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computeMutualInfo Compute (conditional) mutual information

Description

For discrete or categorical variables, the (conditional) mutual information is computed using the
empirical frequencies minus a complexity cost (computed as BIC or with the Normalized Maximum
Likelihood). When continuous variables are present, each continuous variable is discretized for each
mutual information estimate so as to maximize the mutual information minus the complexity cost
(see Cabeli 2020).

Usage

computeMutualInfo(
x,
y,
df_conditioning = NULL,
maxbins = NULL,
cplx = c("nml", "bic"),
n_eff = -1,
sample_weights = NULL,
is_continuous = NULL,
plot = FALSE

)

Arguments

x [a vector] The X vector that contains the observational data of the first variable.

y [a vector] The Y vector that contains the observational data of the second vari-
able.

df_conditioning

[a data frame] The data frame of the observations of the conditioning variables.

maxbins [an integer] When the data contain continuous variables, the maximum number
of bins allowed during the discretization. A smaller number makes the compu-
tation faster, a larger number allows finer discretization.

cplx [a string] The complexity model:

• ["bic"] Bayesian Information Criterion
• ["nml"] Normalized Maximum Likelihood, more accurate complexity cost

compared to BIC, especially on small sample size.

n_eff [an integer] The effective number of samples. When there is significant auto-
correlation between successive samples, you may want to specify an effective
number of samples that is lower than the total number of samples.

sample_weights [a vector of floats] Individual weights for each sample, used for the same reason
as the effective number of samples but with individual weights.
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is_continuous [a vector of booleans] Specify if each variable is to be treated as continuous
(TRUE) or discrete (FALSE), must be of length ‘ncol(df_conditioning) + 2‘, in
the order X,Y, U1, U2, .... If not specified, factors and character vectors are
considered as discrete, and numerical vectors as continuous.

plot [a boolean] Specify whether the resulting XY optimum discretization is to be
plotted (requires ‘ggplot2‘ and ‘gridExtra‘).

Details

For a pair of continuous variables X and Y , the mutual information I(X;Y ) will be computed
iteratively. In each iteration, the algorithm optimizes the partitioning of X and then of Y , in order
to maximize

Ik(Xd;Yd) = I(Xd;Yd)− cplx(Xd;Yd)

where cplx(Xd;Yd) is the complexity cost of the corresponding partitioning (see Cabeli 2020).
Upon convergence, the information terms I(Xd;Yd) and Ik(Xd;Yd), as well as the partitioning of
Xd and Yd in terms of cutpoints, are returned.

For conditional mutual information with a conditioning set U , the computation is done based on

Ik(X;Y |U) = 0.5 ∗ (Ik(Xd;Yd, Ud)− Ik(Xd;Ud) + Ik(Yd;Xd, Ud)− Ik(Yd;Ud)),

where each of the four summands is estimated separately.

Value

A list that contains :

• cutpoints1: Only when X is continuous, a vector containing the cutpoints for the partitioning
of X .

• cutpoints2: Only when Y is continuous, a vector containing the cutpoints for the partitioning
of Y .

• n_iterations: Only when at least one of the input variables is continuous, the number of itera-
tions it takes to reach the convergence of the estimated information.

• iteration1, iteration2, ... Only when at least one of the input variables is continuous, the list of
vectors of cutpoints of each iteration.

• info: The estimation of (conditional) mutual information without the complexity cost.

• infok: The estimation of (conditional) mutual information with the complexity cost (Ik =
I − cplx).

• plot: Only when ‘plot == TRUE‘, the plot object.

References

• Cabeli et al., PLoS Comput. Biol. 2020, Learning clinical networks from medical records
based on information estimates in mixed-type data

• Affeldt et al., UAI 2015, Robust Reconstruction of Causal Graphical Models based on Condi-
tional 2-point and 3-point Information

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007866
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007866
https://auai.org/uai2015/proceedings/papers/293.pdf
https://auai.org/uai2015/proceedings/papers/293.pdf
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Examples

library(miic)
N <- 1000
# Dependence, conditional independence : X <- Z -> Y
Z <- runif(N)
X <- Z * 2 + rnorm(N, sd = 0.2)
Y <- Z * 2 + rnorm(N, sd = 0.2)
res <- computeMutualInfo(X, Y, plot = FALSE)
message("I(X;Y) = ", res$info)
res <- computeMutualInfo(X, Y, df_conditioning = matrix(Z, ncol = 1), plot = FALSE)
message("I(X;Y|Z) = ", res$info)

# Conditional independence with categorical conditioning variable : X <- Z -> Y
Z <- sample(1:3, N, replace = TRUE)
X <- -as.numeric(Z == 1) + as.numeric(Z == 2) + 0.2 * rnorm(N)
Y <- as.numeric(Z == 1) + as.numeric(Z == 2) + 0.2 * rnorm(N)
res <- miic::computeMutualInfo(X, Y, cplx = "nml")
message("I(X;Y) = ", res$info)
res <- miic::computeMutualInfo(X, Y, matrix(Z, ncol = 1), is_continuous = c(TRUE, TRUE, FALSE))
message("I(X;Y|Z) = ", res$info)

# Independence, conditional dependence : X -> Z <- Y
X <- runif(N)
Y <- runif(N)
Z <- X + Y + rnorm(N, sd = 0.1)
res <- computeMutualInfo(X, Y, plot = TRUE)
message("I(X;Y) = ", res$info)
res <- computeMutualInfo(X, Y, df_conditioning = matrix(Z, ncol = 1), plot = TRUE)
message("I(X;Y|Z) = ", res$info)

computeThreePointInfo Compute (conditional) three-point information

Description

Three point information is defined and computed as the difference of mutual information and con-
ditional mutual information, e.g.

I(X;Y ;Z|U) = I(X;Y |U)− Ik(X;Y |U,Z)

For discrete or categorical variables, the three-point information is computed with the empirical
frequencies minus a complexity cost (computed as BIC or with the Normalized Maximum Likeli-
hood).
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Usage

computeThreePointInfo(
x,
y,
z,
df_conditioning = NULL,
maxbins = NULL,
cplx = c("nml", "bic"),
n_eff = -1,
sample_weights = NULL,
is_continuous = NULL

)

Arguments

x [a vector] The X vector that contains the observational data of the first variable.

y [a vector] The Y vector that contains the observational data of the second vari-
able.

z [a vector] The Z vector that contains the observational data of the third variable.
df_conditioning

[a data frame] The data frame of the observations of the set of conditioning
variables U .

maxbins [an integer] When the data contain continuous variables, the maximum number
of bins allowed during the discretization. A smaller number makes the compu-
tation faster, a larger number allows finer discretization.

cplx [a string] The complexity model:

• ["bic"] Bayesian Information Criterion
• ["nml"] Normalized Maximum Likelihood, more accurate complexity cost

compared to BIC, especially on small sample size.

n_eff [an integer] The effective number of samples. When there is significant auto-
correlation between successive samples, you may want to specify an effective
number of samples that is lower than the total number of samples.

sample_weights [a vector of floats] Individual weights for each sample, used for the same reason
as the effective number of samples but with individual weights.

is_continuous [a vector of booleans] Specify if each variable is to be treated as continuous
(TRUE) or discrete (FALSE), must be of length ‘ncol(df_conditioning) + 3‘, in
the order X,Y, Z, U1, U2, .... If not specified, factors and character vectors are
considered as discrete, and numerical vectors as continuous.

