
Xlib − C Language X Interface

X Window System Standard

X Version 11, Release 7

libX11 1.3.2

James Gettys

Cambridge Research Laboratory
Digital Equipment Corporation

Robert W. Scheifler

Laboratory for Computer Science
Massachusetts Institute of Technology

with contributions from

Chuck Adams, Tektronix, Inc.

Vania Joloboff, Open Software Foundation

Hideki Hiura, Sun Microsystems, Inc.

Bill McMahon, Hewlett-Packard Company

Ron Newman, Massachusetts Institute of Technology

Al Tabayoyon, Tektronix, Inc.

Glenn Widener, Tektronix, Inc.

Shigeru Yamada, Fujitsu OSSI

The X Window System is a trademark of The Open Group.

TekHVC is a trademark of Tektronix, Inc.

Copyright © 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1994, 1996, 2002 The Open Group

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documenta-
tion files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Soft-
ware.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTIC-
ULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTH-
ERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of The Open Group shall not be used in advertising or otherwise to pro-
mote the sale, use or other dealings in this Software without prior written authorization from The Open Group.

Copyright © 1985, 1986, 1987, 1988, 1989, 1990, 1991 by Digital Equipment Corporation

Portions Copyright © 1990, 1991 by Tektronix, Inc.

Permission to use, copy, modify and distribute this documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appears in all copies and that both that copyright notice and this permission
notice appear in all copies, and that the names of Digital and Tektronix not be used in in advertising or publicity per-
taining to this documentation without specific, written prior permission. Digital and Tektronix makes no representa-
tions about the suitability of this documentation for any purpose. Itis provided ‘‘as is’’ w ithout express or implied war-
ranty.

Acknowledgments

The design and implementation of the first 10 versions of X were primarily the work of three
individuals: Robert Scheifler of the MIT Laboratory for Computer Science and Jim Gettys of Dig-
ital Equipment Corporation and Ron Newman of MIT, both at MIT Project Athena.X version 11,
however, is the result of the efforts of dozens of individuals at almost as many locations and
organizations. Atthe risk of offending some of the players by exclusion, we would like to
acknowledge some of the people who deserve special credit and recognition for their work on
Xlib. Our apologies to anyone inadvertently overlooked.

Release 1
Our thanks does to Ron Newman (MIT Project Athena), who contributed substantially to the
design and implementation of the Version 11 Xlib interface.

Our thanks also goes to Ralph Swick (Project Athena and Digital) who kept it all together for us
during the early releases. He handled literally thousands of requests from people everywhere and
saved the sanity of at least one of us. His calm good cheer was a foundation on which we could
build.

Our thanks also goes to Todd Brunhoff (Tektronix) who was ‘‘loaned’’ to Project Athena at
exactly the right moment to provide very capable and much-needed assistance during the alpha
and beta releases. He was responsible for the successful integration of sources from multiple
sites; we would not have had a release without him.

Our thanks also goes to Al Mento and Al Wojtas of Digital’s ULTRIX Documentation Group.
With good humor and cheer, they took a rough draft and made it an infinitely better and more use-
ful document. The work they hav edone will help many everywhere. We also would like to thank
Hal Murray (Digital SRC) and Peter George (Digital VMS) who contributed much by proofread-
ing the early drafts of this document.

Our thanks also goes to Jeff Dike (Digital UEG), Tom Benson, Jackie Granfield, and Vince Orgo-
van (Digital VMS) who helped with the library utilities implementation; to Hania Gajewska (Dig-
ital UEG-WSL) who, along with Ellis Cohen (CMU and Siemens), was instrumental in the
semantic design of the window manager properties; and to Dave Rosenthal (Sun Microsystems)
who also contributed to the protocol and provided the sample generic color frame buffer device-
dependent code.

The alpha and beta test participants deserve special recognition and thanks as well. It is signifi-
cant that the bug reports (and many fixes) during alpha and beta test came almost exclusively
from just a few of the alpha testers, mostly hardware vendors working on product implementa-
tions of X. The continued public contribution of vendors and universities is certainly to the bene-
fit of the entire X community.

Our special thanks must go to Sam Fuller, Vice-President of Corporate Research at Digital, who
has remained committed to the widest public availability of X and who made it possible to greatly
supplement MIT’s resources with the Digital staff in order to make version 11 a reality. Many of
the people mentioned here are part of the Western Software Laboratory (Digital UEG-WSL) of
the ULTRIX Engineering group and work for Smokey Wallace, who has been vital to the
project’s success. Othersnot mentioned here worked on the toolkit and are acknowledged in the
X Toolkit documentation.

Of course, we must particularly thank Paul Asente, formerly of Stanford University and now of
Digital UEG-WSL, who wrote W, the predecessor to X, and Brian Reid, formerly of Stanford
University and now of Digital WRL, who had much to do with W’s design.

Finally, our thanks goes to MIT, Digital Equipment Corporation, and IBM for providing the envi-
ronment where it could happen.

Release 4
Our thanks go to Jim Fulton (MIT X Consortium) for designing and specifying the new Xlib
functions for Inter-Client Communication Conventions (ICCCM) support.

We also thank Al Mento of Digital for his continued effort in maintaining this document and Jim
Fulton and Donna Converse (MIT X Consortium) for their much-appreciated efforts in reviewing
the changes.

Release 5
The principal authors of the Input Method facilities are Vania Joloboff (Open Software Founda-
tion) and Bill McMahon (Hewlett-Packard). Theprincipal author of the rest of the international-
ization facilities is Glenn Widener (Tektronix). Ourthanks to them for keeping their sense of
humor through a long and sometimes difficult design process. Although the words and much of
the design are due to them, many others have contributed substantially to the design and imple-
mentation. Tom McFarland (HP) and Frank Rojas (IBM) deserve particular recognition for their
contributions. Othercontributors were: Tim Anderson (Motorola), Alka Badshah (OSF), Gabe
Beged-Dov (HP), Chih-Chung Ko (III), Vera Cheng (III), Michael Collins (Digital), Walt Daniels
(IBM), Noritoshi Demizu (OMRON), Keisuke Fukui (Fujitsu), Hitoshoi Fukumoto (Nihon Sun),
Tim Greenwood (Digital), John Harvey (IBM), Hideki Hiura (Sun), Fred Horman (AT&T),
Norikazu Kaiya (Fujitsu), Yuji Kamata (IBM), Yutaka Kataoka (Waseda University), Ranee
Khubchandani (Sun), Akira Kon (NEC), Hiroshi Kuribayashi (OMRON), Teruhiko Kurosaka
(Sun), Seiji Kuwari (OMRON), Sandra Martin (OSF), Narita Masahiko (Fujitsu), Masato
Morisaki (NTT), Nelson Ng (Sun), Takashi Nishimura (NTT America), Makato Nishino (IBM),
Akira Ohsone (Nihon Sun), Chris Peterson (MIT), Sam Shteingart (AT&T), Manish Sheth
(AT&T), Muneiyoshi Suzuki (NTT), Cori Mehring (Digital), Shoji Sugiyama (IBM), and Eiji
Tosa (IBM).

We are deeply indebted to Tatsuya Kato (NTT), Hiroshi Kuribayashi (OMRON), Seiji Kuwari
(OMRON), Muneiyoshi Suzuki (NTT), and Li Yuhong (OMRON) for producing one of the first
complete sample implementation of the internationalization facilities, and Hiromu Inukai (Nihon
Sun), Takashi Fujiwara (Fujitsu), Hideki Hiura (Sun), Yasuhiro Kawai (Oki Technosystems Labo-
ratory), Kazunori Nishihara (Fuji Xerox), Masaki Takeuchi (Sony), Katsuhisa Yano (Toshiba),
Makoto Wakamatsu (Sony Corporation) for producing the another complete sample implementa-
tion of the internationalization facilities.

The principal authors (design and implementation) of the Xcms color management facilities are
Al Tabayoyon (Tektronix) and Chuck Adams (Tektronix). JoannTaylor (Tektronix), Bob Toole
(Tektronix), and Keith Packard (MIT X Consortium) also contributed significantly to the design.
Others who contributed are: Harold Boll (Kodak), Ken Bronstein (HP), Nancy Cam (SGI), Donna
Converse (MIT X Consortium), Elias Israel (ISC), Deron Johnson (Sun), Jim King (Adobe),
Ricardo Motta (HP), Chuck Peek (IBM), Wil Plouffe (IBM), Dave Sternlicht (MIT X Consor-
tium), Kumar Talluri (AT&T), and Richard Verberg (IBM).

We also once again thank Al Mento of Digital for his work in formatting and reformatting text for
this manual, and for producing man pages. Thanks also to Clive Feather (IXI) for proof-reading
and finding a number of small errors.

Release 6
Stephen Gildea (X Consortium) authored the threads support. Ovais Ashraf (Sun) and Greg
Olsen (Sun) contributed substantially by testing the facilities and reporting bugs in a timely fash-
ion.

The principal authors of the internationalization facilities, including Input and Output Methods,
are Hideki Hiura (SunSoft) and Shigeru Yamada (Fujitsu OSSI). Although the words and much

of the design are due to them, many others have contributed substantially to the design and imple-
mentation. They are: Takashi Fujiwara (Fujitsu), Yoshio Horiuchi (IBM), Makoto Inada (Digital),
Hiromu Inukai (Nihon SunSoft), Song JaeKyung (KAIST), Franky Ling (Digital), Tom McFar-
land (HP), Hiroyuki Miyamoto (Digital), Masahiko Narita (Fujitsu), Frank Rojas (IBM),
Hidetoshi Tajima (HP), Masaki Takeuchi (Sony), Makoto Wakamatsu (Sony), Masaki Wakao
(IBM), Katsuhisa Yano(Toshiba) and Jinsoo Yoon (KAIST).

The principal producers of the sample implementation of the internationalization facilities are:
Jeffrey Bloomfield (Fujitsu OSSI), Takashi Fujiwara (Fujitsu), Hideki Hiura (SunSoft), Yoshio
Horiuchi (IBM), Makoto Inada (Digital), Hiromu Inukai (Nihon SunSoft), Song JaeKyung
(KAIST), Riki Kawaguchi (Fujitsu), Franky Ling (Digital), Hiroyuki Miyamoto (Digital),
Hidetoshi Tajima (HP), Toshimitsu Terazono (Fujitsu), Makoto Wakamatsu (Sony), Masaki
Wakao (IBM), Shigeru Yamada (Fujitsu OSSI) and Katsuhisa Yano (Toshiba).

The coordinators of the integration, testing, and release of this implementation of the internation-
alization facilities are Nobuyuki Tanaka (Sony) and Makoto Wakamatsu (Sony).

Others who have contributed to the architectural design or testing of the sample implementation
of the internationalization facilities are: Hector Chan (Digital), Michael Kung (IBM), Joseph
Kwok (Digital), Hiroyuki Machida (Sony), Nelson Ng (SunSoft), Frank Rojas (IBM), Yoshiyuki
Segawa (Fujitsu OSSI), Makiko Shimamura (Fujitsu), Shoji Sugiyama (IBM), Lining Sun (SGI),
Masaki Takeuchi (Sony), Jinsoo Yoon (KAIST) and Akiyasu Zen (HP).

Jim Gettys
Cambridge Research Laboratory
Digital Equipment Corporation

Robert W. Scheifler
Laboratory for Computer Science
Massachusetts Institute of Technology

Chapter 1

Introduction to Xlib

The X Window System is a network-transparent window system that was designed at MIT. X
display servers run on computers with either monochrome or color bitmap display hardware. The
server distributes user input to and accepts output requests from various client programs located
either on the same machine or elsewhere in the network. Xlib is a C subroutine library that appli-
cation programs (clients) use to interface with the window system by means of a stream connec-
tion. Althougha client usually runs on the same machine as the X server it is talking to, this need
not be the case.

Xlib − C Language X Interfaceis a reference guide to the low-level C language interface to the X
Window System protocol. It is neither a tutorial nor a user’s guide to programming the X Win-
dow System. Rather, it provides a detailed description of each function in the library as well as a
discussion of the related background information.Xlib − C Language X Interfaceassumes a
basic understanding of a graphics window system and of the C programming language. Other
higher-level abstractions (for example, those provided by the toolkits for X) are built on top of the
Xlib library. For further information about these higher-level l ibraries, see the appropriate toolkit
documentation. TheX Window System Protocolprovides the definitive word on the behavior of
X. Althoughadditional information appears here, the protocol document is the ruling document.

To provide an introduction to X programming, this chapter discusses:

• Overview of the X Window System

• Errors

• Standard header files

• Generic values and types

• Naming and argument conventions within Xlib

• Programming considerations

• Character sets and encodings

• Formatting conventions

1.1. Overview of the X Window System
Some of the terms used in this book are unique to X, and other terms that are common to other
window systems have different meanings in X.You may find it helpful to refer to the glossary,
which is located at the end of the book.

The X Window System supports one or more screens containing overlapping windows or subwin-
dows. Ascreen is a physical monitor and hardware that can be color, grayscale, or monochrome.
There can be multiple screens for each display or workstation. Asingle X server can provide dis-
play services for any number of screens.A set of screens for a single user with one keyboard and
one pointer (usually a mouse) is called a display.

All the windows in an X server are arranged in strict hierarchies. At the top of each hierarchy is a
root window, which covers each of the display screens. Each root window is partially or com-
pletely covered by child windows. All windows, except for root windows, have parents. Thereis
usually at least one window for each application program. Child windows may in turn have their
own children. Inthis way, an application program can create an arbitrarily deep tree on each
screen. Xprovides graphics, text, and raster operations for windows.

A child window can be larger than its parent. That is, part or all of the child window can extend
beyond the boundaries of the parent, but all output to a window is clipped by its parent. If several

1

Xlib − C Library libX11 1.3.2

children of a window hav eoverlapping locations, one of the children is considered to be on top of
or raised over the others, thus obscuring them. Output to areas covered by other windows is sup-
pressed by the window system unless the window has backing store. If a window is obscured by
a second window, the second window obscures only those ancestors of the second window that
are also ancestors of the first window.

A window has a border zero or more pixels in width, which can be any pattern (pixmap) or solid
color you like. Awindow usually but not always has a background pattern, which will be
repainted by the window system when uncovered. Childwindows obscure their parents, and
graphic operations in the parent window usually are clipped by the children.

Each window and pixmap has its own coordinate system. The coordinate system has the X axis
horizontal and the Y axis vertical with the origin [0, 0] at the upper-left corner. Coordinates are
integral, in terms of pixels, and coincide with pixel centers.For a window, the origin is inside the
border at the inside, upper-left corner.

X does not guarantee to preserve the contents of windows. Whenpart or all of a window is hid-
den and then brought back onto the screen, its contents may be lost. The server then sends the
client program anExposeev ent to notify it that part or all of the window needs to be repainted.
Programs must be prepared to regenerate the contents of windows on demand.

X also provides off-screen storage of graphics objects, called pixmaps. Single plane (depth 1)
pixmaps are sometimes referred to as bitmaps. Pixmaps can be used in most graphics functions
interchangeably with windows and are used in various graphics operations to define patterns or
tiles. Windows and pixmaps together are referred to as drawables.

Most of the functions in Xlib just add requests to an output buffer. These requests later execute
asynchronously on the X server. Functions that return values of information stored in the server
do not return (that is, they block) until an explicit reply is received or an error occurs.You can
provide an error handler, which will be called when the error is reported.

If a client does not want a request to execute asynchronously, it can follow the request with a call
to XSync, which blocks until all previously buffered asynchronous events have been sent and
acted on. As an important side effect, the output buffer in Xlib is always flushed by a call to any
function that returns a value from the server or waits for input.

Many Xlib functions will return an integer resource ID, which allows you to refer to objects
stored on the X server. These can be of typeWindow, Font , Pixmap, Colormap, Cursor , and
GContext, as defined in the file <X11/X.h>. Theseresources are created by requests and are
destroyed (or freed) by requests or when connections are closed. Most of these resources are
potentially sharable between applications, and in fact, windows are manipulated explicitly by
window manager programs.Fonts and cursors are shared automatically across multiple screens.
Fonts are loaded and unloaded as needed and are shared by multiple clients.Fonts are often
cached in the server. Xlib provides no support for sharing graphics contexts between applica-
tions.

Client programs are informed of events. Events may either be side effects of a request (for exam-
ple, restacking windows generatesExposeev ents) or completely asynchronous (for example,
from the keyboard). Aclient program asks to be informed of events. Becauseother applications
can send events to your application, programs must be prepared to handle (or ignore) events of all
types.

Input events (for example, a key pressed or the pointer moved) arrive asynchronously from the
server and are queued until they are requested by an explicit call (for example,XNextEvent or
XWindowEvent). In addition, some library functions (for example,XRaiseWindow) generate
ExposeandConfigureRequestev ents. Theseev ents also arrive asynchronously, but the client
may wish to explicitly wait for them by callingXSync after calling a function that can cause the
server to generate events.

2

Xlib − C Library libX11 1.3.2

1.2. Errors
Some functions returnStatus, an integer error indication. If the function fails, it returns a zero.
If the function returns a status of zero, it has not updated the return arguments. BecauseC does
not provide multiple return values, many functions must return their results by writing into client-
passed storage. By default, errors are handled either by a standard library function or by one that
you provide. Functionsthat return pointers to strings return NULL pointers if the string does not
exist.

The X server reports protocol errors at the time that it detects them. If more than one error could
be generated for a given request, the server can report any of them.

Because Xlib usually does not transmit requests to the server immediately (that is, it buffers
them), errors can be reported much later than they actually occur. For debugging purposes, how-
ev er, Xlib provides a mechanism for forcing synchronous behavior (see section 11.8.1). When
synchronization is enabled, errors are reported as they are generated.

When Xlib detects an error, it calls an error handler, which your program can provide. If you do
not provide an error handler, the error is printed, and your program terminates.

1.3. StandardHeader Files
The following include files are part of the Xlib standard:

• <X11/Xlib.h>

This is the main header file for Xlib. The majority of all Xlib symbols are declared by
including this file. This file also contains the preprocessor symbolXlibSpecificationRe-
lease. This symbol is defined to have the 6 in this release of the standard. (Release 5 of
Xlib was the first release to have this symbol.)

• <X11/X.h>

This file declares types and constants for the X protocol that are to be used by applications.
It is included automatically from <X11/Xlib.h>, so application code should never need to
reference this file directly.

• <X11/Xcms.h>
This file contains symbols for much of the color management facilities described in chapter
6. All functions, types, and symbols with the prefix ‘‘Xcms’’, plus the Color Conversion
Contexts macros, are declared in this file. <X11/Xlib.h> must be included before including
this file.

• <X11/Xutil.h>

This file declares various functions, types, and symbols used for inter-client communication
and application utility functions, which are described in chapters 14 and 16. <X11/Xlib.h>
must be included before including this file.

• <X11/Xresource.h>
This file declares all functions, types, and symbols for the resource manager facilities,
which are described in chapter 15. <X11/Xlib.h> must be included before including this
file.

• <X11/Xatom.h>

This file declares all predefined atoms, which are symbols with the prefix ‘‘XA_’’.

• <X11/cursorfont.h>

This file declares the cursor symbols for the standard cursor font, which are listed in appen-
dix B. All cursor symbols have the prefix ‘‘XC_’’.

• <X11/keysymdef.h>
This file declares all standard KeySym values, which are symbols with the prefix ‘‘XK_’’.
The KeySyms are arranged in groups, and a preprocessor symbol controls inclusion of each

3

Xlib − C Library libX11 1.3.2

group. Thepreprocessor symbol must be defined prior to inclusion of the file to obtain the
associated values. Thepreprocessor symbols are XK_MISCELLANY, XK_XKB_KEYS,
XK_3270, XK_LATIN1, XK_LATIN2, XK_LATIN3, XK_LATIN4, XK_KA TAKANA,
XK_ARABIC, XK_CYRILLIC, XK_GREEK, XK_TECHNICAL, XK_SPECIAL,
XK_PUBLISHING, XK_APL, XK_HEBREW, XK_THAI, and XK_KOREAN.

• <X11/keysym.h>
This file defines the preprocessor symbols XK_MISCELLANY, XK_XKB_KEYS,
XK_LATIN1, XK_LATIN2, XK_LATIN3, XK_LATIN4, and XK_GREEK and then
includes <X11/keysymdef.h>.

• <X11/Xlibint.h >

This file declares all the functions, types, and symbols used for extensions, which are
described in appendix C. This file automatically includes <X11/Xlib.h>.

• <X11/Xproto.h>

This file declares types and symbols for the basic X protocol, for use in implementing
extensions. Itis included automatically from <X11/Xlibint.h >, so application and exten-
sion code should never need to reference this file directly.

• <X11/Xprotostr.h>

This file declares types and symbols for the basic X protocol, for use in implementing
extensions. Itis included automatically from <X11/Xproto.h>, so application and exten-
sion code should never need to reference this file directly.

• <X11/X10.h>
This file declares all the functions, types, and symbols used for the X10 compatibility func-
tions, which are described in appendix D.

1.4. GenericValues and Types
The following symbols are defined by Xlib and used throughout the manual:

• Xlib defines the typeBool and the Boolean valuesTr ue andFalse.

• None is the universal null resource ID or atom.

• The typeXID is used for generic resource IDs.

• The typeXPointer is defined to be char* and is used as a generic opaque pointer to data.

1.5. Namingand Argument Conventions within Xlib
Xlib follows a number of conventions for the naming and syntax of the functions. Given that you
remember what information the function requires, these conventions are intended to make the
syntax of the functions more predictable.

The major naming conventions are:

• To differentiate the X symbols from the other symbols, the library uses mixed case for
external symbols. It leaves lowercase for variables and all uppercase for user macros, as
per existing convention.

• All Xlib functions begin with a capital X.

• The beginnings of all function names and symbols are capitalized.

• All user-visible data structures begin with a capital X. More generally, anything that a user
might dereference begins with a capital X.

• Macros and other symbols do not begin with a capital X.To distinguish them from all user
symbols, each word in the macro is capitalized.

• All elements of or variables in a data structure are in lowercase. Compoundwords, where
needed, are constructed with underscores (_).

4

Xlib − C Library libX11 1.3.2

• The display argument, where used, is always first in the argument list.

• All resource objects, where used, occur at the beginning of the argument list immediately
after the display argument.

• When a graphics context is present together with another type of resource (most com-
monly, a drawable), the graphics context occurs in the argument list after the other
resource. Drawables outrank all other resources.

• Source arguments always precede the destination arguments in the argument list.

• The x argument always precedes the y argument in the argument list.

• The width argument always precedes the height argument in the argument list.

• Where the x, y, width, and height arguments are used together, the x and y arguments
always precede the width and height arguments.

• Where a mask is accompanied with a structure, the mask always precedes the pointer to the
structure in the argument list.

1.6. Programming Considerations
The major programming considerations are:

• Coordinates and sizes in X are actually 16-bit quantities. This decision was made to mini-
mize the bandwidth required for a given lev el of performance. Coordinatesusually are
declared as anint in the interface. Values larger than 16 bits are truncated silently. Sizes
(width and height) are declared as unsigned quantities.

• Keyboards are the greatest variable between different manufacturers’ workstations. Ifyou
want your program to be portable, you should be particularly conservative here.

• Many display systems have limited amounts of off-screen memory. If you can, you should
minimize use of pixmaps and backing store.

• The user should have control of his screen real estate. Therefore, you should write your
applications to react to window management rather than presume control of the entire
screen. Whatyou do inside of your top-level window, howev er, is up to your application.
For further information, see chapter 14 and theInter-Client Communication Conventions
Manual.

1.7. CharacterSets and Encodings
Some of the Xlib functions make reference to specific character sets and character encodings.
The following are the most common:

• X Portable Character Set

A basic set of 97 characters, which are assumed to exist in all locales supported by Xlib.
This set contains the following characters:

a..z A..Z 0..9
!"#$%&’()*+,-./:;<=>?@[\]ˆ_‘{|}˜
<space>, <tab>, and <newline>

This set is the left/lower half of the graphic character set of ISO8859-1 plus space, tab, and
newline. It is also the set of graphic characters in 7-bit ASCII plus the same three control
characters. Theactual encoding of these characters on the host is system dependent.

• Host Portable Character Encoding

The encoding of the X Portable Character Set on the host. The encoding itself is not
defined by this standard, but the encoding must be the same in all locales supported by Xlib
on the host. If a string is said to be in the Host Portable Character Encoding, then it only
contains characters from the X Portable Character Set, in the host encoding.

5

Xlib − C Library libX11 1.3.2

• Latin-1

The coded character set defined by the ISO8859-1 standard.

• Latin Portable Character Encoding

The encoding of the X Portable Character Set using the Latin-1 codepoints plus ASCII con-
trol characters. If a string is said to be in the Latin Portable Character Encoding, then it
only contains characters from the X Portable Character Set, not all of Latin-1.

• STRING Encoding

Latin-1, plus tab and newline.

• POSIX Portable Filename Character Set

The set of 65 characters, which can be used in naming files on a POSIX-compliant host,
that are correctly processed in all locales. The set is:

a..z A..Z 0..9 ._-

1.8. Formatting Conventions
Xlib − C Language X Interfaceuses the following conventions:

• Global symbols are printed inthis special font. These can be either function names, sym-
bols defined in include files, or structure names. When declared and defined, function argu-
ments are printed initalics. In the explanatory text that follows, they usually are printed in
regular type.

• Each function is introduced by a general discussion that distinguishes it from other func-
tions. Thefunction declaration itself follows, and each argument is specifically explained.
Although ANSI C function prototype syntax is not used, Xlib header files normally declare
functions using function prototypes in ANSI C environments. Generaldiscussion of the
function, if any is required, follows the arguments. Whereapplicable, the last paragraph of
the explanation lists the possible Xlib error codes that the function can generate.For a
complete discussion of the Xlib error codes, see section 11.8.2.

• To eliminate any ambiguity between those arguments that you pass and those that a func-
tion returns to you, the explanations for all arguments that you pass start with the word
specifiesor, in the case of multiple arguments, the wordspecify. The explanations for all
arguments that are returned to you start with the wordreturnsor, in the case of multiple
arguments, the wordreturn. The explanations for all arguments that you can pass and are
returned start with the wordsspecifies and returns.

• Any pointer to a structure that is used to return a value is designated as such by the_return
suffix as part of its name. All other pointers passed to these functions are used for reading
only. A few arguments use pointers to structures that are used for both input and output
and are indicated by using the_in_outsuffix.

6

Xlib − C Library libX11 1.3.2

Chapter 2

Display Functions

Before your program can use a display, you must establish a connection to the X server. Once
you have established a connection, you then can use the Xlib macros and functions discussed in
this chapter to return information about the display. This chapter discusses how to:

• Open (connect to) the display

• Obtain information about the display, image formats, or screens

• Generate aNoOperation protocol request

• Free client-created data

• Close (disconnect from) a display

• Use X Server connection close operations

• Use Xlib with threads

• Use internal connections

2.1. Openingthe Display
To open a connection to the X server that controls a display, useXOpenDisplay.

Display *XOpenDisplay(display_name)
char *display_name;

display_name Specifies the hardware display name, which determines the display and commu-
nications domain to be used.On a POSIX-conformant system, if the dis-
play_name is NULL, it defaults to the value of the DISPLAY environment vari-
able.

The encoding and interpretation of the display name are implementation-dependent. Strings in
the Host Portable Character Encoding are supported; support for other characters is implementa-
tion-dependent. OnPOSIX-conformant systems, the display name or DISPLAY environment
variable can be a string in the format:

protocol/hostname:number.screen_number

protocol Specifies a protocol family or an alias for a protocol family. Supported protocol
families are implementation dependent. The protocol entry is optional. If proto-
col is not specified, the / separating protocol and hostname must also not be spec-
ified.

hostname Specifies the name of the host machine on which the display is physically
attached. You follow the hostname with either a single colon (:) or a double
colon (::).

number Specifies the number of the display server on that host machine.You may
optionally follow this display number with a period (.).A single CPU can have
more than one display. Multiple displays are usually numbered starting with
zero.

7

Xlib − C Library libX11 1.3.2

screen_numberSpecifies the screen to be used on that server. Multiple screens can be controlled
by a single X server. The screen_number sets an internal variable that can be
accessed by using theDefaultScreenmacro or theXDefaultScreen function if
you are using languages other than C (see section 2.2.1).

For example, the following would specify screen 1 of display 0 on the machine named ‘‘dual-
headed’’:

dual-headed:0.1

The XOpenDisplay function returns aDisplay structure that serves as the connection to the X
server and that contains all the information about that X server.XOpenDisplay connects your
application to the X server through TCP or DECnet communications protocols, or through some
local inter-process communication protocol. If the protocol is specified as "tcp", "inet", or
"inet6", or if no protocol is specified and the hostname is a host machine name and a single colon
(:) separates the hostname and display number,XOpenDisplay connects using TCP streams. (If
the protocol is specified as "inet", TCP over IPv4 is used. If the protocol is specified as "inet6",
TCP over IPv6 is used. Otherwise, the implementation determines which IP version is used.) If
the hostname and protocol are both not specified, Xlib uses whatever it believes is the fastest
transport. Ifthe hostname is a host machine name and a double colon (::) separates the hostname
and display number,XOpenDisplay connects using DECnet.A single X server can support any
or all of these transport mechanisms simultaneously. A particular Xlib implementation can sup-
port many more of these transport mechanisms.

If successful,XOpenDisplay returns a pointer to aDisplay structure, which is defined in
<X11/Xlib.h>. If XOpenDisplay does not succeed, it returns NULL. After a successful call to
XOpenDisplay, all of the screens in the display can be used by the client. The screen number
specified in the display_name argument is returned by theDefaultScreenmacro (or theXDe-
faultScreen function). You can access elements of theDisplay andScreenstructures only by
using the information macros or functions.For information about using macros and functions to
obtain information from theDisplay structure, see section 2.2.1.

X servers may implement various types of access control mechanisms (see section 9.8).

2.2. ObtainingInformation about the Display, Image Formats, or Screens
The Xlib library provides a number of useful macros and corresponding functions that return data
from theDisplay structure. Themacros are used for C programming, and their corresponding
function equivalents are for other language bindings. This section discusses the:

• Display macros

• Image format functions and macros

• Screen information macros

All other members of theDisplay structure (that is, those for which no macros are defined) are
private to Xlib and must not be used. Applications must never directly modify or inspect these
private members of theDisplay structure.

Note

The XDisplayWidth , XDisplayHeight, XDisplayCells, XDisplayPlanes, XDis-
playWidthMM , and XDisplayHeightMM functions in the next sections are mis-
named. Thesefunctions really should be named Screenwhateverand XScreenwhat-
ever, not Displaywhateveror XDisplaywhatever. Our apologies for the resulting
confusion.

8

Xlib − C Library libX11 1.3.2

2.2.1. DisplayMacros
Applications should not directly modify any part of theDisplay andScreenstructures. The
members should be considered read-only, although they may change as the result of other opera-
tions on the display.

The following lists the C language macros, their corresponding function equivalents that are for
other language bindings, and what data both can return.

AllPlanes

unsigned long XAllPlanes()

Both return a value with all bits set to 1 suitable for use in a plane argument to a procedure.

Both BlackPixel andWhitePixel can be used in implementing a monochrome application.
These pixel values are for permanently allocated entries in the default colormap. The actual RGB
(red, green, and blue) values are settable on some screens and, in any case, may not actually be
black or white. The names are intended to convey the expected relative intensity of the colors.

BlackPixel (display, screen_number)

unsigned long XBlackPixel (display, screen_number)
Display *display;
int screen_number;

display Specifies the connection to the X server.

screen_numberSpecifies the appropriate screen number on the host server.

Both return the black pixel value for the specified screen.

WhitePixel (display, screen_number)

unsigned long XWhitePixel (display, screen_number)
Display *display;
int screen_number;

display Specifies the connection to the X server.

screen_numberSpecifies the appropriate screen number on the host server.

Both return the white pixel value for the specified screen.

ConnectionNumber (display)

int XConnectionNumber(display)
Display *display;

display Specifies the connection to the X server.

Both return a connection number for the specified display. On a POSIX-conformant system, this

9

Xlib − C Library libX11 1.3.2

is the file descriptor of the connection.

DefaultColormap (display, screen_number)

Colormap XDefaultColormap (display, screen_number)
Display *display;
int screen_number;

display Specifies the connection to the X server.

screen_numberSpecifies the appropriate screen number on the host server.

Both return the default colormap ID for allocation on the specified screen. Most routine alloca-
tions of color should be made out of this colormap.

DefaultDepth (display, screen_number)

int XDefaultDepth (display, screen_number)
Display *display;
int screen_number;

display Specifies the connection to the X server.

screen_numberSpecifies the appropriate screen number on the host server.

Both return the depth (number of planes) of the default root window for the specified screen.
Other depths may also be supported on this screen (seeXMatchVisualInfo).

To determine the number of depths that are available on a given screen, useXListDepths.

int *XListDepths(display, screen_number, count_return)
Display *display;
int screen_number;
int *count_return;

display Specifies the connection to the X server.

screen_numberSpecifies the appropriate screen number on the host server.

count_return Returns the number of depths.

The XListDepths function returns the array of depths that are available on the specified screen.
If the specified screen_number is valid and sufficient memory for the array can be allocated,
XListDepths sets count_return to the number of available depths. Otherwise, it does not set
count_return and returns NULL.To release the memory allocated for the array of depths, use
XFree.

10

Xlib − C Library libX11 1.3.2

DefaultGC (display, screen_number)

GC XDefaultGC (display, screen_number)
Display *display;
int screen_number;

display Specifies the connection to the X server.

screen_numberSpecifies the appropriate screen number on the host server.

Both return the default graphics context for the root window of the specified screen. This GC is
created for the convenience of simple applications and contains the default GC components with
the foreground and background pixel values initialized to the black and white pixels for the
screen, respectively. You can modify its contents freely because it is not used in any Xlib func-
tion. ThisGC should never be freed.

DefaultRootWindow(display)

Window XDefaultRootWindow(display)
Display *display;

display Specifies the connection to the X server.

Both return the root window for the default screen.

DefaultScreenOfDisplay (display)

Screen *XDefaultScreenOfDisplay (display)
Display *display;

display Specifies the connection to the X server.

Both return a pointer to the default screen.

ScreenOfDisplay (display, screen_number)

Screen *XScreenOfDisplay(display, screen_number)
Display *display;
int screen_number;

display Specifies the connection to the X server.

screen_numberSpecifies the appropriate screen number on the host server.

Both return a pointer to the indicated screen.

11

Xlib − C Library libX11 1.3.2

DefaultScreen (display)

int XDefaultScreen (display)
Display *display;

display Specifies the connection to the X server.

Both return the default screen number referenced by theXOpenDisplay function. Thismacro or
function should be used to retrieve the screen number in applications that will use only a single
screen.

DefaultVisual (display, screen_number)

Visual *XDefaultVisual (display, screen_number)
Display *display;
int screen_number;

display Specifies the connection to the X server.

screen_numberSpecifies the appropriate screen number on the host server.

Both return the default visual type for the specified screen.For further information about visual
types, see section 3.1.

DisplayCells (display, screen_number)

int XDisplayCells(display, screen_number)
Display *display;
int screen_number;

display Specifies the connection to the X server.

screen_numberSpecifies the appropriate screen number on the host server.

Both return the number of entries in the default colormap.

DisplayPlanes (display, screen_number)

int XDisplayPlanes(display, screen_number)
Display *display;
int screen_number;

display Specifies the connection to the X server.

screen_numberSpecifies the appropriate screen number on the host server.

Both return the depth of the root window of the specified screen.For an explanation of depth, see
the glossary.

12

Xlib − C Library libX11 1.3.2

DisplayString (display)

char *XDisplayString(display)
Display *display;

display Specifies the connection to the X server.

Both return the string that was passed toXOpenDisplay when the current display was opened.
On POSIX-conformant systems, if the passed string was NULL, these return the value of the DIS-
PLAY environment variable when the current display was opened. These are useful to applica-
tions that invoke the fork system call and want to open a new connection to the same display
from the child process as well as for printing error messages.

long XExtendedMaxRequestSize(display)
Display *display;

display Specifies the connection to the X server.

The XExtendedMaxRequestSizefunction returns zero if the specified display does not support
an extended-length protocol encoding; otherwise, it returns the maximum request size (in 4-byte
units) supported by the server using the extended-length encoding. The Xlib functionsXDraw-
Lines, XDrawArcs , XFillPolygon , XChangeProperty, XSetClipRectangles, and XSetRe-
gion will use the extended-length encoding as necessary, if supported by the server. Use of the
extended-length encoding in other Xlib functions (for example,XDrawPoints, XDrawRectan-
gles, XDrawSegments, XFillArcs , XFillRectangles, XPutImage) is permitted but not
required; an Xlib implementation may choose to split the data across multiple smaller requests
instead.

long XMaxRequestSize(display)
Display *display;

display Specifies the connection to the X server.

The XMaxRequestSizefunction returns the maximum request size (in 4-byte units) supported by
the server without using an extended-length protocol encoding. Single protocol requests to the
server can be no larger than this size unless an extended-length protocol encoding is supported by
the server. The protocol guarantees the size to be no smaller than 4096 units (16384 bytes). Xlib
automatically breaks data up into multiple protocol requests as necessary for the following func-
tions: XDrawPoints, XDrawRectangles, XDrawSegments, XFillArcs , XFillRectangles, and
XPutImage.

LastKnownRequestProcessed (display)

unsigned long XLastKnownRequestProcessed (display)
Display *display;

display Specifies the connection to the X server.

Both extract the full serial number of the last request known by Xlib to have been processed by

13

Xlib − C Library libX11 1.3.2

the X server. Xlib automatically sets this number when replies, events, and errors are received.

NextRequest (display)

unsigned long XNextRequest (display)
Display *display;

display Specifies the connection to the X server.

Both extract the full serial number that is to be used for the next request. Serial numbers are
maintained separately for each display connection.

ProtocolVersion (display)

int XProtocolVersion (display)
Display *display;

display Specifies the connection to the X server.

Both return the major version number (11) of the X protocol associated with the connected dis-
play.

ProtocolRevision (display)

int XProtocolRevision (display)
Display *display;

display Specifies the connection to the X server.

Both return the minor protocol revision number of the X server.

QLength (display)

int XQLength(display)
Display *display;

display Specifies the connection to the X server.

Both return the length of the event queue for the connected display. Note that there may be more
ev ents that have not been read into the queue yet (seeXEventsQueued).

14

Xlib − C Library libX11 1.3.2

RootWindow(display, screen_number)

Window XRootWindow(display, screen_number)
Display *display;
int screen_number;

display Specifies the connection to the X server.

screen_numberSpecifies the appropriate screen number on the host server.

Both return the root window. These are useful with functions that need a drawable of a particular
screen and for creating top-level windows.

ScreenCount (display)

int XScreenCount(display)
Display *display;

display Specifies the connection to the X server.

Both return the number of available screens.

ServerVendor (display)

char *XServerVendor (display)
Display *display;

display Specifies the connection to the X server.

Both return a pointer to a null-terminated string that provides some identification of the owner of
the X server implementation. If the data returned by the server is in the Latin Portable Character
Encoding, then the string is in the Host Portable Character Encoding. Otherwise, the contents of
the string are implementation-dependent.

VendorRelease (display)

int XVendorRelease (display)
Display *display;

display Specifies the connection to the X server.

Both return a number related to a vendor’s release of the X server.

2.2.2. ImageFormat Functions and Macros
Applications are required to present data to the X server in a format that the server demands.To
help simplify applications, most of the work required to convert the data is provided by Xlib (see
sections 8.7 and 16.8).

The XPixmapFormatValues structure provides an interface to the pixmap format information
that is returned at the time of a connection setup. It contains:

15

Xlib − C Library libX11 1.3.2

typedef struct {
int depth;
int bits_per_pixel;
int scanline_pad;

} X PixmapFormatValues;

To obtain the pixmap format information for a given display, useXListPixmapFormats .

XPixmapFormatValues *XListPixmapFormats (display, count_return)
Display *display;
int *count_return;

display Specifies the connection to the X server.

count_return Returns the number of pixmap formats that are supported by the display.

The XListPixmapFormats function returns an array ofXPixmapFormatValues structures that
describe the types of Z format images supported by the specified display. If insufficient memory
is available, XListPixmapFormats returns NULL. To free the allocated storage for the
XPixmapFormatValues structures, useXFree.

The following lists the C language macros, their corresponding function equivalents that are for
other language bindings, and what data they both return for the specified server and screen.
These are often used by toolkits as well as by simple applications.

ImageByteOrder (display)

int XImageByteOrder(display)
Display *display;

display Specifies the connection to the X server.

Both specify the required byte order for images for each scanline unit in XY format (bitmap) or
for each pixel value in Z format. The macro or function can return eitherLSBFirst or MSB-
First .

BitmapUnit (display)

int XBitmapUnit(display)
Display *display;

display Specifies the connection to the X server.

Both return the size of a bitmap’s scanline unit in bits. The scanline is calculated in multiples of
this value.

16

Xlib − C Library libX11 1.3.2

BitmapBitOrder (display)

int XBitmapBitOrder(display)
Display *display;

display Specifies the connection to the X server.

Within each bitmap unit, the left-most bit in the bitmap as displayed on the screen is either the
least significant or most significant bit in the unit. This macro or function can returnLSBFirst or
MSBFirst .

BitmapPad (display)

int XBitmapPad (display)
Display *display;

display Specifies the connection to the X server.

Each scanline must be padded to a multiple of bits returned by this macro or function.

DisplayHeight (display, screen_number)

int XDisplayHeight(display, screen_number)
Display *display;
int screen_number;

display Specifies the connection to the X server.

screen_numberSpecifies the appropriate screen number on the host server.

Both return an integer that describes the height of the screen in pixels.

DisplayHeightMM (display, screen_number)

int XDisplayHeightMM(display, screen_number)
Display *display;
int screen_number;

display Specifies the connection to the X server.

screen_numberSpecifies the appropriate screen number on the host server.

Both return the height of the specified screen in millimeters.

17

Xlib − C Library libX11 1.3.2

DisplayWidth (display, screen_number)

int XDisplayWidth (display, screen_number)
Display *display;
int screen_number;

display Specifies the connection to the X server.

screen_numberSpecifies the appropriate screen number on the host server.

Both return the width of the screen in pixels.

DisplayWidthMM (display, screen_number)

int XDisplayWidthMM (display, screen_number)
Display *display;
int screen_number;

display Specifies the connection to the X server.

screen_numberSpecifies the appropriate screen number on the host server.

Both return the width of the specified screen in millimeters.

2.2.3. Screen Information Macros
The following lists the C language macros, their corresponding function equivalents that are for
other language bindings, and what data they both can return. These macros or functions all take a
pointer to the appropriate screen structure.

BlackPixelOfScreen (screen)

unsigned long XBlackPixelOfScreen (screen)
Screen *screen;

screen Specifies the appropriateScreenstructure.

Both return the black pixel value of the specified screen.

WhitePixelOfScreen (screen)

unsigned long XWhitePixelOfScreen (screen)
Screen *screen;

screen Specifies the appropriateScreenstructure.

Both return the white pixel value of the specified screen.

18

Xlib − C Library libX11 1.3.2

CellsOfScreen (screen)

int XCellsOfScreen(screen)
Screen *screen;

screen Specifies the appropriateScreenstructure.

Both return the number of colormap cells in the default colormap of the specified screen.

DefaultColormapOfScreen (screen)

Colormap XDefaultColormapOfScreen (screen)
Screen *screen;

screen Specifies the appropriateScreenstructure.

Both return the default colormap of the specified screen.

DefaultDepthOfScreen (screen)

int XDefaultDepthOfScreen (screen)
Screen *screen;

screen Specifies the appropriateScreenstructure.

Both return the depth of the root window.

DefaultGCOfScreen (screen)

GC XDefaultGCOfScreen (screen)
Screen *screen;

screen Specifies the appropriateScreenstructure.

Both return a default graphics context (GC) of the specified screen, which has the same depth as
the root window of the screen. The GC must never be freed.

DefaultVisualOfScreen (screen)

Visual *XDefaultVisualOfScreen (screen)
Screen *screen;

screen Specifies the appropriateScreenstructure.

Both return the default visual of the specified screen.For information on visual types, see section
3.1.

19

Xlib − C Library libX11 1.3.2

DoesBackingStore (screen)

int XDoesBackingStore(screen)
Screen *screen;

screen Specifies the appropriateScreenstructure.

Both return a value indicating whether the screen supports backing stores. The value returned can
be one ofWhenMapped, NotUseful, or Always (see section 3.2.4).

DoesSaveUnders (screen)

Bool XDoesSaveUnders (screen)
Screen *screen;

screen Specifies the appropriateScreenstructure.

Both return a Boolean value indicating whether the screen supports save unders. IfTr ue, the
screen supports save unders. IfFalse, the screen does not support save unders (see section 3.2.5).

DisplayOfScreen (screen)

Display *XDisplayOfScreen(screen)
Screen *screen;

screen Specifies the appropriateScreenstructure.

Both return the display of the specified screen.

int XScreenNumberOfScreen(screen)
Screen *screen;

screen Specifies the appropriateScreenstructure.

The XScreenNumberOfScreenfunction returns the screen index number of the specified screen.

EventMaskOfScreen (screen)

long XEventMaskOfScreen (screen)
Screen *screen;

screen Specifies the appropriateScreenstructure.

Both return the event mask of the root window for the specified screen at connection setup time.

20

Xlib − C Library libX11 1.3.2

WidthOfScreen (screen)

int XWidthOfScreen (screen)
Screen *screen;

screen Specifies the appropriateScreenstructure.

Both return the width of the specified screen in pixels.

HeightOfScreen (screen)

int XHeightOfScreen(screen)
Screen *screen;

screen Specifies the appropriateScreenstructure.

Both return the height of the specified screen in pixels.

WidthMMOfScreen (screen)

int XWidthMMOfScreen (screen)
Screen *screen;

screen Specifies the appropriateScreenstructure.

Both return the width of the specified screen in millimeters.

HeightMMOfScreen (screen)

int XHeightMMOfScreen(screen)
Screen *screen;

screen Specifies the appropriateScreenstructure.

Both return the height of the specified screen in millimeters.

MaxCmapsOfScreen (screen)

int XMaxCmapsOfScreen(screen)
Screen *screen;

screen Specifies the appropriateScreenstructure.

Both return the maximum number of installed colormaps supported by the specified screen (see
section 9.3).

21

Xlib − C Library libX11 1.3.2

MinCmapsOfScreen (screen)

int XMinCmapsOfScreen(screen)
Screen *screen;

screen Specifies the appropriateScreenstructure.

Both return the minimum number of installed colormaps supported by the specified screen (see
section 9.3).

PlanesOfScreen (screen)

int XPlanesOfScreen(screen)
Screen *screen;

screen Specifies the appropriateScreenstructure.

Both return the depth of the root window.

RootWindowOfScreen (screen)

Window XRootWindowOfScreen (screen)
Screen *screen;

screen Specifies the appropriateScreenstructure.

Both return the root window of the specified screen.

2.3. Generatinga NoOperation Protocol Request
To execute aNoOperation protocol request, useXNoOp.

XNoOp (display)
Display *display;

display Specifies the connection to the X server.

The XNoOp function sends aNoOperation protocol request to the X server, thereby exercising
the connection.

2.4. Freeing Client-Created Data
To free in-memory data that was created by an Xlib function, useXFree.

XFree (data)
void *data;

data Specifies the data that is to be freed.

The XFree function is a general-purpose Xlib routine that frees the specified data.You must use
it to free any objects that were allocated by Xlib, unless an alternate function is explicitly

22

Xlib − C Library libX11 1.3.2

specified for the object.A NULL pointer cannot be passed to this function.

2.5. Closingthe Display
To close a display or disconnect from the X server, useXCloseDisplay.

XCloseDisplay (display)
Display *display;

display Specifies the connection to the X server.

The XCloseDisplay function closes the connection to the X server for the display specified in the
Display structure and destroys all windows, resource IDs (Window, Font , Pixmap, Colormap,
Cursor , and GContext), or other resources that the client has created on this display, unless the
close-down mode of the resource has been changed (seeXSetCloseDownMode). Therefore,
these windows, resource IDs, and other resources should never be referenced again or an error
will be generated. Before exiting, you should callXCloseDisplayexplicitly so that any pending
errors are reported asXCloseDisplayperforms a finalXSync operation.

XCloseDisplaycan generate aBadGC error.

Xlib provides a function to permit the resources owned by a client to survive after the client’s
connection is closed.To change a client’s close-down mode, useXSetCloseDownMode.

XSetCloseDownMode (display, close_mode)
Display *display;
int close_mode;

display Specifies the connection to the X server.

close_mode Specifies the client close-down mode.You can passDestroyAll , RetainPerma-
nent, or RetainTemporary.

The XSetCloseDownModedefines what will happen to the client’s resources at connection
close. Aconnection starts inDestroyAll mode. For information on what happens to the client’s
resources when the close_mode argument isRetainPermanentor RetainTemporary, see sec-
tion 2.6.

XSetCloseDownModecan generate aBadValue error.

2.6. UsingX Server Connection Close Operations
When the X server’s connection to a client is closed either by an explicit call toXCloseDisplay
or by a process that exits, the X server performs the following automatic operations:

• It disowns all selections owned by the client (seeXSetSelectionOwner).
• It performs anXUngrabPointer andXUngrabKeyboard if the client has actively

grabbed the pointer or the keyboard.

• It performs anXUngrabServer if the client has grabbed the server.

• It releases all passive grabs made by the client.

• It marks all resources (including colormap entries) allocated by the client either as perma-
nent or temporary, depending on whether the close-down mode isRetainPermanentor
RetainTemporary. Howev er, this does not prevent other client applications from explic-
itly destroying the resources (seeXSetCloseDownMode).

When the close-down mode isDestroyAll , the X server destroys all of a client’s resources as fol-
lows:

23

Xlib − C Library libX11 1.3.2

• It examines each window in the client’s sav e-set to determine if it is an inferior (subwin-
dow) of a window created by the client. (The save-set is a list of other clients’ windows
that are referred to as save-set windows.) If so, the X server reparents the save-set window
to the closest ancestor so that the save-set window is not an inferior of a window created by
the client. The reparenting leaves unchanged the absolute coordinates (with respect to the
root window) of the upper-left outer corner of the save-set window.

• It performs aMapWindow request on the save-set window if the save-set window is
unmapped. TheX server does this even if the save-set window was not an inferior of a
window created by the client.

• It destroys all windows created by the client.

• It performs the appropriate free request on each nonwindow resource created by the client
in the server (for example,Font , Pixmap, Cursor , Colormap, and GContext).

• It frees all colors and colormap entries allocated by a client application.

Additional processing occurs when the last connection to the X server closes. An X server goes
through a cycle of having no connections and having some connections. When the last connec-
tion to the X server closes as a result of a connection closing with the close_mode ofDestroyAll ,
the X server does the following:

• It resets its state as if it had just been started. The X server begins by destroying all linger-
ing resources from clients that have terminated inRetainPermanentor RetainTempo-
rary mode.

• It deletes all but the predefined atom identifiers.

• It deletes all properties on all root windows (see section 4.3).

• It resets all device maps and attributes (for example, key click, bell volume, and accelera-
tion) as well as the access control list.

• It restores the standard root tiles and cursors.

• It restores the default font path.

• It restores the input focus to statePointerRoot .
However, the X server does not reset if you close a connection with a close-down mode set to
RetainPermanentor RetainTemporary.

2.7. UsingXlib with Threads
On systems that have threads, support may be provided to permit multiple threads to use Xlib
concurrently.

To initialize support for concurrent threads, useXInitThreads .

Status XInitThreads();

The XInitThreads function initializes Xlib support for concurrent threads. This function must
be the first Xlib function a multi-threaded program calls, and it must complete before any other
Xlib call is made. This function returns a nonzero status if initialization was successful; other-
wise, it returns zero. On systems that do not support threads, this function always returns zero.

It is only necessary to call this function if multiple threads might use Xlib concurrently. If all
calls to Xlib functions are protected by some other access mechanism (for example, a mutual
exclusion lock in a toolkit or through explicit client programming), Xlib thread initialization is
not required. It is recommended that single-threaded programs not call this function.

24

Xlib − C Library libX11 1.3.2

To lock a display across several Xlib calls, useXLockDisplay .

void XLockDisplay(display)
Display *display;

display Specifies the connection to the X server.

The XLockDisplay function locks out all other threads from using the specified display. Other
threads attempting to use the display will block until the display is unlocked by this thread.
Nested calls toXLockDisplay work correctly; the display will not actually be unlocked until
XUnlockDisplay has been called the same number of times asXLockDisplay . This function
has no effect unless Xlib was successfully initialized for threads usingXInitThreads .

To unlock a display, useXUnlockDisplay.

void XUnlockDisplay(display)
Display *display;

display Specifies the connection to the X server.

The XUnlockDisplay function allows other threads to use the specified display again. Any
threads that have blocked on the display are allowed to continue. Nested locking works correctly;
if XLockDisplay has been called multiple times by a thread, thenXUnlockDisplay must be
called an equal number of times before the display is actually unlocked. Thisfunction has no
effect unless Xlib was successfully initialized for threads usingXInitThreads .

2.8. UsingInternal Connections
In addition to the connection to the X server, an Xlib implementation may require connections to
other kinds of servers (for example, to input method servers as described in chapter 13).Toolkits
and clients that use multiple displays, or that use displays in combination with other inputs, need
to obtain these additional connections to correctly block until input is available and need to
process that input when it is available. Simpleclients that use a single display and block for input
in an Xlib event function do not need to use these facilities.

To track internal connections for a display, useXAddConnectionWatch.

typedef void (*XConnectionWatchProc) (display, client_data, fd, opening, watch_data)
Display *display;
XPointerclient_data;
int fd;
Bool opening;
XPointer *watch_data;

Status XAddConnectionWatch (display, procedure, client_data)
Display *display;
XWatchProcprocedure;
XPointerclient_data;

display Specifies the connection to the X server.

procedure Specifies the procedure to be called.

client_data Specifies the additional client data.

The XAddConnectionWatch function registers a procedure to be called each time Xlib opens or

25

Xlib − C Library libX11 1.3.2

closes an internal connection for the specified display. The procedure is passed the display, the
specified client_data, the file descriptor for the connection, a Boolean indicating whether the con-
nection is being opened or closed, and a pointer to a location for private watch data. If opening is
Tr ue, the procedure can store a pointer to private data in the location pointed to by watch_data;
when the procedure is later called for this same connection and opening isFalse, the location
pointed to by watch_data will hold this same private data pointer.

This function can be called at any time after a display is opened. If internal connections already
exist, the registered procedure will immediately be called for each of them, beforeXAddConnec-
tionWatch returns. XAddConnectionWatch returns a nonzero status if the procedure is suc-
cessfully registered; otherwise, it returns zero.

The registered procedure should not call any Xlib functions. If the procedure directly or indi-
rectly causes the state of internal connections or watch procedures to change, the result is not
defined. IfXlib has been initialized for threads, the procedure is called with the display locked
and the result of a call by the procedure to any Xlib function that locks the display is not defined
unless the executing thread has externally locked the display usingXLockDisplay .

To stop tracking internal connections for a display, useXRemoveConnectionWatch.

Status XRemoveConnectionWatch (display, procedure, client_data)
Display *display;
XWatchProcprocedure;
XPointerclient_data;

display Specifies the connection to the X server.

procedure Specifies the procedure to be called.

client_data Specifies the additional client data.

The XRemoveConnectionWatch function removes a previously registered connection watch
procedure. Theclient_data must match the client_data used when the procedure was initially reg-
istered.

To process input on an internal connection, useXProcessInternalConnection.

void XProcessInternalConnection(display, fd)
Display *display;
int fd;

display Specifies the connection to the X server.

fd Specifies the file descriptor.

The XProcessInternalConnectionfunction processes input available on an internal connection.
This function should be called for an internal connection only after an operating system facility
(for example,selector poll) has indicated that input is available; otherwise, the effect is not
defined.

To obtain all of the current internal connections for a display, useXInternalConnectionNum-
bers.

26

Xlib − C Library libX11 1.3.2

Status XInternalConnectionNumbers(display, fd_return, count_return)
Display *display;
int ** fd_return;
int *count_return;

display Specifies the connection to the X server.

fd_return Returns the file descriptors.

count_return Returns the number of file descriptors.

The XInternalConnectionNumbers function returns a list of the file descriptors for all internal
connections currently open for the specified display. When the allocated list is no longer needed,
free it by usingXFree. This functions returns a nonzero status if the list is successfully allo-
cated; otherwise, it returns zero.

27

Xlib − C Library libX11 1.3.2

Chapter 3

Window Functions

In the X Window System, a window is a rectangular area on the screen that lets you view graphic
output. Clientapplications can display overlapping and nested windows on one or more screens
that are driven by X servers on one or more machines. Clients who want to create windows must
first connect their program to the X server by callingXOpenDisplay. This chapter begins with a
discussion of visual types and window attributes. Thechapter continues with a discussion of the
Xlib functions you can use to:

• Create windows

• Destroy windows

• Map windows

• Unmap windows

• Configure windows

• Change window stacking order

• Change window attributes

This chapter also identifies the window actions that may generate events.

Note that it is vital that your application conform to the established conventions for communicat-
ing with window managers for it to work well with the various window managers in use (see sec-
tion 14.1). Toolkits generally adhere to these conventions for you, relieving you of the burden.
Toolkits also often supersede many functions in this chapter with versions of their own. For more
information, refer to the documentation for the toolkit that you are using.

3.1. Visual Types
On some display hardware, it may be possible to deal with color resources in more than one way.
For example, you may be able to deal with a screen of either 12-bit depth with arbitrary mapping
of pixel to color (pseudo-color) or 24-bit depth with 8 bits of the pixel dedicated to each of red,
green, and blue. These different ways of dealing with the visual aspects of the screen are called
visuals. For each screen of the display, there may be a list of valid visual types supported at dif-
ferent depths of the screen. Because default windows and visual types are defined for each
screen, most simple applications need not deal with this complexity. Xlib provides macros and
functions that return the default root window, the default depth of the default root window, and
the default visual type (see sections 2.2.1 and 16.7).

Xlib uses an opaqueVisual structure that contains information about the possible color mapping.
The visual utility functions (see section 16.7) use anXVisualInfo structure to return this infor-
mation to an application. The members of this structure pertinent to this discussion are class,
red_mask, green_mask, blue_mask, bits_per_rgb, and colormap_size. The class member speci-
fies one of the possible visual classes of the screen and can beStaticGray, StaticColor, Tr ue-
Color , GrayScale, PseudoColor, or DirectColor .

The following concepts may serve to make the explanation of visual types clearer. The screen
can be color or grayscale, can have a colormap that is writable or read-only, and can also have a
colormap whose indices are decomposed into separate RGB pieces, provided one is not on a
grayscale screen. This leads to the following diagram:

28

Xlib − C Library libX11 1.3.2

Color Gray-scale
R/O R/W R/O R/W

Undecomposed Static Pseudo StaticGray
Colormap Color Color Gray Scale

Decomposed True Direct
Colormap Color Color

Conceptually, as each pixel is read out of video memory for display on the screen, it goes through
a look-up stage by indexing into a colormap. Colormaps can be manipulated arbitrarily on some
hardware, in limited ways on other hardware, and not at all on other hardware. Thevisual types
affect the colormap and the RGB values in the following ways:

• For PseudoColor, a pixel value indexes a colormap to produce independent RGB values,
and the RGB values can be changed dynamically.

• GrayScale is treated the same way asPseudoColorexcept that the primary that drives the
screen is undefined. Thus, the client should always store the same value for red, green, and
blue in the colormaps.

• For DirectColor , a pixel value is decomposed into separate RGB subfields, and each sub-
field separately indexes the colormap for the corresponding value. TheRGB values can be
changed dynamically.

• Tr ueColor is treated the same way asDirectColor except that the colormap has prede-
fined, read-only RGB values. TheseRGB values are server dependent but provide linear or
near-linear ramps in each primary.

• StaticColor is treated the same way asPseudoColorexcept that the colormap has prede-
fined, read-only, server-dependent RGB values.

• StaticGray is treated the same way asStaticColor except that the RGB values are equal
for any single pixel value, thus resulting in shades of gray.StaticGray with a two-entry
colormap can be thought of as monochrome.

The red_mask, green_mask, and blue_mask members are only defined forDirectColor and
Tr ueColor. Each has one contiguous set of bits with no intersections. The bits_per_rgb member
specifies the log base 2 of the number of distinct color values (individually) of red, green, and
blue. ActualRGB values are unsigned 16-bit numbers. The colormap_size member defines the
number of available colormap entries in a newly created colormap.For DirectColor andTr ue-
Color , this is the size of an individual pixel subfield.

To obtain the visual ID from aVisual, useXVisualIDFromVisual .

VisualID XVisualIDFromVisual (visual)
Visual *visual;

visual Specifies the visual type.

The XVisualIDFromVisual function returns the visual ID for the specified visual type.

3.2. Window Attributes
All InputOutput windows have a border width of zero or more pixels, an optional background,
an event suppression mask (which suppresses propagation of events from children), and a prop-
erty list (see section 4.3). The window border and background can be a solid color or a pattern,
called a tile. All windows except the root have a parent and are clipped by their parent. If a win-
dow is stacked on top of another window, it obscures that other window for the purpose of input.

29

Xlib − C Library libX11 1.3.2

If a window has a background (almost all do), it obscures the other window for purposes of out-
put. Attemptsto output to the obscured area do nothing, and no input events (for example,
pointer motion) are generated for the obscured area.

Windows also have associated property lists (see section 4.3).

Both InputOutput and InputOnly windows have the following common attributes, which are
the only attributes of anInputOnly window:

• win-gravity

• event-mask

• do-not-propagate-mask

• override-redirect

• cursor

If you specify any other attributes for anInputOnly window, a BadMatch error results.

InputOnly windows are used for controlling input events in situations whereInputOutput win-
dows are unnecessary.InputOnly windows are invisible; can only be used to control such things
as cursors, input event generation, and grabbing; and cannot be used in any graphics requests.
Note thatInputOnly windows cannot have InputOutput windows as inferiors.

Windows have borders of a programmable width and pattern as well as a background pattern or
tile. Pixel values can be used for solid colors. The background and border pixmaps can be
destroyed immediately after creating the window if no further explicit references to them are to be
made. Thepattern can either be relative to the parent or absolute. IfParentRelative, the par-
ent’s background is used.

When windows are first created, they are not visible (not mapped) on the screen. Any output to a
window that is not visible on the screen and that does not have backing store will be discarded.
An application may wish to create a window long before it is mapped to the screen. When a win-
dow is eventually mapped to the screen (usingXMapWindow), the X server generates an
Exposeev ent for the window if backing store has not been maintained.

A window manager can override your choice of size, border width, and position for a top-level
window. Your program must be prepared to use the actual size and position of the top window. It
is not acceptable for a client application to resize itself unless in direct response to a human com-
mand to do so. Instead, either your program should use the space given to it, or if the space is too
small for any useful work, your program might ask the user to resize the window. The border of
your top-level window is considered fair game for window managers.

To set an attribute of a window, set the appropriate member of theXSetWindowAttributes struc-
ture and OR in the corresponding value bitmask in your subsequent calls toXCreateWindow
andXChangeWindowAttributes , or use one of the other convenience functions that set the
appropriate attribute. Thesymbols for the value mask bits and theXSetWindowAttributes
structure are:

30

Xlib − C Library libX11 1.3.2

/* Window attribute value mask bits */

#define CWBackPixmap (1L<<0)
#define CWBackPixel (1L<<1)
#define CWBorderPixmap (1L<<2)
#define CWBorderPixel (1L<<3)
#define CWBitGravity (1L<<4)
#define CWWinGravity (1L<<5)
#define CWBackingStore (1L<<6)
#define CWBackingPlanes (1L<<7)
#define CWBackingPixel (1L<<8)
#define CWOverrideRedirect (1L<<9)
#define CWSaveUnder (1L<<10)
#define CWEventMask (1L<<11)
#define CWDontPropagate (1L<<12)
#define CWColormap (1L<<13)
#define CWCursor (1L<<14)

/* Values */

typedef struct {
Pixmap background_pixmap; /* background, None, or ParentRelative */
unsigned long background_pixel; /* background pixel */
Pixmap border_pixmap; /* border of the window or CopyFromParent */
unsigned long border_pixel; /* border pixel value */
int bit_gravity; /* one of bit gravity values */
int win_gravity; /* one of the window gravity values */
int backing_store; /* NotUseful, WhenMapped, Always */
unsigned long backing_planes; /* planes to be preserved if possible */
unsigned long backing_pixel; /* value to use in restoring planes */
Bool save_under; /*should bits under be saved? (popups) */
long event_mask; /*set of events that should be saved */
long do_not_propagate_mask; /*set of events that should not propagate */
Bool override_redirect; /*boolean value for override_redirect */
Colormap colormap; /* color map to be associated with window */
Cursor cursor; /* cursor to be displayed (or None) */

} X SetWindowAttributes;

The following lists the defaults for each window attribute and indicates whether the attribute is
applicable toInputOutput and InputOnly windows:

Attribute Default InputOutput InputOnly

background-pixmap None Yes No
background-pixel Undefined Yes No
border-pixmap CopyFromParent Yes No
border-pixel Undefined Yes No
bit-gravity ForgetGravity Yes No
win-gravity NorthWestGravity Yes Yes
backing-store NotUseful Yes No
backing-planes Allones Yes No
backing-pixel zero Yes No

31

Xlib − C Library libX11 1.3.2

Attribute Default InputOutput InputOnly

save-under False Yes No
ev ent-mask emptyset Yes Yes
do-not-propagate-mask emptyset Yes Yes
override-redirect False Yes Yes
colormap CopyFromParent Yes No
cursor None Yes Yes

3.2.1. Background Attribute
Only InputOutput windows can have a background. You can set the background of an
InputOutput window by using a pixel or a pixmap.

The background-pixmap attribute of a window specifies the pixmap to be used for a window’s
background. Thispixmap can be of any size, although some sizes may be faster than others. The
background-pixel attribute of a window specifies a pixel value used to paint a window’s back-
ground in a single color.

You can set the background-pixmap to a pixmap,None (default), orParentRelative. You can
set the background-pixel of a window to any pixel value (no default). If you specify a back-
ground-pixel, it overrides either the default background-pixmap or any value you may have set in
the background-pixmap.A pixmap of an undefined size that is filled with the background-pixel is
used for the background. Range checking is not performed on the background pixel; it simply is
truncated to the appropriate number of bits.

If you set the background-pixmap, it overrides the default. Thebackground-pixmap and the win-
dow must have the same depth, or aBadMatch error results. If you set background-pixmap to
None, the window has no defined background. If you set the background-pixmap toParentRel-
ative:

• The parent window’s background-pixmap is used. The child window, howev er, must have
the same depth as its parent, or aBadMatch error results.

• If the parent window has a background-pixmap ofNone, the window also has a back-
ground-pixmap ofNone.

• A copy of the parent window’s background-pixmap is not made. The parent’s background-
pixmap is examined each time the child window’s background-pixmap is required.

• The background tile origin always aligns with the parent window’s background tile origin.
If the background-pixmap is notParentRelative, the background tile origin is the child
window’s origin.

Setting a new background, whether by setting background-pixmap or background-pixel, overrides
any previous background. The background-pixmap can be freed immediately if no further
explicit reference is made to it (the X server will keep a copy to use when needed). If you later
draw into the pixmap used for the background, what happens is undefined because the X imple-
mentation is free to make a copy of the pixmap or to use the same pixmap.

When no valid contents are available for regions of a window and either the regions are visible or
the server is maintaining backing store, the server automatically tiles the regions with the win-
dow’s background unless the window has a background ofNone. If the background isNone, the
previous screen contents from other windows of the same depth as the window are simply left in
place as long as the contents come from the parent of the window or an inferior of the parent.
Otherwise, the initial contents of the exposed regions are undefined.Exposeev ents are then gen-
erated for the regions, even if the background-pixmap isNone (see section 10.9).

32

Xlib − C Library libX11 1.3.2

3.2.2. BorderAttribute
Only InputOutput windows can have a border. You can set the border of anInputOutput win-
dow by using a pixel or a pixmap.

The border-pixmap attribute of a window specifies the pixmap to be used for a window’s border.
The border-pixel attribute of a window specifies a pixmap of undefined size filled with that pixel
be used for a window’s border. Range checking is not performed on the background pixel; it sim-
ply is truncated to the appropriate number of bits. The border tile origin is always the same as the
background tile origin.

You can also set the border-pixmap to a pixmap of any size (some may be faster than others) or to
CopyFromParent (default). You can set the border-pixel to any pixel value (no default).

If you set a border-pixmap, it overrides the default. Theborder-pixmap and the window must
have the same depth, or aBadMatch error results. If you set the border-pixmap toCopy-
FromParent, the parent window’s border-pixmap is copied. Subsequent changes to the parent
window’s border attribute do not affect the child window. Howev er, the child window must have
the same depth as the parent window, or a BadMatch error results.

The border-pixmap can be freed immediately if no further explicit reference is made to it. If you
later draw into the pixmap used for the border, what happens is undefined because the X imple-
mentation is free either to make a copy of the pixmap or to use the same pixmap. If you specify a
border-pixel, it overrides either the default border-pixmap or any value you may have set in the
border-pixmap. All pixels in the window’s border will be set to the border-pixel. Settinga new
border, whether by setting border-pixel or by setting border-pixmap, overrides any previous bor-
der.

Output to a window is always clipped to the inside of the window. Therefore, graphics operations
never affect the window border.

3.2.3. Gravity Attributes
The bit gravity of a window defines which region of the window should be retained when an
InputOutput window is resized. Thedefault value for the bit-gravity attribute isForgetGrav-
ity . The window gravity of a window allows you to define how the InputOutput or InputOnly
window should be repositioned if its parent is resized. The default value for the win-gravity
attribute isNorthWestGravity .

If the inside width or height of a window is not changed and if the window is moved or its border
is changed, then the contents of the window are not lost but move with the window. Changing the
inside width or height of the window causes its contents to be moved or lost (depending on the
bit-gravity of the window) and causes children to be reconfigured (depending on their win-grav-
ity). For a change of width and height, the (x, y) pairs are defined:

Gravity Dir ection Coordinates

NorthWestGravity (0, 0)
NorthGravity (Width/2, 0)
NorthEastGravity (Width, 0)
WestGravity (0, Height/2)
CenterGravity (Width/2, Height/2)
EastGravity (Width, Height/2)
SouthWestGravity (0, Height)
SouthGravity (Width/2, Height)
SouthEastGravity (Width, Height)

When a window with one of these bit-gravity values is resized, the corresponding pair defines the
change in position of each pixel in the window. When a window with one of these win-gravities

33

Xlib − C Library libX11 1.3.2

has its parent window resized, the corresponding pair defines the change in position of the win-
dow within the parent. When a window is so repositioned, aGravityNotify ev ent is generated
(see section 10.10.5).

A bit-gravity of StaticGravity indicates that the contents or origin should not move relative to
the origin of the root window. If the change in size of the window is coupled with a change in
position (x, y), then for bit-gravity the change in position of each pixel is (−x, −y), and for win-
gravity the change in position of a child when its parent is so resized is (−x, −y). Note thatStat-
icGravity still only takes effect when the width or height of the window is changed, not when the
window is moved.

A bit-gravity of ForgetGravity indicates that the window’s contents are always discarded after a
size change, even if a backing store or save under has been requested. The window is tiled with
its background and zero or moreExposeev ents are generated. If no background is defined, the
existing screen contents are not altered. Some X servers may also ignore the specified bit-gravity
and always generateExposeev ents.

The contents and borders of inferiors are not affected by their parent’s bit-gravity. A server is
permitted to ignore the specified bit-gravity and useForget instead.

A win-gravity of UnmapGravity is like NorthWestGravity (the window is not moved), except
the child is also unmapped when the parent is resized, and anUnmapNotify ev ent is generated.

3.2.4. BackingStore Attribute
Some implementations of the X server may choose to maintain the contents ofInputOutput
windows. If the X server maintains the contents of a window, the off-screen saved pixels are
known as backing store. The backing store advises the X server on what to do with the contents
of a window. The backing-store attribute can be set toNotUseful (default),WhenMapped, or
Always.

A backing-store attribute ofNotUseful advises the X server that maintaining contents is unneces-
sary, although some X implementations may still choose to maintain contents and, therefore, not
generateExposeev ents. Abacking-store attribute ofWhenMapped advises the X server that
maintaining contents of obscured regions when the window is mapped would be beneficial. In
this case, the server may generate anExposeev ent when the window is created. Abacking-store
attribute ofAlways advises the X server that maintaining contents even when the window is
unmapped would be beneficial. Even if the window is larger than its parent, this is a request to
the X server to maintain complete contents, not just the region within the parent window bound-
aries. Whilethe X server maintains the window’s contents,Exposeev ents normally are not gen-
erated, but the X server may stop maintaining contents at any time.

When the contents of obscured regions of a window are being maintained, regions obscured by
noninferior windows are included in the destination of graphics requests (and source, when the
window is the source). However, regions obscured by inferior windows are not included.

3.2.5. Save Under Flag
Some server implementations may preserve contents ofInputOutput windows under other
InputOutput windows. Thisis not the same as preserving the contents of a window for you.
You may get better visual appeal if transient windows (for example, pop-up menus) request that
the system preserve the screen contents under them, so the temporarily obscured applications do
not have to repaint.

You can set the save-under flag toTr ue or False (default). If save-under isTr ue, the X server is
advised that, when this window is mapped, saving the contents of windows it obscures would be
beneficial.

34

Xlib − C Library libX11 1.3.2

3.2.6. BackingPlanes and Backing Pixel Attributes
You can set backing planes to indicate (with bits set to 1) which bit planes of anInputOutput
window hold dynamic data that must be preserved in backing store and during save unders. The
default value for the backing-planes attribute is all bits set to 1.You can set backing pixel to
specify what bits to use in planes not covered by backing planes. The default value for the back-
ing-pixel attribute is all bits set to 0. The X server is free to save only the specified bit planes in
the backing store or the save under and is free to regenerate the remaining planes with the speci-
fied pixel value. Any extraneous bits in these values (that is, those bits beyond the specified depth
of the window) may be simply ignored. If you request backing store or save unders, you should
use these members to minimize the amount of off-screen memory required to store your window.

3.2.7. Event Mask and Do Not Propagate Mask Attributes
The event mask defines which events the client is interested in for thisInputOutput or Inpu-
tOnly window (or, for some event types, inferiors of this window). Theev ent mask is the bitwise
inclusive OR of zero or more of the valid event mask bits.You can specify that no maskable
ev ents are reported by settingNoEventMask (default).

The do-not-propagate-mask attribute defines which events should not be propagated to ancestor
windows when no client has the event type selected in thisInputOutput or InputOnly window.
The do-not-propagate-mask is the bitwise inclusive OR of zero or more of the following masks:
KeyPress, KeyRelease, ButtonPress, ButtonRelease, PointerMotion , Button1Motion , But-
ton2Motion , Button3Motion , Button4Motion , Button5Motion , and ButtonMotion . You can
specify that all events are propagated by settingNoEventMask (default).

3.2.8. Override Redirect Flag
To control window placement or to add decoration, a window manager often needs to intercept
(redirect) any map or configure request. Pop-up windows, however, often need to be mapped
without a window manager getting in the way. To control whether anInputOutput or Inpu-
tOnly window is to ignore these structure control facilities, use the override-redirect flag.

The override-redirect flag specifies whether map and configure requests on this window should
override aSubstructureRedirectMask on the parent.You can set the override-redirect flag to
Tr ue or False (default). Window managers use this information to avoid tampering with pop-up
windows (see also chapter 14).

3.2.9. ColormapAttribute
The colormap attribute specifies which colormap best reflects the true colors of theInputOutput
window. The colormap must have the same visual type as the window, or a BadMatch error
results. Xservers capable of supporting multiple hardware colormaps can use this information,
and window managers can use it for calls toXInstallColormap . You can set the colormap
attribute to a colormap or toCopyFromParent (default).

If you set the colormap toCopyFromParent, the parent window’s colormap is copied and used
by its child. However, the child window must have the same visual type as the parent, or aBad-
Match error results. The parent window must not have a colormap ofNone, or aBadMatch
error results. The colormap is copied by sharing the colormap object between the child and par-
ent, not by making a complete copy of the colormap contents. Subsequent changes to the parent
window’s colormap attribute do not affect the child window.

3.2.10. CursorAttribute
The cursor attribute specifies which cursor is to be used when the pointer is in theInputOutput
or InputOnly window. You can set the cursor to a cursor orNone (default).

If you set the cursor toNone, the parent’s cursor is used when the pointer is in theInputOutput
or InputOnly window, and any change in the parent’s cursor will cause an immediate change in
the displayed cursor. By calling XFreeCursor, the cursor can be freed immediately as long as

35

Xlib − C Library libX11 1.3.2

no further explicit reference to it is made.

3.3. Creating Windows
Xlib provides basic ways for creating windows, and toolkits often supply higher-level functions
specifically for creating and placing top-level windows, which are discussed in the appropriate
toolkit documentation. If you do not use a toolkit, however, you must provide some standard
information or hints for the window manager by using the Xlib inter-client communication func-
tions (see chapter 14).

If you use Xlib to create your own top-level windows (direct children of the root window), you
must observe the following rules so that all applications interact reasonably across the different
styles of window management:

• You must never fight with the window manager for the size or placement of your top-level
window.

• You must be able to deal with whatever size window you get, even if this means that your
application just prints a message like ‘‘Please make me bigger’’ in i ts window.

• You should only attempt to resize or move top-level windows in direct response to a user
request. Ifa request to change the size of a top-level window fails, you must be prepared to
live with what you get.You are free to resize or move the children of top-level windows as
necessary. (Toolkits often have facilities for automatic relayout.)

• If you do not use a toolkit that automatically sets standard window properties, you should
set these properties for top-level windows before mapping them.

For further information, see chapter 14 and theInter-Client Communication Conventions Manual.

XCreateWindow is the more general function that allows you to set specific window attributes
when you create a window. XCreateSimpleWindow creates a window that inherits its attributes
from its parent window.

The X server acts as ifInputOnly windows do not exist for the purposes of graphics requests,
exposure processing, andVisibilityNotify ev ents. An InputOnly window cannot be used as a
drawable (that is, as a source or destination for graphics requests).InputOnly and InputOutput
windows act identically in other respects (properties, grabs, input control, and so on). Extension
packages can define other classes of windows.

To create an unmapped window and set its window attributes, useXCreateWindow.

36

Xlib − C Library libX11 1.3.2

Window XCreateWindow(display, parent, x, y, width, height, border_width, depth,
class, visual, valuemask, attributes)

Display *display;
Windowparent;
int x, y;
unsigned intwidth, height;
unsigned intborder_width;
int depth;
unsigned intclass;
Visual *visual;
unsigned longvaluemask;
XSetWindowAttributes *attributes;

display Specifies the connection to the X server.

parent Specifies the parent window.

x
y Specify the x and y coordinates, which are the top-left outside corner of the creat-

ed window’s borders and are relative to the inside of the parent window’s bor-
ders.

width
height Specify the width and height, which are the created window’s inside dimensions

and do not include the created window’s borders. Thedimensions must be
nonzero, or aBadValue error results.

border_width Specifies the width of the created window’s border in pixels.

depth Specifies the window’s depth. Adepth ofCopyFromParent means the depth is
taken from the parent.

class Specifies the created window’s class. You can passInputOutput , InputOnly ,
or CopyFromParent. A class ofCopyFromParent means the class is taken
from the parent.

visual Specifies the visual type.A visual of CopyFromParent means the visual type is
taken from the parent.

valuemask Specifies which window attributes are defined in the attributes argument. This
mask is the bitwise inclusive OR of the valid attribute mask bits. If valuemask is
zero, the attributes are ignored and are not referenced.

attributes Specifies the structure from which the values (as specified by the value mask) are
to be taken. Thevalue mask should have the appropriate bits set to indicate
which attributes have been set in the structure.

The XCreateWindow function creates an unmapped subwindow for a specified parent window,
returns the window ID of the created window, and causes the X server to generate aCreateNo-
tify ev ent. Thecreated window is placed on top in the stacking order with respect to siblings.

The coordinate system has the X axis horizontal and the Y axis vertical with the origin [0, 0] at
the upper-left corner. Coordinates are integral, in terms of pixels, and coincide with pixel centers.
Each window and pixmap has its own coordinate system.For a window, the origin is inside the
border at the inside, upper-left corner.

The border_width for anInputOnly window must be zero, or aBadMatch error results.For
classInputOutput , the visual type and depth must be a combination supported for the screen, or
a BadMatch error results. The depth need not be the same as the parent, but the parent must not
be a window of classInputOnly , or aBadMatch error results.For an InputOnly window, the
depth must be zero, and the visual must be one supported by the screen. If either condition is not

37

Xlib − C Library libX11 1.3.2

met, aBadMatch error results. The parent window, howev er, may have any depth and class. If
you specify any inv alid window attribute for a window, a BadMatch error results.

The created window is not yet displayed (mapped) on the user’s display. To display the window,
call XMapWindow . The new window initially uses the same cursor as its parent.A new cursor
can be defined for the new window by calling XDefineCursor. The window will not be visible
on the screen unless it and all of its ancestors are mapped and it is not obscured by any of its
ancestors.

XCreateWindow can generateBadAlloc, BadColor, BadCursor, BadMatch, BadPixmap,
BadValue, and BadWindow errors.

To create an unmappedInputOutput subwindow of a giv en parent window, useXCreateSim-
pleWindow.

Window XCreateSimpleWindow(display, parent, x, y, width, height, border_width,
border, background)

Display *display;
Windowparent;
int x, y;
unsigned intwidth, height;
unsigned intborder_width;
unsigned longborder;
unsigned longbackground;

display Specifies the connection to the X server.

parent Specifies the parent window.

x
y Specify the x and y coordinates, which are the top-left outside corner of the new

window’s borders and are relative to the inside of the parent window’s borders.

width
height Specify the width and height, which are the created window’s inside dimensions

and do not include the created window’s borders. Thedimensions must be
nonzero, or aBadValue error results.

border_width Specifies the width of the created window’s border in pixels.

border Specifies the border pixel value of the window.

background Specifies the background pixel value of the window.

The XCreateSimpleWindow function creates an unmappedInputOutput subwindow for a
specified parent window, returns the window ID of the created window, and causes the X server to
generate aCreateNotify ev ent. Thecreated window is placed on top in the stacking order with
respect to siblings. Any part of the window that extends outside its parent window is clipped.
The border_width for anInputOnly window must be zero, or aBadMatch error results.XCre-
ateSimpleWindow inherits its depth, class, and visual from its parent. All other window
attributes, except background and border, hav etheir default values.

XCreateSimpleWindow can generateBadAlloc, BadMatch, BadValue, and BadWindow
errors.

3.4. Destroying Windows
Xlib provides functions that you can use to destroy a window or destroy all subwindows of a win-
dow.

38

Xlib − C Library libX11 1.3.2

To destroy a window and all of its subwindows, useXDestroyWindow.

XDestroyWindow(display, w)
Display *display;
Windoww;

display Specifies the connection to the X server.

w Specifies the window.

The XDestroyWindow function destroys the specified window as well as all of its subwindows
and causes the X server to generate aDestroyNotify ev ent for each window. The window should
never be referenced again. If the window specified by the w argument is mapped, it is unmapped
automatically. The ordering of theDestroyNotify ev ents is such that for any giv en window being
destroyed,DestroyNotify is generated on any inferiors of the window before being generated on
the window itself. Theordering among siblings and across subhierarchies is not otherwise con-
strained. Ifthe window you specified is a root window, no windows are destroyed. Destroying a
mapped window will generateExposeev ents on other windows that were obscured by the win-
dow being destroyed.

XDestroyWindow can generate aBadWindow error.

To destroy all subwindows of a specified window, useXDestroySubwindows.

XDestroySubwindows (display, w)
Display *display;
Windoww;

display Specifies the connection to the X server.

w Specifies the window.

The XDestroySubwindowsfunction destroys all inferior windows of the specified window, in
bottom-to-top stacking order. It causes the X server to generate aDestroyNotify ev ent for each
window. If any mapped subwindows were actually destroyed,XDestroySubwindowscauses the
X server to generateExposeev ents on the specified window. This is much more efficient than
deleting many windows one at a time because much of the work need be performed only once for
all of the windows, rather than for each window. The subwindows should never be referenced
again.

XDestroySubwindowscan generate aBadWindow error.

3.5. MappingWindows
A window is considered mapped if anXMapWindow call has been made on it. It may not be
visible on the screen for one of the following reasons:

• It is obscured by another opaque window.

• One of its ancestors is not mapped.

• It is entirely clipped by an ancestor.

Exposeev ents are generated for the window when part or all of it becomes visible on the screen.
A client receives the Exposeev ents only if it has asked for them.Windows retain their position
in the stacking order when they are unmapped.

A window manager may want to control the placement of subwindows. If SubstructureRedi-
rectMask has been selected by a window manager on a parent window (usually a root window),
a map request initiated by other clients on a child window is not performed, and the window man-
ager is sent aMapRequestev ent. However, if the override-redirect flag on the child had been set

39

Xlib − C Library libX11 1.3.2

to Tr ue (usually only on pop-up menus), the map request is performed.

A tiling window manager might decide to reposition and resize other clients’ windows and then
decide to map the window to its final location.A window manager that wants to provide decora-
tion might reparent the child into a frame first.For further information, see sections 3.2.8 and
10.10. Onlya single client at a time can select forSubstructureRedirectMask.

Similarly, a single client can select forResizeRedirectMaskon a parent window. Then, any
attempt to resize the window by another client is suppressed, and the client receives aResiz-
eRequestev ent.

To map a given window, useXMapWindow .

XMapWindow(display, w)
Display *display;
Windoww;

display Specifies the connection to the X server.

w Specifies the window.

The XMapWindow function maps the window and all of its subwindows that have had map
requests. Mappinga window that has an unmapped ancestor does not display the window but
marks it as eligible for display when the ancestor becomes mapped. Such a window is called
unviewable. Whenall its ancestors are mapped, the window becomes viewable and will be visi-
ble on the screen if it is not obscured by another window. This function has no effect if the win-
dow is already mapped.

If the override-redirect of the window is False and if some other client has selectedSubstructur-
eRedirectMask on the parent window, then the X server generates aMapRequestev ent, and the
XMapWindow function does not map the window. Otherwise, the window is mapped, and the X
server generates aMapNotify ev ent.

