Package 'multibias'

June 15, 2025

```
The underlying method generalizes the concept of combining inverse
     probability of selection weighting with predictive value weighting.
     Simultaneous multi-bias analysis can be used to enhance the validity
     and transparency of real-world evidence obtained from observational,
     longitudinal studies. Based on the work from Paul Brendel, Aracelis Torres,
     and Onyebuchi Arah (2023) <doi:10.1093/ije/dyad001>.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
Depends R (>= 4.2.0)
RoxygenNote 7.3.2
Imports dplyr (>= 1.1.3), lifecycle (>= 1.0.3), magrittr (>= 2.0.3),
     rlang (>= 1.1.1), broom (>= 1.0.5), purrr (>= 1.0.0), ggplot2
     (>=3.5.0)
Suggests knitr, rmarkdown, MASS, testthat (>= 3.0.0), vdiffr (>=
     1.0.5)
URL https://github.com/pcbrendel/multibias,
     http://www.paulbrendel.com/multibias/
BugReports https://github.com/pcbrendel/multibias/issues
Config/testthat/edition 3
VignetteBuilder knitr
```

Description Quantify the causal effect of a binary exposure on a binary outcome with adjustment for multiple biases. The functions can

exposure/outcome misclassification, and selection bias.

simultaneously adjust for any combination of uncontrolled confounding,

Type Package

Version 1.7.2 Date 2025-06-15

Title Multiple Bias Analysis in Causal Inference

Maintainer Paul Brendel pcbrendel@gmail.com>

2 Contents

NeedsCompilation no

Author Paul Brendel [aut, cre, cph]

Repository CRAN

Date/Publication 2025-06-15 18:40:02 UTC

Contents

Index

bias_params
data_observed
data_validation
df_em
df_em_om
df_em_om_source
df_em_sel
df_em_sel_source
df_em_source
df_om
df_om_sel
df_om_sel_source
df_om_source
df_sel
df_sel_source
df_uc
df_uc_em
df_uc_em_sel
df_uc_em_sel_source
df_uc_em_source
df_uc_om
df_uc_om_sel
df_uc_om_sel_source
df_uc_om_source
df_uc_sel
df_uc_sel_source
df_uc_source
multibias_adjust
multibias_plot

28

bias_params 3

bias_params

Represent bias parameters

Description

bias_params is one of two different options to represent bias assumptions for bias adjustment. The multibias_adjust() function will apply the assumptions from these models and use them to adjust for biases in the observed data. It takes one input, a list, where each item in the list corresponds to the necessary models for bias adjustment. See below for bias models.

For each of the following bias models, the variables are defined:

- X = True exposure
- $X^* = Misclassified exposure$
- Y = True outcome
- Y* = Misclassified outcome
- C = Known confounder
- j = Number of known confounders
- U = Uncontrolled confounder
- S = Selection indicator

```
Uncontrolled confounding logit(P(U=1)) = \alpha_0 + \alpha_1 X + \alpha_2 Y + \alpha_{2+j} C_j
```

Exposure misclassification
$$logit(P(X=1)) = \delta_0 + \delta_1 X^* + \delta_2 Y + \delta_{2+i} C_i$$

Outcome misclassification
$$logit(P(Y=1)) = \delta_0 + \delta_1 X + \delta_2 Y^* + \delta_{2+i} C_i$$

Selection bias
$$logit(P(S=1)) = \beta_0 + \beta_1 X + \beta_2 Y$$

Uncontrolled Confounding & Exposure Misclassification (Option 1)
$$logit(P(U=1)) = \alpha_0 + \frac{1}{2} \frac{1}{$$

$$\alpha_1 X + \alpha_2 Y$$

$$logit(P(X=1)) = \delta_0 + \delta_1 X^* + \delta_2 Y + \delta_{2+j} C_j$$

Uncontrolled Confounding & Exposure Misclassification (Option 2)
$$log(P(X=1,U=0)/P(X=0))$$

$$\begin{array}{l} 0,U=0))=\gamma_{1,0}+\gamma_{1,1}X^*+\gamma_{1,2}Y+\gamma_{1,2+j}C_j\\ log(P(X=0,U=1)/P(X=0,U=0))=\gamma_{2,0}+\gamma_{2,1}X^*+\gamma_{2,2}Y+\gamma_{2,2+j}C_j\\ log(P(X=1,U=1)/P(X=0,U=0))=\gamma_{3,0}+\gamma_{3,1}X^*+\gamma_{3,2}Y+\gamma_{3,2+j}C_j \end{array}$$

Uncontrolled Confounding & Outcome Misclassification (Option 1) $logit(P(U=1)) = \alpha_0 + \alpha_0$

$$\alpha_1 X + \alpha_2 Y$$
$$logit(P(Y=1)) = \delta_0 + \delta_1 X + \delta_2 Y^* + \delta_{2+j} C_j$$

Uncontrolled Confounding & Outcome Misclassification (Option 2) log(P(U=1,Y=0)/P(U=0))

$$\begin{array}{l} 0,Y=0))=\gamma_{1,0}+\gamma_{1,1}X+\gamma_{1,2}Y^*+\gamma_{1,2+j}C_j\\ log(P(U=0,Y=1)/P(U=0,Y=0))=\gamma_{2,0}+\gamma_{2,1}X+\gamma_{2,2}Y^*+\gamma_{2,2+j}C_j\\ log(P(U=1,Y=1)/P(U=0,Y=0))=\gamma_{3,0}+\gamma_{3,1}X+\gamma_{3,2}Y^*+\gamma_{3,2+j}C_j \end{array}$$

