# Package 'coneproj’ 

June 11, 2024

## Type Package

Title Primal or Dual Cone Projections with Routines for Constrained Regression

Version 1.19
Date 2024-06-11
Author Mary C. Meyer and Xiyue Liao
Maintainer Xiyue Liao [xliao@sdsu.edu](mailto:xliao@sdsu.edu)
Description Routines doing cone projection and quadratic programming, as well as doing estimation and inference for constrained parametric regression and shape-restricted regression problems. See Mary C. Meyer (2013)[doi:10.1080/03610918.2012.659820](doi:10.1080/03610918.2012.659820) for more details.
License GPL ( $>=2$ )
Depends R(>=4.4.0)
Imports Rcpp (>= 0.10.4)
LinkingTo RcppArmadillo, Rcpp
NeedsCompilation yes
Suggests stats, graphics, grDevices, utils
Repository CRAN
Date/Publication 2024-06-11 20:10:06 UTC

## Contents

check_irred ..... 2
conc ..... 3
coneA ..... 4
coneB ..... 6
constreg ..... 8
conv ..... 11
cubic ..... 12
decr ..... 13
decr.conc ..... 15
decr.conv ..... 16
feet ..... 18
FEV ..... 19
incr ..... 19
incr.conc ..... 21
incr.conv ..... 22
qprog ..... 24
shapereg ..... 26
TwoDamat ..... 30
Index ..... 31

check_irred
Routine for Checking Irreducibility

## Description

This routine checks the irreducibility of a set of edges, which are supposed to form the columns of a matrix. If a column is a positive linear combination of other columns, then it can be removed without affecting the problem; if there is a positive linear combination of columns of the matrix that equals the zero vector, then there is an implicit equality constraint in the matrix. In the former case, this routine delete the redundant columns and return a set of irreducible edges, while in the latter case, this routine will give the number of equality constraints in the matrix, and will leave this issue to the user to fix.

## Usage

check_irred(mat)

## Arguments

mat A matrix whose columns are edges.

## Value

edge The edges kept after being checked about irreducibility.
reducible A vector of the indice of the edges that are redundant in the original set of edges.
equal A vector showing the number of equality constraints in the original set of edges.

## Author(s)

Mary C. Meyer and Xiyue Liao

## References

Meyer, M. C. (1999) An extension of the mixed primal-dual bases algorithm to the case of more constraints than dimensions. Journal of Statistical Planning and Inference 81, 13-31.
Meyer, M. C. (2013b) A simple new algorithm for quadratic programming with applications in statistics. Communications in Statistics 42(5), 1126-1139.

Liao, X. and M. C. Meyer (2014) coneproj: An R package for the primal or dual cone projections with routines for constrained regression. Journal of Statistical Software 61(12), 1-22.

## Examples

```
## Not run:
    data(TwoDamat)
    dim(TwoDamat)
    ans <- check_irred(t(TwoDamat))
    ## End(Not run)
```

conc Specify a Concave Shape-Restriction in a SHAPEREG Formula

## Description

A symbolic routine to define that the mean vector is concave in a predictor in a formula argument to coneproj.

## Usage

conc ( $x$, numknots $=0$, knots $=0$, space $=" E "$ )

## Arguments

$x \quad$ A numeric predictor which has the same length as the response vector.
numknots The number of knots used to smoothly constrain a predictor. The value should be 0 for a shape-restricted predictor without smoothing. The default value is 0 .
knots The knots used to smoothly constrain a predictor. The value should be 0 for a shape-restricted predictor without smoothing. The default value is 0 .
space A character specifying the method to create knots. It will not be used for a shape-restricted predictor without smoothing. The default value is " E ".

## Details

"conc" returns the vector "x" and imposes on it two attributes: name and shape.
The shape attribute is 4 ("concave"), and according to the value of the vector itself and this attribute, the cone edges of the cone generated by the constraint matrix, which constrains the relationship between the mean vector and " $x$ " to be concave, will be made. The cone edges are a set of basis employed in the hinge algorithm.

Note that "conc" does not make the corresponding cone edges itself. It sets things up to a subroutine called makedelta in coneproj.

See references cited in this section for more details.

## Value

The vector x with the shape attribute, i.e., shape: 4 ("concave").

## Author(s)

Mary C. Meyer and Xiyue Liao

## References

Meyer, M. C. (2013b) A simple new algorithm for quadratic programming with applications in statistics. Communications in Statistics 42(5), 1126-1139.

## Examples

```
    x <- seq(-1, 2, by = 0.1)
    n <- length(x)
    y <- - x^2 + rnorm(n, .3)
    # regress y on x under the shape-restriction: "concave"
    ans <- shapereg(y ~ conc(x))
    # make a plot
    plot(x, y)
    lines(x, fitted(ans), col = 2)
    legend("bottomleft", bty = "n", "shapereg: concave fit", col = 2, lty = 1)
```

    coneA Cone Projection - Polar Cone
    
## Description

This routine implements the hinge algorithm for cone projection to minimize $\|y-\theta\|^{2}$ over the cone $C$ of the form $\{\theta: A \theta \geq 0\}$.

## Usage

coneA(y, amat, $w=$ NULL, face $=$ NULL, msg $=$ TRUE)

## Arguments

$\mathrm{y} \quad$ A vector of length $n$.
amat A constraint matrix. The rows of amat must be irreducible. The column number of amat must equal the length of $y$.
w An optional nonnegative vector of weights of length $n$. If w is not given, all weights are taken to equal 1 . Otherwise, the minimization of $(y-\theta)^{\prime} w(y-\theta)$ over $C$ is returned. The default is $\mathrm{w}=$ NULL.
face A vector of the positions of edges, which define the initial face for the cone projection. For example, when there are $m$ cone edges, then face is a subset of $1, \ldots, m$. The default is face $=$ NULL .
msg A logical flag. If msg is TRUE, then a warning message will be printed when there is a non-convergence problem; otherwise no warning message will be printed. The default is $\mathrm{msg}=$ TRUE

## Details

The routine coneA dynamically loads a $\mathrm{C}++$ subroutine "coneACpp". The rows of $-A$ are the edges of the polar cone $\Omega^{o}$. This routine first projects $y$ onto $\Omega^{o}$ to get the residual of the projection onto the constraint cone $C$, and then uses the fact that $y$ is equal to the sum of the projection of $y$ onto $C$ and the projection of $y$ onto $\Omega^{\circ}$ to get the estimation of $\theta$. See references cited in this section for more details about the relationship between polar cone and constraint cone.

