Package 'HDCD'

June 3, 2024

Type Package
Title High-Dimensional Changepoint Detection
Version 1.1
Date 2024-06-02
Maintainer Per August Jarval Moen <pamoen@math.uio.no></pamoen@math.uio.no>
Description Efficient implementations of the following multiple changepoint detection algorithms: Efficient Sparsity Adaptive Change-point estimator by Moen, Glad and Tveten (2023) <doi:10.48550 arxiv.2306.04702="">, Informative Sparse Projection for Estimating Changepoints by Wang and Samworth (2017) <doi:10.1111 rssb.12243="">, and the method of Pilliat et al (2023) <doi:10.1214 23-ejs2126="">.</doi:10.1214></doi:10.1111></doi:10.48550>
License GPL-3
Encoding UTF-8
RoxygenNote 7.2.3
Imports mclust, Rdpack
RdMacros Rdpack
NeedsCompilation yes
Author Per August Jarval Moen [cre, aut] (https://orcid.org/0009-0003-9990-8341)
Repository CRAN
Date/Publication 2024-06-02 23:20:26 UTC
R topics documented:
ARI 2 CUSUM 3 ESAC 4 ESAC_calibrate 6 ESAC_test 8 ESAC_test_calibrate 10
hausdorff

2 ARI

	Inspect	12
	Inspect_calibrate	14
	Inspect_test	16
	Inspect_test_calibrate	18
	Pilliat	19
	Pilliat_calibrate	22
	Pilliat_test	24
	Pilliat_test_calibrate	
	rescale_variance	
	single_CUSUM	
	single_ESAC	
	single_Inspect	
	single_SBS	
	single_SBS_calibrate	
Index		36
ARI	ARI	

Description

Computes the Adjusted Rand Index (ARI) of a vector of estimated change-points.

Usage

```
ARI(etas, eta_hats, n)
```

Arguments

etas Vector of true change-points
eta_hats Vector of estimated change-points
n Sample size

Value

The ARI

```
library(HDCD)
n = 400
true_changepoints = c(50,100)
est_changepoints = c(51,110)
ARI(true_changepoints, est_changepoints,n)
```

CUSUM 3

CUSUM

CUSUM transformation of a matrix

Description

R wrapper for C function computing the CUSUM transformation of a matrix over an interval (s,e]. For compatibility with C indexing, the user should subtract 1 from both s and e when supplying the arguments to the function. If start and stop are not supplied, the CUSUM is computed over the full data, so (s,e]=(0,n]. In this case, CUSUM returns the same result as cusum. transform in the package InspectChangepoint (Wang and Samworth 2020).

Usage

```
CUSUM(X, start = NULL, stop = NULL)
```

Arguments

Χ	Matrix of observations, where each row contains a time series
start	Starting point of interval over which the CUSUM should be computed, subtracted by one
stop	Ending point of interval over which the CUSUM should be computed, subtracted by one

Value

A matrix of CUSUM values. The (i,j)-th element corresponds to the CUSUM transformation of the i-th row of X, computed over the interval $(\mathsf{start} + 1, \mathsf{end} + 1]$ and evaluated at position $\mathsf{start} + 1 + j$, i.e. $\sqrt{\frac{e-v}{(e-s)(v-s)}} \sum_{t=s+1}^v X_{i,t} - \sqrt{\frac{v-s}{(e-s)(e-v)}} \sum_{t=v+1}^e X_{i,t}$, where $s = (\mathsf{start} + 1)$, $e = (\mathsf{stop} + 1)$ and $v = \mathsf{start} + 1 + j$.

References

Wang T, Samworth R (2020). *InspectChangepoint: High-Dimensional Changepoint Estimation via Sparse Projection*. R package version 1.1, https://CRAN.R-project.org/package=InspectChangepoint.

```
n = 10
p = 10
set.seed(101)
X = matrix(rnorm(n*p), ncol = n, nrow=p)
# CUSUM over the full data (s,e] = (0,n]
X_cusum = CUSUM(X)

# CUSUM over (s,e] = (3,9]:
s = 3
e = 9
X_cusum = CUSUM(X, start = s-1, stop = e-1)
```

ESAC ESAC

ESAC

Efficient Sparsity Adaptive Change-point estimator

Description

R wrapper for C function implementing the full ESAC algorithm (see Moen et al. 2023).

Usage

```
ESAC(
 Χ,
  threshold_d = 1.5,
  threshold_s = 1,
  alpha = 1.5,
 K = 5,
  debug = FALSE,
  empirical = FALSE,
  tol = 0.001,
 N = 1000,
  thresholds = NULL,
  thresholds_test = NULL,
  threshold_d_test = threshold_d,
  threshold_s_test = threshold_s,
  fast = FALSE,
  rescale_variance = TRUE,
  trim = FALSE,
 NOT = TRUE,
 midpoint = FALSE
)
```

Arguments

X	Matrix of observations, where each row contains a time series
threshold_d	Leading constant for $\lambda(t) \propto r(t)$ for $t=p$. Only relevant when thresholds=NULL
threshold_s	Leading constant for $\lambda(t) \propto r(t)$ for $t \leq \sqrt{p \log n}$. Only relevant when thresholds=NULL
alpha	Parameter for generating seeded intervals
K	Parameter for generating seeded intervals
debug	If TRUE, diagnostic prints are provided during execution
empirical	$If TRUE, detection thresholds are based on Monte Carlo simulation using ESAC_calibrate$
tol	If empirical=TRUE, tol is the false error probability tolerance
N	If empirical=TRUE, N is the number of Monte Carlo samples used
thresholds	Vector of manually chosen values of $\lambda(t)$ for $t \in \mathcal{T}$, decreasing in t

ESAC 5

thresholds_test

Vector of manually chosen values of $\gamma(t)$ for $t \in \mathcal{T}$, decreasing in t

threshold_d_test

Leading constant for $\gamma(t) \propto r(t)$ for t=p. Only relevant when empirical=FALSE

and thresholds_test=NULL

threshold_s_test

Leading constant for $\gamma(t) \propto r(t)$ for $t \leq \sqrt{p \log n}$. Only relevant when

empirical=FALSE and thresholds_test=NULL

fast If TRUE, ESAC only tests for a change-point at the midpoint of each seeded

interval

rescale_variance

If TRUE, each row of the data is re-scaled by a MAD estimate using rescale_variance

trim If TRUE, interval trimming is performed

NOT If TRUE, ESAC uses Narrowest-Over-Threshold selection of change-points

midpoint If TRUE, change-point positions are estimated by the mid-point of the seeded

interval in which the penalized score is the largest

Value

A list containing

changepoints vector of estimated change-points

changepointnumber

number of changepoints

CUSUMval the penalized score at the corresponding change-point in changepoints

coordinates a matrix of zeros and ones indicating which time series are affected by a change

in mean, with each row corresponding to the change-point in changepoints

scales vector of estimated noise level for each series

startpoints start point of the seeded interval detecting the corresponding change-point in

changepoints

endpoints end point of the seeded interval detecting the corresponding change-point in

changepoints

thresholds vector of values of $\lambda(t)$ for $t \in \mathcal{T}$ in decreasing order

thresholds_test

vector of values of $\gamma(t)$ for $t \in \mathcal{T}$ in decreasing order

References

Moen PAJ, Glad IK, Tveten M (2023). "Efficient sparsity adaptive changepoint estimation." Arxiv preprint, 2306.04702, https://doi.org/10.48550/arXiv.2306.04702.

