve to) be a vector of integers. A range (e.g. 100:200), an explicit vector (c(23, 46, 3, 45, 17),
a sequence (seq(from = 78, to = 100, by = 2), all work. Note, however, that only a single range
is generated from the vector so these examples resolve to 100:200, 3:46, and 78:100, respectively.
It is also possible to use a custom function as an argument.

This method works with "bare" indices into the axes of the array. If you want to use domain
values of the axes (e.g. longitude values or timestamps) to extract part of the variable array, use the
CFVariable$subset() method.

Scalar axes should not be included in the indexing as they do not represent a dimension into the
data array.

Value

An array with dimnames and other attributes set.

Examples

fn <- system.file("extdata",
"pr_day_EC-Earth3-CC_ssp245_r1i1p1f1_gr_20230101-20231231_vncdfCF.nc",
package = "ncdfCF")

ds <- open_ncdf(fn)
pr <- ds[["pr"]]

How are the dimensions organized?
dimnames(pr)

Precipitation data for March for a single location
x <- pr[5, 12, 61:91]
str(x)

Summer precipitation over the full spatial extent
summer <- pr[, , 173:263]
str(summer)

[.CFVariableL3b Extract data for a variable

Description

Extract data from a CFVariableL3b instance, optionally sub-setting the axes to load only data of
interest.

[.CFVariableL3b 71

Usage

S3 method for class 'CFVariableL3b'
x[i, j, ..., drop = FALSE]

Arguments

x An CFVariableL3b instance to extract the data of.

i, j, ... Expressions, one for each of the two axes of x, that select a number of elements
along each axis. i is for the longitude axis, j for the latitude axis, ... (additional
named arguments) is invalid as there are only two axes to subset from. If either
expression is missing, the entire axis is extracted. The values for the arguments
may be an integer vector or a function that returns an integer vector. The range
of the values in the vector will be used. See examples, below.

drop Logical, ignored. Axes are never dropped. Any degenerate dimensions of the
array are returned as such, with dimnames and appropriate attributes set.

Details

If all the data of the variable in x is to be extracted, simply use [] (unlike with regular arrays, this
is required, otherwise the details of the variable are printed on the console).

The indices into the axes to be subset can be specified in a variety of ways; in practice it should (re-
solve to) be a vector of integers. A range (e.g. 100:200), an explicit vector (c(23, 46, 3, 45, 17),
a sequence (seq(from = 78, to = 100, by = 2), all work. Note, however, that only a single range
is generated from the vector so these examples resolve to 100:200, 3:46, and 78:100, respectively.
It is also possible to use a custom function as an argument.

This method works with "bare" indices into the axes of the array. If you want to use domain
values of the axes (e.g. longitude values or timestamps) to extract part of the variable array, use the
CFVariableL3b$subset() method.

Scalar axes should not be included in the indexing as they do not represent a dimension into the
data array.

Value

An array with dimnames and other attributes set.

Examples

fn <- system.file("extdata",
"pr_day_EC-Earth3-CC_ssp245_r1i1p1f1_gr_20230101-20231231_vncdfCF.nc",
package = "ncdfCF")

ds <- open_ncdf(fn)
pr <- ds[["pr"]]

How are the dimensions organized?
dimnames(pr)

Precipitation data for March for a single location
x <- pr[5, 12, 61:91]

72 [[.CFDataset

str(x)

Summer precipitation over the full spatial extent
summer <- pr[, , 173:263]
str(summer)

[[.CFDataset Get a variable or axis object from a data set

Description

This method can be used to retrieve a variable or axis from the data set by name.

Usage

S3 method for class 'CFDataset'
x[[i]]

Arguments

x An CFDataset to extract a variable or axis from.

i The name of a variable or axis in x. If data set x has groups, i should be an
absolute path to the object to retrieve.

Details

If the data set has groups, the name i of the variable or axis should be fully qualified with the path to
the group where the object is located. This fully qualified name can be retrieved with the names()
and dimnames() functions, respectively.