## Value

df The dimension of the face of the constraint cone on which the projection lands.
thetahat The projection of $y$ on the constraint cone.
steps The number of iterations before the algorithm converges.
xmat The rows of the matrix are the edges of the face of the polar cone on which the residual of the projection onto the constraint cone lands.
face A vector of the positions of edges, which define the face on which the final projection lands on. For example, when there are $m$ cone edges, then face is a subset of $1, \ldots, m$.

## Author(s)

Mary C. Meyer and Xiyue Liao

## References

Meyer, M. C. (1999) An extension of the mixed primal-dual bases algorithm to the case of more constraints than dimensions. Journal of Statistical Planning and Inference 81, 13-31.
Meyer, M. C. (2013b) A simple new algorithm for quadratic programming with applications in statistics. Communications in Statistics 42(5), 1126-1139.
Liao, X. and M. C. Meyer (2014) coneproj: An R package for the primal or dual cone projections with routines for constrained regression. Journal of Statistical Software 61(12), 1-22.

## See Also

```
coneB, constreg, qprog
```


## Examples

\# generate y
set.seed(123)
$\mathrm{n}<-50$
$x<-\operatorname{seq}(-2,2$, length $=50)$
$y<--x^{\wedge} 2+\operatorname{rnorm}(n)$
\# create the constraint matrix to make the first half of $y$ monotonically increasing
\# and the second half of $y$ monotonically decreasing
amat <- matrix (0, n - $1, \mathrm{n}$ )
for(i in 1:(n/2-1))\{
amat[i, i] <- -1; amat[i, i + 1] <- 1
\}
for(i in (n/2):(n-1))\{
amat[i, i] <- 1; amat[i, i + 1] <- -1
\}
\# call coneA ans1 <- coneA(y, amat) ans2 <- coneA(y, amat, w $=(1: n) / n)$
\# make a plot to compare the unweighted fit and the weighted fit $\operatorname{par}(\operatorname{mar}=c(4,4,1,1))$ plot(y, cex = .7, ylab = "y") lines(fitted(ans1), col = 2, lty = 2) lines(fitted(ans2), col = 4, lty = 2)
legend("topleft", bty = "n", c("unweighted fit", "weighted fit"), col = c(2, 4), lty = c(2, 2)) title("ConeA Example Plot")
coneB Cone Projection - Constraint Cone

## Description

This routine implements the hinge algorithm for cone projection to minimize $\|y-\theta\|^{2}$ over the cone $C$ of the form $\left\{\theta: \theta=v+\sum b_{i} \delta_{i}, i=1, \ldots, m, b_{1}, \ldots, b_{m} \geq 0\right\}, v$ is in $V$.

## Usage

coneB(y, delta, vmat $=$ NULL, $w=$ NULL, face $=$ NULL, msg $=$ TRUE)

## Arguments

$\mathrm{y} \quad$ A vector of length $n$.
delta A matrix whose columns are the constraint cone edges. The columns of delta must be irreducible. Its row number must equal the length of $y$. No column of delta is contained in the column space of vmat.
vmat A matrix whose columns are the basis of the linear space contained in the constraint cone. Its row number must equal the length of $y$. The columns of vmat must be linearly independent. The default is vmat $=$ NULL
w An optional nonnegative vector of weights of length $n$. If $w$ is not given, all weights are taken to equal 1 . Otherwise, the minimization of $(y-\theta)^{\prime} w(y-\theta)$ over $C$ is returned. The default is $\mathrm{w}=$ NULL.
face A vector of the positions of edges, which define the initial face for the cone projection. For example, when there are $m$ cone edges, then face is a subset of $1, \ldots, m$. The default is face = NULL.
msg A logical flag. If msg is TRUE, then a warning message will be printed when there is a non-convergence problem; otherwise no warning message will be printed. The default is $\mathrm{msg}=$ TRUE

## Details

The routine coneB dynamically loads a $\mathrm{C}++$ subroutine "coneBCpp".

## Value

df The dimension of the face of the constraint cone on which the projection lands.
yhat The projection of $y$ on the constraint cone.
steps The number of iterations before the algorithm converges.
coefs The coefficients of the basis of the linear space and the constraint cone edges contained in the constraint cone.
face A vector of the positions of edges, which define the face on which the final projection lands on. For example, when there are $m$ cone edges, then face is a subset of $1, \ldots, m$.

## Author(s)

Mary C. Meyer and Xiyue Liao

## References

Meyer, M. C. (1999) An extension of the mixed primal-dual bases algorithm to the case of more constraints than dimensions. Journal of Statistical Planning and Inference 81, 13-31.
Meyer, M. C. (2013b) A simple new algorithm for quadratic programming with applications in statistics. Communications in Statistics 42(5), 1126-1139.
Liao, X. and M. C. Meyer (2014) coneproj: An R package for the primal or dual cone projections with routines for constrained regression. Journal of Statistical Software 61(12), 1-22.

## See Also

coneA, shapereg

## Examples

\# generate y
set.seed(123)
$\mathrm{n}<-50$
$x<-\operatorname{seq}(-2,2$, length $=50)$
$y<--x^{\wedge} 2+\operatorname{rnorm}(n)$
\# create the edges of the constraint cone to make the first half of $y$ monotonically increasing
\# and the second half of $y$ monotonically decreasing
amat <- matrix (0, n - 1, n)
for(i in 1:(n/2-1))\{
$\operatorname{amat}[i, i]<-1$; amat[i, i + 1] <- 1
\}
for(i in (n/2):(n-1))\{
amat[i, i] <- 1; amat[i, i + 1] <- -1
\}
\# note that in coneB, the transpose of the edges of the constraint cone is provided delta <- crossprod(amat, solve(tcrossprod(amat)))
\# make the basis of V
vmat <- matrix(rep(1, n), ncol = 1)
\# call coneB
ans3 <- coneB(y, delta, vmat)
ans 4 <- coneB(y, delta, vmat, $w=(1: n) / n)$
\# make a plot to compare the unweighted fit and weighted fit
$\operatorname{par}(\operatorname{mar}=c(4,4,1,1))$
plot(y, cex = .7, ylab = "y")
lines(fitted(ans3), col = 2, lty = 2)
lines(fitted(ans4), col = 4, lty = 2)
legend("topleft", bty = "n", c("unweighted fit", "weighted fit"), col=c(2, 4), lty = c(2, 2)) title("ConeB Example Plot")
constreg Constrained Parametric Regression

## Description

The least-squares regression model $y=X \beta+\varepsilon$ is considered, where the object is to find $\beta$ to minimize $\|y-X \beta\|^{2}$, subject to $A \beta \geq 0$.