If the window becomes viewable and no earlier contents for it are remembered, the X server tiles
the window with its background. If the window’s background is undefined, the existing screen
contents are not altered, and the X server generates zero or moreExposeev ents. If backing-store
was maintained while the window was unmapped, noExposeev ents are generated. If backing-
store will now be maintained, a full-window exposure is always generated. Otherwise, only visi-
ble regions may be reported. Similar tiling and exposure take place for any newly viewable infe-
riors.

If the window is an InputOutput window, XMapWindow generatesExposeev ents on each
InputOutput window that it causes to be displayed. If the client maps and paints the window
and if the client begins processing events, the window is painted twice.To avoid this, first ask for
Exposeev ents and then map the window, so the client processes input events as usual. The event
list will include Exposefor each window that has appeared on the screen. The client’s normal
response to anExposeev ent should be to repaint the window. This method usually leads to sim-
pler programs and to proper interaction with window managers.

XMapWindow can generate aBadWindow error.

To map and raise a window, useXMapRaised.

40

Xlib − C Library libX11 1.3.2

XMapRaised (display, w)
Display *display;
Windoww;

display Specifies the connection to the X server.

w Specifies the window.

The XMapRaised function essentially is similar toXMapWindow in that it maps the window
and all of its subwindows that have had map requests. However, it also raises the specified win-
dow to the top of the stack.For additional information, seeXMapWindow .

XMapRaised can generate multipleBadWindow errors.

To map all subwindows for a specified window, useXMapSubwindows.

XMapSubwindows (display, w)
Display *display;
Windoww;

display Specifies the connection to the X server.

w Specifies the window.

The XMapSubwindows function maps all subwindows for a specified window in top-to-bottom
stacking order. The X server generatesExposeev ents on each newly displayed window. This
may be much more efficient than mapping many windows one at a time because the server needs
to perform much of the work only once, for all of the windows, rather than for each window.

XMapSubwindows can generate aBadWindow error.

3.6. UnmappingWindows
Xlib provides functions that you can use to unmap a window or all subwindows.

To unmap a window, useXUnmapWindow .

XUnmapWindow(display, w)
Display *display;
Windoww;

display Specifies the connection to the X server.

w Specifies the window.

The XUnmapWindow function unmaps the specified window and causes the X server to gener-
ate anUnmapNotify ev ent. If the specified window is already unmapped,XUnmapWindow
has no effect. Normalexposure processing on formerly obscured windows is performed. Any
child window will no longer be visible until another map call is made on the parent. In other
words, the subwindows are still mapped but are not visible until the parent is mapped. Unmap-
ping a window will generateExposeev ents on windows that were formerly obscured by it.

XUnmapWindow can generate aBadWindow error.

To unmap all subwindows for a specified window, useXUnmapSubwindows.

41

Xlib − C Library libX11 1.3.2

XUnmapSubwindows (display, w)
Display *display;
Windoww;

display Specifies the connection to the X server.

w Specifies the window.

The XUnmapSubwindows function unmaps all subwindows for the specified window in bottom-
to-top stacking order. It causes the X server to generate anUnmapNotify ev ent on each subwin-
dow and Exposeev ents on formerly obscured windows. Usingthis function is much more effi-
cient than unmapping multiple windows one at a time because the server needs to perform much
of the work only once, for all of the windows, rather than for each window.

XUnmapSubwindowscan generate aBadWindow error.

3.7. ConfiguringWindows

Xlib provides functions that you can use to move a window, resize a window, move and resize a
window, or change a window’s border width. To change one of these parameters, set the appro-
priate member of theXWindowChangesstructure and OR in the corresponding value mask in
subsequent calls toXConfigureWindow . The symbols for the value mask bits and theXWin-
dowChangesstructure are:

/* Configure window value mask bits */

#define CWX (1<<0)
#define CWY (1<<1)
#define CWWidth (1<<2)
#define CWHeight (1<<3)
#define CWBorderWidth (1<<4)
#define CWSibling (1<<5)
#define CWStackMode (1<<6)

/* Values */

typedef struct {
int x, y;
int width, height;
int border_width;
Window sibling;
int stack_mode;

} X WindowChanges;

The x and y members are used to set the window’s x and y coordinates, which are relative to the
parent’s origin and indicate the position of the upper-left outer corner of the window. The width
and height members are used to set the inside size of the window, not including the border, and
must be nonzero, or aBadValue error results. Attempts to configure a root window hav eno
effect.

The border_width member is used to set the width of the border in pixels. Notethat setting just
the border width leaves the outer-left corner of the window in a fixed position but moves the abso-
lute position of the window’s origin. If you attempt to set the border-width attribute of anInpu-
tOnly window nonzero, aBadMatch error results.

42

Xlib − C Library libX11 1.3.2

The sibling member is used to set the sibling window for stacking operations. The stack_mode
member is used to set how the window is to be restacked and can be set toAbove, Below, TopIf ,
BottomIf , or Opposite.

If the override-redirect flag of the window is False and if some other client has selectedSub-
structureRedirectMask on the parent, the X server generates aConfigureRequestev ent, and
no further processing is performed. Otherwise, if some other client has selectedResizeRedirect-
Mask on the window and the inside width or height of the window is being changed, aResiz-
eRequestev ent is generated, and the current inside width and height are used instead. Note that
the override-redirect flag of the window has no effect onResizeRedirectMaskand thatSub-
structureRedirectMask on the parent has precedence over ResizeRedirectMaskon the win-
dow.

When the geometry of the window is changed as specified, the window is restacked among sib-
lings, and aConfigureNotify ev ent is generated if the state of the window actually changes.
GravityNotify ev ents are generated afterConfigureNotify ev ents. If the inside width or height
of the window has actually changed, children of the window are affected as specified.

If a window’s size actually changes, the window’s subwindows move according to their window
gravity. Depending on the window’s bit gravity, the contents of the window also may be moved
(see section 3.2.3).

If regions of the window were obscured but now are not, exposure processing is performed on
these formerly obscured windows, including the window itself and its inferiors. As a result of
increasing the width or height, exposure processing is also performed on any new regions of the
window and any regions where window contents are lost.

The restack check (specifically, the computation forBottomIf , TopIf , and Opposite) is per-
formed with respect to the window’s final size and position (as controlled by the other arguments
of the request), not its initial position. If a sibling is specified without a stack_mode, aBad-
Match error results.

If a sibling and a stack_mode are specified, the window is restacked as follows:

Above The window is placed just above the sibling.

Below The window is placed just below the sibling.

TopIf If the sibling occludes the window, the window is placed at the top of the stack.

BottomIf If the window occludes the sibling, the window is placed at the bottom of the
stack.

Opposite If the sibling occludes the window, the window is placed at the top of the stack.
If the window occludes the sibling, the window is placed at the bottom of the
stack.

If a stack_mode is specified but no sibling is specified, the window is restacked as follows:

Above The window is placed at the top of the stack.

Below The window is placed at the bottom of the stack.

TopIf If any sibling occludes the window, the window is placed at the top of the stack.

BottomIf If the window occludes any sibling, the window is placed at the bottom of the
stack.

Opposite If any sibling occludes the window, the window is placed at the top of the stack.
If the window occludes any sibling, the window is placed at the bottom of the
stack.

Attempts to configure a root window hav eno effect.

43

Xlib − C Library libX11 1.3.2

To configure a window’s size, location, stacking, or border, useXConfigureWindow .

XConfigureWindow(display, w, value_mask, values)
Display *display;
Windoww;
unsigned intvalue_mask;
XWindowChanges *values;

display Specifies the connection to the X server.

w Specifies the window to be reconfigured.

value_mask Specifies which values are to be set using information in the values structure.
This mask is the bitwise inclusive OR of the valid configure window values bits.

values Specifies theXWindowChangesstructure.

The XConfigureWindow function uses the values specified in theXWindowChangesstructure
to reconfigure a window’s size, position, border, and stacking order. Values not specified are
taken from the existing geometry of the window.

If a sibling is specified without a stack_mode or if the window is not actually a sibling, aBad-
Match error results. Note that the computations forBottomIf , TopIf , and Opposite are per-
formed with respect to the window’s final geometry (as controlled by the other arguments passed
to XConfigureWindow), not its initial geometry. Any backing store contents of the window, its
inferiors, and other newly visible windows are either discarded or changed to reflect the current
screen contents (depending on the implementation).

XConfigureWindow can generateBadMatch, BadValue, and BadWindow errors.

To move a window without changing its size, useXMoveWindow.

XMoveWindow(display, w, x, y)
Display *display;
Windoww;
int x, y;

display Specifies the connection to the X server.

w Specifies the window to be moved.

x
y Specify the x and y coordinates, which define the new location of the top-left pix-

el of the window’s border or the window itself if it has no border.

The XMoveWindow function moves the specified window to the specified x and y coordinates,
but it does not change the window’s size, raise the window, or change the mapping state of the
window. Moving a mapped window may or may not lose the window’s contents depending on if
the window is obscured by nonchildren and if no backing store exists. If the contents of the win-
dow are lost, the X server generatesExposeev ents. Moving a mapped window generates
Exposeev ents on any formerly obscured windows.

If the override-redirect flag of the window is False and some other client has selectedSubstruc-
tureRedirectMask on the parent, the X server generates aConfigureRequestev ent, and no fur-
ther processing is performed. Otherwise, the window is moved.

XMoveWindow can generate aBadWindow error.

To change a window’s size without changing the upper-left coordinate, useXResizeWindow.

44

Xlib − C Library libX11 1.3.2

XResizeWindow(display, w, width, height)
Display *display;
Windoww;
unsigned intwidth, height;

display Specifies the connection to the X server.

w Specifies the window.

width
height Specify the width and height, which are the interior dimensions of the window

after the call completes.

The XResizeWindow function changes the inside dimensions of the specified window, not
including its borders. This function does not change the window’s upper-left coordinate or the
origin and does not restack the window. Changing the size of a mapped window may lose its con-
tents and generateExposeev ents. If a mapped window is made smaller, changing its size gener-
atesExposeev ents on windows that the mapped window formerly obscured.

If the override-redirect flag of the window is False and some other client has selectedSubstruc-
tureRedirectMask on the parent, the X server generates aConfigureRequestev ent, and no fur-
ther processing is performed. If either width or height is zero, aBadValue error results.

XResizeWindowcan generateBadValue andBadWindow errors.

To change the size and location of a window, useXMoveResizeWindow.

XMoveResizeWindow(display, w, x, y, width, height)
Display *display;
Windoww;
int x, y;
unsigned intwidth, height;

display Specifies the connection to the X server.

w Specifies the window to be reconfigured.

x
y Specify the x and y coordinates, which define the new position of the window rel-

ative to its parent.

width
height Specify the width and height, which define the interior size of the window.

The XMoveResizeWindowfunction changes the size and location of the specified window with-
out raising it. Moving and resizing a mapped window may generate anExposeev ent on the win-
dow. Depending on the new size and location parameters, moving and resizing a window may
generateExposeev ents on windows that the window formerly obscured.

If the override-redirect flag of the window is False and some other client has selectedSubstruc-
tureRedirectMask on the parent, the X server generates aConfigureRequestev ent, and no fur-
ther processing is performed. Otherwise, the window size and location are changed.

XMoveResizeWindowcan generateBadValue andBadWindow errors.

To change the border width of a given window, useXSetWindowBorderWidth .

45

Xlib − C Library libX11 1.3.2

XSetWindowBorderWidth (display, w, width)
Display *display;
Windoww;
unsigned intwidth;

display Specifies the connection to the X server.

w Specifies the window.

width Specifies the width of the window border.

The XSetWindowBorderWidth function sets the specified window’s border width to the speci-
fied width.

XSetWindowBorderWidth can generate aBadWindow error.

3.8. ChangingWindow Stacking Order

Xlib provides functions that you can use to raise, lower, circulate, or restack windows.

To raise a window so that no sibling window obscures it, useXRaiseWindow.

XRaiseWindow(display, w)
Display *display;
Windoww;

display Specifies the connection to the X server.

w Specifies the window.

The XRaiseWindow function raises the specified window to the top of the stack so that no sib-
ling window obscures it. If the windows are regarded as overlapping sheets of paper stacked on a
desk, then raising a window is analogous to moving the sheet to the top of the stack but leaving its
x and y location on the desk constant. Raising a mapped window may generateExposeev ents
for the window and any mapped subwindows that were formerly obscured.

If the override-redirect attribute of the window is False and some other client has selectedSub-
structureRedirectMask on the parent, the X server generates aConfigureRequestev ent, and
no processing is performed. Otherwise, the window is raised.

XRaiseWindow can generate aBadWindow error.

To lower a window so that it does not obscure any sibling windows, useXLowerWindow .

XLowerWindow(display, w)
Display *display;
Windoww;

display Specifies the connection to the X server.

w Specifies the window.

The XLowerWindow function lowers the specified window to the bottom of the stack so that it
does not obscure any sibling windows. If the windows are regarded as overlapping sheets of
paper stacked on a desk, then lowering a window is analogous to moving the sheet to the bottom
of the stack but leaving its x and y location on the desk constant. Lowering a mapped window
will generateExposeev ents on any windows it formerly obscured.

46

Xlib − C Library libX11 1.3.2

If the override-redirect attribute of the window is False and some other client has selectedSub-
structureRedirectMask on the parent, the X server generates aConfigureRequestev ent, and
no processing is performed. Otherwise, the window is lowered to the bottom of the stack.

XLowerWindow can generate aBadWindow error.

To circulate a subwindow up or down, useXCirculateSubwindows.

XCirculateSubwindows (display, w, direction)
Display *display;
Windoww;
int direction;

display Specifies the connection to the X server.

w Specifies the window.

direction Specifies the direction (up or down) that you want to circulate the window. You
can passRaiseLowestor LowerHighest.

The XCirculateSubwindows function circulates children of the specified window in the speci-
fied direction. If you specifyRaiseLowest, XCirculateSubwindows raises the lowest mapped
child (if any) that is occluded by another child to the top of the stack. If you specifyLowerHigh-
est, XCirculateSubwindows lowers the highest mapped child (if any) that occludes another
child to the bottom of the stack. Exposure processing is then performed on formerly obscured
windows. If some other client has selectedSubstructureRedirectMask on the window, the X
server generates aCirculateRequestev ent, and no further processing is performed. If a child is
actually restacked, the X server generates aCirculateNotify ev ent.

XCirculateSubwindows can generateBadValue andBadWindow errors.

To raise the lowest mapped child of a window that is partially or completely occluded by another
child, useXCirculateSubwindowsUp.

XCirculateSubwindowsUp (display, w)
Display *display;
Windoww;

display Specifies the connection to the X server.

w Specifies the window.

The XCirculateSubwindowsUp function raises the lowest mapped child of the specified window
that is partially or completely occluded by another child. Completely unobscured children are not
affected. Thisis a convenience function equivalent toXCirculateSubwindows with RaiseLow-
est specified.

XCirculateSubwindowsUp can generate aBadWindow error.

To lower the highest mapped child of a window that partially or completely occludes another
child, useXCirculateSubwindowsDown.

47

Xlib − C Library libX11 1.3.2

XCirculateSubwindowsDown (display, w)
Display *display;
Windoww;

display Specifies the connection to the X server.

w Specifies the window.

The XCirculateSubwindowsDown function lowers the highest mapped child of the specified
window that partially or completely occludes another child. Completely unobscured children are
not affected. Thisis a convenience function equivalent toXCirculateSubwindows with Lower-
Highest specified.

XCirculateSubwindowsDown can generate aBadWindow error.

To restack a set of windows from top to bottom, useXRestackWindows.

XRestackWindows (display, windows, nwindows);
Display *display;
Windowwindows[];
int nwindows;

display Specifies the connection to the X server.

windows Specifies an array containing the windows to be restacked.

nwindows Specifies the number of windows to be restacked.

The XRestackWindows function restacks the windows in the order specified, from top to bot-
tom. Thestacking order of the first window in the windows array is unaffected, but the other win-
dows in the array are stacked underneath the first window, in the order of the array. The stacking
order of the other windows is not affected. For each window in the window array that is not a
child of the specified window, a BadMatch error results.

If the override-redirect attribute of a window is False and some other client has selectedSub-
structureRedirectMask on the parent, the X server generatesConfigureRequestev ents for
each window whose override-redirect flag is not set, and no further processing is performed. Oth-
erwise, the windows will be restacked in top-to-bottom order.

XRestackWindowscan generate aBadWindow error.

3.9. ChangingWindow Attributes

Xlib provides functions that you can use to set window attributes. XChangeWindowAttributes
is the more general function that allows you to set one or more window attributes provided by the
XSetWindowAttributes structure. Theother functions described in this section allow you to set
one specific window attribute, such as a window’s background.

To change one or more attributes for a given window, useXChangeWindowAttributes .

48

Xlib − C Library libX11 1.3.2

XChangeWindowAttributes (display, w, valuemask, attributes)
Display *display;
Windoww;
unsigned longvaluemask;
XSetWindowAttributes *attributes;

display Specifies the connection to the X server.

w Specifies the window.

valuemask Specifies which window attributes are defined in the attributes argument. This
mask is the bitwise inclusive OR of the valid attribute mask bits.If valuemask is
zero, the attributes are ignored and are not referenced.The values and restric-
tions are the same as forXCreateWindow.

attributes Specifies the structure from which the values (as specified by the value mask) are
to be taken. Thevalue mask should have the appropriate bits set to indicate
which attributes have been set in the structure (see section 3.2).

Depending on the valuemask, theXChangeWindowAttributes function uses the window
attributes in theXSetWindowAttributes structure to change the specified window attributes.
Changing the background does not cause the window contents to be changed.To repaint the win-
dow and its background, useXClearWindow . Setting the border or changing the background
such that the border tile origin changes causes the border to be repainted. Changing the back-
ground of a root window to None or ParentRelative restores the default background pixmap.
Changing the border of a root window to CopyFromParent restores the default border pixmap.
Changing the win-gravity does not affect the current position of the window. Changing the back-
ing-store of an obscured window to WhenMapped or Always, or changing the backing-planes,
backing-pixel, or save-under of a mapped window may have no immediate effect. Changingthe
colormap of a window (that is, defining a new map, not changing the contents of the existing
map) generates aColormapNotify ev ent. Changingthe colormap of a visible window may have
no immediate effect on the screen because the map may not be installed (seeXInstallCol-
ormap). Changingthe cursor of a root window to None restores the default cursor. Whenever
possible, you are encouraged to share colormaps.

Multiple clients can select input on the same window. Their event masks are maintained sepa-
rately. When an event is generated, it is reported to all interested clients. However, only one
client at a time can select forSubstructureRedirectMask, ResizeRedirectMask, and Button-
PressMask. If a client attempts to select any of these event masks and some other client has
already selected one, aBadAccesserror results. There is only one do-not-propagate-mask for a
window, not one per client.

XChangeWindowAttributes can generateBadAccess, BadColor, BadCursor, BadMatch,
BadPixmap, BadValue, and BadWindow errors.

To set the background of a window to a giv en pixel, useXSetWindowBackground.

49

Xlib − C Library libX11 1.3.2

XSetWindowBackground (display, w, background_pixel)
Display *display;
Windoww;
unsigned longbackground_pixel;

display Specifies the connection to the X server.

w Specifies the window.

background_pixel
Specifies the pixel that is to be used for the background.

The XSetWindowBackground function sets the background of the window to the specified pixel
value. Changingthe background does not cause the window contents to be changed.XSetWin-
dowBackground uses a pixmap of undefined size filled with the pixel value you passed. If you
try to change the background of anInputOnly window, a BadMatch error results.

XSetWindowBackground can generateBadMatch andBadWindow errors.

To set the background of a window to a giv en pixmap, useXSetWindowBackgroundPixmap.

XSetWindowBackgroundPixmap (display, w, background_pixmap)
Display *display;
Windoww;
Pixmapbackground_pixmap;

display Specifies the connection to the X server.

w Specifies the window.

background_pixmap
Specifies the background pixmap,ParentRelative, or None.

The XSetWindowBackgroundPixmap function sets the background pixmap of the window to
the specified pixmap. The background pixmap can immediately be freed if no further explicit ref-
erences to it are to be made. IfParentRelative is specified, the background pixmap of the win-
dow’s parent is used, or on the root window, the default background is restored. If you try to
change the background of anInputOnly window, a BadMatch error results. If the background
is set toNone, the window has no defined background.

XSetWindowBackgroundPixmap can generateBadMatch, BadPixmap, and BadWindow
errors.

Note

XSetWindowBackground andXSetWindowBackgroundPixmap do not change
the current contents of the window.

To change and repaint a window’s border to a given pixel, useXSetWindowBorder.

50

Xlib − C Library libX11 1.3.2

XSetWindowBorder (display, w, border_pixel)
Display *display;
Windoww;
unsigned longborder_pixel;

display Specifies the connection to the X server.

w Specifies the window.

border_pixel Specifies the entry in the colormap.

The XSetWindowBorder function sets the border of the window to the pixel value you specify.
If you attempt to perform this on anInputOnly window, a BadMatch error results.

XSetWindowBorder can generateBadMatch andBadWindow errors.

To change and repaint the border tile of a given window, useXSetWindowBorderPixmap.

XSetWindowBorderPixmap (display, w, border_pixmap)
Display *display;
Windoww;
Pixmapborder_pixmap;

display Specifies the connection to the X server.

w Specifies the window.

border_pixmapSpecifies the border pixmap orCopyFromParent.

The XSetWindowBorderPixmap function sets the border pixmap of the window to the pixmap
you specify. The border pixmap can be freed immediately if no further explicit references to it
are to be made. If you specifyCopyFromParent, a copy of the parent window’s border pixmap
is used. If you attempt to perform this on anInputOnly window, a BadMatch error results.

XSetWindowBorderPixmap can generateBadMatch, BadPixmap, and BadWindow errors.

To set the colormap of a given window, useXSetWindowColormap.

XSetWindowColormap (display, w, colormap)
Display *display;
Windoww;
Colormapcolormap;

display Specifies the connection to the X server.

w Specifies the window.

colormap Specifies the colormap.

The XSetWindowColormap function sets the specified colormap of the specified window. The
colormap must have the same visual type as the window, or a BadMatch error results.

XSetWindowColormap can generateBadColor, BadMatch, and BadWindow errors.

To define which cursor will be used in a window, useXDefineCursor.

51

Xlib − C Library libX11 1.3.2

XDefineCursor (display, w, cursor)
Display *display;
Windoww;
Cursorcursor;

display Specifies the connection to the X server.

w Specifies the window.

cursor Specifies the cursor that is to be displayed orNone.

If a cursor is set, it will be used when the pointer is in the window. If the cursor isNone, it is
equivalent toXUndefineCursor.
XDefineCursor can generateBadCursor andBadWindow errors.

To undefine the cursor in a given window, useXUndefineCursor.

XUndefineCursor (display, w)
Display *display;
Windoww;

display Specifies the connection to the X server.

w Specifies the window.

The XUndefineCursor function undoes the effect of a previousXDefineCursor for this win-
dow. When the pointer is in the window, the parent’s cursor will now be used. Onthe root win-
dow, the default cursor is restored.

XUndefineCursor can generate aBadWindow error.

52

Xlib − C Library libX11 1.3.2

Chapter 4

Window Information Functions

After you connect the display to the X server and create a window, you can use the Xlib window
information functions to:

• Obtain information about a window

• Translate screen coordinates

• Manipulate property lists

• Obtain and change window properties

• Manipulate selections

4.1. ObtainingWindow Information
Xlib provides functions that you can use to obtain information about the window tree, the win-
dow’s current attributes, the window’s current geometry, or the current pointer coordinates.
Because they are most frequently used by window managers, these functions all return a status to
indicate whether the window still exists.

To obtain the parent, a list of children, and number of children for a given window, useXQuery-
Tr ee.

Status XQueryTree (display, w, root_return, parent_return, children_return, nchildren_return)
Display *display;
Windoww;
Window * root_return;
Window *parent_return;
Window **children_return;
unsigned int *nchildren_return;

display Specifies the connection to the X server.

w Specifies the window whose list of children, root, parent, and number of children
you want to obtain.

root_return Returns the root window.

parent_return Returns the parent window.

children_returnReturns the list of children.

nchildren_returnReturns the number of children.

The XQueryTree function returns the root ID, the parent window ID, a pointer to the list of chil-
dren windows (NULL when there are no children), and the number of children in the list for the
specified window. The children are listed in current stacking order, from bottom-most (first) to
top-most (last).XQueryTree returns zero if it fails and nonzero if it succeeds.To free a non-
NULL children list when it is no longer needed, useXFree.

XQueryTree can generate aBadWindow error.

To obtain the current attributes of a given window, useXGetWindowAttributes .

53

Xlib − C Library libX11 1.3.2

Status XGetWindowAttributes (display, w, window_attributes_return)
Display *display;
Windoww;
XWindowAttributes *window_attributes_return;

display Specifies the connection to the X server.

w Specifies the window whose current attributes you want to obtain.

window_attributes_return
Returns the specified window’s attributes in theXWindowAttributes structure.

The XGetWindowAttributes function returns the current attributes for the specified window to
an XWindowAttributes structure.

typedef struct {
int x, y; /* location of window */
int width, height; /* width and height of window */
int border_width; /* border width of window */
int depth; /* depth of window */
Visual *visual; /* the associated visual structure */
Window root; /* root of screen containing window */
int class; /* InputOutput, InputOnly*/
int bit_gravity; /* one of the bit gravity values */
int win_gravity; /* one of the window gravity values */
int backing_store; /* NotUseful, WhenMapped, Always */
unsigned long backing_planes; /* planes to be preserved if possible */
unsigned long backing_pixel; /* value to be used when restoring planes */
Bool save_under; /*boolean, should bits under be saved? */
Colormap colormap; /* color map to be associated with window */
Bool map_installed; /* boolean, is color map currently installed*/
int map_state; /* IsUnmapped, IsUnviewable, IsViewable */
long all_event_masks; /*set of events all people have interest in*/
long your_event_mask; /*my event mask */
long do_not_propagate_mask; /*set of events that should not propagate */
Bool override_redirect; /*boolean value for override-redirect */
Screen *screen; /* back pointer to correct screen */

} X WindowAttributes;

The x and y members are set to the upper-left outer corner relative to the parent window’s origin.
The width and height members are set to the inside size of the window, not including the border.
The border_width member is set to the window’s border width in pixels. Thedepth member is set
to the depth of the window (that is, bits per pixel for the object). The visual member is a pointer
to the screen’s associatedVisual structure. Theroot member is set to the root window of the
screen containing the window. The class member is set to the window’s class and can be either
InputOutput or InputOnly .

The bit_gravity member is set to the window’s bit gravity and can be one of the following:

ForgetGravity EastGravity
NorthWestGravity SouthWestGravity
NorthGravity SouthGravity
NorthEastGravity SouthEastGravity

54

Xlib − C Library libX11 1.3.2

WestGravity StaticGravity
CenterGravity

The win_gravity member is set to the window’s window gravity and can be one of the following:

UnmapGravity EastGravity
NorthWestGravity SouthWestGravity
NorthGravity SouthGravity
NorthEastGravity SouthEastGravity
WestGravity StaticGravity
CenterGravity

For additional information on gravity, see section 3.2.3.

The backing_store member is set to indicate how the X server should maintain the contents of a
window and can beWhenMapped, Always, or NotUseful. The backing_planes member is set
to indicate (with bits set to 1) which bit planes of the window hold dynamic data that must be pre-
served in backing_stores and during save_unders. Thebacking_pixel member is set to indicate
what values to use for planes not set in backing_planes.

The save_under member is set toTr ue or False. The colormap member is set to the colormap
for the specified window and can be a colormap ID orNone. The map_installed member is set to
indicate whether the colormap is currently installed and can beTr ue or False. The map_state
member is set to indicate the state of the window and can beIsUnmapped, IsUnviewable, or
IsViewable. IsUnviewable is used if the window is mapped but some ancestor is unmapped.

The all_event_masks member is set to the bitwise inclusive OR of all event masks selected on the
window by all clients. The your_event_mask member is set to the bitwise inclusive OR of all
ev ent masks selected by the querying client. The do_not_propagate_mask member is set to the
bitwise inclusive OR of the set of events that should not propagate.

The override_redirect member is set to indicate whether this window overrides structure control
facilities and can beTr ue or False. Window manager clients should ignore the window if this
member isTr ue.

The screen member is set to a screen pointer that gives you a back pointer to the correct screen.
This makes it easier to obtain the screen information without having to loop over the root window
fields to see which field matches.

XGetWindowAttributes can generateBadDrawable andBadWindow errors.

To obtain the current geometry of a given drawable, useXGetGeometry.

55

Xlib − C Library libX11 1.3.2

Status XGetGeometry(display, d, root_return, x_return, y_return, width_return,
height_return, border_width_return, depth_return)

Display *display;
Drawabled;
Window * root_return;
int *x_return, *y_return;
unsigned int *width_return, *height_return;
unsigned int *border_width_return;
unsigned int *depth_return;

display Specifies the connection to the X server.

d Specifies the drawable, which can be a window or a pixmap.

root_return Returns the root window.

x_return
y_return Return the x and y coordinates that define the location of the drawable. For a

window, these coordinates specify the upper-left outer corner relative to its par-
ent’s origin. For pixmaps, these coordinates are always zero.

width_return
height_return Return the drawable’s dimensions (width and height).For a window, these di-

mensions specify the inside size, not including the border.

border_width_return
Returns the border width in pixels. If the drawable is a pixmap, it returns zero.

depth_return Returns the depth of the drawable (bits per pixel for the object).

The XGetGeometry function returns the root window and the current geometry of the drawable.
The geometry of the drawable includes the x and y coordinates, width and height, border width,
and depth. These are described in the argument list. It is legal to pass to this function a window
whose class isInputOnly .

XGetGeometry can generate aBadDrawable error.

4.2. Translating Screen Coordinates
Applications sometimes need to perform a coordinate transformation from the coordinate space of
one window to another window or need to determine which window the pointing device is in.
XTranslateCoordinates andXQueryPointer fulfill these needs (and avoid any race conditions)
by asking the X server to perform these operations.

To translate a coordinate in one window to the coordinate space of another window, useXTrans-
lateCoordinates.

56

Xlib − C Library libX11 1.3.2

Bool XTranslateCoordinates (display, src_w, dest_w, src_x, src_y, dest_x_return,
dest_y_return, child_return)

Display *display;
Windowsrc_w, dest_w;
int src_x, src_y;
int *dest_x_return, *dest_y_return;
Window *child_return;

display Specifies the connection to the X server.

src_w Specifies the source window.

dest_w Specifies the destination window.

src_x
src_y Specify the x and y coordinates within the source window.

dest_x_return
dest_y_return Return the x and y coordinates within the destination window.

child_return Returns the child if the coordinates are contained in a mapped child of the desti-
nation window.

If XTranslateCoordinates returnsTr ue, it takes the src_x and src_y coordinates relative to the
source window’s origin and returns these coordinates to dest_x_return and dest_y_return relative
to the destination window’s origin. If XTranslateCoordinates returnsFalse, src_w and dest_w
are on different screens, and dest_x_return and dest_y_return are zero. If the coordinates are con-
tained in a mapped child of dest_w, that child is returned to child_return. Otherwise, child_return
is set toNone.

XTranslateCoordinates can generate aBadWindow error.

To obtain the screen coordinates of the pointer or to determine the pointer coordinates relative to a
specified window, useXQueryPointer .

Bool XQueryPointer(display, w, root_return, child_return, root_x_return, root_y_return,
win_x_return, win_y_return, mask_return)

Display *display;
Windoww;
Window * root_return, *child_return;
int *root_x_return, *root_y_return;
int *win_x_return, *win_y_return;
unsigned int *mask_return;

display Specifies the connection to the X server.

w Specifies the window.

root_return Returns the root window that the pointer is in.

child_return Returns the child window that the pointer is located in, if any.

root_x_return
root_y_return Return the pointer coordinates relative to the root window’s origin.

win_x_return
win_y_return Return the pointer coordinates relative to the specified window.

mask_return Returns the current state of the modifier keys and pointer buttons.

The XQueryPointer function returns the root window the pointer is logically on and the pointer

57

Xlib − C Library libX11 1.3.2

coordinates relative to the root window’s origin. If XQueryPointer returnsFalse, the pointer is
not on the same screen as the specified window, and XQueryPointer returnsNone to
child_return and zero to win_x_return and win_y_return. IfXQueryPointer returnsTr ue, the
pointer coordinates returned to win_x_return and win_y_return are relative to the origin of the
specified window. In this case,XQueryPointer returns the child that contains the pointer, if any,
or elseNone to child_return.

XQueryPointer returns the current logical state of the keyboard buttons and the modifier keys in
mask_return. Itsets mask_return to the bitwise inclusive OR of one or more of the button or
modifier key bitmasks to match the current state of the mouse buttons and the modifier keys.

Note that the logical state of a device (as seen through Xlib) may lag the physical state if device
ev ent processing is frozen (see section 12.1).

XQueryPointer can generate aBadWindow error.

4.3. Properties and Atoms
A property is a collection of named, typed data. The window system has a set of predefined prop-
erties (for example, the name of a window, size hints, and so on), and users can define any other
arbitrary information and associate it with windows. Eachproperty has a name, which is an ISO
Latin-1 string. For each named property, a unique identifier (atom) is associated with it.A prop-
erty also has a type, for example, string or integer. These types are also indicated using atoms, so
arbitrary new types can be defined. Data of only one type may be associated with a single prop-
erty name. Clients can store and retrieve properties associated with windows. For efficiency rea-
sons, an atom is used rather than a character string.XInternAtom can be used to obtain the
atom for property names.

A property is also stored in one of several possible formats. The X server can store the informa-
tion as 8-bit quantities, 16-bit quantities, or 32-bit quantities. This permits the X server to present
the data in the byte order that the client expects.

Note

If you define further properties of complex type, you must encode and decode them
yourself. Thesefunctions must be carefully written if they are to be portable.For
further information about how to write a library extension, see appendix C.

The type of a property is defined by an atom, which allows for arbitrary extension in this type
scheme.

Certain property names are predefined in the server for commonly used functions. The atoms for
these properties are defined in <X11/Xatom.h>. To avoid name clashes with user symbols, the
#definename for each atom has the XA_ prefix.For an explanation of the functions that let you
get and set much of the information stored in these predefined properties, see chapter 14.

The core protocol imposes no semantics on these property names, but semantics are specified in
other X Consortium standards, such as theInter-Client Communication Conventions Manualand
theX Logical Font Description Conventions.

You can use properties to communicate other information between applications. The functions
described in this section let you define new properties and get the unique atom IDs in your appli-
cations.

Although any particular atom can have some client interpretation within each of the name spaces,
atoms occur in five distinct name spaces within the protocol:

• Selections

• Property names

• Property types

58

Xlib − C Library libX11 1.3.2

• Font properties

• Type of aClientMessageev ent (none are built into the X server)

The built-in selection property names are:

PRIMARY
SECONDARY

The built-in property names are:

CUT_BUFFER0 RESOURCE_MANAGER
CUT_BUFFER1 WM_CLASS
CUT_BUFFER2 WM_CLIENT_MACHINE
CUT_BUFFER3 WM_COLORMAP_WINDOWS
CUT_BUFFER4 WM_COMMAND
CUT_BUFFER5 WM_HINTS
CUT_BUFFER6 WM_ICON_NAME
CUT_BUFFER7 WM_ICON_SIZE
RGB_BEST_MAP WM_NAME
RGB_BLUE_MAP WM_NORMAL_HINTS
RGB_DEFAULT_MAP WM_PROT OCOLS
RGB_GRAY_MAP WM_STATE
RGB_GREEN_MAP WM_TRANSIENT_FOR
RGB_RED_MAP WM_ZOOM_HINTS

The built-in property types are:

ARC POINT
AT OM RGB_COLOR_MAP
BITMAP RECTANGLE
CARDINAL STRING
COLORMAP VISUALID
CURSOR WINDOW
DRAWABLE WM_HINTS
FONT WM_SIZE_HINTS
INTEGER
PIXMAP

The built-in font property names are:

MIN_SPACE STRIKEOUT_DESCENT
NORM_SPACE STRIKEOUT_ASCENT
MAX_SPACE ITALIC_ANGLE
END_SPACE X_HEIGHT
SUPERSCRIPT_X QUAD_WIDTH
SUPERSCRIPT_Y WEIGHT
SUBSCRIPT_X POINT_SIZE
SUBSCRIPT_Y RESOLUTION
UNDERLINE_POSITION COPYRIGHT
UNDERLINE_THICKNESS NOTICE
FONT_NAME FAMILY_NAME
FULL_NAME CAP_HEIGHT

59

Xlib − C Library libX11 1.3.2

For further information about font properties, see section 8.5.

To return an atom for a given name, useXInternAtom .

Atom XInternAtom(display, atom_name, only_if_exists)
Display *display;
char *atom_name;
Bool only_if_exists;

display Specifies the connection to the X server.

atom_name Specifies the name associated with the atom you want returned.

only_if_exists Specifies a Boolean value that indicates whether the atom must be created.

The XInternAtom function returns the atom identifier associated with the specified atom_name
string. If only_if_exists isFalse, the atom is created if it does not exist. Therefore,XInter-
nAtom can returnNone. If the atom name is not in the Host Portable Character Encoding, the
result is implementation-dependent. Uppercase and lowercase matter; the strings ‘‘thing’’,
‘‘ Thing’’, and ‘‘thinG’’ all designate different atoms. The atom will remain defined even after the
client’s connection closes. It will become undefined only when the last connection to the X
server closes.

XInternAtom can generateBadAlloc andBadValue errors.

To return atoms for an array of names, useXInternAtoms .

Status XInternAtoms(display, names, count, only_if_exists, atoms_return)
Display *display;
char **names;
int count;
Bool only_if_exists;
Atom *atoms_return;

display Specifies the connection to the X server.

names Specifies the array of atom names.

count Specifies the number of atom names in the array.

only_if_exists Specifies a Boolean value that indicates whether the atom must be created.

atoms_return Returns the atoms.

The XInternAtoms function returns the atom identifiers associated with the specified names.
The atoms are stored in the atoms_return array supplied by the caller. Calling this function is
equivalent to callingXInternAtom for each of the names in turn with the specified value of
only_if_exists, but this function minimizes the number of round-trip protocol exchanges between
the client and the X server.

This function returns a nonzero status if atoms are returned for all of the names; otherwise, it
returns zero.

XInternAtoms can generateBadAlloc andBadValue errors.

To return a name for a given atom identifier, useXGetAtomName.

60

Xlib − C Library libX11 1.3.2

char *XGetAtomName(display, atom)
Display *display;
Atom atom;

display Specifies the connection to the X server.

atom Specifies the atom for the property name you want returned.

The XGetAtomName function returns the name associated with the specified atom. If the data
returned by the server is in the Latin Portable Character Encoding, then the returned string is in
the Host Portable Character Encoding. Otherwise, the result is implementation-dependent.To
free the resulting string, callXFree.

XGetAtomName can generate aBadAtom error.

To return the names for an array of atom identifiers, useXGetAtomNames.

Status XGetAtomNames(display, atoms, count, names_return)
Display *display;
Atom *atoms;
int count;
char **names_return;

display Specifies the connection to the X server.

atoms Specifies the array of atoms.

count Specifies the number of atoms in the array.

names_return Returns the atom names.

The XGetAtomNames function returns the names associated with the specified atoms. The
names are stored in the names_return array supplied by the caller. Calling this function is equiv-
alent to callingXGetAtomName for each of the atoms in turn, but this function minimizes the
number of round-trip protocol exchanges between the client and the X server.

This function returns a nonzero status if names are returned for all of the atoms; otherwise, it
returns zero.

XGetAtomNamescan generate aBadAtom error.

4.4. Obtainingand Changing Window Properties
You can attach a property list to every window. Each property has a name, a type, and a value
(see section 4.3). The value is an array of 8-bit, 16-bit, or 32-bit quantities, whose interpretation
is left to the clients. The typechar is used to represent 8-bit quantities, the typeshort is used to
represent 16-bit quantities, and the typelong is used to represent 32-bit quantities.

Xlib provides functions that you can use to obtain, change, update, or interchange window prop-
erties. Inaddition, Xlib provides other utility functions for inter-client communication (see chap-
ter 14).

To obtain the type, format, and value of a property of a given window, useXGetWindowProp-
erty .

61

Xlib − C Library libX11 1.3.2

int XGetWindowProperty (display, w, property, long_offset, long_length, delete, req_type,
actual_type_return, actual_format_return, nitems_return, bytes_after_return,
prop_return)

Display *display;
Windoww;
Atom property;
long long_offset, long_length;
Bool delete;
Atom req_type;
Atom *actual_type_return;
int *actual_format_return;
unsigned long *nitems_return;
unsigned long *bytes_after_return;
unsigned char **prop_return;

display Specifies the connection to the X server.

w Specifies the window whose property you want to obtain.

property Specifies the property name.

long_offset Specifies the offset in the specified property (in 32-bit quantities) where the data
is to be retrieved.

long_length Specifies the length in 32-bit multiples of the data to be retrieved.

delete Specifies a Boolean value that determines whether the property is deleted.

req_type Specifies the atom identifier associated with the property type orAnyProperty-
Type.

actual_type_return
Returns the atom identifier that defines the actual type of the property.

actual_format_return
Returns the actual format of the property.

nitems_return Returns the actual number of 8-bit, 16-bit, or 32-bit items stored in the prop_re-
turn data.

bytes_after_return
Returns the number of bytes remaining to be read in the property if a partial read
was performed.

prop_return Returns the data in the specified format.

The XGetWindowProperty function returns the actual type of the property; the actual format of
the property; the number of 8-bit, 16-bit, or 32-bit items transferred; the number of bytes remain-
ing to be read in the property; and a pointer to the data actually returned.XGetWindowProp-
erty sets the return arguments as follows:

• If the specified property does not exist for the specified window, XGetWindowProperty
returnsNone to actual_type_return and the value zero to actual_format_return and
bytes_after_return. Thenitems_return argument is empty. In this case, the delete argument
is ignored.

• If the specified property exists but its type does not match the specified type,XGetWin-
dowProperty returns the actual property type to actual_type_return, the actual property
format (never zero) to actual_format_return, and the property length in bytes (even if the
actual_format_return is 16 or 32) to bytes_after_return. It also ignores the delete argument.
The nitems_return argument is empty.

62

Xlib − C Library libX11 1.3.2

• If the specified property exists and either you assignAnyPropertyType to the req_type
argument or the specified type matches the actual property type,XGetWindowProperty
returns the actual property type to actual_type_return and the actual property format (never
zero) to actual_format_return. It also returns a value to bytes_after_return and
nitems_return, by defining the following values:

N = actual length of the stored property in bytes
(even if the format is 16 or 32)

I = 4 * l ong_offset
T = N - I
L = MINIMUM(T , 4 * long_length)
A = N - (I + L)

The returned value starts at byte index I in the property (indexing from zero), and its length
in bytes is L. If the value for long_offset causes L to be negative, a BadValue error results.
The value of bytes_after_return is A, giving the number of trailing unread bytes in the
stored property.

If the returned format is 8, the returned data is represented as achar array. If the returned format
is 16, the returned data is represented as ashort array and should be cast to that type to obtain the
elements. Ifthe returned format is 32, the returned data is represented as along array and should
be cast to that type to obtain the elements.

XGetWindowProperty always allocates one extra byte in prop_return (even if the property is
zero length) and sets it to zero so that simple properties consisting of characters do not have to be
copied into yet another string before use.

If delete isTr ue and bytes_after_return is zero,XGetWindowProperty deletes the property
from the window and generates aPropertyNotify ev ent on the window.

The function returnsSuccessif it executes successfully. To free the resulting data, useXFree.

XGetWindowProperty can generateBadAtom, BadValue, and BadWindow errors.

To obtain a given window’s property list, useXListProperties .

Atom *XListProperties(display, w, num_prop_return)
Display *display;
Windoww;
int *num_prop_return;

display Specifies the connection to the X server.

w Specifies the window whose property list you want to obtain.

num_prop_returnReturns the length of the properties array.

The XListProperties function returns a pointer to an array of atom properties that are defined for
the specified window or returns NULL if no properties were found.To free the memory allocated
by this function, useXFree.

XListProperties can generate aBadWindow error.

To change a property of a given window, useXChangeProperty.

63

Xlib − C Library libX11 1.3.2

XChangeProperty (display, w, property, type, format, mode, data, nelements)
Display *display;
Windoww;
Atom property, type;
int format;
int mode;
unsigned char *data;
int nelements;

display Specifies the connection to the X server.

w Specifies the window whose property you want to change.

property Specifies the property name.

type Specifies the type of the property. The X server does not interpret the type but
simply passes it back to an application that later callsXGetWindowProperty .

format Specifies whether the data should be viewed as a list of 8-bit, 16-bit, or 32-bit
quantities. Possiblevalues are 8, 16, and 32.This information allows the X serv-
er to correctly perform byte-swap operations as necessary. If the format is 16-bit
or 32-bit, you must explicitly cast your data pointer to an (unsigned char *) in the
call to XChangeProperty.

mode Specifies the mode of the operation.You can passPropModeReplace, Prop-
ModePrepend, or PropModeAppend.

data Specifies the property data.

nelements Specifies the number of elements of the specified data format.

The XChangeProperty function alters the property for the specified window and causes the X
server to generate aPropertyNotify ev ent on that window. XChangeProperty performs the fol-
lowing:

• If mode isPropModeReplace, XChangeProperty discards the previous property value
and stores the new data.

• If mode isPropModePrependor PropModeAppend, XChangeProperty inserts the
specified data before the beginning of the existing data or onto the end of the existing data,
respectively. The type and format must match the existing property value, or aBadMatch
error results. If the property is undefined, it is treated as defined with the correct type and
format with zero-length data.

If the specified format is 8, the property data must be achar array. If the specified format is 16,
the property data must be ashort array. If the specified format is 32, the property data must be a
long array.

The lifetime of a property is not tied to the storing client. Properties remain until explicitly
deleted, until the window is destroyed, or until the server resets.For a discussion of what hap-
pens when the connection to the X server is closed, see section 2.6. The maximum size of a prop-
erty is server dependent and can vary dynamically depending on the amount of memory the server
has available. (If there is insufficient space, aBadAlloc error results.)

XChangeProperty can generateBadAlloc, BadAtom, BadMatch, BadValue, and BadWin-
dow errors.

To rotate a window’s property list, useXRotateWindowProperties.

64

Xlib − C Library libX11 1.3.2

XRotateWindowProperties (display, w, properties, num_prop, npositions)
Display *display;
Windoww;
Atom properties[] ;
int num_prop;
int npositions;

display Specifies the connection to the X server.

w Specifies the window.

properties Specifies the array of properties that are to be rotated.

num_prop Specifies the length of the properties array.

npositions Specifies the rotation amount.

The XRotateWindowProperties function allows you to rotate properties on a window and
causes the X server to generatePropertyNotify ev ents. If the property names in the properties
array are viewed as being numbered starting from zero and if there are num_prop property names
in the list, then the value associated with property name I becomes the value associated with prop-
erty name (I + npositions) mod N for all I from zero to N − 1. The effect is to rotate the states by
npositions places around the virtual ring of property names (right for positive npositions, left for
negative npositions). Ifnpositions mod N is nonzero, the X server generates aPropertyNotify
ev ent for each property in the order that they are listed in the array. If an atom occurs more than
once in the list or no property with that name is defined for the window, a BadMatch error
results. Ifa BadAtom or BadMatch error results, no properties are changed.

XRotateWindowProperties can generateBadAtom, BadMatch, and BadWindow errors.

To delete a property on a given window, useXDeleteProperty.

XDeleteProperty (display, w, property)
Display *display;
Windoww;
Atom property;

display Specifies the connection to the X server.

w Specifies the window whose property you want to delete.

property Specifies the property name.

The XDeleteProperty function deletes the specified property only if the property was defined on
the specified window and causes the X server to generate aPropertyNotify ev ent on the window
unless the property does not exist.

XDeleteProperty can generateBadAtom andBadWindow errors.

4.5. Selections
Selections are one method used by applications to exchange data. By using the property mecha-
nism, applications can exchange data of arbitrary types and can negotiate the type of the data. A
selection can be thought of as an indirect property with a dynamic type. That is, rather than hav-
ing the property stored in the X server, the property is maintained by some client (the owner). A
selection is global in nature (considered to belong to the user but be maintained by clients) rather
than being private to a particular window subhierarchy or a particular set of clients.

Xlib provides functions that you can use to set, get, or request conversion of selections. This
allows applications to implement the notion of current selection, which requires that notification

65

Xlib − C Library libX11 1.3.2

be sent to applications when they no longer own the selection. Applications that support selection
often highlight the current selection and so must be informed when another application has
acquired the selection so that they can unhighlight the selection.

When a client asks for the contents of a selection, it specifies a selection target type. This target
type can be used to control the transmitted representation of the contents.For example, if the
selection is ‘‘the last thing the user clicked on’’ and that is currently an image, then the target type
might specify whether the contents of the image should be sent in XY format or Z format.

The target type can also be used to control the class of contents transmitted, for example, asking
for the ‘‘looks’’ (fonts, line spacing, indentation, and so forth) of a paragraph selection, not the
text of the paragraph. The target type can also be used for other purposes. The protocol does not
constrain the semantics.

To set the selection owner, useXSetSelectionOwner.

XSetSelectionOwner (display, selection, owner, time)
Display *display;
Atom selection;
Windowowner;
Timetime;

display Specifies the connection to the X server.

selection Specifies the selection atom.

owner Specifies the owner of the specified selection atom.You can pass a window or
None.

time Specifies the time.You can pass either a timestamp orCurrentTime .

The XSetSelectionOwnerfunction changes the owner and last-change time for the specified
selection and has no effect if the specified time is earlier than the current last-change time of the
specified selection or is later than the current X server time. Otherwise, the last-change time is
set to the specified time, withCurrentTime replaced by the current server time. If the owner
window is specified asNone, then the owner of the selection becomesNone (that is, no owner).
Otherwise, the owner of the selection becomes the client executing the request.

If the new owner (whether a client orNone) is not the same as the current owner of the selection
and the current owner is notNone, the current owner is sent aSelectionClearev ent. If the client
that is the owner of a selection is later terminated (that is, its connection is closed) or if the owner
window it has specified in the request is later destroyed, the owner of the selection automatically
reverts toNone, but the last-change time is not affected. Theselection atom is uninterpreted by
the X server.XGetSelectionOwnerreturns the owner window, which is reported inSelection-
RequestandSelectionClearev ents. Selectionsare global to the X server.

XSetSelectionOwnercan generateBadAtom andBadWindow errors.

To return the selection owner, useXGetSelectionOwner.

Window XGetSelectionOwner (display, selection)
Display *display;
Atom selection;

display Specifies the connection to the X server.

selection Specifies the selection atom whose owner you want returned.

The XGetSelectionOwnerfunction returns the window ID associated with the window that

66

Xlib − C Library libX11 1.3.2

currently owns the specified selection. If no selection was specified, the function returns the con-
stantNone. If None is returned, there is no owner for the selection.

XGetSelectionOwnercan generate aBadAtom error.

To request conversion of a selection, useXConvertSelection.

XConvertSelection (display, selection, target , property, requestor, time)
Display *display;
Atom selection, target ;
Atom property;
Windowrequestor;
Timetime;

display Specifies the connection to the X server.

selection Specifies the selection atom.

target Specifies the target atom.

property Specifies the property name.You also can passNone.

requestor Specifies the requestor.

time Specifies the time.You can pass either a timestamp orCurrentTime .

XConvertSelection requests that the specified selection be converted to the specified target type:

• If the specified selection has an owner, the X server sends aSelectionRequestev ent to that
owner.

• If no owner for the specified selection exists, the X server generates aSelectionNotify
ev ent to the requestor with propertyNone.

The arguments are passed on unchanged in either of the events. Thereare two predefined selec-
tion atoms: PRIMARY and SECONDARY.

XConvertSelection can generateBadAtom andBadWindow errors.

67

Xlib − C Library libX11 1.3.2

Chapter 5

Pixmap and Cursor Functions

Once you have connected to an X server, you can use the Xlib functions to:

• Create and free pixmaps

• Create, recolor, and free cursors

5.1. Creating and Freeing Pixmaps
Pixmaps can only be used on the screen on which they were created. Pixmaps are off-screen
resources that are used for various operations, such as defining cursors as tiling patterns or as the
source for certain raster operations. Most graphics requests can operate either on a window or on
a pixmap. Abitmap is a single bit-plane pixmap.

To create a pixmap of a given size, useXCreatePixmap.

Pixmap XCreatePixmap(display, d, width, height, depth)
Display *display;
Drawabled;
unsigned intwidth, height;
unsigned intdepth;

display Specifies the connection to the X server.

d Specifies which screen the pixmap is created on.

width
height Specify the width and height, which define the dimensions of the pixmap.

depth Specifies the depth of the pixmap.

The XCreatePixmap function creates a pixmap of the width, height, and depth you specified and
returns a pixmap ID that identifies it. It is valid to pass anInputOnly window to the drawable
argument. Thewidth and height arguments must be nonzero, or aBadValue error results. The
depth argument must be one of the depths supported by the screen of the specified drawable, or a
BadValue error results.

The server uses the specified drawable to determine on which screen to create the pixmap. The
pixmap can be used only on this screen and only with other drawables of the same depth (see
XCopyPlane for an exception to this rule). The initial contents of the pixmap are undefined.

XCreatePixmap can generateBadAlloc, BadDrawable, and BadValue errors.

To free all storage associated with a specified pixmap, useXFreePixmap.

XFreePixmap (display, pixmap)
Display *display;
Pixmappixmap;

display Specifies the connection to the X server.

pixmap Specifies the pixmap.

68

Xlib − C Library libX11 1.3.2

The XFreePixmap function first deletes the association between the pixmap ID and the pixmap.
Then, the X server frees the pixmap storage when there are no references to it. The pixmap
should never be referenced again.

XFreePixmap can generate aBadPixmap error.

5.2. Creating, Recoloring, and Freeing Cursors
Each window can have a different cursor defined for it. Whenever the pointer is in a visible win-
dow, it is set to the cursor defined for that window. If no cursor was defined for that window, the
cursor is the one defined for the parent window.

From X’s perspective, a cursor consists of a cursor source, mask, colors, and a hotspot. The mask
pixmap determines the shape of the cursor and must be a depth of one. The source pixmap must
have a depth of one, and the colors determine the colors of the source. The hotspot defines the
point on the cursor that is reported when a pointer event occurs. There may be limitations
imposed by the hardware on cursors as to size and whether a mask is implemented.
XQueryBestCursor can be used to find out what sizes are possible. There is a standard font for
creating cursors, but Xlib provides functions that you can use to create cursors from an arbitrary
font or from bitmaps.

To create a cursor from the standard cursor font, useXCreateFontCursor.

#include <X11/cursorfont.h>

Cursor XCreateFontCursor (display, shape)
Display *display;
unsigned intshape;

display Specifies the connection to the X server.

shape Specifies the shape of the cursor.

X provides a set of standard cursor shapes in a special font named cursor. Applications are
encouraged to use this interface for their cursors because the font can be customized for the indi-
vidual display type. The shape argument specifies which glyph of the standard fonts to use.

The hotspot comes from the information stored in the cursor font. The initial colors of a cursor
are a black foreground and a white background (seeXRecolorCursor). For further information
about cursor shapes, see appendix B.

XCreateFontCursor can generateBadAlloc andBadValue errors.

To create a cursor from font glyphs, useXCreateGlyphCursor .

69

Xlib − C Library libX11 1.3.2

Cursor XCreateGlyphCursor(display, source_font, mask_font, source_char, mask_char,
foreground_color, background_color)

Display *display;
Font source_font, mask_font;
unsigned intsource_char, mask_char;
XColor *foreground_color;
XColor *background_color;

display Specifies the connection to the X server.

source_font Specifies the font for the source glyph.

mask_font Specifies the font for the mask glyph orNone.

source_char Specifies the character glyph for the source.

mask_char Specifies the glyph character for the mask.

foreground_colorSpecifies the RGB values for the foreground of the source.

background_color
Specifies the RGB values for the background of the source.

The XCreateGlyphCursor function is similar toXCreatePixmapCursor except that the source
and mask bitmaps are obtained from the specified font glyphs. The source_char must be a
defined glyph in source_font, or aBadValue error results. If mask_font is given, mask_char
must be a defined glyph in mask_font, or aBadValue error results. The mask_font and character
are optional. The origins of the source_char and mask_char (if defined) glyphs are positioned
coincidently and define the hotspot. The source_char and mask_char need not have the same
bounding box metrics, and there is no restriction on the placement of the hotspot relative to the
bounding boxes. Ifno mask_char is given, all pixels of the source are displayed.You can free
the fonts immediately by callingXFreeFont if no further explicit references to them are to be
made.

For 2-byte matrix fonts, the 16-bit value should be formed with the byte1 member in the most sig-
nificant byte and the byte2 member in the least significant byte.

XCreateGlyphCursor can generateBadAlloc, BadFont, and BadValue errors.

To create a cursor from two bitmaps, useXCreatePixmapCursor.

70

Xlib − C Library libX11 1.3.2

Cursor XCreatePixmapCursor(display, source, mask, foreground_color, background_color, x, y)
Display *display;
Pixmapsource;
Pixmapmask;
XColor *foreground_color;
XColor *background_color;
unsigned intx, y;

display Specifies the connection to the X server.

source Specifies the shape of the source cursor.

mask Specifies the cursor’s source bits to be displayed orNone.

foreground_colorSpecifies the RGB values for the foreground of the source.

background_color
Specifies the RGB values for the background of the source.

x
y Specify the x and y coordinates, which indicate the hotspot relative to the

source’s origin.

The XCreatePixmapCursor function creates a cursor and returns the cursor ID associated with
it. Theforeground and background RGB values must be specified using foreground_color and
background_color, even if the X server only has aStaticGray or GrayScalescreen. Thefore-
ground color is used for the pixels set to 1 in the source, and the background color is used for the
pixels set to 0. Both source and mask, if specified, must have depth one (or aBadMatch error
results) but can have any root. Themask argument defines the shape of the cursor. The pixels set
to 1 in the mask define which source pixels are displayed, and the pixels set to 0 define which pix-
els are ignored. If no mask is given, all pixels of the source are displayed. The mask, if present,
must be the same size as the pixmap defined by the source argument, or aBadMatch error
results. Thehotspot must be a point within the source, or aBadMatch error results.

The components of the cursor can be transformed arbitrarily to meet display limitations. The
pixmaps can be freed immediately if no further explicit references to them are to be made. Sub-
sequent drawing in the source or mask pixmap has an undefined effect on the cursor. The X
server might or might not make a copy of the pixmap.

XCreatePixmapCursor can generateBadAlloc andBadPixmap errors.

To determine useful cursor sizes, useXQueryBestCursor.

Status XQueryBestCursor(display, d, width, height, width_return, height_return)
Display *display;
Drawabled;
unsigned intwidth, height;
unsigned int *width_return, *height_return;

display Specifies the connection to the X server.

d Specifies the drawable, which indicates the screen.

width
height Specify the width and height of the cursor that you want the size information for.

width_return
height_return Return the best width and height that is closest to the specified width and height.

Some displays allow larger cursors than other displays. TheXQueryBestCursor function

71

Xlib − C Library libX11 1.3.2

provides a way to find out what size cursors are actually possible on the display. It returns the
largest size that can be displayed. Applications should be prepared to use smaller cursors on dis-
plays that cannot support large ones.

XQueryBestCursor can generate aBadDrawable error.

To change the color of a given cursor, useXRecolorCursor.

XRecolorCursor (display, cursor, foreground_color, background_color)
Display *display;
Cursorcursor;
XColor *foreground_color, *background_color;

display Specifies the connection to the X server.

cursor Specifies the cursor.

foreground_colorSpecifies the RGB values for the foreground of the source.

background_color
Specifies the RGB values for the background of the source.

The XRecolorCursor function changes the color of the specified cursor, and if the cursor is
being displayed on a screen, the change is visible immediately. The pixel members of the
XColor structures are ignored; only the RGB values are used.

XRecolorCursor can generate aBadCursor error.

To free (destroy) a given cursor, useXFreeCursor.

XFreeCursor (display, cursor)
Display *display;
Cursorcursor;

display Specifies the connection to the X server.

cursor Specifies the cursor.

The XFreeCursor function deletes the association between the cursor resource ID and the speci-
fied cursor. The cursor storage is freed when no other resource references it. The specified cursor
ID should not be referred to again.

XFreeCursor can generate aBadCursor error.

72

Xlib − C Library libX11 1.3.2

Chapter 6

Color Management Functions

Each X window always has an associated colormap that provides a level of indirection between
pixel values and colors displayed on the screen. Xlib provides functions that you can use to
manipulate a colormap. The X protocol defines colors using values in the RGB color space. The
RGB color space is device dependent; rendering an RGB value on differing output devices typi-
cally results in different colors. Xlib also provides a means for clients to specify color using
device-independent color spaces for consistent results across devices. Xlibsupports device-inde-
pendent color spaces derivable from the CIE XYZ color space. This includes the CIE XYZ, xyY,
L*u*v*, and L*a*b* color spaces as well as the TekHVC color space.

This chapter discusses how to:

• Create, copy, and destroy a colormap

• Specify colors by name or value

• Allocate, modify, and free color cells

• Read entries in a colormap

• Convert between color spaces

• Control aspects of color conversion

• Query the color gamut of a screen

• Add new color spaces

All functions, types, and symbols in this chapter with the prefix ‘‘Xcms’’ are defined in
<X11/Xcms.h>. Theremaining functions and types are defined in <X11/Xlib.h>.

Functions in this chapter manipulate the representation of color on the screen.For each possible
value that a pixel can take in a window, there is a color cell in the colormap.For example, if a
window is 4 bits deep, pixel values 0 through 15 are defined.A colormap is a collection of color
cells. Acolor cell consists of a triple of red, green, and blue (RGB) values. Thehardware
imposes limits on the number of significant bits in these values. Aseach pixel is read out of dis-
play memory, the pixel is looked up in a colormap. The RGB value of the cell determines what
color is displayed on the screen. On a grayscale display with a black-and-white monitor, the val-
ues are combined to determine the brightness on the screen.

Typically, an application allocates color cells or sets of color cells to obtain the desired colors.
The client can allocate read-only cells. In which case, the pixel values for these colors can be
shared among multiple applications, and the RGB value of the cell cannot be changed. If the
client allocates read/write cells, they are exclusively owned by the client, and the color associated
with the pixel value can be changed at will. Cells must be allocated (and, if read/write, initialized
with an RGB value) by a client to obtain desired colors. The use of pixel value for an unallocated
cell results in an undefined color.

Because colormaps are associated with windows, X supports displays with multiple colormaps
and, indeed, different types of colormaps. If there are insufficient colormap resources in the dis-
play, some windows will display in their true colors, and others will display with incorrect colors.
A window manager usually controls which windows are displayed in their true colors if more
than one colormap is required for the color resources the applications are using. At any time,
there is a set of installed colormaps for a screen.Windows using one of the installed colormaps
display with true colors, and windows using other colormaps generally display with incorrect col-
ors. You can control the set of installed colormaps by usingXInstallColormap andXUninstall-
Colormap.

73

Xlib − C Library libX11 1.3.2

Colormaps are local to a particular screen. Screens always have a default colormap, and pro-
grams typically allocate cells out of this colormap. Generally, you should not write applications
that monopolize color resources. Although some hardware supports multiple colormaps installed
at one time, many of the hardware displays built today support only a single installed colormap,
so the primitives are written to encourage sharing of colormap entries between applications.

The DefaultColormap macro returns the default colormap. TheDefaultVisual macro returns
the default visual type for the specified screen. Possible visual types areStaticGray,
GrayScale, StaticColor, PseudoColor, Tr ueColor, or DirectColor (see section 3.1).

6.1. ColorStructures
Functions that operate only on RGB color space values use anXColor structure, which contains:

typedef struct {
unsigned long pixel; /* pixel value */
unsigned short red, green, blue; /* rgb values */
char flags; /* DoRed, DoGreen, DoBlue */
char pad;

} X Color;

The red, green, and blue values are always in the range 0 to 65535 inclusive, independent of the
number of bits actually used in the display hardware. Theserver scales these values down to the
range used by the hardware. Blackis represented by (0,0,0), and white is represented by
(65535,65535,65535). Insome functions, the flags member controls which of the red, green, and
blue members is used and can be the inclusive OR of zero or more ofDoRed, DoGreen, and
DoBlue.

Functions that operate on all color space values use anXcmsColor structure. Thisstructure con-
tains a union of substructures, each supporting color specification encoding for a particular color
space. Like the XColor structure, theXcmsColor structure contains pixel and color specifica-
tion information (the spec member in theXcmsColor structure).

typedef unsigned long XcmsColorFormat;/* Color Specification Format */

typedef struct {
union {

XcmsRGB RGB;
XcmsRGBi RGBi;
XcmsCIEXYZ CIEXYZ;
XcmsCIEuvY CIEuvY;
XcmsCIExyY CIExyY;
XcmsCIELab CIELab;
XcmsCIELuv CIELuv;
XcmsTekHVC TekHVC;
XcmsPad Pad;

} spec;
unsigned long pixel;
XcmsColorFormat format;

} X cmsColor; /*Xcms Color Structure */

Because the color specification can be encoded for the various color spaces, encoding for the spec

74

Xlib − C Library libX11 1.3.2

member is identified by the format member, which is of typeXcmsColorFormat. The following
macros define standard formats.

#define XcmsUndefinedFormat 0x00000000
#define XcmsCIEXYZFormat 0x00000001 /* CIE XYZ */
#define XcmsCIEuvYFormat 0x00000002 /* CIE u’v’Y */
#define XcmsCIExyYFormat 0x00000003 /* CIE xyY */
#define XcmsCIELabFormat 0x00000004 /* CIE L*a*b* */
#define XcmsCIELuvFormat 0x00000005 /* CIE L*u*v* */
#define XcmsTekHVCFormat 0x00000006 /* TekHVC */
#define XcmsRGBFormat 0x80000000 /* RGB Device */
#define XcmsRGBiFormat 0x80000001 /* RGB Intensity */

Formats for device-independent color spaces are distinguishable from those for device-dependent
spaces by the 32nd bit. If this bit is set, it indicates that the color specification is in a device-
dependent form; otherwise, it is in a device-independent form. If the 31st bit is set, this indicates
that the color space has been added to Xlib at run time (see section 6.12.4). The format value for
a color space added at run time may be different each time the program is executed. Ifreferences
to such a color space must be made outside the client (for example, storing a color specification in
a file), then reference should be made by color space string prefix (seeXcmsFormatOfPrefix
andXcmsPrefixOfFormat).
Data types that describe the color specification encoding for the various color spaces are defined
as follows:

typedef double XcmsFloat;

typedef struct {
unsigned short red; /* 0x0000 to 0xffff * /
unsigned short green; /* 0x0000 to 0xffff * /
unsigned short blue; /* 0x0000 to 0xffff * /

} X cmsRGB; /*RGB Device */

typedef struct {
XcmsFloat red; /* 0.0 to 1.0 */
XcmsFloat green; /* 0.0 to 1.0 */
XcmsFloat blue; /* 0.0 to 1.0 */

} X cmsRGBi; /*RGB Intensity */

typedef struct {
XcmsFloat X;
XcmsFloat Y; /* 0.0 to 1.0 */
XcmsFloat Z;

} X cmsCIEXYZ; /* CIE XYZ */

typedef struct {
XcmsFloat u_prime; /* 0.0 to ˜0.6 */
XcmsFloat v_prime; /* 0.0 to ˜0.6 */
XcmsFloat Y; /* 0.0 to 1.0 */

} X cmsCIEuvY; /* CIE u’v’Y */

75

Xlib − C Library libX11 1.3.2

typedef struct {
XcmsFloat x; /* 0.0 to ˜.75 */
XcmsFloat y; /* 0.0 to ˜.85 */
XcmsFloat Y; /* 0.0 to 1.0 */

} X cmsCIExyY; /* CIE xyY */

typedef struct {
XcmsFloat L_star; /* 0.0 to 100.0 */
XcmsFloat a_star;
XcmsFloat b_star;

} X cmsCIELab; /*CIE L*a*b* */

typedef struct {
XcmsFloat L_star; /* 0.0 to 100.0 */
XcmsFloat u_star;
XcmsFloat v_star;

} X cmsCIELuv; /*CIE L*u*v* */

typedef struct {
XcmsFloat H; /* 0.0 to 360.0 */
XcmsFloat V; /* 0.0 to 100.0 */
XcmsFloat C; /* 0.0 to 100.0 */

} X cmsTekHVC; /* TekHVC */

typedef struct {
XcmsFloat pad0;
XcmsFloat pad1;
XcmsFloat pad2;
XcmsFloat pad3;

} X cmsPad; /* four doubles */

The device-dependent formats provided allow color specification in:

• RGB Intensity (XcmsRGBi)
Red, green, and blue linear intensity values, floating-point values from 0.0 to 1.0, where 1.0
indicates full intensity, 0.5 half intensity, and so on.

• RGB Device (XcmsRGB)

Red, green, and blue values appropriate for the specified output device.XcmsRGB values
are of type unsigned short, scaled from 0 to 65535 inclusive, and are interchangeable with
the red, green, and blue values in anXColor structure.

It is important to note that RGB Intensity values are not gamma corrected values. Incontrast,
RGB Device values generated as a result of converting color specifications are always gamma
corrected, and RGB Device values acquired as a result of querying a colormap or passed in by the
client are assumed by Xlib to be gamma corrected. The termRGB valuein this manual always
refers to an RGB Device value.

6.2. ColorStrings
Xlib provides a mechanism for using string names for colors.A color string may either contain
an abstract color name or a numerical color specification. Color strings are case-insensitive.

Color strings are used in the following functions:

76

Xlib − C Library libX11 1.3.2

• XAllocNamedColor
• XcmsAllocNamedColor
• XLookupColor
• XcmsLookupColor
• XParseColor
• XStoreNamedColor
Xlib supports the use of abstract color names, for example, red or blue.A value for this abstract
name is obtained by searching one or more color name databases. Xlib first searches zero or
more client-side databases; the number, location, and content of these databases is implementa-
tion-dependent and might depend on the current locale. If the name is not found, Xlib then looks
for the color in the X server’s database. Ifthe color name is not in the Host Portable Character
Encoding, the result is implementation-dependent.

A numerical color specification consists of a color space name and a set of values in the following
syntax:

<color_space_name>:<value>/.../<value>

The following are examples of valid color strings.

"CIEXYZ:0.3227/0.28133/0.2493"
"RGBi:1.0/0.0/0.0"
"rgb:00/ff/00"
"CIELuv:50.0/0.0/0.0"

The syntax and semantics of numerical specifications are given for each standard color space in
the following sections.

6.2.1. RGBDevice String Specification
An RGB Device specification is identified by the prefix ‘‘rgb:’’ and conforms to the following
syntax:

rgb:<red>/<green>/<blue>

<red>, <green>, <blue> := h | hh | hhh | hhhh
h := single hexadecimal digits (case insignificant)

Note thath indicates the value scaled in 4 bits,hh the value scaled in 8 bits,hhhthe value scaled
in 12 bits, andhhhhthe value scaled in 16 bits, respectively.

Typical examples are the strings ‘‘rgb:ea/75/52’’ and ‘‘rgb:ccc/320/320’’, but mixed numbers of
hexadecimal digit strings (‘‘rgb:ff/a5/0’’ and ‘‘rgb:ccc/32/0’’) are also allowed.

For backward compatibility, an older syntax for RGB Device is supported, but its continued use is
not encouraged. The syntax is an initial sharp sign character followed by a numeric specification,
in one of the following formats:

#RGB (4bits each)
#RRGGBB (8bits each)
#RRRGGGBBB (12bits each)
#RRRRGGGGBBBB (16bits each)

The R, G, and B represent single hexadecimal digits. When fewer than 16 bits each are specified,
they represent the most significant bits of the value (unlike the ‘‘rgb:’’ syntax, in which values are

77

Xlib − C Library libX11 1.3.2

scaled). For example, the string ‘‘#3a7’’ is the same as ‘‘#3000a0007000’’.

6.2.2. RGBIntensity String Specification
An RGB intensity specification is identified by the prefix ‘‘rgbi:’’ and conforms to the following
syntax:

rgbi:<red>/<green>/<blue>

Note that red, green, and blue are floating-point values between 0.0 and 1.0, inclusive. The input
format for these values is an optional sign, a string of numbers possibly containing a decimal
point, and an optional exponent field containing an E or e followed by a possibly signed integer
string.

6.2.3. Device-Independent String Specifications
The standard device-independent string specifications have the following syntax:

CIEXYZ:<X>/<Y>/<Z>
CIEuvY:<u>/<v>/<Y>
CIExyY:<x>/<y>/<Y>
CIELab:<L>/<a>/
CIELuv:<L>/<u>/<v>
TekHVC:<H>/<V>/<C>

All of the values (C, H, V, X, Y, Z, a, b, u, v, y, x) are floating-point values. Thesyntax for these
values is an optional plus or minus sign, a string of digits possibly containing a decimal point, and
an optional exponent field consisting of an ‘‘E’’ or ‘ ‘e’’ f ollowed by an optional plus or minus fol-
lowed by a string of digits.

6.3. ColorConversion Contexts and Gamut Mapping
When Xlib converts device-independent color specifications into device-dependent specifications
and vice versa, it uses knowledge about the color limitations of the screen hardware. Thisinfor-
mation, typically called the device profile, is available in a Color Conversion Context (CCC).

Because a specified color may be outside the color gamut of the target screen and the white point
associated with the color specification may differ from the white point inherent to the screen, Xlib
applies gamut mapping when it encounters certain conditions:

• Gamut compression occurs when conversion of device-independent color specifications to
device-dependent color specifications results in a color out of the target screen’s gamut.

• White adjustment occurs when the inherent white point of the screen differs from the white
point assumed by the client.

Gamut handling methods are stored as callbacks in the CCC, which in turn are used by the color
space conversion routines. Client data is also stored in the CCC for each callback. The CCC also
contains the white point the client assumes to be associated with color specifications (that is, the
Client White Point). The client can specify the gamut handling callbacks and client data as well
as the Client White Point. Xlib does not preclude the X client from performing other forms of
gamut handling (for example, gamut expansion); however, Xlib does not provide direct support
for gamut handling other than white adjustment and gamut compression.

Associated with each colormap is an initial CCC transparently generated by Xlib. Therefore,
when you specify a colormap as an argument to an Xlib function, you are indirectly specifying a
CCC. Thereis a default CCC associated with each screen. Newly created CCCs inherit attributes
from the default CCC, so the default CCC attributes can be modified to affect new CCCs.

Xcms functions in which gamut mapping can occur returnStatus and have specific status values
defined for them, as follows:

78

Xlib − C Library libX11 1.3.2

• XcmsFailure indicates that the function failed.

• XcmsSuccessindicates that the function succeeded. In addition, if the function performed
any color conversion, the colors did not need to be compressed.

• XcmsSuccessWithCompressionindicates the function performed color conversion and at
least one of the colors needed to be compressed. The gamut compression method is deter-
mined by the gamut compression procedure in the CCC that is specified directly as a func-
tion argument or in the CCC indirectly specified by means of the colormap argument.

6.4. Creating, Copying, and Destroying Colormaps
To create a colormap for a screen, useXCreateColormap.

Colormap XCreateColormap(display, w, visual, alloc)
Display *display;
Windoww;
Visual *visual;
int alloc;

display Specifies the connection to the X server.

w Specifies the window on whose screen you want to create a colormap.

visual Specifies a visual type supported on the screen. If the visual type is not one sup-
ported by the screen, aBadMatch error results.

alloc Specifies the colormap entries to be allocated.You can passAllocNone or Allo-
cAll .

The XCreateColormap function creates a colormap of the specified visual type for the screen on
which the specified window resides and returns the colormap ID associated with it. Note that the
specified window is only used to determine the screen.

The initial values of the colormap entries are undefined for the visual classesGrayScale, Pseu-
doColor, and DirectColor . For StaticGray, StaticColor, and Tr ueColor, the entries have
defined values, but those values are specific to the visual and are not defined by X.For Stat-
icGray , StaticColor, and Tr ueColor, alloc must beAllocNone, or aBadMatch error results.
For the other visual classes, if alloc isAllocNone, the colormap initially has no allocated entries,
and clients can allocate them.For information about the visual types, see section 3.1.

If alloc is AllocAll , the entire colormap is allocated writable. The initial values of all allocated
entries are undefined.For GrayScaleandPseudoColor, the effect is as if anXAllocColorCells
call returned all pixel values from zero to N − 1, where N is the colormap entries value in the
specified visual.For DirectColor , the effect is as if anXAllocColorPlanes call returned a pixel
value of zero and red_mask, green_mask, and blue_mask values containing the same bits as the
corresponding masks in the specified visual. However, in all cases, none of these entries can be
freed by usingXFreeColors.

XCreateColormap can generateBadAlloc, BadMatch, BadValue, and BadWindow errors.

To create a new colormap when the allocation out of a previously shared colormap has failed
because of resource exhaustion, useXCopyColormapAndFree.

79

Xlib − C Library libX11 1.3.2

Colormap XCopyColormapAndFree (display, colormap)
Display *display;
Colormapcolormap;

display Specifies the connection to the X server.

colormap Specifies the colormap.

The XCopyColormapAndFree function creates a colormap of the same visual type and for the
same screen as the specified colormap and returns the new colormap ID. It also moves all of the
client’s existing allocation from the specified colormap to the new colormap with their color val-
ues intact and their read-only or writable characteristics intact and frees those entries in the speci-
fied colormap. Color values in other entries in the new colormap are undefined. If the specified
colormap was created by the client with alloc set toAllocAll , the new colormap is also created
with AllocAll , all color values for all entries are copied from the specified colormap, and then all
entries in the specified colormap are freed. If the specified colormap was not created by the client
with AllocAll , the allocations to be moved are all those pixels and planes that have been allocated
by the client usingXAllocColor , XAllocNamedColor, XAllocColorCells , or XAllocColor-
Planesand that have not been freed since they were allocated.

XCopyColormapAndFree can generateBadAlloc andBadColor errors.

To destroy a colormap, useXFreeColormap.

XFreeColormap (display, colormap)
Display *display;
Colormapcolormap;

display Specifies the connection to the X server.

colormap Specifies the colormap that you want to destroy.

The XFreeColormap function deletes the association between the colormap resource ID and the
colormap and frees the colormap storage. However, this function has no effect on the default col-
ormap for a screen. If the specified colormap is an installed map for a screen, it is uninstalled
(seeXUninstallColormap). If the specified colormap is defined as the colormap for a window
(by XCreateWindow, XSetWindowColormap, or XChangeWindowAttributes), XFreeCol-
ormap changes the colormap associated with the window to None and generates aColormap-
Notify ev ent. X does not define the colors displayed for a window with a colormap ofNone.

XFreeColormap can generate aBadColor error.

6.5. MappingColor Names to Values

To map a color name to an RGB value, useXLookupColor .

80

Xlib − C Library libX11 1.3.2

Status XLookupColor(display, colormap, color_name, exact_def_return, screen_def_return)
Display *display;
Colormapcolormap;
char *color_name;
XColor *exact_def_return, *screen_def_return;

display Specifies the connection to the X server.

colormap Specifies the colormap.

color_name Specifies the color name string (for example, red) whose color definition struc-
ture you want returned.

exact_def_returnReturns the exact RGB values.

screen_def_return
Returns the closest RGB values provided by the hardware.

The XLookupColor function looks up the string name of a color with respect to the screen asso-
ciated with the specified colormap. It returns both the exact color values and the closest values
provided by the screen with respect to the visual type of the specified colormap. If the color
name is not in the Host Portable Character Encoding, the result is implementation-dependent.
Use of uppercase or lowercase does not matter.XLookupColor returns nonzero if the name is
resolved; otherwise, it returns zero.

XLookupColor can generate aBadColor error.

To map a color name to the exact RGB value, useXParseColor.

Status XParseColor (display, colormap, spec, exact_def_return)
Display *display;
Colormapcolormap;
char *spec;
XColor *exact_def_return;

display Specifies the connection to the X server.

colormap Specifies the colormap.

spec Specifies the color name string; case is ignored.

exact_def_returnReturns the exact color value for later use and sets theDoRed, DoGreen, and
DoBlue flags.

The XParseColor function looks up the string name of a color with respect to the screen associ-
ated with the specified colormap. It returns the exact color value. Ifthe color name is not in the
Host Portable Character Encoding, the result is implementation-dependent. Use of uppercase or
lowercase does not matter.XParseColor returns nonzero if the name is resolved; otherwise, it
returns zero.

XParseColor can generate aBadColor error.

To map a color name to a value in an arbitrary color space, useXcmsLookupColor.

81

Xlib − C Library libX11 1.3.2

Status XcmsLookupColor(display, colormap, color_string, color_exact_return, color_screen_return,
result_format)

Display *display;
Colormapcolormap;
char *color_string;
XcmsColor *color_exact_return, *color_screen_return;
XcmsColorFormatresult_format;

display Specifies the connection to the X server.

colormap Specifies the colormap.

color_string Specifies the color string.

color_exact_return
Returns the color specification parsed from the color string or parsed from the
corresponding string found in a color-name database.

color_screen_return
Returns the color that can be reproduced on the screen.

result_format Specifies the color format for the returned color specifications (color_screen_re-
turn and color_exact_return arguments). Ifthe format isXcmsUndefinedFor-
mat and the color string contains a numerical color specification, the specifica-
tion is returned in the format used in that numerical color specification. If the
format isXcmsUndefinedFormatand the color string contains a color name, the
specification is returned in the format used to store the color in the database.

The XcmsLookupColor function looks up the string name of a color with respect to the screen
associated with the specified colormap. It returns both the exact color values and the closest val-
ues provided by the screen with respect to the visual type of the specified colormap. The values
are returned in the format specified by result_format. If the color name is not in the Host Portable
Character Encoding, the result is implementation-dependent. Use of uppercase or lowercase does
not matter.XcmsLookupColor returnsXcmsSuccessor XcmsSuccessWithCompressionif
the name is resolved; otherwise, it returnsXcmsFailure. If XcmsSuccessWithCompressionis
returned, the color specification returned in color_screen_return is the result of gamut compres-
sion.

6.6. Allocatingand Freeing Color Cells
There are two ways of allocating color cells: explicitly as read-only entries, one pixel value at a
time, or read/write, where you can allocate a number of color cells and planes simultaneously. A
read-only cell has its RGB value set by the server. Read/write cells do not have defined colors
initially; functions described in the next section must be used to store values into them. Although
it is possible for any client to store values into a read/write cell allocated by another client,
read/write cells normally should be considered private to the client that allocated them.

Read-only colormap cells are shared among clients. The server counts each allocation and free-
ing of the cell by clients. When the last client frees a shared cell, the cell is finally deallocated. If
a single client allocates the same read-only cell multiple times, the server counts each such alloca-
tion, not just the first one.

To allocate a read-only color cell with an RGB value, useXAllocColor .

82

Xlib − C Library libX11 1.3.2

Status XAllocColor(display, colormap, screen_in_out)
Display *display;
Colormapcolormap;
XColor *screen_in_out;

display Specifies the connection to the X server.

colormap Specifies the colormap.

screen_in_out Specifies and returns the values actually used in the colormap.

The XAllocColor function allocates a read-only colormap entry corresponding to the closest
RGB value supported by the hardware.XAllocColor returns the pixel value of the color closest
to the specified RGB elements supported by the hardware and returns the RGB value actually
used. Thecorresponding colormap cell is read-only. In addition, XAllocColor returns nonzero
if it succeeded or zero if it failed. Multipleclients that request the same effective RGB value can
be assigned the same read-only entry, thus allowing entries to be shared. When the last client
deallocates a shared cell, it is deallocated.XAllocColor does not use or affect the flags in the
XColor structure.

XAllocColor can generate aBadColor error.

To allocate a read-only color cell with a color in arbitrary format, useXcmsAllocColor.

Status XcmsAllocColor(display, colormap, color_in_out, result_format)
Display *display;
Colormapcolormap;
XcmsColor *color_in_out;
XcmsColorFormatresult_format;

display Specifies the connection to the X server.

colormap Specifies the colormap.

color_in_out Specifies the color to allocate and returns the pixel and color that is actually used
in the colormap.

result_format Specifies the color format for the returned color specification.

The XcmsAllocColor function is similar toXAllocColor except the color can be specified in
any format. TheXcmsAllocColor function ultimately callsXAllocColor to allocate a read-only
color cell (colormap entry) with the specified color.XcmsAllocColor first converts the color
specified to an RGB value and then passes this toXAllocColor . XcmsAllocColor returns the
pixel value of the color cell and the color specification actually allocated. This returned color
specification is the result of converting the RGB value returned byXAllocColor into the format
specified with the result_format argument. Ifthere is no interest in a returned color specification,
unnecessary computation can be bypassed if result_format is set toXcmsRGBFormat. The cor-
responding colormap cell is read-only. If this routine returnsXcmsFailure, the color_in_out
color specification is left unchanged.

XcmsAllocColor can generate aBadColor error.

To allocate a read-only color cell using a color name and return the closest color supported by the
hardware in RGB format, useXAllocNamedColor.

83

Xlib − C Library libX11 1.3.2

Status XAllocNamedColor(display, colormap, color_name, screen_def_return, exact_def_return)
Display *display;
Colormapcolormap;
char *color_name;
XColor *screen_def_return, *exact_def_return;

display Specifies the connection to the X server.

colormap Specifies the colormap.

color_name Specifies the color name string (for example, red) whose color definition struc-
ture you want returned.

screen_def_return
Returns the closest RGB values provided by the hardware.

exact_def_returnReturns the exact RGB values.

The XAllocNamedColor function looks up the named color with respect to the screen that is
associated with the specified colormap. It returns both the exact database definition and the clos-
est color supported by the screen. The allocated color cell is read-only. The pixel value is
returned in screen_def_return. If the color name is not in the Host Portable Character Encoding,
the result is implementation-dependent. Use of uppercase or lowercase does not matter. If
screen_def_return and exact_def_return point to the same structure, the pixel field will be set cor-
rectly, but the color values are undefined.XAllocNamedColor returns nonzero if a cell is allo-
cated; otherwise, it returns zero.

XAllocNamedColor can generate aBadColor error.

To allocate a read-only color cell using a color name and return the closest color supported by the
hardware in an arbitrary format, useXcmsAllocNamedColor.