Uncontrolled Confounding & Selection Bias $logit(P(U=1)) = \alpha_0 + \alpha_1 X + \alpha_2 Y + \alpha_{2+j} C_j$ $logit(P(S=1)) = \beta_0 + \beta_1 X + \beta_2 Y$

Exposure Misclassification & Outcome Misclassification (Option 1) $logit(P(X=1)) = \delta_0 + \delta_0$

$$\delta_1 X^* + \delta_2 Y^* + \delta_{2+j} C_j$$

$$logit(P(Y=1)) = \beta_0 + \beta_1 X + \beta_2 Y^* + \beta_{2+j} C_j$$

4 bias_params

```
Exposure Misclassification & Outcome Misclassification (Option 2) log(P(X=1,Y=0)/P(X=1,Y=0))
      (0, Y = 0) = \gamma_{1,0} + \gamma_{1,1}X^* + \gamma_{1,2}Y^* + \gamma_{1,2+i}C_i
      log(P(X=0,Y=1)/P(X=0,Y=0)) = \gamma_{2,0} + \gamma_{2,1}X^* + \gamma_{2,2}Y^* + \gamma_{2,2+j}C_j
      log(P(X=1,Y=1)/P(X=0,Y=0)) = \gamma_{3,0} + \gamma_{3,1}X^* + \gamma_{3,2}Y^* + \gamma_{3,2+j}C_j
Exposure Misclassification & Selection Bias logit(P(X=1)) = \delta_0 + \delta_1 X^* + \delta_2 Y + \delta_{2+i} C_i
      logit(P(S=1)) = \beta_0 + \beta_1 X^* + \beta_2 Y + \beta_{2+j} C_j
Outcome Misclassification & Selection Bias logit(P(Y=1)) = \delta_0 + \delta_1 X + \delta_2 Y^* + \delta_{2+i} C_i
      logit(P(S=1)) = \beta_0 + \beta_1 X + \beta_2 Y^* + \beta_{2+i} C_i
Uncontrolled Confounding, Exposure Misclassification, and Selection Bias (Option 1) logit(P(U =
      1)) = \alpha_0 + \alpha_1 X + \alpha_2 Y
      logit(P(X=1)) = \delta_0 + \delta_1 X^* + \delta_2 Y + \delta_{2+j} C_j
      logit(P(S=1)) = \beta_0 + \beta_1 X^* + \beta_2 Y + \beta_{2+j} C_j
Uncontrolled Confounding, Exposure Misclassification, and Selection Bias (Option 2) log(P(X =
      1, U = 0)/P(X = 0, U = 0)) = \gamma_{1,0} + \gamma_{1,1}X^* + \gamma_{1,2}Y + \gamma_{1,2+i}C_i
      log(P(X = 0, U = 1)/P(X = 0, U = 0)) = \gamma_{2,0} + \gamma_{2,1}X^* + \gamma_{2,2}Y + \gamma_{2,2+j}C_j
      log(P(X = 1, U = 1)/P(X = 0, U = 0)) = \gamma_{3,0} + \gamma_{3,1}X^* + \gamma_{3,2}Y + \gamma_{3,2+j}C_j
      logit(P(S=1)) = \beta_0 + \beta_1 X^* + \beta_2 Y + \beta_{2+j} C_j
Uncontrolled Confounding, Outcome Misclassification, and Selection Bias (Option 1) logit(P(U =
      1)) = \alpha_0 + \alpha_1 X + \alpha_2 Y
      logit(P(Y=1)) = \delta_0 + \delta_1 X + \delta_2 Y^* + \delta_{2+j} C_j
      logit(P(S=1)) = \beta_0 + \beta_1 X + \beta_2 Y^* + \beta_{2+i} C_i
Uncontrolled Confounding, Outcome Misclassification, and Selection Bias (Option 2) log(P(U =
      1, Y = 0)/P(U = 0, Y = 0)) = \gamma_{1,0} + \gamma_{1,1}X + \gamma_{1,2}Y^* + \gamma_{1,2+j}C_j
      log(P(U=0, Y=1)/P(U=0, Y=0)) = \gamma_{2,0} + \gamma_{2,1}X + \gamma_{2,2}Y^* + \gamma_{2,2+j}C_j
      log(P(U=1, Y=1)/P(U=0, Y=0)) = \gamma_{3,0} + \gamma_{3,1}X + \gamma_{3,2}Y^* + \gamma_{3,2+j}C_j
      logit(P(S=1)) = \beta_0 + \beta_1 X + \beta_2 Y^* + \beta_{2+j} C_j
```

Usage

bias_params(coef_list)

Arguments

coef_list

List of coefficient values from the above options of models. Each item of the list is an equation. The left side of the equation identifies the model (i.e., "u" for the model predicting the uncontrolled confounder). For the multinomial models, specify the value here based on the numerator (i.e., "x1u0", "x0u1", "x1u1" for the three multinomial models in Uncontrolled Confounding & Exposure Misclassification, Option 2) The right side of the equation is the vector of values corresponding to the model coefficients (from left to right).

