Package ‘conjurer’

January 18, 2023

Type Package

Title A Parametric Method for Generating Synthetic Data
Version 1.7.1

Date 2023-01-15

Description Generates synthetic data distributions to enable testing various modelling tech-
niques in ways that real data does not allow. Noise can be added in a controlled man-
ner such that the data seems real. This methodology is generic and therefore bene-
fits both the academic and industrial research.

Depends R (>=2.10)
Imports jsonlite(>= 1.8.0), httr (>= 1.4.2), methods
License MIT + file LICENSE

URL https://www.foyi.co.nz/posts/documentation/documentationconjurer/

BugReports https://github.com/SidharthMacherla/conjurer/issues

Encoding UTF-8

RoxygenNote 7.2.3

Suggests knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Author Sidharth Macherla [aut, cre] (<https://orcid.org/0000-0002-4825-2026>)
Maintainer Sidharth Macherla <msidharthrasik@gmail.com>

Repository CRAN

Date/Publication 2023-01-18 08:30:06 UTC

R topics documented:

buildCust e e
buildDistr
buildHierarchy
buildld

https://www.foyi.co.nz/posts/documentation/documentationconjurer/
https://github.com/SidharthMacherla/conjurer/issues
https://orcid.org/0000-0002-4825-2026

2 buildCust

buildModelData e 6
buildName 7
buildNames L 7
builldNumo 8
buildOutliers e 10
buildPareto L 11
buildPattern 11
buildProd e 12
buildSpike 13
extractDf . . . L L 14
genFirstPairs 14
genlndepDeplson 15
genMatriX e e e e e e e 16
genPattern L L e e e e e e e 17
genTrans L e e e 18
genTree 19
genTriples e 20
missingArgHandler L L 20
nextAlphaProb L 21
treeDf e 21
UNCOVIADL . . o o v e o e e e e e e e e e e e e e e e e e 22
Index 23
buildCust Build a Unique Customer Identifier
Description

Builds a customer identifier. This is often used as a primary key of the customer dim table in
databases.

Usage

buildCust(numOfCust)

Arguments
numOfCust A natural number. This specifies the number of unique customer identifiers to
be built.
Details

A customer is identified by a unique customer identifier(ID). A customer ID is alphanumeric with
prefix "cust" followed by a numeric. This numeric ranges from 1 and extend to the number of
customers provided as the argument within the function. For example, if there are 100 customers,
then the customer ID will range from custO01 to cust100. This ensures that the customer ID is
always of the same length.

buildDistr 3

Value

A character with unique customer identifiers

Examples
df <- buildCust(numOfCust = 1000)
df <- buildCust(numOfCust = 223)
buildDistr Build Data Distribution

Description

Builds data distribution. For example, the function genTrans uses this function to build the data
distributions necessary. This function uses trigonometry based functions to generate data. This is
an internal function and is currently not exported in the package.

Usage

buildDistr(st, en, cycles, trend, n)

Arguments

st A number. This defines the starting value of the number of data points.

en A number. This defines the ending value of the number of data points.

cycles A string. This defines the cyclicality of data distribution.

trend A number. This defines the trend of data distribution i.e if the data has a positive
slope or a negative slope.

n A numeric. This specifies the number of values to be generated. It should
be non-zero natural number. This parameter is currently used by the function
buildNum.

Details

A parametric method is used to build data distribution. The data distribution function uses the
formulation of

sin(a x x) 4+ cos(bxx) + ¢
Where,
1. aand b are the parameters

2. X is a variable

3. cis a constant

4 buildHierarchy

Firstly, parameter ’a’ defines the number of outer level crests (peaks in the data distribution). Gen-
erally speaking, the number of crests is approximately twice the value of a. This means that if a is
set to a value 0.5, there will be one crest and if it is set to 2, there will be 4 crests. On account of
this behavior, this parameter is set based on the argument cycles of the function. For example, if
the argument cycles is set to "y" i.e yearly cycle, it means that there must be one crest i.e peak in
the distribution. To have one crest, the parameter must be around 0.5. A random number is then

generated between 0.2 and 0.6 to get to that one crest.

Secondly, the variable ’x’ is the x-axis of the data distribution. Since the function buildDistr is
used internally to generate data at different levels, this variable could have a range of 1 to 12 or 1
to 31 depending on the arguments ’st’ and ’en’. For example, if the data is generated at the month
level, then arguments ’st’ is set to 1 and ’en’ is set to 12. Similarly, if the data is set to day level,
the ’st’ is set to 1 and ’en’ is set to the number of days in that month i.e 28 for month 2 and 31 for
month 12 etc.