Details

For variables X , Y , Z and a set of conditioning variables U , the conditional three point information
is defined as

Ik(X;Y ;Z|U) = Ik(X;Y |U)− Ik(X;Y |U,Z)

where Ik is the shifted or regularized conditional mutual information. See computeMutualInfo for
the definition of Ik.
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Value

A list that contains :

• i3: The estimation of (conditional) three-point information without the complexity cost.

• i3k: The estimation of (conditional) three-point information with the complexity cost (i3k =
i3 - cplx).

• i2: For reference, the estimation of (conditional) mutual information I(X;Y |U) used in the
estimation of i3.

• i2k: For reference, the estimation of regularized (conditional) mutual information Ik(X;Y |U)
used in the estimation of i3k.

References

• Cabeli et al., PLoS Comput. Biol. 2020, Learning clinical networks from medical records
based on information estimates in mixed-type data

• Affeldt et al., UAI 2015, Robust Reconstruction of Causal Graphical Models based on Condi-
tional 2-point and 3-point Information

Examples

library(miic)
N <- 1000
# Dependence, conditional independence : X <- Z -> Y
Z <- runif(N)
X <- Z * 2 + rnorm(N, sd = 0.2)
Y <- Z * 2 + rnorm(N, sd = 0.2)
res <- computeThreePointInfo(X, Y, Z)
message("I(X;Y;Z) = ", res$i3)
message("Ik(X;Y;Z) = ", res$i3k)

# Independence, conditional dependence : X -> Z <- Y
X <- runif(N)
Y <- runif(N)
Z <- X + Y + rnorm(N, sd = 0.1)
res <- computeThreePointInfo(X, Y, Z)
message("I(X;Y;Z) = ", res$i3)
message("Ik(X;Y;Z) = ", res$i3k)

cosmicCancer Genomic and ploidy alterations in breast tumors

Description

The dataset contains 807 samples without predisposing Brca1/2 germline mutations and includes
204 somatic mutations (from whole exome sequencing) and expression level information for 91
genes.

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007866
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007866
https://auai.org/uai2015/proceedings/papers/293.pdf
https://auai.org/uai2015/proceedings/papers/293.pdf
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Usage

data(cosmicCancer)

Format

A data.frame object.

References

Forbes SA, Beare D, Gunasekaran P, Leung K, Bindal N, et al. (2015) Nucleic Acids Res 43:D805–D811.
(PubMed link)

cosmicCancer_stateOrder

Genomic and ploidy alterations in breast tumors

Description

The dataset contains 807 samples without predisposing Brca1/2 germline mutations and includes
204 somatic mutations (from whole exome sequencing) and expression level information for 91
genes, category order file.

Usage

data(cosmicCancer_stateOrder)

Format

A data.frame object.

References

Forbes SA, Beare D, Gunasekaran P, Leung K, Bindal N, et al. (2015) Nucleic Acids Res 43:D805–D811.
(PubMed link)

https://pubmed.ncbi.nlm.nih.gov/25355519/
https://pubmed.ncbi.nlm.nih.gov/25355519/
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covidCases Covid cases

Description

Demo dataset of chronological series to be used in temporal mode of miic. Evolution of Covid
cases on a subset of EU countries from 12/31/2019 to 06/18/2020. Source of the data : European
Centre for Disease Prevention and Control.

Usage

data(covidCases)

Format

A data.frame object.

References

ECDC (ECDC link)

discretizeMDL Discretize a real valued distribution

Description

This function performs minimum description length (MDL)-optimal histogram density estimation
as described in Kontkanen and Myllymäki (2007) and returns the cutpoints found to give the best
model according to the MDL principle.

Usage

discretizeMDL(x = NULL, max_bins = 20)

Arguments

x [a vector] A vector that contains the distribution to be discretized.

max_bins [an int] The maximum number of bins allowed by the algorithm.

Value

A list containing the cutpoints of the best discretization.

References

• Kontkanen P, Myllymäki P. MDL histogram density estimation. Artificial Intelligence and
Statistics 2007 Mar 11 (pp. 219-226).

https://www.ecdc.europa.eu/en/publications-data/download-todays-data-geographic-distribution-covid-19-cases-worldwide
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Examples

library(miic)
# Bimodal normal distribution
N <- 300
modes <- sample(1:2, size = N, replace = TRUE)
x <- as.numeric(modes == 1) * rnorm(N, mean = 0, sd = 1) +

as.numeric(modes == 2) * rnorm(N, mean = 5, sd = 2)
MDL_disc <- discretizeMDL(x)
hist(x, breaks = MDL_disc$cutpoints)

N <- 2000
modes <- sample(1:2, size = N, replace = TRUE)
x <- as.numeric(modes == 1) * rnorm(N, mean = 0, sd = 1) +

as.numeric(modes == 2) * rnorm(N, mean = 5, sd = 2)
MDL_disc <- discretizeMDL(x)
hist(x, breaks = MDL_disc$cutpoints)

discretizeMutual Iterative dynamic programming for (conditional) mutual information
through optimized discretization.

Description

This function chooses cutpoints in the input distributions by maximizing the mutual information
minus a complexity cost (computed as BIC or with the Normalized Maximum Likelihood). The
(conditional) mutual information computed on the optimized discretized distributions effectively
estimates the mutual information of the original continuous variables.

Usage

discretizeMutual(
x,
y,
matrix_u = NULL,
maxbins = NULL,
cplx = "nml",
n_eff = NULL,
sample_weights = NULL,
is_continuous = NULL,
plot = TRUE

)

Arguments

x [a vector] The X vector that contains the observational data of the first variable.

y [a vector] The Y vector that contains the observational data of the second vari-
able.
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matrix_u [a numeric matrix] The matrix with the observations of as many columns as
conditioning variables.

maxbins [an int] The maximum number of bins desired in the discretization. A lower
number makes the computation faster, a higher number allows finer discretiza-
tion (by default : 5 * cubic root of N).

cplx [a string] The complexity used in the dynamic programming:
• ["bic"] Bayesian Information Criterion
• ["nml"] Normalized Maximum Likelihood, more accurate complexity cost

compared to BIC, especially on small sample size.
n_eff [an integer] The effective number of samples. When there is significant auto-

correlation between successive samples, you may want to specify an effective
number of samples that is lower than the total number of samples.

sample_weights [a vector of floats] Individual weights for each sample, used for the same reason
as the effective number of samples but with individual weights.

is_continuous [a vector of booleans] Specify if each variable is to be treated as continuous
(TRUE) or discrete (FALSE) in a logical vector of length ncol(matrix_u) + 2, in
the order [X, Y, U1, U2...]. By default, factors and character vectors are treated
as discrete, and numerical vectors as continuous.

plot [a boolean] Specify whether the resulting XY optimum discretization is to be
plotted (requires ‘ggplot2‘ and ‘gridExtra‘).

Details

For a pair of continuous variables X and Y , the algorithm will iteratively choose cutpoints on X
then on Y , maximizing I(Xd;Yd) − cplx(Xd;Yd) where cplx(Xd;Yd) is the complexity cost of
the considered discretizations of X and Y (see Cabeli 2020). Upon convergence, the discretization
scheme of Xd and Yd is returned as well as I(Xd;Yd) and I(Xd;Yd)− cplx(Xd;Yd).