## Usage

constreg(y, xmat, amat, w = NULL, test = FALSE, nloop = 1e+4)

## Arguments

| y | A vector of length $n$. |
| :---: | :---: |
| xmat | A full column-rank design matrix. The column number of xmat must equal the length of $\beta$. |
| amat | A constraint matrix. The rows of amat must be irreducible. The column number of amat must equal the length of $\beta$. |
| w | An optional nonnegative vector of weights of length $n$. If $w$ is not given, all weights are taken to equal 1. Otherwise, the minimization of $(y-X \beta)^{\prime} w(y-$ $X \beta$ ) over $C$ is returned. The default is $\mathrm{w}=$ NULL. |
| test | A logical scalar. If test $==$ TRUE, then the p -value for the test $H_{0}: \beta$ is in $V$ versus $H_{1}: \beta$ is in $C$ is returned. $C$ is the constraint cone of the form $\{\beta: A \beta \geq 0\}$, and $V$ is the null space of $A$. The default is test = FALSE. |
| nloop | The number of simulations used to get the p-value for the $E_{01}$ test. The default is $1 \mathrm{e}+4$. |

## Details

The hypothesis test $H_{0}: \beta$ is in $V$ versus $H_{1}: \beta$ is in $C$ is an exact one-sided test, and the test statistic is $E_{01}=\left(S S E_{0}-S S E_{1}\right) / S S E_{0}$, which has a mixture-of-betas distribution when $H_{0}$ is true and $\varepsilon$ is a vector following a standard multivariate normal distribution with mean 0 . The mixing parameters are found through simulations. The number of simulations used to obtain the mixing distribution parameters for the test is 10,000 . Such simulations usually take some time. For the "FEV" data set used as an example in this section, whose sample size is 654 , the time to get a $p$-value is roughly 6 seconds.
The constreg function calls coneA for the cone projection part.

## Value

constr.fit $\quad$ The constrained fit of $y$ given that $\beta$ is in the cone $C$ of the form $\{\beta: A \beta \geq 0\}$.
unconstr.fit The unconstrainted fit, i.e., the least-squares regression of $y$ on the space spanned by $X$.
pval The p-value for the hypothesis test $H_{0}: \beta$ is in $V$ versus $H_{1}: \beta$ is in $C$. The constraint cone $C$ has the form $\{\beta: A \beta \geq 0\}$ and $V$ is the null space of $A$. If test $==$ TRUE, a p-value is returned. Otherwise, the test is skipped and no p -value is returned.
coefs The estimated constrained parameters, i.e., the estimation of the vector $\beta$.

## Note

In the 3D plot of the "FEV" example, it is shown that the unconstrained fit increases as "age" increases when "height" is large, but decreases as "age" increases when "height" is small. This does not make sense, since "FEV" should not decrease with respect to "age" given any value of "height". The constrained fit avoids this situation by keeping the fit of "FEV" non-decreasing with respect to "age".

## Author(s)

Mary C. Meyer and Xiyue Liao

## References

Brunk, H. D. (1958) On the estimation of parameters restricted by inequalities. The Annals of Mathematical Statistics 29 (2), 437-454.

Raubertas, R. F., C.-I. C. Lee, and E. V. Nordheim (1986) Hypothesis tests for normals means constrained by linear inequalities. Communications in Statistics - Theory and Methods 15 (9), 2809-2833.
Meyer, M. C. and J. C. Wang (2012) Improved power of one-sided tests. Statistics and Probability Letters 82, 1619-1622.

Liao, X. and M. C. Meyer (2014) coneproj: An R package for the primal or dual cone projections with routines for constrained regression. Journal of Statistical Software 61(12), 1-22.

## See Also

coneA

## Examples

```
# load the FEV data set
    data(FEV)
# extract the variables
    y <- FEV$FEV
    age <- FEV$age
    height <- FEV$height
    sex <- FEV$sex
    smoke <- FEV$smoke
# scale age and height
    scale_age <- (age - min(age)) / (max(age) - min(age))
    scale_height <- (height - min(height)) / (max(height) - min(height))
# make xmat
    xmat <- cbind(1, scale_age, scale_height, scale_age * scale_height, sex, smoke)
# make the constraint matrix
    amat <- matrix(0, 4, 6)
    amat[1, 2] <- 1; amat[2, 2] <- 1; amat[2, 4] <- 1
    amat[3, 3] <- 1; amat[4, 3] <- 1; amat[4, 4] <- 1
# call constreg to get constrained coefficient estimates
    ans1 <- constreg(y, xmat, amat)
    bhat1 <- coef(ans1)
# call lm to get unconstrained coefficient estimates
        ans2 <- lm(y ~ xmat[,-1])
        bhat2 <- coef(ans2)
```

```
    # create a 3D plot to show the constrained fit and the unconstrained fit
    n <- 25
    xgrid <- seq(0, 1, by = 1/n)
    ygrid <- seq(0, 1, by = 1/n)
    x1 <- rep(xgrid, each = length(ygrid))
    x2 <- rep(ygrid, length(xgrid))
    xinterp <- cbind(x1, x2)
    xmatp <- cbind(1, xinterp, x1 * x2, 0, 0)
    thint1 <- crossprod(t(xmatp), bhat1)
    A1 <- matrix(thint1, length(xgrid), length(ygrid), byrow = TRUE)
    thint2 <- crossprod(t(xmatp), bhat2)
    A2 <- matrix(thint2, length(xgrid), length(ygrid), byrow = TRUE)
    par(mfrow = c(1, 2))
    par(mar = c(4, 1, 1, 1))
    persp(xgrid, ygrid, A1, xlab = "age", ylab = "height",
    zlab = "FEV", theta = -30)
    title("Constrained Fit")
    par(mar = c(4, 1, 1, 1))
    persp(xgrid, ygrid, A2, xlab = "age", ylab = "height",
    zlab = "FEV", theta = -30)
    title("Unconstrained Fit")
```

conv
Specify a Convex Shape-Restriction in a SHAPEREG Formula

## Description

A symbolic routine to define that the mean vector is convex in a predictor in a formula argument to coneproj.