84

Xlib − C Library libX11 1.3.2

Status XcmsAllocNamedColor(display, colormap, color_string, color_screen_return, color_exact_return,
result_format)

Display *display;
Colormapcolormap;
char *color_string;
XcmsColor *color_screen_return;
XcmsColor *color_exact_return;
XcmsColorFormatresult_format;

display Specifies the connection to the X server.

colormap Specifies the colormap.

color_string Specifies the color string whose color definition structure is to be returned.

color_screen_return
Returns the pixel value of the color cell and color specification that actually is
stored for that cell.

color_exact_return
Returns the color specification parsed from the color string or parsed from the
corresponding string found in a color-name database.

result_format Specifies the color format for the returned color specifications (color_screen_re-
turn and color_exact_return arguments). Ifthe format isXcmsUndefinedFor-
mat and the color string contains a numerical color specification, the specifica-
tion is returned in the format used in that numerical color specification. If the
format isXcmsUndefinedFormatand the color string contains a color name, the
specification is returned in the format used to store the color in the database.

The XcmsAllocNamedColor function is similar toXAllocNamedColor except that the color
returned can be in any format specified. This function ultimately callsXAllocColor to allocate a
read-only color cell with the color specified by a color string. The color string is parsed into an
XcmsColor structure (seeXcmsLookupColor), converted to an RGB value, and finally passed
to XAllocColor . If the color name is not in the Host Portable Character Encoding, the result is
implementation-dependent. Useof uppercase or lowercase does not matter.

This function returns both the color specification as a result of parsing (exact specification) and
the actual color specification stored (screen specification). This screen specification is the result
of converting the RGB value returned byXAllocColor into the format specified in result_format.
If there is no interest in a returned color specification, unnecessary computation can be bypassed
if result_format is set toXcmsRGBFormat. If color_screen_return and color_exact_return point
to the same structure, the pixel field will be set correctly, but the color values are undefined.

XcmsAllocNamedColor can generate aBadColor error.

To allocate read/write color cell and color plane combinations for aPseudoColormodel, use
XAllocColorCells .

85

Xlib − C Library libX11 1.3.2

Status XAllocColorCells(display, colormap, contig, plane_masks_return, nplanes,
pixels_return, npixels)

Display *display;
Colormapcolormap;
Bool contig;
unsigned longplane_masks_return[];
unsigned intnplanes;
unsigned longpixels_return[];
unsigned intnpixels;

display Specifies the connection to the X server.

colormap Specifies the colormap.

contig Specifies a Boolean value that indicates whether the planes must be contiguous.

plane_mask_return
Returns an array of plane masks.

nplanes Specifies the number of plane masks that are to be returned in the plane masks ar-
ray.

pixels_return Returns an array of pixel values.

npixels Specifies the number of pixel values that are to be returned in the pixels_return
array.

The XAllocColorCells function allocates read/write color cells. The number of colors must be
positive and the number of planes nonnegative, or aBadValue error results. If ncolors and
nplanes are requested, then ncolors pixels and nplane plane masks are returned. No mask will
have any bits set to 1 in common with any other mask or with any of the pixels. ByORing
together each pixel with zero or more masks, ncolors * 2nplanesdistinct pixels can be produced.
All of these are allocated writable by the request.For GrayScaleor PseudoColor, each mask
has exactly one bit set to 1.For DirectColor , each has exactly three bits set to 1. If contig is
Tr ue and if all masks are ORed together, a single contiguous set of bits set to 1 will be formed
for GrayScaleor PseudoColorand three contiguous sets of bits set to 1 (one within each pixel
subfield) forDirectColor . The RGB values of the allocated entries are undefined.XAllocCol-
orCells returns nonzero if it succeeded or zero if it failed.

XAllocColorCells can generateBadColor andBadValue errors.

To allocate read/write color resources for aDirectColor model, useXAllocColorPlanes.

86

Xlib − C Library libX11 1.3.2

Status XAllocColorPlanes(display, colormap, contig, pixels_return, ncolors, nreds, ngreens,
nblues, rmask_return, gmask_return, bmask_return)

Display *display;
Colormapcolormap;
Bool contig;
unsigned longpixels_return[];
int ncolors;
int nreds, ngreens, nblues;
unsigned long *rmask_return, *gmask_return, *bmask_return;

display Specifies the connection to the X server.

colormap Specifies the colormap.

contig Specifies a Boolean value that indicates whether the planes must be contiguous.

pixels_return Returns an array of pixel values. XAllocColorPlanes returns the pixel values in
this array.

ncolors Specifies the number of pixel values that are to be returned in the pixels_return
array.

nreds
ngreens
nblues

Specify the number of red, green, and blue planes. The value you pass must be
nonnegative.

rmask_return
gmask_return
bmask_return Return bit masks for the red, green, and blue planes.

The specified ncolors must be positive; and nreds, ngreens, and nblues must be nonnegative, or a
BadValue error results. If ncolors colors, nreds reds, ngreens greens, and nblues blues are
requested, ncolors pixels are returned; and the masks have nreds, ngreens, and nblues bits set to 1,
respectively. If contig isTr ue, each mask will have a contiguous set of bits set to 1. No mask
will have any bits set to 1 in common with any other mask or with any of the pixels. For Direct-
Color , each mask will lie within the corresponding pixel subfield. By ORing together subsets of
masks with each pixel value, ncolors * 2(nreds+ngreens+nblues) distinct pixel values can be produced.
All of these are allocated by the request. However, in the colormap, there are only ncolors *
2nreds independent red entries, ncolors * 2ngreensindependent green entries, and ncolors * 2nblues

independent blue entries. This is true even for PseudoColor. When the colormap entry of a
pixel value is changed (usingXStoreColors, XStoreColor, or XStoreNamedColor), the pixel
is decomposed according to the masks, and the corresponding independent entries are updated.
XAllocColorPlanes returns nonzero if it succeeded or zero if it failed.

XAllocColorPlanes can generateBadColor andBadValue errors.

To free colormap cells, useXFreeColors.

87

Xlib − C Library libX11 1.3.2

XFreeColors (display, colormap, pixels, npixels, planes)
Display *display;
Colormapcolormap;
unsigned longpixels[] ;
int npixels;
unsigned longplanes;

display Specifies the connection to the X server.

colormap Specifies the colormap.

pixels Specifies an array of pixel values that map to the cells in the specified colormap.

npixels Specifies the number of pixels.

planes Specifies the planes you want to free.

The XFreeColors function frees the cells represented by pixels whose values are in the pixels
array. The planes argument should not have any bits set to 1 in common with any of the pixels.
The set of all pixels is produced by ORing together subsets of the planes argument with the pix-
els. Therequest frees all of these pixels that were allocated by the client (usingXAllocColor ,
XAllocNamedColor, XAllocColorCells , and XAllocColorPlanes). Notethat freeing an indi-
vidual pixel obtained fromXAllocColorPlanes may not actually allow it to be reused until all of
its related pixels are also freed. Similarly, a read-only entry is not actually freed until it has been
freed by all clients, and if a client allocates the same read-only entry multiple times, it must free
the entry that many times before the entry is actually freed.

All specified pixels that are allocated by the client in the colormap are freed, even if one or more
pixels produce an error. If a specified pixel is not a valid index into the colormap, aBadValue
error results. If a specified pixel is not allocated by the client (that is, is unallocated or is only
allocated by another client) or if the colormap was created with all entries writable (by passing
AllocAll to XCreateColormap), a BadAccesserror results. If more than one pixel is in error,
the one that gets reported is arbitrary.

XFreeColors can generateBadAccess, BadColor, and BadValue errors.

6.7. Modifying and Querying Colormap Cells

To store an RGB value in a single colormap cell, useXStoreColor.

XStoreColor (display, colormap, color)
Display *display;
Colormapcolormap;
XColor *color;

display Specifies the connection to the X server.

colormap Specifies the colormap.

color Specifies the pixel and RGB values.

The XStoreColor function changes the colormap entry of the pixel value specified in the pixel
member of theXColor structure. You specified this value in the pixel member of theXColor
structure. Thispixel value must be a read/write cell and a valid index into the colormap. If a
specified pixel is not a valid index into the colormap, aBadValue error results.XStoreColor
also changes the red, green, and/or blue color components.You specify which color components
are to be changed by settingDoRed, DoGreen, and/or DoBlue in the flags member of the
XColor structure. Ifthe colormap is an installed map for its screen, the changes are visible

88

Xlib − C Library libX11 1.3.2

immediately.

XStoreColor can generateBadAccess, BadColor, and BadValue errors.

To store multiple RGB values in multiple colormap cells, useXStoreColors.

XStoreColors (display, colormap, color, ncolors)
Display *display;
Colormapcolormap;
XColor color[];
int ncolors;

display Specifies the connection to the X server.

colormap Specifies the colormap.

color Specifies an array of color definition structures to be stored.

ncolors Specifies the number ofXColor structures in the color definition array.

The XStoreColors function changes the colormap entries of the pixel values specified in the
pixel members of theXColor structures. You specify which color components are to be changed
by settingDoRed, DoGreen, and/or DoBlue in the flags member of theXColor structures. If
the colormap is an installed map for its screen, the changes are visible immediately.XStoreCol-
ors changes the specified pixels if they are allocated writable in the colormap by any client, even
if one or more pixels generates an error. If a specified pixel is not a valid index into the colormap,
a BadValue error results. If a specified pixel either is unallocated or is allocated read-only, a
BadAccesserror results. If more than one pixel is in error, the one that gets reported is arbitrary.

XStoreColors can generateBadAccess, BadColor, and BadValue errors.

To store a color of arbitrary format in a single colormap cell, useXcmsStoreColor.

Status XcmsStoreColor(display, colormap, color)
Display *display;
Colormapcolormap;
XcmsColor *color;

display Specifies the connection to the X server.

colormap Specifies the colormap.

color Specifies the color cell and the color to store.Values specified in thisXcmsCol-
or structure remain unchanged on return.

The XcmsStoreColor function converts the color specified in theXcmsColor structure into
RGB values. Itthen uses this RGB specification in anXColor structure, whose three flags
(DoRed, DoGreen, and DoBlue) are set, in a call toXStoreColor to change the color cell spec-
ified by the pixel member of theXcmsColor structure. Thispixel value must be a valid index for
the specified colormap, and the color cell specified by the pixel value must be a read/write cell. If
the pixel value is not a valid index, aBadValue error results. If the color cell is unallocated or is
allocated read-only, a BadAccesserror results. If the colormap is an installed map for its screen,
the changes are visible immediately.

Note thatXStoreColor has no return value; therefore, anXcmsSuccessreturn value from this
function indicates that the conversion to RGB succeeded and the call toXStoreColor was made.
To obtain the actual color stored, useXcmsQueryColor. Because of the screen’s hardware limi-
tations or gamut compression, the color stored in the colormap may not be identical to the color
specified.

89

Xlib − C Library libX11 1.3.2

XcmsStoreColor can generateBadAccess, BadColor, and BadValue errors.

To store multiple colors of arbitrary format in multiple colormap cells, useXcmsStoreColors.

Status XcmsStoreColors(display, colormap, colors, ncolors, compression_flags_return)
Display *display;
Colormapcolormap;
XcmsColorcolors[];
int ncolors;
Bool compression_flags_return[];

display Specifies the connection to the X server.

colormap Specifies the colormap.

colors Specifies the color specification array ofXcmsColor structures, each specifying
a color cell and the color to store in that cell.Values specified in the array remain
unchanged upon return.

ncolors Specifies the number ofXcmsColor structures in the color-specification array.

compression_flags_return
Returns an array of Boolean values indicating compression status.If a non-
NULL pointer is supplied, each element of the array is set toTr ue if the corre-
sponding color was compressed andFalse otherwise. Pass NULL if the com-
pression status is not useful.

The XcmsStoreColorsfunction converts the colors specified in the array ofXcmsColor struc-
tures into RGB values and then uses these RGB specifications inXColor structures, whose three
flags (DoRed, DoGreen, and DoBlue) are set, in a call toXStoreColors to change the color
cells specified by the pixel member of the correspondingXcmsColor structure. Eachpixel value
must be a valid index for the specified colormap, and the color cell specified by each pixel value
must be a read/write cell. If a pixel value is not a valid index, aBadValue error results. If a
color cell is unallocated or is allocated read-only, a BadAccesserror results. If more than one
pixel is in error, the one that gets reported is arbitrary. If the colormap is an installed map for its
screen, the changes are visible immediately.

Note thatXStoreColors has no return value; therefore, anXcmsSuccessreturn value from this
function indicates that conversions to RGB succeeded and the call toXStoreColors was made.
To obtain the actual colors stored, useXcmsQueryColors. Because of the screen’s hardware
limitations or gamut compression, the colors stored in the colormap may not be identical to the
colors specified.

XcmsStoreColorscan generateBadAccess, BadColor, and BadValue errors.

To store a color specified by name in a single colormap cell, useXStoreNamedColor.

90

Xlib − C Library libX11 1.3.2

XStoreNamedColor (display, colormap, color, pixel, flags)
Display *display;
Colormapcolormap;
char *color;
unsigned longpixel;
int flags;

display Specifies the connection to the X server.

colormap Specifies the colormap.

color Specifies the color name string (for example, red).

pixel Specifies the entry in the colormap.

flags Specifies which red, green, and blue components are set.

The XStoreNamedColor function looks up the named color with respect to the screen associated
with the colormap and stores the result in the specified colormap. The pixel argument determines
the entry in the colormap. The flags argument determines which of the red, green, and blue com-
ponents are set.You can set this member to the bitwise inclusive OR of the bitsDoRed,
DoGreen, and DoBlue. If the color name is not in the Host Portable Character Encoding, the
result is implementation-dependent. Use of uppercase or lowercase does not matter. If the speci-
fied pixel is not a valid index into the colormap, aBadValue error results. If the specified pixel
either is unallocated or is allocated read-only, a BadAccesserror results.

XStoreNamedColor can generateBadAccess, BadColor, BadName, and BadValue errors.

The XQueryColor andXQueryColors functions take pixel values in the pixel member of
XColor structures and store in the structures the RGB values for those pixels from the specified
colormap. Thevalues returned for an unallocated entry are undefined. These functions also set
the flags member in theXColor structure to all three colors. If a pixel is not a valid index into
the specified colormap, aBadValue error results. If more than one pixel is in error, the one that
gets reported is arbitrary.

To query the RGB value of a single colormap cell, useXQueryColor .

XQueryColor (display, colormap, def_in_out)
Display *display;
Colormapcolormap;
XColor *def_in_out;

display Specifies the connection to the X server.

colormap Specifies the colormap.

def_in_out Specifies and returns the RGB values for the pixel specified in the structure.

The XQueryColor function returns the current RGB value for the pixel in theXColor structure
and sets theDoRed, DoGreen, and DoBlue flags.

XQueryColor can generateBadColor andBadValue errors.

To query the RGB values of multiple colormap cells, useXQueryColors.

91

Xlib − C Library libX11 1.3.2

XQueryColors (display, colormap, defs_in_out, ncolors)
Display *display;
Colormapcolormap;
XColor defs_in_out[];
int ncolors;

display Specifies the connection to the X server.

colormap Specifies the colormap.

defs_in_out Specifies and returns an array of color definition structures for the pixel specified
in the structure.

ncolors Specifies the number ofXColor structures in the color definition array.

The XQueryColors function returns the RGB value for each pixel in eachXColor structure and
sets theDoRed, DoGreen, and DoBlue flags in each structure.

XQueryColors can generateBadColor andBadValue errors.

To query the color of a single colormap cell in an arbitrary format, useXcmsQueryColor.

Status XcmsQueryColor(display, colormap, color_in_out, result_format)
Display *display;
Colormapcolormap;
XcmsColor *color_in_out;
XcmsColorFormatresult_format;

display Specifies the connection to the X server.

colormap Specifies the colormap.

color_in_out Specifies the pixel member that indicates the color cell to query. The color speci-
fication stored for the color cell is returned in thisXcmsColor structure.

result_format Specifies the color format for the returned color specification.

The XcmsQueryColor function obtains the RGB value for the pixel value in the pixel member
of the specifiedXcmsColor structure and then converts the value to the target format as specified
by the result_format argument. Ifthe pixel is not a valid index in the specified colormap, aBad-
Value error results.

XcmsQueryColor can generateBadColor andBadValue errors.

To query the color of multiple colormap cells in an arbitrary format, useXcmsQueryColors.

92

Xlib − C Library libX11 1.3.2

Status XcmsQueryColors(display, colormap, colors_in_out, ncolors, result_format)
Display *display;
Colormapcolormap;
XcmsColorcolors_in_out[];
unsigned intncolors;
XcmsColorFormatresult_format;

display Specifies the connection to the X server.

colormap Specifies the colormap.

colors_in_out Specifies an array ofXcmsColor structures, each pixel member indicating the
color cell to query. The color specifications for the color cells are returned in
these structures.

ncolors Specifies the number ofXcmsColor structures in the color-specification array.

result_format Specifies the color format for the returned color specification.

The XcmsQueryColors function obtains the RGB values for pixel values in the pixel members
of XcmsColor structures and then converts the values to the target format as specified by the
result_format argument. Ifa pixel is not a valid index into the specified colormap, aBadValue
error results. If more than one pixel is in error, the one that gets reported is arbitrary.

XcmsQueryColors can generateBadColor andBadValue errors.

6.8. ColorConversion Context Functions
This section describes functions to create, modify, and query Color Conversion Contexts (CCCs).

Associated with each colormap is an initial CCC transparently generated by Xlib. Therefore,
when you specify a colormap as an argument to a function, you are indirectly specifying a CCC.
The CCC attributes that can be modified by the X client are:

• Client White Point

• Gamut compression procedure and client data

• White point adjustment procedure and client data

The initial values for these attributes are implementation specific. The CCC attributes for subse-
quently created CCCs can be defined by changing the CCC attributes of the default CCC. There
is a default CCC associated with each screen.

6.8.1. Gettingand Setting the Color Conversion Context of a Colormap

To obtain the CCC associated with a colormap, useXcmsCCCOfColormap.

XcmsCCC XcmsCCCOfColormap(display, colormap)
Display *display;
Colormapcolormap;

display Specifies the connection to the X server.

colormap Specifies the colormap.

The XcmsCCCOfColormap function returns the CCC associated with the specified colormap.
Once obtained, the CCC attributes can be queried or modified. Unless the CCC associated with
the specified colormap is changed withXcmsSetCCCOfColormap, this CCC is used when the
specified colormap is used as an argument to color functions.

93

Xlib − C Library libX11 1.3.2

To change the CCC associated with a colormap, useXcmsSetCCCOfColormap.

XcmsCCC XcmsSetCCCOfColormap(display, colormap, ccc)
Display *display;
Colormapcolormap;
XcmsCCCccc;

display Specifies the connection to the X server.

colormap Specifies the colormap.

ccc Specifies the CCC.

The XcmsSetCCCOfColormap function changes the CCC associated with the specified col-
ormap. Itreturns the CCC previously associated with the colormap. If they are not used again in
the application, CCCs should be freed by callingXcmsFreeCCC. Sev eral colormaps may share
the same CCC without restriction; this includes the CCCs generated by Xlib with each colormap.
Xlib, however, creates a new CCC with each new colormap.

6.8.2. Obtainingthe Default Color Conversion Context
You can change the default CCC attributes for subsequently created CCCs by changing the CCC
attributes of the default CCC.A default CCC is associated with each screen.

To obtain the default CCC for a screen, useXcmsDefaultCCC.

XcmsCCC XcmsDefaultCCC (display, screen_number)
Display *display;
int screen_number;

display Specifies the connection to the X server.

screen_numberSpecifies the appropriate screen number on the host server.

The XcmsDefaultCCC function returns the default CCC for the specified screen. Its visual is
the default visual of the screen. Its initial gamut compression and white point adjustment proce-
dures as well as the associated client data are implementation specific.

6.8.3. ColorConversion Context Macros
Applications should not directly modify any part of theXcmsCCC. The following lists the C
language macros, their corresponding function equivalents for other language bindings, and what
data they both can return.

DisplayOfCCC (ccc)
XcmsCCCccc;

Display *XcmsDisplayOfCCC(ccc)
XcmsCCCccc;

ccc Specifies the CCC.

Both return the display associated with the specified CCC.

94

Xlib − C Library libX11 1.3.2

VisualOfCCC (ccc)
XcmsCCCccc;

Visual *XcmsVisualOfCCC (ccc)
XcmsCCCccc;

ccc Specifies the CCC.

Both return the visual associated with the specified CCC.

ScreenNumberOfCCC (ccc)
XcmsCCCccc;

int XcmsScreenNumberOfCCC(ccc)
XcmsCCCccc;

ccc Specifies the CCC.

Both return the number of the screen associated with the specified CCC.

ScreenWhitePointOfCCC (ccc)
XcmsCCCccc;

XcmsColor *XcmsScreenWhitePointOfCCC(ccc)
XcmsCCCccc;

ccc Specifies the CCC.

Both return the white point of the screen associated with the specified CCC.

ClientWhitePointOfCCC (ccc)
XcmsCCCccc;

XcmsColor *XcmsClientWhitePointOfCCC(ccc)
XcmsCCCccc;

ccc Specifies the CCC.

Both return the Client White Point of the specified CCC.

6.8.4. ModifyingAttributes of a Color Conversion Context
To set the Client White Point in the CCC, useXcmsSetWhitePoint.

95

Xlib − C Library libX11 1.3.2

Status XcmsSetWhitePoint(ccc, color)
XcmsCCCccc;
XcmsColor *color;

ccc Specifies the CCC.

color Specifies the new Client White Point.

The XcmsSetWhitePoint function changes the Client White Point in the specified CCC. Note
that the pixel member is ignored and that the color specification is left unchanged upon return.
The format for the new white point must beXcmsCIEXYZFormat , XcmsCIEuvYFormat ,
XcmsCIExyYFormat , or XcmsUndefinedFormat. If the color argument is NULL, this func-
tion sets the format component of the Client White Point specification toXcmsUndefinedFor-
mat, indicating that the Client White Point is assumed to be the same as the Screen White Point.

This function returns nonzero status if the format for the new white point is valid; otherwise, it
returns zero.

To set the gamut compression procedure and corresponding client data in a specified CCC, use
XcmsSetCompressionProc.

XcmsCompressionProc XcmsSetCompressionProc(ccc, compression_proc, client_data)
XcmsCCCccc;
XcmsCompressionProccompression_proc;
XPointerclient_data;

ccc Specifies the CCC.

compression_proc
Specifies the gamut compression procedure that is to be applied when a color lies
outside the screen’s color gamut. IfNULL is specified and a function using this
CCC must convert a color specification to a device-dependent format and en-
counters a color that lies outside the screen’s color gamut, that function will re-
turn XcmsFailure.

client_data Specifies client data for the gamut compression procedure or NULL.

The XcmsSetCompressionProcfunction first sets the gamut compression procedure and client
data in the specified CCC with the newly specified procedure and client data and then returns the
old procedure.

To set the white point adjustment procedure and corresponding client data in a specified CCC, use
XcmsSetWhiteAdjustProc.

96

Xlib − C Library libX11 1.3.2

XcmsWhiteAdjustProc XcmsSetWhiteAdjustProc(ccc, white_adjust_proc, client_data)
XcmsCCCccc;
XcmsWhiteAdjustProcwhite_adjust_proc;
XPointerclient_data;

ccc Specifies the CCC.

white_adjust_proc
Specifies the white point adjustment procedure.

client_data Specifies client data for the white point adjustment procedure or NULL.

The XcmsSetWhiteAdjustProc function first sets the white point adjustment procedure and
client data in the specified CCC with the newly specified procedure and client data and then
returns the old procedure.

6.8.5. Creating and Freeing a Color Conversion Context
You can explicitly create a CCC within your application by callingXcmsCreateCCC. These
created CCCs can then be used by those functions that explicitly call for a CCC argument. Old
CCCs that will not be used by the application should be freed usingXcmsFreeCCC.

To create a CCC, useXcmsCreateCCC.

97

Xlib − C Library libX11 1.3.2

XcmsCCC XcmsCreateCCC(display, screen_number, visual, client_white_point, compression_proc,
compression_client_data, white_adjust_proc, white_adjust_client_data)

Display *display;
int screen_number;
Visual *visual;
XcmsColor *client_white_point;
XcmsCompressionProccompression_proc;
XPointercompression_client_data;
XcmsWhiteAdjustProcwhite_adjust_proc;
XPointerwhite_adjust_client_data;

display Specifies the connection to the X server.

screen_numberSpecifies the appropriate screen number on the host server.

visual Specifies the visual type.

client_white_point
Specifies the Client White Point. If NULL is specified, the Client White Point is
to be assumed to be the same as the Screen White Point. Note that the pixel
member is ignored.

compression_proc
Specifies the gamut compression procedure that is to be applied when a color lies
outside the screen’s color gamut. IfNULL is specified and a function using this
CCC must convert a color specification to a device-dependent format and en-
counters a color that lies outside the screen’s color gamut, that function will re-
turn XcmsFailure.

compression_client_data
Specifies client data for use by the gamut compression procedure or NULL.

white_adjust_proc
Specifies the white adjustment procedure that is to be applied when the Client
White Point differs from the Screen White Point. NULL indicates that no white
point adjustment is desired.

white_adjust_client_data
Specifies client data for use with the white point adjustment procedure or NULL.

The XcmsCreateCCC function creates a CCC for the specified display, screen, and visual.

To free a CCC, useXcmsFreeCCC.

void XcmsFreeCCC(ccc)
XcmsCCCccc;

ccc Specifies the CCC.

The XcmsFreeCCC function frees the memory used for the specified CCC. Note that default
CCCs and those currently associated with colormaps are ignored.

6.9. Converting between Color Spaces

To convert an array of color specifications in arbitrary color formats to a single destination for-
mat, useXcmsConvertColors .

98

Xlib − C Library libX11 1.3.2

Status XcmsConvertColors (ccc, colors_in_out, ncolors, target_format, compression_flags_return)
XcmsCCCccc;
XcmsColorcolors_in_out[];
unsigned intncolors;
XcmsColorFormattarget_format;
Bool compression_flags_return[];

ccc Specifies the CCC. If conversion is between device-independent color spaces on-
ly (for example, TekHVC to CIELuv), the CCC is necessary only to specify the
Client White Point.

colors_in_out Specifies an array of color specifications.Pixel members are ignored and remain
unchanged upon return.

ncolors Specifies the number ofXcmsColor structures in the color-specification array.

target_format Specifies the target color specification format.

compression_flags_return
Returns an array of Boolean values indicating compression status.If a non-
NULL pointer is supplied, each element of the array is set toTr ue if the corre-
sponding color was compressed andFalse otherwise. Pass NULL if the com-
pression status is not useful.

The XcmsConvertColors function converts the color specifications in the specified array of
XcmsColor structures from their current format to a single target format, using the specified
CCC. Whenthe return value isXcmsFailure, the contents of the color specification array are left
unchanged.

The array may contain a mixture of color specification formats (for example, 3 CIE XYZ, 2 CIE
Luv, and so on). When the array contains both device-independent and device-dependent color
specifications and the target_format argument specifies a device-dependent format (for example,
XcmsRGBiFormat, XcmsRGBFormat), all specifications are converted to CIE XYZ format
and then to the target device-dependent format.

6.10. CallbackFunctions
This section describes the gamut compression and white point adjustment callbacks.

The gamut compression procedure specified in the CCC is called when an attempt to convert a
color specification fromXcmsCIEXYZ to a device-dependent format (typicallyXcmsRGBi)
results in a color that lies outside the screen’s color gamut. Ifthe gamut compression procedure
requires client data, this data is passed via the gamut compression client data in the CCC.

During color specification conversion between device-independent and device-dependent color
spaces, if a white point adjustment procedure is specified in the CCC, it is triggered when the
Client White Point and Screen White Point differ. If required, the client data is obtained from the
CCC.

6.10.1. Prototype Gamut Compression Procedure
The gamut compression callback interface must adhere to the following:

99

Xlib − C Library libX11 1.3.2

typedef Status (*XcmsCompressionProc) (ccc, colors_in_out, ncolors, index, compression_flags_return)
XcmsCCCccc;
XcmsColorcolors_in_out[];
unsigned intncolors;
unsigned intindex;
Bool compression_flags_return[];

ccc Specifies the CCC.

colors_in_out Specifies an array of color specifications.Pixel members should be ignored and
must remain unchanged upon return.

ncolors Specifies the number ofXcmsColor structures in the color-specification array.

index Specifies the index into the array ofXcmsColor structures for the encountered
color specification that lies outside the screen’s color gamut. Valid values are 0
(for the first element) to ncolors − 1.

compression_flags_return
Returns an array of Boolean values for indicating compression status.If a non-
NULL pointer is supplied and a color at a given index is compressed, thenTr ue
should be stored at the corresponding index in this array; otherwise, the array
should not be modified.

When implementing a gamut compression procedure, consider the following rules and assump-
tions:

• The gamut compression procedure can attempt to compress one or multiple specifications
at a time.

• When called, elements 0 to index − 1 in the color specification array can be assumed to fall
within the screen’s color gamut. Inaddition, these color specifications are already in some
device-dependent format (typicallyXcmsRGBi). If any modifications are made to these
color specifications, they must be in their initial device-dependent format upon return.

• When called, the element in the color specification array specified by the index argument
contains the color specification outside the screen’s color gamut encountered by the calling
routine. Inaddition, this color specification can be assumed to be inXcmsCIEXYZ .
Upon return, this color specification must be inXcmsCIEXYZ .

• When called, elements from index to ncolors − 1 in the color specification array may or
may not fall within the screen’s color gamut. Inaddition, these color specifications can be
assumed to be inXcmsCIEXYZ . If any modifications are made to these color specifica-
tions, they must be inXcmsCIEXYZ upon return.

• The color specifications passed to the gamut compression procedure have already been
adjusted to the Screen White Point. This means that at this point the color specification’s
white point is the Screen White Point.

• If the gamut compression procedure uses a device-independent color space not initially
accessible for use in the color management system, useXcmsAddColorSpaceto ensure
that it is added.

6.10.2. SuppliedGamut Compression Procedures
The following equations are useful in describing gamut compression functions:

CIELab PsychometricChroma= sqrt(a_star2 + b_star2)

CIELab PsychometricHue= tan−1

b_star

a_star

100

Xlib − C Library libX11 1.3.2

CIELuv PsychometricChroma= sqrt(u_star2 + v_star2)

CIELuv PsychometricHue= tan−1

v_star

u_star

The gamut compression callback procedures provided by Xlib are as follows:

• XcmsCIELabClipL
This brings the encountered out-of-gamut color specification into the screen’s color gamut
by reducing or increasing CIE metric lightness (L*) in the CIE L*a*b* color space until the
color is within the gamut. Ifthe Psychometric Chroma of the color specification is beyond
maximum for the Psychometric Hue Angle, then while maintaining the same Psychometric
Hue Angle, the color will be clipped to the CIE L*a*b* coordinates of maximum Psycho-
metric Chroma. SeeXcmsCIELabQueryMaxC . No client data is necessary.

• XcmsCIELabClipab
This brings the encountered out-of-gamut color specification into the screen’s color gamut
by reducing Psychometric Chroma, while maintaining Psychometric Hue Angle, until the
color is within the gamut. Noclient data is necessary.

• XcmsCIELabClipLab
This brings the encountered out-of-gamut color specification into the screen’s color gamut
by replacing it with CIE L*a*b* coordinates that fall within the color gamut while main-
taining the original Psychometric Hue Angle and whose vector to the original coordinates
is the shortest attainable. No client data is necessary.

• XcmsCIELuvClipL
This brings the encountered out-of-gamut color specification into the screen’s color gamut
by reducing or increasing CIE metric lightness (L*) in the CIE L*u*v* color space until the
color is within the gamut. Ifthe Psychometric Chroma of the color specification is beyond
maximum for the Psychometric Hue Angle, then, while maintaining the same Psychometric
Hue Angle, the color will be clipped to the CIE L*u*v* coordinates of maximum Psycho-
metric Chroma. SeeXcmsCIELuvQueryMaxC . No client data is necessary.

• XcmsCIELuvClipuv
This brings the encountered out-of-gamut color specification into the screen’s color gamut
by reducing Psychometric Chroma, while maintaining Psychometric Hue Angle, until the
color is within the gamut. Noclient data is necessary.

• XcmsCIELuvClipLuv
This brings the encountered out-of-gamut color specification into the screen’s color gamut
by replacing it with CIE L*u*v* coordinates that fall within the color gamut while main-
taining the original Psychometric Hue Angle and whose vector to the original coordinates
is the shortest attainable. No client data is necessary.

• XcmsTekHVCClipV
This brings the encountered out-of-gamut color specification into the screen’s color gamut
by reducing or increasing the Value dimension in the TekHVC color space until the color is
within the gamut. IfChroma of the color specification is beyond maximum for the particu-
lar Hue, then, while maintaining the same Hue, the color will be clipped to the Value and
Chroma coordinates that represent maximum Chroma for that particular Hue. No client
data is necessary.

• XcmsTekHVCClipC
This brings the encountered out-of-gamut color specification into the screen’s color gamut
by reducing the Chroma dimension in the TekHVC color space until the color is within the
gamut. Noclient data is necessary.

101

Xlib − C Library libX11 1.3.2

• XcmsTekHVCClipVC
This brings the encountered out-of-gamut color specification into the screen’s color gamut
by replacing it with TekHVC coordinates that fall within the color gamut while maintaining
the original Hue and whose vector to the original coordinates is the shortest attainable. No
client data is necessary.

6.10.3. Prototype White Point Adjustment Procedure
The white point adjustment procedure interface must adhere to the following:

typedef Status (*XcmsWhiteAdjustProc) (ccc, initial_white_point, target_white_point, target_format,
colors_in_out, ncolors, compression_flags_return)

XcmsCCCccc;
XcmsColor *initial_white_point;
XcmsColor *target_white_point;
XcmsColorFormattarget_format;
XcmsColorcolors_in_out[];
unsigned intncolors;
Bool compression_flags_return[];

ccc Specifies the CCC.

initial_white_point
Specifies the initial white point.

target_white_point
Specifies the target white point.

target_format Specifies the target color specification format.

colors_in_out Specifies an array of color specifications.Pixel members should be ignored and
must remain unchanged upon return.

ncolors Specifies the number ofXcmsColor structures in the color-specification array.

compression_flags_return
Returns an array of Boolean values for indicating compression status. If a non-
NULL pointer is supplied and a color at a given index is compressed, thenTr ue
should be stored at the corresponding index in this array; otherwise, the array
should not be modified.

6.10.4. SuppliedWhite Point Adjustment Procedures
White point adjustment procedures provided by Xlib are as follows:

• XcmsCIELabWhiteShiftColors
This uses the CIE L*a*b* color space for adjusting the chromatic character of colors to
compensate for the chromatic differences between the source and destination white points.
This procedure simply converts the color specifications toXcmsCIELab using the source
white point and then converts to the target specification format using the destination’s white
point. Noclient data is necessary.

• XcmsCIELuvWhiteShiftColors
This uses the CIE L*u*v* color space for adjusting the chromatic character of colors to
compensate for the chromatic differences between the source and destination white points.
This procedure simply converts the color specifications toXcmsCIELuv using the source
white point and then converts to the target specification format using the destination’s white
point. Noclient data is necessary.

102

Xlib − C Library libX11 1.3.2

• XcmsTekHVCWhiteShiftColors
This uses the TekHVC color space for adjusting the chromatic character of colors to com-
pensate for the chromatic differences between the source and destination white points. This
procedure simply converts the color specifications toXcmsTekHVC using the source
white point and then converts to the target specification format using the destination’s white
point. Anadvantage of this procedure over those previously described is an attempt to min-
imize hue shift. No client data is necessary.

From an implementation point of view, these white point adjustment procedures convert the color
specifications to a device-independent but white-point-dependent color space (for example, CIE
L*u*v*, CIE L*a*b*, TekHVC) using one white point and then converting those specifications to
the target color space using another white point. In other words, the specification goes in the
color space with one white point but comes out with another white point, resulting in a chromatic
shift based on the chromatic displacement between the initial white point and target white point.
The CIE color spaces that are assumed to be white-point-independent are CIE u’v’Y, CIE XYZ,
and CIE xyY. When developing a custom white point adjustment procedure that uses a device-
independent color space not initially accessible for use in the color management system, use
XcmsAddColorSpaceto ensure that it is added.

As an example, if the CCC specifies a white point adjustment procedure and if the Client White
Point and Screen White Point differ, the XcmsAllocColor function will use the white point
adjustment procedure twice:

• Once to convert to XcmsRGB
• A second time to convert from XcmsRGB
For example, assume the specification is inXcmsCIEuvY and the adjustment procedure isXcm-
sCIELuvWhiteShiftColors . During conversion toXcmsRGB, the call toXcmsAllocColor
results in the following series of color specification conversions:

• From XcmsCIEuvY to XcmsCIELuv using the Client White Point

• From XcmsCIELuv to XcmsCIEuvY using the Screen White Point

• From XcmsCIEuvY to XcmsCIEXYZ (CIE u’v’Y and XYZ are white-point-independent
color spaces)

• From XcmsCIEXYZ to XcmsRGBi
• From XcmsRGBi to XcmsRGB
The resulting RGB specification is passed toXAllocColor , and the RGB specification returned
by XAllocColor is converted back toXcmsCIEuvY by reversing the color conversion sequence.

6.11. GamutQuerying Functions
This section describes the gamut querying functions that Xlib provides. Thesefunctions allow
the client to query the boundary of the screen’s color gamut in terms of the CIE L*a*b*, CIE
L*u*v*, and TekHVC color spaces. Functions are also provided that allow you to query the color
specification of:

• White (full-intensity red, green, and blue)

• Red (full-intensity red while green and blue are zero)

• Green (full-intensity green while red and blue are zero)

• Blue (full-intensity blue while red and green are zero)

• Black (zero-intensity red, green, and blue)

The white point associated with color specifications passed to and returned from these gamut
querying functions is assumed to be the Screen White Point. This is a reasonable assumption,
because the client is trying to query the screen’s color gamut.

103

Xlib − C Library libX11 1.3.2

The following naming convention is used for the Max and Min functions:

Xcms<color_space>QueryMax<dimensions>

Xcms<color_space>QueryMin<dimensions>

The <dimensions> consists of a letter or letters that identify the dimensions of the color space that
are not fixed. For example,XcmsTekHVCQueryMaxC is given a fixed Hue and Value for
which maximum Chroma is found.

6.11.1. Red,Green, and Blue Queries
To obtain the color specification for black (zero-intensity red, green, and blue), useXcmsQuery-
Black.

Status XcmsQueryBlack(ccc, target_format, color_return)
XcmsCCCccc;
XcmsColorFormattarget_format;
XcmsColor *color_return;

ccc Specifies the CCC. The CCC’s Client White Point and white point adjustment
procedures are ignored.

target_format Specifies the target color specification format.

color_return Returns the color specification in the specified target format for zero-intensity
red, green, and blue.The white point associated with the returned color specifi-
cation is the Screen White Point. The value returned in the pixel member is un-
defined.

The XcmsQueryBlack function returns the color specification in the specified target format for
zero-intensity red, green, and blue.

To obtain the color specification for blue (full-intensity blue while red and green are zero), use
XcmsQueryBlue.

Status XcmsQueryBlue(ccc, target_format, color_return)
XcmsCCCccc;
XcmsColorFormattarget_format;
XcmsColor *color_return;

ccc Specifies the CCC. The CCC’s Client White Point and white point adjustment
procedures are ignored.

target_format Specifies the target color specification format.

color_return Returns the color specification in the specified target format for full-intensity
blue while red and green are zero.The white point associated with the returned
color specification is the Screen White Point. The value returned in the pixel
member is undefined.

The XcmsQueryBlue function returns the color specification in the specified target format for
full-intensity blue while red and green are zero.

To obtain the color specification for green (full-intensity green while red and blue are zero), use
XcmsQueryGreen.

104

Xlib − C Library libX11 1.3.2

Status XcmsQueryGreen(ccc, target_format, color_return)
XcmsCCCccc;
XcmsColorFormattarget_format;
XcmsColor *color_return;

ccc Specifies the CCC. The CCC’s Client White Point and white point adjustment
procedures are ignored.

target_format Specifies the target color specification format.

color_return Returns the color specification in the specified target format for full-intensity
green while red and blue are zero.The white point associated with the returned
color specification is the Screen White Point. The value returned in the pixel
member is undefined.

The XcmsQueryGreen function returns the color specification in the specified target format for
full-intensity green while red and blue are zero.

To obtain the color specification for red (full-intensity red while green and blue are zero), use
XcmsQueryRed.

Status XcmsQueryRed(ccc, target_format, color_return)
XcmsCCCccc;
XcmsColorFormattarget_format;
XcmsColor *color_return;

ccc Specifies the CCC. The CCC’s Client White Point and white point adjustment
procedures are ignored.

target_format Specifies the target color specification format.

color_return Returns the color specification in the specified target format for full-intensity red
while green and blue are zero.The white point associated with the returned color
specification is the Screen White Point. The value returned in the pixel member
is undefined.

The XcmsQueryRed function returns the color specification in the specified target format for
full-intensity red while green and blue are zero.

To obtain the color specification for white (full-intensity red, green, and blue), useXcmsQuery-
White .

Status XcmsQueryWhite(ccc, target_format, color_return)
XcmsCCCccc;
XcmsColorFormattarget_format;
XcmsColor *color_return;

ccc Specifies the CCC. The CCC’s Client White Point and white point adjustment
procedures are ignored.

target_format Specifies the target color specification format.

color_return Returns the color specification in the specified target format for full-intensity red,
green, and blue. The white point associated with the returned color specification
is the Screen White Point. The value returned in the pixel member is undefined.

105

Xlib − C Library libX11 1.3.2

The XcmsQueryWhite function returns the color specification in the specified target format for
full-intensity red, green, and blue.

6.11.2. CIELabQueries
The following equations are useful in describing the CIELab query functions:

CIELab PsychometricChroma= sqrt(a_star2 + b_star2)

CIELab PsychometricHue= tan−1

b_star

a_star

To obtain the CIE L*a*b* coordinates of maximum Psychometric Chroma for a given Psychome-
tric Hue Angle and CIE metric lightness (L*), useXcmsCIELabQueryMaxC .

Status XcmsCIELabQueryMaxC(ccc, hue_angle, L_star, color_return)
XcmsCCCccc;
XcmsFloathue_angle;
XcmsFloatL_star;
XcmsColor *color_return;

ccc Specifies the CCC.The CCC’s Client White Point and white point adjustment
procedures are ignored.

hue_angle Specifies the hue angle (in degrees) at which to find maximum chroma.

L_star Specifies the lightness (L*) at which to find maximum chroma.

color_return Returns the CIE L*a*b* coordinates of maximum chroma displayable by the
screen for the given hue angle and lightness. The white point associated with the
returned color specification is the Screen White Point. The value returned in the
pixel member is undefined.

The XcmsCIELabQueryMaxC function, given a hue angle and lightness, finds the point of
maximum chroma displayable by the screen. It returns this point in CIE L*a*b* coordinates.

To obtain the CIE L*a*b* coordinates of maximum CIE metric lightness (L*) for a given Psycho-
metric Hue Angle and Psychometric Chroma, useXcmsCIELabQueryMaxL .

Status XcmsCIELabQueryMaxL(ccc, hue_angle, chroma, color_return)
XcmsCCCccc;
XcmsFloathue_angle;
XcmsFloatchroma;
XcmsColor *color_return;

ccc Specifies the CCC.The CCC’s Client White Point and white point adjustment
procedures are ignored.

hue_angle Specifies the hue angle (in degrees) at which to find maximum lightness.

chroma Specifies the chroma at which to find maximum lightness.

color_return Returns the CIE L*a*b* coordinates of maximum lightness displayable by the
screen for the given hue angle and chroma. The white point associated with the
returned color specification is the Screen White Point. The value returned in the
pixel member is undefined.

The XcmsCIELabQueryMaxL function, given a hue angle and chroma, finds the point in CIE

106

Xlib − C Library libX11 1.3.2

L*a*b* color space of maximum lightness (L*) displayable by the screen. It returns this point in
CIE L*a*b* coordinates. AnXcmsFailure return value usually indicates that the given chroma
is beyond maximum for the given hue angle.

To obtain the CIE L*a*b* coordinates of maximum Psychometric Chroma for a given Psychome-
tric Hue Angle, useXcmsCIELabQueryMaxLC .

Status XcmsCIELabQueryMaxLC(ccc, hue_angle, color_return)
XcmsCCCccc;
XcmsFloathue_angle;
XcmsColor *color_return;

ccc Specifies the CCC.The CCC’s Client White Point and white point adjustment
procedures are ignored.

hue_angle Specifies the hue angle (in degrees) at which to find maximum chroma.

color_return Returns the CIE L*a*b* coordinates of maximum chroma displayable by the
screen for the given hue angle.The white point associated with the returned col-
or specification is the Screen White Point.The value returned in the pixel mem-
ber is undefined.

The XcmsCIELabQueryMaxLC function, given a hue angle, finds the point of maximum
chroma displayable by the screen. It returns this point in CIE L*a*b* coordinates.

To obtain the CIE L*a*b* coordinates of minimum CIE metric lightness (L*) for a given Psycho-
metric Hue Angle and Psychometric Chroma, useXcmsCIELabQueryMinL .

Status XcmsCIELabQueryMinL(ccc, hue_angle, chroma, color_return)
XcmsCCCccc;
XcmsFloathue_angle;
XcmsFloatchroma;
XcmsColor *color_return;

ccc Specifies the CCC.The CCC’s Client White Point and white point adjustment
procedures are ignored.

hue_angle Specifies the hue angle (in degrees) at which to find minimum lightness.

chroma Specifies the chroma at which to find minimum lightness.

color_return Returns the CIE L*a*b* coordinates of minimum lightness displayable by the
screen for the given hue angle and chroma. The white point associated with the
returned color specification is the Screen White Point. The value returned in the
pixel member is undefined.

The XcmsCIELabQueryMinL function, given a hue angle and chroma, finds the point of mini-
mum lightness (L*) displayable by the screen. It returns this point in CIE L*a*b* coordinates.
An XcmsFailure return value usually indicates that the given chroma is beyond maximum for the
given hue angle.

6.11.3. CIELuvQueries
The following equations are useful in describing the CIELuv query functions:

CIELuv PsychometricChroma= sqrt(u_star2 + v_star2)

CIELuv PsychometricHue= tan−1

v_star

u_star

107

Xlib − C Library libX11 1.3.2

To obtain the CIE L*u*v* coordinates of maximum Psychometric Chroma for a given Psychome-
tric Hue Angle and CIE metric lightness (L*), useXcmsCIELuvQueryMaxC .

Status XcmsCIELuvQueryMaxC(ccc, hue_angle, L_star, color_return)
XcmsCCCccc;
XcmsFloathue_angle;
XcmsFloatL_star;
XcmsColor *color_return;

ccc Specifies the CCC.The CCC’s Client White Point and white point adjustment
procedures are ignored.

hue_angle Specifies the hue angle (in degrees) at which to find maximum chroma.

L_star Specifies the lightness (L*) at which to find maximum chroma.

color_return Returns the CIE L*u*v* coordinates of maximum chroma displayable by the
screen for the given hue angle and lightness. The white point associated with the
returned color specification is the Screen White Point. The value returned in the
pixel member is undefined.

The XcmsCIELuvQueryMaxC function, given a hue angle and lightness, finds the point of
maximum chroma displayable by the screen. It returns this point in CIE L*u*v* coordinates.

To obtain the CIE L*u*v* coordinates of maximum CIE metric lightness (L*) for a given Psycho-
metric Hue Angle and Psychometric Chroma, useXcmsCIELuvQueryMaxL .

Status XcmsCIELuvQueryMaxL(ccc, hue_angle, chroma, color_return)
XcmsCCCccc;
XcmsFloathue_angle;
XcmsFloatchroma;
XcmsColor *color_return;

ccc Specifies the CCC.The CCC’s Client White Point and white point adjustment
procedures are ignored.

hue_angle Specifies the hue angle (in degrees) at which to find maximum lightness.

L_star Specifies the lightness (L*) at which to find maximum lightness.

color_return Returns the CIE L*u*v* coordinates of maximum lightness displayable by the
screen for the given hue angle and chroma. The white point associated with the
returned color specification is the Screen White Point. The value returned in the
pixel member is undefined.

The XcmsCIELuvQueryMaxL function, given a hue angle and chroma, finds the point in CIE
L*u*v* color space of maximum lightness (L*) displayable by the screen. It returns this point in
CIE L*u*v* coordinates. AnXcmsFailure return value usually indicates that the given chroma
is beyond maximum for the given hue angle.

To obtain the CIE L*u*v* coordinates of maximum Psychometric Chroma for a given Psychome-
tric Hue Angle, useXcmsCIELuvQueryMaxLC .

108

Xlib − C Library libX11 1.3.2

Status XcmsCIELuvQueryMaxLC(ccc, hue_angle, color_return)
XcmsCCCccc;
XcmsFloathue_angle;
XcmsColor *color_return;

ccc Specifies the CCC.The CCC’s Client White Point and white point adjustment
procedures are ignored.

hue_angle Specifies the hue angle (in degrees) at which to find maximum chroma.

color_return Returns the CIE L*u*v* coordinates of maximum chroma displayable by the
screen for the given hue angle.The white point associated with the returned col-
or specification is the Screen White Point.The value returned in the pixel mem-
ber is undefined.

The XcmsCIELuvQueryMaxLC function, given a hue angle, finds the point of maximum
chroma displayable by the screen. It returns this point in CIE L*u*v* coordinates.

To obtain the CIE L*u*v* coordinates of minimum CIE metric lightness (L*) for a given Psycho-
metric Hue Angle and Psychometric Chroma, useXcmsCIELuvQueryMinL .

Status XcmsCIELuvQueryMinL(ccc, hue_angle, chroma, color_return)
XcmsCCCccc;
XcmsFloathue_angle;
XcmsFloatchroma;
XcmsColor *color_return;

ccc Specifies the CCC.The CCC’s Client White Point and white point adjustment
procedures are ignored.

hue_angle Specifies the hue angle (in degrees) at which to find minimum lightness.

chroma Specifies the chroma at which to find minimum lightness.

color_return Returns the CIE L*u*v* coordinates of minimum lightness displayable by the
screen for the given hue angle and chroma. The white point associated with the
returned color specification is the Screen White Point. The value returned in the
pixel member is undefined.

The XcmsCIELuvQueryMinL function, given a hue angle and chroma, finds the point of mini-
mum lightness (L*) displayable by the screen. It returns this point in CIE L*u*v* coordinates.
An XcmsFailure return value usually indicates that the given chroma is beyond maximum for the
given hue angle.

6.11.4. TekHVC Queries
To obtain the maximum Chroma for a given Hue and Value, useXcmsTekHVCQueryMaxC .

109

Xlib − C Library libX11 1.3.2

Status XcmsTekHVCQueryMaxC (ccc, hue, value, color_return)
XcmsCCCccc;
XcmsFloathue;
XcmsFloatvalue;
XcmsColor *color_return;

ccc Specifies the CCC. The CCC’s Client White Point and white point adjustment
procedures are ignored.

hue Specifies the Hue in which to find the maximum Chroma.

value Specifies the Value in which to find the maximum Chroma.

color_return Returns the maximum Chroma along with the actual Hue and Value atwhich the
maximum Chroma was found. The white point associated with the returned col-
or specification is the Screen White Point.The value returned in the pixel mem-
ber is undefined.

The XcmsTekHVCQueryMaxC function, given a Hue and Value, determines the maximum
Chroma in TekHVC color space displayable by the screen. It returns the maximum Chroma
along with the actual Hue and Value at which the maximum Chroma was found.

To obtain the maximum Value for a given Hue and Chroma, useXcmsTekHVCQueryMaxV .

Status XcmsTekHVCQueryMaxV (ccc, hue, chroma, color_return)
XcmsCCCccc;
XcmsFloathue;
XcmsFloatchroma;
XcmsColor *color_return;

ccc Specifies the CCC. The CCC’s Client White Point and white point adjustment
procedures are ignored.

hue Specifies the Hue in which to find the maximum Value.

chroma Specifies the chroma at which to find maximum Value.

color_return Returns the maximum Value along with the Hue and Chroma at which the maxi-
mum Value was found.The white point associated with the returned color speci-
fication is the Screen White Point. The value returned in the pixel member is un-
defined.

The XcmsTekHVCQueryMaxV function, given a Hue and Chroma, determines the maximum
Value in TekHVC color space displayable by the screen. It returns the maximum Value and the
actual Hue and Chroma at which the maximum Value was found.

To obtain the maximum Chroma and Value at which it is reached for a specified Hue, useXcm-
sTekHVCQueryMaxVC .

110

Xlib − C Library libX11 1.3.2

Status XcmsTekHVCQueryMaxVC (ccc, hue, color_return)
XcmsCCCccc;
XcmsFloathue;
XcmsColor *color_return;

ccc Specifies the CCC.The CCC’s Client White Point and white point adjustment
procedures are ignored.

hue Specifies the Hue in which to find the maximum Chroma.

color_return Returns the color specification in XcmsTekHVC for the maximum Chroma, the
Value at which that maximum Chroma is reached, and the actual Hue at which
the maximum Chroma was found. The white point associated with the returned
color specification is the Screen White Point. The value returned in the pixel
member is undefined.

The XcmsTekHVCQueryMaxVC function, given a Hue, determines the maximum Chroma in
TekHVC color space displayable by the screen and the Value at which that maximum Chroma is
reached. Itreturns the maximum Chroma, the Value at which that maximum Chroma is reached,
and the actual Hue for which the maximum Chroma was found.

To obtain a specified number of TekHVC specifications such that they contain maximum Values
for a specified Hue and the Chroma at which the maximum Values are reached, useXcm-
sTekHVCQueryMaxVSamples.

Status XcmsTekHVCQueryMaxVSamples (ccc, hue, colors_return, nsamples)
XcmsCCCccc;
XcmsFloathue;
XcmsColorcolors_return[];
unsigned intnsamples;

ccc Specifies the CCC.The CCC’s Client White Point and white point adjustment
procedures are ignored.

hue Specifies the Hue for maximum Chroma/Value samples.

nsamples Specifies the number of samples.

colors_return Returns nsamples of color specifications in XcmsTekHVC such that the Chroma
is the maximum attainable for the Value and Hue.The white point associated
with the returned color specification is the Screen White Point.The value re-
turned in the pixel member is undefined.

The XcmsTekHVCQueryMaxVSamples returns nsamples of maximum Value, the Chroma at
which that maximum Value is reached, and the actual Hue for which the maximum Chroma was
found. Thesesample points may then be used to plot the maximum Value/Chroma boundary of
the screen’s color gamut for the specified Hue in TekHVC color space.

To obtain the minimum Value for a given Hue and Chroma, useXcmsTekHVCQueryMinV .

111

Xlib − C Library libX11 1.3.2

Status XcmsTekHVCQueryMinV (ccc, hue, chroma, color_return)
XcmsCCCccc;
XcmsFloathue;
XcmsFloatchroma;
XcmsColor *color_return;

ccc Specifies the CCC. The CCC’s Client White Point and white point adjustment
procedures are ignored.

hue Specifies the Hue in which to find the minimum Value.

value Specifies the Value in which to find the minimum Value.

color_return Returns the minimum Value and the actual Hue and Chroma at which the mini-
mum Value was found.The white point associated with the returned color speci-
fication is the Screen White Point. The value returned in the pixel member is un-
defined.

The XcmsTekHVCQueryMinV function, given a Hue and Chroma, determines the minimum
Value in TekHVC color space displayable by the screen. It returns the minimum Value and the
actual Hue and Chroma at which the minimum Value was found.

6.12. ColorManagement Extensions
The Xlib color management facilities can be extended in two ways:

• Device-Independent Color Spaces

Device-independent color spaces that are derivable to CIE XYZ space can be added using
the XcmsAddColorSpacefunction.

• Color Characterization Function Set

A Color Characterization Function Set consists of device-dependent color spaces and their
functions that convert between these color spaces and the CIE XYZ color space, bundled
together for a specific class of output devices. Afunction set can be added using theXcm-
sAddFunctionSet function.

6.12.1. ColorSpaces
The CIE XYZ color space serves as the hub for all conversions between device-independent and
device-dependent color spaces. Therefore, the knowledge to convert anXcmsColor structure to
and from CIE XYZ format is associated with each color space.For example, conversion from
CIE L*u*v* to RGB requires the knowledge to convert from CIE L*u*v* to CIE XYZ and from
CIE XYZ to RGB. This knowledge is stored as an array of functions that, when applied in series,
will convert theXcmsColor structure to or from CIE XYZ format. This color specification con-
version mechanism facilitates the addition of color spaces.

Of course, when converting between only device-independent color spaces or only device-depen-
dent color spaces, shortcuts are taken whenever possible. For example, conversion from TekHVC
to CIE L*u*v* is performed by intermediate conversion to CIE u*v*Y and then to CIE L*u*v*,
thus bypassing conversion between CIE u*v*Y and CIE XYZ.

6.12.2. AddingDevice-Independent Color Spaces
To add a device-independent color space, useXcmsAddColorSpace.

112

Xlib − C Library libX11 1.3.2

Status XcmsAddColorSpace(color_space)
XcmsColorSpace *color_space;

color_space Specifies the device-independent color space to add.

The XcmsAddColorSpacefunction makes a device-independent color space (actually anXcms-
ColorSpacestructure) accessible by the color management system. Because format values for
unregistered color spaces are assigned at run time, they should be treated as private to the client.
If references to an unregistered color space must be made outside the client (for example, storing
color specifications in a file using the unregistered color space), then reference should be made by
color space prefix (seeXcmsFormatOfPrefix andXcmsPrefixOfFormat).
If the XcmsColorSpacestructure is already accessible in the color management system,Xcm-
sAddColorSpacereturnsXcmsSuccess.
Note that addedXcmsColorSpacesmust be retained for reference by Xlib.

6.12.3. QueryingColor Space Format and Prefix
To obtain the format associated with the color space associated with a specified color string pre-
fix, useXcmsFormatOfPrefix.

XcmsColorFormat XcmsFormatOfPrefix (prefix)
char *prefix;

prefix Specifies the string that contains the color space prefix.

The XcmsFormatOfPrefix function returns the format for the specified color space prefix (for
example, the string ‘‘CIEXYZ’’). Theprefix is case-insensitive. If the color space is not accessi-
ble in the color management system,XcmsFormatOfPrefix returnsXcmsUndefinedFormat.

To obtain the color string prefix associated with the color space specified by a color format, use
XcmsPrefixOfFormat.

char *XcmsPrefixOfFormat (format)
XcmsColorFormatformat;

format Specifies the color specification format.

The XcmsPrefixOfFormat function returns the string prefix associated with the color specifica-
tion encoding specified by the format argument. Otherwise,if no encoding is found, it returns
NULL. The returned string must be treated as read-only.

6.12.4. Creating Additional Color Spaces
Color space specific information necessary for color space conversion and color string parsing is
stored in anXcmsColorSpacestructure. Therefore,a new structure containing this information
is required for each additional color space. In the case of device-independent color spaces, a han-
dle to this new structure (that is, by means of a global variable) is usually made accessible to the
client program for use with theXcmsAddColorSpacefunction.

If a newXcmsColorSpacestructure specifies a color space not registered with the X Consor-
tium, they should be treated as private to the client because format values for unregistered color
spaces are assigned at run time. If references to an unregistered color space must be made outside
the client (for example, storing color specifications in a file using the unregistered color space),
then reference should be made by color space prefix (seeXcmsFormatOfPrefix and

113

Xlib − C Library libX11 1.3.2

XcmsPrefixOfFormat).

typedef (*XcmsConversionProc)();
typedef XcmsConversionProc *XcmsFuncListPtr;

/* A NULL terminated list of function pointers*/

typedef struct _XcmsColorSpace {
char *prefix;
XcmsColorFormat format;
XcmsParseStringProc parseString;
XcmsFuncListPtr to_CIEXYZ;
XcmsFuncListPtr from_CIEXYZ;
int inverse_flag;

} X cmsColorSpace;

The prefix member specifies the prefix that indicates a color string is in this color space’s string
format. For example, the strings ‘‘ciexyz’’ or ‘ ‘CIEXYZ’ ’ f or CIE XYZ, and ‘‘rgb’’ or ‘ ‘RGB’’
for RGB. The prefix is case insensitive. The format member specifies the color specification for-
mat. Formats for unregistered color spaces are assigned at run time. The parseString member
contains a pointer to the function that can parse a color string into anXcmsColor structure. This
function returns an integer (int): nonzero if it succeeded and zero otherwise. The to_CIEXYZ
and from_CIEXYZ members contain pointers, each to a NULL terminated list of function point-
ers. Whenthe list of functions is executed in series, it will convert the color specified in anXcm-
sColor structure from/to the current color space format to/from the CIE XYZ format. Each func-
tion returns an integer (int): nonzero if it succeeded and zero otherwise. The white point to be
associated with the colors is specified explicitly, even though white points can be found in the
CCC. Theinverse_flag member, if nonzero, specifies that for each function listed in to_CIEXYZ,
its inverse function can be found in from_CIEXYZ such that:

Given: n= number of functions in each list

for each i, such that 0 <= i < n
from_CIEXYZ[n - i - 1] is the inverse of to_CIEXYZ[i].

This allows Xlib to use the shortest conversion path, thus bypassing CIE XYZ if possible (for
example, TekHVC to CIE L*u*v*).

6.12.5. Parse String Callback
The callback in theXcmsColorSpacestructure for parsing a color string for the particular color
space must adhere to the following software interface specification:

typedef int (*XcmsParseStringProc) (color_string, color_return)
char *color_string;
XcmsColor *color_return;

color_string Specifies the color string to parse.

color_return Returns the color specification in the color space’s format.

114

Xlib − C Library libX11 1.3.2

6.12.6. ColorSpecification Conversion Callback
Callback functions in theXcmsColorSpacestructure for converting a color specification
between device-independent spaces must adhere to the following software interface specification:

Status ConversionProc (ccc, white_point, colors_in_out, ncolors)
XcmsCCCccc;
XcmsColor *white_point;
XcmsColor *colors_in_out;
unsigned intncolors;

ccc Specifies the CCC.

white_point Specifies the white point associated with color specifications.The pixel member
should be ignored, and the entire structure remain unchanged upon return.

colors_in_out Specifies an array of color specifications.Pixel members should be ignored and
must remain unchanged upon return.

ncolors Specifies the number ofXcmsColor structures in the color-specification array.

Callback functions in theXcmsColorSpacestructure for converting a color specification to or
from a device-dependent space must adhere to the following software interface specification:

Status ConversionProc (ccc, colors_in_out, ncolors, compression_flags_return)
XcmsCCCccc;
XcmsColor *colors_in_out;
unsigned intncolors;
Bool compression_flags_return[];

ccc Specifies the CCC.

colors_in_out Specifies an array of color specifications.Pixel members should be ignored and
must remain unchanged upon return.

ncolors Specifies the number ofXcmsColor structures in the color-specification array.

compression_flags_return
Returns an array of Boolean values for indicating compression status.If a non-
NULL pointer is supplied and a color at a given index is compressed, thenTr ue
should be stored at the corresponding index in this array; otherwise, the array
should not be modified.

Conversion functions are available globally for use by other color spaces. The conversion func-
tions provided by Xlib are:

Function Converts fr om Converts to

XcmsCIELabToCIEXYZ XcmsCIELabFormat XcmsCIEXYZFormat
XcmsCIELuvToCIEuvY XcmsCIELuvFormat XcmsCIEuvYFormat
XcmsCIEXYZToCIELab XcmsCIEXYZFormat XcmsCIELabFormat
XcmsCIEXYZToCIEuvY XcmsCIEXYZFormat XcmsCIEuvYFormat
XcmsCIEXYZToCIExyY XcmsCIEXYZFormat XcmsCIExyYFormat
XcmsCIEXYZToRGBi XcmsCIEXYZFormat XcmsRGBiFormat
XcmsCIEuvYToCIELuv XcmsCIEuvYFormat XcmsCIELabFormat
XcmsCIEuvYToCIEXYZ XcmsCIEuvYFormat XcmsCIEXYZFormat
XcmsCIEuvYToTekHVC XcmsCIEuvYFormat XcmsTekHVCFormat

115

Xlib − C Library libX11 1.3.2

Function Converts fr om Converts to

XcmsCIExyYToCIEXYZ XcmsCIExyYFormat XcmsCIEXYZFormat
XcmsRGBToRGBi XcmsRGBFormat XcmsRGBiFormat
XcmsRGBiToCIEXYZ XcmsRGBiFormat XcmsCIEXYZFormat
XcmsRGBiToRGB XcmsRGBiFormat XcmsRGBFormat
XcmsTekHVCToCIEuvY XcmsTekHVCFormat XcmsCIEuvYFormat

6.12.7. FunctionSets
Functions to convert between device-dependent color spaces and CIE XYZ may differ for differ-
ent classes of output devices (for example, color versus gray monitors). Therefore, the notion of a
Color Characterization Function Set has been developed. Afunction set consists of device-
dependent color spaces and the functions that convert color specifications between these device-
dependent color spaces and the CIE XYZ color space appropriate for a particular class of output
devices. Thefunction set also contains a function that reads color characterization data off root
window properties. Itis this characterization data that will differ between devices within a class
of output devices. For details about how color characterization data is stored in root window
properties, see the section on Device Color Characterization in theInter-Client Communication
Conventions Manual. The LINEAR_RGB function set is provided by Xlib and will support most
color monitors. Function sets may require data that differs from those needed for the LIN-
EAR_RGB function set. In that case, its corresponding data may be stored on different root win-
dow properties.

6.12.8. AddingFunction Sets
To add a function set, useXcmsAddFunctionSet.

Status XcmsAddFunctionSet(function_set)
XcmsFunctionSet *function_set;

function_set Specifies the function set to add.

The XcmsAddFunctionSet function adds a function set to the color management system. If the
function set uses device-dependentXcmsColorSpacestructures not accessible in the color man-
agement system,XcmsAddFunctionSetadds them. If an addedXcmsColorSpacestructure is
for a device-dependent color space not registered with the X Consortium, they should be treated
as private to the client because format values for unregistered color spaces are assigned at run
time. If references to an unregistered color space must be made outside the client (for example,
storing color specifications in a file using the unregistered color space), then reference should be
made by color space prefix (seeXcmsFormatOfPrefix andXcmsPrefixOfFormat).
Additional function sets should be added before any calls to other Xlib routines are made. If not,
the XcmsPerScrnInfo member of a previously createdXcmsCCC does not have the opportunity
to initialize with the added function set.

6.12.9. Creating Additional Function Sets
The creation of additional function sets should be required only when an output device does not
conform to existing function sets or when additional device-dependent color spaces are necessary.
A function set consists primarily of a collection of device-dependentXcmsColorSpacestruc-
tures and a means to read and store a screen’s color characterization data. This data is stored in
an XcmsFunctionSetstructure. Ahandle to this structure (that is, by means of global variable)
is usually made accessible to the client program for use withXcmsAddFunctionSet.

116

Xlib − C Library libX11 1.3.2

If a function set uses new device-dependentXcmsColorSpacestructures, they will be transpar-
ently processed into the color management system. Function sets can share anXcmsColorSpace
structure for a device-dependent color space. In addition, multipleXcmsColorSpacestructures
are allowed for a device-dependent color space; however, a function set can reference only one of
them. TheseXcmsColorSpacestructures will differ in the functions to convert to and from CIE
XYZ, thus tailored for the specific function set.

typedef struct _XcmsFunctionSet {
XcmsColorSpace **DDColorSpaces;
XcmsScreenInitProc screenInitProc;
XcmsScreenFreeProc screenFreeProc;

} X cmsFunctionSet;

The DDColorSpaces member is a pointer to a NULL terminated list of pointers toXcmsCol-
orSpacestructures for the device-dependent color spaces that are supported by the function set.
The screenInitProc member is set to the callback procedure (see the following interface specifica-
tion) that initializes theXcmsPerScrnInfo structure for a particular screen.

The screen initialization callback must adhere to the following software interface specification:

typedef Status (*XcmsScreenInitProc)(display, screen_number, screen_info)
Display *display;
int screen_number;
XcmsPerScrnInfo *screen_info;

display Specifies the connection to the X server.

screen_numberSpecifies the appropriate screen number on the host server.

screen_info Specifies theXcmsPerScrnInfo structure, which contains the per screen infor-
mation.

The screen initialization callback in theXcmsFunctionSetstructure fetches the color characteri-
zation data (device profile) for the specified screen, typically off properties on the screen’s root
window. It then initializes the specifiedXcmsPerScrnInfo structure. Ifsuccessful, the proce-
dure fills in theXcmsPerScrnInfo structure as follows:

• It sets the screenData member to the address of the created device profile data structure
(contents known only by the function set).

• It next sets the screenWhitePoint member.

• It next sets the functionSet member to the address of theXcmsFunctionSetstructure.

• It then sets the state member toXcmsInitSuccessand finally returnsXcmsSuccess.
If unsuccessful, the procedure sets the state member toXcmsInitFailure and returnsXcmsFail-
ure.

The XcmsPerScrnInfo structure contains:

117

Xlib − C Library libX11 1.3.2

typedef struct _XcmsPerScrnInfo {
XcmsColor screenWhitePoint;
XPointer functionSet;
XPointer screenData;
unsigned char state;
char pad[3];

} X cmsPerScrnInfo;

The screenWhitePoint member specifies the white point inherent to the screen. The functionSet
member specifies the appropriate function set. The screenData member specifies the device pro-
file. Thestate member is set to one of the following:

• XcmsInitNone indicates initialization has not been previously attempted.

• XcmsInitFailure indicates initialization has been previously attempted but failed.

• XcmsInitSuccessindicates initialization has been previously attempted and succeeded.

The screen free callback must adhere to the following software interface specification:

typedef void (*XcmsScreenFreeProc)(screenData)
XPointerscreenData;

screenData Specifies the data to be freed.

This function is called to free the screenData stored in anXcmsPerScrnInfo structure.

118

Xlib − C Library libX11 1.3.2

Chapter 7

Graphics Context Functions

A number of resources are used when performing graphics operations in X. Most information
about performing graphics (for example, foreground color, background color, line style, and so
on) is stored in resources called graphics contexts (GCs). Most graphics operations (see chapter
8) take a GC as an argument. Althoughin theory the X protocol permits sharing of GCs between
applications, it is expected that applications will use their own GCs when performing operations.
Sharing of GCs is highly discouraged because the library may cache GC state.

Graphics operations can be performed to either windows or pixmaps, which collectively are
called drawables. Eachdrawable exists on a single screen.A GC is created for a specific screen
and drawable depth and can only be used with drawables of matching screen and depth.

This chapter discusses how to:

• Manipulate graphics context/state

• Use graphics context convenience functions

7.1. Manipulating Graphics Context/State
Most attributes of graphics operations are stored in GCs. These include line width, line style,
plane mask, foreground, background, tile, stipple, clipping region, end style, join style, and so on.
Graphics operations (for example, drawing lines) use these values to determine the actual drawing
operation. Extensionsto X may add additional components to GCs. The contents of a GC are
private to Xlib.

Xlib implements a write-back cache for all elements of a GC that are not resource IDs to allow
Xlib to implement the transparent coalescing of changes to GCs.For example, a call toXSet-
Foreground of a GC followed by a call toXSetLineAttributes results in only a single-change
GC protocol request to the server. GCs are neither expected nor encouraged to be shared between
client applications, so this write-back caching should present no problems. Applications cannot
share GCs without external synchronization. Therefore, sharing GCs between applications is
highly discouraged.

To set an attribute of a GC, set the appropriate member of theXGCValues structure and OR in
the corresponding value bitmask in your subsequent calls toXCreateGC. The symbols for the
value mask bits and theXGCValues structure are:

119

Xlib − C Library libX11 1.3.2

/* GC attribute value mask bits */

#define GCFunction (1L<<0)
#define GCPlaneMask (1L<<1)
#define GCForeground (1L<<2)
#define GCBackground (1L<<3)
#define GCLineWidth (1L<<4)
#define GCLineStyle (1L<<5)
#define GCCapStyle (1L<<6)
#define GCJoinStyle (1L<<7)
#define GCFillStyle (1L<<8)
#define GCFillRule (1L<<9)
#define GCTile (1L<<10)
#define GCStipple (1L<<11)
#define GCTileStipXOrigin (1L<<12)
#define GCTileStipYOrigin (1L<<13)
#define GCFont (1L<<14)
#define GCSubwindowMode (1L<<15)
#define GCGraphicsExposures (1L<<16)
#define GCClipXOrigin (1L<<17)
#define GCClipYOrigin (1L<<18)
#define GCClipMask (1L<<19)
#define GCDashOffset (1L<<20)
#define GCDashList (1L<<21)
#define GCArcMode (1L<<22)

/* Values */

typedef struct {
int function; /* logical operation */
unsigned long plane_mask; /* plane mask */
unsigned long foreground; /*foreground pixel */
unsigned long background; /* background pixel */
int line_width; /* line width (in pixels) */
int line_style; /* LineSolid, LineOnOffDash, LineDoubleDash */
int cap_style; /* CapNotLast, CapButt, CapRound, CapProjecting */
int join_style; /* JoinMiter, JoinRound, JoinBevel * /
int fill_style; /* FillSolid, FillTiled, FillStippled FillOpaqueStippled*/
int fill_rule; /* EvenOddRule, WindingRule */
int arc_mode; /* ArcChord, ArcPieSlice */
Pixmap tile; /* tile pixmap for tiling operations */
Pixmap stipple; /* stipple 1 plane pixmap for stippling */
int ts_x_origin; /* offset for tile or stipple operations */
int ts_y_origin;
Font font; /* default text font for text operations */
int subwindow_mode; /*ClipByChildren, IncludeInferiors */
Bool graphics_exposures; /*boolean, should exposures be generated */
int clip_x_origin; /* origin for clipping */
int clip_y_origin;
Pixmap clip_mask; /* bitmap clipping; other calls for rects */
int dash_offset; /* patterned/dashed line information */
char dashes;

} X GCValues;

120

Xlib − C Library libX11 1.3.2

The default GC values are:

Component Default

function GXcopy
plane_mask Allones
foreground 0
background 1
line_width 0
line_style LineSolid
cap_style CapButt
join_style JoinMiter
fill_style FillSolid
fill_rule EvenOddRule
arc_mode ArcPieSlice
tile Pixmapof unspecified size filled with foreground pixel

(that is, client specified pixel if any, else 0)
(subsequent changes to foreground do not affect this pixmap)

stipple Pixmapof unspecified size filled with ones
ts_x_origin 0
ts_y_origin 0
font <implementationdependent>
subwindow_mode ClipByChildren
graphics_exposures Tr ue
clip_x_origin 0
clip_y_origin 0
clip_mask None
dash_offset 0
dashes 4(that is, the list [4, 4])

Note that foreground and background are not set to any values likely to be useful in a window.

The function attributes of a GC are used when you update a section of a drawable (the destina-
tion) with bits from somewhere else (the source). The function in a GC defines how the new des-
tination bits are to be computed from the source bits and the old destination bits.GXcopy is typ-
ically the most useful because it will work on a color display, but special applications may use
other functions, particularly in concert with particular planes of a color display. The 16 GC func-
tions, defined in <X11/X.h>, are:

Function Name Value Operation

GXclear 0x0 0
GXand 0x1 src AND dst
GXandReverse 0x2 src AND NOT dst
GXcopy 0x3 src
GXandInverted 0x4 (NOT src) AND dst
GXnoop 0x5 dst
GXxor 0x6 src XOR dst
GXor 0x7 src OR dst
GXnor 0x8 (NOT src) AND (NOT dst)
GXequiv 0x9 (NOT src) XOR dst

121

Xlib − C Library libX11 1.3.2

Function Name Value Operation

GXinvert 0xa NOT dst
GXorReverse 0xb src OR (NOT dst)
GXcopyInverted 0xc NOT src
GXorIn verted 0xd (NOT src) OR dst
GXnand 0xe (NOT src) OR (NOT dst)
GXset 0xf 1

Many graphics operations depend on either pixel values or planes in a GC. The planes attribute is
of type long, and it specifies which planes of the destination are to be modified, one bit per plane.
A monochrome display has only one plane and will be the least significant bit of the word. As
planes are added to the display hardware, they will occupy more significant bits in the plane
mask.

In graphics operations, given a source and destination pixel, the result is computed bitwise on cor-
responding bits of the pixels. Thatis, a Boolean operation is performed in each bit plane. The
plane_mask restricts the operation to a subset of planes.A macro constantAllPlanes can be used
to refer to all planes of the screen simultaneously. The result is computed by the following:

((src FUNC dst) AND plane-mask) OR (dst AND (NOT plane-mask))

Range checking is not performed on the values for foreground, background, or plane_mask. They
are simply truncated to the appropriate number of bits. The line-width is measured in pixels and
either can be greater than or equal to one (wide line) or can be the special value zero (thin line).

Wide lines are drawn centered on the path described by the graphics request. Unless otherwise
specified by the join-style or cap-style, the bounding box of a wide line with endpoints [x1, y1],
[x2, y2] and width w is a rectangle with vertices at the following real coordinates:

[x1-(w*sn/2), y1+(w*cs/2)], [x1+(w*sn/2), y1-(w*cs/2)],
[x2-(w*sn/2), y2+(w*cs/2)], [x2+(w*sn/2), y2-(w*cs/2)]

Here sn is the sine of the angle of the line, and cs is the cosine of the angle of the line.A pixel is
part of the line and so is drawn if the center of the pixel is fully inside the bounding box (which is
viewed as having infinitely thin edges). If the center of the pixel is exactly on the bounding box,
it is part of the line if and only if the interior is immediately to its right (x increasing direction).
Pixels with centers on a horizontal edge are a special case and are part of the line if and only if
the interior or the boundary is immediately below (y increasing direction) and the interior or the
boundary is immediately to the right (x increasing direction).

Thin lines (zero line-width) are one-pixel-wide lines drawn using an unspecified, device-depen-
dent algorithm. There are only two constraints on this algorithm.

1. If a line is drawn unclipped from [x1,y1] to [x2,y2] and if another line is drawn unclipped
from [x1+dx,y1+dy] to [x2+dx,y2+dy], a point [x,y] is touched by drawing the first line if
and only if the point [x+dx,y+dy] is touched by drawing the second line.

2. Theeffective set of points comprising a line cannot be affected by clipping. That is, a point
is touched in a clipped line if and only if the point lies inside the clipping region and the
point would be touched by the line when drawn unclipped.

A wide line drawn from [x1,y1] to [x2,y2] always draws the same pixels as a wide line drawn
from [x2,y2] to [x1,y1], not counting cap-style and join-style. It is recommended that this prop-
erty be true for thin lines, but this is not required.A l ine-width of zero may differ from a line-
width of one in which pixels are drawn. Thispermits the use of many manufacturers’ line draw-
ing hardware, which may run many times faster than the more precisely specified wide lines.

122

Xlib − C Library libX11 1.3.2

In general, drawing a thin line will be faster than drawing a wide line of width one. However,
because of their different drawing algorithms, thin lines may not mix well aesthetically with wide
lines. If it is desirable to obtain precise and uniform results across all displays, a client should
always use a line-width of one rather than a line-width of zero.

The line-style defines which sections of a line are drawn:

LineSolid The full path of the line is drawn.

LineDoubleDash The full path of the line is drawn, but the even dashes are filled differ-
ently from the odd dashes (see fill-style) withCapButt style used where
ev en and odd dashes meet.

LineOnOffDash Only the even dashes are drawn, and cap-style applies to all internal ends
of the individual dashes, exceptCapNotLast is treated asCapButt .

The cap-style defines how the endpoints of a path are drawn:

CapNotLast This is equivalent toCapButt except that for a line-width of zero the
final endpoint is not drawn.

CapButt The line is square at the endpoint (perpendicular to the slope of the line)
with no projection beyond.

CapRound The line has a circular arc with the diameter equal to the line-width, cen-
tered on the endpoint. (This is equivalent toCapButt for line-width of
zero).

CapProjecting The line is square at the end, but the path continues beyond the endpoint
for a distance equal to half the line-width. (This is equivalent toCap-
Butt for line-width of zero).

The join-style defines how corners are drawn for wide lines:

JoinMiter The outer edges of two lines extend to meet at an angle. However, if the
angle is less than 11 degrees, then aJoinBevel join-style is used instead.

JoinRound The corner is a circular arc with the diameter equal to the line-width,
centered on the joinpoint.

JoinBevel The corner hasCapButt endpoint styles with the triangular notch filled.

For a line with coincident endpoints (x1=x2, y1=y2), when the cap-style is applied to both end-
points, the semantics depends on the line-width and the cap-style:

CapNotLast thin The results are device dependent, but the desired effect is that
nothing is drawn.

CapButt thin The results are device dependent, but the desired effect is that a
single pixel is drawn.

CapRound thin The results are the same as forCapButt /thin.

CapProjecting thin The results are the same as forCapButt /thin.

CapButt wide Nothing is drawn.

CapRound wide The closed path is a circle, centered at the endpoint, and with the
diameter equal to the line-width.

CapProjecting wide The closed path is a square, aligned with the coordinate axes,
centered at the endpoint, and with the sides equal to the line-
width.

123

Xlib − C Library libX11 1.3.2

For a line with coincident endpoints (x1=x2, y1=y2), when the join-style is applied at one or both
endpoints, the effect is as if the line was removed from the overall path. However, if the total path
consists of or is reduced to a single point joined with itself, the effect is the same as when the cap-
style is applied at both endpoints.

The tile/stipple represents an infinite two-dimensional plane, with the tile/stipple replicated in all
dimensions. Whenthat plane is superimposed on the drawable for use in a graphics operation,
the upper-left corner of some instance of the tile/stipple is at the coordinates within the drawable
specified by the tile/stipple origin. The tile/stipple and clip origins are interpreted relative to the
origin of whatever destination drawable is specified in a graphics request. The tile pixmap must
have the same root and depth as the GC, or aBadMatch error results. The stipple pixmap must
have depth one and must have the same root as the GC, or aBadMatch error results.For stipple
operations where the fill-style isFillStippled but not FillOpaqueStippled, the stipple pattern is
tiled in a single plane and acts as an additional clip mask to be ANDed with the clip-mask.
Although some sizes may be faster to use than others, any size pixmap can be used for tiling or
stippling.

The fill-style defines the contents of the source for line, text, and fill requests.For all text and fill
requests (for example,XDrawText , XDrawText16, XFillRectangle, XFillPolygon , and XFil-
lArc); for line requests with line-styleLineSolid (for example,XDrawLine , XDrawSegments,
XDrawRectangle, XDrawArc); and for the even dashes for line requests with line-style
LineOnOffDash or LineDoubleDash, the following apply:

FillSolid Foreground

FillTiled Tile

FillOpaqueStippled A tile with the same width and height as stipple, but with back-
ground everywhere stipple has a zero and with foreground every-
where stipple has a one

FillStippled Foreground masked by stipple

When drawing lines with line-styleLineDoubleDash, the odd dashes are controlled by the fill-
style in the following manner:

FillSolid Background

FillTiled Same as for even dashes

FillOpaqueStippled Same as for even dashes

FillStippled Background masked by stipple

Storing a pixmap in a GC might or might not result in a copy being made. If the pixmap is later
used as the destination for a graphics request, the change might or might not be reflected in the
GC. If the pixmap is used simultaneously in a graphics request both as a destination and as a tile
or stipple, the results are undefined.

For optimum performance, you should draw as much as possible with the same GC (without
changing its components). The costs of changing GC components relative to using different GCs
depend on the display hardware and the server implementation. It is quite likely that some
amount of GC information will be cached in display hardware and that such hardware can only
cache a small number of GCs.

The dashes value is actually a simplified form of the more general patterns that can be set with
XSetDashes. Specifying a value of N is equivalent to specifying the two-element list [N, N] in
XSetDashes. The value must be nonzero, or aBadValue error results.

The clip-mask restricts writes to the destination drawable. If the clip-mask is set to a pixmap, it
must have depth one and have the same root as the GC, or aBadMatch error results. If clip-
mask is set toNone, the pixels are always drawn regardless of the clip origin. The clip-mask also

124

Xlib − C Library libX11 1.3.2

can be set by calling theXSetClipRectanglesor XSetRegionfunctions. Onlypixels where the
clip-mask has a bit set to 1 are drawn. Pixels are not drawn outside the area covered by the clip-
mask or where the clip-mask has a bit set to 0. The clip-mask affects all graphics requests. The
clip-mask does not clip sources. The clip-mask origin is interpreted relative to the origin of what-
ev er destination drawable is specified in a graphics request.

You can set the subwindow-mode toClipByChildren or IncludeInferiors . For ClipByChil-
dren, both source and destination windows are additionally clipped by all viewable InputOut-
put children. For IncludeInferiors , neither source nor destination window is clipped by inferi-
ors. Thiswill result in including subwindow contents in the source and drawing through subwin-
dow boundaries of the destination. The use ofIncludeInferiors on a window of one depth with
mapped inferiors of differing depth is not illegal, but the semantics are undefined by the core pro-
tocol.

The fill-rule defines what pixels are inside (drawn) for paths given in XFillPolygon requests and
can be set toEvenOddRule or WindingRule. For EvenOddRule, a point is inside if an infinite
ray with the point as origin crosses the path an odd number of times.For WindingRule, a point
is inside if an infinite ray with the point as origin crosses an unequal number of clockwise and
counterclockwise directed path segments. Aclockwise directed path segment is one that crosses
the ray from left to right as observed from the point.A counterclockwise segment is one that
crosses the ray from right to left as observed from the point. The case where a directed line seg-
ment is coincident with the ray is uninteresting because you can simply choose a different ray that
is not coincident with a segment.

For both EvenOddRule andWindingRule, a point is infinitely small, and the path is an infinite-
ly thin line. A pixel is inside if the center point of the pixel is inside and the center point is not on
the boundary. If the center point is on the boundary, the pixel is inside if and only if the polygon
interior is immediately to its right (x increasing direction). Pixels with centers on a horizontal
edge are a special case and are inside if and only if the polygon interior is immediately below (y
increasing direction).

The arc-mode controls filling in theXFillArcs function and can be set toArcPieSlice or Arc-
Chord . For ArcPieSlice, the arcs are pie-slice filled.For ArcChord , the arcs are chord filled.

The graphics-exposure flag controlsGraphicsExposeev ent generation forXCopyArea and
XCopyPlane requests (and any similar requests defined by extensions).

To create a new GC that is usable on a given screen with a depth of drawable, useXCreateGC.