With a set of conditioning variables U , the discretization scheme maximizes each term of the sum
I(X;Y |U) ∼ 0.5 ∗ (I(Xd;Yd, Ud)− I(Xd;Ud) + I(Yd;Xd, Ud)− I(Yd;Ud)).

Discrete variables can be passed as factors and will be used "as is" to maximize each term.

Value

A list that contains :

• two vectors containing the cutpoints for each variable : cutpoints1 corresponds to x, cutpoints2
corresponds to y.

• n_iterations is the number of iterations performed before convergence of the (C)MI estima-
tion.

• iteration1, iteration2, ..., lists containing the cutpoint vectors for each iteration.
• info and infok, the estimated (C)MI value and (C)MI minus the complexity cost.
• if plot == TRUE, a plot object (requires ggplot2 and gridExtra).

References

• Cabeli et al., PLoS Comput. Biol. 2020, Learning clinical networks from medical records
based on information estimates in mixed-type data

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007866
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007866
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Examples

library(miic)
N <- 1000
# Dependence, conditional independence : X <- Z -> Y
Z <- runif(N)
X <- Z * 2 + rnorm(N, sd = 0.2)
Y <- Z * 2 + rnorm(N, sd = 0.2)
res <- discretizeMutual(X, Y, plot = FALSE)
message("I(X;Y) = ", res$info)
res <- discretizeMutual(X, Y, matrix_u = matrix(Z, ncol = 1), plot = FALSE)
message("I(X;Y|Z) = ", res$info)

# Conditional independence with categorical conditioning variable : X <- Z -> Y
Z <- sample(1:3, N, replace = TRUE)
X <- -as.numeric(Z == 1) + as.numeric(Z == 2) + 0.2 * rnorm(N)
Y <- as.numeric(Z == 1) + as.numeric(Z == 2) + 0.2 * rnorm(N)
res <- miic::discretizeMutual(X, Y, cplx = "nml")
message("I(X;Y) = ", res$info)
res <- miic::discretizeMutual(X, Y, matrix(Z, ncol = 1), is_continuous = c(TRUE, TRUE, FALSE))
message("I(X;Y|Z) = ", res$info)

# Independence, conditional dependence : X -> Z <- Y
X <- runif(N)
Y <- runif(N)
Z <- X + Y + rnorm(N, sd = 0.1)
res <- discretizeMutual(X, Y, plot = TRUE)
message("I(X;Y) = ", res$info)
res <- discretizeMutual(X, Y, matrix_u = matrix(Z, ncol = 1), plot = TRUE)
message("I(X;Y|Z) = ", res$info)

estimateTemporalDynamic

Estimation of the temporal causal discovery parameters

Description

This function estimates the number of layers and number of time steps between each layer that are
needed to cover the dynamic of a temporal dataset when reconstructing a temporal causal graph.
Using autocorrelation decay, the function computes the average relaxation time of the variables
and, based on a maximum number of nodes, deduces the number of layers and number of time steps
between each layer to be used.

Usage

estimateTemporalDynamic(
input_data,
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state_order = NULL,
mov_avg = NULL,
max_nodes = 50,
verbose_level = 1

)

Arguments

input_data [a data frame] A data frame containing the observational data.
The expected data frame layout is variables as columns and time series/time
steps as rows. The time step information must be supplied in the first column
and, for each time series, be consecutive and in ascending order (increment of
1). Multiple trajectories can be provided, the function will consider that a new
trajectory starts each time a smaller time step than the one of the previous row
is encountered.

state_order [a data frame] An optional data frame providing extra information about vari-
ables. It must have d rows where d is the number of input variables, excluding
the time step one.
For optional columns, if they are not provided or contain missing values, default
values suitable for input_data will be used.
The following structure (named columns) is expected:

"var_names" (required) contains the name of each variable as specified by col-
names(input_data), excluding the time steps column.
"var_type" (optional) contains a binary value that specifies if each variable is
to be considered as discrete (0) or continuous (1). Discrete variables will be
excluded from the temporal dynamic estimation.
"is_contextual" (optional) contains a binary value that specifies if a variable is to
be considered as a contextual variable (1) or not (0). Contextual variables will
be excluded from the temporal dynamic estimation.
"mov_avg" (optional) contains an integer value that specifies the size of the
moving average window to be applied to the variable. Note that if "mov_avg"
column is present in the state_order, its values will overwrite the function pa-
rameter.

mov_avg [an integer] Optional, NULL by default.
When an integer>= 2 is supplied, a moving average operation is applied to all
the non discrete and not contextual variables. If no state_order is provided, the
discrete/continuous variables are deduced from the input data. If you want to
apply a moving average only on specific columns, consider to use a mov_avg
column in the state_order parameter.

max_nodes [a positive integer] The maximum number of nodes in the final time-unfolded
causal graph. The more nodes allowed in the temporal causal discovery, the
more precise will be the discovery but at the cost of longer execution time. The
default is set to 50 for fast causal discovery. On recent computers, values up to
200 or 300 nodes are usually possible (depending on the number of trajectories
and time steps in the input data).

verbose_level [an integer value in the range [0,2], 1 by default] The level of verbosity: 0 = no
display, 1 = summary display, 2 = full display.
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Value

A named list with two items:

• n_layers: the number of layers

• delta_t: the number of time steps between the layers

export Export miic result for plotting (with igraph)

Description

This function creates an object built from the result returned by miic that is ready to be fed to the
plotting method.

Usage

export(
miic_obj,
method = "igraph",
pcor_palette = NULL,
display = "compact",
show_self_loops = TRUE

)

Arguments

miic_obj [a miic object, required]
The object returned by the miic execution.

method [a string, optional, default value "igraph"]
The plotting method, currently only "igraph" is supported.

pcor_palette [a color palette, optional, default value grDevices::colorRampPalette(c("blue",
"darkgrey", "red")]
Used to represent the partial correlations (the color of the edges). The palette
must be able to handle 201 shades to cover the correlation range from -100 to
+100.

display [a string, optional, default value "compact"]
Used only when exporting object returned by miic in temporal mode. It al-
lows different representations of the temporal graph. Possible values are "raw",
"lagged", "compact", "combine", "unique", "drop":

• When display = "raw", the export function will use the tmiic graph object
as it, leading to the return of a lagged graph.

• When display = "lagged", the export function will repeat the edges over
history assuming stationarity and return a lagged graph.
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• When display = "compact", the default, nodes and edges are converted into
a flattened version to produce a compact view of the temporal network
whilst still presenting all the information in the export.
e.g. X_lag1->Y_lag0, X_lag2<-Y_lag0 become respectively X->Y lag=1,
X<-Y lag=2.

• When display = "combine", prior to the export, a pre-processing will be
applied to kept only one edge per pair of nodes. The info_shifted will be
the highest one of the summarized edges whilst the lag and orientation of
the summarized edge will be an aggregation.
e.g. X_lag2->Y_lag0, X_lag0<-Y_lag1 will become X<->Y lag=1-2 with
the info_shifted of X_lag2->Y_lag0 if info_shifted of X_lag2->Y_lag0 >
X_lag0<-Y_lag1.