Thirdly, the parameter ’b’ defines the inner level crests(peaks in data distribution). This parame-
ter helps in making the data distribution seem more realistic by adding more "ruggedness" of the
distribution.

Finally, the constant ’c’ is the intercept part of the formulation and primarily serves as a way to
ensure that the data distribution has a positive "y’ axis component. This value is randomly generated
between 2 and 5.

Value

A data frame with data distribution is returned.

buildHierarchy Generate hierarchical data

Description

Generates hierarchical data by using an internal function genTree. For a working example, please
see the vignette.

Usage

buildHierarchy(type, splits, numOflLevels)

Arguments
type A string. In its current state, this is only a placeholder function and is not manda-
tory. Currently, only one type of hierarchy is permitted namely equalSplit.
splits A positive number. This specifies the number of splits at each branch. For

instance, if split is 2 then, each branch will have 2 sub-branches.

numOfLevels A positive number. This specifies the number of layers in the hierarchy.

buildld 5

Details

This function helps in generating hierarchical data. If there are multiple categorical variables i.e.
classes that are mapped to other classes in a hierarchical manner, this function helps in building the
same. Some common use cases for this type of data are Linnaean system of classification in life
sciences and product hierarchy in retail industry. The number of terminal nodes are dependent on
the arguments splits and numO f Levels. More precisely, the number of terminal nodes has the
formulation of splits"umO f Levels. For instance, if splits is 2 and numO f Levels is 3, then the
number of terminal nodes are 23 i.e. 8. Furthermore, the number of columns of the output dataframe
is equal to the numO f Levels. Although a hierarchical data sctructure is often represented as a tree
structure, this function outputs the data in a denormalized form i.e a dataframe.

Value

A dataframe.

Examples

productHierarchy <- buildHierarchy(type = "equalSplit"”, splits = 2, numOfLevels = 3)
productHierarchy <- buildHierarchy(splits = 2, numOfLevels = 3)

buildId Build identifier

Description

Builds strings that could be used as identifiers.

Usage

buildId(numOfItems, prefix)

Arguments
numOfItems A number. This defines the number of elements to be output.
prefix A string. This defines the prefix for the strings.

Details

This function can be used to build an alphanumeric sequence that can be used as a primary key in a
data table or a unique identifier of an element.

Value
A character with the alphanumeric strings is returned. These strings use the prefix that is mentioned

in the argument "prefix"

Examples

userId <- buildId(numOfItems = 3, prefix = "uid")

6 buildModelData

buildModelData Generate Synthetic Data using uncovr API

Description

Please refer to the official documentation of uncovr at https.//www.foyi.co.nz/posts/documentation/documentationuncovr/
for a detailed explanation. This function generates data i.e. independent variables and dependent

variable. Besides these variables, this function sources the linear function i.e. model formula.This

function needs to be used along with other function such as extractDf so as to extract relevant

portions of the response.

Usage
buildModelData(numOfObs, numOfVars, key, modelObj)

Arguments
numOfObs A number. This represents the number of observations in the data. In other
words, the number of rows of data that are requested to be generated. The nu-
mOfObs argument must be a non-negative integer and in the current version, this
function accepts a range of 100 to 10,000.
numOfVars A number. This represents the number of independent variables in the data. In
other words, the number of columns besides the dependent variable of data that
are requested to be generated. The numOfVars argument must be a non-negative
integer and in the current version, this function accepts a range of 1 to 100.
key An alpha numeric. This is the subscription key that can be sourced from the
developer portal of uncovr API available at https://foyi.developer.azure-api.net/.
modelObj Optional argument. A glm or Im model object where both the dependent and
independent variables are continuous.
Details

This is a function that helps in sending the details of the requested data to uncovr API end point and
source its response. The purpose of this function can be best understood when explained within the
context that is given below. There is a closed source SaaS(Software as a Service) software named
uncovr that provides an API(Application Programming Interface). In its current state, the SaaS
software is free to use with some constraints around the volume of data and the frequency of API
calls. One of the functions of uncovr API takes an input of number of observations i.e. rows and
number of independent variables namely columns and gives an output. The input of the uncovr
function is required to be sent as part of the body of the html POST functionality. This function
buildModelData creates the json in the form required by uncovr API and sources the response.
This function uses an internal function uncovrApi to connect to the API endpoint and uses another
internal function namely genIndepDepJson to build the necessary body of the POST function.