Examples

```
list_for_uc <- list(
   u = c(-0.19, 0.61, 0.70, -0.09, 0.10, -0.15)
)

bp_uc <- bias_params(coef_list = list_for_uc)</pre>
```

data_observed 5

```
list_for_em_om <- list(
    x1y0 = c(-2.18, 1.63, 0.23, 0.36),
    x0y1 = c(-3.17, 0.22, 1.60, 0.40),
    x1y1 = c(-4.76, 1.82, 1.83, 0.72)
)
bp_em_om <- bias_params(coef_list = list_for_em_om)</pre>
```

data_observed

Represent observed causal data

Description

data_observed combines the observed dataframe with specific identification of the columns corresponding to the exposure, outcome, and confounders. It is an essential input of the multibias_adjust() function.

Usage

```
data_observed(data, bias, exposure, outcome, confounders = NULL)
```

Arguments

data Dataframe for bias analysis.

bias String type(s) of bias distorting the effect of the exposure on the outcome. Can choose from a subset of the following: "uc", "em", "om", "sel". These correspond to uncontrolled confounding, exposure misclassification, outcome mis-

classification, and selection bias, respectively.

exposure String name of the column in data corresponding to the exposure variable.

Outcome String name of the column in data corresponding to the outcome variable.

String name(s) of the column(s) in data corresponding to the confounding variable.

able(s).

Value

An object of class data_observed containing:

data A dataframe with the selected columns

bias The type(s) of bias present

exposure The name of the exposure variable outcome

The name of the outcome variable

confounders The name(s) of the confounder variable(s)

6 data_validation

Examples

```
df <- data_observed(
  data = df_sel,
  bias = "uc",
  exposure = "X",
  outcome = "Y",
  confounders = c("C1", "C2", "C3")
)</pre>
```

data_validation

Represent validation causal data

Description

data_validation is one of two different options to represent bias assumptions for bias adjustment. It combines the validation dataframe with specific identification of the appropriate columns for bias adjustment, including: true exposure, true outcome, confounders, misclassified exposure, misclassified outcome, and selection. The purpose of validation data is to use an external data source to transport the necessary causal relationships that are missing in the observed data.

Usage

```
data_validation(
  data,
  true_exposure,
  true_outcome,
  confounders = NULL,
  misclassified_exposure = NULL,
  misclassified_outcome = NULL,
  selection = NULL
```

Arguments

data Dataframe of validation data

true_exposure String name of the column in data corresponding to the true exposure.

true_outcome String name of the column in data corresponding to the true outcome.

confounders String name(s) of the column(s) in data corresponding to the confounding vari-

able(s).

misclassified_exposure

String name of the column in data corresponding to the misclassified exposure.

misclassified_outcome

String name of the column in data corresponding to the misclassified outcome.

selection String name of the column in data corresponding to the selection indicator.

df_em 7

Value

An object of class data_validation containing:

data A dataframe with the selected columns
true_exposure The name of the true exposure variable
true_outcome The name of the true outcome variable
confounders The name(s) of the confounder variable(s)

misclassified_exposure

The name of the misclassified exposure variable

misclassified_outcome

The name of the misclassified outcome variable

selection The name of the selection indicator variable

Examples

```
df <- data_validation(
  data = df_sel_source,
  true_exposure = "X",
  true_outcome = "Y",
  confounders = c("C1", "C2", "C3"),
  selection = "S"
)</pre>
```

df em

Simulated data with exposure misclassification

Description

Data containing one source of bias, three known confounders, and 100,000 observations. This data is obtained from df_emc_source by removing the column X. The resulting data corresponds to what a researcher would see in the real-world: a misclassified exposure, Xstar, and no data on the true exposure. As seen in df_emc_source, the true, unbiased exposure-outcome odds ratio = 2.

Usage

df_em

Format

A dataframe with 100,000 rows and 5 columns:

Xstar misclassified exposure, 1 =present and 0 =absent

Y outcome, 1 = present and 0 = absent

C1 1st confounder, 1 = present and 0 = absent

C2 2nd confounder, 1 = present and 0 = absent

8 df_em_om_source

df_em_om Simulated data with exposure misclassification and outcome misclassification	•
---	---

Description

Data containing two sources of bias, three known confounders, and 100,000 observations. This data is obtained from df_emc_omc_source by removing the columns X and Y. The resulting data corresponds to what a researcher would see in the real-world: a misclassified exposure, X and a misclassified outcome, Y star. As seen in df_em_om_source, the true, unbiased exposure-outcome odds ratio = 2.

Usage

```
df_em_om
```

Format

A dataframe with 100,000 rows and 5 columns:

Xstar misclassified exposure, 1 =present and 0 =absent

Ystar misclassified outcome, 1 =present and 0 =absent

C1 1st confounder, 1 = present and 0 = absent

C2 2nd confounder, 1 = present and 0 = absent

C3 3rd confounder, 1 = present and 0 = absent

df_em_om_source

Data source for df_em_om

Description

Data with complete information on the two sources of bias, three known confounders, and 100,000 observations. This data is used to derive df_em_om and can be used to obtain bias parameters for purposes of validating the simultaneous multi-bias adjustment method with df_em_om. With this source data, the fitted regression $logit(P(Y=1)) = \alpha_0 + \alpha_1 X + \alpha_2 C1 + \alpha_3 C2 + \alpha_4 C3$ shows that the true, unbiased exposure-outcome odds ratio = 2.

```
df_em_om_source
```

df_em_sel 9

Format

A dataframe with 100,000 rows and 7 columns:

 \mathbf{X} true exposure, 1 = present and 0 = absent

Y outcome, 1 = present and 0 = absent

C1 1st confounder, 1 = present and 0 = absent

C2 2nd confounder, 1 = present and 0 = absent

C3 3rd confounder, 1 = present and 0 = absent

Xstar misclassified exposure, 1 =present and 0 =absent

Ystar misclassified outcome, 1 =present and 0 =absent

df_em_sel

Simulated data with exposure misclassification and selection bias

Description

Data containing two sources of bias, three known confounders, and 100,000 observations. This data is obtained by sampling with replacement with probability = S from df_em_sel_source then removing the columns X and S. The resulting data corresponds to what a researcher would see in the real-world: a misclassified exposure, Xstar, and missing data for those not selected into the study (S=0). As seen in df_em_sel_source, the true, unbiased exposure-outcome odds ratio = 2.