## Usage

conv (x, numknots $=0$, knots $=0$, space $=" E ")$

## Arguments

$$
\begin{array}{ll}
x & \text { A numeric predictor which has the same length as the response vector. } \\
\text { numknots } & \begin{array}{l}
\text { The number of knots used to smoothly constrain a predictor. The value should } \\
\text { be } 0 \text { for a shape-restricted predictor without smoothing. The default value is } 0 .
\end{array} \\
\text { knots } & \begin{array}{l}
\text { The knots used to smoothly constrain a predictor. The value should be } 0 \text { for a } \\
\text { shape-restricted predictor without smoothing. The default value is } 0 .
\end{array} \\
\text { space } & \begin{array}{l}
\text { A character specifying the method to create knots. It will not be used for a } \\
\text { shape-restricted predictor without smoothing. The default value is "E". }
\end{array}
\end{array}
$$

## Details

"conv" returns the vector "x" and imposes on it two attributes: name and shape.
The shape attribute is 3 ("convex"), and according to the value of the vector itself and this attribute, the cone edges of the cone generated by the constraint matrix, which constrains the relationship between the mean vector and " $x$ " to be convex, will be made. The cone edges are a set of basis employed in the hinge algorithm.
Note that "conv" does not make the corresponding cone edges itself. It sets things up to a subroutine called makedelta in coneproj.

See references cited in this section for more details.

## Value

The vector x with the shape attribute, i.e., shape: 3 ("convex").

## Author(s)

Mary C. Meyer and Xiyue Liao

## References

Meyer, M. C. (2013b) A simple new algorithm for quadratic programming with applications in statistics. Communications in Statistics 42(5), 1126-1139.

## Examples

```
# generate y
    x <- seq(-1, 2, by = 0.1)
    n<- length(x)
    y<- x^2 + rnorm(n, .3)
    # regress y on x under the shape-restriction: "convex"
    ans <- shapereg(y ~ conv(x))
    # make a plot
    plot(x, y)
    lines(x, fitted(ans), col = 2)
    legend("topleft", bty = "n", "shapereg: convex fit", col = 2, lty = 1)
```

    cubic A Data Set for the Example of the Qprog Function
    
## Description

This data set is used for the example of the qprog function.

## Usage

data(cubic)

## Format

A data frame with 50 observations on the following 2 variables.
$x$ The predictor vector.
y The response vector.

## Details

We use the qprog function to fit a constrained cubic to this data set. The constraint is that the true regression is increasing, convex and nonnegative.

## Source

STAT640 HW 14 given by Dr. Meyer.

## Description

A symbolic routine to define that the mean vector is decreasing in a predictor in a formula argument to shapereg.

## Usage

decr (x, numknots $=0$, knots $=0$, space $=$ "E")

## Arguments

X
numknots
knots The knots used to smoothly constrain a predictor. The value should be 0 for a shape-restricted predictor without smoothing. The default value is 0 .
space A character specifying the method to create knots. It will not be used for a shape-restricted predictor without smoothing. The default value is "E".

## Details

"decr" returns the vector " $x$ " and imposes on it two attributes: name and shape.
The shape attribute is 2 ("decreasing"), and according to the value of the vector itself and this attribute, the cone edges of the cone generated by the constraint matrix, which constrains the relationship between the mean vector and "x" to be decreasing, will be made. The cone edges are a set of basis employed in the hinge algorithm.
Note that "decr" does not make the corresponding cone edges itself. It sets things up to a subroutine called makedelta in coneproj.

See references cited in this section for more details.

## Value

The vector x with the shape attribute, i.e., shape: 2 ("decreasing").

## Author(s)

Mary C. Meyer and Xiyue Liao

## References

Meyer, M. C. (2013b) A simple new algorithm for quadratic programming with applications in statistics. Communications in Statistics 42(5), 1126-1139.

## See Also <br> decr.conc, decr.conv

## Examples

```
    data(cubic)
    # extract x
    x <- - cubic$x
    # extract y
    y <- cubic$y
    # regress y on x with the shape restriction: "decreasing"
    ans <- shapereg(y ~ decr(x))
    # make a plot
    par(mar = c(4, 4, 1, 1))
    plot(x, y, cex = .7, xlab = "x", ylab = "y")
    lines(x, fitted(ans), col = 2)
    legend("topleft", bty = "n", "shapereg: decreasing fit", col = 2, lty = 1)
```

| decr.conc | Specify a Decreasing and Concave Shape-Restriction in a <br> SHAPEREG Formula |
| :--- | :--- |

## Description

A symbolic routine to define that the mean vector is decreasing and concave in a predictor in a formula argument to coneproj.

## Usage

decr. conc (x, numknots $=0$, knots $=0$, space $=" E ")$

## Arguments

$x \quad$ A numeric predictor which has the same length as the response vector.
numknots The number of knots used to smoothly constrain a predictor. The value should be 0 for a shape-restricted predictor without smoothing. The default value is 0 .
knots The knots used to smoothly constrain a predictor. The value should be 0 for a shape-restricted predictor without smoothing. The default value is 0 .
space A character specifying the method to create knots. It will not be used for a shape-restricted predictor without smoothing. The default value is "E".

## Details

"decr.conc" returns the vector "x" and imposes on it two attributes: name and shape.
The shape attribute is 8 ("decreasing and concave"), and according to the value of the vector itself and this attribute, the cone edges of the cone generated by the constraint matrix, which constrains the relationship between the mean vector and " x " to be decreasing and concave, will be made. The cone edges are a set of basis employed in the hinge algorithm.
Note that "decr.conc" does not make the corresponding cone edges itself. It sets things up to a subroutine called makedelta in coneproj.

See references cited in this section for more details.

## Value

The vector x with the shape attribute, i.e., shape: 8 ("decreasing and concave").

## Author(s)

Mary C. Meyer and Xiyue Liao

## References

Meyer, M. C. (2013b) A simple new algorithm for quadratic programming with applications in statistics. Communications in Statistics 42(5), 1126-1139.