Value

A json with details such as the requested data, model performance metrics and the model formula.

buildName 7

buildName Build Dynamic Strings

Description

Builds strings that could be further used as identifiers. This is an internal function and is currently
not exported in the package.

Usage

buildName (numOfItems, prefix)

Arguments
numOfItems A number. This defines the number of elements to be output.
prefix A string. This defines the prefix for the strings. For example, the function build-
Cust uses this function and passes the prefix "cust" while the function buildProd
passes the prefix "sku"
Details

This function is used by other internal functions namely, buildCust and buildProd to produce the
alphanumeric identifiers for customers and products respectively.

Value

A character with the alphanumeric strings is returned. These strings use the prefix that is mentioned
in the argument "prefix"

buildNames Generate Names

Description

Generates names based on a given training data or using the default data

Usage

buildNames(dframe, numOfNames, minLength, maxLength)

Arguments

dframe

numOfNames

minLength

maxLength

Details

buildNum

A dataframe. This argument is passed on to another function genMatrix for gen-
erating an alphabet frequency table. This dataframe is single column dataframe
with rows that contain names. These names must only contain english alpha-
bets(upper or lower case) from A to Z.

A numeric. This specifies the number of names to be generated. It should be
non-zero natural number.

A numeric. This specifies the minimum number of alphabets in the name. It
must be a non-zero natural number.

A numeric. This specifies the maximum number of alphabets in the name. It
must be a non-zero natural number.

This function generates names. There are two options to generate names. The first option is to use
an existing sample of names and generate names. The second option is to use the default table of

prior probabilities.

Value

A list of names.

Examples

buildNames(numOfNames = 3, minLength = 5, maxLength = 7)

buildNum

Build Numeric Data

Description

Build Numeric Data

Usage

buildNum(n, st, en, disp, outliers)

Arguments
n
st
en

disp

A number. This specifies the number of values to be generated.
A number. This defines the starting value of the number of data points.
A number. This defines the ending value of the number of data points.

A number between —(pi/2) and (pi/2). This defines the dispersion of the dis-
tribution.

buildNum 9

outliers A number. This signifies the presence of outliers. If set to value 1, then outliers
are generated randomly. If set to value 0O, then no outliers are generated. The
presence of outliers is a very common occurrence and hence setting the out-
liers to 1 is recommended. However, there are instances where outliers are not
needed. For example, if the objective of data generation is solely for visualiza-
tion purposes then outliers may not be needed. The default value is 1.

Details

This function helps in generating numeric data such as age, height, weight etc. This function could
be used along with other functions such as buildCust to make it more meaningful. The data
distribution function uses the formulation of

sin((r*a)*z)+c

Where,

1. ris the random value such that 0.8 <= r <= 1.2. This adds +/— 20% randomness to the

parameter a.

2. ais the parameter such that, —(pi/2) <= a <= (pi/2).

3. x is a variable such that, (pi/2) <=z <= (pi/2).

4. cis aconstant such that 2 <= c <= 5.
The key component of this function is disp. This helps in controlling the dispersion of the distri-
bution. Let us assume that one would like to generate age of people in years. Furthermore, let us
assume that the range of the age is between 23 and 80. If disp = 1, then the function will generate
more data with a negative slope i.e more people with age closer to 23 than 80. If disp = 1 is
used, then the opposite will be true. However, if one would like to generate data that is visually

similar to normal distribution i.e more people in the middle age group and less towards 23 or 80,
then disp = 0.5 could be used.

It is recommended to firstly plot the code and inspect visually to check which distribution is needed.

Value

A dataframe

Examples

age <- buildNum(n = 10, st = 23, en = 80, disp = 0.5, outliers = 1)
plot(age) #visualize the resulting distribution

10 buildOutliers

buildOutliers Build Outliers in Data Distribution

Description

Builds outlier values and replaces random data points with outliers. This is an internal function and
is currently not exported in the package.

Usage
buildOutliers(distr)
Arguments
distr numeric vector. This is the target vector which is processed for outlier genera-
tion.
Details

It is a common occurrence to have outliers in production data. For instance, in the retail industry,
there are days such as black Friday where the sales for that day are far more than the daily average
for the year. For the synthetic data generated to seem similar to production data, package conjurer
uses this function to build such outlier data.