Usage

df_em_sel

Format

A dataframe with 100,000 rows and 5 columns:

Xstar misclassified exposure, 1 =present and 0 =absent

Y outcome, 1 = present and 0 = absent

C1 1st confounder, 1 = present and 0 = absent

C2 2nd confounder, 1 = present and 0 = absent

10 df_em_source

df_em_sel_source

Data source for df_em_sel

Description

Data with complete information on the two sources of bias, three known confounders, and 100,000 observations. This data is used to derive df_em_sel and can be used to obtain bias parameters for purposes of validating the simultaneous multi-bias adjustment method with df_em_sel. With this source data, the fitted regression $logit(P(Y=1)) = \alpha_0 + \alpha_1 X + \alpha_2 C1 + \alpha_3 C2 + \alpha_4 C3$ shows that the true, unbiased exposure-outcome odds ratio = 2.

Usage

```
df_em_sel_source
```

Format

A dataframe with 100,000 rows and 7 columns:

 \mathbf{X} true exposure, 1 = present and 0 = absent

Y outcome, 1 = present and 0 = absent

C1 1st confounder, 1 = present and 0 = absent

C2 2nd confounder, 1 = present and 0 = absent

C3 3rd confounder, 1 = present and 0 = absent

Xstar misclassified exposure, 1 =present and 0 =absent

S selection, 1 = selected into the study and 0 = not selected into the study

df_em_source

Data source for df_em

Description

Data with complete information on one sources of bias, three known confounders, and 100,000 observations. This data is used to derive df_em and can be used to obtain bias parameters for purposes of validating the simultaneous multi-bias adjustment method with df_em. With this source data, the fitted regression $logit(P(Y=1)) = \alpha_0 + \alpha_1 X + \alpha_2 C1 + \alpha_3 C2 + \alpha_4 C3$ shows that the true, unbiased exposure-outcome odds ratio = 2.

```
df_em_source
```

df_om 11

Format

A dataframe with 100,000 rows and 6 columns:

 \mathbf{X} exposure, 1 = present and 0 = absent

 \mathbf{Y} true outcome, 1 = present and 0 = absent

C1 1st confounder, 1 = present and 0 = absent

C2 2nd confounder, 1 = present and 0 = absent

C3 3rd confounder, 1 = present and 0 = absent

Xstar misclassified exposure, 1 =present and 0 =absent

df_om

Simulated data with outcome misclassification

Description

Data containing one source of bias, three known confounders, and 100,000 observations. This data is obtained from df_om_source by removing the column *Y*. The resulting data corresponds to what a researcher would see in the real-world: a misclassified outcome, *Ystar*, and no data on the true outcome. As seen in df_om_source, the true, unbiased exposure-outcome odds ratio = 2.

Usage

df_om

Format

A dataframe with 100,000 rows and 5 columns:

 \mathbf{X} exposure, 1 = present and 0 = absent

Ystar misclassified outcome, 1 =present and 0 =absent

C1 1st confounder, 1 = present and 0 = absent

C2 2nd confounder, 1 = present and 0 = absent

12 df_om_sel_source

df_om_sel

Simulated data with outcome misclassification and selection bias

Description

Data containing two sources of bias, a known confounder, and 100,000 observations. This data is obtained by sampling with replacement with probability = S from df_om_sel_source then removing the columns Y and S. The resulting data corresponds to what a researcher would see in the real-world: a misclassified outcome, Y and missing data for those not selected into the study (S=0). As seen in df_om_sel_source, the true, unbiased exposure-outcome odds ratio = S.

Usage

df_om_sel

Format

A dataframe with 100,000 rows and 5 columns:

X exposure, 1 =present and 0 =absent

Ystar misclassified outcome, 1 =present and 0 =absent

C1 1st confounder, 1 = present and 0 = absent

C2 2nd confounder, 1 = present and 0 = absent

C3 3rd confounder, 1 = present and 0 = absent

df_om_sel_source

Data source for df_om_sel

Description

Data with complete information on the two sources of bias, a known confounder, and 100,000 observations. This data is used to derive df_om_sel and can be used to obtain bias parameters for purposes of validating the simultaneous multi-bias adjustment method with df_om_sel. With this source data, the fitted regression $logit(P(Y=1)) = \alpha_0 + \alpha_1 X + \alpha_2 C1 + \alpha_3 C2 + \alpha_4 C3$ shows that the true, unbiased exposure-outcome odds ratio = 2.

```
df_om_sel_source
```

df_om_source 13

Format

A dataframe with 100,000 rows and 7 columns:

 \mathbf{X} exposure, 1 = present and 0 = absent

Y true outcome, 1 = present and 0 = absent

C1 1st confounder, 1 = present and 0 = absent

C2 2nd confounder, 1 = present and 0 = absent

C3 3rd confounder, 1 = present and 0 = absent

Ystar misclassified outcome, 1 =present and 0 =absent

S selection, 1 = selected into the study and 0 = not selected into the study

df_om_source

Data source for df_om

Description

Data with complete information on one sources of bias, three known confounders, and 100,000 observations. This data is used to derive df_om and can be used to obtain bias parameters for purposes of validating the simultaneous multi-bias adjustment method with df_om. With this source data, the fitted regression $logit(P(Y=1)) = \alpha_0 + \alpha_1 X + \alpha_2 C1 + \alpha_3 C2 + \alpha_4 C3$ shows that the true, unbiased exposure-outcome odds ratio = 2.

