Heterogeneity analysis is a way to explore how the results of a model can vary depending on the characteristics of individuals in a population, and demographic analysis estimates the average values of a model over an entire population.
In practice these two analyses naturally complement each other: heterogeneity analysis runs the model on multiple sets of parameters (reflecting different characteristics found in the target population), and demographic analysis combines the results.
For this example we will use the result from the assessment of a new
total hip replacement previously described in
vignette("d-non-homogeneous", "heemod")
.
The characteristics of the population are input from a table, with one column per parameter and one row per individual. Those may be for example the characteristics of the indiviuals included in the original trial data.
For this example we will use the characteristics of 100 individuals,
with varying sex and age, specified in the data frame
tab_indiv
:
## # A tibble: 100 × 2
## age sex
## <dbl> <int>
## 1 50 0
## 2 77 0
## 3 66 1
## 4 63 1
## 5 47 1
## 6 50 0
## 7 73 0
## 8 46 1
## 9 59 1
## 10 64 0
## # ℹ 90 more rows
res_mod
, the result we obtained from
run_model()
in the Time-varying Markov models
vignette, can be passed to update()
to update the model
with the new data and perform the heterogeneity analysis.
## No weights specified in update, using equal weights.
## Updating strategy 'standard'...
## Updating strategy 'np1'...
The summary()
method reports summary statistics for
cost, effect and ICER, as well as the result from the combined
model.
## An analysis re-run on 100 parameter sets.
##
## * Unweighted analysis.
##
## * Values distribution:
##
## Min. 1st Qu. Median Mean
## standard - Cost 500.08967163 592.3687128 621.5892423 665.8928387
## standard - Effect 10.06345874 23.3226486 26.3577780 25.3341131
## standard - Cost Diff. - - - -
## standard - Effect Diff. - - - -
## standard - Icer - - - -
## np1 - Cost 607.16692250 632.1186231 640.0588497 652.9544113
## np1 - Effect 10.13073146 23.4706053 26.6329927 25.5680133
## np1 - Cost Diff. -159.96283707 -99.5031416 18.4696074 -12.9384274
## np1 - Effect Diff. 0.05767389 0.1756522 0.2101911 0.2339002
## np1 - Icer -351.98058303 -304.0330575 83.6463073 69.4877163
## 3rd Qu. Max.
## standard - Cost 786.6690449 871.1621236
## standard - Effect 29.0596426 30.8545173
## standard - Cost Diff. - -
## standard - Effect Diff. - -
## standard - Icer - -
## np1 - Cost 687.1659033 711.1992865
## np1 - Effect 29.2683350 31.0829546
## np1 - Cost Diff. 39.7499103 107.0772509
## np1 - Effect Diff. 0.3272774 0.4544649
## np1 - Icer 226.2989208 1856.5985016
##
## * Combined result:
##
## 2 strategies run for 60 cycles.
##
## Initial state counts:
##
## PrimaryTHR = 1000L
## SuccessP = 0L
## RevisionTHR = 0L
## SuccessR = 0L
## Death = 0L
##
## Counting method: 'beginning'.
##
## Values:
##
## utility cost
## standard 25334.11 665892.8
## np1 25568.01 652954.4
##
## Efficiency frontier:
##
## np1
##
## Differences:
##
## Cost Diff. Effect Diff. ICER Ref.
## np1 -12.93843 0.2339002 -55.31602 standard
The variation of cost or effect can then be plotted.
The results from the combined model can be plotted similarly to the
results from run_model()
.
Weights can be used in the analysis by including an optional column
.weights
in the new data to specify the respective weights
of each strata in the target population.
## # A tibble: 100 × 3
## age sex .weights
## <dbl> <int> <dbl>
## 1 65 1 0.300
## 2 48 1 0.599
## 3 63 1 0.0521
## 4 61 0 0.529
## 5 50 1 0.418
## 6 41 1 0.0801
## 7 46 1 0.693
## 8 77 1 0.888
## 9 73 0 0.278
## 10 71 1 0.756
## # ℹ 90 more rows
## Updating strategy 'standard'...
## Updating strategy 'np1'...
## An analysis re-run on 100 parameter sets.
##
## * Weights distribution:
##
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.006434 0.257895 0.503276 0.493604 0.757841 0.998732
##
## Total weight: 49.36041
##
## * Values distribution:
##
## Min. 1st Qu. Median Mean
## standard - Cost 438.70535048 592.3687128 626.3537753 683.1157611
## standard - Effect 5.05860925 21.9825691 25.9857701 24.7769772
## standard - Cost Diff. - - - -
## standard - Effect Diff. - - - -
## standard - Icer - - - -
## np1 - Cost 590.76054210 632.1186231 641.3547975 657.9069949
## np1 - Effect 5.07524179 22.2578591 26.1614223 25.0252254
## np1 - Cost Diff. -165.40882382 -99.5031416 15.0010223 -25.2087662
## np1 - Effect Diff. 0.01159912 0.1756522 0.2086924 0.2482483
## np1 - Icer -354.56585682 -304.0330575 65.6679900 248.0752439
## 3rd Qu. Max.
## standard - Cost 786.6690449 8.787814e+02
## standard - Effect 29.0596426 3.129948e+01
## standard - Cost Diff. - -
## standard - Effect Diff. - -
## standard - Icer - -
## np1 - Cost 687.1659033 7.133726e+02
## np1 - Effect 29.2683350 3.153286e+01
## np1 - Cost Diff. 39.7499103 1.520552e+02
## np1 - Effect Diff. 0.3272774 4.665109e-01
## np1 - Icer 226.2989208 1.310920e+04
##
## * Combined result:
##
## 2 strategies run for 60 cycles.
##
## Initial state counts:
##
## PrimaryTHR = 1000L
## SuccessP = 0L
## RevisionTHR = 0L
## SuccessR = 0L
## Death = 0L
##
## Counting method: 'beginning'.
##
## Values:
##
## utility cost
## standard 24776.98 683115.8
## np1 25025.23 657907.0
##
## Efficiency frontier:
##
## np1
##
## Differences:
##
## Cost Diff. Effect Diff. ICER Ref.
## np1 -25.20877 0.2482483 -101.5466 standard
Updating can be significantly sped up by using parallel computing. This can be done in the following way:
use_cluster()
functions
(i.e. use_cluster(4)
to use 4 cores).close_cluster()
function.Results may vary depending on the machine, but we found speed gains to be quite limited beyond 4 cores.