GC XCreateGC(display, d, valuemask, values)
Display *display;
Drawabled;
unsigned longvaluemask;
XGCValues *values;

display Specifies the connection to the X server.

d Specifies the drawable.

valuemask Specifies which components in the GC are to be set using the information in the
specified values structure. This argument is the bitwise inclusive OR of zero or
more of the valid GC component mask bits.

values Specifies any values as specified by the valuemask.

The XCreateGC function creates a graphics context and returns a GC. The GC can be used with
any destination drawable having the same root and depth as the specified drawable. Usewith
other drawables results in aBadMatch error.

125

Xlib − C Library libX11 1.3.2

XCreateGC can generateBadAlloc, BadDrawable, BadFont, BadMatch, BadPixmap, and
BadValue errors.

To copy components from a source GC to a destination GC, useXCopyGC.

XCopyGC (display, src, valuemask, dest)
Display *display;
GC src, dest;
unsigned longvaluemask;

display Specifies the connection to the X server.

src Specifies the components of the source GC.

valuemask Specifies which components in the GC are to be copied to the destination GC.
This argument is the bitwise inclusive OR of zero or more of the valid GC com-
ponent mask bits.

dest Specifies the destination GC.

The XCopyGC function copies the specified components from the source GC to the destination
GC. Thesource and destination GCs must have the same root and depth, or aBadMatch error
results. Thevaluemask specifies which component to copy, as for XCreateGC.

XCopyGC can generateBadAlloc, BadGC, and BadMatch errors.

To change the components in a given GC, useXChangeGC.

XChangeGC (display, gc, valuemask, values)
Display *display;
GC gc;
unsigned longvaluemask;
XGCValues *values;

display Specifies the connection to the X server.

gc Specifies the GC.

valuemask Specifies which components in the GC are to be changed using information in the
specified values structure. This argument is the bitwise inclusive OR of zero or
more of the valid GC component mask bits.

values Specifies any values as specified by the valuemask.

The XChangeGC function changes the components specified by valuemask for the specified GC.
The values argument contains the values to be set. The values and restrictions are the same as for
XCreateGC. Changing the clip-mask overrides any previousXSetClipRectanglesrequest on
the context. Changingthe dash-offset or dash-list overrides any previousXSetDashesrequest on
the context. Theorder in which components are verified and altered is server dependent. If an
error is generated, a subset of the components may have been altered.

XChangeGC can generateBadAlloc, BadFont, BadGC, BadMatch, BadPixmap, and Bad-
Value errors.

To obtain components of a given GC, useXGetGCValues.

126

Xlib − C Library libX11 1.3.2

Status XGetGCValues (display, gc, valuemask, values_return)
Display *display;
GC gc;
unsigned longvaluemask;
XGCValues *values_return;

display Specifies the connection to the X server.

gc Specifies the GC.

valuemask Specifies which components in the GC are to be returned in the values_return ar-
gument. Thisargument is the bitwise inclusive OR of zero or more of the valid
GC component mask bits.

values_return Returns the GC values in the specifiedXGCValues structure.

The XGetGCValues function returns the components specified by valuemask for the specified
GC. If the valuemask contains a valid set of GC mask bits (GCFunction, GCPlaneMask,
GCForeground, GCBackground, GCLineWidth , GCLineStyle, GCCapStyle, GCJoin-
Style, GCFillStyle , GCFillRule , GCTile , GCStipple, GCTileStipXOrigin , GCTileStipYO-
rigin , GCFont, GCSubwindowMode, GCGraphicsExposures, GCClipXOrigin , GCCLipY-
Origin , GCDashOffset, or GCArcMode) and no error occurs,XGetGCValues sets the
requested components in values_return and returns a nonzero status. Otherwise, it returns a zero
status. Notethat the clip-mask and dash-list (represented by theGCClipMask andGCDashList
bits, respectively, in the valuemask) cannot be requested. Also note that an invalid resource ID
(with one or more of the three most significant bits set to 1) will be returned forGCFont,
GCTile , and GCStipple if the component has never been explicitly set by the client.

To free a given GC, useXFreeGC.

XFreeGC (display, gc)
Display *display;
GC gc;

display Specifies the connection to the X server.

gc Specifies the GC.

The XFreeGC function destroys the specified GC as well as all the associated storage.

XFreeGC can generate aBadGC error.

To obtain theGContext resource ID for a given GC, useXGContextFromGC .

GContext XGContextFromGC (gc)
GC gc;

gc Specifies the GC for which you want the resource ID.

Xlib usually defers sending changes to the components of a GC to the server until a graphics
function is actually called with that GC. This permits batching of component changes into a sin-
gle server request. In some circumstances, however, it may be necessary for the client to explic-
itly force sending the changes to the server. An example might be when a protocol extension uses
the GC indirectly, in such a way that the extension interface cannot know what GC will be used.
To force sending GC component changes, useXFlushGC.

127

Xlib − C Library libX11 1.3.2

void XFlushGC(display, gc)
Display *display;
GC gc;

display Specifies the connection to the X server.

gc Specifies the GC.

7.2. UsingGraphics Context Convenience Routines
This section discusses how to set the:

• Foreground, background, plane mask, or function components

• Line attributes and dashes components

• Fill style and fill rule components

• Fill tile and stipple components

• Font component

• Clip region component

• Arc mode, subwindow mode, and graphics exposure components

7.2.1. Settingthe Foreground, Background, Function, or Plane Mask
To set the foreground, background, plane mask, and function components for a given GC, use
XSetState.

XSetState (display, gc, foreground, background, function, plane_mask)
Display *display;
GC gc;
unsigned longforeground, background;
int function;
unsigned longplane_mask;

display Specifies the connection to the X server.

gc Specifies the GC.

foreground Specifies the foreground you want to set for the specified GC.

background Specifies the background you want to set for the specified GC.

function Specifies the function you want to set for the specified GC.

plane_mask Specifies the plane mask.

XSetStatecan generateBadAlloc, BadGC, and BadValue errors.

To set the foreground of a given GC, useXSetForeground.

128

Xlib − C Library libX11 1.3.2

XSetForeground (display, gc, foreground)
Display *display;
GC gc;
unsigned longforeground;

display Specifies the connection to the X server.

gc Specifies the GC.

foreground Specifies the foreground you want to set for the specified GC.

XSetForeground can generateBadAlloc andBadGC errors.

To set the background of a given GC, useXSetBackground.

XSetBackground (display, gc, background)
Display *display;
GC gc;
unsigned longbackground;

display Specifies the connection to the X server.

gc Specifies the GC.

background Specifies the background you want to set for the specified GC.

XSetBackground can generateBadAlloc andBadGC errors.

To set the display function in a given GC, useXSetFunction.

XSetFunction (display, gc, function)
Display *display;
GC gc;
int function;

display Specifies the connection to the X server.

gc Specifies the GC.

function Specifies the function you want to set for the specified GC.

XSetFunction can generateBadAlloc, BadGC, and BadValue errors.

To set the plane mask of a given GC, useXSetPlaneMask.

XSetPlaneMask (display, gc, plane_mask)
Display *display;
GC gc;
unsigned longplane_mask;

display Specifies the connection to the X server.

gc Specifies the GC.

plane_mask Specifies the plane mask.

XSetPlaneMaskcan generateBadAlloc andBadGC errors.

129

Xlib − C Library libX11 1.3.2

7.2.2. Settingthe Line Attributes and Dashes
To set the line drawing components of a given GC, useXSetLineAttributes .

XSetLineAttributes (display, gc, line_width, line_style, cap_style, join_style)
Display *display;
GC gc;
unsigned intline_width;
int line_style;
int cap_style;
int join_style;

display Specifies the connection to the X server.

gc Specifies the GC.

line_width Specifies the line-width you want to set for the specified GC.

line_style Specifies the line-style you want to set for the specified GC.You can pass
LineSolid, LineOnOffDash, or LineDoubleDash.

cap_style Specifies the line-style and cap-style you want to set for the specified GC.You
can passCapNotLast, CapButt , CapRound, or CapProjecting.

join_style Specifies the line join-style you want to set for the specified GC.You can pass
JoinMiter , JoinRound, or JoinBevel .

XSetLineAttributes can generateBadAlloc, BadGC, and BadValue errors.

To set the dash-offset and dash-list for dashed line styles of a given GC, useXSetDashes.

XSetDashes (display, gc, dash_offset, dash_list, n)
Display *display;
GC gc;
int dash_offset;
chardash_list[] ;
int n;

display Specifies the connection to the X server.

gc Specifies the GC.

dash_offset Specifies the phase of the pattern for the dashed line-style you want to set for the
specified GC.

dash_list Specifies the dash-list for the dashed line-style you want to set for the specified
GC.

n Specifies the number of elements in dash_list.

The XSetDashesfunction sets the dash-offset and dash-list attributes for dashed line styles in the
specified GC. There must be at least one element in the specified dash_list, or aBadValue error
results. Theinitial and alternating elements (second, fourth, and so on) of the dash_list are the
ev en dashes, and the others are the odd dashes. Each element specifies a dash length in pixels.
All of the elements must be nonzero, or aBadValue error results. Specifying an odd-length list
is equivalent to specifying the same list concatenated with itself to produce an even-length list.

The dash-offset defines the phase of the pattern, specifying how many pixels into the dash-list the
pattern should actually begin in any single graphics request. Dashing is continuous through path
elements combined with a join-style but is reset to the dash-offset between each sequence of
joined lines.

130

Xlib − C Library libX11 1.3.2

The unit of measure for dashes is the same for the ordinary coordinate system. Ideally, a dash
length is measured along the slope of the line, but implementations are only required to match
this ideal for horizontal and vertical lines.Failing the ideal semantics, it is suggested that the
length be measured along the major axis of the line. The major axis is defined as the x axis for
lines drawn at an angle of between −45 and +45 degrees or between 135 and 225 degrees from
the x axis.For all other lines, the major axis is the y axis.

XSetDashescan generateBadAlloc, BadGC, and BadValue errors.

7.2.3. Settingthe Fill Style and Fill Rule
To set the fill-style of a given GC, useXSetFillStyle.

XSetFillStyle (display, gc, fill_style)
Display *display;
GC gc;
int fill_style;

display Specifies the connection to the X server.

gc Specifies the GC.

fill_style Specifies the fill-style you want to set for the specified GC.You can passFill-
Solid, FillTiled , FillStippled , or FillOpaqueStippled.

XSetFillStyle can generateBadAlloc, BadGC, and BadValue errors.

To set the fill-rule of a given GC, useXSetFillRule.

XSetFillRule (display, gc, fill_rule)
Display *display;
GC gc;
int fill_rule;

display Specifies the connection to the X server.

gc Specifies the GC.

fill_rule Specifies the fill-rule you want to set for the specified GC.You can passEven-
OddRule or WindingRule.

XSetFillRule can generateBadAlloc, BadGC, and BadValue errors.

7.2.4. Settingthe Fill Tile and Stipple
Some displays have hardware support for tiling or stippling with patterns of specific sizes.Tiling
and stippling operations that restrict themselves to those specific sizes run much faster than such
operations with arbitrary size patterns. Xlib provides functions that you can use to determine the
best size, tile, or stipple for the display as well as to set the tile or stipple shape and the tile or
stipple origin.

To obtain the best size of a tile, stipple, or cursor, useXQueryBestSize.

131

Xlib − C Library libX11 1.3.2

Status XQueryBestSize(display, class, which_screen, width, height, width_return, height_return)
Display *display;
int class;
Drawablewhich_screen;
unsigned intwidth, height;
unsigned int *width_return, *height_return;

display Specifies the connection to the X server.

class Specifies the class that you are interested in.You can passTi leShape, Cursor-
Shape, or StippleShape.

which_screen Specifies any drawable on the screen.

width
height Specify the width and height.

width_return
height_return Return the width and height of the object best supported by the display hardware.

The XQueryBestSizefunction returns the best or closest size to the specified size.For Cursor-
Shape, this is the largest size that can be fully displayed on the screen specified by which_screen.
For Ti leShape, this is the size that can be tiled fastest. For StippleShape, this is the size that
can be stippled fastest. For CursorShape, the drawable indicates the desired screen.For Ti le-
ShapeandStippleShape, the drawable indicates the screen and possibly the window class and
depth. AnInputOnly window cannot be used as the drawable for Ti leShapeor StippleShape,
or aBadMatch error results.

XQueryBestSizecan generateBadDrawable, BadMatch, and BadValue errors.

To obtain the best fill tile shape, useXQueryBestTile.

Status XQueryBestTile (display, which_screen, width, height, width_return, height_return)
Display *display;
Drawablewhich_screen;
unsigned intwidth, height;
unsigned int *width_return, *height_return;

display Specifies the connection to the X server.

which_screen Specifies any drawable on the screen.

width
height Specify the width and height.

width_return
height_return Return the width and height of the object best supported by the display hardware.

The XQueryBestTile function returns the best or closest size, that is, the size that can be tiled
fastest on the screen specified by which_screen. The drawable indicates the screen and possibly
the window class and depth. If anInputOnly window is used as the drawable, aBadMatch
error results.

XQueryBestTile can generateBadDrawable andBadMatch errors.

To obtain the best stipple shape, useXQueryBestStipple.

132

Xlib − C Library libX11 1.3.2

Status XQueryBestStipple(display, which_screen, width, height, width_return, height_return)
Display *display;
Drawablewhich_screen;
unsigned intwidth, height;
unsigned int *width_return, *height_return;

display Specifies the connection to the X server.

which_screen Specifies any drawable on the screen.

width
height Specify the width and height.

width_return
height_return Return the width and height of the object best supported by the display hardware.

The XQueryBestStipple function returns the best or closest size, that is, the size that can be stip-
pled fastest on the screen specified by which_screen. The drawable indicates the screen and pos-
sibly the window class and depth. If anInputOnly window is used as the drawable, aBad-
Match error results.

XQueryBestStipple can generateBadDrawable andBadMatch errors.

To set the fill tile of a given GC, useXSetTile.

XSetTile (display, gc, tile)
Display *display;
GC gc;
Pixmaptile;

display Specifies the connection to the X server.

gc Specifies the GC.

tile Specifies the fill tile you want to set for the specified GC.

The tile and GC must have the same depth, or aBadMatch error results.

XSetTile can generateBadAlloc, BadGC, BadMatch, and BadPixmap errors.

To set the stipple of a given GC, useXSetStipple.

XSetStipple (display, gc, stipple)
Display *display;
GC gc;
Pixmapstipple;

display Specifies the connection to the X server.

gc Specifies the GC.

stipple Specifies the stipple you want to set for the specified GC.

The stipple must have a depth of one, or aBadMatch error results.

XSetStipple can generateBadAlloc, BadGC, BadMatch, and BadPixmap errors.

To set the tile or stipple origin of a given GC, useXSetTSOrigin.

133

Xlib − C Library libX11 1.3.2

XSetTSOrigin (display, gc, ts_x_origin, ts_y_origin)
Display *display;
GC gc;
int ts_x_origin, ts_y_origin;

display Specifies the connection to the X server.

gc Specifies the GC.

ts_x_origin
ts_y_origin Specify the x and y coordinates of the tile and stipple origin.

When graphics requests call for tiling or stippling, the parent’s origin will be interpreted relative
to whatever destination drawable is specified in the graphics request.

XSetTSOrigin can generateBadAlloc andBadGC errors.

7.2.5. Settingthe Current Font
To set the current font of a given GC, useXSetFont.

XSetFont (display, gc, font)
Display *display;
GC gc;
Font font;

display Specifies the connection to the X server.

gc Specifies the GC.

font Specifies the font.

XSetFont can generateBadAlloc, BadFont, and BadGC errors.

7.2.6. Settingthe Clip Region
Xlib provides functions that you can use to set the clip-origin and the clip-mask or set the clip-
mask to a list of rectangles.

To set the clip-origin of a given GC, useXSetClipOrigin .

XSetClipOrigin (display, gc, clip_x_origin, clip_y_origin)
Display *display;
GC gc;
int clip_x_origin, clip_y_origin;

display Specifies the connection to the X server.

gc Specifies the GC.

clip_x_origin
clip_y_origin Specify the x and y coordinates of the clip-mask origin.

The clip-mask origin is interpreted relative to the origin of whatever destination drawable is spec-
ified in the graphics request.

XSetClipOrigin can generateBadAlloc andBadGC errors.

To set the clip-mask of a given GC to the specified pixmap, useXSetClipMask.

134

Xlib − C Library libX11 1.3.2

XSetClipMask (display, gc, pixmap)
Display *display;
GC gc;
Pixmappixmap;

display Specifies the connection to the X server.

gc Specifies the GC.

pixmap Specifies the pixmap orNone.

If the clip-mask is set toNone, the pixels are always drawn (regardless of the clip-origin).

XSetClipMask can generateBadAlloc, BadGC, BadMatch, and BadPixmap errors.

To set the clip-mask of a given GC to the specified list of rectangles, useXSetClipRectangles.

XSetClipRectangles (display, gc, clip_x_origin, clip_y_origin, rectangles, n, ordering)
Display *display;
GC gc;
int clip_x_origin, clip_y_origin;
XRectanglerectangles[] ;
int n;
int ordering;

display Specifies the connection to the X server.

gc Specifies the GC.

clip_x_origin
clip_y_origin Specify the x and y coordinates of the clip-mask origin.

rectangles Specifies an array of rectangles that define the clip-mask.

n Specifies the number of rectangles.

ordering Specifies the ordering relations on the rectangles.You can passUnsorted,
YSorted, YXSorted, or YXBanded.

The XSetClipRectanglesfunction changes the clip-mask in the specified GC to the specified list
of rectangles and sets the clip origin. The output is clipped to remain contained within the rectan-
gles. Theclip-origin is interpreted relative to the origin of whatever destination drawable is spec-
ified in a graphics request. The rectangle coordinates are interpreted relative to the clip-origin.
The rectangles should be nonintersecting, or the graphics results will be undefined. Note that the
list of rectangles can be empty, which effectively disables output. This is the opposite of passing
None as the clip-mask inXCreateGC, XChangeGC, and XSetClipMask.

If known by the client, ordering relations on the rectangles can be specified with the ordering
argument. Thismay provide faster operation by the server. If an incorrect ordering is specified,
the X server may generate aBadMatch error, but it is not required to do so. If no error is gener-
ated, the graphics results are undefined.Unsorted means the rectangles are in arbitrary order.
YSorted means that the rectangles are nondecreasing in their Y origin.YXSorted additionally
constrainsYSorted order in that all rectangles with an equal Y origin are nondecreasing in their
X origin. YXBanded additionally constrainsYXSorted by requiring that, for every possible Y
scanline, all rectangles that include that scanline have an identical Y origins and Y extents.

XSetClipRectanglescan generateBadAlloc, BadGC, BadMatch, and BadValue errors.

Xlib provides a set of basic functions for performing region arithmetic.For information about
these functions, see section 16.5.

135

Xlib − C Library libX11 1.3.2

7.2.7. Settingthe Arc Mode, Subwindow Mode, and Graphics Exposure
To set the arc mode of a given GC, useXSetArcMode.

XSetArcMode (display, gc, arc_mode)
Display *display;
GC gc;
int arc_mode;

display Specifies the connection to the X server.

gc Specifies the GC.

arc_mode Specifies the arc mode.You can passArcChord or ArcPieSlice.

XSetArcMode can generateBadAlloc, BadGC, and BadValue errors.

To set the subwindow mode of a given GC, useXSetSubwindowMode.

XSetSubwindowMode (display, gc, subwindow_mode)
Display *display;
GC gc;
int subwindow_mode;

display Specifies the connection to the X server.

gc Specifies the GC.

subwindow_mode
Specifies the subwindow mode. You can passClipByChildren or IncludeInfe-
riors .

XSetSubwindowModecan generateBadAlloc, BadGC, and BadValue errors.

To set the graphics-exposures flag of a given GC, useXSetGraphicsExposures.

XSetGraphicsExposures (display, gc, graphics_exposures)
Display *display;
GC gc;
Bool graphics_exposures;

display Specifies the connection to the X server.

gc Specifies the GC.

graphics_exposures
Specifies a Boolean value that indicates whether you want GraphicsExposeand
NoExpose ev ents to be reported when callingXCopyArea and XCopyPlane
with this GC.

XSetGraphicsExposurescan generateBadAlloc, BadGC, and BadValue errors.

136

Xlib − C Library libX11 1.3.2

Chapter 8

Graphics Functions

Once you have established a connection to a display, you can use the Xlib graphics functions to:

• Clear and copy areas

• Draw points, lines, rectangles, and arcs

• Fill areas

• Manipulate fonts

• Draw text

• Transfer images between clients and the server

If the same drawable and GC is used for each call, Xlib batches back-to-back calls toXDraw-
Point , XDrawLine , XDrawRectangle, XFillArc , and XFillRectangle. Note that this reduces
the total number of requests sent to the server.

8.1. ClearingAreas
Xlib provides functions that you can use to clear an area or the entire window. Because pixmaps
do not have defined backgrounds, they cannot be filled by using the functions described in this
section. Instead,to accomplish an analogous operation on a pixmap, you should useXFillRect-
angle, which sets the pixmap to a known value.

To clear a rectangular area of a given window, useXClearArea .

XClearArea (display, w, x, y, width, height, exposures)
Display *display;
Windoww;
int x, y;
unsigned intwidth, height;
Bool exposures;

display Specifies the connection to the X server.

w Specifies the window.

x
y Specify the x and y coordinates, which are relative to the origin of the window

and specify the upper-left corner of the rectangle.

width
height Specify the width and height, which are the dimensions of the rectangle.

exposures Specifies a Boolean value that indicates ifExposeev ents are to be generated.

The XClearArea function paints a rectangular area in the specified window according to the
specified dimensions with the window’s background pixel or pixmap. The subwindow-mode
effectively is ClipByChildren . If width is zero, it is replaced with the current width of the win-
dow minus x. If height is zero, it is replaced with the current height of the window minus y. If
the window has a defined background tile, the rectangle clipped by any children is filled with this
tile. If the window has backgroundNone, the contents of the window are not changed. In either
case, if exposures isTr ue, one or moreExposeev ents are generated for regions of the rectangle
that are either visible or are being retained in a backing store. If you specify a window whose

137

Xlib − C Library libX11 1.3.2

class isInputOnly , a BadMatch error results.

XClearArea can generateBadMatch, BadValue, and BadWindow errors.

To clear the entire area in a given window, useXClearWindow .

XClearWindow(display, w)
Display *display;
Windoww;

display Specifies the connection to the X server.

w Specifies the window.

The XClearWindow function clears the entire area in the specified window and is equivalent to
XClearArea (display, w, 0, 0, 0, 0, False). If the window has a defined background tile, the rec-
tangle is tiled with a plane-mask of all ones andGXcopy function. If the window has back-
groundNone, the contents of the window are not changed. If you specify a window whose class
is InputOnly , a BadMatch error results.

XClearWindow can generateBadMatch andBadWindow errors.

8.2. CopyingAreas
Xlib provides functions that you can use to copy an area or a bit plane.

To copy an area between drawables of the same root and depth, useXCopyArea.

XCopyArea (display, src, dest, gc, src_x, src_y, width, height, dest_x, dest_y)
Display *display;
Drawablesrc, dest;
GC gc;
int src_x, src_y;
unsigned intwidth, height;
int dest_x, dest_y;

display Specifies the connection to the X server.

src
dest Specify the source and destination rectangles to be combined.

gc Specifies the GC.

src_x
src_y Specify the x and y coordinates, which are relative to the origin of the source rec-

tangle and specify its upper-left corner.

width
height Specify the width and height, which are the dimensions of both the source and

destination rectangles.

dest_x
dest_y Specify the x and y coordinates, which are relative to the origin of the destination

rectangle and specify its upper-left corner.

The XCopyArea function combines the specified rectangle of src with the specified rectangle of
dest. Thedrawables must have the same root and depth, or aBadMatch error results.

If regions of the source rectangle are obscured and have not been retained in backing store or if
regions outside the boundaries of the source drawable are specified, those regions are not copied.

138

Xlib − C Library libX11 1.3.2

Instead, the following occurs on all corresponding destination regions that are either visible or are
retained in backing store. If the destination is a window with a background other thanNone, cor-
responding regions of the destination are tiled with that background (with plane-mask of all ones
andGXcopy function). Regardless of tiling or whether the destination is a window or a pixmap,
if graphics-exposures isTr ue, thenGraphicsExposeev ents for all corresponding destination
regions are generated. If graphics-exposures isTr ue but no GraphicsExposeev ents are gener-
ated, aNoExposeev ent is generated. Note that by default graphics-exposures isTr ue in new
GCs.

This function uses these GC components: function, plane-mask, subwindow-mode, graphics-
exposures, clip-x-origin, clip-y-origin, and clip-mask.

XCopyArea can generateBadDrawable, BadGC, and BadMatch errors.

To copy a single bit plane of a given drawable, useXCopyPlane.

XCopyPlane (display, src, dest, gc, src_x, src_y, width, height, dest_x, dest_y, plane)
Display *display;
Drawablesrc, dest;
GC gc;
int src_x, src_y;
unsigned intwidth, height;
int dest_x, dest_y;
unsigned longplane;

display Specifies the connection to the X server.

src
dest Specify the source and destination rectangles to be combined.

gc Specifies the GC.

src_x
src_y Specify the x and y coordinates, which are relative to the origin of the source rec-

tangle and specify its upper-left corner.

width
height Specify the width and height, which are the dimensions of both the source and

destination rectangles.

dest_x
dest_y Specify the x and y coordinates, which are relative to the origin of the destination

rectangle and specify its upper-left corner.

plane Specifies the bit plane.You must set exactly one bit to 1.

The XCopyPlane function uses a single bit plane of the specified source rectangle combined
with the specified GC to modify the specified rectangle of dest. The drawables must have the
same root but need not have the same depth. If the drawables do not have the same root, aBad-
Match error results. If plane does not have exactly one bit set to 1 and the value of plane is not
less than 2n, wheren is the depth of src, aBadValue error results.

Effectively, XCopyPlane forms a pixmap of the same depth as the rectangle of dest and with a
size specified by the source region. It uses the foreground/background pixels in the GC (fore-
ground everywhere the bit plane in src contains a bit set to 1, background everywhere the bit
plane in src contains a bit set to 0) and the equivalent of aCopyArea protocol request is per-
formed with all the same exposure semantics. This can also be thought of as using the specified
region of the source bit plane as a stipple with a fill-style ofFillOpaqueStippled for filling a
rectangular area of the destination.

139

Xlib − C Library libX11 1.3.2

This function uses these GC components: function, plane-mask, foreground, background, subwin-
dow-mode, graphics-exposures, clip-x-origin, clip-y-origin, and clip-mask.

XCopyPlane can generateBadDrawable, BadGC, BadMatch, and BadValue errors.

8.3. DrawingPoints, Lines, Rectangles, and Arcs
Xlib provides functions that you can use to draw:

• A single point or multiple points

• A single line or multiple lines

• A single rectangle or multiple rectangles

• A single arc or multiple arcs

Some of the functions described in the following sections use these structures:

typedef struct {
short x1, y1, x2, y2;

} X Segment;

typedef struct {
short x, y;

} X Point;

typedef struct {
short x, y;
unsigned short width, height;

} X Rectangle;

typedef struct {
short x, y;
unsigned short width, height;
short angle1, angle2; /* Degrees * 64 */

} X Arc;

All x and y members are signed integers. Thewidth and height members are 16-bit unsigned
integers. You should be careful not to generate coordinates and sizes out of the 16-bit ranges,
because the protocol only has 16-bit fields for these values.

8.3.1. DrawingSingle and Multiple Points

To draw a single point in a given drawable, useXDrawPoint .

140

Xlib − C Library libX11 1.3.2

XDrawPoint (display, d, gc, x, y)
Display *display;
Drawabled;
GC gc;
int x, y;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

x
y Specify the x and y coordinates where you want the point drawn.

To draw multiple points in a given drawable, useXDrawPoints.

XDrawPoints (display, d, gc, points, npoints, mode)
Display *display;
Drawabled;
GC gc;
XPoint *points;
int npoints;
int mode;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

points Specifies an array of points.

npoints Specifies the number of points in the array.

mode Specifies the coordinate mode.You can passCoordModeOrigin or Coord-
ModePrevious.

The XDrawPoint function uses the foreground pixel and function components of the GC to draw
a single point into the specified drawable; XDrawPoints draws multiple points this way.Coord-
ModeOrigin treats all coordinates as relative to the origin, andCoordModePrevious treats all
coordinates after the first as relative to the previous point.XDrawPoints draws the points in the
order listed in the array.

Both functions use these GC components: function, plane-mask, foreground, subwindow-mode,
clip-x-origin, clip-y-origin, and clip-mask.

XDrawPoint can generateBadDrawable, BadGC, and BadMatch errors. XDrawPoints can
generateBadDrawable, BadGC, BadMatch, and BadValue errors.

8.3.2. DrawingSingle and Multiple Lines

To draw a single line between two points in a given drawable, useXDrawLine .

141

Xlib − C Library libX11 1.3.2

XDrawLine (display, d, gc, x1, y1, x2, y2)
Display *display;
Drawabled;
GC gc;
int x1, y1, x2, y2;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

x1
y1
x2
y2 Specify the points (x1, y1) and (x2, y2) to be connected.

To draw multiple lines in a given drawable, useXDrawLines .

XDrawLines (display, d, gc, points, npoints, mode)
Display *display;
Drawabled;
GC gc;
XPoint *points;
int npoints;
int mode;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

points Specifies an array of points.

npoints Specifies the number of points in the array.

mode Specifies the coordinate mode.You can passCoordModeOrigin or Coord-
ModePrevious.

To draw multiple, unconnected lines in a given drawable, useXDrawSegments.

142

Xlib − C Library libX11 1.3.2

XDrawSegments (display, d, gc, segments, nsegments)
Display *display;
Drawabled;
GC gc;
XSegment *segments;
int nsegments;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

segments Specifies an array of segments.

nsegments Specifies the number of segments in the array.

The XDrawLine function uses the components of the specified GC to draw a line between the
specified set of points (x1, y1) and (x2, y2). It does not perform joining at coincident endpoints.
For any giv en line, XDrawLine does not draw a pixel more than once. If lines intersect, the
intersecting pixels are drawn multiple times.

The XDrawLines function uses the components of the specified GC to draw npoints−1 lines
between each pair of points (point[i], point[i+1]) in the array ofXPoint structures. Itdraws the
lines in the order listed in the array. The lines join correctly at all intermediate points, and if the
first and last points coincide, the first and last lines also join correctly. For any giv en line,
XDrawLines does not draw a pixel more than once. If thin (zero line-width) lines intersect, the
intersecting pixels are drawn multiple times. If wide lines intersect, the intersecting pixels are
drawn only once, as though the entirePolyLine protocol request were a single, filled shape.
CoordModeOrigin treats all coordinates as relative to the origin, andCoordModePrevious
treats all coordinates after the first as relative to the previous point.

The XDrawSegmentsfunction draws multiple, unconnected lines.For each segment,
XDrawSegmentsdraws a line between (x1, y1) and (x2, y2). It draws the lines in the order
listed in the array ofXSegmentstructures and does not perform joining at coincident endpoints.
For any giv en line, XDrawSegmentsdoes not draw a pixel more than once. If lines intersect, the
intersecting pixels are drawn multiple times.

All three functions use these GC components: function, plane-mask, line-width, line-style, cap-
style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. TheXDrawLines
function also uses the join-style GC component. All three functions also use these GC mode-
dependent components: foreground, background, tile, stipple, tile-stipple-x-origin, tile-stipple-y-
origin, dash-offset, and dash-list.

XDrawLine , XDrawLines , and XDrawSegmentscan generateBadDrawable, BadGC, and
BadMatch errors. XDrawLines also can generateBadValue errors.

8.3.3. DrawingSingle and Multiple Rectangles

To draw the outline of a single rectangle in a given drawable, useXDrawRectangle.

143

Xlib − C Library libX11 1.3.2

XDrawRectangle (display, d, gc, x, y, width, height)
Display *display;
Drawabled;
GC gc;
int x, y;
unsigned intwidth, height;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

x
y Specify the x and y coordinates, which specify the upper-left corner of the rectan-

gle.

width
height Specify the width and height, which specify the dimensions of the rectangle.

To draw the outline of multiple rectangles in a given drawable, useXDrawRectangles.

XDrawRectangles (display, d, gc, rectangles, nrectangles)
Display *display;
Drawabled;
GC gc;
XRectanglerectangles[];
int nrectangles;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

rectangles Specifies an array of rectangles.

nrectangles Specifies the number of rectangles in the array.

The XDrawRectangle andXDrawRectanglesfunctions draw the outlines of the specified rec-
tangle or rectangles as if a five-pointPolyLine protocol request were specified for each rectangle:

[x,y] [x+width,y] [x+width,y+height] [x,y+height] [x,y]

For the specified rectangle or rectangles, these functions do not draw a pixel more than once.
XDrawRectanglesdraws the rectangles in the order listed in the array. If rectangles intersect,
the intersecting pixels are drawn multiple times.

Both functions use these GC components: function, plane-mask, line-width, line-style, cap-style,
join-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. They also use
these GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-ori-
gin, tile-stipple-y-origin, dash-offset, and dash-list.

XDrawRectangle andXDrawRectanglescan generateBadDrawable, BadGC, and Bad-
Match errors.

8.3.4. DrawingSingle and Multiple Arcs

To draw a single arc in a given drawable, useXDrawArc .

144

Xlib − C Library libX11 1.3.2

XDrawArc (display, d, gc, x, y, width, height, angle1, angle2)
Display *display;
Drawabled;
GC gc;
int x, y;
unsigned intwidth, height;
int angle1, angle2;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

x
y Specify the x and y coordinates, which are relative to the origin of the drawable

and specify the upper-left corner of the bounding rectangle.

width
height Specify the width and height, which are the major and minor axes of the arc.

angle1 Specifies the start of the arc relative to the three-o’clock position from the center,
in units of degrees * 64.

angle2 Specifies the path and extent of the arc relative to the start of the arc, in units of
degrees * 64.

To draw multiple arcs in a given drawable, useXDrawArcs .

XDrawArcs (display, d, gc, arcs, narcs)
Display *display;
Drawabled;
GC gc;
XArc *arcs;
int narcs;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

arcs Specifies an array of arcs.

narcs Specifies the number of arcs in the array.

XDrawArc draws a single circular or elliptical arc, andXDrawArcs draws multiple circular or
elliptical arcs. Each arc is specified by a rectangle and two angles. Thecenter of the circle or
ellipse is the center of the rectangle, and the major and minor axes are specified by the width and
height. Positive angles indicate counterclockwise motion, and negative angles indicate clockwise
motion. If the magnitude of angle2 is greater than 360 degrees,XDrawArc or XDrawArcs
truncates it to 360 degrees.

For an arc specified as [x, y, width, height, angle1, angle2], the origin of the major and minor

axes is at [x +
width

2
, y +

height

2
], and the infinitely thin path describing the entire circle or

ellipse intersects the horizontal axis at [x, y +
height

2
] and [x + width, y +

height

2
] and intersects

the vertical axis at [x +
width

2
, y] and [x +

width

2
, y + height]. Thesecoordinates can be frac-

145

Xlib − C Library libX11 1.3.2

tional and so are not truncated to discrete coordinates. The path should be defined by the ideal
mathematical path.For a wide line with line-width lw, the bounding outlines for filling are given
by the two infinitely thin paths consisting of all points whose perpendicular distance from the
path of the circle/ellipse is equal to lw/2 (which may be a fractional value). Thecap-style and
join-style are applied the same as for a line corresponding to the tangent of the circle/ellipse at the
endpoint.

For an arc specified as [x, y, width, height, angle1, angle2], the angles must be specified in the
effectively skewed coordinate system of the ellipse (for a circle, the angles and coordinate sys-
tems are identical). The relationship between these angles and angles expressed in the normal
coordinate system of the screen (as measured with a protractor) is as follows:

skewed-angle= atan

tan(normal-angle) *

width

height

+ adjust

The skewed-angle and normal-angle are expressed in radians (rather than in degrees scaled by 64)
in the range [0, 2π] and where atan returns a value in the range [−

π
2

,
π
2

] and adjust is:

0 for normal-angle in the range [0,
π
2

]

π for normal-angle in the range [
π
2

,
3π
2

]

2π for normal-angle in the range [
3π
2

, 2π]

For any giv en arc, XDrawArc andXDrawArcs do not draw a pixel more than once. If two arcs
join correctly and if the line-width is greater than zero and the arcs intersect,XDrawArc and
XDrawArcs do not draw a pixel more than once. Otherwise, the intersecting pixels of intersect-
ing arcs are drawn multiple times. Specifying an arc with one endpoint and a clockwise extent
draws the same pixels as specifying the other endpoint and an equivalent counterclockwise extent,
except as it affects joins.

If the last point in one arc coincides with the first point in the following arc, the two arcs will join
correctly. If the first point in the first arc coincides with the last point in the last arc, the two arcs
will join correctly. By specifying one axis to be zero, a horizontal or vertical line can be drawn.
Angles are computed based solely on the coordinate system and ignore the aspect ratio.

Both functions use these GC components: function, plane-mask, line-width, line-style, cap-style,
join-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. They also use
these GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-ori-
gin, tile-stipple-y-origin, dash-offset, and dash-list.

XDrawArc andXDrawArcs can generateBadDrawable, BadGC, and BadMatch errors.

8.4. Filling Areas
Xlib provides functions that you can use to fill:

• A single rectangle or multiple rectangles

• A single polygon

• A single arc or multiple arcs

8.4.1. FillingSingle and Multiple Rectangles

To fill a single rectangular area in a given drawable, useXFillRectangle.

146

Xlib − C Library libX11 1.3.2

XFillRectangle (display, d, gc, x, y, width, height)
Display *display;
Drawabled;
GC gc;
int x, y;
unsigned intwidth, height;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

x
y Specify the x and y coordinates, which are relative to the origin of the drawable

and specify the upper-left corner of the rectangle.

width
height Specify the width and height, which are the dimensions of the rectangle to be

filled.

To fill multiple rectangular areas in a given drawable, useXFillRectangles.

XFillRectangles (display, d, gc, rectangles, nrectangles)
Display *display;
Drawabled;
GC gc;
XRectangle *rectangles;
int nrectangles;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

rectangles Specifies an array of rectangles.

nrectangles Specifies the number of rectangles in the array.

The XFillRectangle andXFillRectangles functions fill the specified rectangle or rectangles as if
a four-pointFillPolygon protocol request were specified for each rectangle:

[x,y] [x+width,y] [x+width,y+height] [x,y+height]

Each function uses the x and y coordinates, width and height dimensions, and GC you specify.

XFillRectangles fills the rectangles in the order listed in the array. For any giv en rectangle,
XFillRectangle andXFillRectangles do not draw a pixel more than once. If rectangles inter-
sect, the intersecting pixels are drawn multiple times.

Both functions use these GC components: function, plane-mask, fill-style, subwindow-mode,
clip-x-origin, clip-y-origin, and clip-mask. They also use these GC mode-dependent components:
foreground, background, tile, stipple, tile-stipple-x-origin, and tile-stipple-y-origin.

XFillRectangle andXFillRectangles can generateBadDrawable, BadGC, and BadMatch
errors.

147

Xlib − C Library libX11 1.3.2

8.4.2. Fillinga Single Polygon

To fill a polygon area in a given drawable, useXFillPolygon .

XFillPolygon (display, d, gc, points, npoints, shape, mode)
Display *display;
Drawabled;
GC gc;
XPoint *points;
int npoints;
int shape;
int mode;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

points Specifies an array of points.

npoints Specifies the number of points in the array.

shape Specifies a shape that helps the server to improve performance. You can pass
Complex, Convex, or Nonconvex.

mode Specifies the coordinate mode.You can passCoordModeOrigin or Coord-
ModePrevious.

XFillPolygon fills the region closed by the specified path. The path is closed automatically if the
last point in the list does not coincide with the first point.XFillPolygon does not draw a pixel of
the region more than once.CoordModeOrigin treats all coordinates as relative to the origin, and
CoordModePrevious treats all coordinates after the first as relative to the previous point.

Depending on the specified shape, the following occurs:

• If shape isComplex, the path may self-intersect. Note that contiguous coincident points in
the path are not treated as self-intersection.

• If shape isConvex, for every pair of points inside the polygon, the line segment connecting
them does not intersect the path. If known by the client, specifyingConvex can improve
performance. Ifyou specifyConvex for a path that is not convex, the graphics results are
undefined.

• If shape isNonconvex, the path does not self-intersect, but the shape is not wholly convex.
If known by the client, specifyingNonconvex instead ofComplex may improve perfor-
mance. Ifyou specifyNonconvex for a self-intersecting path, the graphics results are
undefined.

The fill-rule of the GC controls the filling behavior of self-intersecting polygons.

This function uses these GC components: function, plane-mask, fill-style, fill-rule, subwindow-
mode, clip-x-origin, clip-y-origin, and clip-mask. It also uses these GC mode-dependent compo-
nents: foreground, background, tile, stipple, tile-stipple-x-origin, and tile-stipple-y-origin.

XFillPolygon can generateBadDrawable, BadGC, BadMatch, and BadValue errors.

8.4.3. FillingSingle and Multiple Arcs
To fill a single arc in a given drawable, useXFillArc .

148

Xlib − C Library libX11 1.3.2

XFillArc (display, d, gc, x, y, width, height, angle1, angle2)
Display *display;
Drawabled;
GC gc;
int x, y;
unsigned intwidth, height;
int angle1, angle2;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

x
y Specify the x and y coordinates, which are relative to the origin of the drawable

and specify the upper-left corner of the bounding rectangle.

width
height Specify the width and height, which are the major and minor axes of the arc.

angle1 Specifies the start of the arc relative to the three-o’clock position from the center,
in units of degrees * 64.

angle2 Specifies the path and extent of the arc relative to the start of the arc, in units of
degrees * 64.

To fill multiple arcs in a given drawable, useXFillArcs .

XFillArcs (display, d, gc, arcs, narcs)
Display *display;
Drawabled;
GC gc;
XArc *arcs;
int narcs;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

arcs Specifies an array of arcs.

narcs Specifies the number of arcs in the array.

For each arc,XFillArc or XFillArcs fills the region closed by the infinitely thin path described
by the specified arc and, depending on the arc-mode specified in the GC, one or two line seg-
ments. For ArcChord , the single line segment joining the endpoints of the arc is used.For
ArcPieSlice, the two line segments joining the endpoints of the arc with the center point are
used. XFillArcs fills the arcs in the order listed in the array. For any giv en arc, XFillArc and
XFillArcs do not draw a pixel more than once. If regions intersect, the intersecting pixels are
drawn multiple times.

Both functions use these GC components: function, plane-mask, fill-style, arc-mode, subwindow-
mode, clip-x-origin, clip-y-origin, and clip-mask. They also use these GC mode-dependent com-
ponents: foreground, background, tile, stipple, tile-stipple-x-origin, and tile-stipple-y-origin.

XFillArc andXFillArcs can generateBadDrawable, BadGC, and BadMatch errors.

149

Xlib − C Library libX11 1.3.2

8.5. Font Metrics
A font is a graphical description of a set of characters that are used to increase efficiency when-
ev er a set of small, similar sized patterns are repeatedly used.

This section discusses how to:

• Load and free fonts

• Obtain and free font names

• Compute character string sizes

• Compute logical extents

• Query character string sizes

The X server loads fonts whenever a program requests a new font. Theserver can cache fonts for
quick lookup. Fonts are global across all screens in a server. Sev eral levels are possible when
dealing with fonts. Most applications simply useXLoadQueryFont to load a font and query the
font metrics.

Characters in fonts are regarded as masks. Except for image text requests, the only pixels modi-
fied are those in which bits are set to 1 in the character. This means that it makes sense to draw
text using stipples or tiles (for example, many menus gray-out unusable entries).

The XFontStruct structure contains all of the information for the font and consists of the font-
specific information as well as a pointer to an array ofXCharStruct structures for the characters
contained in the font. TheXFontStruct , XFontProp , and XCharStruct structures contain:

typedef struct {
short lbearing; /* origin to left edge of raster */
short rbearing; /* origin to right edge of raster */
short width; /* advance to next char’s origin */
short ascent; /* baseline to top edge of raster */
short descent; /* baseline to bottom edge of raster */
unsigned short attributes; /*per char flags (not predefined) */

} X CharStruct;

typedef struct {
Atom name;
unsigned long card32;

} X FontProp;

typedef struct { /* normal 16 bit characters are two bytes */
unsigned char byte1;
unsigned char byte2;

} X Char2b;

typedef struct {
XExtData *ext_data; /*hook for extension to hang data */
Font fid; /* Font id for this font */
unsigned direction; /* hint about the direction font is painted */
unsigned min_char_or_byte2; /* first character */
unsigned max_char_or_byte2; /* last character */
unsigned min_byte1; /* first row that exists */
unsigned max_byte1; /* last row that exists */
Bool all_chars_exist; /* flag if all characters have nonzero size */
unsigned default_char; /*char to print for undefined character */
int n_properties; /* how many properties there are */

150

Xlib − C Library libX11 1.3.2

XFontProp *properties; /* pointer to array of additional properties */
XCharStruct min_bounds; /* minimum bounds over all existing char */
XCharStruct max_bounds; /* maximum bounds over all existing char */
XCharStruct *per_char; /* first_char to last_char information */
int ascent; /* logical extent above baseline for spacing */
int descent; /* logical descent below baseline for spacing */

} X FontStruct;

X supports single byte/character, two bytes/character matrix, and 16-bit character text operations.
Note that any of these forms can be used with a font, but a single byte/character text request can
only specify a single byte (that is, the first row of a 2-byte font). You should view 2-byte fonts as
a two-dimensional matrix of defined characters: byte1 specifies the range of defined rows and
byte2 defines the range of defined columns of the font. Single byte/character fonts have one row
defined, and the byte2 range specified in the structure defines a range of characters.

The bounding box of a character is defined by theXCharStruct of that character. When charac-
ters are absent from a font, the default_char is used. When fonts have all characters of the same
size, only the information in theXFontStruct min and max bounds are used.

The members of theXFontStruct have the following semantics:

• The direction member can be eitherFontLeftToRight or FontRightToLeft . It is just a
hint as to whether mostXCharStruct elements have a positive (FontLeftToRight) or a
negative (FontRightToLeft) character width metric. The core protocol defines no support
for vertical text.

• If the min_byte1 and max_byte1 members are both zero, min_char_or_byte2 specifies the
linear character index corresponding to the first element of the per_char array, and
max_char_or_byte2 specifies the linear character index of the last element.

If either min_byte1 or max_byte1 are nonzero, both min_char_or_byte2 and
max_char_or_byte2 are less than 256, and the 2-byte character index values corresponding
to the per_char array element N (counting from 0) are:

byte1 = N/D + min_byte1
byte2 = N\D + min_char_or_byte2

where:

D = max_char_or_byte2 − min_char_or_byte2 + 1
/ = integer division
\ = integer modulus

• If the per_char pointer is NULL, all glyphs between the first and last character indexes
inclusive hav ethe same information, as given by both min_bounds and max_bounds.

• If all_chars_exist isTr ue, all characters in the per_char array have nonzero bounding
boxes.

• The default_char member specifies the character that will be used when an undefined or
nonexistent character is printed. The default_char is a 16-bit character (not a 2-byte charac-
ter). For a font using 2-byte matrix format, the default_char has byte1 in the most-signifi-
cant byte and byte2 in the least significant byte. If the default_char itself specifies an unde-
fined or nonexistent character, no printing is performed for an undefined or nonexistent
character.

• The min_bounds and max_bounds members contain the most extreme values of each indi-
vidual XCharStruct component over all elements of this array (and ignore nonexistent
characters). Thebounding box of the font (the smallest rectangle enclosing the shape
obtained by superimposing all of the characters at the same origin [x,y]) has its upper-left
coordinate at:

[x + min_bounds.lbearing, y − max_bounds.ascent]

151

Xlib − C Library libX11 1.3.2

Its width is:

max_bounds.rbearing − min_bounds.lbearing

Its height is:

max_bounds.ascent + max_bounds.descent

• The ascent member is the logical extent of the font above the baseline that is used for deter-
mining line spacing. Specific characters may extend beyond this.

• The descent member is the logical extent of the font at or below the baseline that is used for
determining line spacing. Specific characters may extend beyond this.

• If the baseline is at Y-coordinate y, the logical extent of the font is inclusive between the
Y-coordinate values (y − font.ascent) and (y + font.descent − 1).Typically, the minimum
interline spacing between rows of text is given by ascent + descent.

For a character origin at [x,y], the bounding box of a character (that is, the smallest rectangle that
encloses the character’s shape) described in terms ofXCharStruct components is a rectangle
with its upper-left corner at:

[x + lbearing, y − ascent]

Its width is:

rbearing − lbearing

Its height is:

ascent + descent

The origin for the next character is defined to be:

[x + width, y]

The lbearing member defines the extent of the left edge of the character ink from the origin. The
rbearing member defines the extent of the right edge of the character ink from the origin. The
ascent member defines the extent of the top edge of the character ink from the origin. The
descent member defines the extent of the bottom edge of the character ink from the origin. The
width member defines the logical width of the character.

Note that the baseline (the y position of the character origin) is logically viewed as being the
scanline just below nondescending characters. When descent is zero, only pixels with Y-coordi-
nates less than y are drawn, and the origin is logically viewed as being coincident with the left
edge of a nonkerned character. When lbearing is zero, no pixels with X-coordinate less than x are
drawn. Any of the XCharStruct metric members could be negative. If the width is negative, the
next character will be placed to the left of the current origin.

The X protocol does not define the interpretation of the attributes member in theXCharStruct
structure. Anonexistent character is represented with all members of itsXCharStruct set to
zero.

A font is not guaranteed to have any properties. Theinterpretation of the property value (for
example, long or unsigned long) must be derived froma priori knowledge of the property. A
basic set of font properties is specified in the X Consortium standardX Logical Font Description
Conventions.

8.5.1. Loadingand Freeing Fonts
Xlib provides functions that you can use to load fonts, get font information, unload fonts, and free
font information. A few font functions use aGContext resource ID or a font ID interchangeably.

152

Xlib − C Library libX11 1.3.2

To load a given font, useXLoadFont .

Font XLoadFont (display, name)
Display *display;
char *name;

display Specifies the connection to the X server.

name Specifies the name of the font, which is a null-terminated string.

The XLoadFont function loads the specified font and returns its associated font ID. If the font
name is not in the Host Portable Character Encoding, the result is implementation-dependent.
Use of uppercase or lowercase does not matter. When the characters ‘‘?’’ and ‘‘*’ ’ are used in a
font name, a pattern match is performed and any matching font is used. In the pattern, the ‘‘?’’
character will match any single character, and the ‘‘*’’ character will match any number of char-
acters. Astructured format for font names is specified in the X Consortium standardX Logical
Font Description Conventions. If XLoadFont was unsuccessful at loading the specified font, a
BadNameerror results.Fonts are not associated with a particular screen and can be stored as a
component of any GC. Whenthe font is no longer needed, callXUnloadFont.
XLoadFont can generateBadAlloc andBadNameerrors.

To return information about an available font, useXQueryFont .

XFontStruct *XQueryFont (display, font_ID)
Display *display;
XID font_ID;

display Specifies the connection to the X server.

font_ID Specifies the font ID or theGContext ID.

The XQueryFont function returns a pointer to theXFontStruct structure, which contains infor-
mation associated with the font.You can query a font or the font stored in a GC. The font ID
stored in theXFontStruct structure will be theGContext ID, and you need to be careful when
using this ID in other functions (seeXGContextFromGC). If the font does not exist,XQuery-
Font returns NULL. To free this data, useXFreeFontInfo .

To perform aXLoadFont andXQueryFont in a single operation, useXLoadQueryFont .

XFontStruct *XLoadQueryFont (display, name)
Display *display;
char *name;

display Specifies the connection to the X server.

name Specifies the name of the font, which is a null-terminated string.

The XLoadQueryFont function provides the most common way for accessing a font.XLoad-
QueryFont both opens (loads) the specified font and returns a pointer to the appropriate
XFontStruct structure. Ifthe font name is not in the Host Portable Character Encoding, the
result is implementation-dependent. If the font does not exist,XLoadQueryFont returns NULL.

XLoadQueryFont can generate aBadAlloc error.

To unload the font and free the storage used by the font structure that was allocated by

153

Xlib − C Library libX11 1.3.2

XQueryFont or XLoadQueryFont , useXFreeFont.

XFreeFont (display, font_struct)
Display *display;
XFontStruct *font_struct;

display Specifies the connection to the X server.

font_struct Specifies the storage associated with the font.

The XFreeFont function deletes the association between the font resource ID and the specified
font and frees theXFontStruct structure. Thefont itself will be freed when no other resource
references it. The data and the font should not be referenced again.

XFreeFont can generate aBadFont error.

To return a given font property, useXGetFontProperty .

Bool XGetFontProperty (font_struct, atom, value_return)
XFontStruct *font_struct;
Atom atom;
unsigned long *value_return;

font_struct Specifies the storage associated with the font.

atom Specifies the atom for the property name you want returned.

value_return Returns the value of the font property.

Given the atom for that property, the XGetFontProperty function returns the value of the speci-
fied font property.XGetFontProperty also returnsFalse if the property was not defined or
Tr ue if it was defined.A set of predefined atoms exists for font properties, which can be found
in <X11/Xatom.h>. Thisset contains the standard properties associated with a font. Although it
is not guaranteed, it is likely that the predefined font properties will be present.

To unload a font that was loaded byXLoadFont , useXUnloadFont.

XUnloadFont (display, font)
Display *display;
Font font;

display Specifies the connection to the X server.

font Specifies the font.

The XUnloadFont function deletes the association between the font resource ID and the speci-
fied font. The font itself will be freed when no other resource references it. The font should not
be referenced again.

XUnloadFont can generate aBadFont error.

8.5.2. Obtainingand Freeing Font Names and Information
You obtain font names and information by matching a wildcard specification when querying a
font type for a list of available sizes and so on.

To return a list of the available font names, useXListFonts .

154

Xlib − C Library libX11 1.3.2

char **XListFonts (display, pattern, maxnames, actual_count_return)
Display *display;
char *pattern;
int maxnames;
int * actual_count_return;

display Specifies the connection to the X server.

pattern Specifies the null-terminated pattern string that can contain wildcard characters.

maxnames Specifies the maximum number of names to be returned.

actual_count_return
Returns the actual number of font names.

The XListFonts function returns an array of available font names (as controlled by the font
search path; seeXSetFontPath) that match the string you passed to the pattern argument. The
pattern string can contain any characters, but each asterisk (*) is a wildcard for any number of
characters, and each question mark (?) is a wildcard for a single character. If the pattern string is
not in the Host Portable Character Encoding, the result is implementation-dependent. Use of
uppercase or lowercase does not matter. Each returned string is null-terminated. If the data
returned by the server is in the Latin Portable Character Encoding, then the returned strings are in
the Host Portable Character Encoding. Otherwise, the result is implementation-dependent. If
there are no matching font names,XListFonts returns NULL. The client should callXFree-
FontNameswhen finished with the result to free the memory.

To free a font name array, useXFreeFontNames.

XFreeFontNames (list)
char *list [];

list Specifies the array of strings you want to free.

The XFreeFontNamesfunction frees the array and strings returned byXListFonts or XList-
FontsWithInfo .

To obtain the names and information about available fonts, useXListFontsWithInfo .

char **XListFontsWithInfo (display, pattern, maxnames, count_return, info_return)
Display *display;
char *pattern;
int maxnames;
int *count_return;
XFontStruct **info_return;

display Specifies the connection to the X server.

pattern Specifies the null-terminated pattern string that can contain wildcard characters.

maxnames Specifies the maximum number of names to be returned.

count_return Returns the actual number of matched font names.

info_return Returns the font information.

The XListFontsWithInfo function returns a list of font names that match the specified pattern
and their associated font information. The list of names is limited to size specified by maxnames.

155

Xlib − C Library libX11 1.3.2

The information returned for each font is identical to whatXLoadQueryFont would return
except that the per-character metrics are not returned. The pattern string can contain any charac-
ters, but each asterisk (*) is a wildcard for any number of characters, and each question mark (?)
is a wildcard for a single character. If the pattern string is not in the Host Portable Character
Encoding, the result is implementation-dependent. Use of uppercase or lowercase does not mat-
ter. Each returned string is null-terminated. If the data returned by the server is in the Latin Por-
table Character Encoding, then the returned strings are in the Host Portable Character Encoding.
Otherwise, the result is implementation-dependent. If there are no matching font names,XList-
FontsWithInfo returns NULL.

To free only the allocated name array, the client should callXFreeFontNames. To free both the
name array and the font information array or to free just the font information array, the client
should callXFreeFontInfo .

To free font structures and font names, useXFreeFontInfo .

XFreeFontInfo(names, free_info, actual_count)
char **names;
XFontStruct *free_info;
int actual_count;

names Specifies the list of font names.

free_info Specifies the font information.

actual_count Specifies the actual number of font names.

The XFreeFontInfo function frees a font structure or an array of font structures and optionally
an array of font names. If NULL is passed for names, no font names are freed. If a font structure
for an open font (returned byXLoadQueryFont) is passed, the structure is freed, but the font is
not closed; useXUnloadFont to close the font.

8.5.3. ComputingCharacter String Sizes
Xlib provides functions that you can use to compute the width, the logical extents, and the server
information about 8-bit and 2-byte text strings. The width is computed by adding the character
widths of all the characters. It does not matter if the font is an 8-bit or 2-byte font. These func-
tions return the sum of the character metrics in pixels.

To determine the width of an 8-bit character string, useXTextWidth .

int XTextWidth (font_struct, string, count)
XFontStruct *font_struct;
char *string;
int count;

font_struct Specifies the font used for the width computation.

string Specifies the character string.

count Specifies the character count in the specified string.

To determine the width of a 2-byte character string, useXTextWidth16 .

156

Xlib − C Library libX11 1.3.2

int XTextWidth16 (font_struct, string, count)
XFontStruct *font_struct;
XChar2b *string;
int count;

font_struct Specifies the font used for the width computation.

string Specifies the character string.

count Specifies the character count in the specified string.

8.5.4. ComputingLogical Extents
To compute the bounding box of an 8-bit character string in a given font, useXTextExtents.

XTextExtents (font_struct, string, nchars, direction_return, font_ascent_return,
font_descent_return, overall_return)

XFontStruct *font_struct;
char *string;
int nchars;
int *direction_return;
int *font_ascent_return, *font_descent_return;
XCharStruct *overall_return;

font_struct Specifies theXFontStruct structure.

string Specifies the character string.

nchars Specifies the number of characters in the character string.

direction_returnReturns the value of the direction hint (FontLeftToRight or FontRightToLeft).

font_ascent_return
Returns the font ascent.

font_descent_return
Returns the font descent.

overall_return Returns the overall size in the specifiedXCharStruct structure.

To compute the bounding box of a 2-byte character string in a given font, useXTextExtents16.

157

Xlib − C Library libX11 1.3.2

XTextExtents16 (font_struct, string, nchars, direction_return, font_ascent_return,
font_descent_return, overall_return)

XFontStruct *font_struct;
XChar2b *string;
int nchars;
int *direction_return;
int *font_ascent_return, *font_descent_return;
XCharStruct *overall_return;

font_struct Specifies theXFontStruct structure.

string Specifies the character string.

nchars Specifies the number of characters in the character string.

direction_returnReturns the value of the direction hint (FontLeftToRight or FontRightToLeft).

font_ascent_return
Returns the font ascent.

font_descent_return
Returns the font descent.

overall_return Returns the overall size in the specifiedXCharStruct structure.

The XTextExtents andXTextExtents16 functions perform the size computation locally and,
thereby, avoid the round-trip overhead ofXQueryTextExtents andXQueryTextExtents16.
Both functions return anXCharStruct structure, whose members are set to the values as follows.

The ascent member is set to the maximum of the ascent metrics of all characters in the string.
The descent member is set to the maximum of the descent metrics. The width member is set to
the sum of the character-width metrics of all characters in the string.For each character in the
string, let W be the sum of the character-width metrics of all characters preceding it in the string.
Let L be the left-side-bearing metric of the character plus W. Let R be the right-side-bearing met-
ric of the character plus W. The lbearing member is set to the minimum L of all characters in the
string. Therbearing member is set to the maximum R.

For fonts defined with linear indexing rather than 2-byte matrix indexing, eachXChar2b struc-
ture is interpreted as a 16-bit number with byte1 as the most significant byte. If the font has no
defined default character, undefined characters in the string are taken to have all zero metrics.

8.5.5. QueryingCharacter String Sizes
To query the server for the bounding box of an 8-bit character string in a given font, useXQuery-
TextExtents.

158

Xlib − C Library libX11 1.3.2

XQueryTextExtents (display, font_ID, string, nchars, direction_return, font_ascent_return,
font_descent_return, overall_return)

Display *display;
XID font_ID;
char *string;
int nchars;
int *direction_return;
int *font_ascent_return, *font_descent_return;
XCharStruct *overall_return;

display Specifies the connection to the X server.

font_ID Specifies either the font ID or theGContext ID that contains the font.

string Specifies the character string.

nchars Specifies the number of characters in the character string.

direction_returnReturns the value of the direction hint (FontLeftToRight or FontRightToLeft).

font_ascent_return
Returns the font ascent.

font_descent_return
Returns the font descent.

overall_return Returns the overall size in the specifiedXCharStruct structure.

To query the server for the bounding box of a 2-byte character string in a given font, use
XQueryTextExtents16.

XQueryTextExtents16 (display, font_ID, string, nchars, direction_return, font_ascent_return,
font_descent_return, overall_return)

Display *display;
XID font_ID;
XChar2b *string;
int nchars;
int *direction_return;
int *font_ascent_return, *font_descent_return;
XCharStruct *overall_return;

display Specifies the connection to the X server.

font_ID Specifies either the font ID or theGContext ID that contains the font.

string Specifies the character string.

nchars Specifies the number of characters in the character string.

direction_returnReturns the value of the direction hint (FontLeftToRight or FontRightToLeft).

font_ascent_return
Returns the font ascent.

font_descent_return
Returns the font descent.

overall_return Returns the overall size in the specifiedXCharStruct structure.

The XQueryTextExtents andXQueryTextExtents16 functions return the bounding box of the
specified 8-bit and 16-bit character string in the specified font or the font contained in the speci-
fied GC. These functions query the X server and, therefore, suffer the round-trip overhead that is

159

Xlib − C Library libX11 1.3.2

avoided byXTextExtents andXTextExtents16. Both functions return aXCharStruct struc-
ture, whose members are set to the values as follows.

The ascent member is set to the maximum of the ascent metrics of all characters in the string.
The descent member is set to the maximum of the descent metrics. The width member is set to
the sum of the character-width metrics of all characters in the string.For each character in the
string, let W be the sum of the character-width metrics of all characters preceding it in the string.
Let L be the left-side-bearing metric of the character plus W. Let R be the right-side-bearing met-
ric of the character plus W. The lbearing member is set to the minimum L of all characters in the
string. Therbearing member is set to the maximum R.

For fonts defined with linear indexing rather than 2-byte matrix indexing, eachXChar2b struc-
ture is interpreted as a 16-bit number with byte1 as the most significant byte. If the font has no
defined default character, undefined characters in the string are taken to have all zero metrics.

Characters with all zero metrics are ignored. If the font has no defined default_char, the unde-
fined characters in the string are also ignored.

XQueryTextExtents andXQueryTextExtents16 can generateBadFont andBadGC errors.

8.6. DrawingText
This section discusses how to draw:

• Complex text

• Text characters

• Image text characters

The fundamental text functionsXDrawText andXDrawText16 use the following structures:

typedef struct {
char *chars; /* pointer to string */
int nchars; /* number of characters */
int delta; /* delta between strings */
Font font; /* Font to print it in, None don’t change */

} X Te xtItem;

typedef struct {
XChar2b *chars; /* pointer to two-byte characters */
int nchars; /* number of characters */
int delta; /* delta between strings */
Font font; /* font to print it in, None don’t change */

} X Te xtItem16;

If the font member is notNone, the font is changed before printing and also is stored in the GC.
If an error was generated during text drawing, the previous items may have been drawn. The
baseline of the characters are drawn starting at the x and y coordinates that you pass in the text
drawing functions.

For example, consider the background rectangle drawn byXDrawImageString . If you want the
upper-left corner of the background rectangle to be at pixel coordinate (x,y), pass the (x,y +
ascent) as the baseline origin coordinates to the text functions. The ascent is the font ascent, as
given in the XFontStruct structure. Ifyou want the lower-left corner of the background rectan-
gle to be at pixel coordinate (x,y), pass the (x,y − descent + 1) as the baseline origin coordinates
to the text functions. The descent is the font descent, as given in the XFontStruct structure.

160

Xlib − C Library libX11 1.3.2

8.6.1. DrawingComplex Text

To draw 8-bit characters in a given drawable, useXDrawText .

XDrawText(display, d, gc, x, y, items, nitems)
Display *display;
Drawabled;
GC gc;
int x, y;
XTextItem *items;
int nitems;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

x
y Specify the x and y coordinates, which are relative to the origin of the specified

drawable and define the origin of the first character.

items Specifies an array of text items.

nitems Specifies the number of text items in the array.

To draw 2-byte characters in a given drawable, useXDrawText16.

XDrawText16 (display, d, gc, x, y, items, nitems)
Display *display;
Drawabled;
GC gc;
int x, y;
XTextItem16 *items;
int nitems;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

x
y Specify the x and y coordinates, which are relative to the origin of the specified

drawable and define the origin of the first character.

items Specifies an array of text items.

nitems Specifies the number of text items in the array.

The XDrawText16 function is similar toXDrawText except that it uses 2-byte or 16-bit charac-
ters. Bothfunctions allow complex spacing and font shifts between counted strings.

Each text item is processed in turn.A font member other thanNone in an item causes the font to
be stored in the GC and used for subsequent text. A text element delta specifies an additional
change in the position along the x axis before the string is drawn. Thedelta is always added to
the character origin and is not dependent on any characteristics of the font. Each character image,
as defined by the font in the GC, is treated as an additional mask for a fill operation on the draw-
able. Thedrawable is modified only where the font character has a bit set to 1. If a text item gen-
erates aBadFont error, the previous text items may have been drawn.

161

Xlib − C Library libX11 1.3.2

For fonts defined with linear indexing rather than 2-byte matrix indexing, eachXChar2b struc-
ture is interpreted as a 16-bit number with byte1 as the most significant byte.

Both functions use these GC components: function, plane-mask, fill-style, font, subwindow-
mode, clip-x-origin, clip-y-origin, and clip-mask. They also use these GC mode-dependent com-
ponents: foreground, background, tile, stipple, tile-stipple-x-origin, and tile-stipple-y-origin.

XDrawText andXDrawText16 can generateBadDrawable, BadFont, BadGC, and Bad-
Match errors.

8.6.2. DrawingText Characters
To draw 8-bit characters in a given drawable, useXDrawString .

XDrawString (display, d, gc, x, y, string, length)
Display *display;
Drawabled;
GC gc;
int x, y;
char *string;
int length;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

x
y Specify the x and y coordinates, which are relative to the origin of the specified

drawable and define the origin of the first character.

string Specifies the character string.

length Specifies the number of characters in the string argument.

To draw 2-byte characters in a given drawable, useXDrawString16 .

XDrawString16 (display, d, gc, x, y, string, length)
Display *display;
Drawabled;
GC gc;
int x, y;
XChar2b *string;
int length;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

x
y Specify the x and y coordinates, which are relative to the origin of the specified

drawable and define the origin of the first character.

string Specifies the character string.

length Specifies the number of characters in the string argument.

Each character image, as defined by the font in the GC, is treated as an additional mask for a fill
operation on the drawable. Thedrawable is modified only where the font character has a bit set to

162

Xlib − C Library libX11 1.3.2

1. For fonts defined with 2-byte matrix indexing and used withXDrawString16 , each byte is
used as a byte2 with a byte1 of zero.

Both functions use these GC components: function, plane-mask, fill-style, font, subwindow-
mode, clip-x-origin, clip-y-origin, and clip-mask. They also use these GC mode-dependent com-
ponents: foreground, background, tile, stipple, tile-stipple-x-origin, and tile-stipple-y-origin.

XDrawString andXDrawString16 can generateBadDrawable, BadGC, and BadMatch
errors.

8.6.3. DrawingImage Text Characters
Some applications, in particular terminal emulators, need to print image text in which both the
foreground and background bits of each character are painted. This prevents annoying flicker on
many displays.

To draw 8-bit image text characters in a given drawable, useXDrawImageString .

XDrawImageString (display, d, gc, x, y, string, length)
Display *display;
Drawabled;
GC gc;
int x, y;
char *string;
int length;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

x
y Specify the x and y coordinates, which are relative to the origin of the specified

drawable and define the origin of the first character.

string Specifies the character string.

length Specifies the number of characters in the string argument.

To draw 2-byte image text characters in a given drawable, useXDrawImageString16.

163

Xlib − C Library libX11 1.3.2

XDrawImageString16 (display, d, gc, x, y, string, length)
Display *display;
Drawabled;
GC gc;
int x, y;
XChar2b *string;
int length;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

x
y Specify the x and y coordinates, which are relative to the origin of the specified

drawable and define the origin of the first character.

string Specifies the character string.

length Specifies the number of characters in the string argument.

The XDrawImageString16 function is similar toXDrawImageString except that it uses 2-byte
or 16-bit characters. Both functions also use both the foreground and background pixels of the
GC in the destination.

The effect is first to fill a destination rectangle with the background pixel defined in the GC and
then to paint the text with the foreground pixel. Theupper-left corner of the filled rectangle is at:

[x, y − font-ascent]

The width is:

overall-width

The height is:

font-ascent + font-descent

The overall-width, font-ascent, and font-descent are as would be returned byXQueryTextEx-
tents using gc and string. The function and fill-style defined in the GC are ignored for these
functions. Theeffective function isGXcopy, and the effective fill-style is FillSolid .

For fonts defined with 2-byte matrix indexing and used withXDrawImageString , each byte is
used as a byte2 with a byte1 of zero.

Both functions use these GC components: plane-mask, foreground, background, font, subwin-
dow-mode, clip-x-origin, clip-y-origin, and clip-mask.

XDrawImageString andXDrawImageString16 can generateBadDrawable, BadGC, and
BadMatch errors.

8.7. Transferring Images between Client and Server
Xlib provides functions that you can use to transfer images between a client and the server.
Because the server may require diverse data formats, Xlib provides an image object that fully
describes the data in memory and that provides for basic operations on that data.You should ref-
erence the data through the image object rather than referencing the data directly. Howev er, some
implementations of the Xlib library may efficiently deal with frequently used data formats by
replacing functions in the procedure vector with special case functions. Supported operations
include destroying the image, getting a pixel, storing a pixel, extracting a subimage of an image,

164

Xlib − C Library libX11 1.3.2

and adding a constant to an image (see section 16.8).

All the image manipulation functions discussed in this section make use of theXImage structure,
which describes an image as it exists in the client’s memory.

typedef struct _XImage {
int width, height; /* size of image */
int xoffset; /* number of pixels offset in X direction */
int format; /* XYBitmap, XYPixmap, ZPixmap */
char *data; /* pointer to image data */
int byte_order; /* data byte order, LSBFirst, MSBFirst */
int bitmap_unit; /* quant. of scanline 8, 16, 32 */
int bitmap_bit_order; /* LSBFirst, MSBFirst */
int bitmap_pad; /* 8, 16, 32 either XY or ZPixmap */
int depth; /* depth of image */
int bytes_per_line; /* accelerator to next scanline */
int bits_per_pixel; /* bits per pixel (ZPixmap) */
unsigned long red_mask; /* bits in z arrangement */
unsigned long green_mask;
unsigned long blue_mask;
XPointer obdata; /* hook for the object routines to hang on */
struct funcs { /* image manipulation routines */

struct _XImage *(*create_image)();
int (*destroy_image)();
unsigned long (*get_pixel)();
int (*put_pixel)();
struct _XImage *(*sub_image)();
int (*add_pixel)();

} f ;
} X Image;

To initialize the image manipulation routines of an image structure, useXInitImage .

Status XInitImage(image)
XImage *image;

ximage Specifies the image.

The XInitImage function initializes the internal image manipulation routines of an image struc-
ture, based on the values of the various structure members. All fields other than the manipulation
routines must already be initialized. If the bytes_per_line member is zero,XInitImage will
assume the image data is contiguous in memory and set the bytes_per_line member to an appro-
priate value based on the other members; otherwise, the value of bytes_per_line is not changed.
All of the manipulation routines are initialized to functions that other Xlib image manipulation
functions need to operate on the type of image specified by the rest of the structure.

This function must be called for any image constructed by the client before passing it to any other
Xlib function. Image structures created or returned by Xlib do not need to be initialized in this
fashion.

This function returns a nonzero status if initialization of the structure is successful. It returns zero
if it detected some error or inconsistency in the structure, in which case the image is not changed.

165

Xlib − C Library libX11 1.3.2

To combine an image with a rectangle of a drawable on the display, useXPutImage.

XPutImage (display, d, gc, image, src_x, src_y, dest_x, dest_y, width, height)
Display *display;
Drawabled;
GC gc;
XImage *image;
int src_x, src_y;
int dest_x, dest_y;
unsigned intwidth, height;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

image Specifies the image you want combined with the rectangle.

src_x Specifies the offset in X from the left edge of the image defined by theXImage
structure.

src_y Specifies the offset in Y from the top edge of the image defined by theXImage
structure.

dest_x
dest_y Specify the x and y coordinates, which are relative to the origin of the drawable

and are the coordinates of the subimage.

width
height Specify the width and heightof the subimage, which define the dimensions of the

rectangle.

The XPutImage function combines an image with a rectangle of the specified drawable. The
section of the image defined by the src_x, src_y, width, and height arguments is drawn on the
specified part of the drawable. If XYBitmap format is used, the depth of the image must be one,
or aBadMatch error results. The foreground pixel in the GC defines the source for the one bits
in the image, and the background pixel defines the source for the zero bits.For XYPixmap and
ZPixmap, the depth of the image must match the depth of the drawable, or aBadMatch error
results.

If the characteristics of the image (for example, byte_order and bitmap_unit) differ from what the
server requires,XPutImage automatically makes the appropriate conversions.

This function uses these GC components: function, plane-mask, subwindow-mode, clip-x-origin,
clip-y-origin, and clip-mask. It also uses these GC mode-dependent components: foreground and
background.

XPutImage can generateBadDrawable, BadGC, BadMatch, and BadValue errors.

To return the contents of a rectangle in a given drawable on the display, useXGetImage. This
function specifically supports rudimentary screen dumps.

166

Xlib − C Library libX11 1.3.2

XImage *XGetImage(display, d, x, y, width, height, plane_mask, format)
Display *display;
Drawabled;
int x, y;
unsigned intwidth, height;
unsigned longplane_mask;
int format;

display Specifies the connection to the X server.

d Specifies the drawable.

x
y Specify the x and y coordinates, which are relative to the origin of the drawable

and define the upper-left corner of the rectangle.

width
height Specify the width and heightof the subimage, which define the dimensions of the

rectangle.

plane_mask Specifies the plane mask.

format Specifies the format for the image.You can passXYPixmap or ZPixmap.

The XGetImage function returns a pointer to anXImage structure. Thisstructure provides you
with the contents of the specified rectangle of the drawable in the format you specify. If the for-
mat argument isXYPixmap , the image contains only the bit planes you passed to the
plane_mask argument. Ifthe plane_mask argument only requests a subset of the planes of the
display, the depth of the returned image will be the number of planes requested. If the format
argument isZPixmap, XGetImage returns as zero the bits in all planes not specified in the
plane_mask argument. Thefunction performs no range checking on the values in plane_mask
and ignores extraneous bits.

XGetImage returns the depth of the image to the depth member of theXImage structure. The
depth of the image is as specified when the drawable was created, except when getting a subset of
the planes inXYPixmap format, when the depth is given by the number of bits set to 1 in
plane_mask.

If the drawable is a pixmap, the given rectangle must be wholly contained within the pixmap, or a
BadMatch error results. If the drawable is a window, the window must be viewable, and it must
be the case that if there were no inferiors or overlapping windows, the specified rectangle of the
window would be fully visible on the screen and wholly contained within the outside edges of the
window, or a BadMatch error results. Note that the borders of the window can be included and
read with this request. If the window has backing-store, the backing-store contents are returned
for regions of the window that are obscured by noninferior windows. If the window does not
have backing-store, the returned contents of such obscured regions are undefined. The returned
contents of visible regions of inferiors of a different depth than the specified window’s depth are
also undefined. The pointer cursor image is not included in the returned contents. If a problem
occurs,XGetImage returns NULL.

XGetImage can generateBadDrawable, BadMatch, and BadValue errors.

To copy the contents of a rectangle on the display to a location within a preexisting image struc-
ture, useXGetSubImage.

167

Xlib − C Library libX11 1.3.2

XImage *XGetSubImage(display, d, x, y, width, height, plane_mask, format, dest_image, dest_x,
dest_y)

Display *display;
Drawabled;
int x, y;
unsigned intwidth, height;
unsigned longplane_mask;
int format;
XImage *dest_image;
int dest_x, dest_y;

display Specifies the connection to the X server.

d Specifies the drawable.

x
y Specify the x and y coordinates, which are relative to the origin of the drawable

and define the upper-left corner of the rectangle.

width
height Specify the width and height of the subimage, which define the dimensions of the

rectangle.

plane_mask Specifies the plane mask.

format Specifies the format for the image.You can passXYPixmap or ZPixmap.

dest_image Specifies the destination image.

dest_x
dest_y Specify the x and y coordinates, which are relative to the origin of the destination

rectangle, specify its upper-left corner, and determine where the subimage is
placed in the destination image.

The XGetSubImage function updates dest_image with the specified subimage in the same man-
ner asXGetImage. If the format argument isXYPixmap , the image contains only the bit planes
you passed to the plane_mask argument. Ifthe format argument isZPixmap, XGetSubImage
returns as zero the bits in all planes not specified in the plane_mask argument. Thefunction per-
forms no range checking on the values in plane_mask and ignores extraneous bits. As a con-
venience,XGetSubImage returns a pointer to the sameXImage structure specified by
dest_image.

The depth of the destinationXImage structure must be the same as that of the drawable. If the
specified subimage does not fit at the specified location on the destination image, the right and
bottom edges are clipped. If the drawable is a pixmap, the given rectangle must be wholly con-
tained within the pixmap, or aBadMatch error results. If the drawable is a window, the window
must be viewable, and it must be the case that if there were no inferiors or overlapping windows,
the specified rectangle of the window would be fully visible on the screen and wholly contained
within the outside edges of the window, or a BadMatch error results. If the window has back-
ing-store, then the backing-store contents are returned for regions of the window that are obscured
by noninferior windows. If the window does not have backing-store, the returned contents of
such obscured regions are undefined. The returned contents of visible regions of inferiors of a
different depth than the specified window’s depth are also undefined. If a problem occurs,XGet-
SubImage returns NULL.

XGetSubImagecan generateBadDrawable, BadGC, BadMatch, and BadValue errors.

168

Xlib − C Library libX11 1.3.2

Chapter 9

Window and Session Manager Functions

Although it is difficult to categorize functions as exclusively for an application, a window man-
ager, or a session manager, the functions in this chapter are most often used by window managers
and session managers. It is not expected that these functions will be used by most application
programs. Xlibprovides management functions to:

• Change the parent of a window

• Control the lifetime of a window

• Manage installed colormaps

• Set and retrieve the font search path

• Grab the server

• Kill a client

• Control the screen saver

• Control host access

9.1. Changingthe Parent of a Window
To change a window’s parent to another window on the same screen, useXReparentWindow.
There is no way to move a window between screens.

XReparentWindow(display, w, parent, x, y)
Display *display;
Windoww;
Windowparent;
int x, y;

display Specifies the connection to the X server.

w Specifies the window.

parent Specifies the parent window.

x
y Specify the x and y coordinates of the position in the new parent window.

If the specified window is mapped,XReparentWindow automatically performs anUnmapWin-
dow request on it, removes it from its current position in the hierarchy, and inserts it as the child
of the specified parent. The window is placed in the stacking order on top with respect to sibling
windows.

After reparenting the specified window, XReparentWindow causes the X server to generate a
ReparentNotify ev ent. Theoverride_redirect member returned in this event is set to the win-
dow’s corresponding attribute. Window manager clients usually should ignore this window if this
member is set toTr ue. Finally, if the specified window was originally mapped, the X server
automatically performs aMapWindow request on it.

The X server performs normal exposure processing on formerly obscured windows. TheX server
might not generateExposeev ents for regions from the initialUnmapWindow request that are
immediately obscured by the finalMapWindow request. ABadMatch error results if:

169

Xlib − C Library libX11 1.3.2

• The new parent window is not on the same screen as the old parent window.

• The new parent window is the specified window or an inferior of the specified window.

• The new parent isInputOnly , and the window is not.

• The specified window has aParentRelative background, and the new parent window is not
the same depth as the specified window.

XReparentWindow can generateBadMatch andBadWindow errors.

9.2. Controlling the Lifetime of a Window
The save-set of a client is a list of other clients’ windows that, if they are inferiors of one of the
client’s windows at connection close, should not be destroyed and should be remapped if they are
unmapped. For further information about close-connection processing, see section 2.6.To allow
an application’s window to survive when a window manager that has reparented a window fails,
Xlib provides the save-set functions that you can use to control the longevity of subwindows that
are normally destroyed when the parent is destroyed. For example, a window manager that wants
to add decoration to a window by adding a frame might reparent an application’s window. When
the frame is destroyed, the application’s window should not be destroyed but be returned to its
previous place in the window hierarchy.

The X server automatically removes windows from the save-set when they are destroyed.

To add or remove a window from the client’s sav e-set, useXChangeSaveSet.

XChangeSaveSet (display, w, change_mode)
Display *display;
Windoww;
int change_mode;

display Specifies the connection to the X server.

w Specifies the window that you want to add to or delete from the client’s sav e-set.

change_mode Specifies the mode.You can passSetModeInsert or SetModeDelete.

Depending on the specified mode,XChangeSaveSet either inserts or deletes the specified win-
dow from the client’s sav e-set. Thespecified window must have been created by some other
client, or aBadMatch error results.

XChangeSaveSet can generateBadMatch, BadValue, and BadWindow errors.

To add a window to the client’s sav e-set, useXAddToSaveSet.

XAddToSaveSet (display, w)
Display *display;
Windoww;

display Specifies the connection to the X server.

w Specifies the window that you want to add to the client’s sav e-set.

The XAddToSaveSet function adds the specified window to the client’s sav e-set. Thespecified
window must have been created by some other client, or aBadMatch error results.

XAddToSaveSet can generateBadMatch andBadWindow errors.

To remove a window from the client’s sav e-set, useXRemoveFromSaveSet.

170

Xlib − C Library libX11 1.3.2

XRemoveFromSaveSet (display, w)
Display *display;
Windoww;

display Specifies the connection to the X server.

w Specifies the window that you want to delete from the client’s sav e-set.

The XRemoveFromSaveSet function removes the specified window from the client’s sav e-set.
The specified window must have been created by some other client, or aBadMatch error results.

XRemoveFromSaveSet can generateBadMatch andBadWindow errors.

9.3. ManagingInstalled Colormaps
The X server maintains a list of installed colormaps.Windows using these colormaps are guaran-
teed to display with correct colors; windows using other colormaps may or may not display with
correct colors. Xlib provides functions that you can use to install a colormap, uninstall a col-
ormap, and obtain a list of installed colormaps.

At any time, there is a subset of the installed maps that is viewed as an ordered list and is called
the required list. The length of the required list is at most M, where M is the minimum number of
installed colormaps specified for the screen in the connection setup. The required list is main-
tained as follows. Whena colormap is specified toXInstallColormap , it is added to the head of
the list; the list is truncated at the tail, if necessary, to keep its length to at most M. When a col-
ormap is specified toXUninstallColormap and it is in the required list, it is removed from the
list. A colormap is not added to the required list when it is implicitly installed by the X server,
and the X server cannot implicitly uninstall a colormap that is in the required list.

To install a colormap, useXInstallColormap .

XInstallColormap (display, colormap)
Display *display;
Colormapcolormap;

display Specifies the connection to the X server.

colormap Specifies the colormap.

The XInstallColormap function installs the specified colormap for its associated screen. All
windows associated with this colormap immediately display with true colors.You associated the
windows with this colormap when you created them by callingXCreateWindow, XCreateSim-
pleWindow, XChangeWindowAttributes , or XSetWindowColormap.

If the specified colormap is not already an installed colormap, the X server generates aCol-
ormapNotify ev ent on each window that has that colormap. In addition, for every other col-
ormap that is installed as a result of a call toXInstallColormap , the X server generates aCol-
ormapNotify ev ent on each window that has that colormap.

XInstallColormap can generate aBadColor error.

To uninstall a colormap, useXUninstallColormap .

171

Xlib − C Library libX11 1.3.2

XUninstallColormap (display, colormap)
Display *display;
Colormapcolormap;

display Specifies the connection to the X server.

colormap Specifies the colormap.

The XUninstallColormap function removes the specified colormap from the required list for its
screen. Asa result, the specified colormap might be uninstalled, and the X server might implic-
itly install or uninstall additional colormaps. Which colormaps get installed or uninstalled is
server dependent except that the required list must remain installed.

If the specified colormap becomes uninstalled, the X server generates aColormapNotify ev ent
on each window that has that colormap. In addition, for every other colormap that is installed or
uninstalled as a result of a call toXUninstallColormap , the X server generates aColormapNo-
tify ev ent on each window that has that colormap.

XUninstallColormap can generate aBadColor error.

To obtain a list of the currently installed colormaps for a given screen, useXListInstalledCol-
ormaps.

Colormap *XListInstalledColormaps(display, w, num_return)
Display *display;
Windoww;
int *num_return;

display Specifies the connection to the X server.

w Specifies the window that determines the screen.

num_return Returns the number of currently installed colormaps.

The XListInstalledColormaps function returns a list of the currently installed colormaps for the
screen of the specified window. The order of the colormaps in the list is not significant and is no
explicit indication of the required list. When the allocated list is no longer needed, free it by
usingXFree.

XListInstalledColormaps can generate aBadWindow error.

9.4. Settingand Retrieving the Font Search Path
The set of fonts available from a server depends on a font search path. Xlib provides functions to
set and retrieve the search path for a server.

To set the font search path, useXSetFontPath.