6 ESAC_calibrate

Examples

```
library(HDCD)
n = 50
p = 50
set.seed(100)
# Generating data
X = matrix(rnorm(n*p), ncol = n, nrow=p)
# Adding a single sparse change-point:
X[1:5, 26:n] = X[1:5, 26:n] +1
# Vanilla ESAC:
res = ESAC(X)
res$changepoints
# Manually setting leading constants for \lambda(t) and \gamma(t)
res = ESAC(X,
           threshold_d = 2, threshold_s = 2, #leading constants for \lambda(t)
           threshold_d_test = 2, threshold_s_test = 2 #leading constants for \gamma(t)
res$changepoints #estimated change-point locations
# Empirical choice of thresholds:
res = ESAC(X, empirical = TRUE, N = 100, tol = 1/100)
res$changepoints
# Manual empirical choice of thresholds (equivalent to the above)
thresholds_emp = ESAC_calibrate(n,p, N=100, tol=1/100)
res = ESAC(X, thresholds_test = thresholds_emp[[1]])
res$changepoints
```

ESAC_calibrate

Generates empirical penalty function $\gamma(t)$ for the ESAC algorithm using Monte Carlo simulation

Description

R wrapper for C function choosing the penalty function $\gamma(t)$ by Monte Carlo simulation, as described in Appendix B in Moen et al. (2023).

Usage

```
ESAC_calibrate(
    n,
    p,
    alpha = 1.5,
    K = 5,
    N = 1000,
    tol = 0.001,
    bonferroni = TRUE,
```

7 ESAC_calibrate

```
fast = FALSE,
rescale_variance = TRUE,
tdf = NULL,
debug = FALSE
```

Arguments

p

Number of observations n Number time series

alpha Parameter for generating seeded intervals K Parameter for generating seeded intervals Number of Monte Carlo samples used Ν

tol False error probability tolerance

bonferroni If TRUE, a Bonferroni correction applied and the empirical penalty function $\gamma(t)$

is chosen by simulating leading constants of r(t) through Monte Carlo simula-

fast If TRUE, ESAC only tests for a change-point at the midpoint of each seeded

interval

rescale_variance

If TRUE, each row of the data is re-scaled by a MAD estimate using rescale_variance

tdf If NULL, samples are drawn from a Gaussian distribution. Otherwise, they are

drawn from a t distribution with tdf degrees of freedom.

debug If TRUE, diagnostic prints are provided during execution

Value

A list containing

without_partial

a vector of values of $\gamma(t)$ for $t \in \mathcal{T}$ decreasing in t

with_partial same as without_partial

vector of threshold values a(t) for $t \in \mathcal{T}$ decreasing in tas

vector of conditional expectations $u_{a(t)}$ of a thresholded Gaussian, for $t \in \mathcal{T}$ nu_as

decreasing in t

#'

References

Moen PAJ, Glad IK, Tveten M (2023). "Efficient sparsity adaptive changepoint estimation." Arxiv preprint, 2306.04702, https://doi.org/10.48550/arXiv.2306.04702.

8 ESAC_test

Examples

```
library(HDCD)
n = 50
p = 50

set.seed(100)
thresholds_emp = ESAC_calibrate(n,p, N=100, tol=1/100)
set.seed(100)
thresholds_emp_without_bonferroni = ESAC_calibrate(n,p, N=100, tol=1/100,bonferroni=FALSE)
thresholds_emp[[1]] # vector of \gamma(t) for t = p,...,1
thresholds_emp_without_bonferroni[[1]] # vector of \gamma(t) for t = p,...,1

# Generating data
X = matrix(rnorm(n*p), ncol = n, nrow=p)
# Adding a single sparse change-point:
X[1:5, 26:n] = X[1:5, 26:n] +2

res = ESAC(X, thresholds_test = thresholds_emp[[1]])
res$changepoints
```

ESAC_test

ESAC single change-point test

Description

R wrapper for C function testing for a single change-point using ESAC (see Moen et al. 2023).

Usage

```
ESAC_test(
   X,
   threshold_d = 1.5,
   threshold_s = 1,
   debug = FALSE,
   empirical = FALSE,
   thresholds = NULL,
   fast = FALSE,
   tol = 0.001,
   N = 1000,
   rescale_variance = TRUE
)
```

Arguments

X Matrix of observations, where each row contains a time series

threshold_d Leading constant for $\gamma(t) \propto r(t)$ for t=p. Only relevant when empirical=FALSE and thresholds=NULL

ESAC_test 9

Leading constant for $\gamma(t) \propto r(t)$ for $t \leq \sqrt{p \log n}$. Only relevant when threshold_s empirical=FALSE and thresholds=NULL debug If TRUE, diagnostic prints are provided during execution empirical If TRUE, detection thresholds are based on Monte Carlo simulation using ESAC_test_calibrate thresholds Vector of manually chosen values of $\gamma(t)$ for $t \in \mathcal{T}$, decreasing in t fast If TRUE, ESAC only tests for a change-point at the midpoint of each seeded interval tol If empirical=TRUE, tol is the false error probability tolerance If empirical=TRUE, N is the number of Monte Carlo samples used rescale_variance

If TRUE, each row of the data is re-scaled by a MAD estimate using rescale_variance

Value

1 if a change-point is detected, 0 otherwise

References

Moen PAJ, Glad IK, Tveten M (2023). "Efficient sparsity adaptive changepoint estimation." Arxiv preprint, 2306.04702, https://doi.org/10.48550/arXiv.2306.04702.

```
library(HDCD)
n = 50
p = 50
# Generating data
X = matrix(rnorm(n*p), ncol = n, nrow=p)
Y = matrix(rnorm(n*p), ncol = n, nrow=p)
# Adding a single sparse change-point to X (and not Y):
X[1:5, 26:n] = X[1:5, 26:n] +1
# Vanilla ESAC:
resX = ESAC\_test(X)
resY = ESAC\_test(Y)
resY
# Manually setting leading constants for \lambda(t) and \gamma(t)
resX = ESAC_test(X,
                 threshold_d = 2, threshold_s = 2, #leading constants for \gamma(t)
resX
resY = ESAC_test(Y,
                 threshold_d = 2, threshold_s = 2, #leading constants for \gamma(t)
resY
```