This function takes a numeric vector and then randomly selects at least 1 data point and a maximum
of 3 percent data points to be replaced with an outlier. The process for generating outliers is as fol-
lows. This methodology of outlier generation is based on a popular method of identifying outliers.
For more details refer to the function *outlier’ in R package *GmAMisc’.

1. First, the interquartile range(IQR) of the numeric vector is computed.

2. Second, a random number between 1.5 and 3 is generated.

3. Finally, the random number above is multiplied with the IQR to compute the outlier.

These steps mentioned above are repeated for at least once and a maximum of 3

Value

A numeric vector with random values replaced with outlier values.

buildPareto 11

buildPareto Map Factors Based on Pareto Arguments

Description

Maps a factor to another factor in a one to many relationship following Pareto principle. For exam-
ple, 80 percent of transactions can be mapped to 20 percent of customers.

Usage

buildPareto(factor1, factor2, pareto)

Arguments
factor1 A factor. This factor is mapped to factor2 as given in the details section.
factor2 A factor. This factor is mapped to factorl as given in the details section.
pareto This defines the percentage allocation and is a numeric data type. This argument
takes the form of c(x,y) where x and y are numeric and their sum is 100. If we
set Pareto to ¢(80,20), it then allocates 80 percent of factorl to 20 percent of
factor 2. This is based on a well-known concept of the Pareto principle.
Details

This function is used to map one factor to another based on the Pareto argument supplied. If factorl]
is a factor of customer identifiers, factor2 is a factor of transactions and Pareto is set to ¢(80,20),
then 80 percent of customer identifiers will be mapped to 20 percent of transactions and vice versa.

Value

A data frame with factor 1 and factor 2 as columns. Based on the Pareto arguments passed, column
factor 1 is mapped to factor 2.

buildPattern Build a pattern

Description

Builds data based on a pattern. This function uses another internal function genPattern.

Usage

buildPattern(n, parts, probs)

12 buildProd

Arguments
n A natural number. This specifies the number of data points to build.
parts A natural number. This specifies the parts that make up the pattern.
probs A number between 0 and 1.

Details

This function helps in generating data based on a pattern. To explain in simple terms, this function
aims to perform the exact opposite of a regular expression i.e regex function. In other words, this
function generates data given a generic pattern. The steps in the process of building data from a
pattern is as follows.

1. Identify the parts that make up the data. Ideally, these parts have a pattern and a probabilistic
distribution of their own. For example, a phone number has three parts namely, country code,
area code and a number.

2. Assign probabilities to each of the above parts. If a part contains only one member, then the
corresponding probability must be 1. However, if there are multiple members in the part, then
each member must have a probability provided in the respective order.

Value

A vector.

See Also

genPattern.

Examples

parts <- list(c("+91","+44" "+64"), c(491,324,211), c(7821:8324))

probs <- list(c(0.25,0.25,0.50), c(0.30,0.60,0.10), c())

phoneNumbers <- buildPattern(n=20,parts = parts, probs = probs)

head (phoneNumbers)

parts <- list(c("+91","+44" "+64"), c("("), c(491,324,211), c(")"), c(7821:8324))
probs <- list(c(0.25,0.25,0.50), c(1), c(0.30,0.60,0.10), c(1), c())

phoneNumbers <- buildPattern(n=20,parts = parts, probs = probs)
head(phoneNumbers)

buildProd Build Product Data

Description

Builds a unique product identifier and price. The price of the product is generated randomly within
the minimum and the maximum range provided as input.

buildSpike 13

Usage

buildProd(numOfProd, minPrice, maxPrice)

Arguments
numOfProd A number. This defines the number of unique products.
minPrice A number. This is the minimum value of the product’s price range.
maxPrice A number. This is the maximum value of the product’s price range.
Details

A product ID is alphanumeric with prefix "sku" which signifies a stock keeping unit. This prefix
is followed by a numeric ranging from 1 and extending to the number of products provided as the
argument within the function. For example, if there are 10 products, then the product ID will range
from sku(O1 to skulO. This ensures that the product ID is always of the same length. For these
product IDs, the product price will be within the range of minPrice and maxPrice arguments.

Value

A character with product identifier and price.

