Prediction of claim counts using the feature based development factors introduced in the manuscript Hiabu M., Hofman E. and Pittarello G. (2023) <doi:10.48550/arXiv.2312.14549>. Implementation of Neural Networks, Extreme Gradient Boosting, and Cox model with splines to optimise the partial log-likelihood of proportional hazard models.
Version: | 1.0.0 |
Depends: | tidyverse |
Imports: | stats, dplyr, dtplyr, fastDummies, forecast, data.table, purrr, tidyr, tibble, ggplot2, survival, reshape2, bshazard, SynthETIC, rpart, reticulate, xgboost, SHAPforxgboost |
Suggests: | knitr, rmarkdown |
Published: | 2024-11-14 |
DOI: | 10.32614/CRAN.package.ReSurv |
Author: | Emil Hofman [aut, cre, cph], Gabriele Pittarello [aut, cph], Munir Hiabu [aut, cph] |
Maintainer: | Emil Hofman <emil_hofman at hotmail.dk> |
BugReports: | https://github.com/edhofman/ReSurv/issues |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
URL: | https://github.com/edhofman/ReSurv |
NeedsCompilation: | no |
SystemRequirements: | Python (>= 3.8.0) |
Materials: | README |
CRAN checks: | ReSurv results |
Package source: | ReSurv_1.0.0.tar.gz |
Windows binaries: | r-devel: ReSurv_1.0.0.zip, r-release: ReSurv_1.0.0.zip, r-oldrel: ReSurv_1.0.0.zip |
macOS binaries: | r-release (arm64): ReSurv_1.0.0.tgz, r-oldrel (arm64): ReSurv_1.0.0.tgz, r-release (x86_64): ReSurv_1.0.0.tgz, r-oldrel (x86_64): ReSurv_1.0.0.tgz |
Please use the canonical form https://CRAN.R-project.org/package=ReSurv to link to this page.