10 ESAC_test_calibrate

```
# Empirical choice of thresholds:
resX = ESAC_test(X, empirical = TRUE, N = 100, tol = 1/100)
resX
resY = ESAC_test(Y, empirical = TRUE, N = 100, tol = 1/100)
resY

# Manual empirical choice of thresholds (equivalent to the above)
thresholds_test_emp = ESAC_test_calibrate(n,p, N=100, tol=1/100,bonferroni=TRUE)
resX = ESAC_test(X, thresholds = thresholds_test_emp[[1]])
resX
resY = ESAC_test(Y, thresholds = thresholds_test_emp[[1]])
resY
```

ESAC_test_calibrate

Generates empirical penalty function $\gamma(t)$ for single change-point testing using Monte Carlo simulation

Description

R wrapper for C function choosing the penalty function $\gamma(t)$ by Monte Carlo simulation, as described in Appendix B in Moen et al. (2023), for testing for a single change-point.

Usage

```
ESAC_test_calibrate(
    n,
    p,
    bonferroni = TRUE,
    N = 1000,
    tol = 1/1000,
    fast = FALSE,
    rescale_variance = TRUE,
    debug = FALSE
)
```

Arguments n

p	Number time series
bonferroni	If TRUE, a Bonferroni correction applied and the empirical penalty function $\gamma(t)$ is chosen by simulating leading constants of $r(t)$ through Monte Carlo simulation.

N Number of Monte Carlo samples used tol False positive probability tolerance

Number of observations

fast If TRUE, ESAC only tests for a change-point at the midpoint of the interval

 $(0,\ldots,n]$

ESAC_test_calibrate 11

```
rescale_variance
```

If TRUE, each row of the data is re-scaled by a MAD estimate using rescale_variance

debug If TRUE, diagnostic prints are provided during execution

Value

A list containing a vector of values of $\gamma(t)$ for $t \in \mathcal{T}$ decreasing (element #1), a vector of corresponding values of the threshold a(t) (element #3), a vector of corresponding values of $\nu_{a(t)}$

A list containing

```
without_partial
```

a vector of values of $\gamma(t)$ for $t \in \mathcal{T}$ decreasing in t

with_partial same as without_partial

as vector of threshold values a(t) for $t \in \mathcal{T}$ decreasing in t

nu_as vector of conditional expectations $\nu_{a(t)}$ of a thresholded Gaussian, for $t \in \mathcal{T}$

decreasing in t

References

Moen PAJ, Glad IK, Tveten M (2023). "Efficient sparsity adaptive changepoint estimation." Arxiv preprint, 2306.04702, https://doi.org/10.48550/arXiv.2306.04702.

```
library(HDCD)
n = 50
p = 50
set.seed(100)
thresholds_emp = ESAC_test_calibrate(n,p, bonferroni=TRUE,N=100, tol=1/100)
set.seed(100)
thresholds_emp_without_bonferroni = ESAC_test_calibrate(n,p, bonferroni=FALSE,N=100, tol=1/100)
thresholds_emp[[1]] # vector of \gamma(t) for t = p, ..., 1
thresholds_emp_without_bonferroni[[1]] # vector of \gamma for t = p,...,1
# Generating data
X = matrix(rnorm(n*p), ncol = n, nrow=p)
Y = matrix(rnorm(n*p), ncol = n, nrow=p)
# Adding a single sparse change-point to X (and not Y):
X[1:5, 26:n] = X[1:5, 26:n] +2
resX = ESAC_test(X, thresholds = thresholds_emp[[1]])
resY = ESAC_test(Y, thresholds = thresholds_emp[[1]])
resY
```

12 Inspect

1.			-1			~	_
n	าลเ	ıs	a	റ	r:	Г1	Г

Hausdorff distance between two sets

Description

Computes the Hausdorff distance between two sets represented as vectors v1 and v2. If v1 == NULL and v2 != NULL, then the largest distance between an element of v1 and the set $\{1, n\}$ is returned, and vice versa. If both vectors are NULL, \emptyset is returned.

Usage

```
hausdorff(v1, v2, n)
```

Arguments

v1	Vector representing set 1
v2	Vector representing set 2
n	Sample size (only relevant when either v1 or v2 is NULL)

Value

The Hausdorff distance between v1 and v2

Examples

```
library(HDCD)
n = 400
true_changepoints = c(50,100)
est_changepoints = c(51,110)
hausdorff(true_changepoints, est_changepoints,n)
hausdorff(true_changepoints, NULL,n)
hausdorff(NULL, est_changepoints,n)
hausdorff(NULL,NULL)
```

Inspect

Informative sparse projection for estimating change-points (Inspect)

Description

R wrapper for C function implementing a Narrowest-Over-Threshold variant of Inspect Wang and Samworth (2018) as specified in Appendix C in Moen et al. (2023). Note that the algorithm is only implemented for $\mathcal{S} = \mathcal{S}_2$, in the notation of Moen et al. (2023).

Inspect 13

Usage

```
Inspect(
   X,
   lambda = NULL,
   xi = NULL,
   alpha = 1.5,
   K = 5,
   eps = 1e-10,
   empirical = FALSE,
   maxiter = 10000,
   N = 100,
   tol = 1/100,
   rescale_variance = TRUE,
   debug = FALSE
)
```

Arguments

Χ	Matrix of observations, where each row contains a time series
lambda	Manually specified value of λ (can be NULL, in which case $\lambda \leftarrow \sqrt{\log(p\log n)/2}$)
xi	Manually specified value of ξ (can be NULL, in which case $\xi \leftarrow 4\sqrt{\log(np)}$)
alpha	Parameter for generating seeded intervals
K	Parameter for generating seeded intervals
eps	Threshold for declaring numerical convergence of the power method
empirical	If TRUE, the detection threshold xi is based on Monte Carlo simulation using Inspect_calibrate
maxiter	Maximum number of iterations for the power method
N	If empirical=TRUE, N is the number of Monte Carlo samples used
tol	If empirical=TRUE, tol is the false error probability tolerance
rescale_variand	ce
	If TRUE, each row of the data is re-scaled by a MAD estimate using ${\tt rescale_variance}$

Value

debug

A list containing

changepoints vector of estimated change-points

changepointnumber

number of changepoints

CUSUMval vector with the sparse projected CUSUMs corresponding to changepoints

If TRUE, diagnostic prints are provided during execution

coordinates a matrix of zeros and ones indicating which time series are affected by a change

in mean, with each row corresponding to the change-point in changepoints

scales vector of estimated noise level for each series

14 Inspect_calibrate

References

Moen PAJ, Glad IK, Tveten M (2023). "Efficient sparsity adaptive changepoint estimation." Arxiv preprint, 2306.04702, https://doi.org/10.48550/arXiv.2306.04702.