172

Xlib − C Library libX11 1.3.2

XSetFontPath (display, directories, ndirs)
Display *display;
char **directories;
int ndirs;

display Specifies the connection to the X server.

directories Specifies the directory path used to look for a font. Setting the path to the empty
list restores the default path defined for the X server.

ndirs Specifies the number of directories in the path.

The XSetFontPath function defines the directory search path for font lookup. There is only one
search path per X server, not one per client. The encoding and interpretation of the strings are
implementation-dependent, but typically they specify directories or font servers to be searched in
the order listed. An X server is permitted to cache font information internally; for example, it
might cache an entire font from a file and not check on subsequent opens of that font to see if the
underlying font file has changed. However, when the font path is changed, the X server is guaran-
teed to flush all cached information about fonts for which there currently are no explicit resource
IDs allocated. The meaning of an error from this request is implementation-dependent.

XSetFontPath can generate aBadValue error.

To get the current font search path, useXGetFontPath.

char **XGetFontPath (display, npaths_return)
Display *display;
int *npaths_return;

display Specifies the connection to the X server.

npaths_return Returns the number of strings in the font path array.

The XGetFontPath function allocates and returns an array of strings containing the search path.
The contents of these strings are implementation-dependent and are not intended to be interpreted
by client applications. When it is no longer needed, the data in the font path should be freed by
usingXFreeFontPath.

To free data returned byXGetFontPath, useXFreeFontPath.

XFreeFontPath (list)
char **list ;

list Specifies the array of strings you want to free.

The XFreeFontPath function frees the data allocated byXGetFontPath.

9.5. Grabbing the Server
Xlib provides functions that you can use to grab and ungrab the server. These functions can be
used to control processing of output on other connections by the window system server. While
the server is grabbed, no processing of requests or close downs on any other connection will
occur. A client closing its connection automatically ungrabs the server. Although grabbing the
server is highly discouraged, it is sometimes necessary.

173

Xlib − C Library libX11 1.3.2

To grab the server, useXGrabServer .

XGrabServer (display)
Display *display;

display Specifies the connection to the X server.

The XGrabServer function disables processing of requests and close downs on all other connec-
tions than the one this request arrived on. You should not grab the X server any more than is
absolutely necessary.

To ungrab the server, useXUngrabServer .

XUngrabServer (display)
Display *display;

display Specifies the connection to the X server.

The XUngrabServer function restarts processing of requests and close downs on other connec-
tions. You should avoid grabbing the X server as much as possible.

9.6. Killing Clients
Xlib provides a function to cause the connection to a client to be closed and its resources to be
destroyed. To destroy a client, useXKillClient .

XKillClient (display, resource)
Display *display;
XID resource;

display Specifies the connection to the X server.

resource Specifies any resource associated with the client that you want to destroy or All-
Temporary .

The XKillClient function forces a close down of the client that created the resource if a valid
resource is specified. If the client has already terminated in eitherRetainPermanentor Retain-
Temporary mode, all of the client’s resources are destroyed. If AllTemporary is specified, the
resources of all clients that have terminated inRetainTemporary are destroyed (see section 2.5).
This permits implementation of window manager facilities that aid debugging. Aclient can set
its close-down mode toRetainTemporary. If the client then crashes, its windows would not be
destroyed. Theprogrammer can then inspect the application’s window tree and use the window
manager to destroy the zombie windows.

XKillClient can generate aBadValue error.

9.7. Controlling the Screen Saver
Xlib provides functions that you can use to set or reset the mode of the screen saver, to force or
activate the screen saver, or to obtain the current screen saver values.

To set the screen saver mode, useXSetScreenSaver .

174

Xlib − C Library libX11 1.3.2

XSetScreenSaver(display, timeout, interval, prefer_blanking, allow_exposures)
Display *display;
int timeout, interval;
int prefer_blanking;
int allow_exposures;

display Specifies the connection to the X server.

timeout Specifies the timeout, in seconds, until the screen saver turns on.

interval Specifies the interval, in seconds, between screen saver alterations.

prefer_blankingSpecifies how to enable screen blanking.You can passDontPreferBlanking ,
PreferBlanking , or DefaultBlanking .

allow_exposuresSpecifies the screen save control values. You can passDontAllowExposures,
AllowExposures, or DefaultExposures.

Timeout and interval are specified in seconds.A timeout of 0 disables the screen saver (but an
activated screen saver is not deactivated), and a timeout of −1 restores the default. Othernegative
values generate aBadValue error. If the timeout value is nonzero,XSetScreenSaver enables the
screen saver. An interval of 0 disables the random-pattern motion. If no input from devices
(keyboard, mouse, and so on) is generated for the specified number of timeout seconds once the
screen saver is enabled, the screen saver is activated.

For each screen, if blanking is preferred and the hardware supports video blanking, the screen
simply goes blank. Otherwise, if either exposures are allowed or the screen can be regenerated
without sendingExposeev ents to clients, the screen is tiled with the root window background
tile randomly re-origined each interval seconds. Otherwise, the screens’ state do not change, and
the screen saver is not activated. Thescreen saver is deactivated, and all screen states are restored
at the next keyboard or pointer input or at the next call toXForceScreenSaver with mode
ScreenSaverReset.
If the server-dependent screen saver method supports periodic change, the interval argument
serves as a hint about how long the change period should be, and zero hints that no periodic
change should be made. Examples of ways to change the screen include scrambling the colormap
periodically, moving an icon image around the screen periodically, or tiling the screen with the
root window background tile, randomly re-origined periodically.

XSetScreenSaver can generate aBadValue error.

To force the screen saver on or off , useXForceScreenSaver .

XForceScreenSaver(display, mode)
Display *display;
int mode;

display Specifies the connection to the X server.

mode Specifies the mode that is to be applied.You can passScreenSaverActi ve or
ScreenSaverReset.

If the specified mode isScreenSaverActi ve and the screen saver currently is deactivated,
XForceScreenSaver activates the screen saver even if the screen saver had been disabled with a
timeout of zero. If the specified mode isScreenSaverReset and the screen saver currently is
enabled,XForceScreenSaver deactivates the screen saver if it w as activated, and the activation
timer is reset to its initial state (as if device input had been received).

175

Xlib − C Library libX11 1.3.2

XForceScreenSaver can generate aBadValue error.

To activate the screen saver, useXActi vateScreenSaver .

XActivateScreenSaver(display)
Display *display;

display Specifies the connection to the X server.

To reset the screen saver, useXResetScreenSaver .

XResetScreenSaver(display)
Display *display;

display Specifies the connection to the X server.

To get the current screen saver values, useXGetScreenSaver .

XGetScreenSaver(display, timeout_return, interval_return, prefer_blanking_return,
allow_exposures_return)

Display *display;
int *timeout_return, * interval_return;
int *prefer_blanking_return;
int *allow_exposures_return;

display Specifies the connection to the X server.

timeout_returnReturns the timeout, in seconds, until the screen saver turns on.

interval_return Returns the interval between screen saver inv ocations.

prefer_blanking_return
Returns the current screen blanking preference (DontPreferBlanking ,
PreferBlanking , or DefaultBlanking).

allow_exposures_return
Returns the current screen save control value (DontAllowExposures, AllowEx-
posures, or DefaultExposures).

9.8. Controlling Host Access
This section discusses how to:

• Add, get, or remove hosts from the access control list

• Change, enable, or disable access

X does not provide any protection on a per-window basis. Ifyou find out the resource ID of a
resource, you can manipulate it.To provide some minimal level of protection, however, connec-
tions are permitted only from machines you trust. This is adequate on single-user workstations
but obviously breaks down on timesharing machines. Although provisions exist in the X protocol
for proper connection authentication, the lack of a standard authentication server leaves host-level
access control as the only common mechanism.

The initial set of hosts allowed to open connections typically consists of:

• The host the window system is running on.

176

Xlib − C Library libX11 1.3.2

• On POSIX-conformant systems, each host listed in the/etc/X?.hostsfile. The? indicates
the number of the display. This file should consist of host names separated by newlines.
DECnet nodes must terminate in :: to distinguish them from Internet hosts.

If a host is not in the access control list when the access control mechanism is enabled and if the
host attempts to establish a connection, the server refuses the connection.To change the access
list, the client must reside on the same host as the server and/or must have been granted permis-
sion in the initial authorization at connection setup.

Servers also can implement other access control policies in addition to or in place of this host
access facility. For further information about other access control implementations, see ‘‘X Win-
dow System Protocol.’’

9.8.1. Adding,Getting, or Removing Hosts
Xlib provides functions that you can use to add, get, or remove hosts from the access control list.
All the host access control functions use theXHostAddress structure, which contains:

typedef struct {
int family; /* for example FamilyInternet */
int length; /* length of address, in bytes */
char *address; /* pointer to where to find the address */

} X HostAddress;

The family member specifies which protocol address family to use (for example, TCP/IP or DEC-
net) and can beFamilyInternet , FamilyInternet6 , FamilyServerInterpreted , FamilyDEC-
net, or FamilyChaos. The length member specifies the length of the address in bytes. The
address member specifies a pointer to the address.

For TCP/IP, the address should be in network byte order. For IP version 4 addresses, the family
should be FamilyInternet and the length should be 4 bytes.For IP version 6 addresses, the family
should be FamilyInternet6 and the length should be 16 bytes.

For the DECnet family, the server performs no automatic swapping on the address bytes.A Phase
IV address is 2 bytes long. The first byte contains the least significant 8 bits of the node number.
The second byte contains the most significant 2 bits of the node number in the least significant 2
bits of the byte and the area in the most significant 6 bits of the byte.

For the ServerInterpreted family, the length is ignored and the address member is a pointer to a
XServerInterpretedAddress structure, which contains:

typedef struct {
int typelength; /* length of type string, in bytes */
int valuelength;/* length of value string, in bytes */
char *type; /* pointer to where to find the type string */
char *value; /*pointer to where to find the address */

} X ServerInterpretedAddress;

The type and value members point to strings representing the type and value of the server inter-
preted entry. These strings may not be NULL-terminated so care should be used when accessing
them. Thetypelength and valuelength members specify the length in byte of the type and value
strings.

To add a single host, useXAddHost .

177

Xlib − C Library libX11 1.3.2

XAddHost (display, host)
Display *display;
XHostAddress *host;

display Specifies the connection to the X server.

host Specifies the host that is to be added.

The XAddHost function adds the specified host to the access control list for that display. The
server must be on the same host as the client issuing the command, or aBadAccesserror results.

XAddHost can generateBadAccessandBadValue errors.

To add multiple hosts at one time, useXAddHosts.

XAddHosts (display, hosts, num_hosts)
Display *display;
XHostAddress *hosts;
int num_hosts;

display Specifies the connection to the X server.

hosts Specifies each host that is to be added.

num_hosts Specifies the number of hosts.

The XAddHosts function adds each specified host to the access control list for that display. The
server must be on the same host as the client issuing the command, or aBadAccesserror results.

XAddHosts can generateBadAccessandBadValue errors.

To obtain a host list, useXListHosts.

XHostAddress *XListHosts(display, nhosts_return, state_return)
Display *display;
int *nhosts_return;
Bool *state_return;

display Specifies the connection to the X server.

nhosts_return Returns the number of hosts currently in the access control list.

state_return Returns the state of the access control.

The XListHosts function returns the current access control list as well as whether the use of the
list at connection setup was enabled or disabled.XListHosts allows a program to find out what
machines can make connections. Italso returns a pointer to a list of host structures that were allo-
cated by the function. When no longer needed, this memory should be freed by callingXFree.

To remove a single host, useXRemoveHost.

178

Xlib − C Library libX11 1.3.2

XRemoveHost (display, host)
Display *display;
XHostAddress *host;

display Specifies the connection to the X server.

host Specifies the host that is to be removed.

The XRemoveHost function removes the specified host from the access control list for that dis-
play. The server must be on the same host as the client process, or aBadAccesserror results. If
you remove your machine from the access list, you can no longer connect to that server, and this
operation cannot be reversed unless you reset the server.

XRemoveHost can generateBadAccessandBadValue errors.

To remove multiple hosts at one time, useXRemoveHosts.

XRemoveHosts (display, hosts, num_hosts)
Display *display;
XHostAddress *hosts;
int num_hosts;

display Specifies the connection to the X server.

hosts Specifies each host that is to be removed.

num_hosts Specifies the number of hosts.

The XRemoveHosts function removes each specified host from the access control list for that
display. The X server must be on the same host as the client process, or aBadAccesserror
results. Ifyou remove your machine from the access list, you can no longer connect to that
server, and this operation cannot be reversed unless you reset the server.

XRemoveHosts can generateBadAccessandBadValue errors.

9.8.2. Changing,Enabling, or Disabling Access Control
Xlib provides functions that you can use to enable, disable, or change access control.

For these functions to execute successfully, the client application must reside on the same host as
the X server and/or have been given permission in the initial authorization at connection setup.

To change access control, useXSetAccessControl.

XSetAccessControl (display, mode)
Display *display;
int mode;

display Specifies the connection to the X server.

mode Specifies the mode.You can passEnableAccessor DisableAccess.

The XSetAccessControlfunction either enables or disables the use of the access control list at
each connection setup.

XSetAccessControlcan generateBadAccessandBadValue errors.

To enable access control, useXEnableAccessControl.

179

Xlib − C Library libX11 1.3.2

XEnableAccessControl (display)
Display *display;

display Specifies the connection to the X server.

The XEnableAccessControlfunction enables the use of the access control list at each connec-
tion setup.

XEnableAccessControlcan generate aBadAccesserror.

To disable access control, useXDisableAccessControl.

XDisableAccessControl (display)
Display *display;

display Specifies the connection to the X server.

The XDisableAccessControlfunction disables the use of the access control list at each connec-
tion setup.

XDisableAccessControlcan generate aBadAccesserror.

180

Xlib − C Library libX11 1.3.2

Chapter 10

Events

A client application communicates with the X server through the connection you establish with
the XOpenDisplay function. Aclient application sends requests to the X server over this con-
nection. Theserequests are made by the Xlib functions that are called in the client application.
Many Xlib functions cause the X server to generate events, and the user’s typing or moving the
pointer can generate events asynchronously. The X server returns events to the client on the same
connection.

This chapter discusses the following topics associated with events:

• Event types

• Event structures

• Event masks

• Event processing

Functions for handling events are dealt with in the next chapter.

10.1. Event Types
An event is data generated asynchronously by the X server as a result of some device activity or
as side effects of a request sent by an Xlib function. Device-related events propagate from the
source window to ancestor windows until some client application has selected that event type or
until the event is explicitly discarded. The X server generally sends an event to a client applica-
tion only if the client has specifically asked to be informed of that event type, typically by setting
the event-mask attribute of the window. The mask can also be set when you create a window or
by changing the window’s event-mask. You can also mask out events that would propagate to
ancestor windows by manipulating the do-not-propagate mask of the window’s attributes. How-
ev er, MappingNotify ev ents are always sent to all clients.

An event type describes a specific event generated by the X server. For each event type, a corre-
sponding constant name is defined in <X11/X.h>, which is used when referring to an event type.
The following table lists the event category and its associated event type or types. The processing
associated with these events is discussed in section 10.5.

Event Category Event Type

Ke yboard events KeyPress, KeyRelease

Pointer events ButtonPress, ButtonRelease, MotionNotify

Window crossing events EnterNotify , LeaveNotify

Input focus events FocusIn, FocusOut

Ke ymap state notification event KeymapNotify

Exposure events Expose, GraphicsExpose, NoExpose

Structure control events CirculateRequest, ConfigureRequest, MapRequest,
ResizeRequest

181

Xlib − C Library libX11 1.3.2

Event Category Event Type

Window state notification events CirculateNotify , ConfigureNotify , CreateNotify,
DestroyNotify, GravityNotify , MapNotify , Map-
pingNotify , ReparentNotify, UnmapNotify ,
VisibilityNotify

Colormap state notification event ColormapNotify

Client communication events ClientMessage, PropertyNotify , SelectionClear,
SelectionNotify, SelectionRequest

10.2. Event Structures
For each event type, a corresponding structure is declared in <X11/Xlib.h>. All the event struc-
tures have the following common members:

typedef struct {
int type;
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */
Window window;

} X AnyEvent;

The type member is set to the event type constant name that uniquely identifies it.For example,
when the X server reports aGraphicsExposeev ent to a client application, it sends anXGraph-
icsExposeEventstructure with the type member set toGraphicsExpose. The display member is
set to a pointer to the display the event was read on. The send_event member is set toTr ue if the
ev ent came from aSendEventprotocol request. The serial member is set from the serial number
reported in the protocol but expanded from the 16-bit least-significant bits to a full 32-bit value.
The window member is set to the window that is most useful to toolkit dispatchers.

The X server can send events at any time in the input stream. Xlib stores any events received
while waiting for a reply in an event queue for later use. Xlib also provides functions that allow
you to check events in the event queue (see section 11.3).

In addition to the individual structures declared for each event type, theXEvent structure is a
union of the individual structures declared for each event type. Depending on the type, you
should access members of each event by using theXEvent union.

182

Xlib − C Library libX11 1.3.2

typedef union _XEvent {
int type; /* must not be changed */
XAnyEvent xany;
XKeyEvent xkey;
XButtonEvent xbutton;
XMotionEvent xmotion;
XCrossingEvent xcrossing;
XFocusChangeEvent xfocus;
XExposeEvent xexpose;
XGraphicsExposeEvent xgraphicsexpose;
XNoExposeEvent xnoexpose;
XVisibilityEvent xvisibility;
XCreateWindowEvent xcreatewindow;
XDestroyWindowEvent xdestroywindow;
XUnmapEvent xunmap;
XMapEvent xmap;
XMapRequestEvent xmaprequest;
XReparentEvent xreparent;
XConfigureEvent xconfigure;
XGravityEvent xgravity;
XResizeRequestEvent xresizerequest;
XConfigureRequestEvent xconfigurerequest;
XCirculateEvent xcirculate;
XCirculateRequestEvent xcirculaterequest;
XPropertyEvent xproperty;
XSelectionClearEvent xselectionclear;
XSelectionRequestEvent xselectionrequest;
XSelectionEvent xselection;
XColormapEvent xcolormap;
XClientMessageEvent xclient;
XMappingEvent xmapping;
XErrorEvent xerror;
XKeymapEvent xkeymap;
long pad[24];

} X Event;

An XEvent structure’s first entry always is the type member, which is set to the event type. The
second member always is the serial number of the protocol request that generated the event. The
third member always is send_event, which is aBool that indicates if the event was sent by a dif-
ferent client. The fourth member always is a display, which is the display that the event was read
from. Exceptfor keymap events, the fifth member always is a window, which has been carefully
selected to be useful to toolkit dispatchers.To avoid breaking toolkits, the order of these first five
entries is not to change. Most events also contain a time member, which is the time at which an
ev ent occurred. In addition, a pointer to the generic event must be cast before it is used to access
any other information in the structure.

10.3. Event Masks
Clients select event reporting of most events relative to a window. To do this, pass an event mask
to an Xlib event-handling function that takes an event_mask argument. Thebits of the event
mask are defined in <X11/X.h>. Eachbit in the event mask maps to an event mask name, which
describes the event or events you want the X server to return to a client application.

183

Xlib − C Library libX11 1.3.2

Unless the client has specifically asked for them, most events are not reported to clients when
they are generated. Unless the client suppresses them by setting graphics-exposures in the GC to
False, GraphicsExposeandNoExposeare reported by default as a result ofXCopyPlane and
XCopyArea. SelectionClear, SelectionRequest, SelectionNotify, or ClientMessagecannot
be masked. Selection-relatedev ents are only sent to clients cooperating with selections (see sec-
tion 4.5). When the keyboard or pointer mapping is changed,MappingNotify is always sent to
clients.

The following table lists the event mask constants you can pass to the event_mask argument and
the circumstances in which you would want to specify the event mask:

Event Mask Circumstances

NoEventMask No events wanted
KeyPressMask Ke yboard down events wanted
KeyReleaseMask Ke yboard up events wanted
ButtonPressMask Pointer button down events wanted
ButtonReleaseMask Pointer button up events wanted
EnterWindowMask Pointer window entry events wanted
LeaveWindowMask Pointer window leave events wanted
PointerMotionMask Pointer motion events wanted
PointerMotionHintMask Pointer motion hints wanted
Button1MotionMask Pointer motion while button 1 down
Button2MotionMask Pointer motion while button 2 down
Button3MotionMask Pointer motion while button 3 down
Button4MotionMask Pointer motion while button 4 down
Button5MotionMask Pointer motion while button 5 down
ButtonMotionMask Pointer motion while any button down
KeymapStateMask Ke yboard state wanted at window entry and focus in
ExposureMask Any exposure wanted
VisibilityChangeMask Any change in visibility wanted
StructureNotifyMask Any change in window structure wanted
ResizeRedirectMask Redirect resize of this window
SubstructureNotifyMask Substructure notification wanted
SubstructureRedirectMask Redirect structure requests on children
FocusChangeMask Any change in input focus wanted
PropertyChangeMask Any change in property wanted
ColormapChangeMask Any change in colormap wanted
OwnerGrabButtonMask Automatic grabs should activate with owner_events set

to Tr ue

10.4. Event Processing Overview
The event reported to a client application during event processing depends on which event masks
you provide as the event-mask attribute for a window. For some event masks, there is a one-to-
one correspondence between the event mask constant and the event type constant.For example,
if you pass the event maskButtonPressMask, the X server sends back onlyButtonPressev ents.
Most events contain a time member, which is the time at which an event occurred.

In other cases, one event mask constant can map to several event type constants.For example, if
you pass the event maskSubstructureNotifyMask , the X server can send backCirculateNo-
tify , ConfigureNotify , CreateNotify, DestroyNotify, GravityNotify , MapNotify , Reparent-
Notify , or UnmapNotify ev ents.

184

Xlib − C Library libX11 1.3.2

In another case, two event masks can map to one event type. For example, if you pass either
PointerMotionMask or ButtonMotionMask , the X server sends back aMotionNotify ev ent.

The following table lists the event mask, its associated event type or types, and the structure name
associated with the event type. Some of these structures actually are typedefs to a generic struc-
ture that is shared between two event types. Note that N.A. appears in columns for which the
information is not applicable.

Event Mask Event Type Structure Generic Structure

ButtonMotionMask MotionNotify XPointerMovedEvent XMotionEvent
Button1MotionMask
Button2MotionMask
Button3MotionMask
Button4MotionMask
Button5MotionMask

ButtonPressMask ButtonPress XButtonPressedEvent XButtonEvent

ButtonReleaseMask ButtonRelease XButtonReleasedEvent XButtonEvent

ColormapChangeMask ColormapNotify XColormapEvent

EnterWindowMask EnterNotify XEnterWindowEvent XCrossingEvent

LeaveWindowMask LeaveNotify XLeaveWindowEvent XCrossingEvent

ExposureMask Expose XExposeEvent
GCGraphicsExposures in GC GraphicsExpose XGraphicsExposeEvent

NoExpose XNoExposeEvent

FocusChangeMask FocusIn XFocusInEvent XFocusChangeEvent
FocusOut XFocusOutEvent XFocusChangeEvent

Ke ymapStateMask KeymapNotify XKeymapEvent

Ke yPressMask KeyPress XKeyPressedEvent XKeyEvent
Ke yReleaseMask KeyRelease XKeyReleasedEvent XKeyEvent

OwnerGrabButtonMask N.A. N.A.

PointerMotionMask MotionNotify XPointerMovedEvent XMotionEvent
PointerMotionHintMask N.A. N.A.

PropertyChangeMask PropertyNotify XPropertyEvent

ResizeRedirectMask ResizeRequest XResizeRequestEvent

StructureNotifyMask CirculateNotify XCirculateEvent
ConfigureNotify XConfigureEvent
DestroyNotify XDestroyWindowEvent
GravityNotify XGravityEvent
MapNotify XMapEvent
ReparentNotify XReparentEvent
UnmapNotify XUnmapEvent

SubstructureNotifyMask CirculateNotify XCirculateEvent
ConfigureNotify XConfigureEvent
CreateNotify XCreateWindowEvent
DestroyNotify XDestroyWindowEvent
GravityNotify XGravityEvent

185

Xlib − C Library libX11 1.3.2

Event Mask Event Type Structure Generic Structure

MapNotify XMapEvent
ReparentNotify XReparentEvent
UnmapNotify XUnmapEvent

SubstructureRedirectMask CirculateRequest XCirculateRequestEvent
ConfigureRequest XConfigureRequestEvent
MapRequest XMapRequestEvent

N.A. ClientMessage XClientMessageEvent

N.A. MappingNotify XMappingEvent

N.A. SelectionClear XSelectionClearEvent

N.A. SelectionNotify XSelectionEvent

N.A. SelectionRequest XSelectionRequestEvent

VisibilityChangeMask VisibilityNotify XV isibilityEvent

The sections that follow describe the processing that occurs when you select the different event
masks. Thesections are organized according to these processing categories:

• Keyboard and pointer events

• Window crossing events

• Input focus events

• Keymap state notification events

• Exposure events

• Window state notification events

• Structure control events

• Colormap state notification events

• Client communication events

10.5. Keyboard and Pointer Events
This section discusses:

• Pointer button events

• Keyboard and pointer events

10.5.1. Pointer Button Events
The following describes the event processing that occurs when a pointer button press is processed
with the pointer in some window w and when no active pointer grab is in progress.

The X server searches the ancestors of w from the root down, looking for a passive grab to acti-
vate. If no matching passive grab on the button exists, the X server automatically starts an active
grab for the client receiving the event and sets the last-pointer-grab time to the current server
time. Theeffect is essentially equivalent to anXGrabButton with these client passed argu-
ments:

Ar gument Value

w The event window

186

Xlib − C Library libX11 1.3.2

Ar gument Value

event_mask The client’s selected pointer events on the event window
pointer_mode GrabModeAsync
keyboard_mode GrabModeAsync
owner_events Tr ue, if the client has selectedOwnerGrabButton-

Mask on the event window, otherwiseFalse
confine_to None
cursor None

The active grab is automatically terminated when the logical state of the pointer has all buttons
released. Clientscan modify the active grab by callingXUngrabPointer andXChangeAc-
tivePointerGrab .

10.5.2. Keyboard and Pointer Events
This section discusses the processing that occurs for the keyboard events KeyPressandKeyRe-
leaseand the pointer events ButtonPress, ButtonRelease, and MotionNotify . For information
about the keyboard event-handling utilities, see chapter 11.

The X server reportsKeyPressor KeyReleaseev ents to clients wanting information about keys
that logically change state. Note that these events are generated for all keys, even those mapped
to modifier bits. The X server reportsButtonPressor ButtonReleaseev ents to clients wanting
information about buttons that logically change state.

The X server reportsMotionNotify ev ents to clients wanting information about when the pointer
logically moves. TheX server generates this event whenever the pointer is moved and the pointer
motion begins and ends in the window. The granularity ofMotionNotify ev ents is not guaran-
teed, but a client that selects this event type is guaranteed to receive at least one event when the
pointer moves and then rests.

The generation of the logical changes lags the physical changes if device event processing is
frozen.

To receive KeyPress, KeyRelease, ButtonPress, and ButtonReleaseev ents, setKeyPress-
Mask, KeyReleaseMask, ButtonPressMask, and ButtonReleaseMaskbits in the event-mask
attribute of the window.

To receive MotionNotify ev ents, set one or more of the following event masks bits in the event-
mask attribute of the window.

• Button1MotionMask − Button5MotionMask
The client application receives MotionNotify ev ents only when one or more of the speci-
fied buttons is pressed.

• ButtonMotionMask
The client application receives MotionNotify ev ents only when at least one button is
pressed.

• PointerMotionMask
The client application receives MotionNotify ev ents independent of the state of the pointer
buttons.

• PointerMotionHintMask
If PointerMotionHintMask is selected in combination with one or more of the above
masks, the X server is free to send only oneMotionNotify ev ent (with the is_hint member
of theXPointerMovedEvent structure set toNotifyHint) to the client for the event win-
dow, until either the key or button state changes, the pointer leaves the event window, or the
client callsXQueryPointer or XGetMotionEvents. The server still may send

187

Xlib − C Library libX11 1.3.2

MotionNotify ev ents without is_hint set toNotifyHint .

The source of the event is the viewable window that the pointer is in. The window used by the X
server to report these events depends on the window’s position in the window hierarchy and
whether any intervening window prohibits the generation of these events. Startingwith the
source window, the X server searches up the window hierarchy until it locates the first window
specified by a client as having an interest in these events. If one of the intervening windows has
its do-not-propagate-mask set to prohibit generation of the event type, the events of those types
will be suppressed. Clients can modify the actual window used for reporting by performing
active grabs and, in the case of keyboard events, by using the focus window.

The structures for these event types contain:

typedef struct {
int type; /* ButtonPress or ButtonRelease */
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */
Window window; /* ‘‘ ev ent’’ w indow it is reported relative to */
Window root; /* root window that the event occurred on */
Window subwindow; /* child window */
Time time; /* milliseconds */
int x, y; /* pointer x, y coordinates in event window */
int x_root, y_root; /* coordinates relative to root */
unsigned int state; /* key or button mask */
unsigned int button; /* detail */
Bool same_screen; /* same screen flag */

} X ButtonEvent;
typedef XButtonEvent XButtonPressedEvent;
typedef XButtonEvent XButtonReleasedEvent;

typedef struct {
int type; /* KeyPress or KeyRelease */
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */
Window window; /* ‘‘ ev ent’’ w indow it is reported relative to */
Window root; /* root window that the event occurred on */
Window subwindow; /* child window */
Time time; /* milliseconds */
int x, y; /* pointer x, y coordinates in event window */
int x_root, y_root; /* coordinates relative to root */
unsigned int state; /* key or button mask */
unsigned int keycode; /*detail */
Bool same_screen; /* same screen flag */

} X Ke yEvent;
typedef XKeyEvent XKeyPressedEvent;
typedef XKeyEvent XKeyReleasedEvent;

typedef struct {
int type; /* MotionNotify */
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

188

Xlib − C Library libX11 1.3.2

Window window; /* ‘‘ ev ent’’ w indow reported relative to */
Window root; /* root window that the event occurred on */
Window subwindow; /* child window */
Time time; /* milliseconds */
int x, y; /* pointer x, y coordinates in event window */
int x_root, y_root; /* coordinates relative to root */
unsigned int state; /* key or button mask */
char is_hint; /* detail */
Bool same_screen; /* same screen flag */

} X MotionEvent;
typedef XMotionEvent XPointerMovedEvent;

These structures have the following common members: window, root, subwindow, time, x, y,
x_root, y_root, state, and same_screen. The window member is set to the window on which the
ev ent was generated and is referred to as the event window. As long as the conditions previously
discussed are met, this is the window used by the X server to report the event. Theroot member
is set to the source window’s root window. The x_root and y_root members are set to the
pointer’s coordinates relative to the root window’s origin at the time of the event.

The same_screen member is set to indicate whether the event window is on the same screen as the
root window and can be eitherTr ue or False. If Tr ue, the event and root windows are on the
same screen. IfFalse, the event and root windows are not on the same screen.

If the source window is an inferior of the event window, the subwindow member of the structure
is set to the child of the event window that is the source window or the child of the event window
that is an ancestor of the source window. Otherwise, the X server sets the subwindow member to
None. The time member is set to the time when the event was generated and is expressed in mil-
liseconds.

If the event window is on the same screen as the root window, the x and y members are set to the
coordinates relative to the event window’s origin. Otherwise,these members are set to zero.

The state member is set to indicate the logical state of the pointer buttons and modifier keys just
prior to the event, which is the bitwise inclusive OR of one or more of the button or modifier key
masks:Button1Mask, Button2Mask, Button3Mask, Button4Mask, Button5Mask, Shift-
Mask, LockMask , ControlMask , Mod1Mask, Mod2Mask, Mod3Mask, Mod4Mask, and
Mod5Mask.

Each of these structures also has a member that indicates the detail.For the XKeyPressedEvent
andXKeyReleasedEventstructures, this member is called a keycode. Itis set to a number that
represents a physical key on the keyboard. Thekeycode is an arbitrary representation for any key
on the keyboard (see sections 12.7 and 16.1).

For the XButtonPressedEventandXButtonReleasedEventstructures, this member is called
button. It represents the pointer button that changed state and can be theButton1, Button2,
Button3, Button4, or Button5 value. For theXPointerMovedEvent structure, this member is
called is_hint. It can be set toNotifyNormal or NotifyHint .

Some of the symbols mentioned in this section have fixed values, as follows:

Symbol Value

Button1MotionMask (1L<<8)
Button2MotionMask (1L<<9)
Button3MotionMask (1L<<10)
Button4MotionMask (1L<<11)
Button5MotionMask (1L<<12)

189

Xlib − C Library libX11 1.3.2

Symbol Value

Button1Mask (1<<8)
Button2Mask (1<<9)
Button3Mask (1<<10)
Button4Mask (1<<11)
Button5Mask (1<<12)
ShiftMask (1<<0)
LockMask (1<<1)
ControlMask (1<<2)
Mod1Mask (1<<3)
Mod2Mask (1<<4)
Mod3Mask (1<<5)
Mod4Mask (1<<6)
Mod5Mask (1<<7)
Button1 1
Button2 2
Button3 3
Button4 4
Button5 5

10.6. Window Entry/Exit Events
This section describes the processing that occurs for the window crossing events EnterNotify
andLeaveNotify . If a pointer motion or a window hierarchy change causes the pointer to be in a
different window than before, the X server reportsEnterNotify or LeaveNotify ev ents to clients
who have selected for these events. All EnterNotify andLeaveNotify ev ents caused by a hierar-
chy change are generated after any hierarchy event (UnmapNotify , MapNotify , ConfigureNo-
tify , GravityNotify , CirculateNotify) caused by that change; however, the X protocol does not
constrain the ordering ofEnterNotify andLeaveNotify ev ents with respect toFocusOut, Visi-
bilityNotify , and Exposeev ents.

This contrasts withMotionNotify ev ents, which are also generated when the pointer moves but
only when the pointer motion begins and ends in a single window. An EnterNotify or LeaveNo-
tify ev ent also can be generated when some client application callsXGrabPointer andXUn-
grabPointer.
To receive EnterNotify or LeaveNotify ev ents, set theEnterWindowMask or LeaveWindow-
Mask bits of the event-mask attribute of the window.

The structure for these event types contains:

190

Xlib − C Library libX11 1.3.2

typedef struct {
int type; /* EnterNotify or LeaveNotify */
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */
Window window; /* ‘‘ ev ent’’ w indow reported relative to */
Window root; /* root window that the event occurred on */
Window subwindow; /* child window */
Time time; /* milliseconds */
int x, y; /* pointer x, y coordinates in event window */
int x_root, y_root; /* coordinates relative to root */
int mode; /* NotifyNormal, NotifyGrab, NotifyUngrab */
int detail;

/*
* NotifyAncestor, NotifyVirtual, NotifyInferior,
* NotifyNonlinear,NotifyNonlinearVirtual
*/

Bool same_screen; /* same screen flag */
Bool focus; /* boolean focus */
unsigned int state; /* key or button mask */

} X CrossingEvent;
typedef XCrossingEvent XEnterWindowEvent;
typedef XCrossingEvent XLeaveWindowEvent;

The window member is set to the window on which theEnterNotify or LeaveNotify ev ent was
generated and is referred to as the event window. This is the window used by the X server to
report the event, and is relative to the root window on which the event occurred. The root mem-
ber is set to the root window of the screen on which the event occurred.

For a LeaveNotify ev ent, if a child of the event window contains the initial position of the
pointer, the subwindow component is set to that child. Otherwise, the X server sets the subwin-
dow member toNone. For anEnterNotify ev ent, if a child of the event window contains the
final pointer position, the subwindow component is set to that child orNone.

The time member is set to the time when the event was generated and is expressed in millisec-
onds. Thex and y members are set to the coordinates of the pointer position in the event window.
This position is always the pointer’s final position, not its initial position. If the event window is
on the same screen as the root window, x and y are the pointer coordinates relative to the event
window’s origin. Otherwise,x and y are set to zero. The x_root and y_root members are set to
the pointer’s coordinates relative to the root window’s origin at the time of the event.

The same_screen member is set to indicate whether the event window is on the same screen as the
root window and can be eitherTr ue or False. If Tr ue, the event and root windows are on the
same screen. IfFalse, the event and root windows are not on the same screen.

The focus member is set to indicate whether the event window is the focus window or an inferior
of the focus window. The X server can set this member to eitherTr ue or False. If Tr ue, the
ev ent window is the focus window or an inferior of the focus window. If False, the event win-
dow is not the focus window or an inferior of the focus window.

The state member is set to indicate the state of the pointer buttons and modifier keys just prior to
the event. TheX server can set this member to the bitwise inclusive OR of one or more of the
button or modifier key masks:Button1Mask, Button2Mask, Button3Mask, Button4Mask,
Button5Mask, ShiftMask , LockMask , ControlMask , Mod1Mask, Mod2Mask,
Mod3Mask, Mod4Mask, Mod5Mask.

191

Xlib − C Library libX11 1.3.2

The mode member is set to indicate whether the events are normal events, pseudo-motion events
when a grab activates, or pseudo-motion events when a grab deactivates. TheX server can set
this member toNotifyNormal , NotifyGrab , or NotifyUngrab .

The detail member is set to indicate the notify detail and can beNotifyAncestor, NotifyVirtual ,
NotifyInferior , NotifyNonlinear , or NotifyNonlinearVirtual .

10.6.1. NormalEntry/Exit Events
EnterNotify andLeaveNotify ev ents are generated when the pointer moves from one window to
another window. Normal events are identified byXEnterWindowEvent or XLeaveWindow-
Event structures whose mode member is set toNotifyNormal .

• When the pointer moves from window A to window B and A is an inferior of B, the X
server does the following:

− It generates aLeaveNotify ev ent on window A, with the detail member of the
XLeaveWindowEvent structure set toNotifyAncestor.

− It generates aLeaveNotify ev ent on each window between window A and window
B, exclusive, with the detail member of eachXLeaveWindowEvent structure set to
NotifyVirtual .

− It generates anEnterNotify ev ent on window B, with the detail member of theXEn-
terWindowEvent structure set toNotifyInferior .

• When the pointer moves from window A to window B and B is an inferior of A, the X
server does the following:

− It generates aLeaveNotify ev ent on window A, with the detail member of the
XLeaveWindowEvent structure set toNotifyInferior .

− It generates anEnterNotify ev ent on each window between window A and window
B, exclusive, with the detail member of eachXEnterWindowEvent structure set to
NotifyVirtual .

− It generates anEnterNotify ev ent on window B, with the detail member of theXEn-
terWindowEvent structure set toNotifyAncestor.

• When the pointer moves from window A to window B and window C is their least common
ancestor, the X server does the following:

− It generates aLeaveNotify ev ent on window A, with the detail member of the
XLeaveWindowEvent structure set toNotifyNonlinear .

− It generates aLeaveNotify ev ent on each window between window A and window
C, exclusive, with the detail member of eachXLeaveWindowEvent structure set to
NotifyNonlinearVirtual .

− It generates anEnterNotify ev ent on each window between window C and window
B, exclusive, with the detail member of eachXEnterWindowEvent structure set to
NotifyNonlinearVirtual .

− It generates anEnterNotify ev ent on window B, with the detail member of theXEn-
terWindowEvent structure set toNotifyNonlinear .

• When the pointer moves from window A to window B on different screens, the X server
does the following:

− It generates aLeaveNotify ev ent on window A, with the detail member of the
XLeaveWindowEvent structure set toNotifyNonlinear .

− If window A is not a root window, it generates aLeaveNotify ev ent on each window
above window A up to and including its root, with the detail member of each
XLeaveWindowEvent structure set toNotifyNonlinearVirtual .

− If window B is not a root window, it generates anEnterNotify ev ent on each win-
dow from window B’s root down to but not including window B, with the detail

192

Xlib − C Library libX11 1.3.2

member of eachXEnterWindowEvent structure set toNotifyNonlinearVirtual .

− It generates anEnterNotify ev ent on window B, with the detail member of theXEn-
terWindowEvent structure set toNotifyNonlinear .

10.6.2. Graband Ungrab Entry/Exit Events
Pseudo-motion modeEnterNotify andLeaveNotify ev ents are generated when a pointer grab
activates or deactivates. Events in which the pointer grab activates are identified byXEnterWin-
dowEvent or XLeaveWindowEvent structures whose mode member is set toNotifyGrab .
Events in which the pointer grab deactivates are identified byXEnterWindowEvent or
XLeaveWindowEvent structures whose mode member is set toNotifyUngrab (seeXGrab-
Pointer).

• When a pointer grab activates after any initial warp into a confine_to window and before
generating any actual ButtonPressev ent that activates the grab, G is the grab_window for
the grab, and P is the window the pointer is in, the X server does the following:

− It generatesEnterNotify andLeaveNotify ev ents (see section 10.6.1) with the mode
members of theXEnterWindowEvent andXLeaveWindowEvent structures set to
NotifyGrab . These events are generated as if the pointer were to suddenly warp
from its current position in P to some position in G. However, the pointer does not
warp, and the X server uses the pointer position as both the initial and final positions
for the events.

• When a pointer grab deactivates after generating any actual ButtonReleaseev ent that
deactivates the grab, G is the grab_window for the grab, and P is the window the pointer is
in, the X server does the following:

− It generatesEnterNotify andLeaveNotify ev ents (see section 10.6.1) with the mode
members of theXEnterWindowEvent andXLeaveWindowEvent structures set to
NotifyUngrab . These events are generated as if the pointer were to suddenly warp
from some position in G to its current position in P. Howev er, the pointer does not
warp, and the X server uses the current pointer position as both the initial and final
positions for the events.

10.7. Input Focus Events
This section describes the processing that occurs for the input focus events FocusIn andFocu-
sOut. The X server can reportFocusIn or FocusOut ev ents to clients wanting information
about when the input focus changes. The keyboard is always attached to some window (typically,
the root window or a top-level window), which is called the focus window. The focus window
and the position of the pointer determine the window that receives keyboard input. Clients may
need to know when the input focus changes to control highlighting of areas on the screen.

To receive FocusIn or FocusOut ev ents, set theFocusChangeMaskbit in the event-mask
attribute of the window.

The structure for these event types contains:

193

Xlib − C Library libX11 1.3.2

typedef struct {
int type; /* FocusIn or FocusOut */
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */
Window window; /* window of event */
int mode; /* NotifyNormal, NotifyGrab, NotifyUngrab */
int detail;

/*
* NotifyAncestor, NotifyVirtual, NotifyInferior,
* NotifyNonlinear,NotifyNonlinearVirtual, NotifyPointer,
* NotifyPointerRoot, NotifyDetailNone
*/

} X FocusChangeEvent;
typedef XFocusChangeEvent XFocusInEvent;
typedef XFocusChangeEvent XFocusOutEvent;

The window member is set to the window on which theFocusIn or FocusOut ev ent was gener-
ated. Thisis the window used by the X server to report the event. Themode member is set to
indicate whether the focus events are normal focus events, focus events while grabbed, focus
ev ents when a grab activates, or focus events when a grab deactivates. TheX server can set the
mode member toNotifyNormal , NotifyWhileGrabbed , NotifyGrab , or NotifyUngrab .

All FocusOut ev ents caused by a window unmap are generated after anyUnmapNotify ev ent;
however, the X protocol does not constrain the ordering ofFocusOut ev ents with respect to gen-
eratedEnterNotify , LeaveNotify , VisibilityNotify , and Exposeev ents.

Depending on the event mode, the detail member is set to indicate the notify detail and can be
NotifyAncestor, NotifyVirtual , NotifyInferior , NotifyNonlinear , NotifyNonlinearVirtual ,
NotifyPointer , NotifyPointerRoot , or NotifyDetailNone.

10.7.1. NormalFocus Events and Focus Events While Grabbed
Normal focus events are identified byXFocusInEvent or XFocusOutEvent structures whose
mode member is set toNotifyNormal . Focus events while grabbed are identified byXFocusIn-
Event or XFocusOutEvent structures whose mode member is set toNotifyWhileGrabbed .
The X server processes normal focus and focus events while grabbed according to the following:

• When the focus moves from window A to window B, A is an inferior of B, and the pointer
is in window P, the X server does the following:

− It generates aFocusOut ev ent on window A, with the detail member of theXFocu-
sOutEvent structure set toNotifyAncestor.

− It generates aFocusOut ev ent on each window between window A and window B,
exclusive, with the detail member of eachXFocusOutEvent structure set toNoti-
fyVirtual .

− It generates aFocusIn ev ent on window B, with the detail member of theXFocu-
sOutEvent structure set toNotifyInferior .

− If window P is an inferior of window B but window P is not window A or an inferior
or ancestor of window A, it generates aFocusIn ev ent on each window below win-
dow B, down to and including window P, with the detail member of eachXFocusIn-
Event structure set toNotifyPointer .

• When the focus moves from window A to window B, B is an inferior of A, and the pointer
is in window P, the X server does the following:

194

Xlib − C Library libX11 1.3.2

− If window P is an inferior of window A but P is not an inferior of window B or an
ancestor of B, it generates aFocusOut ev ent on each window from window P up to
but not including window A, with the detail member of eachXFocusOutEvent
structure set toNotifyPointer .

− It generates aFocusOut ev ent on window A, with the detail member of theXFocu-
sOutEvent structure set toNotifyInferior .

− It generates aFocusIn ev ent on each window between window A and window B,
exclusive, with the detail member of eachXFocusInEvent structure set toNoti-
fyVirtual .

− It generates aFocusIn ev ent on window B, with the detail member of theXFocusIn-
Event structure set toNotifyAncestor.

• When the focus moves from window A to window B, window C is their least common
ancestor, and the pointer is in window P, the X server does the following:

− If window P is an inferior of window A, it generates aFocusOut ev ent on each win-
dow from window P up to but not including window A, with the detail member of the
XFocusOutEvent structure set toNotifyPointer .

− It generates aFocusOut ev ent on window A, with the detail member of theXFocu-
sOutEvent structure set toNotifyNonlinear .

− It generates aFocusOut ev ent on each window between window A and window C,
exclusive, with the detail member of eachXFocusOutEvent structure set toNoti-
fyNonlinearVirtual .

− It generates aFocusIn ev ent on each window between C and B, exclusive, with the
detail member of eachXFocusInEvent structure set toNotifyNonlinearVirtual .

− It generates aFocusIn ev ent on window B, with the detail member of theXFocusIn-
Event structure set toNotifyNonlinear .

− If window P is an inferior of window B, it generates aFocusIn ev ent on each win-
dow below window B down to and including window P, with the detail member of
the XFocusInEvent structure set toNotifyPointer .

• When the focus moves from window A to window B on different screens and the pointer is
in window P, the X server does the following:

− If window P is an inferior of window A, it generates aFocusOut ev ent on each win-
dow from window P up to but not including window A, with the detail member of
eachXFocusOutEvent structure set toNotifyPointer .

− It generates aFocusOut ev ent on window A, with the detail member of theXFocu-
sOutEvent structure set toNotifyNonlinear .

− If window A is not a root window, it generates aFocusOut ev ent on each window
above window A up to and including its root, with the detail member of eachXFocu-
sOutEvent structure set toNotifyNonlinearVirtual .

− If window B is not a root window, it generates aFocusIn ev ent on each window
from window B’s root down to but not including window B, with the detail member
of eachXFocusInEvent structure set toNotifyNonlinearVirtual .

− It generates aFocusIn ev ent on window B, with the detail member of eachXFo-
cusInEvent structure set toNotifyNonlinear .

− If window P is an inferior of window B, it generates aFocusIn ev ent on each win-
dow below window B down to and including window P, with the detail member of
eachXFocusInEvent structure set toNotifyPointer .

• When the focus moves from window A to PointerRoot (events sent to the window under
the pointer) orNone (discard), and the pointer is in window P, the X server does the fol-
lowing:

195

Xlib − C Library libX11 1.3.2

− If window P is an inferior of window A, it generates aFocusOut ev ent on each win-
dow from window P up to but not including window A, with the detail member of
eachXFocusOutEvent structure set toNotifyPointer .

− It generates aFocusOut ev ent on window A, with the detail member of theXFocu-
sOutEvent structure set toNotifyNonlinear .

− If window A is not a root window, it generates aFocusOut ev ent on each window
above window A up to and including its root, with the detail member of eachXFocu-
sOutEvent structure set toNotifyNonlinearVirtual .

− It generates aFocusIn ev ent on the root window of all screens, with the detail mem-
ber of eachXFocusInEvent structure set toNotifyPointerRoot (or NotifyDetail-
None).

− If the new focus isPointerRoot , it generates aFocusIn ev ent on each window from
window P’s root down to and including window P, with the detail member of each
XFocusInEvent structure set toNotifyPointer .

• When the focus moves from PointerRoot (events sent to the window under the pointer) or
None to window A, and the pointer is in window P, the X server does the following:

− If the old focus isPointerRoot , it generates aFocusOut ev ent on each window
from window P up to and including window P’s root, with the detail member of each
XFocusOutEvent structure set toNotifyPointer .

− It generates aFocusOut ev ent on all root windows, with the detail member of each
XFocusOutEvent structure set toNotifyPointerRoot (or NotifyDetailNone).

− If window A is not a root window, it generates aFocusIn ev ent on each window
from window A’s root down to but not including window A, with the detail member
of eachXFocusInEvent structure set toNotifyNonlinearVirtual .

− It generates aFocusIn ev ent on window A, with the detail member of theXFo-
cusInEvent structure set toNotifyNonlinear .

− If window P is an inferior of window A, it generates aFocusIn ev ent on each win-
dow below window A down to and including window P, with the detail member of
eachXFocusInEvent structure set toNotifyPointer .

• When the focus moves from PointerRoot (events sent to the window under the pointer) to
None (or vice versa), and the pointer is in window P, the X server does the following:

− If the old focus isPointerRoot , it generates aFocusOut ev ent on each window
from window P up to and including window P’s root, with the detail member of each
XFocusOutEvent structure set toNotifyPointer .

− It generates aFocusOut ev ent on all root windows, with the detail member of each
XFocusOutEvent structure set to eitherNotifyPointerRoot or NotifyDetailNone.

− It generates aFocusIn ev ent on all root windows, with the detail member of each
XFocusInEvent structure set toNotifyDetailNone or NotifyPointerRoot .

− If the new focus isPointerRoot , it generates aFocusIn ev ent on each window from
window P’s root down to and including window P, with the detail member of each
XFocusInEvent structure set toNotifyPointer .

10.7.2. Focus Events Generated by Grabs
Focus events in which the keyboard grab activates are identified byXFocusInEvent or XFocu-
sOutEvent structures whose mode member is set toNotifyGrab . Focus events in which the
keyboard grab deactivates are identified byXFocusInEvent or XFocusOutEvent structures
whose mode member is set toNotifyUngrab (seeXGrabKeyboard).

• When a keyboard grab activates before generating any actual KeyPressev ent that activates
the grab, G is the grab_window, and F is the current focus, the X server does the following:

196

Xlib − C Library libX11 1.3.2

− It generatesFocusIn andFocusOut ev ents, with the mode members of theXFo-
cusInEvent andXFocusOutEvent structures set toNotifyGrab . These events are
generated as if the focus were to change from F to G.

• When a keyboard grab deactivates after generating any actual KeyReleaseev ent that deac-
tivates the grab, G is the grab_window, and F is the current focus, the X server does the fol-
lowing:

− It generatesFocusIn andFocusOut ev ents, with the mode members of theXFo-
cusInEvent andXFocusOutEvent structures set toNotifyUngrab . These events
are generated as if the focus were to change from G to F.

10.8. Key Map State Notification Events
The X server can reportKeymapNotify ev ents to clients that want information about changes in
their keyboard state.

To receive KeymapNotify ev ents, set theKeymapStateMaskbit in the event-mask attribute of
the window. The X server generates this event immediately after every EnterNotify and
FocusIn ev ent.

The structure for this event type contains:

/* generated on EnterWindow and FocusIn when KeymapState selected */
typedef struct {

int type; /* KeymapNotify */
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */
Window window;
char key_vector[32];

} X Ke ymapEvent;

The window member is not used but is present to aid some toolkits. The key_vector member is
set to the bit vector of the keyboard. Eachbit set to 1 indicates that the corresponding key is cur-
rently pressed. The vector is represented as 32 bytes. Byte N (from 0) contains the bits for keys
8N to 8N + 7 with the least significant bit in the byte representing key 8N.

10.9. Exposure Events
The X protocol does not guarantee to preserve the contents of window regions when the windows
are obscured or reconfigured. Some implementations may preserve the contents of windows.
Other implementations are free to destroy the contents of windows when exposed. Xexpects
client applications to assume the responsibility for restoring the contents of an exposed window
region. (Anexposed window region describes a formerly obscured window whose region
becomes visible.) Therefore, the X server sendsExposeev ents describing the window and the
region of the window that has been exposed. Anaive client application usually redraws the entire
window. A more sophisticated client application redraws only the exposed region.

10.9.1. ExposeEvents
The X server can reportExposeev ents to clients wanting information about when the contents of
window regions have been lost. The circumstances in which the X server generatesExpose
ev ents are not as definite as those for other events. However, the X server never generates
Exposeev ents on windows whose class you specified asInputOnly . The X server can generate
Exposeev ents when no valid contents are available for regions of a window and either the
regions are visible, the regions are viewable and the server is (perhaps newly) maintaining back-
ing store on the window, or the window is not viewable but the server is (perhaps newly) honoring

197

Xlib − C Library libX11 1.3.2

the window’s backing-store attribute ofAlways or WhenMapped. The regions decompose into
an (arbitrary) set of rectangles, and anExposeev ent is generated for each rectangle.For any
given window, the X server guarantees to report contiguously all of the regions exposed by some
action that causesExposeev ents, such as raising a window.

To receive Exposeev ents, set theExposureMask bit in the event-mask attribute of the window.

The structure for this event type contains:

typedef struct {
int type; /* Expose */
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */
Window window;
int x, y;
int width, height;
int count; /* if nonzero, at least this many more */

} X ExposeEvent;

The window member is set to the exposed (damaged) window. The x and y members are set to
the coordinates relative to the window’s origin and indicate the upper-left corner of the rectangle.
The width and height members are set to the size (extent) of the rectangle. The count member is
set to the number ofExposeev ents that are to follow. If count is zero, no moreExposeev ents
follow for this window. Howev er, if count is nonzero, at least that number ofExposeev ents (and
possibly more) follow for this window. Simple applications that do not want to optimize redis-
play by distinguishing between subareas of its window can just ignore allExposeev ents with
nonzero counts and perform full redisplays on events with zero counts.

10.9.2. GraphicsExposeand NoExpose Events
The X server can reportGraphicsExposeev ents to clients wanting information about when a
destination region could not be computed during certain graphics requests:XCopyArea or
XCopyPlane. The X server generates this event whenever a destination region could not be
computed because of an obscured or out-of-bounds source region. Inaddition, the X server guar-
antees to report contiguously all of the regions exposed by some graphics request (for example,
copying an area of a drawable to a destination drawable).

The X server generates aNoExposeev ent whenever a graphics request that might produce a
GraphicsExposeev ent does not produce any. In other words, the client is really asking for a
GraphicsExposeev ent but instead receives aNoExposeev ent.

To receive GraphicsExposeor NoExposeev ents, you must first set the graphics-exposure
attribute of the graphics context toTr ue. You also can set the graphics-expose attribute when
creating a graphics context usingXCreateGC or by callingXSetGraphicsExposures.
The structures for these event types contain:

198

Xlib − C Library libX11 1.3.2

typedef struct {
int type; /* GraphicsExpose */
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */
Drawable drawable;
int x, y;
int width, height;
int count; /* if nonzero, at least this many more */
int major_code; /* core is CopyArea or CopyPlane */
int minor_code; /* not defined in the core */

} X GraphicsExposeEvent;

typedef struct {
int type; /* NoExpose */
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */
Drawable drawable;
int major_code; /* core is CopyArea or CopyPlane */
int minor_code; /* not defined in the core */

} X NoExposeEvent;

Both structures have these common members: drawable, major_code, and minor_code. The
drawable member is set to the drawable of the destination region on which the graphics request
was to be performed. Themajor_code member is set to the graphics request initiated by the client
and can be eitherX_CopyArea or X_CopyPlane. If it i s X_CopyArea, a call to XCopyArea
initiated the request. If it isX_CopyPlane, a call to XCopyPlane initiated the request. These
constants are defined in <X11/Xproto.h>. Theminor_code member, like the major_code mem-
ber, indicates which graphics request was initiated by the client. However, the minor_code mem-
ber is not defined by the core X protocol and will be zero in these cases, although it may be used
by an extension.

The XGraphicsExposeEventstructure has these additional members: x, y, width, height, and
count. Thex and y members are set to the coordinates relative to the drawable’s origin and indi-
cate the upper-left corner of the rectangle. The width and height members are set to the size
(extent) of the rectangle. The count member is set to the number ofGraphicsExposeev ents to
follow. If count is zero, no moreGraphicsExposeev ents follow for this window. Howev er, if
count is nonzero, at least that number ofGraphicsExposeev ents (and possibly more) are to fol-
low for this window.

10.10. Window State Change Events
The following sections discuss:

• CirculateNotify ev ents

• ConfigureNotify ev ents

• CreateNotify ev ents

• DestroyNotify ev ents

• GravityNotify ev ents

• MapNotify ev ents

199

Xlib − C Library libX11 1.3.2

• MappingNotify ev ents

• ReparentNotify ev ents

• UnmapNotify ev ents

• VisibilityNotify ev ents

10.10.1. CirculateNotify Events
The X server can reportCirculateNotify ev ents to clients wanting information about when a
window changes its position in the stack. The X server generates this event type whenever a win-
dow is actually restacked as a result of a client application callingXCirculateSubwindows,
XCirculateSubwindowsUp, or XCirculateSubwindowsDown.

To receive CirculateNotify ev ents, set theStructureNotifyMask bit in the event-mask attribute
of the window or the SubstructureNotifyMask bit in the event-mask attribute of the parent win-
dow (in which case, circulating any child generates an event).

The structure for this event type contains:

typedef struct {
int type; /* CirculateNotify */
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */
Window event;
Window window;
int place; /* PlaceOnTop, PlaceOnBottom */

} X CirculateEvent;

The event member is set either to the restacked window or to its parent, depending on whether
StructureNotify or SubstructureNotify was selected. Thewindow member is set to the win-
dow that was restacked. Theplace member is set to the window’s position after the restack
occurs and is eitherPlaceOnTopor PlaceOnBottom. If it i s PlaceOnTop, the window is now
on top of all siblings. If it isPlaceOnBottom, the window is now below all siblings.

10.10.2. ConfigureNotify Events
The X server can reportConfigureNotify ev ents to clients wanting information about actual
changes to a window’s state, such as size, position, border, and stacking order. The X server gen-
erates this event type whenever one of the following configure window requests made by a client
application actually completes:

• A window’s size, position, border, and/or stacking order is reconfigured by callingXCon-
figureWindow .

• The window’s position in the stacking order is changed by callingXLowerWindow ,
XRaiseWindow, or XRestackWindows.

• A window is moved by calling XMoveWindow.

• A window’s size is changed by callingXResizeWindow.

• A window’s size and location is changed by callingXMoveResizeWindow.

• A window is mapped and its position in the stacking order is changed by calling
XMapRaised.

• A window’s border width is changed by callingXSetWindowBorderWidth .

To receive ConfigureNotify ev ents, set theStructureNotifyMask bit in the event-mask attribute
of the window or the SubstructureNotifyMask bit in the event-mask attribute of the parent

200

Xlib − C Library libX11 1.3.2

window (in which case, configuring any child generates an event).

The structure for this event type contains:

typedef struct {
int type; /* ConfigureNotify */
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */
Window event;
Window window;
int x, y;
int width, height;
int border_width;
Window above;
Bool override_redirect;

} X ConfigureEvent;

The event member is set either to the reconfigured window or to its parent, depending on whether
StructureNotify or SubstructureNotify was selected. Thewindow member is set to the win-
dow whose size, position, border, and/or stacking order was changed.

The x and y members are set to the coordinates relative to the parent window’s origin and indicate
the position of the upper-left outside corner of the window. The width and height members are
set to the inside size of the window, not including the border. The border_width member is set to
the width of the window’s border, in pixels.

The above member is set to the sibling window and is used for stacking operations. If the X
server sets this member toNone, the window whose state was changed is on the bottom of the
stack with respect to sibling windows. However, if this member is set to a sibling window, the
window whose state was changed is placed on top of this sibling window.

The override_redirect member is set to the override-redirect attribute of the window. Window
manager clients normally should ignore this window if the override_redirect member isTr ue.

10.10.3. CreateNotify Events
The X server can reportCreateNotify ev ents to clients wanting information about creation of
windows. TheX server generates this event whenever a client application creates a window by
calling XCreateWindow or XCreateSimpleWindow.

To receive CreateNotify ev ents, set theSubstructureNotifyMask bit in the event-mask attribute
of the window. Creating any children then generates an event.

The structure for the event type contains:

201

Xlib − C Library libX11 1.3.2

typedef struct {
int type; /* CreateNotify */
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */
Window parent; /*parent of the window */
Window window; /* window id of window created */
int x, y; /* window location */
int width, height; /* size of window */
int border_width; /* border width */
Bool override_redirect; /*creation should be overridden */

} X CreateWindowEvent;

The parent member is set to the created window’s parent. Thewindow member specifies the cre-
ated window. The x and y members are set to the created window’s coordinates relative to the
parent window’s origin and indicate the position of the upper-left outside corner of the created
window. The width and height members are set to the inside size of the created window (not
including the border) and are always nonzero. The border_width member is set to the width of
the created window’s border, in pixels. Theoverride_redirect member is set to the override-redi-
rect attribute of the window. Window manager clients normally should ignore this window if the
override_redirect member isTr ue.

10.10.4. DestroyNotify Events
The X server can reportDestroyNotify ev ents to clients wanting information about which win-
dows are destroyed. TheX server generates this event whenever a client application destroys a
window by calling XDestroyWindow or XDestroySubwindows.
The ordering of theDestroyNotify ev ents is such that for any giv en window, DestroyNotify is
generated on all inferiors of the window before being generated on the window itself. TheX pro-
tocol does not constrain the ordering among siblings and across subhierarchies.

To receive DestroyNotify ev ents, set theStructureNotifyMask bit in the event-mask attribute of
the window or the SubstructureNotifyMask bit in the event-mask attribute of the parent window
(in which case, destroying any child generates an event).

The structure for this event type contains:

typedef struct {
int type; /* DestroyNotify */
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */
Window event;
Window window;

} X DestroyWindowEvent;

The event member is set either to the destroyed window or to its parent, depending on whether
StructureNotify or SubstructureNotify was selected. Thewindow member is set to the win-
dow that is destroyed.

202

Xlib − C Library libX11 1.3.2

10.10.5. GravityNotify Events
The X server can reportGravityNotify ev ents to clients wanting information about when a win-
dow is moved because of a change in the size of its parent. The X server generates this event
whenever a client application actually moves a child window as a result of resizing its parent by
calling XConfigureWindow , XMoveResizeWindow, or XResizeWindow.

To receive GravityNotify ev ents, set theStructureNotifyMask bit in the event-mask attribute of
the window or the SubstructureNotifyMask bit in the event-mask attribute of the parent window
(in which case, any child that is moved because its parent has been resized generates an event).

The structure for this event type contains:

typedef struct {
int type; /* GravityNotify */
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */
Window event;
Window window;
int x, y;

} X GravityEvent;

The event member is set either to the window that was moved or to its parent, depending on
whetherStructureNotify or SubstructureNotify was selected. Thewindow member is set to
the child window that was moved. Thex and y members are set to the coordinates relative to the
new parent window’s origin and indicate the position of the upper-left outside corner of the win-
dow.

10.10.6. MapNotifyEvents
The X server can reportMapNotify ev ents to clients wanting information about which windows
are mapped. The X server generates this event type whenever a client application changes the
window’s state from unmapped to mapped by callingXMapWindow , XMapRaised, XMap-
Subwindows, XReparentWindow, or as a result of save-set processing.

To receive MapNotify ev ents, set theStructureNotifyMask bit in the event-mask attribute of
the window or the SubstructureNotifyMask bit in the event-mask attribute of the parent window
(in which case, mapping any child generates an event).

The structure for this event type contains:

typedef struct {
int type; /* MapNotify */
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */
Window event;
Window window;
Bool override_redirect; /*boolean, is override set... */

} X MapEvent;

The event member is set either to the window that was mapped or to its parent, depending on
whetherStructureNotify or SubstructureNotify was selected. Thewindow member is set to
the window that was mapped. The override_redirect member is set to the override-redirect

203

Xlib − C Library libX11 1.3.2

attribute of the window. Window manager clients normally should ignore this window if the
override-redirect attribute isTr ue, because these events usually are generated from pop-ups,
which override structure control.

10.10.7. MappingNotifyEvents
The X server reportsMappingNotify ev ents to all clients. There is no mechanism to express dis-
interest in this event. TheX server generates this event type whenever a client application suc-
cessfully calls:

• XSetModifierMapping to indicate which KeyCodes are to be used as modifiers

• XChangeKeyboardMapping to change the keyboard mapping

• XSetPointerMapping to set the pointer mapping

The structure for this event type contains:

typedef struct {
int type; /* MappingNotify */
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */
Window window; /* unused */
int request; /* one of MappingModifier, MappingKeyboard,

MappingPointer */
int first_keycode; /*first keycode */
int count; /* defines range of change w. first_keycode*/

} X MappingEvent;

The request member is set to indicate the kind of mapping change that occurred and can beMap-
pingModifier , MappingKeyboard , or MappingPointer . If it i s MappingModifier , the modi-
fier mapping was changed. If it isMappingKeyboard , the keyboard mapping was changed. If it
is MappingPointer , the pointer button mapping was changed. The first_keycode and count
members are set only if the request member was set toMappingKeyboard . The number in
first_keycode represents the first number in the range of the altered mapping, and count represents
the number of keycodes altered.

To update the client application’s knowledge of the keyboard, you should callXRefreshKey-
boardMapping .

10.10.8. ReparentNotify Events
The X server can reportReparentNotify ev ents to clients wanting information about changing a
window’s parent. TheX server generates this event whenever a client application callsXRepar-
entWindow and the window is actually reparented.

To receive ReparentNotify ev ents, set theStructureNotifyMask bit in the event-mask attribute
of the window or the SubstructureNotifyMask bit in the event-mask attribute of either the old or
the new parent window (in which case, reparenting any child generates an event).

The structure for this event type contains:

204

Xlib − C Library libX11 1.3.2

typedef struct {
int type; /* ReparentNotify */
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */
Window event;
Window window;
Window parent;
int x, y;
Bool override_redirect;

} X ReparentEvent;

The event member is set either to the reparented window or to the old or the new parent, depend-
ing on whetherStructureNotify or SubstructureNotify was selected. Thewindow member is
set to the window that was reparented. The parent member is set to the new parent window. The
x and y members are set to the reparented window’s coordinates relative to the new parent win-
dow’s origin and define the upper-left outer corner of the reparented window. The override_redi-
rect member is set to the override-redirect attribute of the window specified by the window mem-
ber. Window manager clients normally should ignore this window if the override_redirect mem-
ber isTr ue.

10.10.9. UnmapNotifyEvents
The X server can reportUnmapNotify ev ents to clients wanting information about which win-
dows are unmapped. The X server generates this event type whenever a client application
changes the window’s state from mapped to unmapped.

To receive UnmapNotify ev ents, set theStructureNotifyMask bit in the event-mask attribute of
the window or the SubstructureNotifyMask bit in the event-mask attribute of the parent window
(in which case, unmapping any child window generates an event).

The structure for this event type contains:

typedef struct {
int type; /* UnmapNotify */
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */
Window event;
Window window;
Bool from_configure;

} X UnmapEvent;

The event member is set either to the unmapped window or to its parent, depending on whether
StructureNotify or SubstructureNotify was selected. Thisis the window used by the X server
to report the event. Thewindow member is set to the window that was unmapped. The
from_configure member is set toTr ue if the event was generated as a result of a resizing of the
window’s parent when the window itself had a win_gravity ofUnmapGravity .

10.10.10. VisibilityNotify Events
The X server can reportVisibilityNotify ev ents to clients wanting any change in the visibility of
the specified window. A region of a window is visible if someone looking at the screen can

205

Xlib − C Library libX11 1.3.2

actually see it. The X server generates this event whenever the visibility changes state. However,
this event is never generated for windows whose class isInputOnly .

All VisibilityNotify ev ents caused by a hierarchy change are generated after any hierarchy event
(UnmapNotify , MapNotify , ConfigureNotify , GravityNotify , CirculateNotify) caused by
that change. AnyVisibilityNotify ev ent on a given window is generated before anyExpose
ev ents on that window, but it is not required that allVisibilityNotify ev ents on all windows be
generated before allExposeev ents on all windows. TheX protocol does not constrain the order-
ing of VisibilityNotify ev ents with respect toFocusOut, EnterNotify , and LeaveNotify ev ents.

To receive VisibilityNotify ev ents, set theVisibilityChangeMask bit in the event-mask attribute
of the window.

The structure for this event type contains:

typedef struct {
int type; /* VisibilityNotify */
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */
Window window;
int state;

} X VisibilityEvent;

The window member is set to the window whose visibility state changes. The state member is set
to the state of the window’s visibility and can beVisibilityUnobscured, VisibilityPartiallyOb-
scured, or VisibilityFullyObscured . The X server ignores all of a window’s subwindows when
determining the visibility state of the window and processesVisibilityNotify ev ents according to
the following:

• When the window changes state from partially obscured, fully obscured, or not viewable to
viewable and completely unobscured, the X server generates the event with the state mem-
ber of theXVisibilityEvent structure set toVisibilityUnobscured.

• When the window changes state from viewable and completely unobscured or not viewable
to viewable and partially obscured, the X server generates the event with the state member
of theXVisibilityEvent structure set toVisibilityPartiallyObscured .

• When the window changes state from viewable and completely unobscured, viewable and
partially obscured, or not viewable to viewable and fully obscured, the X server generates
the event with the state member of theXVisibilityEvent structure set toVisibilityFully-
Obscured.

10.11. Structure Control Events
This section discusses:

• CirculateRequestev ents

• ConfigureRequestev ents

• MapRequestev ents

• ResizeRequestev ents

10.11.1. CirculateRequest Events
The X server can reportCirculateRequestev ents to clients wanting information about when
another client initiates a circulate window request on a specified window. The X server generates
this event type whenever a client initiates a circulate window request on a window and a subwin-
dow actually needs to be restacked. Theclient initiates a circulate window request on the window

206

Xlib − C Library libX11 1.3.2

by callingXCirculateSubwindows, XCirculateSubwindowsUp, or XCirculateSubwindows-
Down.

To receive CirculateRequestev ents, set theSubstructureRedirectMask in the event-mask
attribute of the window. Then, in the future, the circulate window request for the specified win-
dow is not executed, and thus, any subwindow’s position in the stack is not changed.For exam-
ple, suppose a client application callsXCirculateSubwindowsUp to raise a subwindow to the
top of the stack. If you had selectedSubstructureRedirectMask on the window, the X server
reports to you aCirculateRequestev ent and does not raise the subwindow to the top of the
stack.

The structure for this event type contains:

typedef struct {
int type; /* CirculateRequest */
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */
Window parent;
Window window;
int place; /* PlaceOnTop, PlaceOnBottom */

} X CirculateRequestEvent;

The parent member is set to the parent window. The window member is set to the subwindow to
be restacked. Theplace member is set to what the new position in the stacking order should be
and is eitherPlaceOnTopor PlaceOnBottom. If it i s PlaceOnTop, the subwindow should be
on top of all siblings. If it isPlaceOnBottom, the subwindow should be below all siblings.

10.11.2. ConfigureRequest Events
The X server can reportConfigureRequestev ents to clients wanting information about when a
different client initiates a configure window request on any child of a specified window. The con-
figure window request attempts to reconfigure a window’s size, position, border, and stacking
order. The X server generates this event whenever a different client initiates a configure window
request on a window by calling XConfigureWindow , XLowerWindow , XRaiseWindow,
XMapRaised, XMoveResizeWindow, XMoveWindow, XResizeWindow, XRestackWin-
dows, or XSetWindowBorderWidth .

To receive ConfigureRequestev ents, set theSubstructureRedirectMask bit in the event-mask
attribute of the window. ConfigureRequestev ents are generated when aConfigureWindow
protocol request is issued on a child window by another client.For example, suppose a client
application callsXLowerWindow to lower a window. If you had selectedSubstructureRedi-
rectMask on the parent window and if the override-redirect attribute of the window is set to
False, the X server reports aConfigureRequestev ent to you and does not lower the specified
window.

The structure for this event type contains:

207

Xlib − C Library libX11 1.3.2

typedef struct {
int type; /* ConfigureRequest */
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */
Window parent;
Window window;
int x, y;
int width, height;
int border_width;
Window above;
int detail; /* Above, Below, TopIf, BottomIf, Opposite */
unsigned long value_mask;

} X ConfigureRequestEvent;

The parent member is set to the parent window. The window member is set to the window whose
size, position, border width, and/or stacking order is to be reconfigured. The value_mask member
indicates which components were specified in theConfigureWindow protocol request. The cor-
responding values are reported as given in the request. The remaining values are filled in from
the current geometry of the window, except in the case of above (sibling) and detail (stack-mode),
which are reported asNone andAbove, respectively, if they are not given in the request.

10.11.3. MapRequestEvents
The X server can reportMapRequestev ents to clients wanting information about a different
client’s desire to map windows. Awindow is considered mapped when a map window request
completes. TheX server generates this event whenever a different client initiates a map window
request on an unmapped window whose override_redirect member is set toFalse. Clients initiate
map window requests by callingXMapWindow , XMapRaised, or XMapSubwindows.

To receive MapRequestev ents, set theSubstructureRedirectMask bit in the event-mask
attribute of the window. This means another client’s attempts to map a child window by calling
one of the map window request functions is intercepted, and you are sent aMapRequest instead.
For example, suppose a client application callsXMapWindow to map a window. If you (usually
a window manager) had selectedSubstructureRedirectMask on the parent window and if the
override-redirect attribute of the window is set toFalse, the X server reports aMapRequest
ev ent to you and does not map the specified window. Thus, this event gives your window man-
ager client the ability to control the placement of subwindows.

The structure for this event type contains:

typedef struct {
int type; /* MapRequest */
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */
Window parent;
Window window;

} X MapRequestEvent;

The parent member is set to the parent window. The window member is set to the window to be
mapped.

208

Xlib − C Library libX11 1.3.2

10.11.4. ResizeRequestEvents
The X server can reportResizeRequestev ents to clients wanting information about another
client’s attempts to change the size of a window. The X server generates this event whenever
some other client attempts to change the size of the specified window by calling XConfig-
ureWindow , XResizeWindow, or XMoveResizeWindow.

To receive ResizeRequestev ents, set theResizeRedirectbit in the event-mask attribute of the
window. Any attempts to change the size by other clients are then redirected.

The structure for this event type contains:

typedef struct {
int type; /* ResizeRequest */
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */
Window window;
int width, height;

} X ResizeRequestEvent;

The window member is set to the window whose size another client attempted to change. The
width and height members are set to the inside size of the window, excluding the border.

10.12. ColormapState Change Events
The X server can reportColormapNotify ev ents to clients wanting information about when the
colormap changes and when a colormap is installed or uninstalled. The X server generates this
ev ent type whenever a client application:

• Changes the colormap member of theXSetWindowAttributes structure by calling
XChangeWindowAttributes , XFreeColormap, or XSetWindowColormap

• Installs or uninstalls the colormap by callingXInstallColormap or XUninstallColormap
To receive ColormapNotify ev ents, set theColormapChangeMaskbit in the event-mask
attribute of the window.

The structure for this event type contains:

typedef struct {
int type; /* ColormapNotify */
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */
Window window;
Colormap colormap; /* colormap or None */
Bool new;
int state; /* ColormapInstalled, ColormapUninstalled */

} X ColormapEvent;

The window member is set to the window whose associated colormap is changed, installed, or
uninstalled. For a colormap that is changed, installed, or uninstalled, the colormap member is set
to the colormap associated with the window. For a colormap that is changed by a call toXFree-
Colormap, the colormap member is set toNone. The new member is set to indicate whether the
colormap for the specified window was changed or installed or uninstalled and can beTr ue or
False. If it i s Tr ue, the colormap was changed. If it isFalse, the colormap was installed or

209

Xlib − C Library libX11 1.3.2

uninstalled. Thestate member is always set to indicate whether the colormap is installed or unin-
stalled and can beColormapInstalled or ColormapUninstalled.

10.13. ClientCommunication Events
This section discusses:

• ClientMessageev ents

• PropertyNotify ev ents

• SelectionClearev ents

• SelectionNotify ev ents

• SelectionRequestev ents

10.13.1. ClientMessageEvents
The X server generatesClientMessageev ents only when a client calls the functionXSendE-
vent .
The structure for this event type contains:

typedef struct {
int type; /* ClientMessage */
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */
Window window;
Atom message_type;
int format;
union {

char b[20];
short s[10];
long l[5];

} data;
} X ClientMessageEvent;

The message_type member is set to an atom that indicates how the data should be interpreted by
the receiving client. The format member is set to 8, 16, or 32 and specifies whether the data
should be viewed as a list of bytes, shorts, or longs. The data member is a union that contains the
members b, s, and l. The b, s, and l members represent data of twenty 8-bit values, ten 16-bit val-
ues, and five 32-bit values. Particular message types might not make use of all these values. The
X server places no interpretation on the values in the window, message_type, or data members.

10.13.2. PropertyNotify Events
The X server can reportPropertyNotify ev ents to clients wanting information about property
changes for a specified window.

To receive PropertyNotify ev ents, set thePropertyChangeMask bit in the event-mask attribute
of the window.

The structure for this event type contains:

210

Xlib − C Library libX11 1.3.2

typedef struct {
int type; /* PropertyNotify */
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */
Window window;
Atom atom;
Time time;
int state; /* PropertyNewValue or PropertyDelete */

} X PropertyEvent;

The window member is set to the window whose associated property was changed. The atom
member is set to the property’s atom and indicates which property was changed or desired. The
time member is set to the server time when the property was changed. The state member is set to
indicate whether the property was changed to a new value or deleted and can bePropertyNew-
Value or PropertyDelete. The state member is set toPropertyNewValue when a property of
the window is changed usingXChangeProperty or XRotateWindowProperties (even when
adding zero-length data usingXChangeProperty) and when replacing all or part of a property
with identical data usingXChangeProperty or XRotateWindowProperties. The state member
is set toPropertyDelete when a property of the window is deleted usingXDeleteProperty or, if
the delete argument isTr ue, XGetWindowProperty .

10.13.3. SelectionClearEvents
The X server reportsSelectionClearev ents to the client losing ownership of a selection. The X
server generates this event type when another client asserts ownership of the selection by calling
XSetSelectionOwner.
The structure for this event type contains:

typedef struct {
int type; /* SelectionClear */
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */
Window window;
Atom selection;
Time time;

} X SelectionClearEvent;

The selection member is set to the selection atom. The time member is set to the last change time
recorded for the selection. The window member is the window that was specified by the current
owner (the owner losing the selection) in itsXSetSelectionOwnercall.

10.13.4. SelectionRequestEvents
The X server reportsSelectionRequestev ents to the owner of a selection. The X server gener-
ates this event whenever a client requests a selection conversion by callingXConvertSelection
for the owned selection.

The structure for this event type contains:

211

Xlib − C Library libX11 1.3.2

typedef struct {
int type; /* SelectionRequest */
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */
Window owner;
Window requestor;
Atom selection;
Atom target;
Atom property;
Time time;

} X SelectionRequestEvent;

The owner member is set to the window that was specified by the current owner in itsXSetSelec-
tionOwner call. Therequestor member is set to the window requesting the selection. The selec-
tion member is set to the atom that names the selection.For example, PRIMARY is used to indi-
cate the primary selection. The target member is set to the atom that indicates the type the selec-
tion is desired in. The property member can be a property name orNone. The time member is
set to the timestamp orCurrentTime value from theConvertSelection request.

The owner should convert the selection based on the specified target type and send aSelection-
Notify ev ent back to the requestor. A complete specification for using selections is given in the X
Consortium standardInter-Client Communication Conventions Manual.

10.13.5. SelectionNotifyEvents
This event is generated by the X server in response to aConvertSelection protocol request when
there is no owner for the selection. When there is an owner, it should be generated by the owner
of the selection by usingXSendEvent. The owner of a selection should send this event to a
requestor when a selection has been converted and stored as a property or when a selection con-
version could not be performed (which is indicated by setting the property member toNone).

If None is specified as the property in theConvertSelection protocol request, the owner should
choose a property name, store the result as that property on the requestor window, and then send a
SelectionNotify giving that actual property name.

The structure for this event type contains:

typedef struct {
int type; /* SelectionNotify */
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */
Window requestor;
Atom selection;
Atom target;
Atom property; /* atom or None */
Time time;

} X SelectionEvent;

The requestor member is set to the window associated with the requestor of the selection. The
selection member is set to the atom that indicates the selection.For example, PRIMARY is used
for the primary selection. The target member is set to the atom that indicates the converted type.

212

Xlib − C Library libX11 1.3.2

For example, PIXMAP is used for a pixmap. The property member is set to the atom that indi-
cates which property the result was stored on. If the conversion failed, the property member is set
to None. The time member is set to the time the conversion took place and can be a timestamp or
CurrentTime .

213

Xlib − C Library libX11 1.3.2

Chapter 11

Event Handling Functions

This chapter discusses the Xlib functions you can use to:

• Select events

• Handle the output buffer and the event queue

• Select events from the event queue

• Send and get events

• Handle protocol errors

Note

Some toolkits use their own event-handling functions and do not allow you to
interchange these event-handling functions with those in Xlib. For further
information, see the documentation supplied with the toolkit.

Most applications simply are event loops: they wait for an event, decide what to do with it,
execute some amount of code that results in changes to the display, and then wait for the next
ev ent.

11.1. SelectingEvents
There are two ways to select the events you want reported to your client application. One way is
to set the event_mask member of theXSetWindowAttributes structure when you callXCre-
ateWindow andXChangeWindowAttributes . Another way is to useXSelectInput.

XSelectInput (display, w, event_mask)
Display *display;
Windoww;
longevent_mask;

display Specifies the connection to the X server.

w Specifies the window whose events you are interested in.

event_mask Specifies the event mask.

The XSelectInput function requests that the X server report the events associated with the speci-
fied event mask. Initially, X will not report any of these events. Events are reported relative to a
window. If a window is not interested in a device event, it usually propagates to the closest ances-
tor that is interested, unless the do_not_propagate mask prohibits it.

Setting the event-mask attribute of a window overrides any previous call for the same window but
not for other clients. Multiple clients can select for the same events on the same window with the
following restrictions:

• Multiple clients can select events on the same window because their event masks are dis-
joint. Whenthe X server generates an event, it reports it to all interested clients.

• Only one client at a time can selectCirculateRequest, ConfigureRequest, or MapRe-
quest ev ents, which are associated with the event maskSubstructureRedirectMask.

• Only one client at a time can select aResizeRequestev ent, which is associated with the
ev ent maskResizeRedirectMask.

214

Xlib − C Library libX11 1.3.2

• Only one client at a time can select aButtonPressev ent, which is associated with the
ev ent maskButtonPressMask.

The server reports the event to all interested clients.

XSelectInput can generate aBadWindow error.

11.2. Handlingthe Output Buffer
The output buffer is an area used by Xlib to store requests. The functions described in this sec-
tion flush the output buffer if the function would block or not return an event. Thatis, all requests
residing in the output buffer that have not yet been sent are transmitted to the X server. These
functions differ in the additional tasks they might perform.

To flush the output buffer, useXFlush.

XFlush (display)
Display *display;

display Specifies the connection to the X server.

The XFlush function flushes the output buffer. Most client applications need not use this func-
tion because the output buffer is automatically flushed as needed by calls toXPending, XNex-
tEvent, and XWindowEvent . Events generated by the server may be enqueued into the library’s
ev ent queue.

To flush the output buffer and then wait until all requests have been processed, useXSync.

XSync (display, discard)
Display *display;
Bool discard;

display Specifies the connection to the X server.

discard Specifies a Boolean value that indicates whetherXSync discards all events on
the event queue.

The XSync function flushes the output buffer and then waits until all requests have been received
and processed by the X server. Any errors generated must be handled by the error handler. For
each protocol error received by Xlib, XSync calls the client application’s error handling routine
(see section 11.8.2). Any events generated by the server are enqueued into the library’s event
queue.

Finally, if you passedFalse, XSync does not discard the events in the queue. If you passed
Tr ue, XSync discards all events in the queue, including those events that were on the queue
beforeXSync was called. Clientapplications seldom need to callXSync.

11.3. Event Queue Management
Xlib maintains an event queue. However, the operating system also may be buffering data in its
network connection that is not yet read into the event queue.

To check the number of events in the event queue, useXEventsQueued.

215

Xlib − C Library libX11 1.3.2

int XEventsQueued (display, mode)
Display *display;
int mode;

display Specifies the connection to the X server.

mode Specifies the mode.You can passQueuedAlready, QueuedAfterFlush, or
QueuedAfterReading.

If mode isQueuedAlready, XEventsQueuedreturns the number of events already in the event
queue (and never performs a system call). If mode isQueuedAfterFlush, XEventsQueued
returns the number of events already in the queue if the number is nonzero. If there are no events
in the queue,XEventsQueuedflushes the output buffer, attempts to read more events out of the
application’s connection, and returns the number read. If mode isQueuedAfterReading,
XEventsQueuedreturns the number of events already in the queue if the number is nonzero. If
there are no events in the queue,XEventsQueuedattempts to read more events out of the appli-
cation’s connection without flushing the output buffer and returns the number read.

XEventsQueuedalways returns immediately without I/O if there are events already in the queue.
XEventsQueuedwith modeQueuedAfterFlush is identical in behavior toXPending.
XEventsQueuedwith modeQueuedAlready is identical to theXQLength function.

To return the number of events that are pending, useXPending.

int XPending(display)
Display *display;

display Specifies the connection to the X server.

The XPending function returns the number of events that have been received from the X server
but hav enot been removed from the event queue.XPending is identical toXEventsQueued
with the modeQueuedAfterFlush specified.