Usage

df_om_source

Format

A dataframe with 100,000 rows and 6 columns:

 \mathbf{X} exposure, 1 = present and 0 = absent

Y true outcome, 1 = present and 0 = absent

C1 1st confounder, 1 = present and 0 = absent

C2 2nd confounder, 1 = present and 0 = absent

C3 3rd confounder, 1 = present and 0 = absent

Ystar misclassified outcome, 1 =present and 0 =absent

14 df_sel_source

df_sel

Simulated data with selection bias

Description

Data containing one source of bias, three known confounders, and 100,000 observations. This data is obtained by sampling with replacement with probability = S from df_sel_source then removing the S column. The resulting data corresponds to what a researcher would see in the realworld: missing data for those not selected into the study (S=0). As seen in df_sel_source, the true, unbiased exposure-outcome odds ratio = 2.

Usage

df_sel

Format

A dataframe with 100,000 rows and 5 columns:

 \mathbf{X} exposure, 1 = present and 0 = absent

Y outcome, 1 = present and 0 = absent

C1 1st confounder, 1 = present and 0 = absent

C2 2nd confounder, 1 = present and 0 = absent

C3 3rd confounder, 1 = present and 0 = absent

df_sel_source

Data source for df_sel

Description

Data with complete information on study selection, three known confounders, and 100,000 observations. This data is used to derive df_sel and can be used to obtain bias parameters for purposes of validating the simultaneous multi-bias adjustment method with df_sel. With this source data, the fitted regression $logit(P(Y=1)) = \alpha_0 + \alpha_1 X + \alpha_2 C1 + \alpha_3 C2 + \alpha_4 C3$ shows that the true, unbiased exposure-outcome odds ratio = 2.

Usage

df_sel_source

 $df_{\perp}uc$

Format

A dataframe with 100,000 rows and 6 columns:

X true exposure, 1 = present and 0 = absent

Y outcome, 1 = present and 0 = absent

C1 1st confounder, 1 = present and 0 = absent

C2 2nd confounder, 1 = present and 0 = absent

C3 3rd confounder, 1 = present and 0 = absent

S selection, 1 = selected into the study and 0 = not selected into the study

df_uc

Simulated data with uncontrolled confounding

Description

Data containing one source of bias, three known confounders, and 100,000 observations. This data is obtained from df_uc_source by removing the column U. The resulting data corresponds to what a researcher would see in the real-world: information on known confounders (C1, C2, and C3), but not for confounder U. As seen in df_uc_source, the true, unbiased exposure-outcome effect estimate = 2.

Usage

df_uc

Format

A dataframe with 100,000 rows and 7 columns:

 $\mathbf{X}_{\mathbf{bi}}$ binary exposure, 1 = present and 0 = absent

X_cont continuous exposure

Y_bi binary outcome corresponding to exposure X_bi , 1 = present and 0 = absent

Y_cont continuous outcome corresponding to exposure *X_cont*

C1 1st confounder, 1 = present and 0 = absent

C2 2nd confounder, 1 = present and 0 = absent

df_uc_em_sel

df_uc_em	Simulated data with uncontrolled confounding and exposure misclassification

Description

Data containing two sources of bias, three known confounders, and 100,000 observations. This data is obtained from df_uc_em_source by removing the columns X and U. The resulting data corresponds to what a researcher would see in the real-world: a misclassified exposure, Xstar, and missing data on a confounder U. As seen in df_uc_em_source, the true, unbiased exposure-outcome odds ratio = 2.

Usage

```
df_uc_em
```

Format

A dataframe with 100,000 rows and 5 columns:

Xstar misclassified exposure, 1 =present and 0 =absent

Y outcome, 1 = present and 0 = absent

C1 1st confounder, 1 = present and 0 = absent

C2 2nd confounder, 1 = present and 0 = absent

C3 3rd confounder, 1 = present and 0 = absent

df_uc_em_sel	Simulated data with uncontrolled confounding, exposure misclassifi-
	cation, and selection bias

Description

Data containing three sources of bias, three known confounders, and 100,000 observations. This data is obtained by sampling with replacement with probability = S from df_uc_em_sel_source then removing the columns X, U, and S. The resulting data corresponds to what a researcher would see in the real-world: a misclassified exposure, Xstar; missing data on a confounder U; and missing data for those not selected into the study (S=0). As seen in df_uc_em_sel_source, the true, unbiased exposure-outcome odds ratio = 2.

```
df_uc_em_sel
```

df_uc_em_sel_source 17

Format

A dataframe with 100,000 rows and 5 columns:

Xstar misclassified exposure, 1 =present and 0 =absent

Y outcome, 1 = present and 0 = absent

C1 1st confounder, 1 = present and 0 = absent

C2 2nd confounder, 1 = present and 0 = absent

C3 3rd confounder, 1 = present and 0 = absent

Description

Data with complete information on the three sources of bias, three known confounders, and 100,000 observations. This data is used to derive df_uc_em_sel and can be used to obtain bias parameters for purposes of validating the simultaneous multi-bias adjustment method with df_uc_em_sel. With this source data, the fitted regression $logit(P(Y=1)) = \alpha_0 + \alpha_1 X + \alpha_2 C1 + \alpha_3 C2 + \alpha_4 C3 + \alpha_5 U$ shows that the true, unbiased exposure-outcome odds ratio = 2.