Wang T, Samworth RJ (2018). "High dimensional change point estimation via sparse projection." *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, **80**(1), 57–83. ISSN 1467-9868, doi:10.1111/rssb.12243, https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/rssb.12243.

Examples

```
library(HDCD)
n = 50
p = 50
set.seed(100)
# Generating data
X = matrix(rnorm(n*p), ncol = n, nrow=p)
# Adding a single sparse change-point:
X[1:5, 26:n] = X[1:5, 26:n] +1
# Vanilla Inspect:
res = Inspect(X)
res$changepoints
# Manually setting leading constants for \lambda(t) and \gamma(t)
res = Inspect(X,
              lambda = sqrt(log(p*log(n))/2),
              xi = 4*sqrt(log(n*p))
)
res$changepoints #estimated change-point locations
# Empirical choice of thresholds:
res = Inspect(X, empirical=TRUE, N = 100, tol = 1/100)
res$changepoints
# Manual empirical choice of thresholds (equivalent to the above)
thresholds_emp = Inspect_calibrate(n,p, N=100, tol=1/100)
res = Inspect(X, xi = thresholds_emp$max_value)
res$changepoints
```

Inspect_calibrate

Generates empirical detection threshold ξ using Monte Carlo simulation

Description

R wrapper for C function choosing empirical detection threshold ξ for the Narrowest-Over-Threshold variant of Inspect (as specified in section 4.2 in Moen et al. 2023) using Monte Carlo simulation.

Inspect_calibrate 15

Usage

```
Inspect_calibrate(
    n,
    p,
    N = 100,
    tol = 1/100,
    lambda = NULL,
    alpha = 1.5,
    K = 5,
    eps = 1e-10,
    maxiter = 10000,
    rescale_variance = TRUE,
    debug = FALSE
)
```

Arguments

n	Number of observations
p	Number time series
N	Number of Monte Carlo samples used
tol	False positive probability tolerance
lambda	Manually specified value of λ (can be NULL, in which case $\lambda \leftarrow \sqrt{\log(p\log n)/2}$)
alpha	Parameter for generating seeded intervals
K	Parameter for generating seeded intervals
eps	Threshold for declaring numerical convergence of the power method
maxiter	Maximum number of iterations for the power method
rescale_variand	ce
	If TRUE, each row of the data is re-scaled by a MAD estimate using ${\tt rescale_variance}$
debug	If TRUE, diagnostic prints are provided during execution

Value

A list containing

max_value the empirical threshold

References

Moen PAJ, Glad IK, Tveten M (2023). "Efficient sparsity adaptive changepoint estimation." Arxiv preprint, 2306.04702, https://doi.org/10.48550/arXiv.2306.04702.

```
library(HDCD)
n = 50
p = 50
```

16 Inspect_test

```
set.seed(100)
thresholds_emp = Inspect_calibrate(n,p, N=100, tol=1/100)
thresholds_emp$max_value # xi

# Generating data
X = matrix(rnorm(n*p), ncol = n, nrow=p)
# Adding a single sparse change-point:
X[1:5, 26:n] = X[1:5, 26:n] +2

res = Inspect(X, xi = thresholds_emp$max_value)
res$changepoints
```

Inspect_test

Inspect single change-point test

Description

R wrapper for C function testing for a single change-point using Inspect Wang and Samworth (2018).

Usage

```
Inspect_test(
   X,
   lambda = NULL,
   xi = NULL,
   eps = 1e-10,
   empirical = FALSE,
   N = 100,
   tol = 1/100,
   maxiter = 10000,
   rescale_variance = TRUE,
   debug = FALSE
)
```

Arguments

X	Matrix of observations, where each row contains a time series
lambda	Manually specified value of λ (can be NULL, in which case $\lambda \leftarrow \sqrt{\log(p\log n)/2})$
xi	Manually specified value of ξ (can be NULL, in which case $\xi \leftarrow 4\sqrt{\log(np)}$)
eps	Threshold for declaring numerical convergence of the power method
empirical	If TRUE, the detection threshold xi is based on Monte Carlo simulation using <code>Inspect_test_calibrate</code>
N	If empirical=TRUE, N is the number of Monte Carlo samples used
tol	If empirical=TRUE, tol is the false error probability tolerance

Inspect_test 17

Value

1 if a change-point is detected, 0 otherwise

References

Wang T, Samworth RJ (2018). "High dimensional change point estimation via sparse projection." *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, **80**(1), 57–83. ISSN 1467-9868, doi:10.1111/rssb.12243, https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/rssb.12243.

```
library(HDCD)
n = 50
p = 50
# Generating data
X = matrix(rnorm(n*p), ncol = n, nrow=p)
Y = matrix(rnorm(n*p), ncol = n, nrow=p)
# Adding a single sparse change-point to X (and not Y):
X[1:5, 26:n] = X[1:5, 26:n] +1
# Vanilla Inspect:
resX = Inspect_test(X)
resY = Inspect_test(Y)
resY
# Manually setting \lambda and \xi:
resX = Inspect_test(X,
                    lambda = sqrt(log(p*log(n))/2),
                    xi = 4*sqrt(log(n*p))
)
resX
resY = Inspect_test(Y,
                    lambda = sqrt(log(p*log(n))/2),
                    xi = 4*sqrt(log(n*p))
)
resY
# Empirical choice of thresholds:
resX = Inspect_test(X, empirical = TRUE, N = 100, tol = 1/100)
resY = Inspect_test(Y, empirical = TRUE, N = 100, tol = 1/100)
```

```
resY

# Manual empirical choice of thresholds (equivalent to the above)
thresholds_test_emp = Inspect_test_calibrate(n,p, N=100, tol=1/100)
resX = Inspect_test(X, xi = thresholds_test_emp$max_value)
resX
resY = Inspect_test(Y, xi = thresholds_test_emp$max_value)
resY
```

Inspect_test_calibrate

Generates empirical detection threshold ξ for single change-point testing using Monte Carlo simulation

Description

R wrapper for C function choosing the empirical detection threshold ξ for Inspect Wang and Samworth (2018) for single change-point testing using Monte Carlo simulation.