Examples

df <- buildProd(numOfProd = 1000, minPrice = 5, maxPrice = 100)
df <- buildProd(numOfProd = 29, minPrice = 3, maxPrice = 50)

buildSpike Build Spikes in the Data Distribution

Description
Builds spikes in the data distribution. For example, in retail industry transactions are generally
higher during the holiday season such as December. This function is used to set the same.

Usage
buildSpike(distr, spike)

Arguments
distr numeric vector. This is the input vector for which the spike value needs to be
set.
spike A number. This represents the seasonality of data. It can take any value from

1 to 12. These numbers represent months in a year, from January to December
respectively. For example, if the spike is set to 12, it means that December has
the highest number of transactions. This is an internal function and is currently
not exported in the package.

14 genFirstPairs

Value

A numeric vector reordered

extractDf Extract Dataframe from uncovr API Response

Description

This function extracts the dataframe from the output of the buildModelData function. Please refer

to the official documentation of uncovr at https://www.foyi.co.nz/posts/documentation/documentationuncovr/.
Usage

extractDf (uncovrJson)

Arguments

uncovrJson A json. This is the output of the buildModelData function.

Details

The purpose of this function can be best understood when explained within the context that is
given below. There is a closed source SaaS(Software as a Service) software named uncovr that
provides an API(Application Programming Interface). In its current state, the SaaS software is free
to use with some constraints around the volume of data and the frequency of API calls. One of
the functions of uncovr API takes an input of number of observations i.e. rows and number of
independent variables namely columns and gives an output. This output is in the form of a json
file and has many other elements besides the dependent and independent variables. This function
extractDf helps in extracting the dataframe from the json.

Value

A dataframe with dependent and independent variables. The independent variables are prefixed
with iv and the dependent variable is named dv.

genFirstPairs Extracts the First Two Alphabets of the String

Description
For a given string, this function extracts the first two alphabets. This function is further used by
genMatrix function.

Usage

genFirstPairs(s)

genlndepDeplJson 15

Arguments

s A string. This is the string from which the first two alphabets are to be extracted.

Value

First two alphabets of the string input.

genIndepDepJson Generate Body for the POST Function of Uncovr

Description

This is an internal function used by buildModelData function.

Usage

genIndepDepJson(numOfObs, numOfVars, modelObj)

Arguments
numOfObs A number. This represents the number of observations in the data. In other
words, the number of rows of data that are requested to be generated. The nu-
mOfObs argument must be a non-negative integer.
numOfVars A number. This represents the number of variables in the data. In other words,
the number of columns of data that are requested to be generated. The numOf-
Vars argument must be a non-negative integer.
modelObj An optional argument. An Im or glm model object. The current limitation is that
the independent and dependent variables must be continuous.
Details

This function is one of the core functions for the generation of data that comprises of indepen-
dent and dependent variables. The purpose of this function can be best understood when explained
within the context that is given below. There is a proprietary SaaS(Software as a Service) software
named uncovr that provides an API(Application Programming Interface). In its current state, the
SaaS software is free to use with some constraints around the volume of data and the frequency of
API calls. One of the functions of uncovr API takes is to source inputs such as number of obser-
vations i.e. rows and number of independent variables namely columns and gives an output. The
input of the uncovr function is required to be sent as part of the body of the html POST function-
ality. This function genlndepDepJson creates the json in the form required by uncovr APIL. As an
optional argument, an Im or glm model object can be passed using the modelObj argument. This
will ensure that the coefficients of the independent variables are sourced from the model object in-
stead of generating randomly by the uncovr API. The current limitation is that the independent and
dependent variables must be continuous.

16

genMatrix

Value

A json with the details of independent variable and the dependent variable. The format of this json
is as required by the uncovr api end point.

genMatrix Generate Frequency Distribution Matrix

Description

For a given names dataframe and placement, a frequency distribution table is returned.

Usage

genMatrix(dframe, placement)

Arguments
dframe A dataframe with one column that has one name per row. These names must be
english alphabets from A to Z and must not include any non-alphabet characters
such as as hyphen or apostrophe.
placement A string argument that takes three values namely "first", "last" and "all". Cur-
rently, only "first" and "all" are used while the option "last" is a placeholder for
future versions of the package **conjurer®*
Details

The purpose of this function is to generate a frequency distribution table of alphabets. There are
currently 2 tables that could be generated using this function. The first table is generated using the
internal function genFirstPairs. For this, the argument placement is assigned the value "first".
The rows of the table returned by the function represent the first alphabet of the string and the
columns represent the second alphabet. The values in the table represent the number of times the
combination is observed i.e the combination of the row and column alphabets.