Usage

```
df_uc_em_sel_source
```

Format

A dataframe with 100,000 rows and 8 columns:

X true exposure, 1 =present and 0 =absent

Y outcome, 1 = present and 0 = absent

C1 1st confounder, 1 = present and 0 = absent

C2 2nd confounder, 1 = present and 0 = absent

C3 3rd confounder, 1 = present and 0 = absent

U unmeasured confounder, 1 = present and 0 = absent

Xstar misclassified exposure, 1 =present and 0 =absent

S selection, 1 = selected into the study and 0 = not selected into the study

18 df_uc_om

df_uc_em_source

Data source for df_uc_em

Description

Data with complete information on the two sources of bias, a known confounder, and 100,000 observations. This data is used to derive df_uc_em and can be used to obtain bias parameters for purposes of validating the simultaneous multi-bias adjustment method with df_uc_em. With this source data, the fitted regression $logit(P(Y=1)) = \alpha_0 + \alpha_1 X + \alpha_2 C1 + \alpha_3 U$ shows that the true, unbiased exposure-outcome odds ratio = 2.

Usage

```
df_uc_em_source
```

Format

A dataframe with 100,000 rows and 7 columns:

X true exposure, 1 =present and 0 =absent

Y outcome, 1 = present and 0 = absent

C1 1st confounder, 1 = present and 0 = absent

C2 2nd confounder, 1 = present and 0 = absent

C3 3rd confounder, 1 = present and 0 = absent

U unmeasured confounder, 1 = present and 0 = absent

Xstar misclassified exposure, 1 =present and 0 =absent

df_uc_om

Simulated data with uncontrolled confounding and outcome misclassification

Description

Data containing two sources of bias, three known confounders, and 100,000 observations. This data is obtained from df_uc_om_source by removing the columns Y and U. The resulting data corresponds to what a researcher would see in the real-world: a misclassified outcome, Y and missing data on the binary confounder U. As seen in df_uc_omc_source, the true, unbiased exposure-outcome odds ratio = 2.

Usage

df_uc_om

df_uc_om_sel 19

Format

A dataframe with 100,000 rows and 5 columns:

 \mathbf{X} exposure, 1 = present and 0 = absent

Ystar misclassified outcome, 1 =present and 0 =absent

C1 1st confounder, 1 = present and 0 = absent

C2 2nd confounder, 1 = present and 0 = absent

C3 3rd confounder, 1 = present and 0 = absent

df_uc_om_sel

Simulated data with uncontrolled confounding, outcome misclassification, and selection bias

Description

Data containing three sources of bias, three known confounders, and 100,000 observations. This data is obtained by sampling with replacement with probability = S from df_uc_om_sel_source then removing the columns Y, U, and S. The resulting data corresponds to what a researcher would see in the real-world: a misclassified outcome, Ystar; missing data on a confounder U; and missing data for those not selected into the study (S=0). As seen in df_uc_om_sel_source, the true, unbiased exposure-outcome odds ratio = 2.

Usage

```
df_uc_om_sel
```

Format

A dataframe with 100,000 rows and 5 columns:

 \mathbf{X} exposure, 1 = present and 0 = absent

Ystar misclassified outcome, 1 =present and 0 =absent

C1 1st confounder, 1 = present and 0 = absent

C2 2nd confounder, 1 = present and 0 = absent

20 df_uc_om_source

Description

Data with complete information on the three sources of bias, three known confounders, and 100,000 observations. This data is used to derive df_uc_om_sel and can be used to obtain bias parameters for purposes of validating the simultaneous multi-bias adjustment method with df_uc_om_sel. With this source data, the fitted regression $logit(P(Y=1)) = \alpha_0 + \alpha_1 X + \alpha_2 C1 + \alpha_3 C2 + \alpha_4 C3 + \alpha_5 U$ shows that the true, unbiased exposure-outcome odds ratio = 2.

Usage

```
df_uc_om_sel_source
```

Format

A dataframe with 100,000 rows and 8 columns:

 \mathbf{X} exposure, 1 = present and 0 = absent

Y true outcome, 1 = present and 0 = absent

C1 1st confounder, 1 = present and 0 = absent

C2 2nd confounder, 1 = present and 0 = absent

C3 3rd confounder, 1 = present and 0 = absent

U unmeasured confounder, 1 = present and 0 = absent

Ystar misclassified outcome, 1 =present and 0 =absent

S selection, 1 = selected into the study and 0 = not selected into the study

df_uc_om_source

Data source for df_uc_om

Description

Data with complete information on the two sources of bias, three known confounders, and 100,000 observations. This data is used to derive df_uc_om and can be used to obtain bias parameters for purposes of validating the simultaneous multi-bias adjustment method with df_uc_om. With this source data, the fitted regression $logit(P(Y=1)) = \alpha_0 + \alpha_1 X + \alpha_2 C1 + \alpha_3 U$ shows that the true, unbiased exposure-outcome odds ratio = 2.

```
df_uc_om_source
```

df_uc_sel 21

Format

A dataframe with 100,000 rows and 7 columns:

 \mathbf{X} exposure, 1 = present and 0 = absent

Y outcome, 1 = present and 0 = absent

C1 1st confounder, 1 = present and 0 = absent

C2 2nd confounder, 1 = present and 0 = absent

C3 3rd confounder, 1 = present and 0 = absent

U unmeasured confounder, 1 = present and 0 = absent

Ystar misclassified outcome, 1 =present and 0 =absent

df_uc_sel

Simulated data with uncontrolled confounding and selection bias

Description

Data containing two sources of bias, three known confounders, and 100,000 observations. This data is obtained by sampling with replacement with probability = S from df_uc_sel_source then removing the columns U and S. The resulting data corresponds to what a researcher would see in the real-world: missing data on confounder U; and missing data for those not selected into the study (S=0). As seen in df_uc_sel_source, the true, unbiased exposure-outcome odds ratio = 2.