Usage

```
Inspect_test_calibrate(
   n,
   p,
   N = 100,
   tol = 1/100,
   lambda = NULL,
   eps = 1e-10,
   maxiter = 10000,
   rescale_variance = TRUE,
   debug = FALSE
)
```

Arguments

n	Number of observations	
p	Number time series	
N	Number of Monte Carlo samples used	
tol	False positive probability tolerance	
lambda	Manually specified value of λ (can be NULL, in which case $\lambda \leftarrow \sqrt{\log(p\log n)/2}$)	
eps	Threshold for declaring numerical convergence of the power method	
maxiter	Maximum number of iterations for the power method	
rescale_variand	ale_variance	
	If TRUE, each row of the data is re-scaled by a MAD estimate using ${\tt rescale_variance}$	
debug	If TRUE, diagnostic prints are provided during execution	

Pilliat 19

Value

A list containing

max_value the empirical threshold

References

Wang T, Samworth RJ (2018). "High dimensional change point estimation via sparse projection." *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, **80**(1), 57–83. ISSN 1467-9868, doi:10.1111/rssb.12243, https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/rssb.12243.

Examples

```
library(HDCD)
n = 50
p = 50

set.seed(100)
thresholds_emp = Inspect_test_calibrate(n,p,N=100, tol=1/100)
thresholds_emp

# Generating data
X = matrix(rnorm(n*p), ncol = n, nrow=p)
Y = matrix(rnorm(n*p), ncol = n, nrow=p)

# Adding a single sparse change-point to X (and not Y):
X[1:5, 26:n] = X[1:5, 26:n] +2
resX = Inspect_test(X, xi = thresholds_emp$max_value)
resX
resY = Inspect_test(Y, xi = thresholds_emp$max_value)
resY
```

Pilliat

Pilliat multiple change-point detection algorithm

Description

R wrapper function for C implementation of the multiple change-point detection algorithm by Pilliat et al. (2023), using seeded intervals generated by Algorithm 4 in Moen et al. (2023). For the sake of simplicity, detection thresholds are chosen independently of the width of the interval in which a change-point is tested for (so r=1 is set for all intervals).

20 Pilliat

```
Usage
```

```
Pilliat(
 Χ,
  threshold_d_const = 4,
  threshold_bj_const = 6,
  threshold_partial_const = 4,
 K = 2,
  alpha = 1.5,
  empirical = FALSE,
  threshold_dense = NULL,
  thresholds_partial = NULL,
  thresholds_bj = NULL,
  N = 100,
  tol = 0.01,
  rescale_variance = TRUE,
  test_all = FALSE,
  debug = FALSE
)
```

Arguments

X Matrix of observations, where each row contains a time series

threshold_d_const

Leading constant for the analytical detection threshold for the dense statistic

threshold_bj_const

Leading constant for p_0 when computing the detection threshold for the Berk-

Jones statistic

threshold_partial_const

Leading constant for the analytical detection threshold for the partial sum statis-

tic

K Parameter for generating seeded intervals alpha Parameter for generating seeded intervals

empirical If TRUE, detection thresholds are based on Monte Carlo simulation using Pilliat_calibrate

threshold_dense

Manually specified value of detection threshold for the dense statistic

thresholds_partial

Vector of manually specified detection thresholds for the partial sum statistic,

for sparsities/partial sums $t = 1, 2, 4, \dots, 2^{\lfloor \log_2(p) \rfloor}$

thresholds_bj Vector of manually specified detection thresholds for the Berk-Jones statistic,

order corresponding to $x = 1, 2, \dots, x_0$

N If empirical=TRUE, N is the number of Monte Carlo samples used

tol If empirical=TRUE, tol is the false error probability tolerance

rescale_variance

If TRUE, each row of the data is re-scaled by a MAD estimate (see rescale_variance)

test_all If TRUE, the algorithm tests for a change-point in all candidate positions of each

considered interval

debug If TRUE, diagnostic prints are provided during execution

Pilliat 21

Value

A list containing

changepoints vector of estimated change-points

number_of_changepoints

number of changepoints

scales vector of estimated noise level for each series

startpoints start point of the seeded interval detecting the corresponding change-point in

changepoints

endpoints end point of the seeded interval detecting the corresponding change-point in

changepoints

References

Moen PAJ, Glad IK, Tveten M (2023). "Efficient sparsity adaptive changepoint estimation." Arxiv preprint, 2306.04702, https://doi.org/10.48550/arXiv.2306.04702.

Pilliat E, Carpentier A, Verzelen N (2023). "Optimal multiple change-point detection for high-dimensional data." *Electronic Journal of Statistics*, **17**(1), 1240 – 1315.

```
library(HDCD)
n = 50
p = 50
set.seed(100)
# Generating data
X = matrix(rnorm(n*p), ncol = n, nrow=p)
# Adding a single sparse change-point:
X[1:5, 26:n] = X[1:5, 26:n] +2
# Vanilla Pilliat:
res = Pilliat(X)
res$changepoints
# Manually setting leading constants for detection thresholds
res = Pilliat(X, threshold_d_const = 4, threshold_bj_const = 6, threshold_partial_const=4)
res$changepoints #estimated change-point locations
# Empirical choice of thresholds:
res = Pilliat(X, empirical = TRUE, N = 100, tol = 1/100)
res$changepoints
# Manual empirical choice of thresholds (equivalent to the above)
thresholds_emp = Pilliat_calibrate(n,p, N=100, tol=1/100)
thresholds_emp$thresholds_partial # thresholds for partial sum statistic
thresholds_emp$thresholds_bj # thresholds for Berk-Jones statistic
thresholds_emp$threshold_dense # thresholds for Berk-Jones statistic
res = Pilliat(X, threshold_dense =thresholds_emp$threshold_dense,
              thresholds_bj = thresholds_emp$thresholds_bj,
```

Pilliat_calibrate

```
thresholds\_partial \ = thresholds\_emp\$thresholds\_partial \ ) \\ res\$changepoints
```

Pilliat_calibrate

Generates detection thresholds for the Pilliat algorithm using Monte Carlo simulation

Description

R wrapper for function choosing detection thresholds for the Dense, Partial sum and Berk-Jones statistics in the multiple change-point detection algorithm of Pilliat et al. (2023) using Monte Carlo simulation. When Bonferroni==TRUE, the detection thresholds are chosen by simulating the leading constant in the theoretical detection thresholds given in Pilliat et al. (2023), similarly as described in Appendix B in Moen et al. (2023) for ESAC. When Bonferroni==TRUE, the thresholds for the Berk-Jones statistic are theoretical and not chosen by Monte Carlo simulation.