## See Also

> incr.conv, incr

## Examples

```
    data(cubic)
    # extract x
    x <- cubic$x
    # extract y
    y <- - cubic$y
    # regress y on x with the shape restriction: "decreasing" and "concave"
    ans <- shapereg(y ~ decr.conc(x))
    # make a plot
    par(mar = c(4, 4, 1, 1))
    plot(x, y, cex = .7, xlab = "x", ylab = "y")
    lines(x, fitted(ans), col = 2)
    legend("bottomleft", bty = "n", "shapereg: decreasing and concave fit", col = 2, lty = 1)
```

decr. conv | Specify a Decreasing and Convex Shape-Restriction in a SHAPEREG |
| :--- |
| Formula |

## Description

A symbolic routine to define that the mean vector is decreasing and convex in a predictor in a formula argument to coneproj.

## Usage

decr.conv(x, numknots $=0$, knots $=0$, space $=" E ")$

## Arguments

$x \quad$ A numeric predictor which has the same length as the response vector.
numknots The number of knots used to smoothly constrain a predictor. The value should be 0 for a shape-restricted predictor without smoothing. The default value is 0 .
knots The knots used to smoothly constrain a predictor. The value should be 0 for a shape-restricted predictor without smoothing. The default value is 0 .
space A character specifying the method to create knots. It will not be used for a shape-restricted predictor without smoothing. The default value is " E ".

## Details

"decr.conv" returns the vector "x" and imposes on it two attributes: name and shape.
The shape attribute is 6 ("decreasing and convex"), and according to the value of the vector itself and this attribute, the cone edges of the cone generated by the constraint matrix, which constrains the relationship between the mean vector and "x" to be decreasing and convex, will be made. The cone edges are a set of basis employed in the hinge algorithm.
Note that "decr.conv" does not make the corresponding cone edges itself. It sets things up to a subroutine called makedelta in coneproj.
See references cited in this section for more details.

## Value

The vector x with the shape attribute, i.e., shape: 6 ("decreasing and convex").

## Author(s)

Mary C. Meyer and Xiyue Liao

## References

Meyer, M. C. (2013b) A simple new algorithm for quadratic programming with applications in statistics. Communications in Statistics 42(5), 1126-1139.

## See Also

```
decr.conc, decr
```


## Examples

```
    data(cubic)
    # extract x
    x <- - cubic$x
    # extract y
    y <- cubic$y
    # regress y on x with the shape restriction: "decreasing" and "convex"
    ans <- shapereg(y ~ decr.conv(x))
    # make a plot
    par(mar = c(4, 4, 1, 1))
    plot(x, y, cex = .7, xlab = "x", ylab = "y")
    lines(x, fitted(ans), col = 2)
    legend("bottomright", bty = " n", "shapereg: decreasing and convex fit", col = 2, lty = 1)
```


## Description

This data set was collected by the first author in a fourth grade classroom in Ann Arbor, MI, October 1997. We use the shapereg function to make a shape-restricted fit to this data set. "Width" is a continuous response variable, "length" is a continuous predictor variable, and "sex" is a categorical covariate. The constraint is that "width" is increasing with respect to "length".

## Usage

data(feet)

## Format

A data frame with 39 observations on the following 8 variables.
name First name of child.
month Birth month.
year Birth year.
length Length of longer foot (cm).
width Width of longer foot (cm), measured at widest part of foot.
sex Boy or girl.
foot Foot measured (right or left).
hand Right- or left-handedness.

## Source

Meyer, M. C. (2006) Wider Shoes for Wider Feet? Journal of Statistics Education Volume 14, Number 1.

## Examples

data(feet)
l <- feet\$length
w <- feet\$width
s <- feet\$sex
plot(l, w, type = "n", xlab ="Foot Length (cm)", ylab = "Foot Width (cm)")
points(l[s == "G"], w[s == "G"], pch = 24, col = 2)
points(l[s == "B"], w[s == "B"], pch = 21, col = 4)
legend("topleft", bty = "n", c("Girl", "Boy"), pch = c(24, 21), col = c(2, 4))
title("Kidsfeet Width vs Length Scatterplot")
FEV Forced Expiratory Volume

## Description

This data set consists of 654 observations on children aged 3 to 19. Forced Expiratory Volume (FEV), which is a measure of lung capacity, is the variable in interest. Age and height are two continuous predictors. Sex and smoke are two categorical predictors.

## Usage

data(FEV)

## Format

A data frame with 654 observations on the following 5 variables.
age Age of the 654 children.
FEV Forced expiratory volume(liters).
height Height(inches).
sex Female is 0 . Male is 1 .
smoke Nonsmoker is 0 . Smoker is 1 .

## Source

Rosner, B. (1999) Fundamentals of Biostatistics, 5th Ed., Pacific Grove, CA: Duxbur.
Michael J. Kahn (2005) An Exhalent Problem for Teaching Statistics Journal of Statistics Education Volume 13, Number 2.
incr
Specify an Increasing Shape-Restriction in a SHAPEREG Formula

## Description

A symbolic routine to define that the mean vector is increasing in a predictor in a formula argument to shapereg.

## Usage

incr (x, numknots $=0$, knots $=0$, space $=$ "E")

## Arguments

X
numknots
knots
space

A numeric predictor which has the same length as the response vector.
The number of knots used to smoothly constrain a predictor. The value should be 0 for a shape-restricted predictor without smoothing. The default value is 0 .
The knots used to smoothly constrain a predictor. The value should be 0 for a shape-restricted predictor without smoothing. The default value is 0 .
A character specifying the method to create knots. It will not be used for a shape-restricted predictor without smoothing. The default value is " E ".

## Details

"incr" returns the vector "x" and imposes on it two attributes: name and shape.
The shape attribute is 1 ("increasing"), and according to the value of the vector itself and this attribute, the cone edges of the cone generated by the constraint matrix, which constrains the relationship between the mean vector and " $x$ " to be increasing, will be made. The cone edges are a set of basis employed in the hinge algorithm.
Note that "incr" does not make the corresponding cone edges itself. It sets things up to a subroutine called makedelta in coneproj.
See references cited in this section for more details.

## Value

The vector x with the shape attribute, i.e., shape: 1 ("increasing").