11.4. Manipulating the Event Queue
Xlib provides functions that let you manipulate the event queue. This section discusses how to:

• Obtain events, in order, and remove them from the queue

• Peek at events in the queue without removing them

• Obtain events that match the event mask or the arbitrary predicate procedures that you pro-
vide

11.4.1. Returning the Next Event
To get the next event and remove it from the queue, useXNextEvent.

XNextEvent (display, event_return)
Display *display;
XEvent *event_return;

display Specifies the connection to the X server.

event_return Returns the next event in the queue.

The XNextEvent function copies the first event from the event queue into the specifiedXEvent
structure and then removes it from the queue. If the event queue is empty,XNextEvent flushes

216

Xlib − C Library libX11 1.3.2

the output buffer and blocks until an event is received.

To peek at the event queue, useXPeekEvent.

XPeekEvent (display, event_return)
Display *display;
XEvent *event_return;

display Specifies the connection to the X server.

event_return Returns a copy of the matched event’s associated structure.

The XPeekEvent function returns the first event from the event queue, but it does not remove the
ev ent from the queue. If the queue is empty,XPeekEventflushes the output buffer and blocks
until an event is received. It then copies the event into the client-suppliedXEvent structure with-
out removing it from the event queue.

11.4.2. SelectingEvents Using a Predicate Procedure
Each of the functions discussed in this section requires you to pass a predicate procedure that
determines if an event matches what you want. Your predicate procedure must decide if the event
is useful without calling any Xlib functions. If the predicate directly or indirectly causes the state
of the event queue to change, the result is not defined. If Xlib has been initialized for threads, the
predicate is called with the display locked and the result of a call by the predicate to any Xlib
function that locks the display is not defined unless the caller has first calledXLockDisplay .

The predicate procedure and its associated arguments are:

Bool (*predicate)(display, event, arg)
Display *display;
XEvent *event;
XPointerarg;

display Specifies the connection to the X server.

event Specifies theXEvent structure.

arg Specifies the argument passed in from theXIfEvent , XCheckIfEvent , or
XPeekIfEvent function.

The predicate procedure is called once for each event in the queue until it finds a match. After
finding a match, the predicate procedure must returnTr ue. If it did not find a match, it must
returnFalse.

To check the event queue for a matching event and, if found, remove the event from the queue,
useXIfEvent .

217

Xlib − C Library libX11 1.3.2

XIfEvent (display, event_return, predicate, arg)
Display *display;
XEvent *event_return;
Bool (*predicate)();
XPointerarg;

display Specifies the connection to the X server.

event_return Returns the matched event’s associated structure.

predicate Specifies the procedure that is to be called to determine if the next event in the
queue matches what you want.

arg Specifies the user-supplied argument that will be passed to the predicate proce-
dure.

The XIfEvent function completes only when the specified predicate procedure returnsTr ue for
an event, which indicates an event in the queue matches.XIfEvent flushes the output buffer if it
blocks waiting for additional events. XIfEvent removes the matching event from the queue and
copies the structure into the client-suppliedXEvent structure.

To check the event queue for a matching event without blocking, useXCheckIfEvent .

Bool XCheckIfEvent (display, event_return, predicate, arg)
Display *display;
XEvent *event_return;
Bool (*predicate)();
XPointerarg;

display Specifies the connection to the X server.

event_return Returns a copy of the matched event’s associated structure.

predicate Specifies the procedure that is to be called to determine if the next event in the
queue matches what you want.

arg Specifies the user-supplied argument that will be passed to the predicate proce-
dure.

When the predicate procedure finds a match,XCheckIfEvent copies the matched event into the
client-suppliedXEvent structure and returnsTr ue. (This event is removed from the queue.) If
the predicate procedure finds no match,XCheckIfEvent returnsFalse, and the output buffer will
have been flushed. All earlier events stored in the queue are not discarded.

To check the event queue for a matching event without removing the event from the queue, use
XPeekIfEvent.

218

Xlib − C Library libX11 1.3.2

XPeekIfEvent (display, event_return, predicate, arg)
Display *display;
XEvent *event_return;
Bool (*predicate)();
XPointerarg;

display Specifies the connection to the X server.

event_return Returns a copy of the matched event’s associated structure.

predicate Specifies the procedure that is to be called to determine if the next event in the
queue matches what you want.

arg Specifies the user-supplied argument that will be passed to the predicate proce-
dure.

The XPeekIfEvent function returns only when the specified predicate procedure returnsTr ue
for an event. After the predicate procedure finds a match,XPeekIfEvent copies the matched
ev ent into the client-suppliedXEvent structure without removing the event from the queue.
XPeekIfEvent flushes the output buffer if it blocks waiting for additional events.

11.4.3. SelectingEvents Using a Window or Event Mask
The functions discussed in this section let you select events by window or event types, allowing
you to process events out of order.

To remove the next event that matches both a window and an event mask, useXWindowEvent .

XWindowEvent (display, w, event_mask, event_return)
Display *display;
Windoww;
longevent_mask;
XEvent *event_return;

display Specifies the connection to the X server.

w Specifies the window whose events you are interested in.

event_mask Specifies the event mask.

event_return Returns the matched event’s associated structure.

The XWindowEvent function searches the event queue for an event that matches both the speci-
fied window and event mask. When it finds a match,XWindowEvent removes that event from
the queue and copies it into the specifiedXEvent structure. Theother events stored in the queue
are not discarded. If a matching event is not in the queue,XWindowEvent flushes the output
buffer and blocks until one is received.

To remove the next event that matches both a window and an event mask (if any), useXCheck-
WindowEvent. This function is similar toXWindowEvent except that it never blocks and it
returns aBool indicating if the event was returned.

219

Xlib − C Library libX11 1.3.2

Bool XCheckWindowEvent (display, w, event_mask, event_return)
Display *display;
Windoww;
longevent_mask;
XEvent *event_return;

display Specifies the connection to the X server.

w Specifies the window whose events you are interested in.

event_mask Specifies the event mask.

event_return Returns the matched event’s associated structure.

The XCheckWindowEvent function searches the event queue and then the events available on
the server connection for the first event that matches the specified window and event mask. If it
finds a match,XCheckWindowEvent removes that event, copies it into the specifiedXEvent
structure, and returnsTr ue. The other events stored in the queue are not discarded. If the event
you requested is not available, XCheckWindowEvent returnsFalse, and the output buffer will
have been flushed.

To remove the next event that matches an event mask, useXMaskEvent.

XMaskEvent (display, event_mask, event_return)
Display *display;
longevent_mask;
XEvent *event_return;

display Specifies the connection to the X server.

event_mask Specifies the event mask.

event_return Returns the matched event’s associated structure.

The XMaskEvent function searches the event queue for the events associated with the specified
mask. Whenit finds a match,XMaskEvent removes that event and copies it into the specified
XEvent structure. Theother events stored in the queue are not discarded. If the event you
requested is not in the queue,XMaskEvent flushes the output buffer and blocks until one is
received.

To return and remove the next event that matches an event mask (if any), useXCheck-
MaskEvent. This function is similar toXMaskEvent except that it never blocks and it returns a
Bool indicating if the event was returned.

Bool XCheckMaskEvent (display, event_mask, event_return)
Display *display;
longevent_mask;
XEvent *event_return;

display Specifies the connection to the X server.

event_mask Specifies the event mask.

event_return Returns the matched event’s associated structure.

The XCheckMaskEvent function searches the event queue and then any events available on the
server connection for the first event that matches the specified mask. If it finds a match,

220

Xlib − C Library libX11 1.3.2

XCheckMaskEvent removes that event, copies it into the specifiedXEvent structure, and
returnsTr ue. The other events stored in the queue are not discarded. If the event you requested
is not available, XCheckMaskEvent returnsFalse, and the output buffer will have been flushed.

To return and remove the next event in the queue that matches an event type, useXCheckType-
dEvent.

Bool XCheckTypedEvent (display, event_type, event_return)
Display *display;
int event_type;
XEvent *event_return;

display Specifies the connection to the X server.

event_type Specifies the event type to be compared.

event_return Returns the matched event’s associated structure.

The XCheckTypedEvent function searches the event queue and then any events available on the
server connection for the first event that matches the specified type. If it finds a match,XCheck-
TypedEvent removes that event, copies it into the specifiedXEvent structure, and returnsTr ue.
The other events in the queue are not discarded. If the event is not available, XCheckTypedE-
vent returnsFalse, and the output buffer will have been flushed.

To return and remove the next event in the queue that matches an event type and a window, use
XCheckTypedWindowEvent.

Bool XCheckTypedWindowEvent (display, w, event_type, event_return)
Display *display;
Windoww;
int event_type;
XEvent *event_return;

display Specifies the connection to the X server.

w Specifies the window.

event_type Specifies the event type to be compared.

event_return Returns the matched event’s associated structure.

The XCheckTypedWindowEvent function searches the event queue and then any events avail-
able on the server connection for the first event that matches the specified type and window. If i t
finds a match,XCheckTypedWindowEvent removes the event from the queue, copies it into the
specifiedXEvent structure, and returnsTr ue. The other events in the queue are not discarded.
If the event is not available, XCheckTypedWindowEvent returnsFalse, and the output buffer
will have been flushed.

11.5. Puttingan Event Back into the Queue
To push an event back into the event queue, useXPutBackEvent.

221

Xlib − C Library libX11 1.3.2

XPutBackEvent (display, event)
Display *display;
XEvent *event;

display Specifies the connection to the X server.

event Specifies the event.

The XPutBackEvent function pushes an event back onto the head of the display’s event queue
by copying the event into the queue. This can be useful if you read an event and then decide that
you would rather deal with it later. There is no limit to the number of times in succession that
you can callXPutBackEvent.

11.6. SendingEvents to Other Applications
To send an event to a specified window, useXSendEvent. This function is often used in selec-
tion processing.For example, the owner of a selection should useXSendEvent to send aSelec-
tionNotify ev ent to a requestor when a selection has been converted and stored as a property.

Status XSendEvent (display, w, propagate, event_mask, event_send)
Display *display;
Windoww;
Bool propagate;
longevent_mask;
XEvent *event_send;

display Specifies the connection to the X server.

w Specifies the window the event is to be sent to, orPointerWindow , or InputFo-
cus.

propagate Specifies a Boolean value.

event_mask Specifies the event mask.

event_send Specifies the event that is to be sent.

The XSendEvent function identifies the destination window, determines which clients should
receive the specified events, and ignores any active grabs. Thisfunction requires you to pass an
ev ent mask.For a discussion of the valid event mask names, see section 10.3. This function uses
the w argument to identify the destination window as follows:

• If w is PointerWindow , the destination window is the window that contains the pointer.

• If w is InputFocus and if the focus window contains the pointer, the destination window is
the window that contains the pointer; otherwise, the destination window is the focus win-
dow.

To determine which clients should receive the specified events,XSendEventuses the propagate
argument as follows:

• If event_mask is the empty set, the event is sent to the client that created the destination
window. If that client no longer exists, no event is sent.

• If propagate isFalse, the event is sent to every client selecting on destination any of the
ev ent types in the event_mask argument.

• If propagate isTr ue and no clients have selected on destination any of the event types in
ev ent-mask, the destination is replaced with the closest ancestor of destination for which
some client has selected a type in event-mask and for which no intervening window has
that type in its do-not-propagate-mask. Ifno such window exists or if the window is an

222

Xlib − C Library libX11 1.3.2

ancestor of the focus window and InputFocus was originally specified as the destination,
the event is not sent to any clients. Otherwise,the event is reported to every client selecting
on the final destination any of the types specified in event_mask.

The event in theXEvent structure must be one of the core events or one of the events defined by
an extension (or aBadValue error results) so that the X server can correctly byte-swap the con-
tents as necessary. The contents of the event are otherwise unaltered and unchecked by the X
server except to force send_event to Tr ue in the forwarded event and to set the serial number in
the event correctly; therefore these fields and the display field are ignored byXSendEvent.
XSendEvent returns zero if the conversion to wire protocol format failed and returns nonzero
otherwise.

XSendEventcan generateBadValue andBadWindow errors.

11.7. GettingPointer Motion History
Some X server implementations will maintain a more complete history of pointer motion than is
reported by event notification. The pointer position at each pointer hardware interrupt may be
stored in a buffer for later retrieval. This buffer is called the motion history buffer. For example,
a few applications, such as paint programs, want to have a precise history of where the pointer
traveled. However, this historical information is highly excessive for most applications.

To determine the approximate maximum number of elements in the motion buffer, useXDisplay-
MotionBufferSize.

unsigned long XDisplayMotionBufferSize (display)
Display *display;

display Specifies the connection to the X server.

The server may retain the recent history of the pointer motion and do so to a finer granularity than
is reported byMotionNotify ev ents. TheXGetMotionEvents function makes this history avail-
able.

To get the motion history for a specified window and time, useXGetMotionEvents.

XTimeCoord *XGetMotionEvents (display, w, start, stop, nevents_return)
Display *display;
Windoww;
Timestart, stop;
int *nevents_return;

display Specifies the connection to the X server.

w Specifies the window.

start
stop Specify the time interval in which the events are returned from the motion history

buffer. You can pass a timestamp orCurrentTime .

nevents_returnReturns the number of events from the motion history buffer.

The XGetMotionEvents function returns all events in the motion history buffer that fall between
the specified start and stop times, inclusive, and that have coordinates that lie within the specified
window (including its borders) at its present placement. If the server does not support motion his-
tory, if the start time is later than the stop time, or if the start time is in the future, no events are
returned;XGetMotionEvents returns NULL. If the stop time is in the future, it is equivalent to

223

Xlib − C Library libX11 1.3.2

specifyingCurrentTime . The return type for this function is a structure defined as follows:

typedef struct {
Time time;
short x, y;

} X TimeCoord;

The time member is set to the time, in milliseconds. The x and y members are set to the coordi-
nates of the pointer and are reported relative to the origin of the specified window. To free the
data returned from this call, useXFree.

XGetMotionEvents can generate aBadWindow error.

11.8. HandlingProtocol Errors
Xlib provides functions that you can use to enable or disable synchronization and to use the
default error handlers.

11.8.1. Enablingor Disabling Synchronization
When debugging X applications, it often is very convenient to require Xlib to behave syn-
chronously so that errors are reported as they occur. The following function lets you disable or
enable synchronous behavior. Note that graphics may occur 30 or more times more slowly when
synchronization is enabled. On POSIX-conformant systems, there is also a global variable_Xde-
bug that, if set to nonzero before starting a program under a debugger, will force synchronous
library behavior.

After completing their work, all Xlib functions that generate protocol requests call what is known
as an after function.XSetAfterFunction sets which function is to be called.

int (*XSetAfterFunction(display, procedure))()
Display *display;
int (* procedure)();

display Specifies the connection to the X server.

procedure Specifies the procedure to be called.

The specified procedure is called with only a display pointer.XSetAfterFunction returns the
previous after function.

To enable or disable synchronization, useXSynchronize.

int (*XSynchronize(display, onoff))()
Display *display;
Bool onoff;

display Specifies the connection to the X server.

onoff Specifies a Boolean value that indicates whether to enable or disable synchro-
nization.

The XSynchronize function returns the previous after function. If onoff is Tr ue, XSynchronize
turns on synchronous behavior. If onoff is False, XSynchronize turns off synchronous behavior.

224

Xlib − C Library libX11 1.3.2

11.8.2. Usingthe Default Error Handlers
There are two default error handlers in Xlib: one to handle typically fatal conditions (for example,
the connection to a display server dying because a machine crashed) and one to handle protocol
errors from the X server. These error handlers can be changed to user-supplied routines if you
prefer your own error handling and can be changed as often as you like. If either function is
passed a NULL pointer, it will reinvoke the default handler. The action of the default handlers is
to print an explanatory message and exit.

To set the error handler, useXSetErrorHandler .

int (*XSetErrorHandler(handler))()
int (* handler)(Display *, XErrorEvent *)

handler Specifies the program’s supplied error handler.

Xlib generally calls the program’s supplied error handler whenever an error is received. It is not
called onBadNameerrors fromOpenFont, LookupColor , or AllocNamedColor protocol
requests or onBadFont errors from aQueryFont protocol request. These errors generally are
reflected back to the program through the procedural interface. Becausethis condition is not
assumed to be fatal, it is acceptable for your error handler to return; the returned value is ignored.
However, the error handler should not call any functions (directly or indirectly) on the display that
will generate protocol requests or that will look for input events. Theprevious error handler is
returned.

The XErrorEvent structure contains:

typedef struct {
int type;
Display *display; /* Display the event was read from */
unsigned long serial; /* serial number of failed request */
unsigned char error_code; /* error code of failed request */
unsigned char request_code; /* Major op-code of failed request */
unsigned char minor_code; /* Minor op-code of failed request */
XID resourceid; /* resource id */

} X ErrorEvent;

The serial member is the number of requests, starting from one, sent over the network connection
since it was opened. It is the number that was the value ofNextRequestimmediately before the
failing call was made. The request_code member is a protocol request of the procedure that
failed, as defined in <X11/Xproto.h>. Thefollowing error codes can be returned by the func-
tions described in this chapter:

Error Code Description

225

Xlib − C Library libX11 1.3.2

Error Code Description

BadAccess A client attempts to grab a key/button combination already
grabbed by another client.
A client attempts to free a colormap entry that it had not already
allocated or to free an entry in a colormap that was created with
all entries writable.
A client attempts to store into a read-only or unallocated col-
ormap entry.
A client attempts to modify the access control list from other
than the local (or otherwise authorized) host.
A client attempts to select an event type that another client has
already selected.

BadAlloc The server fails to allocate the requested resource. Note that the
explicit listing of BadAlloc errors in requests only covers alloca-
tion errors at a very coarse level and is not intended to (nor can it
in practice hope to) cover all cases of a server running out of
allocation space in the middle of service. The semantics when a
server runs out of allocation space are left unspecified, but a
server may generate aBadAlloc error on any request for this
reason, and clients should be prepared to receive such errors and
handle or discard them.

BadAtom A value for an atom argument does not name a defined atom.
BadColor A value for a colormap argument does not name a defined col-

ormap.
BadCursor A value for a cursor argument does not name a defined cursor.
BadDrawable A value for a drawable argument does not name a defined win-

dow or pixmap.
BadFont A value for a font argument does not name a defined font (or, in

some cases,GContext).
BadGC A value for aGContext argument does not name a defined

GContext.
BadIDChoice The value chosen for a resource identifier either is not included

in the range assigned to the client or is already in use. Under
normal circumstances, this cannot occur and should be consid-
ered a server or Xlib error.

BadImplementation The server does not implement some aspect of the request. A
server that generates this error for a core request is deficient. As
such, this error is not listed for any of the requests, but clients
should be prepared to receive such errors and handle or discard
them.

BadLength The length of a request is shorter or longer than that required to
contain the arguments. Thisis an internal Xlib or server error.
The length of a request exceeds the maximum length accepted by
the server.

226

Xlib − C Library libX11 1.3.2

Error Code Description

BadMatch In a graphics request, the root and depth of the graphics context
do not match those of the drawable.
An InputOnly window is used as a drawable.
Some argument or pair of arguments has the correct type and
range, but it fails to match in some other way required by the
request.
An InputOnly window lacks this attribute.

BadName A font or color of the specified name does not exist.
BadPixmap A value for a pixmap argument does not name a defined pixmap.
BadRequest The major or minor opcode does not specify a valid request.

This usually is an Xlib or server error.
BadValue Some numeric value falls outside of the range of values accepted

by the request. Unless a specific range is specified for an argu-
ment, the full range defined by the argument’s type is accepted.
Any argument defined as a set of alternatives typically can gener-
ate this error (due to the encoding).

BadWindow A value for a window argument does not name a defined win-
dow.

Note

The BadAtom, BadColor, BadCursor, BadDrawable, BadFont, BadGC, Bad-
Pixmap, and BadWindow errors are also used when the argument type is extended
by a set of fixed alternatives.

To obtain textual descriptions of the specified error code, useXGetErrorText .

XGetErrorText(display, code, buffer_return, length)
Display *display;
int code;
char *buffer_return;
int length;

display Specifies the connection to the X server.

code Specifies the error code for which you want to obtain a description.

buffer_return Returns the error description.

length Specifies the size of the buffer.

The XGetErrorText function copies a null-terminated string describing the specified error code
into the specified buffer. The returned text is in the encoding of the current locale. It is recom-
mended that you use this function to obtain an error description because extensions to Xlib may
define their own error codes and error strings.

To obtain error messages from the error database, useXGetErrorDatabaseText.

227

Xlib − C Library libX11 1.3.2

XGetErrorDatabaseText(display, name, message, default_string, buffer_return, length)
Display *display;
char *name, *message;
char *default_string;
char *buffer_return;
int length;

display Specifies the connection to the X server.

name Specifies the name of the application.

message Specifies the type of the error message.

default_string Specifies the default error message if none is found in the database.

buffer_return Returns the error description.

length Specifies the size of the buffer.

The XGetErrorDatabaseText function returns a null-terminated message (or the default mes-
sage) from the error message database. Xlib uses this function internally to look up its error mes-
sages. Thetext in the default_string argument is assumed to be in the encoding of the current
locale, and the text stored in the buffer_return argument is in the encoding of the current locale.

The name argument should generally be the name of your application. The message argument
should indicate which type of error message you want. If the name and message are not in the
Host Portable Character Encoding, the result is implementation-dependent. Xlib uses three pre-
defined ‘‘application names’’ to report errors. In these names, uppercase and lowercase matter.

XProtoError Theprotocol error number is used as a string for the message argument.

XlibMessage Theseare the message strings that are used internally by the library.

XRequest For a core protocol request, the major request protocol number is used for the
message argument. For an extension request, the extension name (as given by
InitExtension) followed by a period (.) and the minor request protocol number is
used for the message argument. Ifno string is found in the error database, the
default_string is returned to the buffer argument.

To report an error to the user when the requested display does not exist, useXDisplayName.

char *XDisplayName(string)
char *string;

string Specifies the character string.

The XDisplayName function returns the name of the display thatXOpenDisplay would attempt
to use. If a NULL string is specified,XDisplayName looks in the environment for the display
and returns the display name thatXOpenDisplay would attempt to use. This makes it easier to
report to the user precisely which display the program attempted to open when the initial connec-
tion attempt failed.

To handle fatal I/O errors, useXSetIOErrorHandler .

228

Xlib − C Library libX11 1.3.2

int (*XSetIOErrorHandler(handler))()
int (* handler)(Display *);

handler Specifies the program’s supplied error handler.

The XSetIOErrorHandler sets the fatal I/O error handler. Xlib calls the program’s supplied
error handler if any sort of system call error occurs (for example, the connection to the server was
lost). Thisis assumed to be a fatal condition, and the called routine should not return. If the I/O
error handler does return, the client process exits.

Note that the previous error handler is returned.

229

Xlib − C Library libX11 1.3.2

Chapter 12

Input Device Functions

You can use the Xlib input device functions to:

• Grab the pointer and individual buttons on the pointer

• Grab the keyboard and individual keys on the keyboard

• Resume event processing

• Move the pointer

• Set the input focus

• Manipulate the keyboard and pointer settings

• Manipulate the keyboard encoding

12.1. Pointer Grabbing
Xlib provides functions that you can use to control input from the pointer, which usually is a
mouse. Usually, as soon as keyboard and mouse events occur, the X server delivers them to the
appropriate client, which is determined by the window and input focus. The X server provides
sufficient control over event delivery to allow window managers to support mouse ahead and vari-
ous other styles of user interface. Many of these user interfaces depend on synchronous delivery
of events. Thedelivery of pointer and keyboard events can be controlled independently.

When mouse buttons or keyboard keys are grabbed, events will be sent to the grabbing client
rather than the normal client who would have received the event. If the keyboard or pointer is in
asynchronous mode, further mouse and keyboard events will continue to be processed. If the
keyboard or pointer is in synchronous mode, no further events are processed until the grabbing
client allows them (seeXAllowEvents). Thekeyboard or pointer is considered frozen during
this interval. Theev ent that triggered the grab can also be replayed.

Note that the logical state of a device (as seen by client applications) may lag the physical state if
device event processing is frozen.

There are two kinds of grabs: active and passive. An active grab occurs when a single client
grabs the keyboard and/or pointer explicitly (seeXGrabPointer andXGrabKeyboard). A pas-
sive grab occurs when clients grab a particular keyboard key or pointer button in a window, and
the grab will activate when the key or button is actually pressed.Passive grabs are convenient for
implementing reliable pop-up menus.For example, you can guarantee that the pop-up is mapped
before the up pointer button event occurs by grabbing a button requesting synchronous behavior.
The down event will trigger the grab and freeze further processing of pointer events until you
have the chance to map the pop-up window. You can then allow further event processing. The up
ev ent will then be correctly processed relative to the pop-up window.

For many operations, there are functions that take a time argument. TheX server includes a time-
stamp in various events. Onespecial time, calledCurrentTime , represents the current server
time. TheX server maintains the time when the input focus was last changed, when the keyboard
was last grabbed, when the pointer was last grabbed, or when a selection was last changed.Your
application may be slow reacting to an event. You often need some way to specify that your
request should not occur if another application has in the meanwhile taken control of the
keyboard, pointer, or selection. Byproviding the timestamp from the event in the request, you
can arrange that the operation not take effect if someone else has performed an operation in the
meanwhile.

230

Xlib − C Library libX11 1.3.2

A timestamp is a time value, expressed in milliseconds. It typically is the time since the last
server reset.Timestamp values wrap around (after about 49.7 days). The server, giv en its current
time is represented by timestamp T, always interprets timestamps from clients by treating half of
the timestamp space as being later in time than T. One timestamp value, namedCurrentTime , is
never generated by the server. This value is reserved for use in requests to represent the current
server time.

For many functions in this section, you pass pointer event mask bits. The valid pointer event
mask bits are:ButtonPressMask, ButtonReleaseMask, EnterWindowMask , LeaveWindow-
Mask, PointerMotionMask , PointerMotionHintMask , Button1MotionMask , But-
ton2MotionMask , Button3MotionMask , Button4MotionMask , Button5MotionMask , But-
tonMotionMask , and KeyMapStateMask. For other functions in this section, you pass
keymask bits. The valid keymask bits are:ShiftMask , LockMask , ControlMask , Mod1Mask,
Mod2Mask, Mod3Mask, Mod4Mask, and Mod5Mask.

To grab the pointer, useXGrabPointer .

int XGrabPointer(display, grab_window, owner_events, event_mask, pointer_mode,
keyboard_mode, confine_to, cursor, time)

Display *display;
Windowgrab_window;
Bool owner_events;
unsigned intevent_mask;
int pointer_mode, keyboard_mode;
Windowconfine_to;
Cursorcursor;
Timetime;

display Specifies the connection to the X server.

grab_window Specifies the grab window.

owner_events Specifies a Boolean value that indicates whether the pointer events are to be re-
ported as usual or reported with respect to the grab window if selected by the
ev ent mask.

event_mask Specifies which pointer events are reported to the client. The mask is the bitwise
inclusive OR of the valid pointer event mask bits.

pointer_mode Specifies further processing of pointer events. You can passGrabModeSync or
GrabModeAsync.

keyboard_modeSpecifies further processing of keyboard events. You can passGrabModeSync
or GrabModeAsync.

confine_to Specifies the window to confine the pointer in orNone.

cursor Specifies the cursor that is to be displayed during the grab orNone.

time Specifies the time.You can pass either a timestamp orCurrentTime .

The XGrabPointer function actively grabs control of the pointer and returnsGrabSuccessif the
grab was successful. Further pointer events are reported only to the grabbing client.XGrab-
Pointer overrides any active pointer grab by this client. If owner_events isFalse, all generated
pointer events are reported with respect to grab_window and are reported only if selected by
ev ent_mask. Ifowner_events isTr ue and if a generated pointer event would normally be
reported to this client, it is reported as usual. Otherwise, the event is reported with respect to the
grab_window and is reported only if selected by event_mask. For either value of owner_events,
unreported events are discarded.

231

Xlib − C Library libX11 1.3.2

If the pointer_mode isGrabModeAsync, pointer event processing continues as usual. If the
pointer is currently frozen by this client, the processing of events for the pointer is resumed. If
the pointer_mode isGrabModeSync, the state of the pointer, as seen by client applications,
appears to freeze, and the X server generates no further pointer events until the grabbing client
calls XAllowEvents or until the pointer grab is released. Actual pointer changes are not lost
while the pointer is frozen; they are simply queued in the server for later processing.

If the keyboard_mode isGrabModeAsync, keyboard event processing is unaffected by acti-
vation of the grab. If the keyboard_mode isGrabModeSync, the state of the keyboard, as seen
by client applications, appears to freeze, and the X server generates no further keyboard events
until the grabbing client callsXAllowEvents or until the pointer grab is released. Actual
keyboard changes are not lost while the pointer is frozen; they are simply queued in the server for
later processing.

If a cursor is specified, it is displayed regardless of what window the pointer is in. IfNone is
specified, the normal cursor for that window is displayed when the pointer is in grab_window or
one of its subwindows; otherwise, the cursor for grab_window is displayed.

If a confine_to window is specified, the pointer is restricted to stay contained in that window. The
confine_to window need have no relationship to the grab_window. If the pointer is not initially in
the confine_to window, it is warped automatically to the closest edge just before the grab activates
and enter/leave events are generated as usual. If the confine_to window is subsequently reconfig-
ured, the pointer is warped automatically, as necessary, to keep it contained in the window.

The time argument allows you to avoid certain circumstances that come up if applications take a
long time to respond or if there are long network delays. Consider a situation where you have
two applications, both of which normally grab the pointer when clicked on. If both applications
specify the timestamp from the event, the second application may wake up faster and successfully
grab the pointer before the first application. The first application then will get an indication that
the other application grabbed the pointer before its request was processed.

XGrabPointer generatesEnterNotify andLeaveNotify ev ents.

Either if grab_window or confine_to window is not viewable or if the confine_to window lies
completely outside the boundaries of the root window, XGrabPointer fails and returnsGrab-
NotViewable. If the pointer is actively grabbed by some other client, it fails and returns
AlreadyGrabbed. If the pointer is frozen by an active grab of another client, it fails and returns
GrabFrozen. If the specified time is earlier than the last-pointer-grab time or later than the cur-
rent X server time, it fails and returnsGrabInvalidTime . Otherwise, the last-pointer-grab time
is set to the specified time (CurrentTime is replaced by the current X server time).

XGrabPointer can generateBadCursor, BadValue, and BadWindow errors.

To ungrab the pointer, useXUngrabPointer .

XUngrabPointer (display, time)
Display *display;
Timetime;

display Specifies the connection to the X server.

time Specifies the time.You can pass either a timestamp orCurrentTime .

The XUngrabPointer function releases the pointer and any queued events if this client has
actively grabbed the pointer fromXGrabPointer , XGrabButton , or from a normal button press.
XUngrabPointer does not release the pointer if the specified time is earlier than the last-pointer-
grab time or is later than the current X server time. It also generatesEnterNotify andLeaveNo-
tify ev ents. TheX server performs anUngrabPointer request automatically if the event window
or confine_to window for an active pointer grab becomes not viewable or if window reconfigura-
tion causes the confine_to window to lie completely outside the boundaries of the root window.

232

Xlib − C Library libX11 1.3.2

To change an active pointer grab, useXChangeActivePointerGrab .

XChangeActivePointerGrab (display, event_mask, cursor, time)
Display *display;
unsigned intevent_mask;
Cursorcursor;
Timetime;

display Specifies the connection to the X server.

event_mask Specifies which pointer events are reported to the client.The mask is the bitwise
inclusive OR of the valid pointer event mask bits.

cursor Specifies the cursor that is to be displayed orNone.

time Specifies the time.You can pass either a timestamp orCurrentTime .

The XChangeActivePointerGrab function changes the specified dynamic parameters if the
pointer is actively grabbed by the client and if the specified time is no earlier than the last-pointer-
grab time and no later than the current X server time. This function has no effect on the passive
parameters of anXGrabButton . The interpretation of event_mask and cursor is the same as
described inXGrabPointer .

XChangeActivePointerGrab can generateBadCursor andBadValue errors.

To grab a pointer button, useXGrabButton .

233

Xlib − C Library libX11 1.3.2

XGrabButton (display, button, modifiers, grab_window, owner_events, event_mask,
pointer_mode, keyboard_mode, confine_to, cursor)

Display *display;
unsigned intbutton;
unsigned intmodifiers;
Windowgrab_window;
Bool owner_events;
unsigned intevent_mask;
int pointer_mode, keyboard_mode;
Windowconfine_to;
Cursorcursor;

display Specifies the connection to the X server.

button Specifies the pointer button that is to be grabbed orAnyButton .

modifiers Specifies the set of keymasks orAnyModifier . The mask is the bitwise inclusive
OR of the valid keymask bits.

grab_window Specifies the grab window.

owner_events Specifies a Boolean value that indicates whether the pointer events are to be re-
ported as usual or reported with respect to the grab window if selected by the
ev ent mask.

event_mask Specifies which pointer events are reported to the client.The mask is the bitwise
inclusive OR of the valid pointer event mask bits.

pointer_mode Specifies further processing of pointer events. You can passGrabModeSync or
GrabModeAsync.

keyboard_modeSpecifies further processing of keyboard events. You can passGrabModeSync
or GrabModeAsync.

confine_to Specifies the window to confine the pointer in orNone.

cursor Specifies the cursor that is to be displayed orNone.

The XGrabButton function establishes a passive grab. In the future, the pointer is actively
grabbed (as forXGrabPointer), the last-pointer-grab time is set to the time at which the button
was pressed (as transmitted in theButtonPressev ent), and theButtonPressev ent is reported if
all of the following conditions are true:

• The pointer is not grabbed, and the specified button is logically pressed when the specified
modifier keys are logically down, and no other buttons or modifier keys are logically down.

• The grab_window contains the pointer.

• The confine_to window (if any) is viewable.

• A passive grab on the same button/key combination does not exist on any ancestor of
grab_window.

The interpretation of the remaining arguments is as forXGrabPointer . The active grab is termi-
nated automatically when the logical state of the pointer has all buttons released (independent of
the state of the logical modifier keys).

Note that the logical state of a device (as seen by client applications) may lag the physical state if
device event processing is frozen.

This request overrides all previous grabs by the same client on the same button/key combinations
on the same window. A modifiers ofAnyModifier is equivalent to issuing the grab request for
all possible modifier combinations (including the combination of no modifiers). It is not required
that all modifiers specified have currently assigned KeyCodes. Abutton of AnyButton is

234

Xlib − C Library libX11 1.3.2

equivalent to issuing the request for all possible buttons. Otherwise,it is not required that the
specified button currently be assigned to a physical button.

If some other client has already issued anXGrabButton with the same button/key combination
on the same window, a BadAccesserror results. When usingAnyModifier or AnyButton , the
request fails completely, and aBadAccesserror results (no grabs are established) if there is a
conflicting grab for any combination. XGrabButton has no effect on an active grab.

XGrabButton can generateBadCursor, BadValue, and BadWindow errors.

To ungrab a pointer button, useXUngrabButton .

XUngrabButton (display, button, modifiers, grab_window)
Display *display;
unsigned intbutton;
unsigned intmodifiers;
Windowgrab_window;

display Specifies the connection to the X server.

button Specifies the pointer button that is to be released orAnyButton .

modifiers Specifies the set of keymasks orAnyModifier . The mask is the bitwise inclusive
OR of the valid keymask bits.

grab_window Specifies the grab window.

The XUngrabButton function releases the passive button/key combination on the specified win-
dow if it w as grabbed by this client.A modifiers ofAnyModifier is equivalent to issuing the
ungrab request for all possible modifier combinations, including the combination of no modifiers.
A button ofAnyButton is equivalent to issuing the request for all possible buttons.XUngrab-
Button has no effect on an active grab.

XUngrabButton can generateBadValue andBadWindow errors.

12.2. Keyboard Grabbing
Xlib provides functions that you can use to grab or ungrab the keyboard as well as allow events.

For many functions in this section, you pass keymask bits. The valid keymask bits are:Shift-
Mask, LockMask , ControlMask , Mod1Mask, Mod2Mask, Mod3Mask, Mod4Mask, and
Mod5Mask.

To grab the keyboard, useXGrabKeyboard .

235

Xlib − C Library libX11 1.3.2

int XGrabKeyboard (display, grab_window, owner_events, pointer_mode, keyboard_mode, time)
Display *display;
Windowgrab_window;
Bool owner_events;
int pointer_mode, keyboard_mode;
Timetime;

display Specifies the connection to the X server.

grab_window Specifies the grab window.

owner_events Specifies a Boolean value that indicates whether the keyboard events are to be re-
ported as usual.

pointer_mode Specifies further processing of pointer events. You can passGrabModeSync or
GrabModeAsync.

keyboard_modeSpecifies further processing of keyboard events. You can passGrabModeSync
or GrabModeAsync.

time Specifies the time.You can pass either a timestamp orCurrentTime .

The XGrabKeyboard function actively grabs control of the keyboard and generatesFocusIn
andFocusOut ev ents. Furtherkey events are reported only to the grabbing client.XGrabKey-
board overrides any active keyboard grab by this client. If owner_events isFalse, all generated
key events are reported with respect to grab_window. If owner_events isTr ue and if a generated
key event would normally be reported to this client, it is reported normally; otherwise, the event is
reported with respect to the grab_window. Both KeyPressandKeyReleaseev ents are always
reported, independent of any event selection made by the client.

If the keyboard_mode argument isGrabModeAsync, keyboard event processing continues as
usual. Ifthe keyboard is currently frozen by this client, then processing of keyboard events is
resumed. Ifthe keyboard_mode argument isGrabModeSync, the state of the keyboard (as seen
by client applications) appears to freeze, and the X server generates no further keyboard events
until the grabbing client issues a releasingXAllowEvents call or until the keyboard grab is
released. Actualkeyboard changes are not lost while the keyboard is frozen; they are simply
queued in the server for later processing.

If pointer_mode isGrabModeAsync, pointer event processing is unaffected by activation of the
grab. If pointer_mode isGrabModeSync, the state of the pointer (as seen by client applications)
appears to freeze, and the X server generates no further pointer events until the grabbing client
issues a releasingXAllowEvents call or until the keyboard grab is released. Actual pointer
changes are not lost while the pointer is frozen; they are simply queued in the server for later pro-
cessing.

If the keyboard is actively grabbed by some other client,XGrabKeyboard fails and returns
AlreadyGrabbed. If grab_window is not viewable, it fails and returnsGrabNotViewable. If
the keyboard is frozen by an active grab of another client, it fails and returnsGrabFrozen. If the
specified time is earlier than the last-keyboard-grab time or later than the current X server time, it
fails and returnsGrabInvalidTime . Otherwise, the last-keyboard-grab time is set to the speci-
fied time (CurrentTime is replaced by the current X server time).

XGrabKeyboard can generateBadValue andBadWindow errors.

To ungrab the keyboard, useXUngrabKeyboard .

236

Xlib − C Library libX11 1.3.2

XUngrabKeyboard (display, time)
Display *display;
Timetime;

display Specifies the connection to the X server.

time Specifies the time.You can pass either a timestamp orCurrentTime .

The XUngrabKeyboard function releases the keyboard and any queued events if this client has
it actively grabbed from eitherXGrabKeyboard or XGrabKey . XUngrabKeyboard does not
release the keyboard and any queued events if the specified time is earlier than the last-keyboard-
grab time or is later than the current X server time. It also generatesFocusIn andFocusOut
ev ents. TheX server automatically performs anUngrabKeyboard request if the event window
for an active keyboard grab becomes not viewable.

To passively grab a single key of the keyboard, useXGrabKey .

XGrabKey (display, keycode, modifiers, grab_window, owner_events, pointer_mode,
keyboard_mode)

Display *display;
int keycode;
unsigned intmodifiers;
Windowgrab_window;
Bool owner_events;
int pointer_mode, keyboard_mode;

display Specifies the connection to the X server.

keycode Specifies the KeyCode orAnyKey .

modifiers Specifies the set of keymasks orAnyModifier . The mask is the bitwise inclusive
OR of the valid keymask bits.

grab_window Specifies the grab window.

owner_events Specifies a Boolean value that indicates whether the keyboard events are to be re-
ported as usual.

pointer_mode Specifies further processing of pointer events. You can passGrabModeSync or
GrabModeAsync.

keyboard_modeSpecifies further processing of keyboard events. You can passGrabModeSync
or GrabModeAsync.

The XGrabKey function establishes a passive grab on the keyboard. Inthe future, the keyboard
is actively grabbed (as forXGrabKeyboard), the last-keyboard-grab time is set to the time at
which the key was pressed (as transmitted in theKeyPressev ent), and theKeyPressev ent is
reported if all of the following conditions are true:

• The keyboard is not grabbed and the specified key (which can itself be a modifier key) is
logically pressed when the specified modifier keys are logically down, and no other modi-
fier keys are logically down.

• Either the grab_window is an ancestor of (or is) the focus window, or the grab_window is a
descendant of the focus window and contains the pointer.

• A passive grab on the same key combination does not exist on any ancestor of grab_win-
dow.

237

Xlib − C Library libX11 1.3.2

The interpretation of the remaining arguments is as forXGrabKeyboard . The active grab is ter-
minated automatically when the logical state of the keyboard has the specified key released (inde-
pendent of the logical state of the modifier keys).

Note that the logical state of a device (as seen by client applications) may lag the physical state if
device event processing is frozen.

A modifiers argument ofAnyModifier is equivalent to issuing the request for all possible modi-
fier combinations (including the combination of no modifiers). It is not required that all modifiers
specified have currently assigned KeyCodes. Akeycode argument ofAnyKey is equivalent to
issuing the request for all possible KeyCodes. Otherwise,the specified keycode must be in the
range specified by min_keycode and max_keycode in the connection setup, or aBadValue error
results.

If some other client has issued aXGrabKey with the same key combination on the same win-
dow, a BadAccesserror results. When usingAnyModifier or AnyKey , the request fails com-
pletely, and aBadAccesserror results (no grabs are established) if there is a conflicting grab for
any combination.

XGrabKey can generateBadAccess, BadValue, and BadWindow errors.

To ungrab a key, useXUngrabKey .

XUngrabKey (display, keycode, modifiers, grab_window)
Display *display;
int keycode;
unsigned intmodifiers;
Windowgrab_window;

display Specifies the connection to the X server.

keycode Specifies the KeyCode orAnyKey .

modifiers Specifies the set of keymasks orAnyModifier . The mask is the bitwise inclusive
OR of the valid keymask bits.

grab_window Specifies the grab window.

The XUngrabKey function releases the key combination on the specified window if it w as
grabbed by this client. It has no effect on an active grab. A modifiers ofAnyModifier is equiv-
alent to issuing the request for all possible modifier combinations (including the combination of
no modifiers).A keycode argument ofAnyKey is equivalent to issuing the request for all possi-
ble key codes.

XUngrabKey can generateBadValue andBadWindow errors.

12.3. ResumingEvent Processing
The previous sections discussed grab mechanisms with which processing of events by the server
can be temporarily suspended. This section describes the mechanism for resuming event process-
ing.

To allow further events to be processed when the device has been frozen, useXAllowEvents.

238

Xlib − C Library libX11 1.3.2

XAllowEvents (display, event_mode, time)
Display *display;
int event_mode;
Timetime;

display Specifies the connection to the X server.

event_mode Specifies the event mode. You can passAsyncPointer, SyncPointer, AsyncK-
eyboard, SyncKeyboard, ReplayPointer, ReplayKeyboard, AsyncBoth, or
SyncBoth.

time Specifies the time.You can pass either a timestamp orCurrentTime .

The XAllowEvents function releases some queued events if the client has caused a device to
freeze. Ithas no effect if the specified time is earlier than the last-grab time of the most recent
active grab for the client or if the specified time is later than the current X server time. Depending
on the event_mode argument, the following occurs:

AsyncPointer If the pointer is frozen by the client, pointer event processing continues
as usual. If the pointer is frozen twice by the client on behalf of two sep-
arate grabs,AsyncPointer thaws for both.AsyncPointer has no effect
if the pointer is not frozen by the client, but the pointer need not be
grabbed by the client.

SyncPointer If the pointer is frozen and actively grabbed by the client, pointer event
processing continues as usual until the nextButtonPressor ButtonRe-
leaseev ent is reported to the client. At this time, the pointer again
appears to freeze. However, if the reported event causes the pointer grab
to be released, the pointer does not freeze.SyncPointer has no effect if
the pointer is not frozen by the client or if the pointer is not grabbed by
the client.

ReplayPointer If the pointer is actively grabbed by the client and is frozen as the result
of an event having been sent to the client (either from the activation of an
XGrabButton or from a previousXAllowEvents with modeSync-
Pointer but not from anXGrabPointer), the pointer grab is released
and that event is completely reprocessed. This time, however, the func-
tion ignores any passive grabs at or above (toward the root of) the
grab_window of the grab just released. The request has no effect if the
pointer is not grabbed by the client or if the pointer is not frozen as the
result of an event.

AsyncKeyboard If the keyboard is frozen by the client, keyboard event processing contin-
ues as usual. If the keyboard is frozen twice by the client on behalf of
two separate grabs,AsyncKeyboard thaws for both.AsyncKeyboard
has no effect if the keyboard is not frozen by the client, but the keyboard
need not be grabbed by the client.

SyncKeyboard If the keyboard is frozen and actively grabbed by the client, keyboard
ev ent processing continues as usual until the nextKeyPressor KeyRe-
leaseev ent is reported to the client. At this time, the keyboard again
appears to freeze. However, if the reported event causes the keyboard
grab to be released, the keyboard does not freeze.SyncKeyboard has
no effect if the keyboard is not frozen by the client or if the keyboard is
not grabbed by the client.

239

Xlib − C Library libX11 1.3.2

ReplayKeyboard If the keyboard is actively grabbed by the client and is frozen as the
result of an event having been sent to the client (either from the acti-
vation of anXGrabKey or from a previousXAllowEvents with mode
SyncKeyboard but not from anXGrabKeyboard), the keyboard grab
is released and that event is completely reprocessed. This time, however,
the function ignores any passive grabs at or above (toward the root of)
the grab_window of the grab just released. The request has no effect if
the keyboard is not grabbed by the client or if the keyboard is not frozen
as the result of an event.

SyncBoth If both pointer and keyboard are frozen by the client, event processing
for both devices continues as usual until the nextButtonPress, Button-
Release, KeyPress, or KeyReleaseev ent is reported to the client for a
grabbed device (button event for the pointer, key event for the keyboard),
at which time the devices again appear to freeze. However, if the
reported event causes the grab to be released, then the devices do not
freeze (but if the other device is still grabbed, then a subsequent event for
it will still cause both devices to freeze).SyncBoth has no effect unless
both pointer and keyboard are frozen by the client. If the pointer or
keyboard is frozen twice by the client on behalf of two separate grabs,
SyncBoth thaws for both (but a subsequent freeze forSyncBoth will
only freeze each device once).

AsyncBoth If the pointer and the keyboard are frozen by the client, event processing
for both devices continues as usual. If a device is frozen twice by the
client on behalf of two separate grabs,AsyncBoth thaws for both.
AsyncBoth has no effect unless both pointer and keyboard are frozen by
the client.

AsyncPointer, SyncPointer, and ReplayPointer have no effect on the processing of keyboard
ev ents. AsyncKeyboard, SyncKeyboard, and ReplayKeyboard have no effect on the process-
ing of pointer events. It is possible for both a pointer grab and a keyboard grab (by the same or
different clients) to be active simultaneously. If a device is frozen on behalf of either grab, no
ev ent processing is performed for the device. It is possible for a single device to be frozen
because of both grabs. In this case, the freeze must be released on behalf of both grabs before
ev ents can again be processed. If a device is frozen twice by a single client, then a singleAllow-
Events releases both.

XAllowEvents can generate aBadValue error.

12.4. Moving the Pointer
Although movement of the pointer normally should be left to the control of the end user, some-
times it is necessary to move the pointer to a new position under program control.

To move the pointer to an arbitrary point in a window, useXWarpPointer .

240

Xlib − C Library libX11 1.3.2

XWarpPointer (display, src_w, dest_w, src_x, src_y, src_width, src_height, dest_x,
dest_y)

Display *display;
Windowsrc_w, dest_w;
int src_x, src_y;
unsigned intsrc_width, src_height;
int dest_x, dest_y;

display Specifies the connection to the X server.

src_w Specifies the source window or None.

dest_w Specifies the destination window or None.

src_x
src_y
src_width
src_height Specify a rectangle in the source window.

dest_x
dest_y Specify the x and y coordinates within the destination window.

If dest_w isNone, XWarpPointer moves the pointer by the offsets (dest_x, dest_y) relative to
the current position of the pointer. If dest_w is a window, XWarpPointer moves the pointer to
the offsets (dest_x, dest_y) relative to the origin of dest_w. Howev er, if src_w is a window, the
move only takes place if the window src_w contains the pointer and if the specified rectangle of
src_w contains the pointer.

The src_x and src_y coordinates are relative to the origin of src_w. If src_height is zero, it is
replaced with the current height of src_w minus src_y. If src_width is zero, it is replaced with the
current width of src_w minus src_x.

There is seldom any reason for calling this function. The pointer should normally be left to the
user. If you do use this function, however, it generates events just as if the user had instanta-
neously moved the pointer from one position to another. Note that you cannot useXWarp-
Pointer to move the pointer outside the confine_to window of an active pointer grab. An attempt
to do so will only move the pointer as far as the closest edge of the confine_to window.

XWarpPointer can generate aBadWindow error.

12.5. Controlling Input Focus
Xlib provides functions that you can use to set and get the input focus. The input focus is a
shared resource, and cooperation among clients is required for correct interaction. See theInter-
Client Communication Conventions Manualfor input focus policy.

To set the input focus, useXSetInputFocus.

241

Xlib − C Library libX11 1.3.2

XSetInputFocus (display, focus, re vert_to, time)
Display *display;
Windowfocus;
int re vert_to;
Timetime;

display Specifies the connection to the X server.

focus Specifies the window, PointerRoot , or None.

re vert_to Specifies where the input focus reverts to if the window becomes not viewable.
You can passRevertToParent , RevertToPointerRoot , or RevertToNone.

time Specifies the time.You can pass either a timestamp orCurrentTime .

The XSetInputFocus function changes the input focus and the last-focus-change time. It has no
effect if the specified time is earlier than the current last-focus-change time or is later than the
current X server time. Otherwise, the last-focus-change time is set to the specified time (Cur-
rentTime is replaced by the current X server time).XSetInputFocus causes the X server to
generateFocusIn andFocusOut ev ents.

Depending on the focus argument, the following occurs:

• If focus isNone, all keyboard events are discarded until a new focus window is set, and the
revert_to argument is ignored.

• If focus is a window, it becomes the keyboard’s focus window. If a generated keyboard
ev ent would normally be reported to this window or one of its inferiors, the event is
reported as usual. Otherwise, the event is reported relative to the focus window.

• If focus isPointerRoot , the focus window is dynamically taken to be the root window of
whatever screen the pointer is on at each keyboard event. In this case, the revert_to argu-
ment is ignored.

The specified focus window must be viewable at the timeXSetInputFocus is called, or aBad-
Match error results. If the focus window later becomes not viewable, the X server evaluates the
revert_to argument to determine the new focus window as follows:

• If rev ert_to isRevertToParent , the focus reverts to the parent (or the closest viewable
ancestor), and the new rev ert_to value is taken to beRevertToNone.

• If rev ert_to isRevertToPointerRoot or RevertToNone, the focus reverts toPointerRoot
or None, respectively. When the focus reverts, the X server generatesFocusIn andFocu-
sOut ev ents, but the last-focus-change time is not affected.

XSetInputFocus can generateBadMatch, BadValue, and BadWindow errors.

To obtain the current input focus, useXGetInputFocus.

XGetInputFocus (display, focus_return, re vert_to_return)
Display *display;
Window * focus_return;
int *re vert_to_return;

display Specifies the connection to the X server.

focus_return Returns the focus window, PointerRoot , or None.

re vert_to_returnReturns the current focus state (RevertToParent , RevertToPointerRoot , or Re-
vertToNone).

The XGetInputFocus function returns the focus window and the current focus state.

242

Xlib − C Library libX11 1.3.2

12.6. Manipulating the Keyboard and Pointer Settings
Xlib provides functions that you can use to change the keyboard control, obtain a list of the auto-
repeat keys, turn keyboard auto-repeat on or off, ring the bell, set or obtain the pointer button or
keyboard mapping, and obtain a bit vector for the keyboard.

This section discusses the user-preference options of bell, key click, pointer behavior, and so on.
The default values for many of these options are server dependent. Not all implementations will
actually be able to control all of these parameters.

The XChangeKeyboardControl function changes control of a keyboard and operates on a
XKeyboardControl structure:

/* Mask bits for ChangeKeyboardControl */

#define KBKeyClickPercent (1L<<0)
#define KBBellPercent (1L<<1)
#define KBBellPitch (1L<<2)
#define KBBellDuration (1L<<3)
#define KBLed (1L<<4)
#define KBLedMode (1L<<5)
#define KBKey (1L<<6)
#define KBAutoRepeatMode (1L<<7)

/* Values */

typedef struct {
int key_click_percent;
int bell_percent;
int bell_pitch;
int bell_duration;
int led;
int led_mode; /* LedModeOn, LedModeOff * /
int key;
int auto_repeat_mode; /* AutoRepeatModeOff, AutoRepeatModeOn,

AutoRepeatModeDefault */
} X Ke yboardControl;

The key_click_percent member sets the volume for key clicks between 0 (off) and 100 (loud)
inclusive, if possible. Asetting of −1 restores the default. Othernegative values generate aBad-
Value error.

The bell_percent sets the base volume for the bell between 0 (off) and 100 (loud) inclusive, if
possible. Asetting of −1 restores the default. Othernegative values generate aBadValue error.
The bell_pitch member sets the pitch (specified in Hz) of the bell, if possible.A setting of −1
restores the default. Othernegative values generate aBadValue error. The bell_duration mem-
ber sets the duration of the bell specified in milliseconds, if possible.A setting of −1 restores the
default. Othernegative values generate aBadValue error.

If both the led_mode and led members are specified, the state of that LED is changed, if possible.
The led_mode member can be set toLedModeOn or LedModeOff . If only led_mode is speci-
fied, the state of all LEDs are changed, if possible. At most 32 LEDs numbered from one are sup-
ported. Nostandard interpretation of LEDs is defined. If led is specified without led_mode, a
BadMatch error results.

If both the auto_repeat_mode and key members are specified, the auto_repeat_mode of that key is
changed (according toAutoRepeatModeOn, AutoRepeatModeOff, or AutoRepeatModeDe-
fault), if possible. If only auto_repeat_mode is specified, the global auto_repeat_mode for the

243

Xlib − C Library libX11 1.3.2

entire keyboard is changed, if possible, and does not affect the per-key settings. Ifa key is speci-
fied without an auto_repeat_mode, aBadMatch error results. Each key has an individual mode
of whether or not it should auto-repeat and a default setting for the mode. In addition, there is a
global mode of whether auto-repeat should be enabled or not and a default setting for that mode.
When global mode isAutoRepeatModeOn, keys should obey their individual auto-repeat
modes. Whenglobal mode isAutoRepeatModeOff, no keys should auto-repeat. An auto-
repeating key generates alternatingKeyPressandKeyReleaseev ents. Whena key is used as a
modifier, it is desirable for the key not to auto-repeat, regardless of its auto-repeat setting.

A bell generator connected with the console but not directly on a keyboard is treated as if it were
part of the keyboard. Theorder in which controls are verified and altered is server-dependent. If
an error is generated, a subset of the controls may have been altered.

XChangeKeyboardControl (display, value_mask, values)
Display *display;
unsigned longvalue_mask;
XKeyboardControl *values;

display Specifies the connection to the X server.

value_mask Specifies which controls to change.This mask is the bitwise inclusive OR of the
valid control mask bits.

values Specifies one value for each bit set to 1 in the mask.

The XChangeKeyboardControl function controls the keyboard characteristics defined by the
XKeyboardControl structure. Thevalue_mask argument specifies which values are to be
changed.

XChangeKeyboardControl can generateBadMatch andBadValue errors.

To obtain the current control values for the keyboard, useXGetKeyboardControl .

XGetKeyboardControl (display, values_return)
Display *display;
XKeyboardState *values_return;

display Specifies the connection to the X server.

values_return Returns the current keyboard controls in the specifiedXKeyboardState struc-
ture.

The XGetKeyboardControl function returns the current control values for the keyboard to the
XKeyboardState structure.

typedef struct {
int key_click_percent;
int bell_percent;
unsigned int bell_pitch, bell_duration;
unsigned long led_mask;
int global_auto_repeat;
char auto_repeats[32];

} X Ke yboardState;

244

Xlib − C Library libX11 1.3.2

For the LEDs, the least significant bit of led_mask corresponds to LED one, and each bit set to 1
in led_mask indicates an LED that is lit. The global_auto_repeat member can be set toAutoRe-
peatModeOn or AutoRepeatModeOff. The auto_repeats member is a bit vector. Each bit set
to 1 indicates that auto-repeat is enabled for the corresponding key. The vector is represented as
32 bytes. Byte N (from 0) contains the bits for keys 8N to 8N + 7 with the least significant bit in
the byte representing key 8N.

To turn on keyboard auto-repeat, useXAutoRepeatOn.

XAutoRepeatOn (display)
Display *display;

display Specifies the connection to the X server.

The XAutoRepeatOn function turns on auto-repeat for the keyboard on the specified display.

To turn off keyboard auto-repeat, useXAutoRepeatOff.

XAutoRepeatOff(display)
Display *display;

display Specifies the connection to the X server.

The XAutoRepeatOff function turns off auto-repeat for the keyboard on the specified display.

To ring the bell, useXBell .

XBell (display, percent)
Display *display;
int percent;

display Specifies the connection to the X server.

percent Specifies the volume for the bell, which can range from −100 to 100 inclusive.

The XBell function rings the bell on the keyboard on the specified display, if possible. Thespeci-
fied volume is relative to the base volume for the keyboard. Ifthe value for the percent argument
is not in the range −100 to 100 inclusive, a BadValue error results. The volume at which the bell
rings when the percent argument is nonnegative is:

base − [(base * percent) / 100] + percent

The volume at which the bell rings when the percent argument is negative is:

base + [(base * percent) / 100]

To change the base volume of the bell, useXChangeKeyboardControl.
XBell can generate aBadValue error.

To obtain a bit vector that describes the state of the keyboard, useXQueryKeymap.

245

Xlib − C Library libX11 1.3.2

XQueryKeymap (display, keys_return)
Display *display;
charkeys_return[32] ;

display Specifies the connection to the X server.

keys_return Returns an array of bytes that identifies which keys are pressed down. Eachbit
represents one key of the keyboard.

The XQueryKeymap function returns a bit vector for the logical state of the keyboard, where
each bit set to 1 indicates that the corresponding key is currently pressed down. Thevector is rep-
resented as 32 bytes. Byte N (from 0) contains the bits for keys 8N to 8N + 7 with the least sig-
nificant bit in the byte representing key 8N.

Note that the logical state of a device (as seen by client applications) may lag the physical state if
device event processing is frozen.

To set the mapping of the pointer buttons, useXSetPointerMapping.

int XSetPointerMapping(display, map, nmap)
Display *display;
unsigned charmap[] ;
int nmap;

display Specifies the connection to the X server.

map Specifies the mapping list.

nmap Specifies the number of items in the mapping list.

The XSetPointerMapping function sets the mapping of the pointer. If it succeeds, the X server
generates aMappingNotify ev ent, andXSetPointerMapping returnsMappingSuccess. Ele-
ment map[i] defines the logical button number for the physical button i+1. The length of the list
must be the same asXGetPointerMapping would return, or aBadValue error results.A zero
element disables a button, and elements are not restricted in value by the number of physical but-
tons. However, no two elements can have the same nonzero value, or aBadValue error results.
If any of the buttons to be altered are logically in the down state,XSetPointerMapping returns
MappingBusy, and the mapping is not changed.

XSetPointerMapping can generate aBadValue error.

To get the pointer mapping, useXGetPointerMapping .

int XGetPointerMapping(display, map_return, nmap)
Display *display;
unsigned charmap_return[] ;
int nmap;

display Specifies the connection to the X server.

map_return Returns the mapping list.

nmap Specifies the number of items in the mapping list.

The XGetPointerMapping function returns the current mapping of the pointer. Pointer buttons
are numbered starting from one.XGetPointerMapping returns the number of physical buttons
actually on the pointer. The nominal mapping for a pointer is map[i]=i+1. The nmap argument

246

Xlib − C Library libX11 1.3.2

specifies the length of the array where the pointer mapping is returned, and only the first nmap
elements are returned in map_return.

To control the pointer’s interactive feel, useXChangePointerControl.

XChangePointerControl (display, do_accel, do_threshold, accel_numerator,
accel_denominator, threshold)

Display *display;
Bool do_accel, do_threshold;
int accel_numerator, accel_denominator;
int threshold;

display Specifies the connection to the X server.

do_accel Specifies a Boolean value that controls whether the values for the accel_numera-
tor or accel_denominator are used.

do_threshold Specifies a Boolean value that controls whether the value for the threshold is
used.

accel_numeratorSpecifies the numerator for the acceleration multiplier.

accel_denominator
Specifies the denominator for the acceleration multiplier.

threshold Specifies the acceleration threshold.

The XChangePointerControl function defines how the pointing device moves. Theaccelera-
tion, expressed as a fraction, is a multiplier for movement. For example, specifying 3/1 means the
pointer moves three times as fast as normal. The fraction may be rounded arbitrarily by the X
server. Acceleration only takes effect if the pointer moves more than threshold pixels at once and
only applies to the amount beyond the value in the threshold argument. Settinga value to −1
restores the default. Thevalues of the do_accel and do_threshold arguments must beTr ue for
the pointer values to be set, or the parameters are unchanged. Negative values (other than −1)
generate aBadValue error, as does a zero value for the accel_denominator argument.

XChangePointerControl can generate aBadValue error.

To get the current pointer parameters, useXGetPointerControl .

XGetPointerControl (display, accel_numerator_return, accel_denominator_return,
threshold_return)

Display *display;
int *accel_numerator_return, *accel_denominator_return;
int *threshold_return;

display Specifies the connection to the X server.

accel_numerator_return
Returns the numerator for the acceleration multiplier.

accel_denominator_return
Returns the denominator for the acceleration multiplier.

threshold_returnReturns the acceleration threshold.

The XGetPointerControl function returns the pointer’s current acceleration multiplier and accel-
eration threshold.

247

Xlib − C Library libX11 1.3.2

12.7. Manipulating the Keyboard Encoding
A KeyCode represents a physical (or logical) key. KeyCodes lie in the inclusive range [8,255]. A
Ke yCode value carries no intrinsic information, although server implementors may attempt to
encode geometry (for example, matrix) information in some fashion so that it can be interpreted
in a server-dependent fashion. Themapping between keys and KeyCodes cannot be changed.

A KeySym is an encoding of a symbol on the cap of a key. The set of defined KeySyms includes
the ISO Latin character sets (1−4), Katakana, Arabic, Cyrillic, Greek, Technical, Special, Publish-
ing, APL, Hebrew, Thai, Korean and a miscellany of keys found on keyboards (Return, Help, Tab,
and so on).To the extent possible, these sets are derived from international standards. In areas
where no standards exist, some of these sets are derived from Digital Equipment Corporation
standards. Thelist of defined symbols can be found in <X11/keysymdef.h>. Unfortunately,
some C preprocessors have limits on the number of defined symbols. If you must use KeySyms
not in the Latin 1−4, Greek, and miscellaneous classes, you may have to define a symbol for those
sets. Mostapplications usually only include <X11/keysym.h>, which defines symbols for ISO
Latin 1−4, Greek, and miscellaneous.

A l ist of KeySyms is associated with each KeyCode. Thelist is intended to convey the set of
symbols on the corresponding key. If the list (ignoring trailingNoSymbol entries) is a single
Ke ySym ‘‘K’’ , then the list is treated as if it were the list ‘‘K NoSymbolK NoSymbol’’. If the list
(ignoring trailingNoSymbol entries) is a pair of KeySyms ‘‘K1 K2’’ , then the list is treated as if
it were the list ‘‘K1 K2 K1 K2’’ . If the list (ignoring trailingNoSymbol entries) is a triple of
Ke ySyms ‘‘K1 K2 K3’’ , then the list is treated as if it were the list ‘‘K1 K2 K3NoSymbol’’.
When an explicit ‘‘void’’ element is desired in the list, the valueVoidSymbol can be used.

The first four elements of the list are split into two groups of KeySyms. Group1 contains the first
and second KeySyms; Group 2 contains the third and fourth KeySyms. Within each group, if the
second element of the group isNoSymbol, then the group should be treated as if the second ele-
ment were the same as the first element, except when the first element is an alphabetic KeySym
‘‘ K’’ f or which both lowercase and uppercase forms are defined. In that case, the group should be
treated as if the first element were the lowercase form of ‘‘K’’ and the second element were the
uppercase form of ‘‘K’’ .

The standard rules for obtaining a KeySym from aKeyPressev ent make use of only the Group 1
and Group 2 KeySyms; no interpretation of other KeySyms in the list is given. Whichgroup to
use is determined by the modifier state. Switching between groups is controlled by the KeySym
named MODE SWITCH, by attaching that KeySym to some KeyCode and attaching that
Ke yCode to any one of the modifiersMod1 throughMod5. This modifier is called thegroup
modifier. For any KeyCode, Group 1 is used when the group modifier is off, and Group 2 is used
when the group modifier is on.

The Lock modifier is interpreted as CapsLock when the KeySym named XK_Caps_Lock is
attached to some KeyCode and that KeyCode is attached to theLock modifier. The Lock modi-
fier is interpreted as ShiftLock when the KeySym named XK_Shift_Lock is attached to some
Ke yCode and that KeyCode is attached to theLock modifier. If the Lock modifier could be
interpreted as both CapsLock and ShiftLock, the CapsLock interpretation is used.

The operation of keypad keys is controlled by the KeySym named XK_Num_Lock, by attaching
that KeySym to some KeyCode and attaching that KeyCode to any one of the modifiersMod1
throughMod5. This modifier is called thenumlock modifier. The standard KeySyms with the
prefix ‘‘XK_KP_’’ in their name are called keypad KeySyms; these are KeySyms with numeric
value in the hexadecimal range 0xFF80 to 0xFFBD inclusive. In addition, vendor-specific
Ke ySyms in the hexadecimal range 0x11000000 to 0x1100FFFF are also keypad KeySyms.

Within a group, the choice of KeySym is determined by applying the first rule that is satisfied
from the following list:

• The numlock modifier is on and the second KeySym is a keypad KeySym. Inthis case, if
the Shift modifier is on, or if theLock modifier is on and is interpreted as ShiftLock, then
the first KeySym is used, otherwise the second KeySym is used.

248

Xlib − C Library libX11 1.3.2

• The Shift andLock modifiers are both off. In this case, the first KeySym is used.

• The Shift modifier is off, and theLock modifier is on and is interpreted as CapsLock. In
this case, the first KeySym is used, but if that KeySym is lowercase alphabetic, then the cor-
responding uppercase KeySym is used instead.

• The Shift modifier is on, and theLock modifier is on and is interpreted as CapsLock. In
this case, the second KeySym is used, but if that KeySym is lowercase alphabetic, then the
corresponding uppercase KeySym is used instead.

• The Shift modifier is on, or theLock modifier is on and is interpreted as ShiftLock, or
both. Inthis case, the second KeySym is used.

No spatial geometry of the symbols on the key is defined by their order in the KeySym list,
although a geometry might be defined on a server-specific basis. The X server does not use the
mapping between KeyCodes and KeySyms. Rather, it merely stores it for reading and writing by
clients.

To obtain the legal KeyCodes for a display, useXDisplayKeycodes.

XDisplayKeycodes (display, min_keycodes_return, max_keycodes_return)
Display *display;
int * min_keycodes_return, * max_keycodes_return;

display Specifies the connection to the X server.

min_keycodes_return
Returns the minimum number of KeyCodes.

max_keycodes_return
Returns the maximum number of KeyCodes.

The XDisplayKeycodesfunction returns the min-keycodes and max-keycodes supported by the
specified display. The minimum number of KeyCodes returned is never less than 8, and the maxi-
mum number of KeyCodes returned is never greater than 255. Not all KeyCodes in this range are
required to have corresponding keys.

To obtain the symbols for the specified KeyCodes, useXGetKeyboardMapping .

Ke ySym *XGetKeyboardMapping(display, first_keycode, keycode_count,
keysyms_per_keycode_return)

Display *display;
Ke yCodefirst_keycode;
int keycode_count;
int *keysyms_per_keycode_return;

display Specifies the connection to the X server.

first_keycode Specifies the first KeyCode that is to be returned.

keycode_countSpecifies the number of KeyCodes that are to be returned.

keysyms_per_keycode_return
Returns the number of KeySyms per KeyCode.

The XGetKeyboardMapping function returns the symbols for the specified number of
Ke yCodes starting with first_keycode. Thevalue specified in first_keycode must be greater than
or equal to min_keycode as returned byXDisplayKeycodes, or aBadValue error results. In
addition, the following expression must be less than or equal to max_keycode as returned by
XDisplayKeycodes:

249

Xlib − C Library libX11 1.3.2

first_keycode + keycode_count − 1

If this is not the case, aBadValue error results. The number of elements in the KeySyms list is:

keycode_count * keysyms_per_keycode_return

Ke ySym number N, counting from zero, for KeyCode K has the following index in the list, count-
ing from zero:

(K − first_code) * keysyms_per_code_return + N

The X server arbitrarily chooses the keysyms_per_keycode_return value to be large enough to
report all requested symbols.A special KeySym value ofNoSymbol is used to fill in unused ele-
ments for individual KeyCodes. To free the storage returned byXGetKeyboardMapping , use
XFree.

XGetKeyboardMapping can generate aBadValue error.

To change the keyboard mapping, useXChangeKeyboardMapping.

XChangeKeyboardMapping(display, first_keycode, keysyms_per_keycode, keysyms, num_codes)
Display *display;
int first_keycode;
int keysyms_per_keycode;
Ke ySym *keysyms;
int num_codes;

display Specifies the connection to the X server.

first_keycode Specifies the first KeyCode that is to be changed.

keysyms_per_keycode
Specifies the number of KeySyms per KeyCode.

keysyms Specifies an array of KeySyms.

num_codes Specifies the number of KeyCodes that are to be changed.

The XChangeKeyboardMapping function defines the symbols for the specified number of
Ke yCodes starting with first_keycode. Thesymbols for KeyCodes outside this range remain
unchanged. Thenumber of elements in keysyms must be:

num_codes * keysyms_per_keycode

The specified first_keycode must be greater than or equal to min_keycode returned byXDis-
playKeycodes, or aBadValue error results. In addition, the following expression must be less
than or equal to max_keycode as returned byXDisplayKeycodes, or aBadValue error results:

first_keycode + num_codes − 1

Ke ySym number N, counting from zero, for KeyCode K has the following index in keysyms,
counting from zero:

(K − first_keycode) * keysyms_per_keycode + N

The specified keysyms_per_keycode can be chosen arbitrarily by the client to be large enough to
hold all desired symbols.A special KeySym value ofNoSymbol should be used to fill in unused
elements for individual KeyCodes. Itis legal for NoSymbol to appear in nontrailing positions of
the effective list for a KeyCode. XChangeKeyboardMapping generates aMappingNotify
ev ent.

250

Xlib − C Library libX11 1.3.2

There is no requirement that the X server interpret this mapping. It is merely stored for reading
and writing by clients.

XChangeKeyboardMapping can generateBadAlloc andBadValue errors.

The next six functions make use of theXModifierKeymap data structure, which contains:

typedef struct {
int max_keypermod; /*This server’s max number of keys per modifier */
Ke yCode *modifiermap; /* An 8 by max_keypermod array of the modifiers */

} X ModifierKeymap;

To create anXModifierKeymap structure, useXNewModifiermap .

XModifierKeymap *XNewModifiermap(max_keys_per_mod)
int max_keys_per_mod;

max_keys_per_mod
Specifies the number of KeyCode entries preallocated to the modifiers in the
map.

The XNewModifiermap function returns a pointer toXModifierKeymap structure for later use.

To add a new entry to anXModifierKeymap structure, useXInsertModifiermapEntry .

XModifierKeymap *XInsertModifiermapEntry(modmap, keycode_entry, modifier)
XModifierKeymap *modmap;
Ke yCodekeycode_entry;
int modifier;

modmap Specifies theXModifierKeymap structure.

keycode_entry Specifies the KeyCode.

modifier Specifies the modifier.

The XInsertModifiermapEntry function adds the specified KeyCode to the set that controls the
specified modifier and returns the resultingXModifierKeymap structure (expanded as needed).

To delete an entry from anXModifierKeymap structure, useXDeleteModifiermapEntry .

XModifierKeymap *XDeleteModifiermapEntry(modmap, keycode_entry, modifier)
XModifierKeymap *modmap;
Ke yCodekeycode_entry;
int modifier;

modmap Specifies theXModifierKeymap structure.

keycode_entry Specifies the KeyCode.

modifier Specifies the modifier.

The XDeleteModifiermapEntry function deletes the specified KeyCode from the set that con-
trols the specified modifier and returns a pointer to the resultingXModifierKeymap structure.

To destroy an XModifierKeymap structure, useXFreeModifiermap .

251

Xlib − C Library libX11 1.3.2

XFreeModifiermap(modmap)
XModifierKeymap *modmap;

modmap Specifies theXModifierKeymap structure.

The XFreeModifiermap function frees the specifiedXModifierKeymap structure.

To set the KeyCodes to be used as modifiers, useXSetModifierMapping .

int XSetModifierMapping(display, modmap)
Display *display;
XModifierKeymap *modmap;

display Specifies the connection to the X server.

modmap Specifies theXModifierKeymap structure.

The XSetModifierMapping function specifies the KeyCodes of the keys (if any) that are to be
used as modifiers. If it succeeds, the X server generates aMappingNotify ev ent, andXSetMod-
ifierMapping returnsMappingSuccess. X permits at most 8 modifier keys. If more than 8 are
specified in theXModifierKeymap structure, aBadLength error results.

The modifiermap member of theXModifierKeymap structure contains 8 sets of max_keyper-
mod KeyCodes, one for each modifier in the orderShift , Lock , Control , Mod1, Mod2, Mod3,
Mod4, and Mod5. Only nonzero KeyCodes have meaning in each set, and zero KeyCodes are
ignored. Inaddition, all of the nonzero KeyCodes must be in the range specified by min_keycode
and max_keycode in theDisplay structure, or aBadValue error results.

An X server can impose restrictions on how modifiers can be changed, for example, if certain
keys do not generate up transitions in hardware, if auto-repeat cannot be disabled on certain keys,
or if multiple modifier keys are not supported. If some such restriction is violated, the status
reply isMappingFailed, and none of the modifiers are changed. If the new KeyCodes specified
for a modifier differ from those currently defined and any (current or new) keys for that modifier
are in the logically down state,XSetModifierMapping returnsMappingBusy, and none of the
modifiers is changed.

XSetModifierMapping can generateBadAlloc andBadValue errors.

To obtain the KeyCodes used as modifiers, useXGetModifierMapping .

XModifierKeymap *XGetModifierMapping(display)
Display *display;

display Specifies the connection to the X server.

The XGetModifierMapping function returns a pointer to a newly createdXModifierKeymap
structure that contains the keys being used as modifiers. The structure should be freed after use
by callingXFreeModifiermap . If only zero values appear in the set for any modifier, that modi-
fier is disabled.

252

Xlib − C Library libX11 1.3.2

Chapter 13

Locales and Internationalized Text Functions

An internationalized application is one that is adaptable to the requirements of different native
languages, local customs, and character string encodings. The process of adapting the operation
to a particular native language, local custom, or string encoding is calledlocalization. A goal of
internationalization is to permit localization without program source modifications or recompila-
tion.

As one of the localization mechanisms, Xlib provides an X Input Method (XIM) functional inter-
face for internationalized text input and an X Output Method (XOM) functional interface for
internationalized text output.

Internationalization in X is based on the concept of alocale. A locale defines the localized
behavior of a program at run time. Locales affect Xlib in its:

• Encoding and processing of input method text

• Encoding of resource files and values

• Encoding and imaging of text strings

• Encoding and decoding for inter-client text communication

Characters from various languages are represented in a computer using an encoding. Different
languages have different encodings, and there are even different encodings for the same charac-
ters in the same language.

This chapter defines support for localized text imaging and text input and describes the locale
mechanism that controls all locale-dependent Xlib functions. Sets of functions are provided for
multibyte (char *) text as well as wide character (wchar_t) text in the form supported by the host
C language environment. Themultibyte and wide character functions are equivalent except for
the form of the text argument.

The Xlib internationalization functions are not meant to provide support for multilingual applica-
tions (mixing multiple languages within a single piece of text), but they make it possible to imple-
ment applications that work in limited fashion with more than one language in independent con-
texts.

The remainder of this chapter discusses:

• X locale management

• Locale and modifier dependencies

• Variable argument lists

• Output methods

• Input methods

• String constants

13.1. XLocale Management
X supports one or more of the locales defined by the host environment. Onimplementations that
conform to the ANSI C library, the locale announcement method issetlocale. This function con-
figures the locale operation of both the host C library and Xlib. The operation of Xlib is governed
by the LC_CTYPE category; this is called thecurrent locale. An implementation is permitted to
provide implementation-dependent mechanisms for announcing the locale in addition tosetlo-
cale.

253

Xlib − C Library libX11 1.3.2

On implementations that do not conform to the ANSI C library, the locale announcement method
is Xlib implementation-dependent.

The mechanism by which the semantic operation of Xlib is defined for a specific locale is imple-
mentation-dependent.

X is not required to support all the locales supported by the host.To determine if the current
locale is supported by X, useXSupportsLocale.

Bool XSupportsLocale()

The XSupportsLocale function returnsTr ue if Xlib functions are capable of operating under the
current locale. If it returnsFalse, Xlib locale-dependent functions for which theXLocaleNot-
Supported return status is defined will returnXLocaleNotSupported. Other Xlib locale-depen-
dent routines will operate in the ‘‘C’’ l ocale.

The client is responsible for selecting its locale and X modifiers. Clients should provide a means
for the user to override the clients’ locale selection at client invocation. Mostsingle-display X
clients operate in a single locale for both X and the host processing environment. They will con-
figure the locale by calling three functions: the host locale configuration function,XSupportsLo-
cale, and XSetLocaleModifiers.
The semantics of certain categories of X internationalization capabilities can be configured by
setting modifiers. Modifiers are named by implementation-dependent and locale-specific strings.
The only standard use for this capability at present is selecting one of several styles of keyboard
input method.

To configure Xlib locale modifiers for the current locale, useXSetLocaleModifiers.

char *XSetLocaleModifiers(modifier_list)
char *modifier_list;

modifier_list Specifies the modifiers.

The XSetLocaleModifiers function sets the X modifiers for the current locale setting. The modi-
fier_list argument is a null-terminated string of the form ‘‘{@category=value}’’, that is, having
zero or more concatenated ‘‘@category=value’’ entries, wherecategoryis a category name and
valueis the (possibly empty) setting for that category. The values are encoded in the current
locale. Category names are restricted to the POSIX Portable Filename Character Set.

The local host X locale modifiers announcer (on POSIX-compliant systems, the XMODIFIERS
environment variable) is appended to the modifier_list to provide default values on the local host.
If a given category appears more than once in the list, the first setting in the list is used. If a given
category is not included in the full modifier list, the category is set to an implementation-depen-
dent default for the current locale. An empty value for a category explicitly specifies the imple-
mentation-dependent default.

If the function is successful, it returns a pointer to a string. The contents of the string are such
that a subsequent call with that string (in the same locale) will restore the modifiers to the same
settings. Ifmodifier_list is a NULL pointer,XSetLocaleModifiers also returns a pointer to such
a string, and the current locale modifiers are not changed.

If invalid values are given for one or more modifier categories supported by the locale, a NULL
pointer is returned, and none of the current modifiers are changed.

At program startup, the modifiers that are in effect are unspecified until the first successful call to
set them. Whenever the locale is changed, the modifiers that are in effect become unspecified
until the next successful call to set them. Clients should always callXSetLocaleModifiers with

254

Xlib − C Library libX11 1.3.2

a non-NULL modifier_list after setting the locale before they call any locale-dependent Xlib rou-
tine.

The only standard modifier category currently defined is ‘‘im’’, which identifies the desired input
method. Thevalues for input method are not standardized.A single locale may use multiple
input methods, switching input method under user control. The modifier may specify the initial
input method in effect or an ordered list of input methods. Multiple input methods may be speci-
fied in a single im value string in an implementation-dependent manner.

The returned modifiers string is owned by Xlib and should not be modified or freed by the client.
It may be freed by Xlib after the current locale or modifiers are changed. Until freed, it will not
be modified by Xlib.

The recommended procedure for clients initializing their locale and modifiers is to obtain locale
and modifier announcers separately from one of the following prioritized sources:

• A command line option

• A resource

• The empty string ("")

The first of these that is defined should be used. Note that when a locale command line option or
locale resource is defined, the effect should be to set all categories to the specified locale, overrid-
ing any category-specific settings in the local host environment.

13.2. Localeand Modifier Dependencies
The internationalized Xlib functions operate in the current locale configured by the host environ-
ment and X locale modifiers set byXSetLocaleModifiers or in the locale and modifiers config-
ured at the time some object supplied to the function was created.For each locale-dependent
function, the following table describes the locale (and modifiers) dependency:

Locale from Affectsthe Function In

Locale Query/Configuration:

setlocale XSupportsLocale Locale queried
XSetLocaleModifiers Locale modified

Resources:

setlocale XrmGetFileDatabase Locale ofXrmDatabase
XrmGetStringDatabase

XrmDatabase XrmPutFileDatabase Locale ofXrmDatabase
XrmLocaleOfDatabase

Setting Standard Properties:

setlocale XmbSetWMProperties Encoding of supplied/returned
text (some WM_ property
text in environment locale)

setlocale XmbTextPropertyToTextList Encoding of supplied/returned
text

XwcTextPropertyToTextList
XmbTextListToTextProperty
XwcTextListToTextProperty

Te xt Input:

255

Xlib − C Library libX11 1.3.2

Locale from Affectsthe Function In

setlocale XOpenIM XIM input method selection
XRegisterIMInstantiateCallback XIM selection
XUnregisterIMInstantiateCallback XIM selection

XIM XCreateIC XIC input method configuration
XLocaleOfIM , and so on Queried locale

XIC XmbLookupString Ke yboard layout
XwcLookupString Encoding of returned text

Te xt Drawing:

setlocale XOpenOM XOM output method selection
XCreateFontSet Charsets of fonts inXFontSet

XOM XCreateOC XOC output method configura-
tion

XLocaleOfOM , and so on Queried locale
XFontSet XmbDrawText, Locale of supplied text

XwcDrawText , and so on Locale of supplied text
XExtentsOfFontSet, and so on Locale-dependent metrics
XmbTextExtents,
XwcTextExtents, and so on

Xlib Errors:

setlocale XGetErrorDatabaseText Locale of error message
XGetErrorText

Clients may assume that a locale-encoded text string returned by an X function can be passed to a
C library routine, or vice versa, if the locale is the same at the two calls.

All text strings processed by internationalized Xlib functions are assumed to begin in the initial
state of the encoding of the locale, if the encoding is state-dependent.

All Xlib functions behave as if they do not change the current locale or X modifier setting. (This
means that if they do change locale or callXSetLocaleModifiers with a non-NULL argument,
they must save and restore the current state on entry and exit.) Also, Xlib functions on implemen-
tations that conform to the ANSI C library do not alter the global state associated with the ANSI
C functionsmblen, mbtowc, wctomb, and strtok .

13.3. Variable Argument Lists
Various functions in this chapter have arguments that conform to the ANSI C variable argument
list calling convention. Eachfunction denoted with an argument of the form ‘‘...’’ t akes a vari-
able-length list of name and value pairs, where each name is a string and each value is of type
XPointer . A name argument that is NULL identifies the end of the list.

A variable-length argument list may contain a nested list. If the nameXNVaNestedList is speci-
fied in place of an argument name, then the following value is interpreted as anXVaNestedList
value that specifies a list of values logically inserted into the original list at the point of declara-
tion. A NULL identifies the end of a nested list.

To allocate a nested variable argument list dynamically, useXVaCreateNestedList.

256

Xlib − C Library libX11 1.3.2

typedef void * XVaNestedList;

XVaNestedList XVaCreateNestedList (dummy, ...)
int dummy;

dummy Specifies an unused argument (required by ANSI C).

... Specifiesthe variable length argument list.

The XVaCreateNestedList function allocates memory and copies its arguments into a single list
pointer, which may be used as a value for arguments requiring a list value. Any entries are copied
as specified. Data passed by reference is not copied; the caller must ensure data remains valid for
the lifetime of the nested list. The list should be freed usingXFree when it is no longer needed.

13.4. OutputMethods
This section provides discussions of the following X Output Method (XOM) topics:

• Output method overview

• Output method functions

• Output method values

• Output context functions

• Output context values

• Creating and freeing a font set

• Obtaining font set metrics

• Drawing text using font sets

13.4.1. OutputMethod Overview
Locale-dependent text may include one or more text components, each of which may require dif-
ferent fonts and character set encodings. In some languages, each component might have a differ-
ent drawing direction, and some components might contain context-dependent characters that
change shape based on relationships with neighboring characters.

When drawing such locale-dependent text, some locale-specific knowledge is required; for exam-
ple, what fonts are required to draw the text, how the text can be separated into components, and
which fonts are selected to draw each component. Further, when bidirectional text must be
drawn, the internal representation order of the text must be changed into the visual representation
order to be drawn.

An X Output Method provides a functional interface so that clients do not have to deal directly
with such locale-dependent details. Output methods provide the following capabilities:

• Creating a set of fonts required to draw locale-dependent text.

• Drawing locale-dependent text with a font set without the caller needing to be aware of
locale dependencies.

• Obtaining the escapement and extents in pixels of locale-dependent text.

• Determining if bidirectional or context-dependent drawing is required in a specific locale
with a specific font set.

Tw o different abstractions are used in the representation of the output method for clients.

The abstraction used to communicate with an output method is an opaque data structure repre-
sented by theXOM data type. The abstraction for representing the state of a particular output
thread is called anoutput context. The Xlib representation of an output context is anXOC ,
which is compatible withXFontSet in terms of its functional interface, but is a broader, more
generalized abstraction.