Usage

```
Pilliat_calibrate(
   n,
   p,
   N = 100,
   tol = 0.01,
   bonferroni = TRUE,
   threshold_bj_const = 6,
   K = 2,
   alpha = 1.5,
   rescale_variance = TRUE,
   test_all = FALSE,
   debug = FALSE
)
```

Arguments

n	Number of observations	
р	Number time series	
N	Number of Monte Carlo samples used	
tol	False error probability tolerance	
bonferroni	If TRUE, a Bonferroni correction applied and the detection thresholds for each statistic is chosen by simulating the leading constant in the theoretical detection thresholds	
threshold_bj_const		

Leading constant for p_0 for the Berk-Jones statistic

K Parameter for generating seeded intervals alpha Parameter for generating seeded intervals

Pilliat_calibrate 23

```
rescale_variance
```

If TRUE, each row of the data is re-scaled by a MAD estimate (see rescale_variance)

test_all If TRUE, a change-point test is applied to each candidate change-point position

in each interval. If FALSE, only the mid-point of each interval is considered

debug If TRUE, diagnostic prints are provided during execution

Value

```
A list containing
```

thresholds_partial

vector of thresholds for the Partial Sum statistic (respectively for $t = 1, 2, 4, \dots, 2^{\lfloor \log_2(p) \rfloor}$ number of terms in the partial sum)

threshold_dense

threshold for the dense statistic

thresholds_bj vector of thresholds for the Berk-Jones static (respectively for $x = 1, 2, \dots, x_0$)

References

Moen PAJ, Glad IK, Tveten M (2023). "Efficient sparsity adaptive changepoint estimation." Arxiv preprint, 2306.04702, https://doi.org/10.48550/arXiv.2306.04702.

Pilliat E, Carpentier A, Verzelen N (2023). "Optimal multiple change-point detection for high-dimensional data." *Electronic Journal of Statistics*, **17**(1), 1240 – 1315.

```
library(HDCD)
n = 50
p = 50
set.seed(100)
thresholds_emp = Pilliat_calibrate(n,p, N=100, tol=1/100)
thresholds_emp$thresholds_partial # thresholds for partial sum statistic
thresholds_emp$thresholds_bj # thresholds for Berk-Jones statistic
thresholds_emp$threshold_dense # thresholds for Berk-Jones statistic
set.seed(100)
thresholds_emp_without_bonferroni = Pilliat_calibrate(n,p, N=100, tol=1/100,bonferroni = FALSE)
thresholds_emp_without_bonferroni$thresholds_partial # thresholds for partial sum statistic
thresholds_emp_without_bonferroni$thresholds_bj # thresholds for Berk-Jones statistic
thresholds_emp_without_bonferroni$threshold_dense # thresholds for Berk-Jones statistic
# Generating data
X = matrix(rnorm(n*p), ncol = n, nrow=p)
# Adding a single sparse change-point:
X[1:5, 26:n] = X[1:5, 26:n] +2
res = Pilliat(X, threshold_dense =thresholds_emp$threshold_dense,
              thresholds_bj = thresholds_emp$thresholds_bj,
              thresholds_partial =thresholds_emp$thresholds_partial )
res$changepoints
```

24 Pilliat_test

Pilliat_test

Pilliat single change-point test

Description

R wrapper function testing for a single change-point using the three test statistics in the multiple change point detection algorithm of Pilliat et al. (2023). See also Appendix E in Moen et al. (2023).

Usage

```
Pilliat_test(
   X,
   empirical = FALSE,
   N = 100,
   tol = 0.05,
   thresholds_partial = NULL,
   threshold_dense = NULL,
   threshold_d_const = 4,
   threshold_bj_const = 6,
   threshold_partial_const = 4,
   rescale_variance = TRUE,
   fast = FALSE,
   debug = FALSE
)
```

Arguments

Matrix of observations, where each row contains a time series
 empirical If TRUE, detection thresholds are based on Monte Carlo simulation
 N If empirical=TRUE, N is the number of Monte Carlo samples used

tol If empirical=TRUE, tol is the false error probability tolerance

thresholds_partial

Vector of manually specified detection thresholds for the partial sum statistic, for sparsities/partial sums $t=1,2,4,\ldots,2^{\lfloor \log_2(p) \rfloor}$

threshold_dense

Manually specified value of detection threshold for the dense statistic

thresholds_bj Vector of manually specified detection thresholds for the Berk-Jones statistic, order corresponding to $x=1,2,\ldots,x_0$

threshold_d_const

Leading constant for the analytical detection threshold for the dense statistic threshold_bj_const

Leading constant for p_0 when computing the detection threshold for the Berk-Jones statistic

Pilliat_test 25

```
threshold_partial_const
```

Leading constant for the analytical detection threshold for the partial sum statis-

rescale_variance

If TRUE, each row of the data is re-scaled by a MAD estimate (see rescale_variance)

fast If TRUE, only the mid-point of (0, ..., n] is tested for a change-point. Otherwise

a test is performed at each candidate change-point poisition

debug If TRUE, diagnostic prints are provided during execution

Value

1 if a change-point is detected, 0 otherwise

References

Moen PAJ, Glad IK, Tveten M (2023). "Efficient sparsity adaptive changepoint estimation." Arxiv preprint, 2306.04702, https://doi.org/10.48550/arXiv.2306.04702.

Pilliat E, Carpentier A, Verzelen N (2023). "Optimal multiple change-point detection for high-dimensional data." *Electronic Journal of Statistics*, **17**(1), 1240 – 1315.

```
library(HDCD)
n = 200
p = 200
# Generating data
X = matrix(rnorm(n*p), ncol = n, nrow=p)
Y = matrix(rnorm(n*p), ncol = n, nrow=p)
# Adding a single sparse change-point to X (and not Y):
X[1:5, 100:200] = X[1:5, 100:200] +1
# Vanilla Pilliat test:
resX = Pilliat_test(X)
resX
resY = Pilliat_test(Y)
# Manually setting leading constants for the theoretical thresholds for the three
# test statistics used
resX = Pilliat_test(X,
                    threshold_d_const=4,
                    threshold_bj_const=6,
                    threshold_partial_const=4
)
resX
resY = Pilliat_test(Y,
                    threshold_d_const=4,
                    threshold_bj_const=6,
```

26 Pilliat_test_calibrate

```
threshold_partial_const=4
)
resY
# Empirical choice of thresholds:
resX = Pilliat_test(X, empirical = TRUE, N = 100, tol = 1/100)
resY = Pilliat_test(Y, empirical = TRUE, N = 100, tol = 1/100)
resY
# Manual empirical choice of thresholds (equivalent to the above)
thresholds_test_emp = Pilliat_test_calibrate(n,p, N=100, tol=1/100,bonferroni=TRUE)
resX = Pilliat_test(X,
                    threshold_dense=thresholds_test_emp$threshold_dense,
                    thresholds_bj = thresholds_test_emp$thresholds_bj,
                    thresholds_partial = thresholds_test_emp$thresholds_partial
)
resX
resY = Pilliat_test(Y,
                    threshold_dense=thresholds_test_emp$threshold_dense,
                    thresholds_bj = thresholds_test_emp$thresholds_bj,
                    thresholds_partial = thresholds_test_emp$thresholds_partial
)
resY
```

Pilliat_test_calibrate

Generates detection thresholds for the Pilliat algorithm for testing for a single change-point using Monte Carlo simulation

Description

R wrapper for function choosing detection thresholds for the Dense, Partial sum and Berk-Jones statistics in the multiple change-point detection algorithm of Pilliat et al. (2023) for single change-point testing using Monte Carlo simulation. When Bonferroni==TRUE, the detection thresholds are chosen by simulating the leading constant in the theoretical detection thresholds given in Pilliat et al. (2023), similarly as described in Appendix B in Moen et al. (2023) for ESAC. When Bonferroni==TRUE, the thresholds for the Berk-Jones statistic are theoretical and not chosen by Monte Carlo simulation.

