Feedback welcome: sa.ra.online@posteo.de
1. Basic example
gg_vistime() produces ggplot2 charts.
For interactive Plotly output, see
vistime(), for interactive Highcharts
output, see hc_vistime().
timeline_data <- data.frame(event = c("Event 1", "Event 2"), 
                            start = c("2020-06-06", "2020-10-01"), 
                            end = c("2020-10-01", "2020-12-31"), 
                            group = "My Events")
gg_vistime(timeline_data)2. Installation
To install the package from CRAN, type the following in your R console:
3. Usage and default arguments
The simplest way to create a timeline is by providing a data frame
with event and start columns. If your columns
are named otherwise, you need to tell the function using the
col. arguments. You can also tweak the y positions,
linewidth, title, label visibility and number of lines in the
background.
4. Arguments
| parameter | optional? | data type | explanation | 
|---|---|---|---|
| data | mandatory | data.frame | data.frame that contains the data to be visualized | 
| col.event | optional | character | the column name in data that contains event names. Default: event | 
| col.start | optional | character | the column name in data that contains start dates. Default: start | 
| col.end | optional | character | the column name in data that contains end dates. Default: end | 
| col.group | optional | character | the column name in data to be used for grouping. Default: group | 
| col.color | optional | character | the column name in data that contains colors for events. Default: color, if not present, colors are chosen via RColorBrewer. | 
| col.fontcolor | optional | character | the column name in data that contains the font color for event labels. Default: fontcolor, if not present, color will be black. | 
| optimize_y | optional | logical | distribute events on y-axis by smart heuristic (default) or use order of input data. | 
| linewidth | optional | numeric | override the calculated linewidth for events. Default: heuristic value. | 
| title | optional | character | the title to be shown on top of the timeline. Default: empty. | 
| show_labels | optional | logical | choose whether or not event labels shall be visible. Default: TRUE. | 
| background_lines | optional | integer | the number of vertical lines to draw in the background to demonstrate structure. Default: 10. | 
5. Value
- gg_vistimereturns an object of class- ggand- ggplot
6. Examples
Ex. 1: Presidents
pres <- data.frame(Position = rep(c("President", "Vice"), each = 3),
                   Name = c("Washington", rep(c("Adams", "Jefferson"), 2), "Burr"),
                   start = c("1789-03-29", "1797-02-03", "1801-02-03"),
                   end = c("1797-02-03", "1801-02-03", "1809-02-03"),
                   color = c('#cbb69d', '#603913', '#c69c6e'),
                   fontcolor = c("black", "white", "black"))
                  
gg_vistime(pres, col.event = "Position", col.group = "Name", title = "Presidents of the USA")Ex. 2: Project Planning
data <- read.csv(text="event,group,start,end,color
                       Phase 1,Project,2016-12-22,2016-12-23,#c8e6c9
                       Phase 2,Project,2016-12-23,2016-12-29,#a5d6a7
                       Phase 3,Project,2016-12-29,2017-01-06,#fb8c00
                       Phase 4,Project,2017-01-06,2017-02-02,#DD4B39
                       Room 334,Team 1,2016-12-22,2016-12-28,#DEEBF7
                       Room 335,Team 1,2016-12-28,2017-01-05,#C6DBEF
                       Room 335,Team 1,2017-01-05,2017-01-23,#9ECAE1
                       Group 1,Team 2,2016-12-22,2016-12-28,#E5F5E0
                       Group 2,Team 2,2016-12-28,2017-01-23,#C7E9C0
                       3-200,category 1,2016-12-25,2016-12-25,#1565c0
                       3-330,category 1,2016-12-25,2016-12-25,#1565c0
                       3-223,category 1,2016-12-28,2016-12-28,#1565c0
                       3-225,category 1,2016-12-28,2016-12-28,#1565c0
                       3-226,category 1,2016-12-28,2016-12-28,#1565c0
                       3-226,category 1,2017-01-19,2017-01-19,#1565c0
                       3-330,category 1,2017-01-19,2017-01-19,#1565c0
                       1-217.0,category 2,2016-12-27,2016-12-27,#90caf9
                       4-399.7,moon rising,2017-01-13,2017-01-13,#f44336
                       8-831.0,sundowner drink,2017-01-17,2017-01-17,#8d6e63
                       9-984.1,birthday party,2016-12-22,2016-12-22,#90a4ae
                       F01.9,Meetings,2016-12-26,2016-12-26,#e8a735
                       Z71,Meetings,2017-01-12,2017-01-12,#e8a735
                       B95.7,Meetings,2017-01-15,2017-01-15,#e8a735
                       T82.7,Meetings,2017-01-15,2017-01-15,#e8a735")
                           
gg_vistime(data)Ex. 3: Gantt Charts
The argument optimize_y can be used to change the look
of the timeline. TRUE (the default) will find a nice
heuristic to save y-space, distributing the events:
data <- read.csv(text="event,start,end
                       Phase 1,2020-12-15,2020-12-24
                       Phase 2,2020-12-23,2020-12-29
                       Phase 3,2020-12-28,2021-01-06
                       Phase 4,2021-01-06,2021-02-02")
        
gg_vistime(data, optimize_y = TRUE, linewidth = 25)FALSE will plot events as-is, not saving any space:
7. Export of vistime as PNG
Once created, you can use ggplot2::ggsave() for saving
your vistime chart as PNG:
8. Usage in Shiny apps
- gg_vistime()objects can be integrated into Shiny via- plotOutput()and- renderPlot()
library(vistime)
pres <- data.frame(Position = rep(c("President", "Vice"), each = 3),
                   Name = c("Washington", rep(c("Adams", "Jefferson"), 2), "Burr"),
                   start = c("1789-03-29", "1797-02-03", "1801-02-03"),
                   end = c("1797-02-03", "1801-02-03", "1809-02-03"),
                   color = c('#cbb69d', '#603913', '#c69c6e'),
                   fontcolor = c("black", "white", "black"))
shinyApp(
  ui = plotOutput("myVistime"),
  server = function(input, output) {
    output$myVistime <- renderPlot({
      vistime(pres, col.event = "Position", col.group = "Name")
    })
  }
)9. Customization
Since every gg_vistime() output is a ggplot
object, you can customize and override literally everything:
library(vistime)
data <- read.csv(text="event,start,end
                       Phase 1,2020-12-15,2020-12-24
                       Phase 2,2020-12-23,2020-12-29
                       Phase 3,2020-12-28,2021-01-06
                       Phase 4,2021-01-06,2021-02-02")
        
p <- gg_vistime(data, optimize_y = T, col.group = "event", title = "ggplot customization example")
library(ggplot2)
p + ggplot2::theme(
      plot.title = element_text(hjust = 0, size=10),
      axis.text.x = element_text(size = 10, color = "violet"),
      axis.text.y = element_text(size = 10, color = "red", angle = 30),
      panel.border = element_rect(linetype = "dashed", fill=NA),
      panel.background = element_rect(fill = 'green')) +
    coord_cartesian(ylim = c(0.7, 3.5))