• When display = "unique", prior to the export, a pre-processing will be ap-
plied to kept only the edges having the highest info_shifted for a pair of
nodes. If several edges between the sames nodes have the same info_shifted,
then the edge kept is the one with the minimum lag.
e.g. X_lag1->Y_lag0, X_lag0<-Y_lag2 with info_shifted of X_lag1->Y_lag0
> X_lag0<-Y_lag2 become X->Y lag=1.

• When display = "drop", the same pre-processing as "unique" will be ap-
plied, then the lag information will be dropped before the export.

show_self_loops

[a boolean, optional, TRUE by default]
Used only when exporting object returned by miic in temporal mode. When
TRUE, the lagged edges starting and ending on the same node are included in
the igraph object. When FALSE, only edges having different nodes are present
in the igraph object.

Details

The behavior depends on the method used for the export.

For igraph, edge attributes are passed to the igraph graph and can be accessed with e.g. E(g)$partial_correlation.
See miic for more details on edge parameters. By default, edges are colored according to the partial
correlation between two nodes conditioned on the conditioning set (negative is blue, null is gray and
positive is red) and their width is based on the conditional mutual information minus the complexity
cost.

Value

A graph object adapted to the method.

Examples

library(miic)
data(hematoData)

# execute MIIC (reconstruct graph)
miic_obj <- miic(

input_data = hematoData, latent = "yes",
n_shuffles = 10, conf_threshold = 0.001
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)

# Using igraph
if(require(igraph)) {
g = export(miic_obj, "igraph")
plot(g) # Default visualisation, calls igraph::plot.igraph()

# Specifying layout (see ?igraph::layout_)
l <-layout_with_kk(g)
plot(g, layout=l)

# Override some graphical parameters
plot(g, edge.curved = .2)
plot(g, vertex.shape="none", edge.color="gray85", vertex.label.color="gray10")
}

# In temporal mode, execute MIIC
data(covidCases)
tmiic_obj <- miic(input_data = covidCases, mode = "TS", n_layers = 3, delta_t = 1, mov_avg = 14)

# Plot by default the compact display of the temporal network using igraph
if(require(igraph)) {
g = export (tmiic_obj)
plot(g)

# Plot the raw temporal network using igraph
g = export(tmiic_obj, display="raw")
plot(g)

# Plot the complete temporal network using igraph (completed by stationarity)
g = export(tmiic_obj, display="lagged")
plot(g)

# Specifying layout (see ?igraph::layout_)
l <- layout_on_grid(g, width = 5, height = 3, dim = 2)
plot(g, layout=l)

# For compact temporal display, please be aware that the rendering of
# igraph::plot.igraph() is not optimal when the graph contains
# multiple edges between the same nodes.
# So, the recommend way to plot a compact graph is to use tmiic plotting:
plot(tmiic_obj)
}

hematoData Early blood development: single cell binary gene expression data
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Description

Binarized expression data of 33 transcription factors involved in early differentiation of primitive
erythroid and endothelial cells (3934 cells).

Usage

data(hematoData)

Format

A data.frame object.

References

Moignard et al. (2015) Nat Biotechnol 33(3):269-76 (PubMed link)

miic MIIC, causal network learning algorithm including latent variables

Description

MIIC (Multivariate Information-based Inductive Causation) combines constraint-based and information-
theoretic approaches to disentangle direct from indirect effects amongst correlated variables, includ-
ing cause-effect relationships and the effect of unobserved latent causes.

Usage

miic(
input_data,
state_order = NULL,
true_edges = NULL,
black_box = NULL,
n_threads = 1,
cplx = "nml",
orientation = TRUE,
ort_proba_ratio = 1,
ort_consensus_ratio = NULL,
propagation = FALSE,
latent = "orientation",
n_eff = -1,
n_shuffles = 0,
conf_threshold = 0,
sample_weights = NULL,
test_mar = TRUE,
consistent = "no",
max_iteration = 100,
consensus_threshold = 0.8,

https://pubmed.ncbi.nlm.nih.gov/25355519/
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negative_info = FALSE,
mode = "S",
n_layers = NULL,
delta_t = NULL,
mov_avg = NULL,
keep_max_data = FALSE,
max_nodes = 50,
verbose = FALSE

)

Arguments

input_data [a data frame, required]
A n*d data frame (n samples, d variables) that contains the observational data.
In standard mode, each column corresponds to one variable and each row is a
sample that gives the values for all the observed variables. The column names
correspond to the names of the observed variables. Numeric columns with at
least 5 distinct values will be treated as continuous by default whilst numeric
columns with less than 5 distinct values, factors and characters will be consid-
ered as categorical.
In temporal mode, the expected data frame layout is variables as columns and
time series/time steps as rows. The time step information must be supplied in
the first column and, for each time series, be consecutive and in ascending order
(increment of 1). Multiple trajectories can be provided, miic will consider that a
new trajectory starts each time a smaller time step than the one of the previous
row is encountered.

state_order [a data frame, optional, NULL by default]
A data frame providing extra information for variables. It must have d rows
where d is the number of input variables and possible columns are described
below. For optional columns, if they are not provided or contain missing values,
default values suitable for input_data will be used.
"var_names" (required) contains the name of each variable as specified by col-
names(input_data). In temporal mode, the time steps column should not be
mentioned in the variables list.
"var_type" (optional) contains a binary value that specifies if each variable is to
be considered as discrete (0) or continuous (1).
"levels_increasing_order" (optional) contains a single character string with all
of the unique levels of the ordinal variable in increasing order, delimited by
comma ’,’. It will be used during the post-processing to compute the sign of
an edge using Spearman’s rank correlation. If a variable is continuous or is
categorical but not ordinal, this column should be NA.
"is_contextual" (optional) contains a binary value that specifies if a variable is
to be considered as a contextual variable (1) or not (0). Contextual variables
cannot be the child node of any other variable (cannot have edge with arrowhead
pointing to them).
"is_consequence" (optional) contains a binary value that specifies if a variable
is to be considered as a consequence variable (1) or not (0). Edges between
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consequence variables are ignored, consequence variables cannot be the parent
node of any other variable and cannot be used as contributors. Edges between a
non consequence and consequence variables are pre-oriented toward the conse-
quence.
Several other columns are possible in temporal mode:
"n_layers" (optional) contains an integer value that specifies the number of lay-
ers to be considered for the variable. Note that if a "n_layers" column is present
in the state_order, its values will overwrite the function parameter.
"delta_t" (optional) contains an integer value that specifies the number of time
steps between each layer for the variable. Note that if a "delta_t" column is
present in the state_order, its values will overwrite the function parameter.
"mov_avg" (optional) contains an integer value that specifies the size of the mov-
ing average window to be applied to the variable. Note that if "mov_avg" column
is present in the state_order, its values will overwrite the function parameter.

true_edges [a data frame, optional, NULL by default]
A data frame containing the edges of the true graph for computing performance
after the run.
In standard mode, the expected layout is a two columns data frame, each row
representing a true edge with in each column, the variable names. Variables
names must exist in the input_data data frame.
In temporal mode, the expected layout is a three columns data frame, with the
first two columns being variable names and the third the lag. Variables names
must exist in the input_data data frame and the lag must be valid in the time
unfolded graph. e.g. a row var1, var2, 3 is valid with n_layers = 4 + delta_t = 1
or n_layers = 2 + delta_t = 3 but not for n_layers = 2 + delta_t = 2 as there is no
matching edge in the time unfolded graph.
Please note that the order is important: in standard mode, "var1 var2" will be
interpreted as var1 -> var2 and in temporal mode, "var1 var2 3" is interpreted as
var1_lag3 -> var2_lag0. Please note also that, in temporal mode, for contextual
variables that are not lagged, the expected value in the third column for the time
lag is NA.

