Each occurrence record contains taxonomic information and information
about the observation itself, like its location and the date of
observation. These pieces of information are recorded and categorised
into respective fields. When you import data using
galah, columns of the resulting tibble correspond to these
fields.
Data fields are important because they provide a means to narrow and
refine queries to return only the information that you need, and no
more. Consequently, much of the architecture of galah has been designed
to make narrowing as simple as possible. For legacy reasons, there are
both dplyr-style verbs and galah- specific versions of
these functions; but they are largely synonymous. They include:
identify() or galah_identify()filter() or galah_filter()select() or galah_select()group_by() or galah_group_by()geolocate() or galah_geolocate()Below we discuss each of these functions in turn.
search_taxa & identifyPerhaps unsurprisingly, search_taxa() searches for
taxonomic information. search_taxa() uses fuzzy-matching to
work a lot like the search bar on the Atlas of Living Australia website,
and you can use it to search for taxa by their scientific name.
Finding your desired taxon with search_taxa() is an
important step to using this taxonomic information to download data. For
example, to search for reptiles, we first need to identify whether we
have the correct query:
search_taxa("Reptilia")## # A tibble: 1 × 9
##   search_term scientific_name taxon_concept_id                               rank  match_type kingdom phylum class issues
##   <chr>       <chr>           <chr>                                          <chr> <chr>      <chr>   <chr>  <chr> <chr> 
## 1 Reptilia    REPTILIA        https://biodiversity.org.au/afd/taxa/682e1228… class exactMatch Animal… Chord… Rept… noIss…If we want to be more specific, we can provide a tibble
(or data.frame) providing additional taxonomic
information.
search_taxa(tibble(genus = "Eolophus", kingdom = "Aves"))## # A tibble: 1 × 13
##   search_term  scientific_name scientific_name_auth…¹ taxon_concept_id rank  match_type kingdom phylum class order family
##   <chr>        <chr>           <chr>                  <chr>            <chr> <chr>      <chr>   <chr>  <chr> <chr> <chr> 
## 1 Eolophus_Av… Eolophus        Bonaparte, 1854        https://biodive… genus exactMatch Animal… Chord… Aves  Psit… Cacat…
## # ℹ abbreviated name: ¹scientific_name_authorship
## # ℹ 2 more variables: genus <chr>, issues <chr>Once we know that our search matches the correct taxon or taxa, we
can use identify() to narrow the results of our query.
galah_call() |>
  identify("Reptilia") |>
  atlas_counts()## # A tibble: 1 × 1
##     count
##     <int>
## 1 1841182If you’re using an international atlas, search_taxa()
will automatically switch to using the local name-matching service. For
example, Portugal uses the GBIF taxonomic backbone, but integrates
seamlessly with our standard workflow.
galah_config(atlas = "Portugal")## Atlas selected: GBIF Portugal (GBIF.pt) [Portugal]galah_call() |> 
  identify("Lepus") |> 
  group_by(species) |> 
  atlas_counts()## # A tibble: 5 × 2
##   species           count
##   <chr>             <int>
## 1 Lepus granatensis  1378
## 2 Lepus microtis       64
## 3 Lepus europaeus      10
## 4 Lepus saxatilis       2
## 5 Lepus capensis        1Conversely, the UK’s National Biodiversity Network (NBN), has its own taxonomic backbone, but is supported using the same function call.
galah_config(atlas = "United Kingdom")## Atlas selected: National Biodiversity Network (NBN) [United Kingdom]galah_call() |> 
  filter(genus == "Bufo") |> 
  group_by(species) |> 
  atlas_counts()## # A tibble: 3 × 2
##   species       count
##   <chr>         <int>
## 1 Bufo bufo     77009
## 2 Bufo spinosus   143
## 3 Bufo marinus      1Perhaps the most important function in galah is
filter(), which is used to filter the rows of queries.
galah_config(atlas = "Australia")## Atlas selected: Atlas of Living Australia (ALA) [Australia]# Get total record count since 2000
galah_call() |>
  filter(year > 2000) |>
  atlas_counts()## # A tibble: 1 × 1
##       count
##       <int>
## 1 104768572# Get total record count for iNaturalist in 2021
galah_call() |>
  filter(
    year > 2000,
    dataResourceName == "iNaturalist Australia") |>
  atlas_counts()## # A tibble: 1 × 1
##     count
##     <int>
## 1 8085678To find available fields and corresponding valid values, use the
field lookup functions show_all(fields),
search_all(fields) & show_values().
galah_filter() can also be used to make more complex
taxonomic queries than are possible using search_taxa(). By
using the taxonConceptID field, it is possible to build
queries that exclude certain taxa, for example. This can be useful to
filter for paraphyletic concepts such as invertebrates.
galah_call() |>
  filter(
     taxonConceptID == search_taxa("Animalia")$taxon_concept_id,
     taxonConceptID != search_taxa("Chordata")$taxon_concept_id
  ) |>
  group_by(class) |>
  atlas_counts()## # A tibble: 70 × 2
##    class          count
##    <chr>          <int>
##  1 Insecta      6636702
##  2 Gastropoda   1079236
##  3 Arachnida     880799
##  4 Maxillopoda   701466
##  5 Malacostraca  667094
##  6 Polychaeta    278997
##  7 Bivalvia      238787
##  8 Anthozoa      228733
##  9 Cephalopoda   150198
## 10 Demospongiae  119207
## # ℹ 60 more rowsIn addition to single filters, some atlases (currently Australia,
Sweden & Spain) also support ‘data profiles’. These are effectively
pre-formed sets of filters that are designed to remove records that are
suspect in some way. This feature has its’ own function,
apply_profile():
galah_call() |>
  filter(year > 2000) |>
  apply_profile(ALA) |>
  atlas_counts()## # A tibble: 1 × 1
##      count
##      <int>
## 1 91982400To see a full list of data profiles, use
show_all(profiles).