Value

An instance of CFVariable or an CFAxis descendant class, or NULL if the name is not found.

Examples

fn <- system.file("extdata", "ERA5land_Rwanda_20160101.nc", package = "ncdfCF")
ds <- open_ncdf(fn)
v1 <- names(ds)[1]
var <- ds[[v1]]
var

Index

[.CFVariable, 69
[.CFVariableL3b, 70
[[,CFDataset-method ([[.CFDataset), 72
[[.CFDataset, 72

aoi, 3
aoi(), 43, 48

bracket_select ([.CFVariable), 69
bracket_select_l3b ([.CFVariableL3b), 70

CFArray, 4, 29, 42–44, 46, 48, 50–53
CFAuxiliaryLongLat, 3, 7, 57, 59
CFAxis, 5, 9, 10, 29, 41, 44, 45, 50, 51, 55, 57,

60
CFAxisCharacter, 13, 35
CFAxisDiscrete, 15, 51
CFAxisLatitude, 17, 52
CFAxisLongitude, 18, 53
CFAxisNumeric, 20, 25
CFAxisTime, 22, 45, 53
CFAxisVertical, 25
CFBounds, 7, 26, 60
CFCellMeasure, 28, 44, 60
CFDataset, 30, 39, 57, 58
CFGridMapping, 5, 33, 44, 45, 61
CFLabel, 9, 10, 13, 35, 57
CFObject, 36
CFResource, 39, 58
CFVariable, 4, 29, 37, 41, 44, 60, 67
CFVariable$subset(), 3
CFVariableBase, 44
CFVariableL3b, 47

dim.AOI, 49
dim.CFAxis, 50
dimnames (names.CFDataset), 54
dimnames(), 72

groups (names.CFDataset), 54

makeAxis, 50
makeAxis(), 11, 14, 20
makeDiscreteAxis, 51
makeDiscreteAxis(), 16, 51
makeGroup, 52
makeLatitudeAxis, 52
makeLatitudeAxis(), 18, 51
makeLongitudeAxis, 53
makeLongitudeAxis(), 19, 51
makeTimeAxis, 53
makeTimeAxis(), 23, 51

names(), 72
names.CFDataset, 54
ncdfCF::CFAxis, 13, 15, 17, 19, 20, 22, 25
ncdfCF::CFAxisNumeric, 17, 19, 25
ncdfCF::CFObject, 5, 7, 10, 13, 15, 17, 19,

20, 22, 25, 26, 33, 35, 41, 44, 47
ncdfCF::CFVariable, 47
ncdfCF::CFVariableBase, 5, 41, 47
ncdfCF::NCObject, 55, 57, 64, 65
NCDimension, 10, 11, 26, 35, 55, 59, 60
NCGroup, 28, 37, 39, 56, 66
NCObject, 61
NCUDT, 64
NCVariable, 7, 8, 11, 25, 36, 37, 59, 65

open_ncdf, 67
open_ncdf(), 30, 40

peek_ncdf, 67

str.CFAxis, 68
str.CFDataset, 69

73

	aoi
	CFArray
	CFAuxiliaryLongLat
	CFAxis
	CFAxisCharacter
	CFAxisDiscrete
	CFAxisLatitude
	CFAxisLongitude
	CFAxisNumeric
	CFAxisTime
	CFAxisVertical
	CFBounds
	CFCellMeasure
	CFDataset
	CFGridMapping
	CFLabel
	CFObject
	CFResource
	CFVariable
	CFVariableBase
	CFVariableL3b
	dim.AOI
	dim.CFAxis
	makeAxis
	makeDiscreteAxis
	makeGroup
	makeLatitudeAxis
	makeLongitudeAxis
	makeTimeAxis
	names.CFDataset
	NCDimension
	NCGroup
	NCObject
	NCUDT
	NCVariable
	open_ncdf
	peek_ncdf
	str.CFAxis
	str.CFDataset
	[.CFVariable
	[.CFVariableL3b
	[[.CFDataset
	Index