## Author(s)

Mary C. Meyer and Xiyue Liao

## References

Meyer, M. C. (2013b) A simple new algorithm for quadratic programming with applications in statistics. Communications in Statistics 42(5), 1126-1139.

## See Also

incr.conc, incr.conv

## Examples

```
    data(cubic)
    # extract x
    x <- cubic$x
    # extract y
    y <- cubic$y
    # regress y on x with the shape restriction: "increasing"
```

```
ans <- shapereg(y ~ incr(x))
# make a plot
par(mar = c(4, 4, 1, 1))
plot(x, y, cex = .7, xlab = "x", ylab = "y")
lines(x, fitted(ans), col = 2)
legend("topleft", bty = "n", "shapereg: increasing fit", col = 2, lty = 1)
```

incr.conc | Specify an Increasing and Concave Shape-Restriction in a |
| :--- |
| SHAPEREG Formula |

## Description

A symbolic routine to define that the mean vector is increasing and concave in a predictor in a formula argument to coneproj.

## Usage

incr.conc(x, numknots $=0$, knots $=0$, space $=" E ")$

## Arguments

x
numknots
knots
space A character specifying the method to create knots. It will not be used for a shape-restricted predictor without smoothing. The default value is " E ".

## Details

"incr.conc" returns the vector "x" and imposes on it two attributes: name and shape.
The shape attribute is 7 ("increasing and concave"), and according to the value of the vector itself and this attribute, the cone edges of the cone generated by the constraint matrix, which constrains the relationship between the mean vector and " $x$ " to be increasing and concave, will be made. The cone edges are a set of basis employed in the hinge algorithm.

Note that "incr.conc" does not make the corresponding cone edges itself. It sets things up to a subroutine called makedelta in coneproj.

See references cited in this section for more details.

## Value

The vector x with the shape attribute, i.e., shape: 7 ("increasing and concave").

## Author(s)

Mary C. Meyer and Xiyue Liao

## References

Meyer, M. C. (2013b) A simple new algorithm for quadratic programming with applications in statistics. Communications in Statistics 42(5), 1126-1139.

## See Also

incr.conv, incr

## Examples

```
    data(cubic)
    # extract x
    x <- - cubic$x
    # extract y
    y <- - cubic$y
    # regress y on x with the shape restriction: "increasing" and "concave"
    ans <- shapereg(y ~ incr.conc(x))
    # make a plot
    par(mar = c(4, 4, 1, 1))
    plot(x, y, cex = .7, xlab = "x", ylab = "y")
    lines(x, fitted(ans), col = 2)
    legend("topleft", bty = "n", "shapereg: increasing and concave fit", col = 2, lty = 1)
```

incr. conv Specify an Increasing and Convex Shape-Restriction in a SHAPEREG Formula

## Description

A symbolic routine to define that the mean vector is increasing and convex in a predictor in a formula argument to coneproj.

## Usage

incr.conv(x, numknots $=0$, knots $=0$, space $=" E ")$

## Arguments

X
numknots
knots
space

A numeric predictor which has the same length as the response vector.
The number of knots used to smoothly constrain a predictor. The value should be 0 for a shape-restricted predictor without smoothing. The default value is 0 .
The knots used to smoothly constrain a predictor. The value should be 0 for a shape-restricted predictor without smoothing. The default value is 0 . A character specifying the method to create knots. It will not be used for a shape-restricted predictor without smoothing. The default value is " E ".

## Details

"incr.conv" returns the vector "x" and imposes on it two attributes: name and shape.
The shape attribute is 5 ("increasing and convex"), and according to the value of the vector itself and this attribute, the cone edges of the cone generated by the constraint matrix, which constrains the relationship between the mean vector and " $x$ " to be increasing and convex, will be made. The cone edges are a set of basis employed in the hinge algorithm.

Note that "incr.conv" does not make the corresponding cone edges itself. It sets things up to a subroutine called makedelta in coneproj.
See references cited in this section for more details.

## Value

The vector x with the shape attribute, i.e., shape: 5 ("increasing and convex").

## Author(s)

Mary C. Meyer and Xiyue Liao

## References

Meyer, M. C. (2013b) A simple new algorithm for quadratic programming with applications in statistics. Communications in Statistics 42(5), 1126-1139.

## See Also

```
incr.conc, incr
```


## Examples

```
    data(cubic)
    # extract x
    x <- cubic$x
    # extract y
    y <- cubic$y
    # regress y on x with the shape restriction: "increasing" and "convex"
```

```
ans <- shapereg(y ~ incr.conv(x))
# make a plot
par(mar = c(4, 4, 1, 1))
plot(x, y, cex = .7, xlab = "x", ylab = "y")
lines(x, fitted(ans), col = 2)
legend("topleft", bty = "n", "shapereg: increasing and convex fit", col = 2, lty = 1)
```

qprog Quadratic Programming

## Description

Given a positive definite $n$ by $n$ matrix $Q$ and a constant vector $c$ in $R^{n}$, the object is to find $\theta$ in $R^{n}$ to minimize $\theta^{\prime} Q \theta-2 c^{\prime} \theta$ subject to $A \theta \geq b$, for an irreducible constraint matrix $A$. This routine transforms into a cone projection problem for the constrained solution.

## Usage

qprog(q, c, amat, b, face = NULL, msg = TRUE)

## Arguments

$\mathrm{q} \quad$ A $n$ by $n$ positive definite matrix.
c A vector of length $n$.
amat A $m$ by $n$ constraint matrix. The rows of amat must be irreducible.
b
A vector of length $m$. Its default value is 0 .
face A vector of the positions of edges, which define the initial face for the cone projection. For example, when there are $m$ cone edges, then face is a subset of $1, \ldots, m$. The default is face $=$ NULL.
msg A logical flag. If msg is TRUE, then a warning message will be printed when there is a non-convergence problem; otherwise no warning message will be printed. The default is msg = TRUE

## Details

To get the constrained solution to $\theta^{\prime} Q \theta-2 c^{\prime} \theta$ subject to $A \theta \geq b$, this routine makes the Cholesky decomposition of $Q$. Let $U^{\prime} U=Q$, and define $\phi=U \theta$ and $z=U^{-1} c$, where $U^{-1}$ is the inverse of $U$. Then we minimize $\|z-\phi\|^{2}$, subject to $B \phi \geq 0$, where $B=A U^{-1}$. It is now a cone projection problem with the constraint cone $C$ of the form $\{\phi: B \phi \geq 0\}$. This routine gives the estimation of $\theta$, which is $U^{-1}$ times the estimation of $\phi$.
The routine qprog dynamically loads a $\mathrm{C}++$ subroutine " qprog Cpp ".