Use group_by() to group and summarise record counts by
specified fields.
# Get record counts since 2010, grouped by year and basis of record
galah_call() |>
  filter(year > 2015 & year <= 2020) |>
  group_by(year, basisOfRecord) |>
  atlas_counts()## # A tibble: 35 × 3
##    year  basisOfRecord         count
##    <chr> <chr>                 <int>
##  1 2020  HUMAN_OBSERVATION   6859463
##  2 2020  OCCURRENCE           188090
##  3 2020  PRESERVED_SPECIMEN    87730
##  4 2020  MACHINE_OBSERVATION   39642
##  5 2020  OBSERVATION            4417
##  6 2020  MATERIAL_SAMPLE        2104
##  7 2020  LIVING_SPECIMEN          62
##  8 2019  HUMAN_OBSERVATION   6104069
##  9 2019  PRESERVED_SPECIMEN   166446
## 10 2019  OCCURRENCE            93853
## # ℹ 25 more rowsUse select() to choose which columns are returned when
downloading records.
Return columns 'kingdom', 'eventDate' & `species` only
occurrences <- galah_call() |>
  identify("reptilia") |>
  filter(year == 1930) |>
  select(kingdom, species, eventDate) |>
  atlas_occurrences()
occurrences |> head()## # A tibble: 6 × 3
##   kingdom  species               eventDate
##   <chr>    <chr>                 <dttm>
## 1 Animalia Drysdalia coronoides  1930-06-16 00:00:00
## 2 Animalia Antaresia maculosa    1930-01-01 00:00:00
## 3 Animalia NA                    1930-04-23 00:00:00
## 4 Animalia Stegonotus australis  1930-01-01 00:00:00
## 5 Animalia Oxyuranus scutellatus 1930-01-01 00:00:00
## 6 Animalia Lerista wilkinsi      1930-01-01 00:00:00You can also use other {dplyr} functions that work
within dplyr::select().
occurrences <- galah_call() |>
  identify("reptilia") |>
  filter(year == 1930) |>
  select(starts_with("accepted") | ends_with("record")) |>
  atlas_occurrences()## Retrying in 1 seconds.occurrences |> head()## # A tibble: 6 × 6
##   acceptedNameUsage acceptedNameUsageID basisOfRecord      raw_basisOfRecord OCCURRENCE_STATUS_INFE…¹ userDuplicateRecord
##   <chr>             <lgl>               <chr>              <chr>             <lgl>                    <lgl>              
## 1 <NA>              NA                  HUMAN_OBSERVATION  HumanObservation  FALSE                    FALSE              
## 2 <NA>              NA                  PRESERVED_SPECIMEN PreservedSpecimen FALSE                    FALSE              
## 3 <NA>              NA                  PRESERVED_SPECIMEN PreservedSpecimen FALSE                    FALSE              
## 4 <NA>              NA                  HUMAN_OBSERVATION  HumanObservation  FALSE                    FALSE              
## 5 <NA>              NA                  PRESERVED_SPECIMEN PreservedSpecimen FALSE                    FALSE              
## 6 <NA>              NA                  PRESERVED_SPECIMEN PreservedSpecimen FALSE                    FALSE              
## # ℹ abbreviated name: ¹OCCURRENCE_STATUS_INFERRED_FROM_BASIS_OF_RECORDUse geolocate() to specify a geographic area or region
to limit your search.
# Get list of perameles species in area specified:
# (Note: This can also be specified by a shapefile)
wkt <- "POLYGON((131.36328125 -22.506468769126,135.23046875 -23.396716654542,134.17578125 -27.287832521411,127.40820312499 -26.661206402316,128.111328125 -21.037340349154,131.36328125 -22.506468769126))"
galah_call() |>
  identify("perameles") |>
  geolocate(wkt) |>
  atlas_species()## # A tibble: 1 × 11
##   taxon_concept_id species_name scientific_name_auth…¹ taxon_rank kingdom phylum class order family genus vernacular_name
##   <chr>            <chr>        <chr>                  <chr>      <chr>   <chr>  <chr> <chr> <chr>  <chr> <chr>          
## 1 https://biodive… Perameles e… Spencer, 1897          species    Animal… Chord… Mamm… Pera… Peram… Pera… Desert Bandico…
## # ℹ abbreviated name: ¹scientific_name_authorshipgeolocate() also accepts shapefiles. More complex
shapefiles may need to be simplified first (e.g., using rmapshaper::ms_simplify())