257

Xlib − C Library libX11 1.3.2

13.4.2. OutputMethod Functions
To open an output method, useXOpenOM .

XOM XOpenOM(display, db, res_name, res_class)
Display *display;
XrmDatabasedb;
char *res_name;
char *res_class;

display Specifies the connection to the X server.

db Specifies a pointer to the resource database.

res_name Specifies the full resource name of the application.

res_class Specifies the full class name of the application.

The XOpenOM function opens an output method matching the current locale and modifiers
specification. Thecurrent locale and modifiers are bound to the output method whenXOpenOM
is called. The locale associated with an output method cannot be changed.

The specific output method to which this call will be routed is identified on the basis of the cur-
rent locale and modifiers.XOpenOM will identify a default output method corresponding to the
current locale. That default can be modified usingXSetLocaleModifiers to set the output
method modifier.

The db argument is the resource database to be used by the output method for looking up
resources that are private to the output method. It is not intended that this database be used to
look up values that can be set as OC values in an output context. If db is NULL, no database is
passed to the output method.

The res_name and res_class arguments specify the resource name and class of the application.
They are intended to be used as prefixes by the output method when looking up resources that are
common to all output contexts that may be created for this output method. The characters used
for resource names and classes must be in the X Portable Character Set. The resources looked up
are not fully specified if res_name or res_class is NULL.

The res_name and res_class arguments are not assumed to exist beyond the call toXOpenOM .
The specified resource database is assumed to exist for the lifetime of the output method.

XOpenOM returns NULL if no output method could be opened.

To close an output method, useXCloseOM.

Status XCloseOM(om)
XOM om;

om Specifies the output method.

The XCloseOM function closes the specified output method.

To set output method attributes, useXSetOMValues.

258

Xlib − C Library libX11 1.3.2

char * XSetOMValues (om, ...)
XOM om;

om Specifies the output method.

... Specifiesthe variable-length argument list to set XOM values.

The XSetOMValues function presents a variable argument list programming interface for setting
properties or features of the specified output method. This function returns NULL if it succeeds;
otherwise, it returns the name of the first argument that could not be obtained.

No standard arguments are currently defined by Xlib.

To query an output method, useXGetOMValues.

char * XGetOMValues (om, ...)
XOM om;

om Specifies the output method.

... Specifiesthe variable-length argument list to get XOM values.

The XGetOMValues function presents a variable argument list programming interface for query-
ing properties or features of the specified output method. This function returns NULL if it suc-
ceeds; otherwise, it returns the name of the first argument that could not be obtained.

To obtain the display associated with an output method, useXDisplayOfOM .

Display * XDisplayOfOM(om)
XOM om;

om Specifies the output method.

The XDisplayOfOM function returns the display associated with the specified output method.

To get the locale associated with an output method, useXLocaleOfOM .

char * XLocaleOfOM(om)
XOM om;

om Specifies the output method.

The XLocaleOfOM returns the locale associated with the specified output method.

13.4.3. XOutput Method Values
The following table describes how XOM values are interpreted by an output method. The first
column lists the XOM values. Thesecond column indicates how each of the XOM values are
treated by a particular output style.

The following key applies to this table.

Key Explanation

259

Xlib − C Library libX11 1.3.2

Key Explanation

G This value may be read usingXGetOMValues.

XOM Value Key

XNRequiredCharSet G
XNQueryOrientation G
XNDirectionalDependentDrawing G
XNContextualDrawing G

13.4.3.1. Required Char Set
The XNRequiredCharSet argument returns the list of charsets that are required for loading the
fonts needed for the locale. The value of the argument is a pointer to a structure of typeXOM-
CharSetList.
The XOMCharSetList structure is defined as follows:

typedef struct {
int charset_count;
char **charset_list;

} X OMCharSetList;

The charset_list member is a list of one or more null-terminated charset names, and the
charset_count member is the number of charset names.

The required charset list is owned by Xlib and should not be modified or freed by the client. It
will be freed by a call toXCloseOM with the associatedXOM . Until freed, its contents will not
be modified by Xlib.

13.4.3.2. QueryOrientation
The XNQueryOrientation argument returns the global orientation of text when drawn. Other
thanXOMOrientation_LTR_TTB , the set of orientations supported is locale-dependent. The
value of the argument is a pointer to a structure of typeXOMOrientation . Clients are responsi-
ble for freeing theXOMOrientation structure by usingXFree; this also frees the contents of the
structure.

260

Xlib − C Library libX11 1.3.2

typedef struct {
int num_orientation;
XOrientation *orientation; /* Input Text description */

} X OMOrientation;

typedef enum {
XOMOrientation_LTR_TTB,
XOMOrientation_RTL_TTB,
XOMOrientation_TTB_LTR,
XOMOrientation_TTB_RTL,
XOMOrientation_Context

} X Orientation;

The possible value for XOrientation may be:

• XOMOrientation_LTR_TTB left-to-right, top-to-bottom global orientation

• XOMOrientation_RTL_TTB right-to-left, top-to-bottom global orientation

• XOMOrientation_TTB_LTR top-to-bottom, left-to-right global orientation

• XOMOrientation_TTB_RTL top-to-bottom, right-to-left global orientation

• XOMOrientation_Context contextual global orientation

13.4.3.3. Directional Dependent Drawing
The XNDirectionalDependentDrawing argument indicates whether the text rendering functions
implement implicit handling of directional text. If this value isTr ue, the output method has
knowledge of directional dependencies and reorders text as necessary when rendering text. If this
value isFalse, the output method does not implement any directional text handling, and all char-
acter directions are assumed to be left-to-right.

Regardless of the rendering order of characters, the origins of all characters are on the primary
draw direction side of the drawing origin.

This OM value presents functionality identical to theXDirectionalDependentDrawing function.

13.4.3.4. ContextDependent Drawing
The XNContextualDrawing argument indicates whether the text rendering functions implement
implicit context-dependent drawing. If this value isTr ue, the output method has knowledge of
context dependencies and performs character shape editing, combining glyphs to present a single
character as necessary. The actual shape editing is dependent on the locale implementation and
the font set used.

This OM value presents functionality identical to theXContextualDrawing function.

13.4.4. OutputContext Functions
An output context is an abstraction that contains both the data required by an output method and
the information required to display that data. There can be multiple output contexts for one out-
put method. The programming interfaces for creating, reading, or modifying an output context
use a variable argument list. The name elements of the argument lists are referred to as XOC val-
ues. Itis intended that output methods be controlled by these XOC values. Asnew XOC values
are created, they should be registered with the X Consortium. AnXOC can be used anywhere an
XFontSet can be used, and vice versa;XFontSet is retained for compatibility with previous
releases. Theconcepts of output methods and output contexts include broader, more generalized
abstraction than font set, supporting complex and more intelligent text display, and dealing not
only with multiple fonts but also with context dependencies. However, XFontSet is widely used

261

Xlib − C Library libX11 1.3.2

in several interfaces, soXOC is defined as an upward compatible type ofXFontSet.

To create an output context, useXCreateOC.

XOC XCreateOC(om, ...)
XOM om;

om Specifies the output method.

... Specifiesthe variable-length argument list to set XOC values.

The XCreateOC function creates an output context within the specified output method.

The base font names argument is mandatory at creation time, and the output context will not be
created unless it is provided. All other output context values can be set later.

XCreateOC returns NULL if no output context could be created. NULL can be returned for any
of the following reasons:

• A required argument was not set.

• A read-only argument was set.

• An argument name is not recognized.

• The output method encountered an output method implementation-dependent error.

XCreateOC can generate aBadAtom error.

To destroy an output context, useXDestroyOC.

void XDestroyOC (oc)
XOC oc;

oc Specifies the output context.

The XDestroyOC function destroys the specified output context.

To get the output method associated with an output context, useXOMOfOC .

XOM XOMOfOC(oc)
XOC oc;

oc Specifies the output context.

The XOMOfOC function returns the output method associated with the specified output context.

Xlib provides two functions for setting and reading output context values, respectively, XSetOC-
Values andXGetOCValues. Both functions have a variable-length argument list. In that argu-
ment list, any XOC value’s name must be denoted with a character string using the X Portable
Character Set.

To set XOC values, useXSetOCValues.

262

Xlib − C Library libX11 1.3.2

char * XSetOCValues (oc, ...)
XOC oc;

oc Specifies the output context.

... Specifiesthe variable-length argument list to set XOC values.

The XSetOCValuesfunction returns NULL if no error occurred; otherwise, it returns the name
of the first argument that could not be set. An argument might not be set for any of the following
reasons:

• The argument is read-only.

• The argument name is not recognized.

• An implementation-dependent error occurs.

Each value to be set must be an appropriate datum, matching the data type imposed by the seman-
tics of the argument.

XSetOCValuescan generate aBadAtom error.

To obtain XOC values, useXGetOCValues.

char * XGetOCValues (oc, ...)
XOC oc;

oc Specifies the output context.

... Specifiesthe variable-length argument list to get XOC values.

The XGetOCValues function returns NULL if no error occurred; otherwise, it returns the name
of the first argument that could not be obtained. An argument might not be obtained for any of
the following reasons:

• The argument name is not recognized.

• An implementation-dependent error occurs.

Each argument value following a name must point to a location where the value is to be stored.

13.4.5. OutputContext Values
The following table describes how XOC values are interpreted by an output method. The first
column lists the XOC values. Thesecond column indicates the alternative interfaces that function
identically and are provided for compatibility with previous releases. The third column indicates
how each of the XOC values is treated.

The following keys apply to this table.

Key Explanation

C This value must be set withXCreateOC.
D This value may be set usingXCreateOC. If it is not set,

a default is provided.
G This value may be read usingXGetOCValues.
S This value must be set usingXSetOCValues.

XOC Value Alternative Interface Key

263

Xlib − C Library libX11 1.3.2

XOC Value Alternative Interface Key

BaseFontName XCreateFontSet C-G
MissingCharSet XCreateFontSet G
DefaultString XCreateFontSet G
Orientation − D-S-G
ResourceName − S-G
ResourceClass − S-G
FontInfo XFontsOfFontSet G
OMAutomatic − G

13.4.5.1. BaseFont Name
The XNBaseFontNameargument is a list of base font names that Xlib uses to load the fonts
needed for the locale. The base font names are a comma-separated list. The string is null-termi-
nated and is assumed to be in the Host Portable Character Encoding; otherwise, the result is
implementation-dependent. Whitespace immediately on either side of a separating comma is
ignored.

Use of XLFD font names permits Xlib to obtain the fonts needed for a variety of locales from a
single locale-independent base font name. The single base font name should name a family of
fonts whose members are encoded in the various charsets needed by the locales of interest.

An XLFD base font name can explicitly name a charset needed for the locale. This allows the
user to specify an exact font for use with a charset required by a locale, fully controlling the font
selection.

If a base font name is not an XLFD name, Xlib will attempt to obtain an XLFD name from the
font properties for the font. If Xlib is successful, theXGetOCValues function will return this
XLFD name instead of the client-supplied name.

This argument must be set at creation time and cannot be changed. If no fonts exist for any of the
required charsets, or if the locale definition in Xlib requires that a font exist for a particular
charset and a font is not found for that charset,XCreateOC returns NULL.

When querying for theXNBaseFontNameXOC value,XGetOCValues returns a null-termi-
nated string identifying the base font names that Xlib used to load the fonts needed for the locale.
This string is owned by Xlib and should not be modified or freed by the client. The string will be
freed by a call toXDestroyOC with the associatedXOC . Until freed, the string contents will
not be modified by Xlib.

13.4.5.2. MissingCharSet
The XNMissingCharSet argument returns the list of required charsets that are missing from the
font set. The value of the argument is a pointer to a structure of typeXOMCharSetList .

If fonts exist for all of the charsets required by the current locale, charset_list is set to NULL and
charset_count is set to zero. If no fonts exist for one or more of the required charsets, charset_list
is set to a list of one or more null-terminated charset names for which no fonts exist, and
charset_count is set to the number of missing charsets. The charsets are from the list of the
required charsets for the encoding of the locale and do not include any charsets to which Xlib
may be able to remap a required charset.

The missing charset list is owned by Xlib and should not be modified or freed by the client. It
will be freed by a call toXDestroyOC with the associatedXOC . Until freed, its contents will
not be modified by Xlib.

264

Xlib − C Library libX11 1.3.2

13.4.5.3. DefaultString
When a drawing or measuring function is called with anXOC that has missing charsets, some
characters in the locale will not be drawable. TheXNDefaultString argument returns a pointer
to a string that represents the glyphs that are drawn with thisXOC when the charsets of the avail-
able fonts do not include all glyphs required to draw a character. The string does not necessarily
consist of valid characters in the current locale and is not necessarily drawn with the fonts loaded
for the font set, but the client can draw or measure the default glyphs by including this string in a
string being drawn or measured with theXOC .

If the XNDefaultString argument returned the empty string (""), no glyphs are drawn and the
escapement is zero. The returned string is null-terminated. It is owned by Xlib and should not be
modified or freed by the client. It will be freed by a call toXDestroyOC with the associated
XOC . Until freed, its contents will not be modified by Xlib.

13.4.5.4. Orientation
The XNOrientation argument specifies the current orientation of text when drawn. Thevalue of
this argument is one of the values returned by theXGetOMValues function with theXNQuery-
Orientation argument specified in theXOrientation list. Thevalue of the argument is of type
XOrientation . WhenXNOrientation is queried, the value specifies the current orientation.
WhenXNOrientation is set, a value is used to set the current orientation.

WhenXOMOrientation_Context is set, the text orientation of the text is determined according
to an implementation-defined method (for example, ISO 6429 control sequences), and the initial
text orientation for locale-dependent Xlib functions is assumed to beXOMOrienta-
tion_LTR_TTB .

The XNOrientation value does not change the prime drawing direction for Xlib drawing func-
tions.

13.4.5.5. Resource Name and Class
The XNResourceNameandXNResourceClassarguments are strings that specify the full name
and class used by the client to obtain resources for the display of the output context. Thesevalues
should be used as prefixes for name and class when looking up resources that may vary according
to the output context. If these values are not set, the resources will not be fully specified.

It is not intended that values that can be set as XOM values be set as resources.

When querying for theXNResourceNameor XNResourceClassXOC value,XGetOCValues
returns a null-terminated string. This string is owned by Xlib and should not be modified or freed
by the client. The string will be freed by a call toXDestroyOC with the associatedXOC or
when the associated value is changed viaXSetOCValues. Until freed, the string contents will
not be modified by Xlib.

13.4.5.6. Font Info
The XNFontInfo argument specifies a list of one or moreXFontStruct structures and font
names for the fonts used for drawing by the given output context. Thevalue of the argument is a
pointer to a structure of typeXOMFontInfo .

typedef struct {
int num_font;
XFontStruct **font_struct_list;
char **font_name_list;

} X OMFontInfo;

A l ist of pointers to theXFontStruct structures is returned to font_struct_list.A l ist of pointers

265

Xlib − C Library libX11 1.3.2

to null-terminated, fully-specified font name strings in the locale of the output context is returned
to font_name_list. The font_name_list order corresponds to the font_struct_list order. The num-
ber ofXFontStruct structures and font names is returned to num_font.

Because it is not guaranteed that a given character will be imaged using a single font glyph, there
is no provision for mapping a character or default string to the font properties, font ID, or direc-
tion hint for the font for the character. The client may access theXFontStruct list to obtain these
values for all the fonts currently in use.

Xlib does not guarantee that fonts are loaded from the server at the creation of anXOC . Xlib
may choose to cache font data, loading it only as needed to draw text or compute text dimensions.
Therefore, existence of the per_char metrics in theXFontStruct structures in theXFontStruct-
Set is undefined. Also, note that all properties in theXFontStruct structures are in the STRING
encoding.

The client must not free theXOMFontInfo struct itself; it will be freed when theXOC is closed.

13.4.5.7. OMAutomatic
The XNOMAutomatic argument returns whether the associated output context was created by
XCreateFontSetor not. Because theXFreeFontSet function not only destroys the output con-
text but also closes the implicit output method associated with it,XFreeFontSetshould be used
with any output context created byXCreateFontSet. Howev er, it is possible that a client does
not know how the output context was created. Before a client destroys the output context, it can
query whetherXNOMAutomatic is set to determine whetherXFreeFontSetor XDestroyOC
should be used to destroy the output context.

13.4.6. Creating and Freeing a Font Set
Xlib international text drawing is done using a set of one or more fonts, as needed for the locale
of the text. Fonts are loaded according to a list of base font names supplied by the client and the
charsets required by the locale. TheXFontSet is an opaque type representing the state of a par-
ticular output thread and is equivalent to the typeXOC .

The XCreateFontSet function is a convenience function for creating an output context using
only default values. ThereturnedXFontSet has an implicitly createdXOM . This XOM has an
OM valueXNOMAutomatic automatically set toTr ue so that the output context self indicates
whether it was created byXCreateOC or XCreateFontSet.

266

Xlib − C Library libX11 1.3.2

XFontSet XCreateFontSet (display, base_font_name_list, missing_charset_list_return,
missing_charset_count_return, def_string_return)

Display *display;
char *base_font_name_list;
char ***missing_charset_list_return;
int *missing_charset_count_return;
char **def_string_return;

display Specifies the connection to the X server.

base_font_name_list
Specifies the base font names.

missing_charset_list_return
Returns the missing charsets.

missing_charset_count_return
Returns the number of missing charsets.

def_string_returnReturns the string drawn for missing charsets.

The XCreateFontSet function creates a font set for the specified display. The font set is bound
to the current locale whenXCreateFontSet is called. The font set may be used in subsequent
calls to obtain font and character information and to image text in the locale of the font set.

The base_font_name_list argument is a list of base font names that Xlib uses to load the fonts
needed for the locale. The base font names are a comma-separated list. The string is null-termi-
nated and is assumed to be in the Host Portable Character Encoding; otherwise, the result is
implementation-dependent. Whitespace immediately on either side of a separating comma is
ignored.

Use of XLFD font names permits Xlib to obtain the fonts needed for a variety of locales from a
single locale-independent base font name. The single base font name should name a family of
fonts whose members are encoded in the various charsets needed by the locales of interest.

An XLFD base font name can explicitly name a charset needed for the locale. This allows the
user to specify an exact font for use with a charset required by a locale, fully controlling the font
selection.

If a base font name is not an XLFD name, Xlib will attempt to obtain an XLFD name from the
font properties for the font. If this action is successful in obtaining an XLFD name, theXBase-
FontNameListOfFontSet function will return this XLFD name instead of the client-supplied
name.

Xlib uses the following algorithm to select the fonts that will be used to display text with the
XFontSet.
For each font charset required by the locale, the base font name list is searched for the first
appearance of one of the following cases that names a set of fonts that exist at the server:

• The first XLFD-conforming base font name that specifies the required charset or a superset
of the required charset in itsCharSetRegistry andCharSetEncodingfields. Theimple-
mentation may use a base font name whose specified charset is a superset of the required
charset, for example, an ISO8859-1 font for an ASCII charset.

• The first set of one or more XLFD-conforming base font names that specify one or more
charsets that can be remapped to support the required charset. The Xlib implementation
may recognize various mappings from a required charset to one or more other charsets and
use the fonts for those charsets.For example, JIS Roman is ASCII with tilde and backslash
replaced by yen and overbar; Xlib may load an ISO8859-1 font to support this character set
if a JIS Roman font is not available.

267

Xlib − C Library libX11 1.3.2

• The first XLFD-conforming font name or the first non-XLFD font name for which an
XLFD font name can be obtained, combined with the required charset (replacing the
CharSetRegistry andCharSetEncodingfields in the XLFD font name). As in case 1,
the implementation may use a charset that is a superset of the required charset.

• The first font name that can be mapped in some implementation-dependent manner to one
or more fonts that support imaging text in the charset.

For example, assume that a locale required the charsets:

ISO8859-1
JISX0208.1983
JISX0201.1976
GB2312-1980.0

The user could supply a base_font_name_list that explicitly specifies the charsets, ensuring that
specific fonts are used if they exist. For example:

"-JIS-Fixed-Medium-R-Normal--26-180-100-100-C-240-JISX0208.1983-0,\
-JIS-Fixed-Medium-R-Normal--26-180-100-100-C-120-JISX0201.1976-0,\
-GB-Fixed-Medium-R-Normal--26-180-100-100-C-240-GB2312-1980.0,\
-Adobe-Courier-Bold-R-Normal--25-180-75-75-M-150-ISO8859-1"

Alternatively, the user could supply a base_font_name_list that omits the charsets, letting Xlib
select font charsets required for the locale.For example:

"-JIS-Fixed-Medium-R-Normal--26-180-100-100-C-240,\
-JIS-Fixed-Medium-R-Normal--26-180-100-100-C-120,\
-GB-Fixed-Medium-R-Normal--26-180-100-100-C-240,\
-Adobe-Courier-Bold-R-Normal--25-180-100-100-M-150"

Alternatively, the user could simply supply a single base font name that allows Xlib to select from
all available fonts that meet certain minimum XLFD property requirements.For example:

"-*-*-*-R-Normal--*-180-100-100-*-*"

If XCreateFontSet is unable to create the font set, either because there is insufficient memory or
because the current locale is not supported,XCreateFontSet returns NULL, miss-
ing_charset_list_return is set to NULL, and missing_charset_count_return is set to zero. If fonts
exist for all of the charsets required by the current locale,XCreateFontSet returns a valid
XFontSet, missing_charset_list_return is set to NULL, and missing_charset_count_return is set
to zero.

If no font exists for one or more of the required charsets,XCreateFontSetsets miss-
ing_charset_list_return to a list of one or more null-terminated charset names for which no font
exists and sets missing_charset_count_return to the number of missing fonts. The charsets are
from the list of the required charsets for the encoding of the locale and do not include any
charsets to which Xlib may be able to remap a required charset.

If no font exists for any of the required charsets or if the locale definition in Xlib requires that a
font exist for a particular charset and a font is not found for that charset,XCreateFontSet returns
NULL. Otherwise,XCreateFontSet returns a validXFontSet to font_set.

When an Xmb/wc drawing or measuring function is called with anXFontSet that has missing
charsets, some characters in the locale will not be drawable. If def_string_return is non-NULL,
XCreateFontSet returns a pointer to a string that represents the glyphs that are drawn with this
XFontSet when the charsets of the available fonts do not include all font glyphs required to draw
a codepoint. Thestring does not necessarily consist of valid characters in the current locale and is
not necessarily drawn with the fonts loaded for the font set, but the client can draw and measure
the default glyphs by including this string in a string being drawn or measured with the

268

Xlib − C Library libX11 1.3.2

XFontSet.
If the string returned to def_string_return is the empty string (""), no glyphs are drawn, and the
escapement is zero. The returned string is null-terminated. It is owned by Xlib and should not be
modified or freed by the client. It will be freed by a call toXFreeFontSetwith the associated
XFontSet. Until freed, its contents will not be modified by Xlib.

The client is responsible for constructing an error message from the missing charset and default
string information and may choose to continue operation in the case that some fonts did not exist.

The returnedXFontSet and missing charset list should be freed withXFreeFontSetand
XFreeStringList , respectively. The client-supplied base_font_name_list may be freed by the
client after callingXCreateFontSet.

To obtain a list ofXFontStruct structures and full font names given an XFontSet, use
XFontsOfFontSet.

int XFontsOfFontSet (font_set, font_struct_list_return, font_name_list_return)
XFontSetfont_set;
XFontStruct ***font_struct_list_return;
char ***font_name_list_return;

font_set Specifies the font set.

font_struct_list_return
Returns the list of font structs.

font_name_list_return
Returns the list of font names.

The XFontsOfFontSet function returns a list of one or moreXFontStructs and font names for
the fonts used by the Xmb and Xwc layers for the given font set.A l ist of pointers to the
XFontStruct structures is returned to font_struct_list_return.A l ist of pointers to null-termi-
nated, fully specified font name strings in the locale of the font set is returned to
font_name_list_return. Thefont_name_list order corresponds to the font_struct_list order. The
number ofXFontStruct structures and font names is returned as the value of the function.

Because it is not guaranteed that a given character will be imaged using a single font glyph, there
is no provision for mapping a character or default string to the font properties, font ID, or direc-
tion hint for the font for the character. The client may access theXFontStruct list to obtain these
values for all the fonts currently in use.

Xlib does not guarantee that fonts are loaded from the server at the creation of anXFontSet.
Xlib may choose to cache font data, loading it only as needed to draw text or compute text dimen-
sions. Therefore,existence of the per_char metrics in theXFontStruct structures in the
XFontStructSet is undefined. Also, note that all properties in theXFontStruct structures are in
the STRING encoding.

The XFontStruct and font name lists are owned by Xlib and should not be modified or freed by
the client. They will be freed by a call toXFreeFontSetwith the associatedXFontSet. Until
freed, their contents will not be modified by Xlib.

To obtain the base font name list and the selected font name list given an XFontSet, useXBase-
FontNameListOfFontSet.

269

Xlib − C Library libX11 1.3.2

char *XBaseFontNameListOfFontSet (font_set)
XFontSetfont_set;

font_set Specifies the font set.

The XBaseFontNameListOfFontSetfunction returns the original base font name list supplied
by the client when theXFontSet was created. Anull-terminated string containing a list of
comma-separated font names is returned as the value of the function. White space may appear
immediately on either side of separating commas.

If XCreateFontSetobtained an XLFD name from the font properties for the font specified by a
non-XLFD base name, theXBaseFontNameListOfFontSetfunction will return the XLFD name
instead of the non-XLFD base name.

The base font name list is owned by Xlib and should not be modified or freed by the client. It
will be freed by a call toXFreeFontSetwith the associatedXFontSet. Until freed, its contents
will not be modified by Xlib.

To obtain the locale name given an XFontSet, useXLocaleOfFontSet.

char *XLocaleOfFontSet (font_set)
XFontSetfont_set;

font_set Specifies the font set.

The XLocaleOfFontSet function returns the name of the locale bound to the specified
XFontSet, as a null-terminated string.

The returned locale name string is owned by Xlib and should not be modified or freed by the
client. Itmay be freed by a call toXFreeFontSetwith the associatedXFontSet. Until freed, it
will not be modified by Xlib.

The XFreeFontSet function is a convenience function for freeing an output context.XFree-
FontSet also frees its associatedXOM if the output context was created byXCreateFontSet.

void XFreeFontSet (display, font_set)
Display *display;
XFontSetfont_set;

display Specifies the connection to the X server.

font_set Specifies the font set.

The XFreeFontSet function frees the specified font set. The associated base font name list, font
name list,XFontStruct list, andXFontSetExtents, if any, are freed.

13.4.7. ObtainingFont Set Metrics
Metrics for the internationalized text drawing functions are defined in terms of a primary draw
direction, which is the default direction in which the character origin advances for each succeed-
ing character in the string. The Xlib interface is currently defined to support only a left-to-right
primary draw direction. Thedrawing origin is the position passed to the drawing function when
the text is drawn. Thebaseline is a line drawn through the drawing origin parallel to the primary
draw direction. Characterink is the pixels painted in the foreground color and does not include
interline or intercharacter spacing or image text background pixels.

270

Xlib − C Library libX11 1.3.2

The drawing functions are allowed to implement implicit text directionality control, reversing the
order in which characters are rendered along the primary draw direction in response to locale-spe-
cific lexical analysis of the string.

Regardless of the character rendering order, the origins of all characters are on the primary draw
direction side of the drawing origin. The screen location of a particular character image may be
determined withXmbTextPerCharExtents or XwcTextPerCharExtents.

The drawing functions are allowed to implement context-dependent rendering, where the glyphs
drawn for a string are not simply a concatenation of the glyphs that represent each individual
character. A string of two characters drawn withXmbDrawString may render differently than if
the two characters were drawn with separate calls toXmbDrawString . If the client appends or
inserts a character in a previously drawn string, the client may need to redraw some adjacent char-
acters to obtain proper rendering.

To find out about direction-dependent rendering, useXDirectionalDependentDrawing.

Bool XDirectionalDependentDrawing (font_set)
XFontSetfont_set;

font_set Specifies the font set.

The XDirectionalDependentDrawing function returnsTr ue if the drawing functions implement
implicit text directionality; otherwise, it returnsFalse.

To find out about context-dependent rendering, useXContextualDrawing .

Bool XContextualDrawing (font_set)
XFontSetfont_set;

font_set Specifies the font set.

The XContextualDrawing function returnsTr ue if text drawn with the font set might include
context-dependent drawing; otherwise, it returnsFalse.

To find out about context-dependent or direction-dependent rendering, useXContextDependent-
Drawing .

Bool XContextDependentDrawing (font_set)
XFontSetfont_set;

font_set Specifies the font set.

The XContextDependentDrawing function returnsTr ue if the drawing functions implement
implicit text directionality or if text drawn with the font_set might include context-dependent
drawing; otherwise, it returnsFalse.

The drawing functions do not interpret newline, tab, or other control characters. The behavior
when nonprinting characters other than space are drawn is implementation-dependent. It is the
client’s responsibility to interpret control characters in a text stream.

The maximum character extents for the fonts that are used by the text drawing layers can be
accessed by theXFontSetExtentsstructure:

typedef struct {
XRectangle max_ink_extent; /* over all drawable characters */

271

Xlib − C Library libX11 1.3.2

XRectangle max_logical_extent; /* over all drawable characters */
} X FontSetExtents;

The XRectanglestructures used to return font set metrics are the usual Xlib screen-oriented rec-
tangles with x, y giving the upper left corner, and width and height always positive.

The max_ink_extent member gives the maximum extent, over all drawable characters, of the rec-
tangles that bound the character glyph image drawn in the foreground color, relative to a constant
origin. SeeXmbTextExtents andXwcTextExtents for detailed semantics.

The max_logical_extent member gives the maximum extent, over all drawable characters, of the
rectangles that specify minimum spacing to other graphical features, relative to a constant origin.
Other graphical features drawn by the client, for example, a border surrounding the text, should
not intersect this rectangle. The max_logical_extent member should be used to compute mini-
mum interline spacing and the minimum area that must be allowed in a text field to draw a giv en
number of arbitrary characters.

Due to context-dependent rendering, appending a given character to a string may change the
string’s extent by an amount other than that character’s individual extent.

The rectangles for a given character in a string can be obtained fromXmbPerCharExtents or
XwcPerCharExtents.

To obtain the maximum extents structure given an XFontSet, useXExtentsOfFontSet.

XFontSetExtents *XExtentsOfFontSet (font_set)
XFontSetfont_set;

font_set Specifies the font set.

The XExtentsOfFontSet function returns anXFontSetExtentsstructure for the fonts used by
the Xmb and Xwc layers for the given font set.

The XFontSetExtentsstructure is owned by Xlib and should not be modified or freed by the
client. Itwill be freed by a call toXFreeFontSetwith the associatedXFontSet. Until freed, its
contents will not be modified by Xlib.

To obtain the escapement in pixels of the specified text as a value, useXmbTextEscapementor
XwcTextEscapement.

int XmbTextEscapement (font_set, string, num_bytes)
XFontSetfont_set;
char *string;
int num_bytes;

int XwcTextEscapement (font_set, string, num_wchars)
XFontSetfont_set;
wchar_t *string;
int num_wchars;

font_set Specifies the font set.

string Specifies the character string.

num_bytes Specifies the number of bytes in the string argument.

num_wchars Specifies the number of characters in the string argument.

The XmbTextEscapementandXwcTextEscapementfunctions return the escapement in pixels
of the specified string as a value, using the fonts loaded for the specified font set. The escapement

272

Xlib − C Library libX11 1.3.2

is the distance in pixels in the primary draw direction from the drawing origin to the origin of the
next character to be drawn, assuming that the rendering of the next character is not dependent on
the supplied string.

Regardless of the character rendering order, the escapement is always positive.

To obtain the overall_ink_return and overall_logical_return arguments, the overall bounding box
of the string’s image, and a logical bounding box, useXmbTextExtents
or XwcTextExtents.

int XmbTextExtents (font_set, string, num_bytes, overall_ink_return, overall_logical_return)
XFontSetfont_set;
char *string;
int num_bytes;
XRectangle *overall_ink_return;
XRectangle *overall_logical_return;

int XwcTextExtents (font_set, string, num_wchars,
overall_ink_return, overall_logical_return)

XFontSetfont_set;
wchar_t *string;
int num_wchars;
XRectangle *overall_ink_return;
XRectangle *overall_logical_return;

font_set Specifies the font set.

string Specifies the character string.

num_bytes Specifies the number of bytes in the string argument.

num_wchars Specifies the number of characters in the string argument.

overall_ink_return
Returns the overall ink dimensions.

overall_logical_return
Returns the overall logical dimensions.

The XmbTextExtents andXwcTextExtents functions set the components of the specified over-
all_ink_return and overall_logical_return arguments to the overall bounding box of the string’s
image and a logical bounding box for spacing purposes, respectively. They return the value
returned byXmbTextEscapementor XwcTextEscapement. These metrics are relative to the
drawing origin of the string, using the fonts loaded for the specified font set.

If the overall_ink_return argument is non-NULL, it is set to the bounding box of the string’s char-
acter ink. The overall_ink_return for a nondescending, horizontally drawn Latin character is con-
ventionally entirely above the baseline; that is, overall_ink_return.height <= −over-
all_ink_return.y. The overall_ink_return for a nonkerned character is entirely at, and to the right
of, the origin; that is, overall_ink_return.x >= 0.A character consisting of a single pixel at the
origin would set overall_ink_return fields y = 0, x = 0, width = 1, and height = 1.

If the overall_logical_return argument is non-NULL, it is set to the bounding box that provides
minimum spacing to other graphical features for the string. Other graphical features, for exam-
ple, a border surrounding the text, should not intersect this rectangle.

When theXFontSet has missing charsets, metrics for each unavailable character are taken from
the default string returned byXCreateFontSetso that the metrics represent the text as it will
actually be drawn. Thebehavior for an invalid codepoint is undefined.

273

Xlib − C Library libX11 1.3.2

To determine the effective drawing origin for a character in a drawn string, the client should call
XmbTextPerCharExtents on the entire string, then on the character, and subtract the x values of
the returned rectangles for the character. This is useful to redraw portions of a line of text or to
justify words, but for context-dependent rendering, the client should not assume that it can redraw
the character by itself and get the same rendering.

To obtain per-character information for a text string, useXmbTextPerCharExtents or Xwc-
TextPerCharExtents.

Status XmbTextPerCharExtents (font_set, string, num_bytes, ink_array_return,
logical_array_return, array_size, num_chars_return, overall_ink_return, overall_logical_return)

XFontSetfont_set;
char *string;
int num_bytes;
XRectangle *ink_array_return;
XRectangle *logical_array_return;
int array_size;
int *num_chars_return;
XRectangle *overall_ink_return;
XRectangle *overall_logical_return;

Status XwcTextPerCharExtents (font_set, string, num_wchars, ink_array_return,
logical_array_return, array_size, num_chars_return, overall_ink_return, overall_ink_return)

XFontSetfont_set;
wchar_t *string;
int num_wchars;
XRectangle *ink_array_return;
XRectangle *logical_array_return;
int array_size;
int *num_chars_return;
XRectangle *overall_ink_return;
XRectangle *overall_logical_return;

font_set Specifies the font set.

string Specifies the character string.

num_bytes Specifies the number of bytes in the string argument.

num_wchars Specifies the number of characters in the string argument.

ink_array_returnReturns the ink dimensions for each character.

logical_array_return
Returns the logical dimensions for each character.

array_size Specifies the size of ink_array_return and logical_array_return.The caller must
pass in arrays of this size.

num_chars_return
Returns the number of characters in the string argument.

overall_ink_return
Returns the overall ink extents of the entire string.

overall_logical_return
Returns the overall logical extents of the entire string.

The XmbTextPerCharExtents andXwcTextPerCharExtents functions return the text dimen-
sions of each character of the specified text, using the fonts loaded for the specified font set. Each
successive element of ink_array_return and logical_array_return is set to the successive

274

Xlib − C Library libX11 1.3.2

character’s drawn metrics, relative to the drawing origin of the string and one rectangle for each
character in the supplied text string. The number of elements of ink_array_return and logi-
cal_array_return that have been set is returned to num_chars_return.

Each element of ink_array_return is set to the bounding box of the corresponding character’s
drawn foreground color. Each element of logical_array_return is set to the bounding box that
provides minimum spacing to other graphical features for the corresponding character. Other
graphical features should not intersect any of the logical_array_return rectangles.

Note that anXRectangle represents the effective drawing dimensions of the character, reg ardless
of the number of font glyphs that are used to draw the character or the direction in which the char-
acter is drawn. If multiple characters map to a single character glyph, the dimensions of all the
XRectanglesof those characters are the same.

When theXFontSet has missing charsets, metrics for each unavailable character are taken from
the default string returned byXCreateFontSetso that the metrics represent the text as it will
actually be drawn. Thebehavior for an invalid codepoint is undefined.

If the array_size is too small for the number of characters in the supplied text, the functions return
zero and num_chars_return is set to the number of rectangles required. Otherwise, the functions
return a nonzero value.

If the overall_ink_return or overall_logical_return argument is non-NULL,XmbTextPer-
CharExtents andXwcTextPerCharExtents return the maximum extent of the string’s metrics
to overall_ink_return or overall_logical_return, as returned byXmbTextExtents or XwcTextEx-
tents.

13.4.8. DrawingText Using Font Sets
The functions defined in this section draw text at a specified location in a drawable. They are
similar to the functionsXDrawText , XDrawString , and XDrawImageString except that they
work with font sets instead of single fonts and interpret the text based on the locale of the font set
instead of treating the bytes of the string as direct font indexes. Seesection 8.6 for details of the
use of Graphics Contexts (GCs) and possible protocol errors. If aBadFont error is generated,
characters prior to the offending character may have been drawn.

The text is drawn using the fonts loaded for the specified font set; the font in the GC is ignored
and may be modified by the functions. No validation that all fonts conform to some width rule is
performed.

The text functionsXmbDrawText andXwcDrawText use the following structures:

typedef struct {
char *chars; /* pointer to string */
int nchars; /* number of bytes */
int delta; /* pixel delta between strings */
XFontSet font_set; /* fonts, None means don’t change */

} X mbTextItem;

typedef struct {
wchar_t *chars; /* pointer to wide char string */
int nchars; /* number of wide characters */
int delta; /* pixel delta between strings */
XFontSet font_set; /* fonts, None means don’t change */

} X wcTextItem;

To draw text using multiple font sets in a given drawable, useXmbDrawText or XwcDrawText .

275

Xlib − C Library libX11 1.3.2

void XmbDrawText(display, d, gc, x, y, items, nitems)
Display *display;
Drawabled;
GC gc;
int x, y;
XmbTextItem *items;
int nitems;

void XwcDrawText(display, d, gc, x, y, items, nitems)
Display *display;
Drawabled;
GC gc;
int x, y;
XwcTextItem *items;
int nitems;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

x
y Specify the x and y coordinates.

items Specifies an array of text items.

nitems Specifies the number of text items in the array.

The XmbDrawText andXwcDrawText functions allow complex spacing and font set shifts
between text strings. Each text item is processed in turn, with the origin of a text element
advanced in the primary draw direction by the escapement of the previous text item.A text item
delta specifies an additional escapement of the text item drawing origin in the primary draw direc-
tion. A font_set member other thanNone in an item causes the font set to be used for this and
subsequent text items in the text_items list. Leading text items with a font_set member set to
None will not be drawn.

XmbDrawText andXwcDrawText do not perform any context-dependent rendering between
text segments. Clientsmay compute the drawing metrics by passing each text segment toXmb-
TextExtents andXwcTextExtents or XmbTextPerCharExtents andXwcTextPerCharEx-
tents. When theXFontSet has missing charsets, each unavailable character is drawn with the
default string returned byXCreateFontSet. The behavior for an invalid codepoint is undefined.

To draw text using a single font set in a given drawable, useXmbDrawString or XwcDraw-
String .

276

Xlib − C Library libX11 1.3.2

void XmbDrawString (display, d, font_set, gc, x, y, string, num_bytes)
Display *display;
Drawabled;
XFontSetfont_set;
GC gc;
int x, y;
char *string;
int num_bytes;

void XwcDrawString (display, d, font_set, gc, x, y, string, num_wchars)
Display *display;
Drawabled;
XFontSetfont_set;
GC gc;
int x, y;
wchar_t *string;
int num_wchars;

display Specifies the connection to the X server.

d Specifies the drawable.

font_set Specifies the font set.

gc Specifies the GC.

x
y Specify the x and y coordinates.

string Specifies the character string.

num_bytes Specifies the number of bytes in the string argument.

num_wchars Specifies the number of characters in the string argument.

The XmbDrawString andXwcDrawString functions draw the specified text with the fore-
ground pixel. Whenthe XFontSet has missing charsets, each unavailable character is drawn
with the default string returned byXCreateFontSet. The behavior for an invalid codepoint is
undefined.

To draw image text using a single font set in a given drawable, useXmbDrawImageString or
XwcDrawImageString.

277

Xlib − C Library libX11 1.3.2

void XmbDrawImageString (display, d, font_set, gc, x, y, string, num_bytes)
Display *display;
Drawabled;
XFontSetfont_set;
GC gc;
int x, y;
char *string;
int num_bytes;

void XwcDrawImageString (display, d, font_set, gc, x, y, string, num_wchars)
Display *display;
Drawabled;
XFontSetfont_set;
GC gc;
int x, y;
wchar_t *string;
int num_wchars;

display Specifies the connection to the X server.

d Specifies the drawable.

font_set Specifies the font set.

gc Specifies the GC.

x
y Specify the x and y coordinates.

string Specifies the character string.

num_bytes Specifies the number of bytes in the string argument.

num_wchars Specifies the number of characters in the string argument.

The XmbDrawImageString andXwcDrawImageString functions fill a destination rectangle
with the background pixel defined in the GC and then paint the text with the foreground pixel.
The filled rectangle is the rectangle returned to overall_logical_return byXmbTextExtents or
XwcTextExtents for the same text andXFontSet.
When theXFontSet has missing charsets, each unavailable character is drawn with the default
string returned byXCreateFontSet. The behavior for an invalid codepoint is undefined.

13.5. Input Methods
This section provides discussions of the following X Input Method (XIM) topics:

• Input method overview

• Input method management

• Input method functions

• Input method values

• Input context functions

• Input context values

• Input method callback semantics

• Event filtering

• Getting keyboard input

• Input method conventions

278

Xlib − C Library libX11 1.3.2

13.5.1. InputMethod Overview
This section provides definitions for terms and concepts used for internationalized text input and a
brief overview of the intended use of the mechanisms provided by Xlib.

A large number of languages in the world use alphabets consisting of a small set of symbols (let-
ters) to form words. To enter text into a computer in an alphabetic language, a user usually has a
keyboard on which there exist key symbols corresponding to the alphabet. Sometimes, a few
characters of an alphabetic language are missing on the keyboard. Many computer users who
speak a Latin-alphabet-based language only have an English-based keyboard. They need to hit a
combination of keystrokes to enter a character that does not exist directly on the keyboard. A
number of algorithms have been developed for entering such characters. These are known as
European input methods, compose input methods, or dead-key input methods.

Japanese is an example of a language with a phonetic symbol set, where each symbol represents a
specific sound. There are two phonetic symbol sets in Japanese: Katakana and Hiragana. Ingen-
eral, Katakana is used for words that are of foreign origin, and Hiragana is used for writing native
Japanese words. Collectively, the two systems are called Kana. Each set consists of 48 charac-
ters.

Korean also has a phonetic symbol set, called Hangul. Each of the 24 basic phonetic symbols (14
consonants and 10 vowels) represents a specific sound.A syllable is composed of two or three
parts: the initial consonants, the vowels, and the optional last consonants.With Hangul, syllables
can be treated as the basic units on which text processing is done.For example, a delete opera-
tion may work on a phonetic symbol or a syllable.Korean code sets include several thousands of
these syllables.A user types the phonetic symbols that make up the syllables of the words to be
entered. Thedisplay may change as each phonetic symbol is entered.For example, when the
second phonetic symbol of a syllable is entered, the first phonetic symbol may change its shape
and size. Likewise, when the third phonetic symbol is entered, the first two phonetic symbols
may change their shape and size.

Not all languages rely solely on alphabetic or phonetic systems. Some languages, including
Japanese and Korean, employ an ideographic writing system. In an ideographic system, rather
than taking a small set of symbols and combining them in different ways to create words, each
word consists of one unique symbol (or, occasionally, sev eral symbols). The number of symbols
can be very large: approximately 50,000 have been identified in Hanzi, the Chinese ideographic
system.

Tw o major aspects of ideographic systems impact their use with computers. First, the standard
computer character sets in Japan, China, and Korea include roughly 8,000 characters, while sets
in Taiwan have between 15,000 and 30,000 characters. This makes it necessary to use more than
one byte to represent a character. Second, it obviously is impractical to have a keyboard that
includes all of a given language’s ideographic symbols. Therefore, a mechanism is required for
entering characters so that a keyboard with a reasonable number of keys can be used. Those input
methods are usually based on phonetics, but there also exist methods based on the graphical prop-
erties of characters.

In Japan, both Kana and the ideographic system Kanji are used. In Korea, Hangul and sometimes
the ideographic system Hanja are used. Now consider entering ideographs in Japan, Korea,
China, and Taiwan.

In Japan, either Kana or English characters are typed and then a region is selected (sometimes
automatically) for conversion to Kanji. Several Kanji characters may have the same phonetic rep-
resentation. Ifthat is the case with the string entered, a menu of characters is presented and the
user must choose the appropriate one. If no choice is necessary or a preference has been estab-
lished, the input method does the substitution directly. When Latin characters are converted to
Kana or Kanji, it is called a romaji conversion.

In Korea, it is usually acceptable to keep Korean text in Hangul form, but some people may
choose to write Hanja-originated words in Hanja rather than in Hangul.To change Hangul to
Hanja, the user selects a region for conversion and then follows the same basic method as that

279

Xlib − C Library libX11 1.3.2

described for Japanese.

Probably because there are well-accepted phonetic writing systems for Japanese and Korean,
computer input methods in these countries for entering ideographs are fairly standard.Ke yboard
keys have both English characters and phonetic symbols engraved on them, and the user can
switch between the two sets.

The situation is different for Chinese. While there is a phonetic system called Pinyin promoted
by authorities, there is no consensus for entering Chinese text. Somevendors use a phonetic
decomposition (Pinyin or another), others use ideographic decomposition of Chinese words, with
various implementations and keyboard layouts. There are about 16 known methods, none of
which is a clear standard.

Also, there are actually two ideographic sets used: Traditional Chinese (the original written Chi-
nese) and Simplified Chinese. Several years ago, the People’s Republic of China launched a cam-
paign to simplify some ideographic characters and eliminate redundancies altogether. Under the
plan, characters would be streamlined every five years. Charactershave been revised several
times now, resulting in the smaller, simpler set that makes up Simplified Chinese.

13.5.1.1. InputMethod Architecture
As shown in the previous section, there are many different input methods in use today, each vary-
ing with language, culture, and history. A common feature of many input methods is that the user
may type multiple keystrokes to compose a single character (or set of characters). The process of
composing characters from keystrokes is calledpreediting. It may require complex algorithms
and large dictionaries involving substantial computer resources.

Input methods may require one or more areas in which to show the feedback of the actual
keystrokes, to propose disambiguation to the user, to list dictionaries, and so on. The input
method areas of concern are as follows:

• Thestatusarea is a logical extension of the LEDs that exist on the physical keyboard. Itis
a window that is intended to present the internal state of the input method that is critical to
the user. The status area may consist of text data and bitmaps or some combination.

• Thepreeditarea displays the intermediate text for those languages that are composing prior
to the client handling the data.

• Theauxiliary area is used for pop-up menus and customizing dialogs that may be required
for an input method. There may be multiple auxiliary areas for an input method. Auxiliary
areas are managed by the input method independent of the client. Auxiliary areas are
assumed to be separate dialogs, which are maintained by the input method.

There are various user interaction styles used for preediting. The ones supported by Xlib are as
follows:

• For on-the-spotinput methods, preediting data will be displayed directly in the application
window. Application data is moved to allow preedit data to appear at the point of insertion.

• Over-the-spotpreediting means that the data is displayed in a preedit window that is placed
over the point of insertion.

• Off-the-spotpreediting means that the preedit window is inside the application window but
not at the point of insertion. Often, this type of window is placed at the bottom of the
application window.

• Root-windowpreediting refers to input methods that use a preedit window that is the child
of RootWindow.

It would require a lot of computing resources if portable applications had to include input meth-
ods for all the languages in the world. To avoid this, a goal of the Xlib design is to allow an
application to communicate with an input method placed in a separate process. Such a process is
called aninput server. The server to which the application should connect is dependent on the
environment when the application is started up, that is, the user language and the actual encoding

280

Xlib − C Library libX11 1.3.2

to be used for it. The input method connection is said to belocale-dependent. It is also user-
dependent. For a given language, the user can choose, to some extent, the user interface style of
input method (if choice is possible among several).

Using an input server implies communication overhead, but applications can be migrated without
relinking. Inputmethods can be implemented either as a stub communicating to an input server
or as a local library.

An input method may be based on afront-endor aback-endarchitecture. Ina front-end architec-
ture, there are two separate connections to the X server: keystrokes go directly from the X server
to the input method on one connection and other events to the regular client connection. The
input method is then acting as a filter and sends composed strings to the client.A f ront-end archi-
tecture requires synchronization between the two connections to avoid lost key events or locking
issues.

In a back-end architecture, a single X server connection is used.A dispatching mechanism must
decide on this channel to delegate appropriate keystrokes to the input method.For instance, it
may retain a Help keystroke for its own purpose. In the case where the input method is a separate
process (that is, a server), there must be a special communication protocol between the back-end
client and the input server.

A f ront-end architecture introduces synchronization issues and a filtering mechanism for nonchar-
acter keystrokes (Function keys, Help, and so on).A back-end architecture sometimes implies
more communication overhead and more process switching. If all three processes (X server,
input server, client) are running on a single workstation, there are two process switches for each
keystroke in a back-end architecture, but there is only one in a front-end architecture.

The abstraction used by a client to communicate with an input method is an opaque data structure
represented by theXIM data type. This data structure is returned by theXOpenIM function,
which opens an input method on a given display. Subsequent operations on this data structure
encapsulate all communication between client and input method. There is no need for an X client
to use any networking library or natural language package to use an input method.

A single input server may be used for one or more languages, supporting one or more encoding
schemes. Butthe strings returned from an input method will always be encoded in the (single)
locale associated with theXIM object.

13.5.1.2. InputContexts
Xlib provides the ability to manage a multi-threaded state for text input.A client may be using
multiple windows, each window with multiple text entry areas, and the user possibly switching
among them at any time. Theabstraction for representing the state of a particular input thread is
called aninput context. The Xlib representation of an input context is anXIC .

An input context is the abstraction retaining the state, properties, and semantics of communica-
tion between a client and an input method. An input context is a combination of an input method,
a locale specifying the encoding of the character strings to be returned, a client window, internal
state information, and various layout or appearance characteristics. The input context concept
somewhat matches for input the graphics context abstraction defined for graphics output.

One input context belongs to exactly one input method. Different input contexts may be associ-
ated with the same input method, possibly with the same client window. An XIC is created with
the XCreateIC function, providing anXIM argument and affiliating the input context to the
input method for its lifetime. When an input method is closed withXCloseIM , all of its affili-
ated input contexts should not be used any more (and should preferably be destroyed before clos-
ing the input method).

Considering the example of a client window with multiple text entry areas, the application pro-
grammer could, for example, choose to implement as follows:

• As many input contexts are created as text entry areas, and the client will get the input
accumulated on each context each time it looks up in that context.

281

Xlib − C Library libX11 1.3.2

• A single context is created for a top-level window in the application. If such a window
contains several text entry areas, each time the user moves to another text entry area, the
client has to indicate changes in the context.

A range of choices can be made by application designers to use either a single or multiple input
contexts, according to the needs of their application.

13.5.1.3. GettingKeyboard Input
To obtain characters from an input method, a client must call the functionXmbLookupString or
XwcLookupString with an input context created from that input method. Both a locale and dis-
play are bound to an input method when it is opened, and an input context inherits this locale and
display. Any strings returned byXmbLookupString or XwcLookupString will be encoded in
that locale.

13.5.1.4. Focus Management
For each text entry area in which theXmbLookupString or XwcLookupString functions are
used, there will be an associated input context.

When the application focus moves to a text entry area, the application must set the input context
focus to the input context associated with that area. The input context focus is set by calling
XSetICFocuswith the appropriate input context.

Also, when the application focus moves out of a text entry area, the application should unset the
focus for the associated input context by callingXUnsetICFocus. As an optimization, if XSet-
ICFocus is called successively on two different input contexts, setting the focus on the second
will automatically unset the focus on the first.

To set and unset the input context focus correctly, it is necessary to track application-level focus
changes. Suchfocus changes do not necessarily correspond to X server focus changes.

If a single input context is being used to do input for multiple text entry areas, it will also be nec-
essary to set the focus window of the input context whenever the focus window changes (see sec-
tion 13.5.6.3).

13.5.1.5. GeometryManagement
In most input method architectures (on-the-spot being the notable exception), the input method
will perform the display of its own data.To provide better visual locality, it is often desirable to
have the input method areas embedded within a client.To do this, the client may need to allocate
space for an input method. Xlib provides support that allows the size and position of input
method areas to be provided by a client. The input method areas that are supported for geometry
management are the status area and the preedit area.

The fundamental concept on which geometry management for input method windows is based is
the proper division of responsibilities between the client (or toolkit) and the input method. The
division of responsibilities is as follows:

• The client is responsible for the geometry of the input method window.

• The input method is responsible for the contents of the input method window.

An input method is able to suggest a size to the client, but it cannot suggest a placement. Also the
input method can only suggest a size. It does not determine the size, and it must accept the size it
is given.

Before a client provides geometry management for an input method, it must determine if geome-
try management is needed. The input method indicates the need for geometry management by
settingXIMPreeditArea or XIMStatusArea in its XIMStyles value returned byXGetIMVal-
ues. When a client has decided that it will provide geometry management for an input method, it
indicates that decision by setting theXNInputStyle value in theXIC .

282

Xlib − C Library libX11 1.3.2

After a client has established with the input method that it will do geometry management, the
client must negotiate the geometry with the input method. The geometry is negotiated by the fol-
lowing steps:

• The client suggests an area to the input method by setting theXNAreaNeededvalue for
that area. If the client has no constraints for the input method, it either will not suggest an
area or will set the width and height to zero. Otherwise, it will set one of the values.

• The client will get the XIC valueXNAreaNeeded. The input method will return its sug-
gested size in this value. Theinput method should pay attention to any constraints sug-
gested by the client.

• The client sets the XIC valueXNArea to inform the input method of the geometry of its
window. The client should try to honor the geometry requested by the input method. The
input method must accept this geometry.

Clients doing geometry management must be aware that setting other XIC values may affect the
geometry desired by an input method.For example,XNFontSet andXNLineSpacing may
change the geometry desired by the input method.

The table of XIC values (see section 13.5.6) indicates the values that can cause the desired geom-
etry to change when they are set. It is the responsibility of the client to renegotiate the geometry
of the input method window when it is needed.

In addition, a geometry management callback is provided by which an input method can initiate a
geometry change.

13.5.1.6. Event Filtering
A filtering mechanism is provided to allow input methods to capture X events transparently to
clients. Itis expected that toolkits (or clients) usingXmbLookupString or XwcLookupString
will call this filter at some point in the event processing mechanism to make sure that events
needed by an input method can be filtered by that input method.

If there were no filter, a client could receive and discard events that are necessary for the proper
functioning of an input method. The following provides a few examples of such events:

• Expose events on preedit window in local mode.

• Events may be used by an input method to communicate with an input server. Such input
server protocol-related events have to be intercepted if one does not want to disturb client
code.

• Key events can be sent to a filter before they are bound to translations such as those the X
Toolkit Intrinsics library provides.

Clients are expected to get the XIC valueXNFilterEvents and augment the event mask for the
client window with that event mask. This mask may be zero.

13.5.1.7. Callbacks
When an on-the-spot input method is implemented, only the client can insert or delete preedit
data in place and possibly scroll existing text. Thismeans that the echo of the keystrokes has to
be achieved by the client itself, tightly coupled with the input method logic.

When the user enters a keystroke, the client callsXmbLookupString or XwcLookupString . At
this point, in the on-the-spot case, the echo of the keystroke in the preedit has not yet been done.
Before returning to the client logic that handles the input characters, the look-up function must
call the echoing logic to insert the new keystroke. If the keystrokes entered so far make up a char-
acter, the keystrokes entered need to be deleted, and the composed character will be returned.
Hence, what happens is that, while being called by client code, the input method logic has to call
back to the client before it returns. The client code, that is, a callback procedure, is called from
the input method logic.

283

Xlib − C Library libX11 1.3.2

There are a number of cases where the input method logic has to call back the client. Each of
those cases is associated with a well-defined callback action. It is possible for the client to spec-
ify, for each input context, what callback is to be called for each action.

There are also callbacks provided for feedback of status information and a callback to initiate a
geometry request for an input method.

13.5.1.8. Visible Position Feedback Masks
In the on-the-spot input style, there is a problem when attempting to draw preedit strings that are
longer than the available space. Once the display area is exceeded, it is not clear how best to dis-
play the preedit string. The visible position feedback masks ofXIMText help resolve this prob-
lem by allowing the input method to specify hints that indicate the essential portions of the
preedit string.For example, such hints can help developers implement scrolling of a long preedit
string within a short preedit display area.

13.5.1.9. Preedit String Management
As highlighted before, the input method architecture provides preediting, which supports a type
of preprocessor input composition. In this case, composition consists of interpreting a sequence
of key events and returning a committed string viaXmbLookupString or XwcLookupString .
This provides the basics for input methods.

In addition to preediting based on key events, a general framework is provided to give a client that
desires it more advanced preediting based on the text within the client. This framework is called
string conversionand is provided using XIC values. Thefundamental concept of string conver-
sion is to allow the input method to manipulate the client’s text independent of any user preedit-
ing operation.

The need for string conversion is based on language needs and input method capabilities. The
following are some examples of string conversion:

• Transliteration conversion provides language-specific conversions within the input method.
In the case of Korean input, users wish to convert a Hangul string into a Hanja string while
in preediting, after preediting, or in other situations (for example, on a selected string). The
conversion is triggered when the user presses a Hangul-to-Hanja key sequence (which may
be input method specific). Sometimes the user may want to invoke the conversion after fin-
ishing preediting or on a user-selected string. Thus, the string to be converted is in an
application buffer, not in the preedit area of the input method. The string conversion ser-
vices allow the client to request this transliteration conversion from the input method.
There are many other transliteration conversions defined for various languages, for exam-
ple, Kana-to-Kanji conversion in Japanese.

The key to remember is that transliteration conversions are triggered at the request of the
user and returned to the client immediately without affecting the preedit area of the input
method.

• Reconversion of a previously committed string or a selected string is supported by many
input methods as a convenience to the user. For example, a user tends to mistype the com-
mit key while preediting. In that case, some input methods provide a special key sequence
to request a ‘‘reconvert’’ operation on the committed string, similiar to the undo facility
provided by most text editors. Another example is where the user is proofreading a docu-
ment that has some misconversions from preediting and wants to correct the misconverted
text. Suchreconversion is again triggered by the user invoking some special action, but
reconversions should not affect the state of the preedit area.

• Context-sensitive conversion is required for some languages and input methods that need to
retrieve text that surrounds the current spot location (cursor position) of the client’s buffer.
Such text is needed when the preediting operation depends on some surrounding characters
(usually preceding the spot location).For example, in Thai language input, certain

284

Xlib − C Library libX11 1.3.2

character sequences may be invalid and the input method may want to check whether char-
acters constitute a valid word. Inputmethods that do such context-dependent checking
need to retrieve the characters surrounding the current cursor position to obtain complete
words.

Unlike other conversions, this conversion is not explicitly requested by the user. Input
methods that provide such context-sensitive conversion continuously need to request con-
text from the client, and any change in the context of the spot location may affect such con-
versions. Theclient’s context would be needed if the user moves the cursor and starts edit-
ing again.

For this reason, an input method supporting this type of conversion should take notice of
when the client callsXmbResetIC or XwcResetIC, which is usually an indication of a
context change.

Context-sensitive conversions just need a copy of the client’s text, while other conversions replace
the client’s text with new text to achieve the reconversion or transliteration.Yet in all cases the
result of a conversion, either immediately or via preediting, is returned by theXmbLookup-
String andXwcLookupString functions.

String conversion support is dependent on the availability of the XNStringConversion or
XNStringConversionCallback XIC values. Becausethe input method may not support string
conversions, clients have to query the availability of string conversion operations by checking the
supported XIC values list by callingXGetIMValues with theXNQueryICValuesList IM value.

The difference between these two values is whether the conversion is invoked by the client or the
input method. TheXNStringConversion XIC value is used by clients to request a string conver-
sion from the input method. The client is responsible for determining which events are used to
trigger the string conversion and whether the string to be converted should be copied or deleted.
The type of conversion is determined by the input method; the client can only pass the string to be
converted. Theclient is guaranteed that noXNStringConversionCallback will be issued when
this value is set; thus, the client need only set one of these values.

The XNStringConversionCallback XIC value is used by the client to notify the input method
that it will accept requests from the input method for string conversion. If this value is set, it is
the input method’s responsibility to determine which events are used to trigger the string conver-
sion. Whensuch events occur, the input method issues a call to the client-supplied procedure to
retrieve the string to be converted. Theclient’s callback procedure is notified whether to copy or
delete the string and is provided with hints as to the amount of text needed. TheXIMStringCon-
versionCallbackStruct specifies which text should be passed back to the input method.

Finally, the input method may call the client’sXNStringConversionCallback procedure multi-
ple times if the string returned from the callback is not sufficient to perform a successful conver-
sion. Thearguments to the client’s procedure allow the input method to define a position (in
character units) relative to the client’s cursor position and the size of the text needed. By varying
the position and size of the desired text in subsequent callbacks, the input method can retrieve
additional text.

13.5.2. InputMethod Management
The interface to input methods might appear to be simply creating an input method (XOpenIM)
and freeing an input method (XCloseIM). However, input methods may require complex com-
munication with input method servers (IM servers), for example:

• If the X server, IM server, and X clients are started asynchronously, some clients may
attempt to connect to the IM server before it is fully operational, and fail. Therefore,some
mechanism is needed to allow clients to detect when an IM server has started.

It is up to clients to decide what should be done when an IM server is not available (for example,
wait, or use some other IM server).

285

Xlib − C Library libX11 1.3.2

• Some input methods may allow the underlying IM server to be switched. Such customiza-
tion may be desired without restarting the entire client.

To support management of input methods in these cases, the following functions are provided:

XRegisterIMInstantiateCallback This function allows clients to register a callback pro-
cedure to be called when Xlib detects that an IM
server is up and available.

XOpenIM A client calls this function as a result of the callback
procedure being called.

XSetIMValue , XSetICValue These functions use the XIM and XIC values,XNDe-
stroyCallback, to allow a client to register a callback
procedure to be called when Xlib detects that an IM
server that was associated with an opened input
method is no longer available.

In addition, this function can be used to switch IM
servers for those input methods that support such
functionality. The IM value for switching IM servers
is implementation-dependent; see the description
below about switching IM servers.

XUnregisterIMInstantiateCallback This function removes a callback procedure regis-
tered by the client.

Input methods that support switching of IM servers may exhibit some side-effects:

• The input method will ensure that any new IM server supports any of the input styles being
used by input contexts already associated with the input method. However, the list of sup-
ported input styles may be different.

• Geometry management requests on previously created input contexts may be initiated by
the new IM server.

13.5.2.1. HotKeys
Some clients need to guarantee which keys can be used to escape from the input method, regard-
less of the input method state; for example, the client-specific Help key or the keys to move the
input focus. The HotKey mechanism allows clients to specify a set of keys for this purpose.
However, the input method might not allow clients to specify hot keys. Therefore,clients have to
query support of hot keys by checking the supported XIC values list by callingXGetIMValues
with theXNQueryICValuesList IM value. Whenthe hot keys specified conflict with the key
bindings of the input method, hot keys take precedence over the key bindings of the input method.

13.5.2.2. Preedit State Operation
An input method may have sev eral internal states, depending on its implementation and the
locale. However, one state that is independent of locale and implementation is whether the input
method is currently performing a preediting operation. Xlib provides the ability for an applica-
tion to manage the preedit state programmatically. Two methods are provided for retrieving the
preedit state of an input context. Onemethod is to query the state by callingXGetICValues with
the XNPreeditState XIC value. Anothermethod is to receive notification whenever the preedit
state is changed.To receive such notification, an application needs to register a callback by call-
ing XSetICValues with theXNPreeditStateNotifyCallback XIC value. Inorder to change the
preedit state programmatically, an application needs to callXSetICValues with XNPreedit-
State.
Av ailability of the preedit state is input method dependent. The input method may not provide
the ability to set the state or to retrieve the state programmatically. Therefore, clients have to
query availability of preedit state operations by checking the supported XIC values list by calling

286

Xlib − C Library libX11 1.3.2

XGetIMValues with theXNQueryICValuesList IM value.

13.5.3. InputMethod Functions
To open a connection, useXOpenIM .

XIM XOpenIM(display, db, res_name, res_class)
Display *display;
XrmDatabasedb;
char *res_name;
char *res_class;

display Specifies the connection to the X server.

db Specifies a pointer to the resource database.

res_name Specifies the full resource name of the application.

res_class Specifies the full class name of the application.

The XOpenIM function opens an input method, matching the current locale and modifiers speci-
fication. Currentlocale and modifiers are bound to the input method at opening time. The locale
associated with an input method cannot be changed dynamically. This implies that the strings
returned byXmbLookupString or XwcLookupString , for any input context affiliated with a
given input method, will be encoded in the locale current at the time the input method is opened.

The specific input method to which this call will be routed is identified on the basis of the current
locale. XOpenIM will identify a default input method corresponding to the current locale. That
default can be modified usingXSetLocaleModifiers for the input method modifier.

The db argument is the resource database to be used by the input method for looking up resources
that are private to the input method. It is not intended that this database be used to look up values
that can be set as IC values in an input context. If db is NULL, no database is passed to the input
method.

The res_name and res_class arguments specify the resource name and class of the application.
They are intended to be used as prefixes by the input method when looking up resources that are
common to all input contexts that may be created for this input method. The characters used for
resource names and classes must be in the X Portable Character Set. The resources looked up are
not fully specified if res_name or res_class is NULL.

The res_name and res_class arguments are not assumed to exist beyond the call toXOpenIM .
The specified resource database is assumed to exist for the lifetime of the input method.

XOpenIM returns NULL if no input method could be opened.

To close a connection, useXCloseIM .

Status XCloseIM(im)
XIM im;

im Specifies the input method.

The XCloseIM function closes the specified input method.

To set input method attributes, useXSetIMValues.

287

Xlib − C Library libX11 1.3.2

char * XSetIMValues (im, ...)
XIM im;

im Specifies the input method.

... Specifiesthe variable-length argument list to set XIM values.

The XSetIMValues function presents a variable argument list programming interface for setting
attributes of the specified input method. It returns NULL if it succeeds; otherwise, it returns the
name of the first argument that could not be set. Xlib does not attempt to set arguments from the
supplied list that follow the failed argument; all arguments in the list preceding the failed argu-
ment have been set correctly.

To query an input method, useXGetIMValues .

char * XGetIMValues (im, ...)
XIM im;

im Specifies the input method.

... Specifiesthe variable length argument list to get XIM values.

The XGetIMValues function presents a variable argument list programming interface for query-
ing properties or features of the specified input method. This function returns NULL if it suc-
ceeds; otherwise, it returns the name of the first argument that could not be obtained.

Each XIM value argument (following a name) must point to a location where the XIM value is to
be stored. That is, if the XIM value is of type T, the argument must be of type T*. If T itself is a
pointer type, thenXGetIMValues allocates memory to store the actual data, and the client is
responsible for freeing this data by callingXFree with the returned pointer.

To obtain the display associated with an input method, useXDisplayOfIM .

Display * XDisplayOfIM(im)
XIM im;

im Specifies the input method.

The XDisplayOfIM function returns the display associated with the specified input method.

To get the locale associated with an input method, useXLocaleOfIM .

char * XLocaleOfIM(im)
XIM im;

im Specifies the input method.

The XLocaleOfIM function returns the locale associated with the specified input method.

To register an input method instantiate callback, useXRegisterIMInstantiateCallback .

288

Xlib − C Library libX11 1.3.2

Bool XRegisterIMInstantiateCallback (display, db, res_name, res_class, callback, client_data)
Display *display;
XrmDatabasedb;
char *res_name;
char *res_class;
XIMProc callback;
XPointer *client_data;

display Specifies the connection to the X server.

db Specifies a pointer to the resource database.

res_name Specifies the full resource name of the application.

res_class Specifies the full class name of the application.

callback Specifies a pointer to the input method instantiate callback.

client_data Specifies the additional client data.

The XRegisterIMInstantiateCallback function registers a callback to be invoked whenever a
new input method becomes available for the specified display that matches the current locale and
modifiers.

The function returnsTr ue
if it succeeds; otherwise, it returnsFalse.

The generic prototype is as follows:

void IMInstantiateCallback(display, client_data, call_data)
Display *display;
XPointerclient_data;
XPointercall_data;

display Specifies the connection to the X server.

client_data Specifies the additional client data.

call_data Not used for this callback and always passed as NULL.

To unregister an input method instantiation callback, useXUnregisterIMInstantiateCallback .

Bool XUnregisterIMInstantiateCallback (display, db, res_name, res_class, callback, client_data)
Display *display;
XrmDatabasedb;
char *res_name;
char *res_class;
XIMProc callback;
XPointer *client_data;

display Specifies the connection to the X server.

db Specifies a pointer to the resource database.

res_name Specifies the full resource name of the application.

res_class Specifies the full class name of the application.

callback Specifies a pointer to the input method instantiate callback.

client_data Specifies the additional client data.

The XUnregisterIMInstantiateCallback function removes an input method instantiation

289

Xlib − C Library libX11 1.3.2

callback previously registered. Thefunction returnsTr ue if it succeeds; otherwise, it returns
False.

13.5.4. InputMethod Values
The following table describes how XIM values are interpreted by an input method. The first col-
umn lists the XIM values. Thesecond column indicates how each of the XIM values are treated
by that input style.

The following keys apply to this table.

Key Explanation

D This value may be set usingXSetIMValues. If it is not set,
a default is provided.

S This value may be set usingXSetIMValues.
G This value may be read usingXGetIMValues .

XIM V alue Key

XNQueryInputStyle G
XNResourceName D-S-G
XNResourceClass D-S-G
XNDestroyCallback D-S-G
XNQueryIMValuesList G
XNQueryICValuesList G
XNVisiblePosition G
XNR6PreeditCallbackBehavior D-S-G

XNR6PreeditCallbackBehavior is obsolete and its use is not recommended (see section
13.5.4.6).

13.5.4.1. QueryInput Style
A client should always query the input method to determine which input styles are supported.
The client should then find an input style it is capable of supporting.

If the client cannot find an input style that it can support, it should negotiate with the user the con-
tinuation of the program (exit, choose another input method, and so on).

The argument value must be a pointer to a location where the returned value will be stored. The
returned value is a pointer to a structure of typeXIMStyles . Clients are responsible for freeing
the XIMStyles structure. To do so, useXFree.

The XIMStyles structure is defined as follows:

typedef unsigned long XIMStyle;

#define XIMPreeditArea 0x0001L
#define XIMPreeditCallbacks 0x0002L
#define XIMPreeditPosition 0x0004L
#define XIMPreeditNothing 0x0008L
#define XIMPreeditNone 0x0010L

290

Xlib − C Library libX11 1.3.2

#define XIMStatusArea 0x0100L
#define XIMStatusCallbacks 0x0200L
#define XIMStatusNothing 0x0400L
#define XIMStatusNone 0x0800L

typedef struct {
unsigned short count_styles;
XIMStyle * supported_styles;

} X IMStyles;

An XIMStyles structure contains the number of input styles supported in its count_styles field.
This is also the size of the supported_styles array.

The supported styles is a list of bitmask combinations, which indicate the combination of styles
for each of the areas supported. These areas are described later. Each element in the list should
select one of the bitmask values for each area. The list describes the complete set of combina-
tions supported. Only these combinations are supported by the input method.

The preedit category defines what type of support is provided by the input method for preedit
information.

XIMPreeditArea If chosen, the input method would require the client to provide some
area values for it to do its preediting. Refer to XIC valuesXNArea
andXNAreaNeeded.

XIMPreeditPosition If chosen, the input method would require the client to provide posi-
tional values. Referto XIC valuesXNSpotLocation andXNFo-
cusWindow.

XIMPreeditCallbacks If chosen, the input method would require the client to define the set
of preedit callbacks. Refer to XIC valuesXNPreeditStartCallback ,
XNPreeditDoneCallback, XNPreeditDrawCallback , and
XNPreeditCaretCallback.

XIMPreeditNothing If chosen, the input method can function without any preedit values.
XIMPreeditNone The input method does not provide any preedit feedback. Any

preedit value is ignored. This style is mutually exclusive with the
other preedit styles.

The status category defines what type of support is provided by the input method for status infor-
mation.

XIMStatusArea The input method requires the client to provide some area values for
it to do its status feedback. SeeXNArea andXNAreaNeeded.

XIMStatusCallbacks The input method requires the client to define the set of status call-
backs,XNStatusStartCallback, XNStatusDoneCallback, and
XNStatusDrawCallback.

XIMStatusNothing The input method can function without any status values.
XIMStatusNone The input method does not provide any status feedback. If chosen,

any status value is ignored. This style is mutually exclusive with the
other status styles.

13.5.4.2. Resource Name and Class
The XNResourceNameandXNResourceClassarguments are strings that specify the full name
and class used by the input method. These values should be used as prefixes for the name and
class when looking up resources that may vary according to the input method. If these values are
not set, the resources will not be fully specified.

291

Xlib − C Library libX11 1.3.2

It is not intended that values that can be set as XIM values be set as resources.

13.5.4.3. Destroy Callback
The XNDestroyCallback argument is a pointer to a structure of typeXIMCallback . XNDe-
stroyCallback is triggered when an input method stops its service for any reason. Afterthe call-
back is invoked, the input method is closed and the associated input context(s) are destroyed by
Xlib. Therefore, the client should not callXCloseIM or XDestroyIC .

The generic prototype of this callback function is as follows:

void DestroyCallback (im, client_data, call_data)
XIM im;
XPointerclient_data;
XPointercall_data;

im Specifies the input method.

client_data Specifies the additional client data.

call_data Not used for this callback and always passed as NULL.

A DestroyCallback is always called with a NULL call_data argument.

13.5.4.4. QueryIM/IC Values List
XNQueryIMValuesList andXNQueryICValuesList are used to query about XIM and XIC val-
ues supported by the input method.

The argument value must be a pointer to a location where the returned value will be stored. The
returned value is a pointer to a structure of typeXIMValuesList . Clients are responsible for
freeing theXIMValuesList structure. To do so, useXFree.

The XIMValuesList structure is defined as follows:

typedef struct {
unsigned short count_values;
char **supported_values;

} X IMValuesList;

13.5.4.5. Visible Position
The XNVisiblePosition argument indicates whether the visible position masks ofXIMFeed-
back in XIMText are available.

The argument value must be a pointer to a location where the returned value will be stored. The
returned value is of typeBool. If the returned value isTr ue, the input method uses the visible
position masks ofXIMFeedback in XIMText ; otherwise, the input method does not use the
masks.

Because this XIM value is optional, a client should callXGetIMValues with argument
XNQueryIMValues before using this argument. Ifthe XNVisiblePosition does not exist in the
IM values list returned fromXNQueryIMValues , the visible position masks ofXIMFeedback
in XIMText are not used to indicate the visible position.

292

Xlib − C Library libX11 1.3.2

13.5.4.6. Preedit Callback Behavior
The XNR6PreeditCallbackBehavior argument originally included in the X11R6 specification
has been deprecated.†

The XNR6PreeditCallbackBehavior argument indicates whether the behavior of preedit call-
backs regarding XIMPreeditDrawCallbackStruct values follows Release 5 or Release 6 seman-
tics.

The value is of typeBool. When querying forXNR6PreeditCallbackBehavior, if the returned
value isTr ue, the input method uses the Release 6 behavior; otherwise, it uses the Release 5
behavior. The default value isFalse. In order to use Release 6 semantics, the value of
XNR6PreeditCallbackBehavior must be set toTr ue.

Because this XIM value is optional, a client should callXGetIMValues with argument
XNQueryIMValues before using this argument. Ifthe XNR6PreeditCallbackBehavior does
not exist in the IM values list returned fromXNQueryIMValues , the PreeditCallback behavior is
Release 5 semantics.

13.5.5. InputContext Functions
An input context is an abstraction that is used to contain both the data required (if any) by an
input method and the information required to display that data. There may be multiple input con-
texts for one input method. The programming interfaces for creating, reading, or modifying an
input context use a variable argument list. The name elements of the argument lists are referred
to as XIC values. Itis intended that input methods be controlled by these XIC values. Asnew
XIC values are created, they should be registered with the X Consortium.

To create an input context, useXCreateIC .

XIC XCreateIC(im, ...)
XIM im;

im Specifies the input method.

... Specifiesthe variable length argument list to set XIC values.

The XCreateIC function creates a context within the specified input method.

Some of the arguments are mandatory at creation time, and the input context will not be created if
those arguments are not provided. Themandatory arguments are the input style and the set of text
callbacks (if the input style selected requires callbacks). All other input context values can be set
later.

XCreateIC returns a NULL value if no input context could be created.A NULL value could be
returned for any of the following reasons:

• A required argument was not set.

• A read-only argument was set (for example,XNFilterEvents).

• The argument name is not recognized.

• The input method encountered an input method implementation-dependent error.

XCreateIC can generateBadAtom, BadColor, BadPixmap, and BadWindow errors.

To destroy an input context, useXDestroyIC .

† During formulation of the X11R6 specification, the behavior of the R6 PreeditDrawCallbacks was going to differ significantly from
that of the R5 callbacks. Late changes to the specification converged the R5 and R6 behaviors, eliminating the need forXNR6PreeditCall-
backBehavior. Unfortunately, this argument was not removed from the R6 specification before it was published.

293

Xlib − C Library libX11 1.3.2

void XDestroyIC (ic)
XIC ic;

ic Specifies the input context.

XDestroyIC destroys the specified input context.

To communicate to and synchronize with input method for any changes in keyboard focus from
the client side, useXSetICFocusandXUnsetICFocus.

void XSetICFocus (ic)
XIC ic;

ic Specifies the input context.

The XSetICFocus function allows a client to notify an input method that the focus window
attached to the specified input context has received keyboard focus. The input method should
take action to provide appropriate feedback. Complete feedback specification is a matter of user
interface policy.

Calling XSetICFocusdoes not affect the focus window value.

void XUnsetICFocus (ic)
XIC ic;

ic Specifies the input context.

The XUnsetICFocus function allows a client to notify an input method that the specified input
context has lost the keyboard focus and that no more input is expected on the focus window
attached to that input context. Theinput method should take action to provide appropriate feed-
back. Completefeedback specification is a matter of user interface policy.

Calling XUnsetICFocusdoes not affect the focus window value; the client may still receive
ev ents from the input method that are directed to the focus window.

To reset the state of an input context to its initial state, useXmbResetIC or XwcResetIC.

char * XmbResetIC(ic)
XIC ic;

wchar_t * XwcResetIC(ic)
XIC ic;

ic Specifies the input context.

WhenXNResetStateis set toXIMInitialState , XmbResetIC andXwcResetIC reset an input
context to its initial state; whenXNResetStateis set toXIMPreserveState, the current input
context state is preserved. Inboth cases, any input pending on that context is deleted. The input
method is required to clear the preedit area, if any, and update the status accordingly. Calling
XmbResetIC or XwcResetIC does not change the focus.

The return value ofXmbResetIC is its current preedit string as a multibyte string. If there is any
preedit text drawn or visible to the user, then these procedures must return a non-NULL string. If

294

Xlib − C Library libX11 1.3.2

there is no visible preedit text, then it is input method implementation-dependent whether these
procedures return a non-NULL string or NULL.

The client should free the returned string by callingXFree.

To get the input method associated with an input context, useXIMOfIC .

XIM XIMOfIC(ic)
XIC ic;

ic Specifies the input context.

The XIMOfIC function returns the input method associated with the specified input context.

Xlib provides two functions for setting and reading XIC values, respectively, XSetICValues and
XGetICValues. Both functions have a variable-length argument list. In that argument list, any
XIC value’s name must be denoted with a character string using the X Portable Character Set.

To set XIC values, useXSetICValues.

char * XSetICValues (ic, ...)
XIC ic;

ic Specifies the input context.

... Specifiesthe variable length argument list to set XIC values.

The XSetICValues function returns NULL if no error occurred; otherwise, it returns the name of
the first argument that could not be set. An argument might not be set for any of the following
reasons:

• The argument is read-only (for example,XNFilterEvents).

• The argument name is not recognized.

• An implementation-dependent error occurs.

Each value to be set must be an appropriate datum, matching the data type imposed by the seman-
tics of the argument.

XSetICValues can generateBadAtom, BadColor, BadCursor, BadPixmap, and BadWin-
dow errors.

To obtain XIC values, useXGetICValues.

char * XGetICValues (ic, ...)
XIC ic;

ic Specifies the input context.

... Specifiesthe variable length argument list to get XIC values.

The XGetICValues function returns NULL if no error occurred; otherwise, it returns the name of
the first argument that could not be obtained. An argument could not be obtained for any of the
following reasons:

• The argument name is not recognized.

• The input method encountered an implementation-dependent error.

295

Xlib − C Library libX11 1.3.2

Each IC attribute value argument (following a name) must point to a location where the IC value
is to be stored. That is, if the IC value is of type T, the argument must be of type T*. If T itself is
a pointer type, thenXGetICValues allocates memory to store the actual data, and the client is
responsible for freeing this data by callingXFree with the returned pointer. The exception to this
rule is for an IC value of typeXVaNestedList (for preedit and status attributes). Inthis case, the
argument must also be of typeXVaNestedList. Then, the rule of changing type T to T* and free-
ing the allocated data applies to each element of the nested list.

13.5.6. InputContext Values
The following tables describe how XIC values are interpreted by an input method depending on
the input style chosen by the user.

The first column lists the XIC values. Thesecond column indicates which values are involved in
affecting, negotiating, and setting the geometry of the input method windows. Thesubentries
under the third column indicate the different input styles that are supported. Each of these col-
umns indicates how each of the XIC values are treated by that input style.

The following keys apply to these tables.

Key Explanation

C This value must be set withXCreateIC .
D This value may be set usingXCreateIC . If it is not set, a default is pro-

vided.
G This value may be read usingXGetICValues.
GN This value may cause geometry negotiation when its value is set by means of

XCreateIC or XSetICValues.
GR This value will be the response of the input method when any GN value is

changed.
GS This value will cause the geometry of the input method window to be set.
O This value must be set once and only once. It need not be set at create time.
S This value may be set withXSetICValues.
Ignored This value is ignored by the input method for the given input style.

Input Style
XIC Value Geometry Preedit Preedit Preedit Preedit Preedit

Management Callback Position Area Nothing None

Input Style C-G C-G C-G C-G C-G
Client Window O-G O-G O-G O-G Ignored
Focus Window GN D-S-G D-S-G D-S-G D-S-G Ignored
Resource Name Ignored D-S-G D-S-G D-S-G Ignored
Resource Class Ignored D-S-G D-S-G D-S-G Ignored
Geometry Callback Ignored Ignored D-S-G Ignored Ignored
Filter Events G G G G Ignored
Destroy Callback D-S-G D-S-G D-S-G D-S-G D-S-G
String Conversion Callback S-G S-G S-G S-G S-G
String Conversion D-S-G D-S-G D-S-G D-S-G D-S-G
Reset State D-S-G D-S-G D-S-G D-S-G Ignored
HotKey S-G S-G S-G S-G Ignored
HotKeyState D-S-G D-S-G D-S-G D-S-G Ignored

Preedit

296

Xlib − C Library libX11 1.3.2

Input Style
XIC Value Geometry Preedit Preedit Preedit Preedit Preedit

Management Callback Position Area Nothing None

Area GS Ignored D-S-G D-S-G Ignored Ignored
Area Needed GN-GR Ignored Ignored S-G Ignored Ignored
Spot Location Ignored D-S-G Ignored Ignored Ignored
Colormap Ignored D-S-G D-S-G D-S-G Ignored
Foreground Ignored D-S-G D-S-G D-S-G Ignored
Background Ignored D-S-G D-S-G D-S-G Ignored
Background Pixmap Ignored D-S-G D-S-G D-S-G Ignored
Font Set GN Ignored D-S-G D-S-G D-S-G Ignored
Line Spacing GN Ignored D-S-G D-S-G D-S-G Ignored
Cursor Ignored D-S-G D-S-G D-S-G Ignored
Preedit State D-S-G D-S-G D-S-G D-S-G Ignored
Preedit State Notify Callback S-G S-G S-G S-G Ignored
Preedit Callbacks C-S-G Ignored Ignored Ignored Ignored

Input Style
XIC Value Geometry Status Status Status Status

Management Callback Ar ea Nothing None

Input Style C-G C-G C-G C-G
Client Window O-G O-G O-G Ignored
Focus Window GN D-S-G D-S-G D-S-G Ignored
Resource Name Ignored D-S-G D-S-G Ignored
Resource Class Ignored D-S-G D-S-G Ignored
Geometry Callback Ignored D-S-G Ignored Ignored
Filter Events G G G G

Status
Area GS Ignored D-S-G Ignored Ignored
Area Needed GN-GR Ignored S-G Ignored Ignored
Colormap Ignored D-S-G D-S-G Ignored
Foreground Ignored D-S-G D-S-G Ignored
Background Ignored D-S-G D-S-G Ignored
Background Pixmap Ignored D-S-G D-S-G Ignored
Font Set GN Ignored D-S-G D-S-G Ignored
Line Spacing GN Ignored D-S-G D-S-G Ignored
Cursor Ignored D-S-G D-S-G Ignored
Status Callbacks C-S-G Ignored Ignored Ignored

13.5.6.1. InputStyle
The XNInputStyle argument specifies the input style to be used. The value of this argument
must be one of the values returned by theXGetIMValues function with theXNQueryInput-
Style argument specified in the supported_styles list.

Note that this argument must be set at creation time and cannot be changed.