Usage

```
Pilliat_test_calibrate(
   n,
   p,
   N = 100,
   tol = 1/100,
   threshold_bj_const = 6,
   bonferroni = TRUE,
```

27 Pilliat_test_calibrate

```
rescale_variance = TRUE,
  fast = FALSE,
  debug = FALSE
)
```

Arguments

р

n Number of observations

Number time series Ν Number of Monte Carlo samples used

False error probability tolerance tol

threshold_bj_const

Leading constant for p_0 for the Berk-Jones statistic

bonferroni If TRUE, a Bonferroni correction applied and the detection thresholds for each

statistic is chosen by simulating the leading constant in the theoretical detection

thresholds

rescale_variance

If TRUE, each row of the data is rescaled by a MAD estimate

If FALSE, a change-point test is applied to each candidate change-point position fast

in each interval. If FALSE, only the mid-point of each interval is considered

If TRUE, diagnostic prints are provided during execution debug

Value

A list containing

thresholds_partial

vector of thresholds for the Partial Sum statistic (respectively for $t=1,2,4,\ldots,2^{\lfloor \log_2(p) \rfloor}$

number of terms in the partial sum)

threshold_dense

threshold for the dense statistic

thresholds_bj vector of thresholds for the Berk-Jones static (respectively for $x = 1, 2, \dots, x_0$)

```
library(HDCD)
n = 50
p = 50
set.seed(100)
thresholds_test_emp = Pilliat_test_calibrate(n,p, bonferroni=TRUE,N=100, tol=1/100)
set.seed(100)
thresholds_test_emp_without_bonferroni = Pilliat_test_calibrate(n,p,
                                         bonferroni=FALSE,N=100, tol=1/100)
thresholds_test_emp # thresholds with bonferroni correction
thresholds_test_emp_without_bonferroni # thresholds without bonferroni correction
# Generating data
```

28 rescale_variance

```
X = matrix(rnorm(n*p), ncol = n, nrow=p)
Y = matrix(rnorm(n*p), ncol = n, nrow=p)
# Adding a single sparse change-point to X (and not Y):
X[1:5, 25:50] = X[1:5, 25:50] +2
resX = Pilliat_test(X,
                    threshold_dense=thresholds_test_emp$threshold_dense,
                    thresholds_bj = thresholds_test_emp$thresholds_bj,
                    thresholds_partial = thresholds_test_emp$thresholds_partial
)
resX
resY = Pilliat_test(Y,
                    threshold_dense=thresholds_test_emp$threshold_dense,
                    thresholds_bj = thresholds_test_emp$thresholds_bj,
                    thresholds_partial = thresholds_test_emp$thresholds_partial
)
resY
```

rescale_variance

Re-scales each row of matrix by its MAD estimate

Description

R wrapper for C function computing the (rescaled) median absolute difference in differences for each row of the input matrix. The rescaling factor is set to 1.05 (corresponding to the Normal distribution). Each row of the input matrix then re-scaled by the corresponding noise estimate.

Usage

```
rescale_variance(X, debug = FALSE)
```

Arguments

X A $p \times n$ matrix

debug If TRUE, diagnostic prints are provided during execution

Value

A list containing

X the input matrix, variance re-scaled and flattened

scales vector of MAD estimates of the noise level of each row of the input matrix

single_CUSUM 29

Examples

```
library(HDCD)
n = 200
p = 500
set.seed(101)
# Generating data
X = matrix(rnorm(n*p), ncol = n, nrow=p)

ret = rescale_variance(X)
ret$X #rescaled matrix
ret$scales #estimated noise level for each time series (each row)

# Note that the rescaled matrix is in (column wise) vector form. To transform it back to a matrix,
# do the following:
rescaled_X = matrix(ret$X, nrow = p, ncol=n)
```

single_CUSUM

CUSUM transformation of matrix at a specific position

Description

R wrapper for C function computing the CUSUM transformation of matrix over an interval (s, e] evaluated at a specific position. For compatibility with C indexing, the user should subtract 1 from s, e and v when supplying the arguments to the function. If start and stop are not supplied, the CUSUM is computed over the full data, so (s, e] = (0, n].

Usage

```
single_CUSUM(X, start = NULL, stop = NULL, pos)
```

Arguments

X	Matrix of observations, where each row contains a time series
start	Starting point of interval over which the CUSUM should be computed, subtracted by one
stop	Ending point of interval over which the CUSUM should be computed, subtracted by one
pos	Position at which the CUSUM should be evaluated, subtracted by one

Value

A vector of CUSUM values, each corresponding to a row of the input matrix. The i-th element corresponds to the CUSUM transformation of the i-th row of X, computed over the interval (start + 1, end+1] and evaluated at position pos, i.e. $\sqrt{\frac{e-v}{(e-s)(v-s)}} \sum_{t=s+1}^{v} X_{i,t} - \sqrt{\frac{v-s}{(e-s)(e-v)}} \sum_{t=v+1}^{e} X_{i,t}$, where s = (start + 1), e = (stop + 1) and v = pos + 1.

30 single_ESAC

Examples

```
n = 10
p = 10
set.seed(101)
X = matrix(rnorm(n*p), ncol = n, nrow=p)
# CUSUM over the full data (s,e] = (0,n] evaluated at position v=4
position = 4
X_cusum_single = single_CUSUM(X,pos = position-1)
X_cusum_single
# verifying that this corresponds to the 4-th row of output of CUSUM():
X_cusum = CUSUM(X)
X_cusum[,4]
```

single_ESAC

Efficient Sparsity Adaptive Change-point estimator for a single change-point

Description

R wrapper for C function implementing ESAC for single change-point estimation, as described in section 3.1 in Moen et al. (2023)

Usage

```
single_ESAC(
   X,
   threshold_d = 1.5,
   threshold_s = 1,
   rescale_variance = FALSE,
   debug = FALSE
)
```

Arguments

X Matrix of observations, where each row contains a time series threshold_d Leading constant for $\lambda(t) \propto r(t)$ for t=p

threshold_s Leading constant for $\lambda(t) \propto r(t)$ for $t \leq \sqrt{p \log n}$.

rescale_variance

If TRUE, each row of the data is re-scaled by a MAD estimate using rescale_variance

debug If TRUE, diagnostic prints are provided during execution

Value

A list containing

pos estimated change-point location

s the value of $t \in \mathcal{T}$ at which the sparsity specific score is maximized

31 single_Inspect

References

Moen PAJ, Glad IK, Tveten M (2023). "Efficient sparsity adaptive changepoint estimation." Arxiv preprint, 2306.04702, https://doi.org/10.48550/arXiv.2306.04702.