Usage

df_uc_sel

Format

A dataframe with 100,000 rows and 5 columns:

 \mathbf{X} exposure, 1 = present and 0 = absent

Y outcome, 1 = present and 0 = absent

C1 1st confounder, 1 = present and 0 = absent

C2 2nd confounder, 1 = present and 0 = absent

df_uc_source

df_uc_sel_source

Data source for df_uc_sel

Description

Data with complete information on the two sources of bias, a known confounder, and 100,000 observations. This data is used to derive df_uc_sel and can be used to obtain bias parameters for purposes of validating the simultaneous multi-bias adjustment method with df_uc_sel. With this source data, the fitted regression $logit(P(Y=1)) = \alpha_0 + \alpha_1 X + \alpha_2 C1 + \alpha_3 C2 + \alpha_4 C3 + \alpha_5 U$ shows that the true, unbiased exposure-outcome odds ratio = 2.

Usage

```
df_uc_sel_source
```

Format

A dataframe with 100,000 rows and 7 columns:

X true exposure, 1 =present and 0 =absent

Y outcome, 1 = present and 0 = absent

C1 1st confounder, 1 = present and 0 = absent

C2 2nd confounder, 1 = present and 0 = absent

C3 3rd confounder, 1 = present and 0 = absent

U unmeasured confounder, 1 = present and 0 = absent

S selection, 1 = selected into the study and 0 = not selected into the study

df_uc_source

Data source for df_uc

Description

Data with complete information on one source of bias, three known confounders, and 100,000 observations. This data is used to derive df_uc and can be used to obtain bias parameters for purposes of validating the simultaneous multi-bias adjustment method with df_uc. With this source data, the fitted regression $logit(P(Y=1)) = \alpha_0 + \alpha_1 X + \alpha_2 C1 + \alpha_3 C2 + \alpha_4 C3 + \alpha_5 U$ shows that the true, unbiased exposure-outcome effect estimate = 2 when:

```
1. g = logit, Y = Y_bi, and X = X_bi or
```

2.
$$g = identity$$
, $Y = Y_cont$, $X = X_cont$.

```
df_uc_source
```

multibias_adjust 23

Format

A dataframe with 100,000 rows and 8 columns:

 $\mathbf{X}_{\mathbf{bi}}$ binary exposure, 1 = present and 0 = absent

X_cont continuous exposure

Y_bi binary outcome corresponding to exposure X_bi , 1 = present and 0 = absent

Y_cont continuous outcome corresponding to exposure *X_cont*

C1 1st confounder, 1 = present and 0 = absent

C2 2nd confounder, 1 = present and 0 = absent

C3 3rd confounder, 1 = present and 0 = absent

U uncontrolled confounder, 1 = present and 0 = absent

multibias_adjust

Simultaneously adjust for multiple biases

Description

multibias_adjust returns the exposure-outcome odds ratio and confidence interval, adjusted for one or more biases.

Usage

```
multibias_adjust(
  data_observed,
  data_validation = NULL,
  bias_params = NULL,
  bootstrap = FALSE,
  bootstrap_reps = 100,
  level = 0.95
)
```

Arguments

data_observed

Object of class data_observed corresponding to the data to perform bias analysis on.

data_validation

Object of class data_validation corresponding to the validation data used to adjust for bias in the observed data. The validation data should have data for the same variables as in data_observed, plus data for the missing variables leading to bias.

bias_params

Object of class 'bias_params' corresponding to the bias parameters used to adjust for bias in the observed data. There must be parameters corresponding to the bias or biases specified in data_observed.

24 multibias_adjust

bootstrap Boolean for whether to perform bootstrapping to obtain the estimate and confi-

dence interval.

bootstrap_reps Integer number of bootstrap samples to run in bootstrapping.

level Value from 0-1 representing the full range of the confidence interval. Default is

0.95.

Details

Bias adjustment can be performed by inputting either a validation dataset or the necessary bias parameters. Values for the bias parameters can be applied as fixed values or as single draws from a probability distribution (ex: rnorm(1, mean = 2, sd = 1)). The latter has the advantage of allowing the researcher to capture the uncertainty in the bias parameter estimates. To incorporate this uncertainty in the estimate and confidence interval, this function should be run in loop across bootstrap samples of the dataframe for analysis. The estimate and confidence interval would then be obtained from the median and quantiles of the distribution of odds ratio estimates.

Value

A list including: the bias-adjusted effect estimate of the exposure on the outcome, the standard error, and the confidence interval as the vector: (lower bound, upper bound).