black_box [a data frame, optional, NULL by default]
A data frame containing pairs of variables that will be considered as independent
during the network reconstruction. In practice, these edges will not be included
in the skeleton initialization and cannot be part of the final result.
In standard mode, the expected layout is a two columns data frame, each row
representing a forbidden edge with in each column, the variable names. Vari-
ables names must exist in the input_data data frame.
In temporal mode, the expected layout is a three columns data frame, with the
first two columns being variable names and the third the lag. Variables names
must exist in the input_data data frame and the lag must be valid in the time
unfolded graph. e.g. a row var1, var2, 3 is valid with n_layers = 4 + delta_t =
1 or n_layers = 2 + delta_t = 3 but not for n_layers = 2 + delta_t = 2 as there
is no matching edge in the time unfolded graph. Please note that the order is
important: var1, var2, 3 is interpreted as var1_lag3 - var2_lag0. Please note also
that, for contextual variables that are not lagged, the expected value in the third
column for the time lag is NA.
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n_threads [a positive integer, optional, 1 by default]
When set greater than 1, n_threads parallel threads will be used for computa-
tion. Make sure your compiler is compatible with openmp if you wish to use
multithreading.

cplx [a string, optional, "nml" by default, possible values: "nml", "bic"]
In practice, the finite size of the input dataset requires that the 2-point and 3-
point information measures should be shifted by a complexity term. The fi-
nite size corrections can be based on the Bayesian Information Criterion (BIC).
However, the BIC complexity term tends to underestimate the relevance of edges
connecting variables with many different categories, leading to the removal of
false negative edges. To avoid such biases with finite datasets, the (universal)
Normalized Maximum Likelihood (NML) criterion can be used (see Affeldt
2015).

orientation [a boolean value, optional, TRUE by default]
The miic network skeleton can be partially directed by orienting edge direc-
tions, based on the sign and magnitude of the conditional 3-point information
of unshielded triples and, in temporal mode, using time. If set to FALSE, the
orientation step is not performed.

ort_proba_ratio

[a floating point between 0 and 1, optional, 1 by default]
The threshold when deducing the type of an edge tip (head/tail) from the proba-
bility of orientation. For a given edge tip, denote by p the probability of it being
a head, the orientation is accepted if (1 - p) / p < ort_proba_ratio. 0 means reject
all orientations, 1 means accept all orientations.

ort_consensus_ratio

[a floating point between 0 and 1, optional, NULL by default] Used to deter-
mine if orientations correspond to genuine causal edges and, when consistency
is activated, to deduce the orientations in the consensus graph.
Oriented edges will be marked as genuine causal when: (1 − phead)/phead <
ort_consensus_ratio and ptail/(1− ptail) < ort_consensus_ratio.
When consistency is activated, ort_consensus_ratio is used as threshold when
deducing the type of an consensus edge tip (head/tail) from the average proba-
bility of orientations over the cycle of graphs. For a given edge tip, denote by p
the average probability of it being a head, the orientation is accepted if (1 - p) /
p < ort_consensus_ratio.
If not supplied, the ort_consensus_ratio will be initialized with the ort_proba_ratio
value.

propagation [a boolean value, optional, FALSE by default]
If set to FALSE, the skeleton is partially oriented with only the v-structure ori-
entations. Otherwise, the v-structure orientations are propagated to downstream
un-directed edges in unshielded triples following the propagation procedure, re-
lying on probabilities (for more details, see Verny 2017).

latent [a string, optional, "orientation" by default, possible values: "orientation", "no",
"yes"]
When set to "yes", the network reconstruction is taking into account hidden (la-
tent) variables. When set to "orientation", latent variables are not considered
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during the skeleton reconstruction but allows bi-directed edges during the ori-
entation. Dependence between two observed variables due to a latent variable is
indicated with a ’6’ in the adjacency matrix and in the network edges.summary
and by a bi-directed edge in the (partially) oriented graph.

n_eff [a positive integer, optional, -1 by default]
In standard mode, the n samples given in the input_data data frame are ex-
pected to be independent. In case of correlated samples such as in Monte Carlo
sampling approaches, the effective number of independent samples n_eff can
be estimated using the decay of the autocorrelation function (see Verny 2017).
This effective number n_eff of independent samples can be provided using this
parameter.

n_shuffles [a positive integer, optional, 0 by default]
The number of shufflings of the original dataset in order to evaluate the edge
specific confidence ratio of all retained edges. Default is 0: no confidence cut
is applied. If the number of shufflings is set to an integer > 0, the confidence
threshold must also be > 0 (e.g. n_shuffles = 100 and conf_threshold = 0.01).

conf_threshold [a positive floating point, optional, 0 by default]
The threshold used to filter the less probable edges following the skeleton step
(see Verny 2017). Default is 0: no confidence cut is applied. If the confidence
threshold is set > 0, the number of shufflings must also be > 0 (e.g. n_shuffles =
100 and conf_threshold = 0.01).

sample_weights [a numeric vector, optional, NULL by default]
An vector containing the weight of each observation. If defined, it must be a
vector of floats in the range [0,1] of size equal to the number of samples.

test_mar [a boolean value, optional, TRUE by default]
If set to TRUE, distributions with missing values will be tested with Kullback-
Leibler divergence: conditioning variables for the given link X − Y , Z will
be considered only if the divergence between the full distribution and the non-
missing distribution KL(P (X,Y )|P (X,Y )!NA) is low enough (with P (X,Y )!NA

as the joint distribution of X and Y on samples which are not missing on Z. This
is a way to ensure that data are missing at random for the considered interaction
and detect bias due to values not missing at random.

consistent [a string, optional, "no" by default, possible values: "no", "orientation", "skele-
ton"]
If set to "orientation": iterate over skeleton and orientation steps to ensure con-
sistency of the separating sets and all disconnected pairs in the final network.
If set to "skeleton": iterate over skeleton step to get a consistent skeleton, then
orient edges including inconsistent orientations (see Li 2019 for details).

max_iteration [a positive integer, optional, 100 by default]
When the consistent parameter is set to "skeleton" or "orientation", the maxi-
mum number of iterations allowed when trying to find a consistent graph.

consensus_threshold

[a floating point between 0.5 and 1.0, optional, 0.8 by default]
When the consistent parameter is set to "skeleton" or "orientation" and when the
result graph is inconsistent or is a union of more than one inconsistent graphs,
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a consensus graph will be produced based on a pool of graphs. If the result
graph is inconsistent, then the pool is made of max_iteration graphs from the
iterations, otherwise it is made of those graphs in the union. In the consensus
graph, an edge is present when the proportion of non-zero status in the pool is
above the threshold. For example, if the pool contains [A, B, B, 0, 0], where
"A", "B" are different status of the edge and "0" indicates the absence of the
edge. Then the edge is set to connected ("1") if the proportion of non-zero status
(0.6 in the example) is equal to or higher than consensus_threshold. (When
set to connected, the orientation of the edge will be further determined by the
average probability of orientation.)