The second table is generated using the internal function genTriples. For this, the argument place-
ment is assigned the value "all". The rows of the table returned by the function represent two con-
secutive alphabets of the string and the columns represent the third consecutive alphabet. The values
in the table represent the number of times the combination is observed i.e the combination of the
row and column alphabets.

Value

A table. The rows and columns of the table depend on the argument placement. A detailed expla-
nation is as given below in the detail section.

genPattern 17

genPattern Generate a pattern

Description

Generates data based on a pattern. This function is used by another internal function buildPattern.

Usage

genPattern(orderedList)

Arguments
orderedList Alist of lists. The element values of the sublist is a vector of characters(string or
numeric or special character) and the element probs is a vector of probabilities.
The range of the probs is 0 to 1 and length of the probs vector is either equal to
length of values or NULL.
Details

This function helps in generating data based on a pattern. To explain in simple terms, this function
aims to perform the exact opposite of a regular expression i.e regex function. In other words, this
function generates data given a generic pattern. The input is a list of components that make up the
pattern. Each component i.e element of the list is a also list with two vectors namely values and
probs. The vector values has the set of values out of which one of them is selected randomly.
If this random selection is supposed to be completely random, then the next vector probs can be
left empty i.e. NULL. However, if the random selection of values is expected to follow a a pre-
determined probabilistic distribution, then the probabilities must be provided explicitly. To explain
further, if there are three values a, b, ¢ and their probabilistic distribution must be 25 percent, 50
percent and 25 percent respectively, then the vector values will take the form ¢(a,b,c) and the
vector probs will take the form ¢(0.25, 0.5, 0.25).

Value

A character vector.

See Also

[buildPattern()]

18

genTrans

genTrans

Build Transaction Data

Description

Build Transaction Data

Usage

genTrans(cycles, trend, transactions, spike, outliers)

Arguments

cycles

trend

transactions

spike

outliers

Value

This represents the cyclicality of data. It can take the following values

nen

1. "y". If cycles is set to the value "y", it means that there is only one instance
of a high number of transactions during the entire year. This is a very
common situation for some retail clients where the highest number of sales
are during the holiday period in December.

n_n

2. "q". If cycles is set to the value "q", it means that there are 4 instances of
a high number of transactions. This is generally noticed in the financial
services industry where the financial statements are revised every quarter
and have an impact on the equity transactions in the secondary market.

3. "m". If cycles is set to the value "m", it means that there are 12 instances
of a high number of transactions for a year. This means that the number of
transactions increases once every month and then subside for the rest of the
month.

A number. This represents the slope of data distribution. It can take a value of 1
or -1. If the trend is set to value 1, then the aggregated monthly transactions will
exhibit an upward trend from January to December and vice versa if it is set to
-1.

A number. This represents the number of transactions to be generated.

A number. This represents the seasonality of data. It can take any value from
1 to 12. These numbers represent months in a year, from January to December
respectively. For example, if the spike is set to 12, it means that December has
the highest number of transactions.

A number. This signifies the presence of outliers. If set to value 1, then outliers
are generated randomly. If set to value O, then no outliers are generated. The
presence of outliers is a very common occurrence and hence setting the out-
liers to 1 is recommended. However, there are instances where outliers are not
needed. For example, if the objective of data generation is solely for visualiza-
tion purposes then outliers may not be needed.

A dataframe with day number and count of transactions on that day

genTree 19

Examples

"o

df <- genTrans(cycles = "y", trend = 1, transactions = 10000, spike = 10, outliers = 0)

df <- genTrans(cycles = "q", trend = -1, transactions = 32000, spike = 12, outliers = 1)

genTree Generate complete m-ary connected graph

Description

Generates an m-ary connected graph that is complete. This function is used by another internal
function buildHierarchy.

Usage

genTree(m, depth)

Arguments
m A positive number. This specifies the number of splits at each branch.
depth A positive number. This specifies the number of levels of the tree.
Details

This function helps in generating data that is of a tree structure. To explain further, this function
generates a data where there are less number of classes i.e. branches at the top i.e. the root and
increase in number and increase towards the end i.e. the leaf nodes. The number of terminal nodes
are dependent on the arguments m and depth. More precisely, the number of terminal nodes has
the formulation of

miepth

. For instance, if m is 2 and depth is 3, then the number of terminal nodes are 23 j.e. 8.