Examples

```
# Adjust for exposure misclassification ------
df_observed <- data_observed(</pre>
 data = df_{em}
 bias = "em",
 exposure = "Xstar",
 outcome = "Y",
 confounders = "C1"
# Using validation data
df_validation <- data_validation(</pre>
 data = df_em_source,
 true_exposure = "X",
 true_outcome = "Y",
 confounders = "C1",
 misclassified_exposure = "Xstar"
)
multibias_adjust(
 data_observed = df_observed,
 data_validation = df_validation
)
# Using bias_params
bp <- bias_params(coef_list = list(x = c(-2.10, 1.62, 0.63, 0.35)))
multibias_adjust(
 data_observed = df_observed,
```

multibias_adjust 25

```
bias_params = bp
)
# Adjust for three biases -------
df_observed <- data_observed(</pre>
  data = df_uc_om_sel,
  bias = c("uc", "om", "sel"),
  exposure = "X",
  outcome = "Ystar";
  confounders = c("C1", "C2", "C3")
)
# Using validation data
df_validation <- data_validation(</pre>
  data = df_uc_om_sel_source,
  true_exposure = "X",
  true_outcome = "Y",
  confounders = c("C1", "C2", "C3", "U"),
  misclassified_outcome = "Ystar",
  selection = "S"
)
multibias_adjust(
  data_observed = df_observed,
  data\_validation = df\_validation
)
# Using bias_params
bp1 <- bias_params(</pre>
 coef_list = list(
   u = c(-0.32, 0.59, 0.69),
   y = c(-2.85, 0.71, 1.63, 0.40, -0.85, 0.22),
    s = c(0.00, 0.74, 0.19, 0.02, -0.06, 0.02)
  )
)
multibias_adjust(
  data_observed = df_observed,
  bias_params = bp1
bp2 <- bias_params(</pre>
  coef_list = list(
   u1y0 = c(-0.20, 0.62, 0.01, -0.08, 0.10, -0.15),
   u0y1 = c(-3.28, 0.63, 1.65, 0.42, -0.85, 0.26),
   u1y1 = c(-2.70, 1.22, 1.64, 0.32, -0.77, 0.09),
    s = c(0.00, 0.74, 0.19, 0.02, -0.06, 0.02)
  )
)
# with bootstrapping
## Not run:
multibias_adjust(
```

26 multibias_plot

```
data_observed = df_observed,
bias_params = bp2,
bootstrap = TRUE,
bootstrap_reps = 1000
)
## End(Not run)
```

multibias_plot

Create a Forest Plot comparing observed and adjusted effect estimates

Description

This function generates a forest plot comparing the observed effect estimate with adjusted effect estimates from sensitivity analyses. The plot includes point estimates and confidence intervals for each analysis.

Usage

```
multibias_plot(data_observed, multibias_result_list, log_scale = FALSE)
```

Arguments

data_observed Object of class data_observed representing the observed causal data and effect of interest.

multibias_result_list

A named list of sensitivity analysis results. Each element should be a result from multibias_adjust().

log_scale

Boolean indicating whether to display the x-axis on the log scale. Default is FALSE.

Value

A ggplot object showing a forest plot with:

- Point estimates (blue dots)
- Confidence intervals (gray horizontal lines)
- A vertical reference line at x=1 (dashed)
- Appropriate labels and title

multibias_plot 27

Examples

```
## Not run:
df_observed <- data_observed(</pre>
  data = df_em,
 bias = "em",
  exposure = "Xstar",
  outcome = "Y",
  confounders = "C1"
)
bp1 <- bias_params(coef_list = list(x = c(-2.10, 1.62, 0.63, 0.35)))
bp2 <- bias_params(coef_list = list(x = c(-2.10 * 2, 1.62 * 2, 0.63 * 2, 0.35 * 2)))
result1 <- multibias_adjust(</pre>
  data_observed = df_observed,
  bias_params = bp1
result2 <- multibias_adjust(</pre>
  data_observed = df_observed,
  bias_params = bp2
multibias_plot(
  data_observed = df_observed,
 multibias_result_list = list(
    "Adjusted with bias params" = result1,
    "Adjusted with bias params doubled" = result2
  )
)
## End(Not run)
```

Index

* datasets	df_sel, 14
df_em, 7	df_sel_source, 14
df_em_om, 8	df_uc, 15
df_em_om_source, 8	df_uc_em, 16
df_em_sel,9	df_uc_em_sel, 16
df_em_sel_source, 10	df_uc_em_sel_source, 17
df_em_source, 10	df_uc_em_source, 18
df_om, 11	df_uc_om, 18
df_om_sel, 12	df_uc_om_sel, 19
df_om_sel_source, 12	df_uc_om_sel_source, 20
df_om_source, 13	df_uc_om_source, 20
df_sel, 14	df_uc_sel, 21
df_sel_source, 14	df_uc_sel_source, 22
df_uc, 15	df_uc_source, 22
df_uc_em, 16	,
df_uc_em_sel, 16	multibias_adjust, 23
df_uc_em_sel_source, 17	$multibias_adjust(), 3, 5, 26$
df_uc_em_source, 18	multibias_plot, 26
df_uc_om, 18	
df_uc_om_sel, 19	
df_uc_om_sel_source, 20	
df_uc_om_source, 20	
df_uc_sel, 21	
df_uc_sel_source, 22	
df_uc_source, 22	
a a	
bias_params, 3	
data_observed, 5	
data_validation, 6	
df_em, 7	
df_em_om, 8	
df_em_om_source, 8	
$df_{em_sel,9}$	
df_em_sel_source, 10	
df_em_source, 10	
df_om, 11	
df_om_sel, 12	
df_om_sel_source, 12	
df_om_source, 13	