negative_info [a boolean value, optional, FALSE by default]
If TRUE, negative shifted mutual information is allowed during the computation
when mutual information is inferior to the complexity term. For small dataset
with complicated structures, e.g. discrete variables with many levels, allowing
for negative shifted mutual information may help identifying weak v-structures
related to those discrete variables, as the negative three-point information in
those cases will come from the difference between two negative shifted mu-
tual information terms (expected to be negative due to the small sample size).
However, under this setting, a v-structure (X -> Z <- Y) in the final graph does
not necessarily imply that X is dependent on Y conditioning on Z, As a con-
sequence, the reliability of certain orientations is not guaranteed. By contrast,
keeping this parameter as FALSE is more conservative and leads to more reliable
orientations (see Cabeli 2021 and Ribeiro-Dantas 2024).

mode [a string, optional, "S" by default, possible values are "S": Standard (non tem-
poral data) or "TS": Temporal Stationary data]
When temporal mode is activated, the time information must be provided in the
first column of input_data. For more details about temporal stationary mode
(see Simon 2024).

n_layers [an integer, optional, NULL by default, must be >= 2 if supplied]
Used only in temporal mode, n_layers defines the number of layers that will
be considered for the variables in the time unfolded graph. The layers will be
distant of delta_t time steps. If not supplied, the number of layers is estimated
from the dynamic of the dataset and the maximum number of nodes max_nodes
allowed in the final lagged graph.

delta_t [an integer, optional, NULL by default, must be >= 1 if supplied]
Used only in temporal mode, delta_t defines the number of time steps between
each layer. i.e. on 1000 time steps with n_layers = 3 and delta_t = 7, the time
steps kept for the samples conversion will be 1, 8, 15 for the first sample, the
next sample will use 2, 9, 16 and so on. If not supplied, the number of time steps
between layers is estimated from the dynamic of the dataset and the number of
layers.

mov_avg [an integer, optional, NULL by default, must be >= 2 if supplied]
Used only in temporal mode. When supplied, a moving average operation is
applied to all integer and numeric variables that are not contextual variables.

keep_max_data [a boolean value, optional, FALSE by default]
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Used only in temporal mode. If TRUE, rows where some NAs have been intro-
duced during the moving averages and lagging will be kept whilst they will be
dropped if FALSE.

max_nodes [an integer, optional, 50 by default]
Used only in temporal mode and if the n_layers or delta_t parameters are not
supplied. max_nodes is used as the maximum number of nodes in the final time-
unfolded graph to compute n_layers and/or delta_t. The default is 50 to produce
quick runs and can be increased up to 200 or 300 on recent computers to produce
more precise results.

verbose [a boolean value, optional, FALSE by default]
If TRUE, debugging output is printed.

Details

Starting from a complete graph, the method iteratively removes dispensable edges, by uncovering
significant information contributions from indirect paths, and assesses edge-specific confidences
from randomization of available data. The remaining edges are then oriented based on the signature
of causality in observational data. Miic distinguishes genuine causal edges (with both reliable arrow
heads and tails) from putative causal edges (with one reliable arrow head only) and latent causal
edges (with both reliable arrow heads). (see Ribeiro-Dantas 2024)

In temporal mode, miic reorganizes the dataset using the n_layers and delta_t parameters to trans-
form the time steps into lagged samples. As starting point, a lagged graph is created with only edges
having at least one node laying on the last time step. Then, miic standard algorithm is applied to
remove dispensable edges. The remaining edges are then duplicated to ensure time invariance (sta-
tionary dynamic) and oriented using the temporality and the signature of causality in observational
data. The use of temporal mode is presented in Simon 2024.

The method relies on information theoretic principles which replace (conditional) independence
tests as described in Affeldt 2015, Cabeli 2020, Cabeli 2021 and Ribeiro-Dantas 2024. It deals with
both categorical and continuous variables by performing optimal context-dependent discretization.
As such, the input data frame may contain both numerical columns which will be treated as contin-
uous, or character / factor columns which will be treated as categorical. For further details on the
optimal discretization method and the conditional independence test, see the function discretizeMu-
tual. The user may also choose to run miic with scheme presented in Li 2019 and Ribeiro-Dantas
2024 to improve the end result’s interpretability by ensuring consistent separating sets.

Value

A miic-like object that contains:

• summary: a data frame with information about the relationship between relevant pair of vari-
ables.
As returning the information on all possible pairs of variables could lead to an huge data
frame, by convention, the summary does not include pair of variables not sharing information
at all (I’(x,y) <= 0). However, as exception to this convention, when a ground truth is supplied
(using the true_edges parameter), the edges that are not retained by MIIC because the variables
does not share information at all but are present in the true edges will be included in the
summary to report correctly all the false negative edges.
So, the summary contains these categories of edges:
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– edges retained
– edges not retained after conditioning on some contributor(s)
– edges not retained without conditioning but present in true edges

while these edges are not considered as relevant and are not included:

– edges not retained without conditioning and not in true edges

Information available in the summary are:

– x: X node name
– y: Y node name
– type: contains ’N’ if the edge has been removed or ’P’ for retained edges. If the true

graph is supplied in the true_edges parameter, ’P’ becomes ’TP’ (True Positive) or ’FP’
(False Positive), while ’N’ becomes ’TN’ (True Negative) or ’FN’ (False Negative). Note
that, as the summary does not contain all the removed edges, edges not present have to be
considered as ’N’ and, if the true graph is supplied, as ’TN’.

– ai: the contributing nodes found by the method which contribute to the mutual informa-
tion between x and y, and possibly separate them.

– raw_contributions: describes the share of total mutual information between x and y ex-
plained by each contributor, measured by I’(x;y;ai|{aj}) / I’(x;y), where {aj} is the sepa-
rating set before adding ai.

– contributions: describes the share of remaining mutual information between x and y ex-
plained by each successive contributors, measured by I’(x;y;ai|{aj}) / I’(x;y|{aj}), where
{aj} is the separating set before adding ai.

– info: the mutual information I(x;y) times n_xy, the number of samples without missing
or NA values for both x and y.

– n_xy: gives the number of samples on which the information without conditioning has
been computed. If the input dataset has no missing value, the number of samples is the
same for all pairs and corresponds to the total number of samples.

– info_cond: the conditional mutual information I(x;y|ai) times the number of samples
without NA n_xy_ai used in the computation. info_cond is equal to info when ai is an
empty set.

– cplx: the complexity term for the pair (x, y) taking into account the contributing nodes ai.
– n_xy_ai: the number of samples without NA in x, y and all nodes in ai on which the

information and the complexity terms are computed. If the input dataset has no missing
value, the number of samples is the same for all pairs and corresponds to the total number
of samples.

– info_shifted: value equal to info_cond - cplx. Used to decide whether the edge is re-
tained (when positive), or removed (when zero or possibly negative when the parameter
negative_info is set to TRUE).

– ort_inferred: the orientation of the edge (x, y). 0: edge removed, 1: un-directed, 2:
directed from X to Y, -2: directed from Y to X, 6: bi-directed.
When the consistent option is turned on and there is more than one graph in the consistent
cycle, this is the inferred orientation of the edge in the last graph in the cycle.

– ort_ground_truth: the orientation of the edge (x, y) in the ground truth graph when true
edges are provided.