## Value

$\mathrm{df} \quad$ The dimension of the face of the constraint cone on which the projection lands.
thetahat
steps
xmat
face A vector of the positions of edges, which define the face on which the final projection lands on. For example, when there are $m$ cone edges, then face is a subset of $1, \ldots, m$.

## Author(s)

Mary C. Meyer and Xiyue Liao

## References

Goldfarb, D. and A. Idnani (1983) A numerically stable dual method for solving strictly convex quadratic programs. Mathematical Programming 27, 1-33.
Fraser, D. A. S. and H. Massam (1989) A mixed primal-dual bases algorithm for regression under inequality constraints application to concave regression. Scandinavian Journal of Statistics 16, 65-74.
Fang,S.-C. and S. Puthenpura (1993) Linear Optimization and Extensions. Englewood Cliffs, New Jersey: Prentice Hall.

Silvapulle, M. J. and P. Sen (2005) Constrained Statistical Inference. John Wiley and Sons.
Meyer, M. C. (2013b) A simple new algorithm for quadratic programming with applications in statistics. Communications in Statistics 42(5), 1126-1139.

Liao, X. and M. C. Meyer (2014) coneproj: An R package for the primal or dual cone projections with routines for constrained regression. Journal of Statistical Software 61(12), 1-22.

## See Also

> coneA

## Examples

```
# load the cubic data set
        data(cubic)
# extract x
        x <- cubic$x
# extract y
        y <- cubic$y
# make the design matrix
        xmat <- cbind(1, x, x^2, x^3)
```

```
# make the q matrix
    q <- crossprod(xmat)
# make the c vector
    c <- crossprod(xmat, y)
# make the constraint matrix to constrain the regression to be increasing, nonnegative and convex
    amat <- matrix(0, 4, 4)
    amat[1, 1] <- 1; amat[2, 2] <- 1
    amat[3, 3] <- 1; amat[4, 3] <- 1
    amat[4, 4] <- 6
    b <- rep(0, 4)
# call qprog
    ans <- qprog(q, c, amat, b)
# get the constrained fit of y
    betahat <- fitted(ans)
    fitc <- crossprod(t(xmat), betahat)
# get the unconstrained fit of y
    fitu <- lm(y ~ x + I(x^2) + I( (x^3))
# make a plot to compare fitc and fitu
    par(mar = c(4, 4, 1, 1))
    plot(x, y, cex = .7, xlab = "x", ylab = "y")
    lines(x, fitted(fitu))
    lines(x, fitc, col = 2, lty = 4)
    legend("topleft", bty = "n", c("constr.fit", "unconstr.fit"), lty = c(4, 1), col = c(2, 1))
        title("Qprog Example Plot")
```

shapereg

## Description

The regression model $y_{i}=f\left(t_{i}\right)+x_{i}^{\prime} \beta+\varepsilon_{i}, i=1, \ldots, n$ is considered, where the only assumptions about $f$ concern its shape. The vector expression for the model is $y=\theta+X \beta+\varepsilon$. $X$ represents a parametrically modelled covariate, which could be a categorical covariate or a linear term. The shapereg function allows eight shapes: increasing, decreasing, convex, concave, increasing-convex, increasing-concave, decreasing-convex, and decreasing-concave. This routine employs a single cone projection to find $\theta$ and $\beta$ simultaneously.

## Usage

shapereg(formula, data $=$ NULL, weights $=$ NULL, test $=$ FALSE, nloop $=1 \mathrm{e}+4$ )

## Arguments

formula
data An optional data frame, list or environment containing the variables in the model. The default is data $=$ NULL .
weights An optional non-negative vector of "replicate weights" which has the same length as the response vector. If weights are not given, all weights are taken to equal 1 . The default is weights = NULL.
test
nloop The number of simulations used to get the p-value for the $E_{01}$ test. The default is $1 \mathrm{e}+4$.

## Details

This routine constrains $\theta$ in the equation $y=\theta+X \beta+\varepsilon$ by a shape parameter.
The constraint cone $C$ has the form $\left\{\phi: \phi=v+\sum b_{i} \delta_{i}, i=1, \ldots, m, b_{1}, \ldots, b_{m} \geq 0\right\}, v$ is in $V$. The column vectors of $X$ are in $V$, i.e., the linear space contained in the constraint cone.

The hypothesis test $H_{0}: \phi$ is in $V$ versus $H_{1}: \phi$ is in $C$ is an exact one-sided test, and the test statistic is $E_{01}=\left(S S E_{0}-S S E_{1}\right) /\left(S S E_{0}\right)$, which has a mixture-of-betas distribution when $H_{0}$ is true and $\varepsilon$ is a vector following a standard multivariate normal distribution with mean 0 . The mixing parameters are found through simulations. The number of simulations used to obtain the mixing distribution parameters for the test is 10,000 . Such simulations usually take some time. For the "feet" data set used as an example in this section, whose sample size is 39 , the time to get a p-value is roughly between 4 seconds.

This routine calls coneB for the cone projection part.