Value

A dataframe.

See Also

[buildHierarchy()] to build hierarchical data.

20 missingArgHandler

genTriples Extracts Three Consecutive Alphabets of the String

Description

For a given string, this function extracts three consecutive alphabets. This function is further used
by genMatrix function.

Usage
genTriples(s)
Arguments
s A string. This is the string from which three consecutive alphabets are to be
extracted.
Value

List of three alphabet combinations of the string input.

missingArgHandler Handle Missing Arguments in Function

Description
Replaces the missing argument with the default value. This is an internal function and is currently
not exported in the package.

Usage

missingArgHandler(argMissed, argDefault)

Arguments

argMissed This is the argument that needs to be handled.

argDefault This is the default value of the argument that is missing in the function called.
Details

This function plays the role of error handler by setting the default values of the arguments when a
function is called without specifying any arguments.

Value

The default value of the missing argument.

nextAlphaProb 21

nextAlphaProb Generate Next Alphabet

Description

Generates next alphabet based on prior probabilities.

Usage

nextAlphaProb(alphaMatrix, currentAlpha, placement)

Arguments

alphaMatrix A table. This table is generated using the genMatrix function .
currentAlpha A string. This is the alphabet(s) for which the next alphabet is generated.

placement A string. This takes one of the two values namely "first” or "all".

Details

The purpose of this function is to generate the next alphabet for a given alphabet(s). This func-
tion uses prior probabilities to generate the next alphabet. Although there are two types of input
tables passed into the function by using the parameter alphaMatrix, the process to generate the next
alphabet remains the same as given below.

Firstly, the input table contains frequencies of the combination of current alphabet currentAlpha
(represented by rows) and next alphabet(represented by columns). These frequencies are converted
into a percentage at a row level. This means that for each row, the sum of all the column values will
add to 1.

Secondly, for the given currentAlpha, the table is looked up for the corresponding column where the
probability is the highest. The alphabet for the column with maximum prior probability is selected
as the next alphabet and is returned by the function.

Value

The next alphabet following the input alphabet(s) passed by the argument currentAlpha.

treeDf A supporting function.

Description

This is used by another internal function genTree.

Usage

treeDf(...)

22 uncovrApi

Arguments

This is a placeholder argument.

Value

A dataframe.

uncovrApi POST Function for Calling uncovr API

Description

This function makes the POST call to the uncovr API.

Usage

uncovrApi(body, key)

Arguments
body A json with the details of the independent and dependent variable.
key An alpha numeric. This is the subscription key that can be sourced from the
developer portal of uncovr API available at https://foyi.developer.azure-api.net/.
Details

The purpose of this function can be best understood when explained within the context that is given
below. There is a closed source SaaS(Software as a Service) software named uncovr that provides an
API(Application Programming Interface). In its current state, the SaaS software is free to use with
some constraints around the volume of data and the frequency of API calls. One of the functions of
uncovr API takes an input of number of observations i.e. rows and number of independent variables
namely columns and gives an output. This function uncovrApi makes the connection to uncovr API
and sources the response. #function to call uncovr api

Value

A json.

Index

buildCust, 2, 9
buildDistr, 3, 4
buildHierarchy, 4, 19
buildId, 5
buildModelData, 6, /14, 15
buildName, 7
buildNames, 7
buildNum, 3, 8
buildOutliers, 10
buildPareto, 11
buildPattern, 11, 17
buildProd, 12
buildSpike, 13

extractDf, 6, 14

genFirstPairs, 14, 16
genIndepDepJson, 6, 15
genMatrix, 8, 14, 16, 20, 21
genPattern, 11, 12,17
genTrans, 3, 18
genTree, 4, 19, 21
genTriples, 16, 20

missingArgHandler, 20
nextAlphaProb, 21
treeDf, 21

uncovrApi, 6, 22

23

	buildCust
	buildDistr
	buildHierarchy
	buildId
	buildModelData
	buildName
	buildNames
	buildNum
	buildOutliers
	buildPareto
	buildPattern
	buildProd
	buildSpike
	extractDf
	genFirstPairs
	genIndepDepJson
	genMatrix
	genPattern
	genTrans
	genTree
	genTriples
	missingArgHandler
	nextAlphaProb
	treeDf
	uncovrApi
	Index