– is_inference_correct: indicates if the inferred orientation agrees with the provided ground
truth. TRUE: agrees, FALSE: disagrees and set to NA when no ground truth is supplied.
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– is_causal: boolean value indicating the causal nature of the arrow tips of an edge, based
on the probabilities given in the columns p_y2x and p_x2y. TRUE: when the edges is
directed and both the head and the tail are set with high confidence (adjustable with
the ort_consensus_ratio parameter), FALSE otherwise or NA if the edge is not retained.
More formally, an oriented edge is marked as genuine causal when (1− phead)/phead <
ort_consensus_ratio and ptail/(1− ptail) < ort_consensus_ratio.
A directed edge not marked as genuine causal indicates that only the head is set with
high confidence, while the tail remains uncertain. This corresponds to a putative causal
edge, which could either be a genuine causal edge or a bi-directed edge from a latent
confounder.
Note that the genuine causality is deducible only when latent variables are allowed and
propagation is not allowed.

– ort_consensus: Not computed (NAs) when consistency is not activated or, when con-
sistency is on, if there is only one graph returned (no cycle). When computed, indi-
cates the consensus orientation of the edge determined from the consensus skeleton and
the ort_consensus_ratio threshold on averaged orientation probabilities over the cycle of
graphs. Possible values are 0: not connected, 1: un-directed, -2 or 2: directed and 6:
bi-directed (latent variable).

– is_causal_consensus: Not computed (NAs) when consistency is not activated or, when
consistency is on, if there is only one graph returned (no cycle). When computed, work
in the same way as is_causal but on the consensus graph.

– edge_stats: Not computed (NAs) when consistency is not activated or, when consistency
is on, if there is only one graph returned (no cycle). When computed, contains the fre-
quencies of all ort_inferred values present in the cycle of graphs for the edge (x, y), in the
format [percentage(orientation)], separated by ";". e.g. In a cycle of 4 graphs, if an edge
is three times marked as 2 (directed) and one time marked as 1 (un-directed), edge_stats
will contain "75%(2);25%(1)".

– sign: the sign of the partial correlation between variables x and y, conditioned on the
contributing nodes ai.

– partial_correlation: value of the partial correlation for the edge (x, y) conditioned on the
contributing nodes ai.

– p_y2x: probability of the arrowhead from y to x, of the inferred orientation, derived from
the three-point mutual information (see Verny 2017 and Ribeiro-Dantas 2024). NA if the
edge is removed.

– p_x2y: probability of the arrowhead from x to y, of the inferred orientation, derived from
the three-point mutual information (see Verny 2017 and Ribeiro-Dantas 2024). NA if the
edge is removed.

– confidence: computed only when the confidence cut is activated, NA otherwise. When
computed, it corresponds to a measure of the strength of the retained edges: it is the
ratio between the probability to reject the edge exp(-info_shifted(x;y|ai)) in the original
dataset and the mean probability to do the same in n_shuffles number of randomized
datasets. Edges with confidence > conf_threshold will be filtered out from the graph. (see
parameters n_shuffles and conf_threshold)

• edges: a data frame with the raw edges output coming from the C++ core function. This data
frame is used internally by MIIC to produce the summary and contains all pairs of variables
(x, y).
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• triples: this data frame lists the orientation probabilities of the two edges of all unshielded
triples of the reconstructed network with the structure: node1 – mid-node – node2:

– node1: node at the end of the unshielded triplet
– p1: probability of the arrowhead node1 <- mid-node
– p2: probability of the arrowhead node1 -> mid-node
– mid-node: node at the center of the unshielded triplet
– p3: probability of the arrowhead mid-node <- node2
– p4: probability of the arrowhead mid-node -> node2
– node2: node at the end of the unshielded triplet
– ni3: 3 point (conditional) mutual information * N
– conflict: indicates if there is a conflict between the computed probabilities and the ni3

value

• adj_matrix: the adjacency matrix is a square matrix used to represent the inferred graph. The
entries of the matrix indicate whether pairs of vertices are adjacent or not in the graph. The
matrix can be read as a (row, column) set of couples where the row represents the source
node and the column the target node. Since miic can reconstruct mixed networks (including
directed, un-directed and bi-directed edges), we will have a different digit for each case:

– 1: (x, y) edge is un-directed
– 2: (x, y) edge is directed as x -> y
– -2: (x, y) edge is directed as x <- y
– 6: (x, y) edge is bi-directed

• proba_adj_matrix: the probability adjacency matrix is a square matrix used to represent the
orientation probabilities associated to the edges tips. The value at ("row", "column") is the
probability, for the edge between "row" and "column" nodes, of the edge tip on the "row"
side. A probability less than 0.5 is an indication of a possible tail (cause) and a probability
greater than 0.5 a possible head (effect).

• adj_matrices: present only when consistency is activated. The list of the adjacency matrices,
one for each graph which is part of the resulting cycle of graphs. Each item is a square matrix
with the same layout as adj_matrix.

• proba_adj_matrices: present only when consistency is activated. The list of the probability
adjacency matrices, one for each graph which is part of the resulting cycle of graphs. Each
item is a square matrix with the same layout as proba_adj_matrix.

• proba_adj_average: present only when consistency is activated. The average probability ad-
jacency matrix is a square matrix used to represent the orientation probabilities associated
to the edges tips of the consensus graph. Its layout is the same as proba_adj_matrix and it
contains the averaged probability of edges tips over the resulting cycle of graphs.

• is_consistent: present only when consistency is activated. TRUE if the returned graph is
consistent, FALSE otherwise.

• time: execution time of the different steps and total run-time of the causal graph reconstruction
by MIIC.

• interrupted: TRUE if causal graph reconstruction has been interrupted, FALSE otherwise.

• scores: present only when true edges have been supplied. Contains the scores of the returned
graph in regard of the ground truth:
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– tp: number of edges marked as True Positive

– fp: number of edges marked as False Positive

– fn: number of edges marked as False Negative

– precision: Precision

– recall: Recall

– fscore: F1-Score

• params: the list of parameters used for the network reconstruction. The parameters not sup-
plied are initialized to their default values. Otherwise, the parameters are checked and cor-
rected if necessary.

• state_order: the state order used for the network reconstruction. If no state order is supplied,
it is generated by using default values. Otherwise, it is the state order checked and corrected
if necessary.

• black_box: present only if a black box has been supplied, the black box, checked and corrected
if necessary, used for the network reconstruction.

• true_edges: present only if the true edges have been supplied, the true edges, checked and
corrected if necessary, used for the network evaluation.