| Value |  |
| :---: | :---: |
| coefs | The estimated coefficients for $X$, i.e., the estimation for the vector $\beta$. Note that even if the user does not provide a constant vector in $X$, the coefficient for the intercept will be returned. |
| constr.fit | The shape-restricted fit over the constraint cone $C$ of the form $\{\phi: \phi=v+$ $\left.\sum b_{i} \delta_{i}, i=1, \ldots, m, b_{1}, \ldots, b_{m} \geq 0\right\}, v$ is in $V$. |
| linear.fit | The least-squares regression of $y$ on $V$, i.e., the linear space contained in the constraint cone. If shape is 3 or shape is $4, V$ is spanned by $X$ and $t$. Otherwise, it is spanned by $X$. $X$ must be full column rank, and the matrix formed by combining $X$ and $t$ must also be full column rank. |
| se.beta | The standard errors for the estimation of the vector $\beta$. The degree of freedom is returned by coneB and is multiplied by 1.5 . Note that even if the user does not provide a constant vector in $X$, the standard error for the intercept will be returned. |
| pval | The p-value for the hypothesis test $H_{0}: \phi$ is in $V$ versus $H_{1}: \phi$ is in $C . C$ is the constraint cone of the form $\left\{\phi: \phi=v+\sum b_{i} \delta_{i}, i=1, \ldots, m, b_{1}, \ldots, b_{m} \geq 0\right\}$, $v$ is in $V$, and $V$ is the linear space contained in the constraint cone. If test $==$ TRUE, a p-value is returned. Otherwise, the test is skipped and no p-value is returned. |
| pvals.beta | The approximate p -values for the estimation of the vector $\beta$. A t -distribution is used as the approximate distribution. Note that even if the user does not provide a constant vector in $X$, the approximate p -value for the intercept will be returned. |
| test | The test parameter given by the user. |
| SSE0 | The sum of squared residuals for the linear part. |
| SSE1 | The sum of squared residuals for the full model. |
| shape | A number showing the shape constraint given by the user in a shapereg fit. |
| tms | The terms objects extracted by the generic function terms from a shapereg fit. |
| zid | A vector keeping track of the position of the parametrically modelled covariate. |
| vals | A vector storing the levels of each variable used as a factor. |
| zid1 | A vector keeping track of the beginning position of the levels of each variable used as a factor. |
| zid2 | A vector keeping track of the end position of the levels of each variable used as a factor. |
| tnm | The name of the shape-restricted predictor. |
| ynm | The name of the response variable. |
| znms | A vector storing the name of the parametrically modelled covariate. |
| is_param | A logical scalar showing if or not a variable is a parametrically modelled covariate, which could be a factor or a linear term. |
| is_fac | A logical scalar showing if or not a variable is a factor. |
| xmat | A matrix whose columns represent the parametrically modelled covariate. |
| call | The matched call. |

## Author(s)

Mary C. Meyer and Xiyue Liao

## References

Raubertas, R. F., C.-I. C. Lee, and E. V. Nordheim (1986) Hypothesis tests for normals means constrained by linear inequalities. Communications in Statistics - Theory and Methods 15 (9), 2809-2833.

Robertson, T., F. Wright, and R. Dykstra (1988) Order Restricted Statistical Inference New York: John Wiley and Sons.
Fraser, D. A. S. and H. Massam (1989) A mixed primal-dual bases algorithm for regression under inequality constraints application to concave regression. Scandinavian Journal of Statistics 16, 65-74.

Meyer, M. C. (2003) A test for linear vs convex regression function using shape-restricted regression. Biometrika 90(1), 223-232.
Cheng, G.(2009) Semiparametric additive isotonic regression. Journal of Statistical Planning and Inference 139, 1980-1991.

Meyer, M.C.(2013a) Semiparametric additive constrained regression. Journal of Nonparametric Statistics 25(3), 715-743.
Liao, X. and M. C. Meyer (2014) coneproj: An R package for the primal or dual cone projections with routines for constrained regression. Journal of Statistical Software 61(12), 1-22.

## See Also

coneB

## Examples

```
# load the feet data set
        data(feet)
# extract the continuous and constrained predictor
        l <- feet$length
# extract the continuous response
        w <- feet$width
# extract the categorical covariate: sex
    s <- feet$sex
# make an increasing fit with test set as FALSE
        ans <- shapereg(w ~ incr(l) + factor(s))
# check the summary table
        summary(ans)
# make an increasing fit with test set as TRUE
        ans <- shapereg(w ~ incr(l) + factor(s), test = TRUE, nloop = 1e+3)
```

\# check the summary table
summary (ans)
\# make a plot comparing the unconstrained fit and the constrained fit $\operatorname{par}(\operatorname{mar}=c(4,4,1,1))$ ord <- order(l)
plot(sort(l), w[ord], type = "n", xlab = "foot length (cm)", ylab = "foot width (cm)")
title("Shapereg Example Plot")
\# sort l according to sex
$\operatorname{ord1}<-\operatorname{order}(1[s==" G "])$
$\operatorname{ord} 2<-\operatorname{order}(1[s==" B "])$
\# make the scatterplot of $l$ vs $w$ for boys and girls points(sort(l[s == "G"]), w[s == "G"][ord1], pch = 21, col = 1) points(sort(l[s == "B"]), w[s == "B"][ord2], pch = 24, col = 2)
\# make an unconstrained fit to boys and girls fit <- lm(w ~ l + factor (s))
\# plot the unconstrained fit
lines(sort(l), (coef(fit)[1] + coef(fit)[2] * l + coef(fit)[3])[ord], lty = 2)
lines(sort(l), (coef(fit)[1] + coef(fit)[2] * l)[ord], lty = 2, col = 2)
legend(21.5, 9.8, c("boy","girl"), pch = c(24, 21), col = c(2, 1))
\# plot the constrained fit
lines(sort(l), (ans\$constr.fit - ans\$linear.fit $+\operatorname{coef}(a n s)[1])[o r d], \operatorname{col}=1$ )
lines(sort(1), (ans\$constr.fit - ans\$linear.fit + coef(ans)[1] + coef(ans)[2])[ord], col = 2)

TwoDamat A Two Dimensional Constraint Matrix

## Description

This is a two dimensional constraint matrix which will be used in the example for the check_irred routine.

## Usage

data(TwoDamat)

## Index

```
* cone projection routines
    coneB, }
    constreg, 8
    qprog, 24
    shapereg, 26
* data sets
    cubic, 12
    feet,18
    FEV,19
* datasets
    TwoDamat, 30
* shape routine
    conc, }
    conv, 11
    decr, 13
    decr.conc, 15
    decr.conv, 16
    incr, 19
    incr.conc, 21
    incr.conv, 22
check_irred, 2
conc, 3, 27
coneA, 4, 8, 10, 25
coneB, 6, 6, 29
constreg, 6,8
conv, 11, 27
cubic, 12
decr, 13, 17, 27
decr.conc, 14, 15, 17, 27
decr.conv, 14, 16,27
feet,18
FEV,19
incr, 16, 19, 22, 23, 27
incr.conc, 20, 21, 23, }2
incr.conv, 16, 20, 22, 22, }2
qprog, 6, 24
```