Examples

```
library(HDCD)
n = 500
p = 500
set.seed(101)
# Generating data
X = matrix(rnorm(n*p), ncol = n, nrow=p)
# Adding a single sparse change-point:
X[1:5, 201:500] = X[1:5, 201:500] +1
 res = single_ESAC(X,rescale_variance=TRUE)
 res$pos
# Manually setting the leading constants for \lambda(t):
# here \label{eq:here} \labe
                                                                                                 = 2 (t \log (ep \log n^4 / t^2) + \log(n^4))
 res = single_ESAC(X, threshold_d = 2, threshold_s = 2)
 res$pos
```

single_Inspect

Inspect for single change-point estimation

Description

R wrapper for C function for single change-point estimation using Inspect (Wang and Samworth 2018). Note that the algorithm is only implemented for $S = S_2$, in the notation of Wang and Samworth (2018).

Usage

```
single_Inspect(
  Χ,
  lambda = sqrt(log(p * log(n))/2),
  eps = 1e-10,
  rescale_variance = FALSE,
 maxiter = 10000,
  debug = FALSE
)
```

Arguments

Χ Matrix of observations, where each row contains a time series Manually specified value of λ (can be NULL, in which case $\lambda \leftarrow \sqrt{\log(p \log n)/2}$)

lambda

32 single_SBS

eps Threshold for declaring numerical convergence of the power method rescale_variance

If TRUE, each row of the data is re-scaled by a MAD estimate using rescale_variance

maxiter Maximum number of iterations for the power method debug If TRUE, diagnostic prints are provided during execution

Value

A list containing

pos estimated change-point location

CUSUMval projected CUSUM value at the estimated change-point position

References

Wang T, Samworth RJ (2018). "High dimensional change point estimation via sparse projection." *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, **80**(1), 57–83. ISSN 1467-9868, doi:10.1111/rssb.12243, https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/rssb.12243.

Examples

```
library(HDCD)
n = 500
p = 500
set.seed(101)
# Generating data
X = matrix(rnorm(n*p), ncol = n, nrow=p)
# Adding a single sparse change-point:
X[1:5, 201:500] = X[1:5, 201:500] +1

res = single_Inspect(X,rescale_variance=TRUE)
res$pos
# Manually setting the value of \lambda:
res = single_Inspect(X, lambda = 2*sqrt(log(p*log(n))/2))
res$pos
```

single_SBS

Sparsified Binary Segmentation for single change-point estimation

Description

R wrapper for C function for single change-point estimation using Sparsified Binary Segmentation Cho and Fryzlewicz (2015).

single_SBS 33

Usage

```
single_SBS(
   X,
   threshold = NULL,
   rescale_variance = TRUE,
   empirical = FALSE,
   N = 100,
   tol = 1/100,
   debug = FALSE
)
```

Arguments

X Matrix of observations, where each row contains a time series

threshold Manually specified value of the threshold π_T

rescale_variance

If TRUE, each row of the data is re-scaled by a MAD estimate using rescale_variance

empirical If TRUE, the threshold is based on Monte Carlo simulation

N If empirical=TRUE, N is the number of Monte Carlo samples used tol If empirical=TRUE, tol is the false error probability tolerance

debug If TRUE, diagnostic prints are provided during execution

Value

A list containing

pos estimated change-point location

maxval maximum thresholded and aggregated CUSUM at the estimated change-point

position

References

Cho H, Fryzlewicz P (2015). "Multiple-change-point detection for high dimensional time series via sparsified binary segmentation." *Journal of the Royal Statistical Society. Series B (Statistical Methodology)*, **77**(2), 475–507. ISSN 1369-7412, Publisher: [Royal Statistical Society, Wiley], https://www.jstor.org/stable/24774746.

```
# Single SBS
library(HDCD)
n = 50
p = 50
set.seed(101)
# Generating data
X = matrix(rnorm(n*p), ncol = n, nrow=p)
# Adding a single sparse change-point:
X[1:5, 26:n] = X[1:5, 26:n] +1
```

```
res = single_SBS(X,threshold=7,rescale_variance=TRUE)
res$pos

# Choose threhsold by Monte Carlo:
res = single_SBS(X,empirical=TRUE,rescale_variance=TRUE)
res$pos
```

single_SBS_calibrate Generates threshold π_T for Sparsified Binary Segmentation for single change-point detection

Description

R wrapper for function choosing empirical threshold π_T using Monte Carlo simulation for single change-point Sparsified Binary Segmentation. More specifically, the function returns the empirical upper tol quantile of CUSUMs over p time series, each of length n, based on N number of runs.

Usage

```
single_SBS_calibrate(
   n,
   p,
   N = 100,
   tol = 1/100,
   rescale_variance = TRUE,
   debug = FALSE
)
```

Arguments

n	Number of observations	
p	Number time series	
N	Number of Monte Carlo samples used	
tol	False positive probability tolerance	
rescale_variance		
	If TRUE, each row of the data is rescaled by a MAD estimate	
debug	If TRUE, diagnostic prints are provided during execution	

Value

Threshold

single_SBS_calibrate 35

```
library(HDCD)
n = 50
p = 50
set.seed(101)

# Simulate threshold
pi_T_squared = single_SBS_calibrate(n=n,p=p,N=100, tol=1/100, rescale_variance = TRUE)
pi_T_squared

# Generating data
X = matrix(rnorm(n*p), ncol = n, nrow=p)
# Adding a single sparse change-point:
X[1:5, 26:n] = X[1:5, 26:n] +1

# Run SBS
res = single_SBS(X, threshold=sqrt(pi_T_squared), rescale_variance=TRUE)
res$pos
```

Index

```
ARI, 2
CUSUM, 3
ESAC, 4
ESAC_calibrate, 4, 6
ESAC_test, 8
ESAC_test_calibrate, 9, 10
hausdorff, 12
Inspect, 12
Inspect_calibrate, 13, 14
Inspect_test, 16
Inspect_test_calibrate, 16, 18
Pilliat, 19
Pilliat_calibrate, 20, 22
Pilliat_test, 24
Pilliat_test_calibrate, 26
rescale_variance, 5, 7, 9, 11, 13, 15, 17, 18,
        20, 23, 25, 28, 30, 32, 33
single_CUSUM, 29
single\_ESAC, 30
single_Inspect, 31
single_SBS, 32
single\_SBS\_calibrate, 34
```