• tmiic: present only in temporal mode. Named list containing the full list of edges completed
by stationarity, the lagged state order and, if a black box or true edges have been supplied, the
lagged versions of these inputs.
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Examples

library(miic)

# EXAMPLE HEMATOPOIESIS
data(hematoData)

# execute MIIC (reconstruct graph)
miic_obj <- miic(

input_data = hematoData[1:1000,], latent = "yes",
n_shuffles = 10, conf_threshold = 0.001

)

# plot graph
if(require(igraph)) {
plot(miic_obj, method="igraph")

}

# write graph to graphml format. Note that to correctly visualize
# the network we created the miic style for Cytoscape (http://www.cytoscape.org/).

writeCytoscapeNetwork(miic_obj, file = file.path(tempdir(), "temp"))

# EXAMPLE CANCER
data(cosmicCancer)
data(cosmicCancer_stateOrder)
# execute MIIC (reconstruct graph)
miic_obj <- miic(

input_data = cosmicCancer, state_order = cosmicCancer_stateOrder, latent = "yes",
n_shuffles = 100, conf_threshold = 0.001

)

# plot graph
if(require(igraph)) {
plot(miic_obj)

}

# write graph to graphml format. Note that to correctly visualize
# the network we created the miic style for Cytoscape (http://www.cytoscape.org/).
writeCytoscapeNetwork(miic_obj, file = file.path(tempdir(), "temp"))

# EXAMPLE COVID CASES (time series demo)
data(covidCases)
# execute MIIC (reconstruct graph in temporal mode)
tmiic_obj <- miic(input_data = covidCases, mode = "TS", n_layers = 3, delta_t = 1, mov_avg = 14)

# to plot the default graph (compact)
if(require(igraph)) {
plot(tmiic_obj)

}

# to plot the raw temporal network
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if(require(igraph)) {
plot(tmiic_obj, display="raw")

}

# to plot the full temporal network
if(require(igraph)) {

plot(tmiic_obj, display="lagged")
}

plot.miic Basic plot function of a miic network inference result

Description

This function calls export to build a plottable object from the result returned by miic and plot it.

Usage

## S3 method for class 'miic'
plot(x, method = "igraph", pcor_palette = NULL, ...)

Arguments

x [a miic object, required]
The object returned by miic execution.

method [a string, optional, default value "igraph"]
The plotting method, currently only "igraph" is supported.

pcor_palette [a color palette, optional, default value grDevices::colorRampPalette(c("blue",
"darkgrey", "red")]
Used to represent the partial correlations (the color of the edges). The palette
must be able to handle 201 shades to cover the correlation range from -100 to
+100.

... Additional plotting parameters. See the corresponding plot function for the com-
plete list.
For igraph, see igraph.plotting.

Details

See the documentation of export for further details.

See Also

export for graphical exports, igraph.plotting
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plot.tmiic Basic plot function of a temporal miic (tmiic) network inference result

Description

This function calls export to build a plottable object from the result returned by miic in temporal
mode and plot it.

Usage

## S3 method for class 'tmiic'
plot(
x,
method = "igraph",
pcor_palette = NULL,
display = "compact",
show_self_loops = TRUE,
positioning_for_grid = "greedy",
orientation_for_grid = "L",
...

)

Arguments

x [a tmiic object, required]
The object returned by miic in temporal mode.

method [a string, optional, default value "igraph"]
The plotting method, currently only "igraph" is supported.

pcor_palette [a color palette, optional, default value grDevices::colorRampPalette(c("blue",
"darkgrey", "red")]
Used to represent the partial correlations (the color of the edges). The palette
must be able to handle 201 shades to cover the correlation range from -100 to
+100.

display [a string, optional, default value "compact"]
Possible values are "raw", "lagged", "compact", "combine", "unique", "drop":

• When display = "raw", the plot function will use the tmiic graph object
as it, leading to the display of a lagged graph. Unless a specific layout is
specified, nodes will be positioned on a grid.

• When display = "lagged", the function will repeat the edges over history
assuming stationarity and plot a lagged graph. Unless a specific layout is
specified, nodes will be positioned on a grid.

• When display = "compact", the default, nodes and edges are converted into
a flattened version to produce a compact view of the temporal network
whilst still presenting all the information in the plotting.
e.g. X_lag1->Y_lag0, X_lag2<-Y_lag0 become respectively X->Y lag=1,
X<-Y lag=2.
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• When display = "combine", prior to the plotting, a pre-processing will be
applied to kept only one edge per pair of nodes. The info_shifted will be
the highest one of the summarized edges whilst the lag and orientation of
the summarized edge will be an aggregation.
e.g. X_lag1->Y_lag0, X_lag2<-Y_lag0 will become X<->Y lag=1,2 with
the info_shifted of X_lag1->Y_lag0 if info_shifted of X_lag1->Y_lag0 >
X_lag2<-Y_lag0.

• When display = "unique", prior to the plotting, a pre-processing will be
applied to kept only the edges having the highest info_shifted for a pair of
nodes. If several edges between the sames nodes have the same info_shifted,
then the edge kept is the one with the minimum lag.
e.g. X_lag1->Y_lag0, X_lag2<-Y_lag0 with info_shifted of X_lag1->Y_lag0
> X_lag2<-Y_lag0 become X->Y lag=1.

• When display = "drop", the same pre-processing as "unique" will be ap-
plied, then the lag information will be dropped and will not be displayed on
the final plotting.

show_self_loops

[a boolean, optional, TRUE by default]
When TRUE, the lagged edges starting and ending on the same node are in-
cluded in the igraph object. When FALSE, only edges having different nodes
are present in the igraph object.

positioning_for_grid

[a string, optional, "greedy" by default]
Used only when the display is "raw" or "lagged" and no layout is supplied.
Possible values are "none", "alphabetical", "layers", "greedy" and "sugiyama"

• When positioning_for_grid = "none" The nodes are positioned as they ap-
pear in the miic result

• When positioning_for_grid = "alphabetical" The nodes are positioned al-
phabetically in ascending order

• When positioning_for_grid = "layers" The nodes with the less lags will
be placed on the exteriors while the nodes having the most lags are in the
center

• When positioning_for_grid = "greedy" A greedy algorithm will be used to
placed the nodes in a way minimizing the crossing edges

• When positioning_for_grid = "sugiyama" The sugiyama algorithm will be
used to placed the nodes in a way minimizing the crossing edges

orientation_for_grid

[a string, optional, "L" by default]
Used only when the display is "raw" or "lagged and no layout is supplied. Indi-
cates the orientation of the draw, possible values are landscape: "L" or portrait:
"P".

... Additional plotting parameters. See the corresponding plot function for the com-
plete list.
For igraph, see igraph.plotting.
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Details

See the documentation of export for further details.

See Also

export for graphical exports, igraph.plotting

Examples

library(miic)

#' # EXAMPLE COVID CASES (time series demo)
data(covidCases)
# execute MIIC (reconstruct graph in temporal mode)
tmiic_obj <- miic(input_data = covidCases, mode = "TS", n_layers = 3, delta_t = 1, mov_avg = 14)

# to plot the default compact graph
if(require(igraph)) {

plot(tmiic_obj)
}

# to plot the raw temporal network
if(require(igraph)) {

plot(tmiic_obj, display="raw")
}

# to plot the full temporal network
if(require(igraph)) {

plot(tmiic_obj, display="lagged")
}

writeCytoscapeNetwork GraphML converting function for miic graph

Description

Convert miic graph to GraphML format.

Usage

writeCytoscapeNetwork(miic_obj, file, layout = NULL)

Arguments

miic_obj A miic object. The object returned by the miic execution.

file A string. Path to the output file containing file name without extension (.graphml
will be appended).

http://graphml.graphdrawing.org/
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layout An optional data frame of 2 (or 3) columns containing the coordinate x and y for
each node. The optional first column can contain node names. If node names is
not given, the order of the input file will be assigned to the list of positions.

Value

None

writeCytoscapeStyle Style writing function for the miic network

Description

This function writes the miic style for a correct visualization using the cytoscape tool (http://www.cytoscape.org/).

Usage

writeCytoscapeStyle(file)

Arguments

file [a string] The file path of the output file (containing the file name without exten-
sion).

Details

The style is written in the xml file format.

Value

None
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