297

Xlib − C Library libX11 1.3.2

13.5.6.2. ClientWindow
The XNClientWindow argument specifies to the input method the client window in which the
input method can display data or create subwindows. Geometryvalues for input method areas are
given with respect to the client window. Dynamic change of client window is not supported.
This argument may be set only once and should be set before any input is done using this input
context. If it is not set, the input method may not operate correctly.

If an attempt is made to set this value a second time withXSetICValues, the stringXNClien-
tWindow will be returned byXSetICValues, and the client window will not be changed.

If the client window is not a valid window ID on the display attached to the input method, aBad-
Window error can be generated when this value is used by the input method.

13.5.6.3. Focus Window
The XNFocusWindow argument specifies the focus window. The primary purpose of the
XNFocusWindow is to identify the window that will receive the key event when input is com-
posed. Inaddition, the input method may possibly affect the focus window as follows:

• Select events on it

• Send events to it

• Modify its properties

• Grab the keyboard within that window

The associated value must be of typeWindow. If the focus window is not a valid window ID on
the display attached to the input method, aBadWindow error can be generated when this value is
used by the input method.

When this XIC value is left unspecified, the input method will use the client window as the
default focus window.

13.5.6.4. Resource Name and Class
The XNResourceNameandXNResourceClassarguments are strings that specify the full name
and class used by the client to obtain resources for the client window. These values should be
used as prefixes for name and class when looking up resources that may vary according to the
input context. If these values are not set, the resources will not be fully specified.

It is not intended that values that can be set as XIC values be set as resources.

13.5.6.5. GeometryCallback
The XNGeometryCallback argument is a structure of typeXIMCallback (see section
13.5.6.13.12).

The XNGeometryCallback argument specifies the geometry callback that a client can set. This
callback is not required for correct operation of either an input method or a client. It can be set
for a client whose user interface policy permits an input method to request the dynamic change of
that input method’s window. An input method that does dynamic change will need to filter any
ev ents that it uses to initiate the change.

13.5.6.6. FilterEvents
The XNFilterEvents argument returns the event mask that an input method needs to have
selected for. The client is expected to augment its own event mask for the client window with this
one.

This argument is read-only, is set by the input method at create time, and is never changed.

The type of this argument isunsigned long. Setting this value will cause an error.

298

Xlib − C Library libX11 1.3.2

13.5.6.7. Destroy Callback
The XNDestroyCallback argument is a pointer to a structure of typeXIMCallback (see section
13.5.6.13.12). Thiscallback is triggered when the input method stops its service for any reason;
for example, when a connection to an IM server is broken. Afterthe destroy callback is called,
the input context is destroyed and the input method is closed. Therefore, the client should not call
XDestroyIC andXCloseIM .

13.5.6.8. StringConversion Callback
The XNStringConversionCallback argument is a structure of typeXIMCallback (see section
13.5.6.13.12).

The XNStringConversionCallback argument specifies a string conversion callback. This call-
back is not required for correct operation of either the input method or the client. It can be set by
a client to support string conversions that may be requested by the input method. An input
method that does string conversions will filter any events that it uses to initiate the conversion.

Because this XIC value is optional, a client should callXGetIMValues with argument
XNQueryICValuesList before using this argument.

13.5.6.9. StringConversion
The XNStringConversion argument is a structure of typeXIMStringCon versionText.
The XNStringConversion argument specifies the string to be converted by an input method.
This argument is not required for correct operation of either the input method or the client.

String conversion facilitates the manipulation of text independent of preediting. It is essential for
some input methods and clients to manipulate text by performing context-sensitive conversion,
reconversion, or transliteration conversion on it.

Because this XIC value is optional, a client should callXGetIMValues with argument
XNQueryICValuesList before using this argument.

The XIMStringCon versionText structure is defined as follows:

typedef struct _XIMStringConversionText {
unsigned short length;
XIMStringConversionFeedback *feedback;
Bool encoding_is_wchar;
union {

char *mbs;
wchar_t *wcs;

} string;
} X IMStringConversionText;

typedef unsigned long XIMStringConversionFeedback;

The feedback member is reserved for future use. The text to be converted is defined by the string
and length members. The length is indicated in characters.To prevent the library from freeing
memory pointed to by an uninitialized pointer, the client should set the feedback element to
NULL.

299

Xlib − C Library libX11 1.3.2

13.5.6.10. ResetState
The XNResetStateargument specifies the state the input context will return to after calling
XmbResetIC or XwcResetIC.

The XIC state may be set to its initial state, as specified by theXNPreeditState value when
XCreateIC was called, or it may be set to preserve the current state.

The valid masks forXIMResetState are as follows:

typedef unsigned long XIMResetState;

#define XIMInitialState (1L)
#define XIMPreserveState (1L<<1)

If XIMInitialState is set, thenXmbResetIC andXwcResetIC will return to the initial
XNPreeditState state of the XIC.

If XIMPreserveState is set, thenXmbResetIC andXwcResetIC will preserve the current state
of the XIC.

If XNResetStateis left unspecified, the default isXIMInitialState .

XIMResetState values other than those specified above will default to XIMInitialState .

Because this XIC value is optional, a client should callXGetIMValues with argument
XNQueryICValuesList before using this argument.

13.5.6.11. HotKeys
The XNHotKey argument specifies the hot key list to the XIC. The hot key list is a pointer to the
structure of typeXIMHotKeyTriggers , which specifies the key events that must be received
without any interruption of the input method.For the hot key list set with this argument to be uti-
lized, the client must also setXNHotKeyState to XIMHotKeyStateON .

Because this XIC value is optional, a client should callXGetIMValues with argument
XNQueryICValuesList before using this functionality.

The value of the argument is a pointer to a structure of typeXIMHotKeyTriggers .

If an event for a key in the hot key list is found, then the process will receive the event and it will
be processed inside the client.

typedef struct {
Ke ySym keysym;
unsigned int modifier;
unsigned int modifier_mask;

} X IMHotKeyTrigger;

typedef struct {
int num_hot_key;
XIMHotK eyTrigger *key;

} X IMHotKeyTriggers;

The combination of modifier and modifier_mask are used to represent one of three states for each
modifier: either the modifier must be on, or the modifier must be off, or the modifier is a ‘‘don’t
care’’ − it may be on or off. Whena modifier_mask bit is set to 0, the state of the associated
modifier is ignored when evaluating whether the key is hot or not.

300

Xlib − C Library libX11 1.3.2

Modifier Bit Mask Bit Meaning

0 1 The modifier must be off.
1 1 The modifier must be on.
n/a 0 Do not care if the modifier is on or off.

13.5.6.12. HotKey State
The XNHotKeyState argument specifies the hot key state of the input method. This is usually
used to switch the input method between hot key operation and normal input processing.

The value of the argument is a pointer to a structure of type XIMHotKeyState .

typedef unsigned long XIMHotKeyState;

#define XIMHotKeyStateON (0x0001L)
#define XIMHotKeyStateOFF (0x0002L)

If not specified, the default isXIMHotKeyStateOFF .

13.5.6.13. Preedit and Status Attributes
The XNPreeditAttributes andXNStatusAttributes arguments specify to an input method the
attributes to be used for the preedit and status areas, if any. Those attributes are passed toXSet-
ICValues or XGetICValues as a nested variable-length list. The names to be used in these lists
are described in the following sections.

13.5.6.13.1. Area
The value of theXNArea argument must be a pointer to a structure of typeXRectangle.The
interpretation of theXNArea argument is dependent on the input method style that has been set.

If the input method style isXIMPreeditPosition , XNArea specifies the clipping region within
which preediting will take place. Ifthe focus window has been set, the coordinates are assumed
to be relative to the focus window. Otherwise, the coordinates are assumed to be relative to the
client window. If neither has been set, the results are undefined.

If XNArea is not specified, is set to NULL, or is invalid, the input method will default the clip-
ping region to the geometry of theXNFocusWindow. If the area specified is NULL or invalid,
the results are undefined.

If the input style isXIMPreeditArea or XIMStatusArea , XNArea specifies the geometry pro-
vided by the client to the input method. The input method may use this area to display its data,
either preedit or status depending on the area designated. The input method may create a window
as a child of the client window with dimensions that fit theXNArea . The coordinates are relative
to the client window. If the client window has not been set yet, the input method should save
these values and apply them when the client window is set. If XNArea is not specified, is set to
NULL, or is invalid, the results are undefined.

13.5.6.13.2. Area Needed
When set, theXNAreaNeededargument specifies the geometry suggested by the client for this
area (preedit or status). The value associated with the argument must be a pointer to a structure of
type XRectangle. Note that the x, y values are not used and that nonzero values for width or
height are the constraints that the client wishes the input method to respect.

301

Xlib − C Library libX11 1.3.2

When read, theXNAreaNeededargument specifies the preferred geometry desired by the input
method for the area.

This argument is only valid if the input style isXIMPreeditArea or XIMStatusArea . It is used
for geometry negotiation between the client and the input method and has no other effect on the
input method (see section 13.5.1.5).

13.5.6.13.3. SpotLocation
The XNSpotLocation argument specifies to the input method the coordinates of the spot to be
used by an input method executing withXNInputStyle set toXIMPreeditPosition . When spec-
ified to any input method other thanXIMPreeditPosition , this XIC value is ignored.

The x coordinate specifies the position where the next character would be inserted. The y coordi-
nate is the position of the baseline used by the current text line in the focus window. The x and y
coordinates are relative to the focus window, if it has been set; otherwise, they are relative to the
client window. If neither the focus window nor the client window has been set, the results are
undefined.

The value of the argument is a pointer to a structure of typeXPoint .

13.5.6.13.4. Colormap
Tw o different arguments can be used to indicate what colormap the input method should use to
allocate colors, a colormap ID, or a standard colormap name.

The XNColormap argument is used to specify a colormap ID. The argument value is of type
Colormap. An inv alid argument may generate aBadColor error when it is used by the input
method.

The XNStdColormap argument is used to indicate the name of the standard colormap in which
the input method should allocate colors. The argument value is anAtom that should be a valid
atom for callingXGetRGBColormaps. An inv alid argument may generate aBadAtom error
when it is used by the input method.

If the colormap is left unspecified, the client window colormap becomes the default.

13.5.6.13.5. Foreground and Background
The XNForeground andXNBackground arguments specify the foreground and background
pixel, respectively. The argument value is of typeunsigned long. It must be a valid pixel in the
input method colormap.

If these values are left unspecified, the default is determined by the input method.

13.5.6.13.6. Background Pixmap
The XNBackgroundPixmap argument specifies a background pixmap to be used as the back-
ground of the window. The value must be of typePixmap. An inv alid argument may generate a
BadPixmap error when it is used by the input method.

If this value is left unspecified, the default is determined by the input method.

13.5.6.13.7. Font Set
The XNFontSet argument specifies to the input method what font set is to be used. The argu-
ment value is of typeXFontSet.
If this value is left unspecified, the default is determined by the input method.

13.5.6.13.8. LineSpacing
The XNLineSpaceargument specifies to the input method what line spacing is to be used in the
preedit window if more than one line is to be used. This argument is of typeint .

302

Xlib − C Library libX11 1.3.2

If this value is left unspecified, the default is determined by the input method.

13.5.6.13.9. Cursor
The XNCursor argument specifies to the input method what cursor is to be used in the specified
window. This argument is of typeCursor .

An invalid argument may generate aBadCursor error when it is used by the input method. If
this value is left unspecified, the default is determined by the input method.

13.5.6.13.10. Preedit State
The XNPreeditState argument specifies the state of input preediting for the input method. Input
preediting can be on or off.

The valid mask names forXNPreeditState are as follows:

typedef unsigned long XIMPreeditState;

#define XIMPreeditUnknown 0L
#define XIMPreeditEnable 1L
#define XIMPreeditDisable (1L<<1)

If a value ofXIMPreeditEnable is set, then input preediting is turned on by the input method.

If a value ofXIMPreeditDisable is set, then input preediting is turned off by the input method.

If XNPreeditState is left unspecified, then the state will be implementation-dependent.

WhenXNResetStateis set toXIMInitialState , the XNPreeditState value specified at the cre-
ation time will be reflected as the initial state forXmbResetIC andXwcResetIC.

Because this XIC value is optional, a client should callXGetIMValues with argument
XNQueryICValuesList before using this argument.

13.5.6.13.11. Preedit State Notify Callback
The preedit state notify callback is triggered by the input method when the preediting state has
changed. Thevalue of theXNPreeditStateNotifyCallback argument is a pointer to a structure
of typeXIMCallback . The generic prototype is as follows:

void PreeditStateNotifyCallback(ic, client_data, call_data)
XIC ic;
XPointerclient_data;
XIMPreeditStateNotifyCallbackStruct *call_data;

ic Specifies the input context.

client_data Specifies the additional client data.

call_data Specifies the current preedit state.

The XIMPreeditStateNotifyCallbackStruct structure is defined as follows:

typedef struct _XIMPreeditStateNotifyCallbackStruct {
XIMPreeditState state;

} X IMPreeditStateNotifyCallbackStruct;

303

Xlib − C Library libX11 1.3.2

Because this XIC value is optional, a client should callXGetIMValues with argument
XNQueryICValuesList before using this argument.

13.5.6.13.12. Preedit and Status Callbacks
A client that wants to support the input styleXIMPreeditCallbacks must provide a set of preedit
callbacks to the input method. The set of preedit callbacks is as follows:

XNPreeditStartCallback This is called when the input method starts preedit.
XNPreeditDoneCallback This is called when the input method stops preedit.
XNPreeditDrawCallback This is called when a number of preedit keystrokes should be

echoed.
XNPreeditCaretCallback This is called to move the text insertion point within the preedit

string.

A client that wants to support the input styleXIMStatusCallbacks must provide a set of status
callbacks to the input method. The set of status callbacks is as follows:

XNStatusStartCallback This is called when the input method initializes the status area.
XNStatusDoneCallback This is called when the input method no longer needs the status

area.
XNStatusDrawCallback This is called when updating of the status area is required.

The value of any status or preedit argument is a pointer to a structure of typeXIMCallback .

typedef void (*XIMProc)();

typedef struct {
XPointer client_data;
XIMProc callback;

} X IMCallback;

Each callback has some particular semantics and will carry the data that expresses the environ-
ment necessary to the client into a specific data structure. This paragraph only describes the argu-
ments to be used to set the callback.

Setting any of these values while doing preedit may cause unexpected results.

13.5.7. InputMethod Callback Semantics
XIM callbacks are procedures defined by clients or text drawing packages that are to be called
from the input method when selected events occur. Most clients will use a text editing package or
a toolkit and, hence, will not need to define such callbacks. This section defines the callback
semantics, when they are triggered, and what their arguments are. This information is mostly
useful for X toolkit implementors.

Callbacks are mostly provided so that clients (or text editing packages) can implement on-the-
spot preediting in their own window. In that case, the input method needs to communicate and
synchronize with the client. The input method needs to communicate changes in the preedit win-
dow when it is under control of the client. Those callbacks allow the client to initialize the
preedit area, display a new preedit string, move the text insertion point during preedit, terminate
preedit, or update the status area.

All callback procedures follow the generic prototype:

304

Xlib − C Library libX11 1.3.2

void CallbackPrototype(ic, client_data, call_data)
XIC ic;
XPointerclient_data;
SomeTypecall_data;

ic Specifies the input context.

client_data Specifies the additional client data.

call_data Specifies data specific to the callback.

The call_data argument is a structure that expresses the arguments needed to achieve the seman-
tics; that is, it is a specific data structure appropriate to the callback. In cases where no data is
needed in the callback, this call_data argument is NULL. The client_data argument is a closure
that has been initially specified by the client when specifying the callback and passed back. It
may serve, for example, to inherit application context in the callback.

The following paragraphs describe the programming semantics and specific data structure associ-
ated with the different reasons.

13.5.7.1. GeometryCallback
The geometry callback is triggered by the input method to indicate that it wants the client to
negotiate geometry. The generic prototype is as follows:

void GeometryCallback(ic, client_data, call_data)
XIC ic;
XPointerclient_data;
XPointercall_data;

ic Specifies the input context.

client_data Specifies the additional client data.

call_data Not used for this callback and always passed as NULL.

The callback is called with a NULL call_data argument.

13.5.7.2. Destroy Callback
The destroy callback is triggered by the input method when it stops service for any reason. After
the callback is invoked, the input context will be freed by Xlib. The generic prototype is as fol-
lows:

void DestroyCallback (ic, client_data, call_data)
XIC ic;
XPointerclient_data;
XPointercall_data;

ic Specifies the input context.

client_data Specifies the additional client data.

call_data Not used for this callback and always passed as NULL.

The callback is called with a NULL call_data argument.

305

Xlib − C Library libX11 1.3.2

13.5.7.3. StringConversion Callback
The string conversion callback is triggered by the input method to request the client to return the
string to be converted. Thereturned string may be either a multibyte or wide character string,
with an encoding matching the locale bound to the input context. Thecallback prototype is as
follows:

void StringConversionCallback (ic, client_data, call_data)
XIC ic;
XPointerclient_data;
XIMStringConversionCallbackStruct *call_data;

ic Specifies the input method.

client_data Specifies the additional client data.

call_data Specifies the amount of the string to be converted.

The callback is passed anXIMStringCon versionCallbackStruct structure in the call_data argu-
ment. Thetext member is anXIMStringCon versionText structure (see section 13.5.6.9) to be
filled in by the client and describes the text to be sent to the input method. The data pointed to by
the string and feedback elements of theXIMStringCon versionText structure will be freed using
XFree by the input method after the callback returns. So the client should not point to internal
buffers that are critical to the client. Similarly, because the feedback element is currently reserved
for future use, the client should set feedback to NULL to prevent the library from freeing memory
at some random location due to an uninitialized pointer.

The XIMStringCon versionCallbackStruct structure is defined as follows:

typedef struct _XIMStringConversionCallbackStruct {
XIMStringConversionPosition position;
XIMCaretDirection direction;
short factor;
XIMStringConversionOperation operation;
XIMStringConversionText * text;

} X IMStringConversionCallbackStruct;

typedef short XIMStringConversionPosition;

typedef unsigned short XIMStringConversionOperation;

#define XIMStringCon versionSubstitution (0x0001)
#define XIMStringCon versionRetrieval (0x0002)

XIMStringCon versionPosition specifies the starting position of the string to be returned in the
XIMStringCon versionText structure. Thevalue identifies a position, in units of characters, rel-
ative to the client’s cursor position in the client’s buffer.

The ending position of the text buffer is determined by the direction and factor members. Specifi-
cally, it is the character position relative to the starting point as defined by theXIMCaretDirec-
tion . The factor member ofXIMStringCon versionCallbackStruct specifies the number of
XIMCaretDirection positions to be applied.For example, if the direction specifiesXIMLi-
neEnd and factor is 1, then all characters from the starting position to the end of the current dis-
play line are returned. If the direction specifiesXIMForwardChar or XIMBackwardChar ,
then the factor specifies a relative position, indicated in characters, from the starting position.

306

Xlib − C Library libX11 1.3.2

XIMStringCon versionOperation specifies whether the string to be converted should be deleted
(substitution) or copied (retrieval) from the client’s buffer. When theXIMStringCon versionOp-
eration is XIMStringCon versionSubstitution, the client must delete the string to be converted
from its own buffer. When theXIMStringCon versionOperation is XIMStringCon versionRe-
trieval , the client must not delete the string to be converted from its buffer. The substitute opera-
tion is typically used for reconversion and transliteration conversion, while the retrieval operation
is typically used for context-sensitive conversion.

13.5.7.4. Preedit State Callbacks
When the input method turns preediting on or off, aPreeditStartCallback or PreeditDoneCall-
back callback is triggered to let the toolkit do the setup or the cleanup for the preedit region.

int PreeditStartCallback(ic, client_data, call_data)
XIC ic;
XPointerclient_data;
XPointercall_data;

ic Specifies the input context.

client_data Specifies the additional client data.

call_data Not used for this callback and always passed as NULL.

When preedit starts on the specified input context, the callback is called with a NULL call_data
argument.PreeditStartCallback will return the maximum size of the preedit string.A positive
number indicates the maximum number of bytes allowed in the preedit string, and a value of −1
indicates there is no limit.

void PreeditDoneCallback(ic, client_data, call_data)
XIC ic;
XPointerclient_data;
XPointercall_data;

ic Specifies the input context.

client_data Specifies the additional client data.

call_data Not used for this callback and always passed as NULL.

When preedit stops on the specified input context, the callback is called with a NULL call_data
argument. Theclient can release the data allocated byPreeditStartCallback.

PreeditStartCallback should initialize appropriate data needed for displaying preedit informa-
tion and for handling furtherPreeditDrawCallback calls. OncePreeditStartCallback is
called, it will not be called again beforePreeditDoneCallbackhas been called.

13.5.7.5. Preedit Draw Callback
This callback is triggered to draw and insert, delete or replace, preedit text in the preedit region.
The preedit text may include unconverted input text such as Japanese Kana, converted text such
as Japanese Kanji characters, or characters of both kinds. That string is either a multibyte or wide
character string, whose encoding matches the locale bound to the input context. Thecallback
prototype is as follows:

307

Xlib − C Library libX11 1.3.2

void PreeditDrawCallback (ic, client_data, call_data)
XIC ic;
XPointerclient_data;
XIMPreeditDrawCallbackStruct *call_data;

ic Specifies the input context.

client_data Specifies the additional client data.

call_data Specifies the preedit drawing information.

The callback is passed anXIMPreeditDrawCallbackStruct structure in the call_data argument.
The text member of this structure contains the text to be drawn. After the string has been drawn,
the caret should be moved to the specified location.

The XIMPreeditDrawCallbackStruct structure is defined as follows:

typedef struct _XIMPreeditDrawCallbackStruct {
int caret; /* Cursor offset within preedit string */
int chg_first; /* Starting change position */
int chg_length; /* Length of the change in character count */
XIMText * text;

} X IMPreeditDrawCallbackStruct;

The client must keep updating a buffer of the preedit text and the callback arguments referring to
indexes in that buffer. The call_data fields have specific meanings according to the operation, as
follows:

• To indicate text deletion, the call_data member specifies a NULL text field. The text to be
deleted is then the current text in the buffer from position chg_first (starting at zero) on a
character length of chg_length.

• When text is non-NULL, it indicates insertion or replacement of text in the buffer.

The chg_length member identifies the number of characters in the current preedit buffer
that are affected by this call.A positive chg_length indicates that chg_length number of
characters, starting at chg_first, must be deleted or must be replaced by text, whose length
is specified in theXIMText structure.

A chg_length value of zero indicates that text must be inserted right at the position speci-
fied by chg_first.A value of zero for chg_first specifies the first character in the buffer.

chg_length and chg_first combine to identify the modification required to the preedit
buffer; beginning at chg_first, replace chg_length number of characters with the text in the
suppliedXIMText structure. For example, suppose the preedit buffer contains the string
"ABCDE".

Text: A B C D E
ˆ ˆ ˆ ˆ ˆ ˆ

CharPos: 0 1 2 3 4 5

The CharPos in the diagram shows the location of the character position relative to the
character.

If the value of chg_first is 1 and the value of chg_length is 3, this says to replace 3 charac-
ters beginning at character position 1 with the string in theXIMText structure. Hence,
BCD would be replaced by the value in the structure.

308

Xlib − C Library libX11 1.3.2

Though chg_length and chg_first are both signed integers they will never hav ea neg ative
value.

• The caret member identifies the character position before which the cursor should be placed
− after modification to the preedit buffer has been completed.For example, if caret is zero,
the cursor is at the beginning of the buffer. If the caret is one, the cursor is between the first
and second character.

typedef struct _XIMText {
unsigned short length;
XIMFeedback * feedback;
Bool encoding_is_wchar;
union {

char * multi_byte;
wchar_t * wide_char;

} string;
} X IMText;

The text string passed is actually a structure specifying as follows:

• The length member is the text length in characters.

• The encoding_is_wchar member is a value that indicates if the text string is encoded in
wide character or multibyte format. The text string may be passed either as multibyte or as
wide character; the input method controls in which form data is passed. The client’s call-
back routine must be able to handle data passed in either form.

• The string member is the text string.

• The feedback member indicates rendering type for each character in the string member. If
string is NULL (indicating that only highlighting of the existing preedit buffer should be
updated), feedback points to length highlight elements that should be applied to the existing
preedit buffer, beginning at chg_first.

The feedback member expresses the types of rendering feedback the callback should apply when
drawing text. Renderingof the text to be drawn is specified either in generic ways (for example,
primary, secondary) or in specific ways (reverse, underline). When generic indications are given,
the client is free to choose the rendering style. It is necessary, howev er, that primary and sec-
ondary be mapped to two distinct rendering styles.

If an input method wants to control display of the preedit string, an input method can indicate the
visibility hints using feedbacks in a specific way. The XIMVisibleToForward , XIMVisibleTo-
Backward, and XIMVisibleCenter masks are exclusively used for these visibility hints. The
XIMVisibleToForward mask indicates that the preedit text is preferably displayed in the pri-
mary draw direction from the caret position in the preedit area forward. TheXIMVisibleTo-
Backward mask indicates that the preedit text is preferably displayed from the caret position in
the preedit area backward, relative to the primary draw direction. TheXIMVisibleCenter mask
indicates that the preedit text is preferably displayed with the caret position in the preedit area
centered.

The insertion point of the preedit string could exist outside of the visible area when visibility hints
are used. Only one of the masks is valid for the entire preedit string, and only one character can
hold one of these feedbacks for a given input context at one time. This feedback may be OR’ed
together with another highlight (such asXIMRe verse). Only the most recently set feedback is
valid, and any previous feedback is automatically canceled. This is a hint to the client, and the
client is free to choose how to display the preedit string.

The feedback member also specifies how rendering of the text argument should be performed. If
the feedback is NULL, the callback should apply the same feedback as is used for the

309

Xlib − C Library libX11 1.3.2

surrounding characters in the preedit buffer; if chg_first is at a highlight boundary, the client can
choose which of the two highlights to use. If feedback is not NULL, feedback specifies an array
defining the rendering for each character of the string, and the length of the array is thus length.

If an input method wants to indicate that it is only updating the feedback of the preedit text with-
out changing the content of it, theXIMText structure will contain a NULL value for the string
field, the number of characters affected (relative to chg_first) will be in the length field, and the
feedback field will point to an array ofXIMFeedback.

Each element in the feedback array is a bitmask represented by a value of typeXIMFeedback.
The valid mask names are as follows:

typedef unsigned long XIMFeedback;

#define XIMRe verse 1L
#define XIMUnderline (1L<<1)
#define XIMHighlight (1L<<2)
#define XIMPrimary (1L<<5)†
#define XIMSecondary (1L<<6)†
#define XIMTertiary (1L<<7)†
#define XIMVisibleToForward (1L<<8)
#define XIMVisibleToBackward (1L<<9)
#define XIMVisibleCenter (1L<<10)

Characters drawn with theXIMRe verse highlight should be drawn by swapping the foreground
and background colors used to draw normal, unhighlighted characters. Characters drawn with the
XIMUnderline highlight should be underlined. Characters drawn with theXIMHighlight ,
XIMPrimary , XIMSecondary, and XIMTertiary highlights should be drawn in some unique
manner that must be different fromXIMRe verse andXIMUnderline .

13.5.7.6. Preedit Caret Callback
An input method may have its own navigation keys to allow the user to move the text insertion
point in the preedit area (for example, to move backward or forward). Consequently, input
method needs to indicate to the client that it should move the text insertion point. It then calls the
PreeditCaretCallback.

void PreeditCaretCallback(ic, client_data, call_data)
XIC ic;
XPointerclient_data;
XIMPreeditCaretCallbackStruct *call_data;

ic Specifies the input context.

client_data Specifies the additional client data.

call_data Specifies the preedit caret information.

The input method will trigger PreeditCaretCallback to move the text insertion point during
preedit. Thecall_data argument contains a pointer to anXIMPreeditCaretCallbackStruct
structure, which indicates where the caret should be moved. Thecallback must move the

† The values forXIMPrimary , XIMSecondary, and XIMTertiary were incorrectly defined in the R5 specification.The X Consor-
tium’s X11R5 implementation correctly implemented the values for these highlights. The value of these highlights has been corrected in this
specification to agree with the values in the Consortium’s X11R5 and X11R6 implementations.

310

Xlib − C Library libX11 1.3.2

insertion point to its new location and return, in field position, the new offset value from the initial
position.

The XIMPreeditCaretCallbackStruct structure is defined as follows:

typedef struct _XIMPreeditCaretCallbackStruct {
int position; /* Caret offset within preedit string */
XIMCaretDirection direction; /* Caret moves direction */
XIMCaretStyle style; /* Feedback of the caret */

} X IMPreeditCaretCallbackStruct;

The XIMCaretStyle structure is defined as follows:

typedef enum {
XIMIsInvisible, /* Disable caret feedback */
XIMIsPrimary, /* UI defined caret feedback */
XIMIsSecondary, /* UI defined caret feedback */

} X IMCaretStyle;

The XIMCaretDirection structure is defined as follows:

typedef enum {
XIMForwardChar, XIMBackwardChar,
XIMForwardWord, XIMBackwardWord,
XIMCaretUp, XIMCaretDown,
XIMNextLine, XIMPreviousLine,
XIMLineStart, XIMLineEnd,
XIMAbsolutePosition,
XIMDontChange,

} X IMCaretDirection;

These values are defined as follows:

XIMForwardChar Move the caret forward one character position.
XIMBackwardChar Move the caret backward one character position.
XIMForwardWord Move the caret forward one word.
XIMBackwardWord Move the caret backward one word.
XIMCaretUp Move the caret up one line keeping the current horizontal offset.
XIMCaretDown Move the caret down one line keeping the current horizontal offset.
XIMPr eviousLine Move the caret to the beginning of the previous line.
XIMNextLine Move the caret to the beginning of the next line.
XIMLineStart Move the caret to the beginning of the current display line that con-

tains the caret.
XIMLineEnd Move the caret to the end of the current display line that contains the

caret.
XIMAbsolutePosition The callback must move to the location specified by the position field

of the callback data, indicated in characters, starting from the begin-
ning of the preedit text. Hence,a value of zero means move back to
the beginning of the preedit text.

XIMDontChange The caret position does not change.

311

Xlib − C Library libX11 1.3.2

13.5.7.7. StatusCallbacks
An input method may communicate changes in the status of an input context (for example, cre-
ated, destroyed, or focus changes) with three status callbacks: StatusStartCallback, Status-
DoneCallback, and StatusDrawCallback.

When the input context is created or gains focus, the input method calls the StatusStartCallback
callback.

void StatusStartCallback(ic, client_data, call_data)
XIC ic;
XPointerclient_data;
XPointercall_data;

ic Specifies the input context.

client_data Specifies the additional client data.

call_data Not used for this callback and always passed as NULL.

The callback should initialize appropriate data for displaying status and for responding to Status-
DrawCallback calls. Once StatusStartCallback is called, it will not be called again before Status-
DoneCallback has been called.

When an input context is destroyed or when it loses focus, the input method calls Status-
DoneCallback.

void StatusDoneCallback(ic, client_data, call_data)
XIC ic;
XPointerclient_data;
XPointercall_data;

ic Specifies the input context.

client_data Specifies the additional client data.

call_data Not used for this callback and always passed as NULL.

The callback may release any data allocated onStatusStart.

When an input context status has to be updated, the input method calls StatusDrawCallback.

void StatusDrawCallback (ic, client_data, call_data)
XIC ic;
XPointerclient_data;
XIMStatusDrawCallbackStruct *call_data;

ic Specifies the input context.

client_data Specifies the additional client data.

call_data Specifies the status drawing information.

The callback should update the status area by either drawing a string or imaging a bitmap in the
status area.

The XIMStatusDataType andXIMStatusDrawCallbackStruct structures are defined as fol-
lows:

312

Xlib − C Library libX11 1.3.2

typedef enum {
XIMTextType,
XIMBitmapType,

} X IMStatusDataType;

typedef struct _XIMStatusDrawCallbackStruct {
XIMStatusDataType type;
union {

XIMText * text;
Pixmap bitmap;

} data;
} X IMStatusDrawCallbackStruct;

The feedback stylesXIMVisibleToForward , XIMVisibleToBackward , and XIMVisibleTo-
Center are not relevant and will not appear in theXIMFeedback element of theXIMText struc-
ture.

13.5.8. Event Filtering
Xlib provides the ability for an input method to register a filter internal to Xlib. This filter is
called by a client (or toolkit) by callingXFilterEvent after callingXNextEvent. Any client that
uses theXIM interface should callXFilterEvent to allow input methods to process their events
without knowledge of the client’s dispatching mechanism.A client’s user interface policy may
determine the priority of event filters with respect to other event-handling mechanisms (for exam-
ple, modal grabs).

Clients may not know how many filters there are, if any, and what they do. They may only know
if an event has been filtered on return ofXFilterEvent . Clients should discard filtered events.

To filter an event, useXFilterEvent .

Bool XFilterEvent (event, w)
XEvent *event;
Windoww;

event Specifies the event to filter.

w Specifies the window for which the filter is to be applied.

If the window argument isNone, XFilterEvent applies the filter to the window specified in the
XEvent structure. Thewindow argument is provided so that layers above Xlib that do event redi-
rection can indicate to which window an event has been redirected.

If XFilterEvent returnsTr ue, then some input method has filtered the event, and the client
should discard the event. If XFilterEvent returnsFalse, then the client should continue process-
ing the event.

If a grab has occurred in the client andXFilterEvent returnsTr ue, the client should ungrab the
keyboard.

13.5.9. GettingKeyboard Input
To get composed input from an input method, useXmbLookupString or XwcLookupString .

313

Xlib − C Library libX11 1.3.2

int XmbLookupString(ic, event, buffer_return, bytes_buffer, keysym_return, status_return)
XIC ic;
XKeyPressedEvent *event;
char *buffer_return;
int bytes_buffer;
Ke ySym *keysym_return;
Status *status_return;

int XwcLookupString(ic, event, buffer_return, bytes_buffer, keysym_return, status_return)
XIC ic;
XKeyPressedEvent *event;
wchar_t *buffer_return;
int wchars_buffer;
Ke ySym *keysym_return;
Status *status_return;

ic Specifies the input context.

event Specifies the key event to be used.

buffer_return Returns a multibyte string or wide character string (if any) from the input
method.

bytes_buffer
wchars_buffer Specifies space available in the return buffer.

keysym_return Returns the KeySym computed from the event if this argument is not NULL.

status_return Returns a value indicating what kind of data is returned.

The XmbLookupString andXwcLookupString functions return the string from the input
method specified in the buffer_return argument. Ifno string is returned, the buffer_return argu-
ment is unchanged.

The KeySym into which the KeyCode from the event was mapped is returned in the
keysym_return argument if it is non-NULL and the status_return argument indicates that a
Ke ySym was returned. If both a string and a KeySym are returned, the KeySym value does not
necessarily correspond to the string returned.

XmbLookupString returns the length of the string in bytes, andXwcLookupString returns the
length of the string in characters. BothXmbLookupString andXwcLookupString return text
in the encoding of the locale bound to the input method of the specified input context.

Each string returned byXmbLookupString andXwcLookupString begins in the initial state of
the encoding of the locale (if the encoding of the locale is state-dependent).

Note

To insure proper input processing, it is essential that the client pass onlyKeyPress
ev ents toXmbLookupString andXwcLookupString . Their behavior when a
client passes aKeyReleaseev ent is undefined.

Clients should check the status_return argument before using the other returned values. These
two functions both return a value to status_return that indicates what has been returned in the
other arguments. Thepossible values returned are:

314

Xlib − C Library libX11 1.3.2

XBufferOverflow The input string to be returned is too large for the supplied
buffer_return. Therequired size (XmbLookupString in bytes;
XwcLookupString in characters) is returned as the value of the func-
tion, and the contents of buffer_return and keysym_return are not
modified. Theclient should recall the function with the same event
and a buffer of adequate size to obtain the string.

XLookupNone No consistent input has been composed so far. The contents of
buffer_return and keysym_return are not modified, and the function
returns zero.

XLookupChars Some input characters have been composed. They are placed in the
buffer_return argument, and the string length is returned as the value
of the function. The string is encoded in the locale bound to the input
context. Thecontent of the keysym_return argument is not modified.

XLookupKeySym A KeySym has been returned instead of a string and is returned in
keysym_return. Thecontent of the buffer_return argument is not
modified, and the function returns zero.

XLookupBoth Both a KeySym and a string are returned;XLookupChars and
XLookupKeySym occur simultaneously.

It does not make any difference if the input context passed as an argument toXmbLookupString
andXwcLookupString is the one currently in possession of the focus or not. Input may have
been composed within an input context before it lost the focus, and that input may be returned on
subsequent calls toXmbLookupString or XwcLookupString ev en though it does not have any
more keyboard focus.

13.5.10. InputMethod Conventions
The input method architecture is transparent to the client. However, clients should respect a num-
ber of conventions in order to work properly. Clients must also be aware of possible effects of
synchronization between input method and library in the case of a remote input server.

13.5.10.1. ClientConventions
A well-behaved client (or toolkit) should first query the input method style. If the client cannot
satisfy the requirements of the supported styles (in terms of geometry management or callbacks),
it should negotiate with the user continuation of the program or raise an exception or error of
some sort.

13.5.10.2. Synchronization Conventions
A KeyPressev ent with a KeyCode of zero is used exclusively as a signal that an input method
has composed input that can be returned byXmbLookupString or XwcLookupString . No
other use is made of aKeyPressev ent with KeyCode of zero.

Such an event may be generated by either a front-end or a back-end input method in an imple-
mentation-dependent manner. Some possible ways to generate this event include:

• A synthetic event sent by an input method server

• An artificial event created by a input method filter and pushed onto a client’s event queue

• A KeyPressev ent whose KeyCode value is modified by an input method filter

When callback support is specified by the client, input methods will not take action unless they
explicitly called back the client and obtained no response (the callback is not specified or returned
invalid data).

315

Xlib − C Library libX11 1.3.2

13.6. StringConstants
The following symbols for string constants are defined in <X11/Xlib.h>. Althoughthey are
shown here with particular macro definitions, they may be implemented as macros, as global
symbols, or as a mixture of the two. Thestring pointer value itself is not significant; clients must
not assume that inequality of two values implies inequality of the actual string data.

#define XNVaNestedList "XNVaNestedList"
#define XNSeparatorofNestedList "separatorofNestedList"
#define XNQueryInputStyle "queryInputStyle"
#define XNClientWindow "clientWindow"
#define XNInputStyle "inputStyle"
#define XNFocusWindow "focusWindow"
#define XNResourceName "resourceName"
#define XNResourceClass "resourceClass"
#define XNGeometryCallback "geometryCallback"
#define XNDestroyCallback "destroyCallback"
#define XNFilterEvents "filterEvents"
#define XNPreeditStartCallback "preeditStartCallback"
#define XNPreeditDoneCallback "preeditDoneCallback"
#define XNPreeditDrawCallback "preeditDrawCallback"
#define XNPreeditCaretCallback "preeditCaretCallback"
#define XNPreeditStateNotifyCallback "preeditStateNotifyCallback"
#define XNPreeditAttributes "preeditAttributes"
#define XNStatusStartCallback "statusStartCallback"
#define XNStatusDoneCallback "statusDoneCallback"
#define XNStatusDrawCallback "statusDrawCallback"
#define XNStatusAttributes "statusAttributes"
#define XNArea "area"
#define XNAreaNeeded "areaNeeded"
#define XNSpotLocation "spotLocation"
#define XNColormap "colorMap"
#define XNStdColormap "stdColorMap"
#define XNForeground "foreground"
#define XNBackground "background"
#define XNBackgroundPixmap "backgroundPixmap"
#define XNFontSet "fontSet"
#define XNLineSpace "lineSpace"
#define XNCursor "cursor"
#define XNQueryIMValuesList "queryIMValuesList"
#define XNQueryICValuesList "queryICValuesList"
#define XNStringConversionCallback "stringConversionCallback"
#define XNStringConversion "stringConversion"
#define XNResetState "resetState"
#define XNHotKey "hotkey"
#define XNHotKeyState "hotkeyState"
#define XNPreeditState "preeditState"
#define XNVisiblePosition "visiblePosition"
#define XNR6PreeditCallbackBehavior "r6PreeditCallback"
#define XNRequiredCharSet "requiredCharSet"
#define XNQueryOrientation "queryOrientation"
#define XNDirectionalDependentDrawing "directionalDependentDrawing"
#define XNContextualDrawing "contextualDrawing"
#define XNBaseFontName "baseFontName"
#define XNMissingCharSet "missingCharSet"

316

Xlib − C Library libX11 1.3.2

#define XNDefaultString "defaultString"
#define XNOrientation "orientation"
#define XNFontInfo "fontInfo"
#define XNOMAutomatic "omAutomatic"

317

Xlib − C Library libX11 1.3.2

Chapter 14

Inter-Client Communication Functions

TheInter-Client Communication Conventions Manual, hereafter referred to as the ICCCM,
details the X Consortium approved conventions that govern inter-client communications. These
conventions ensure peer-to-peer client cooperation in the use of selections, cut buffers, and shared
resources as well as client cooperation with window and session managers.For further informa-
tion, see theInter-Client Communication Conventions Manual.

Xlib provides a number of standard properties and programming interfaces that are ICCCM com-
pliant. Thepredefined atoms for some of these properties are defined in the <X11/Xatom.h>
header file, where to avoid name conflicts with user symbols their#definename has an XA_ pre-
fix. For further information about atoms and properties, see section 4.3.

Xlib’ s selection and cut buffer mechanisms provide the primary programming interfaces by which
peer client applications communicate with each other (see sections 4.5 and 16.6). The functions
discussed in this chapter provide the primary programming interfaces by which client applications
communicate with their window and session managers as well as share standard colormaps.

The standard properties that are of special interest for communicating with window and session
managers are:

Name Type Format Description

WM_CLASS STRING 8 Set by application programs to allow
window and session managers to
obtain the application’s resources
from the resource database.

WM_CLIENT_MACHINE TEXT The string name of the machine on
which the client application is run-
ning.

WM_COLORMAP_WINDOWS WINDOW 32 The list of window IDs that may
need a different colormap from that
of their top-level window.

WM_COMMAND TEXT The command and arguments, null-
separated, used to invoke the appli-
cation.

WM_HINTS WM_HINTS 32 Additional hints set by the client for
use by the window manager. The C
type of this property isXWMHints .

WM_ICON_NAME TEXT The name to be used in an icon.

WM_ICON_SIZE WM_ICON_SIZE 32 The window manager may set this
property on the root window to
specify the icon sizes it supports.
The C type of this property is
XIconSize.

WM_NAME TEXT The name of the application.

318

Xlib − C Library libX11 1.3.2

Name Type Format Description

WM_NORMAL_HINTS WM_SIZE_HINTS 32 Size hints for a window in its
normal state. The C type of this
property isXSizeHints.

WM_PROT OCOLS AT OM 32 List of atoms that identify the com-
munications protocols between the
client and window manager in
which the client is willing to partici-
pate.

WM_STATE WM_STATE 32 Intended for communication
between window and session man-
agers only.

WM_TRANSIENT_FOR WINDOW 32 Set by application programs to indi-
cate to the window manager that a
transient top-level window, such as a
dialog box.

The remainder of this chapter discusses:

• Client to window manager communication

• Client to session manager communication

• Standard colormaps

14.1. Clientto Window Manager Communication
This section discusses how to:

• Manipulate top-level windows

• Convert string lists

• Set and read text properties

• Set and read the WM_NAME property

• Set and read the WM_ICON_NAME property

• Set and read the WM_HINTS property

• Set and read the WM_NORMAL_HINTS property

• Set and read the WM_CLASS property

• Set and read the WM_TRANSIENT_FOR property

• Set and read the WM_PROT OCOLS property

• Set and read the WM_COLORMAP_WINDOWS property

• Set and read the WM_ICON_SIZE property

• Use window manager convenience functions

14.1.1. ManipulatingTop-Level Windows
Xlib provides functions that you can use to change the visibility or size of top-level windows (that
is, those that were created as children of the root window). Notethat the subwindows that you
create are ignored by window managers. Therefore,you should use the basic window functions
described in chapter 3 to manipulate your application’s subwindows.

To request that a top-level window be iconified, useXIconifyWindow .

319

Xlib − C Library libX11 1.3.2

Status XIconifyWindow(display, w, screen_number)
Display *display;
Windoww;
int screen_number;

display Specifies the connection to the X server.

w Specifies the window.

screen_numberSpecifies the appropriate screen number on the host server.

The XIconifyWindow function sends a WM_CHANGE_STATE ClientMessageev ent with a
format of 32 and a first data element ofIconicState (as described in section 4.1.4 of theInter-
Client Communication Conventions Manual) and a window of w to the root window of the speci-
fied screen with an event mask set toSubstructureNotifyMask | SubstructureRedirectMask.
Window managers may elect to receive this message and if the window is in its normal state, may
treat it as a request to change the window’s state from normal to iconic. If the
WM_CHANGE_STATE property cannot be interned,XIconifyWindow does not send a message
and returns a zero status. It returns a nonzero status if the client message is sent successfully; oth-
erwise, it returns a zero status.

To request that a top-level window be withdrawn, useXWithdrawWindow .

Status XWithdrawWindow(display, w, screen_number)
Display *display;
Windoww;
int screen_number;

display Specifies the connection to the X server.

w Specifies the window.

screen_numberSpecifies the appropriate screen number on the host server.

The XWithdrawWindow function unmaps the specified window and sends a syntheticUnmap-
Notify ev ent to the root window of the specified screen.Window managers may elect to receive
this message and may treat it as a request to change the window’s state to withdrawn. Whena
window is in the withdrawn state, neither its normal nor its iconic representations is visible. It
returns a nonzero status if theUnmapNotify ev ent is successfully sent; otherwise, it returns a
zero status.

XWithdrawWindow can generate aBadWindow error.

To request that a top-level window be reconfigured, useXReconfigureWMWindow .

320

Xlib − C Library libX11 1.3.2

Status XReconfigureWMWindow(display, w, screen_number, value_mask, values)
Display *display;
Windoww;
int screen_number;
unsigned intvalue_mask;
XWindowChanges *values;

display Specifies the connection to the X server.

w Specifies the window.

screen_numberSpecifies the appropriate screen number on the host server.

value_mask Specifies which values are to be set using information in the values structure.
This mask is the bitwise inclusive OR of the valid configure window values bits.

values Specifies theXWindowChangesstructure.

The XReconfigureWMWindow function issues aConfigureWindow request on the specified
top-level window. If the stacking mode is changed and the request fails with aBadMatch error,
the error is trapped by Xlib and a syntheticConfigureRequestEventcontaining the same config-
uration parameters is sent to the root of the specified window. Window managers may elect to
receive this event and treat it as a request to reconfigure the indicated window. It returns a
nonzero status if the request or event is successfully sent; otherwise, it returns a zero status.

XReconfigureWMWindow can generateBadValue andBadWindow errors.

14.1.2. Converting String Lists
Many of the text properties allow a variety of types and formats. Because the data stored in these
properties are not simple null-terminated strings, anXTextProperty structure is used to describe
the encoding, type, and length of the text as well as its value. TheXTextProperty structure con-
tains:

typedef struct {
unsigned char *value; /*property data */
Atom encoding; /* type of property */
int format; /* 8, 16, or 32 */
unsigned long nitems; /* number of items in value */

} X Te xtProperty;

Xlib provides functions to convert localized text to or from encodings that support the inter-client
communication conventions for text. In addition, functions are provided for converting between
lists of pointers to character strings and text properties in the STRING encoding.

The functions for localized text return a signed integer error status that encodesSuccessas zero,
specific error conditions as negative numbers, and partial conversion as a count of unconvertible
characters.

321

Xlib − C Library libX11 1.3.2

#define XNoMemory −1
#define XLocaleNotSupported −2
#define XConverterNotFound −3

typedef enum {
XStringStyle, /*STRING */
XCompoundTextStyle, /*COMPOUND_TEXT */
XTextStyle, /* text in owner’s encoding (current locale) */
XStdICCTextStyle /* STRING, else COMPOUND_TEXT */

} X ICCEncodingStyle;

To convert a list of text strings to anXTextProperty structure, useXmbTextListToTextProp-
erty or XwcTextListToTextProperty .

int XmbTextListToTextProperty (display, list , count, style, text_prop_return)
Display *display;
char **list ;
int count;
XICCEncodingStylestyle;
XTextProperty *text_prop_return;

int XwcTextListToTextProperty (display, list , count, style, text_prop_return)
Display *display;
wchar_t **list ;
int count;
XICCEncodingStylestyle;
XTextProperty *text_prop_return;

display Specifies the connection to the X server.

list Specifies a list of null-terminated character strings.

count Specifies the number of strings specified.

style Specifies the manner in which the property is encoded.

text_prop_returnReturns theXTextProperty structure.

The XmbTextListToTextProperty andXwcTextListToTextProperty functions set the specified
XTextProperty value to a set of null-separated elements representing the concatenation of the
specified list of null-terminated text strings.A final terminating null is stored at the end of the
value field of text_prop_return but is not included in the nitems member.

The functions set the encoding field of text_prop_return to anAtom for the specified display
naming the encoding determined by the specified style and convert the specified text list to this
encoding for storage in the text_prop_return value field. If the styleXStringStyle or XCom-
poundTextStyle is specified, this encoding is ‘‘STRING’’ or ‘ ‘COMPOUND_TEXT’’, respec-
tively. If the styleXTextStyle is specified, this encoding is the encoding of the current locale. If
the styleXStdICCTextStyle is specified, this encoding is ‘‘STRING’’ if t he text is fully convert-
ible to STRING, else ‘‘COMPOUND_TEXT’’.

If insufficient memory is available for the new value string, the functions returnXNoMemory . If
the current locale is not supported, the functions returnXLocaleNotSupported. In both of these
error cases, the functions do not set text_prop_return.

322

Xlib − C Library libX11 1.3.2

To determine if the functions are guaranteed not to returnXLocaleNotSupported, useXSup-
portsLocale.

If the supplied text is not fully convertible to the specified encoding, the functions return the num-
ber of unconvertible characters. Each unconvertible character is converted to an implementation-
defined and encoding-specific default string. Otherwise, the functions returnSuccess. Note that
full convertibility to all styles exceptXStringStyle is guaranteed.

To free the storage for the value field, useXFree.

To obtain a list of text strings from anXTextProperty structure, useXmbTextPropertyTo-
TextList or XwcTextPropertyToTextList .

int XmbTextPropertyToTextList (display, text_prop, list_return, count_return)
Display *display;
XTextProperty *text_prop;
char *** list_return;
int *count_return;

int XwcTextPropertyToTextList (display, text_prop, list_return, count_return)
Display *display;
XTextProperty *text_prop;
wchar_t ***list_return;
int *count_return;

display Specifies the connection to the X server.

text_prop Specifies theXTextProperty structure to be used.

list_return Returns a list of null-terminated character strings.

count_return Returns the number of strings.

The XmbTextPropertyToTextList andXwcTextPropertyToTextList functions return a list of
text strings in the current locale representing the null-separated elements of the specified
XTextProperty structure. Thedata in text_prop must be format 8.

Multiple elements of the property (for example, the strings in a disjoint text selection) are sepa-
rated by a null byte. The contents of the property are not required to be null-terminated; any ter-
minating null should not be included in text_prop.nitems.

If insufficient memory is available for the list and its elements,XmbTextPropertyToTextList
andXwcTextPropertyToTextList returnXNoMemory . If the current locale is not supported,
the functions returnXLocaleNotSupported. Otherwise, if the encoding field of text_prop is not
convertible to the encoding of the current locale, the functions returnXConverterNotFound .
For supported locales, existence of a converter from COMPOUND_TEXT, STRING or the
encoding of the current locale is guaranteed ifXSupportsLocale returnsTr ue for the current
locale (but the actual text may contain unconvertible characters). Conversion of other encodings
is implementation-dependent. In all of these error cases, the functions do not set any return val-
ues.

Otherwise,XmbTextPropertyToTextList andXwcTextPropertyToTextList return the list of
null-terminated text strings to list_return and the number of text strings to count_return.

If the value field of text_prop is not fully convertible to the encoding of the current locale, the
functions return the number of unconvertible characters. Each unconvertible character is con-
verted to a string in the current locale that is specific to the current locale.To obtain the value of
this string, useXDefaultString . Otherwise,XmbTextPropertyToTextList andXwcTextProp-
ertyToTextList returnSuccess.

323

Xlib − C Library libX11 1.3.2

To free the storage for the list and its contents returned byXmbTextPropertyToTextList , use
XFreeStringList . To free the storage for the list and its contents returned byXwcTextProperty-
ToTextList , useXwcFreeStringList .

To free the in-memory data associated with the specified wide character string list, use
XwcFreeStringList .

void XwcFreeStringList(list)
wchar_t **list ;

list Specifies the list of strings to be freed.

The XwcFreeStringList function frees memory allocated byXwcTextPropertyToTextList .

To obtain the default string for text conversion in the current locale, useXDefaultString .

char *XDefaultString ()

The XDefaultString function returns the default string used by Xlib for text conversion (for
example, inXmbTextPropertyToTextList). Thedefault string is the string in the current locale
that is output when an unconvertible character is found during text conversion. If the string
returned byXDefaultString is the empty string (""), no character is output in the converted text.
XDefaultString does not return NULL.

The string returned byXDefaultString is independent of the default string for text drawing; see
XCreateFontSet to obtain the default string for anXFontSet.
The behavior when an invalid codepoint is supplied to any Xlib function is undefined.

The returned string is null-terminated. It is owned by Xlib and should not be modified or freed by
the client. It may be freed after the current locale is changed. Until freed, it will not be modified
by Xlib.

To set the specified list of strings in the STRING encoding to aXTextProperty structure, use
XStringListToTextProperty .

Status XStringListToTextProperty (list, count, text_prop_return)
char **list ;
int count;
XTextProperty *text_prop_return;

list Specifies a list of null-terminated character strings.

count Specifies the number of strings.

text_prop_returnReturns theXTextProperty structure.

The XStringListToTextProperty function sets the specifiedXTextProperty to be of type
STRING (format 8) with a value representing the concatenation of the specified list of null-sepa-
rated character strings. An extra null byte (which is not included in the nitems member) is stored
at the end of the value field of text_prop_return. Thestrings are assumed (without verification) to
be in the STRING encoding. If insufficient memory is available for the new value string,
XStringListToTextProperty does not set any fields in theXTextProperty structure and returns
a zero status. Otherwise, it returns a nonzero status.To free the storage for the value field, use
XFree.

324

Xlib − C Library libX11 1.3.2

To obtain a list of strings from a specifiedXTextProperty structure in the STRING encoding,
useXTextPropertyToStringList .

Status XTextPropertyToStringList (text_prop, list_return, count_return)
XTextProperty *text_prop;
char *** list_return;
int *count_return;

text_prop Specifies theXTextProperty structure to be used.

list_return Returns a list of null-terminated character strings.

count_return Returns the number of strings.

The XTextPropertyToStringList function returns a list of strings representing the null-separated
elements of the specifiedXTextProperty structure. Thedata in text_prop must be of type
STRING and format 8. Multiple elements of the property (for example, the strings in a disjoint
text selection) are separated by NULL (encoding 0). The contents of the property are not null-ter-
minated. Ifinsufficient memory is available for the list and its elements,XTextProperty-
ToStringList sets no return values and returns a zero status. Otherwise, it returns a nonzero sta-
tus. To free the storage for the list and its contents, useXFreeStringList .

To free the in-memory data associated with the specified string list, useXFreeStringList .

void XFreeStringList(list)
char **list ;

list Specifies the list of strings to be freed.

The XFreeStringList function releases memory allocated byXmbTextPropertyToTextList and
XTextPropertyToStringList and the missing charset list allocated byXCreateFontSet.

14.1.3. Settingand Reading Text Properties
Xlib provides two functions that you can use to set and read the text properties for a given win-
dow. You can use these functions to set and read those properties of type TEXT (WM_NAME,
WM_ICON_NAME, WM_COMMAND, and WM_CLIENT_MACHINE). Inaddition, Xlib pro-
vides separate convenience functions that you can use to set each of these properties.For further
information about these convenience functions, see sections 14.1.4, 14.1.5, 14.2.1, and 14.2.2,
respectively.

To set one of a window’s text properties, useXSetTextProperty.

void XSetTextProperty (display, w, text_prop, property)
Display *display;
Windoww;
XTextProperty *text_prop;
Atom property;

display Specifies the connection to the X server.

w Specifies the window.

text_prop Specifies theXTextProperty structure to be used.

property Specifies the property name.

325

Xlib − C Library libX11 1.3.2

The XSetTextProperty function replaces the existing specified property for the named window
with the data, type, format, and number of items determined by the value field, the encoding field,
the format field, and the nitems field, respectively, of the specifiedXTextProperty structure. If
the property does not already exist,XSetTextProperty sets it for the specified window.

XSetTextProperty can generateBadAlloc, BadAtom, BadValue, and BadWindow errors.

To read one of a window’s text properties, useXGetTextProperty .

Status XGetTextProperty (display, w, text_prop_return, property)
Display *display;
Windoww;
XTextProperty *text_prop_return;
Atom property;

display Specifies the connection to the X server.

w Specifies the window.

text_prop_returnReturns theXTextProperty structure.

property Specifies the property name.

The XGetTextProperty function reads the specified property from the window and stores the
data in the returnedXTextProperty structure. Itstores the data in the value field, the type of the
data in the encoding field, the format of the data in the format field, and the number of items of
data in the nitems field. An extra byte containing null (which is not included in the nitems mem-
ber) is stored at the end of the value field of text_prop_return. Theparticular interpretation of the
property’s encoding and data as text is left to the calling application. If the specified property
does not exist on the window, XGetTextProperty sets the value field to NULL, the encoding
field to None, the format field to zero, and the nitems field to zero.

If it was able to read and store the data in theXTextProperty structure,XGetTextProperty
returns a nonzero status; otherwise, it returns a zero status.

XGetTextProperty can generateBadAtom andBadWindow errors.

14.1.4. Settingand Reading the WM_NAME Property
Xlib provides convenience functions that you can use to set and read the WM_NAME property
for a given window.

To set a window’s WM_NAME property with the supplied convenience function, useXSetWM-
Name.

void XSetWMName(display, w, text_prop)
Display *display;
Windoww;
XTextProperty *text_prop;

display Specifies the connection to the X server.

w Specifies the window.

text_prop Specifies theXTextProperty structure to be used.

The XSetWMName convenience function callsXSetTextProperty to set the WM_NAME prop-
erty.

326

Xlib − C Library libX11 1.3.2

To read a window’s WM_NAME property with the supplied convenience function, use
XGetWMName.

Status XGetWMName(display, w, text_prop_return)
Display *display;
Windoww;
XTextProperty *text_prop_return;

display Specifies the connection to the X server.

w Specifies the window.

text_prop_returnReturns theXTextProperty structure.

The XGetWMName convenience function callsXGetTextProperty to obtain the WM_NAME
property. It returns a nonzero status on success; otherwise, it returns a zero status.

The following two functions have been superseded byXSetWMName andXGetWMName,
respectively. You can use these additional convenience functions for window names that are
encoded as STRING properties.

To assign a name to a window, useXStoreName.

XStoreName (display, w, window_name)
Display *display;
Windoww;
char *window_name;

display Specifies the connection to the X server.

w Specifies the window.

window_name Specifies the window name, which should be a null-terminated string.

The XStoreName function assigns the name passed to window_name to the specified window.
A window manager can display the window name in some prominent place, such as the title bar,
to allow users to identify windows easily. Some window managers may display a window’s name
in the window’s icon, although they are encouraged to use the window’s icon name if one is pro-
vided by the application. If the string is not in the Host Portable Character Encoding, the result is
implementation-dependent.

XStoreNamecan generateBadAlloc andBadWindow errors.

To get the name of a window, useXFetchName.

Status XFetchName(display, w, window_name_return)
Display *display;
Windoww;
char **window_name_return;

display Specifies the connection to the X server.

w Specifies the window.

window_name_return
Returns the window name, which is a null-terminated string.

The XFetchName function returns the name of the specified window. If it succeeds, it returns a
nonzero status; otherwise, no name has been set for the window, and it returns zero. If the

327

Xlib − C Library libX11 1.3.2

WM_NAME property has not been set for this window, XFetchNamesets window_name_return
to NULL. If the data returned by the server is in the Latin Portable Character Encoding, then the
returned string is in the Host Portable Character Encoding. Otherwise, the result is implementa-
tion-dependent. Whenfinished with it, a client must free the window name string usingXFree.

XFetchNamecan generate aBadWindow error.

14.1.5. Settingand Reading the WM_ICON_NAME Property
Xlib provides convenience functions that you can use to set and read the WM_ICON_NAME
property for a given window.

To set a window’s WM_ICON_NAME property, useXSetWMIconName.

void XSetWMIconName(display, w, text_prop)
Display *display;
Windoww;
XTextProperty *text_prop;

display Specifies the connection to the X server.

w Specifies the window.

text_prop Specifies theXTextProperty structure to be used.

The XSetWMIconName convenience function callsXSetTextProperty to set the
WM_ICON_NAME property.

To read a window’s WM_ICON_NAME property, useXGetWMIconName.

Status XGetWMIconName(display, w, text_prop_return)
Display *display;
Windoww;
XTextProperty *text_prop_return;

display Specifies the connection to the X server.

w Specifies the window.

text_prop_returnReturns theXTextProperty structure.

The XGetWMIconName convenience function callsXGetTextProperty to obtain the
WM_ICON_NAME property. It returns a nonzero status on success; otherwise, it returns a zero
status.

The next two functions have been superseded byXSetWMIconName andXGetWMIconName,
respectively. You can use these additional convenience functions for window names that are
encoded as STRING properties.

To set the name to be displayed in a window’s icon, useXSetIconName.

328

Xlib − C Library libX11 1.3.2

XSetIconName (display, w, icon_name)
Display *display;
Windoww;
char *icon_name;

display Specifies the connection to the X server.

w Specifies the window.

icon_name Specifies the icon name, which should be a null-terminated string.

If the string is not in the Host Portable Character Encoding, the result is implementation-depen-
dent. XSetIconNamecan generateBadAlloc andBadWindow errors.

To get the name a window wants displayed in its icon, useXGetIconName.

Status XGetIconName(display, w, icon_name_return)
Display *display;
Windoww;
char **icon_name_return;

display Specifies the connection to the X server.

w Specifies the window.

icon_name_return
Returns the window’s icon name, which is a null-terminated string.

The XGetIconName function returns the name to be displayed in the specified window’s icon. If
it succeeds, it returns a nonzero status; otherwise, if no icon name has been set for the window, it
returns zero. If you never assigned a name to the window, XGetIconName sets
icon_name_return to NULL. If the data returned by the server is in the Latin Portable Character
Encoding, then the returned string is in the Host Portable Character Encoding. Otherwise, the
result is implementation-dependent. When finished with it, a client must free the icon name
string usingXFree.

XGetIconName can generate aBadWindow error.

14.1.6. Settingand Reading the WM_HINTS Property
Xlib provides functions that you can use to set and read the WM_HINTS property for a given
window. These functions use the flags and theXWMHints structure, as defined in the
<X11/Xutil.h> header file.

To allocate anXWMHints structure, useXAllocWMHints .

XWMHints *XAllocWMHints ()

The XAllocWMHints function allocates and returns a pointer to anXWMHints structure. Note
that all fields in theXWMHints structure are initially set to zero. If insufficient memory is avail-
able,XAllocWMHints returns NULL. To free the memory allocated to this structure, use
XFree.

The XWMHints structure contains:

329

Xlib − C Library libX11 1.3.2

/* Window manager hints mask bits */

#define InputHint (1L << 0)
#define StateHint (1L << 1)
#define IconPixmapHint (1L << 2)
#define IconWindowHint (1L << 3)
#define IconPositionHint (1L << 4)
#define IconMaskHint (1L << 5)
#define WindowGroupHint (1L << 6)
#define UrgencyHint (1L << 8)
#define AllHints (InputHint|StateHint|IconPixmapHint|

IconWindowHint|IconPositionHint|
IconMaskHint|WindowGroupHint)

/* Values */

typedef struct {
long flags; /* marks which fields in this structure are defined */
Bool input; /* does this application rely on the window manager to

get keyboard input? */
int initial_state; /* see below */
Pixmap icon_pixmap; /* pixmap to be used as icon */
Window icon_window; /* window to be used as icon */
int icon_x, icon_y; /* initial position of icon */
Pixmap icon_mask; /* pixmap to be used as mask for icon_pixmap */
XID window_group; /*id of related window group */
/* this structure may be extended in the future */

} X WMHints;

The input member is used to communicate to the window manager the input focus model used by
the application. Applications that expect input but never explicitly set focus to any of their sub-
windows (that is, use the push model of focus management), such as X Version 10 style applica-
tions that use real-estate driven focus, should set this member toTr ue. Similarly, applications
that set input focus to their subwindows only when it is given to their top-level window by a win-
dow manager should also set this member toTr ue. Applications that manage their own input
focus by explicitly setting focus to one of their subwindows whenever they want keyboard input
(that is, use the pull model of focus management) should set this member toFalse. Applications
that never expect any keyboard input also should set this member toFalse.

Pull model window managers should make it possible for push model applications to get input by
setting input focus to the top-level windows of applications whose input member isTr ue. Push
model window managers should make sure that pull model applications do not break them by
resetting input focus toPointerRoot when it is appropriate (for example, whenever an applica-
tion whose input member isFalse sets input focus to one of its subwindows).

The definitions for the initial_state flag are:

#define WithdrawnState 0
#define NormalState 1 /* most applications start this way */
#define IconicState 3 /* application wants to start as an icon */

The icon_mask specifies which pixels of the icon_pixmap should be used as the icon. This allows
for nonrectangular icons. Both icon_pixmap and icon_mask must be bitmaps. The icon_window
lets an application provide a window for use as an icon for window managers that support such
use. Thewindow_group lets you specify that this window belongs to a group of other windows.
For example, if a single application manipulates multiple top-level windows, this allows you to

330

Xlib − C Library libX11 1.3.2

provide enough information that a window manager can iconify all of the windows rather than
just the one window.

The UrgencyHint flag, if set in the flags field, indicates that the client deems the window con-
tents to be urgent, requiring the timely response of the user. The window manager will make
some effort to draw the user’s attention to this window while this flag is set. The client must pro-
vide some means by which the user can cause the urgency flag to be cleared (either mitigating the
condition that made the window urgent or merely shutting off the alarm) or the window to be
withdrawn.

To set a window’s WM_HINTS property, useXSetWMHints .

XSetWMHints (display, w, wmhints)
Display *display;
Windoww;
XWMHints *wmhints;

display Specifies the connection to the X server.

w Specifies the window.

wmhints Specifies theXWMHints structure to be used.

The XSetWMHints function sets the window manager hints that include icon information and
location, the initial state of the window, and whether the application relies on the window man-
ager to get keyboard input.

XSetWMHints can generateBadAlloc andBadWindow errors.

To read a window’s WM_HINTS property, useXGetWMHints .

XWMHints *XGetWMHints(display, w)
Display *display;
Windoww;

display Specifies the connection to the X server.

w Specifies the window.

The XGetWMHints function reads the window manager hints and returns NULL if no
WM_HINTS property was set on the window or returns a pointer to anXWMHints structure if it
succeeds. Whenfinished with the data, free the space used for it by callingXFree.

XGetWMHints can generate aBadWindow error.

14.1.7. Settingand Reading the WM_NORMAL_HINTS Property
Xlib provides functions that you can use to set or read the WM_NORMAL_HINTS property for a
given window. The functions use the flags and theXSizeHints structure, as defined in the
<X11/Xutil.h> header file.

The size of theXSizeHints structure may grow in future releases, as new components are added
to support new ICCCM features.Passing statically allocated instances of this structure into Xlib
may result in memory corruption when running against a future release of the library. As such, it
is recommended that only dynamically allocated instances of the structure be used.

To allocate anXSizeHints structure, useXAllocSizeHints.

331

Xlib − C Library libX11 1.3.2

XSizeHints *XAllocSizeHints()

The XAllocSizeHints function allocates and returns a pointer to anXSizeHints structure. Note
that all fields in theXSizeHints structure are initially set to zero. If insufficient memory is avail-
able,XAllocSizeHints returns NULL. To free the memory allocated to this structure, use
XFree.

The XSizeHints structure contains:

/* Size hints mask bits */

#define USPosition (1L << 0) /* user specified x, y */
#define USSize (1L << 1) /* user specified width, height */
#define PPosition (1L << 2) /* program specified position */
#define PSize (1L << 3) /* program specified size */
#define PMinSize (1L << 4) /* program specified minimum size */
#define PMaxSize (1L << 5) /* program specified maximum size */
#define PResizeInc (1L << 6) /* program specified resize increments */
#define PAspect (1L << 7) /* program specified min and max aspect ratios */
#define PBaseSize (1L << 8)
#define PWinGravity (1L << 9)
#define PAllHints (PPosition|PSize|

PMinSize|PMaxSize|
PResizeInc|PAspect)

/* Values */

typedef struct {
long flags; /* marks which fields in this structure are defined */
int x, y; /* Obsolete */
int width, height; /* Obsolete */
int min_width, min_height;
int max_width, max_height;
int width_inc, height_inc;
struct {

int x; /* numerator */
int y; /* denominator */

} min_aspect, max_aspect;
int base_width, base_height;
int win_gravity;
/* this structure may be extended in the future */

} X SizeHints;

The x, y, width, and height members are now obsolete and are left solely for compatibility rea-
sons. Themin_width and min_height members specify the minimum window size that still
allows the application to be useful. The max_width and max_height members specify the maxi-
mum window size. Thewidth_inc and height_inc members define an arithmetic progression of
sizes (minimum to maximum) into which the window prefers to be resized. The min_aspect and
max_aspect members are expressed as ratios of x and y, and they allow an application to specify
the range of aspect ratios it prefers. The base_width and base_height members define the desired
size of the window. The window manager will interpret the position of the window and its border
width to position the point of the outer rectangle of the overall window specified by the win_grav-
ity member. The outer rectangle of the window includes any borders or decorations supplied by

332

Xlib − C Library libX11 1.3.2

the window manager. In other words, if the window manager decides to place the window where
the client asked, the position on the parent window’s border named by the win_gravity will be
placed where the client window would have been placed in the absence of a window manager.

Note that use of thePAllHints macro is highly discouraged.

To set a window’s WM_NORMAL_HINTS property, useXSetWMNormalHints .

void XSetWMNormalHints(display, w, hints)
Display *display;
Windoww;
XSizeHints *hints;

display Specifies the connection to the X server.

w Specifies the window.

hints Specifies the size hints for the window in its normal state.

The XSetWMNormalHints function replaces the size hints for the WM_NORMAL_HINTS
property on the specified window. If the property does not already exist,XSetWMNormalHints
sets the size hints for the WM_NORMAL_HINTS property on the specified window. The prop-
erty is stored with a type of WM_SIZE_HINTS and a format of 32.

XSetWMNormalHints can generateBadAlloc andBadWindow errors.

To read a window’s WM_NORMAL_HINTS property, useXGetWMNormalHints .

Status XGetWMNormalHints(display, w, hints_return, supplied_return)
Display *display;
Windoww;
XSizeHints *hints_return;
long *supplied_return;

display Specifies the connection to the X server.

w Specifies the window.

hints_return Returns the size hints for the window in its normal state.

supplied_returnReturns the hints that were supplied by the user.

The XGetWMNormalHints function returns the size hints stored in the
WM_NORMAL_HINTS property on the specified window. If the property is of type
WM_SIZE_HINTS, is of format 32, and is long enough to contain either an old (pre-ICCCM) or
new size hints structure,XGetWMNormalHints sets the various fields of theXSizeHints struc-
ture, sets the supplied_return argument to the list of fields that were supplied by the user (whether
or not they contained defined values), and returns a nonzero status. Otherwise, it returns a zero
status.

If XGetWMNormalHints returns successfully and a pre-ICCCM size hints property is read, the
supplied_return argument will contain the following bits:

(USPosition|USSize|PPosition|PSize|PMinSize|
PMaxSize|PResizeInc|PAspect)

If the property is large enough to contain the base size and window gravity fields as well, the sup-
plied_return argument will also contain the following bits:

333

Xlib − C Library libX11 1.3.2

PBaseSize|PWinGravity

XGetWMNormalHints can generate aBadWindow error.

To set a window’s WM_SIZE_HINTS property, useXSetWMSizeHints.

void XSetWMSizeHints(display, w, hints, property)
Display *display;
Windoww;
XSizeHints *hints;
Atom property;

display Specifies the connection to the X server.

w Specifies the window.

hints Specifies theXSizeHints structure to be used.

property Specifies the property name.

The XSetWMSizeHints function replaces the size hints for the specified property on the named
window. If the specified property does not already exist,XSetWMSizeHints sets the size hints
for the specified property on the named window. The property is stored with a type of
WM_SIZE_HINTS and a format of 32.To set a window’s normal size hints, you can use the
XSetWMNormalHints function.

XSetWMSizeHints can generateBadAlloc, BadAtom, and BadWindow errors.

To read a window’s WM_SIZE_HINTS property, useXGetWMSizeHints.

Status XGetWMSizeHints(display, w, hints_return, supplied_return, property)
Display *display;
Windoww;
XSizeHints *hints_return;
long *supplied_return;
Atom property;

display Specifies the connection to the X server.

w Specifies the window.

hints_return Returns theXSizeHints structure.

supplied_returnReturns the hints that were supplied by the user.

property Specifies the property name.

The XGetWMSizeHints function returns the size hints stored in the specified property on the
named window. If the property is of type WM_SIZE_HINTS, is of format 32, and is long enough
to contain either an old (pre-ICCCM) or new size hints structure,XGetWMSizeHints sets the
various fields of theXSizeHints structure, sets the supplied_return argument to the list of fields
that were supplied by the user (whether or not they contained defined values), and returns a
nonzero status. Otherwise, it returns a zero status.To get a window’s normal size hints, you can
use theXGetWMNormalHints function.

If XGetWMSizeHints returns successfully and a pre-ICCCM size hints property is read, the sup-
plied_return argument will contain the following bits:

(USPosition|USSize|PPosition|PSize|PMinSize|
PMaxSize|PResizeInc|PAspect)

334

Xlib − C Library libX11 1.3.2

If the property is large enough to contain the base size and window gravity fields as well, the sup-
plied_return argument will also contain the following bits:

PBaseSize|PWinGravity

XGetWMSizeHints can generateBadAtom andBadWindow errors.

14.1.8. Settingand Reading the WM_CLASS Property
Xlib provides functions that you can use to set and get the WM_CLASS property for a given win-
dow. These functions use theXClassHint structure, which is defined in the <X11/Xutil.h>
header file.

To allocate anXClassHint structure, useXAllocClassHint .

XClassHint *XAllocClassHint()

The XAllocClassHint function allocates and returns a pointer to anXClassHint structure. Note
that the pointer fields in theXClassHint structure are initially set to NULL. If insufficient mem-
ory is available, XAllocClassHint returns NULL. To free the memory allocated to this structure,
useXFree.

The XClassHint contains:

typedef struct {
char *res_name;
char *res_class;

} X ClassHint;

The res_name member contains the application name, and the res_class member contains the
application class. Note that the name set in this property may differ from the name set as
WM_NAME. Thatis, WM_NAME specifies what should be displayed in the title bar and, there-
fore, can contain temporal information (for example, the name of a file currently in an editor’s
buffer). Onthe other hand, the name specified as part of WM_CLASS is the formal name of the
application that should be used when retrieving the application’s resources from the resource
database.

To set a window’s WM_CLASS property, useXSetClassHint.

XSetClassHint (display, w, class_hints)
Display *display;
Windoww;
XClassHint *class_hints;

display Specifies the connection to the X server.

w Specifies the window.

class_hints Specifies theXClassHint structure that is to be used.

The XSetClassHint function sets the class hint for the specified window. If the strings are not in
the Host Portable Character Encoding, the result is implementation-dependent.

XSetClassHint can generateBadAlloc andBadWindow errors.

335

Xlib − C Library libX11 1.3.2

To read a window’s WM_CLASS property, useXGetClassHint.

Status XGetClassHint(display, w, class_hints_return)
Display *display;
Windoww;
XClassHint *class_hints_return;

display Specifies the connection to the X server.

w Specifies the window.

class_hints_return
Returns theXClassHint structure.

The XGetClassHint function returns the class hint of the specified window to the members of
the supplied structure. If the data returned by the server is in the Latin Portable Character Encod-
ing, then the returned strings are in the Host Portable Character Encoding. Otherwise, the result
is implementation-dependent. It returns a nonzero status on success; otherwise, it returns a zero
status. To free res_name and res_class when finished with the strings, useXFree on each indi-
vidually.

XGetClassHint can generate aBadWindow error.

14.1.9. Settingand Reading the WM_TRANSIENT_FOR Property
Xlib provides functions that you can use to set and read the WM_TRANSIENT_FOR property
for a given window.

To set a window’s WM_TRANSIENT_FOR property, useXSetTransientForHint .

XSetTransientForHint (display, w, prop_window)
Display *display;
Windoww;
Windowprop_window;

display Specifies the connection to the X server.

w Specifies the window.

prop_window Specifies the window that the WM_TRANSIENT_FOR property is to be set to.

The XSetTransientForHint function sets the WM_TRANSIENT_FOR property of the specified
window to the specified prop_window.

XSetTransientForHint can generateBadAlloc andBadWindow errors.

To read a window’s WM_TRANSIENT_FOR property, useXGetTransientForHint .

336

Xlib − C Library libX11 1.3.2

Status XGetTransientForHint (display, w, prop_window_return)
Display *display;
Windoww;
Window *prop_window_return;

display Specifies the connection to the X server.

w Specifies the window.

prop_window_return
Returns the WM_TRANSIENT_FOR property of the specified window.

The XGetTransientForHint function returns the WM_TRANSIENT_FOR property for the
specified window. It returns a nonzero status on success; otherwise, it returns a zero status.

XGetTransientForHint can generate aBadWindow error.

14.1.10. Settingand Reading the WM_PROT OCOLS Property
Xlib provides functions that you can use to set and read the WM_PROT OCOLS property for a
given window.

To set a window’s WM_PROT OCOLS property, useXSetWMProtocols.

Status XSetWMProtocols(display, w, protocols, count)
Display *display;
Windoww;
Atom *protocols;
int count;

display Specifies the connection to the X server.

w Specifies the window.

protocols Specifies the list of protocols.

count Specifies the number of protocols in the list.

The XSetWMProtocols function replaces the WM_PROT OCOLS property on the specified win-
dow with the list of atoms specified by the protocols argument. Ifthe property does not already
exist, XSetWMProtocols sets the WM_PROT OCOLS property on the specified window to the
list of atoms specified by the protocols argument. Theproperty is stored with a type of ATOM
and a format of 32. If it cannot intern the WM_PROT OCOLS atom,XSetWMProtocols returns
a zero status. Otherwise, it returns a nonzero status.

XSetWMProtocols can generateBadAlloc andBadWindow errors.

To read a window’s WM_PROT OCOLS property, useXGetWMProtocols.

337

Xlib − C Library libX11 1.3.2

Status XGetWMProtocols(display, w, protocols_return, count_return)
Display *display;
Windoww;
Atom **protocols_return;
int *count_return;

display Specifies the connection to the X server.

w Specifies the window.

protocols_returnReturns the list of protocols.

count_return Returns the number of protocols in the list.

The XGetWMProtocols function returns the list of atoms stored in the WM_PROT OCOLS
property on the specified window. These atoms describe window manager protocols in which the
owner of this window is willing to participate. If the property exists, is of type ATOM, is of for-
mat 32, and the atom WM_PROT OCOLS can be interned,XGetWMProtocols sets the proto-
cols_return argument to a list of atoms, sets the count_return argument to the number of elements
in the list, and returns a nonzero status. Otherwise, it sets neither of the return arguments and
returns a zero status.To release the list of atoms, useXFree.

XGetWMProtocols can generate aBadWindow error.

14.1.11. Settingand Reading the WM_COLORMAP_WINDOWS Property
Xlib provides functions that you can use to set and read the WM_COLORMAP_WINDOWS
property for a given window.

To set a window’s WM_COLORMAP_WINDOWS property, useXSetWMColormapWindows.

Status XSetWMColormapWindows (display, w, colormap_windows, count)
Display *display;
Windoww;
Window *colormap_windows;
int count;

display Specifies the connection to the X server.

w Specifies the window.

colormap_windows
Specifies the list of windows.

count Specifies the number of windows in the list.

The XSetWMColormapWindows function replaces the WM_COLORMAP_WINDOWS prop-
erty on the specified window with the list of windows specified by the colormap_windows argu-
ment. Ifthe property does not already exist,XSetWMColormapWindows sets the WM_COL-
ORMAP_WINDOWS property on the specified window to the list of windows specified by the
colormap_windows argument. Theproperty is stored with a type of WINDOW and a format of
32. If it cannot intern the WM_COLORMAP_WINDOWS atom,XSetWMColormapWindows
returns a zero status. Otherwise, it returns a nonzero status.

XSetWMColormapWindows can generateBadAlloc andBadWindow errors.

To read a window’s WM_COLORMAP_WINDOWS property, useXGetWMColormapWin-
dows.

338

Xlib − C Library libX11 1.3.2

Status XGetWMColormapWindows (display, w, colormap_windows_return, count_return)
Display *display;
Windoww;
Window **colormap_windows_return;
int *count_return;

display Specifies the connection to the X server.

w Specifies the window.

colormap_windows_return
Returns the list of windows.

count_return Returns the number of windows in the list.

The XGetWMColormapWindows function returns the list of window identifiers stored in the
WM_COLORMAP_WINDOWS property on the specified window. These identifiers indicate the
colormaps that the window manager may need to install for this window. If the property exists, is
of type WINDOW, is of format 32, and the atom WM_COLORMAP_WINDOWS can be
interned,XGetWMColormapWindows sets the windows_return argument to a list of window
identifiers, sets the count_return argument to the number of elements in the list, and returns a
nonzero status. Otherwise, it sets neither of the return arguments and returns a zero status.To
release the list of window identifiers, useXFree.

XGetWMColormapWindows can generate aBadWindow error.

14.1.12. Settingand Reading the WM_ICON_SIZE Property
Xlib provides functions that you can use to set and read the WM_ICON_SIZE property for a
given window. These functions use theXIconSize structure, which is defined in the
<X11/Xutil.h> header file.

To allocate anXIconSize structure, useXAllocIconSize.

XIconSize *XAllocIconSize()

The XAllocIconSize function allocates and returns a pointer to anXIconSize structure. Note
that all fields in theXIconSize structure are initially set to zero. If insufficient memory is avail-
able,XAllocIconSize returns NULL. To free the memory allocated to this structure, useXFree.

The XIconSize structure contains:

typedef struct {
int min_width, min_height;
int max_width, max_height;
int width_inc, height_inc;

} X IconSize;

The width_inc and height_inc members define an arithmetic progression of sizes (minimum to
maximum) that represent the supported icon sizes.

To set a window’s WM_ICON_SIZE property, useXSetIconSizes.

339

Xlib − C Library libX11 1.3.2

XSetIconSizes (display, w, size_list, count)
Display *display;
Windoww;
XIconSize *size_list;
int count;

display Specifies the connection to the X server.

w Specifies the window.

size_list Specifies the size list.

count Specifies the number of items in the size list.

The XSetIconSizesfunction is used only by window managers to set the supported icon sizes.

XSetIconSizescan generateBadAlloc andBadWindow errors.

To read a window’s WM_ICON_SIZE property, useXGetIconSizes.

Status XGetIconSizes(display, w, size_list_return, count_return)
Display *display;
Windoww;
XIconSize **size_list_return;
int *count_return;

display Specifies the connection to the X server.

w Specifies the window.

size_list_returnReturns the size list.

count_return Returns the number of items in the size list.

The XGetIconSizesfunction returns zero if a window manager has not set icon sizes; otherwise,
it returns nonzero.XGetIconSizesshould be called by an application that wants to find out what
icon sizes would be most appreciated by the window manager under which the application is run-
ning. Theapplication should then useXSetWMHints to supply the window manager with an
icon pixmap or window in one of the supported sizes.To free the data allocated in
size_list_return, useXFree.

XGetIconSizescan generate aBadWindow error.

14.1.13. UsingWindow Manager Convenience Functions
The XmbSetWMProperties function stores the standard set of window manager properties, with
text properties in standard encodings for internationalized text communication. The standard
window manager properties for a given window are WM_NAME, WM_ICON_NAME,
WM_HINTS, WM_NORMAL_HINTS, WM_CLASS, WM_COMMAND,
WM_CLIENT_MACHINE, and WM_LOCALE_NAME.

340

Xlib − C Library libX11 1.3.2

void XmbSetWMProperties(display, w, window_name, icon_name, argv, argc,
normal_hints, wm_hints, class_hints)

Display *display;
Windoww;
char *window_name;
char *icon_name;
char *argv[];
int argc;
XSizeHints *normal_hints;
XWMHints *wm_hints;
XClassHint *class_hints;

display Specifies the connection to the X server.

w Specifies the window.

window_name Specifies the window name, which should be a null-terminated string.

icon_name Specifies the icon name, which should be a null-terminated string.

argv Specifies the application’s argument list.

argc Specifies the number of arguments.

hints Specifies the size hints for the window in its normal state.

wm_hints Specifies theXWMHints structure to be used.

class_hints Specifies theXClassHint structure to be used.

The XmbSetWMProperties convenience function provides a simple programming interface for
setting those essential window properties that are used for communicating with other clients (par-
ticularly window and session managers).

If the window_name argument is non-NULL,XmbSetWMProperties sets the WM_NAME
property. If the icon_name argument is non-NULL,XmbSetWMProperties sets the
WM_ICON_NAME property. The window_name and icon_name arguments are null-terminated
strings in the encoding of the current locale. If the arguments can be fully converted to the
STRING encoding, the properties are created with type ‘‘STRING’’; otherwise, the arguments are
converted to Compound Text, and the properties are created with type ‘‘COMPOUND_TEXT’’.

If the normal_hints argument is non-NULL,XmbSetWMProperties calls XSetWMNormal-
Hints , which sets the WM_NORMAL_HINTS property (see section 14.1.7). If the wm_hints
argument is non-NULL,XmbSetWMProperties calls XSetWMHints , which sets the
WM_HINTS property (see section 14.1.6).

If the argv argument is non-NULL,XmbSetWMProperties sets the WM_COMMAND property
from argv and argc. Anargc of zero indicates a zero-length command.

The hostname of the machine is stored usingXSetWMClientMachine (see section 14.2.2).

If the class_hints argument is non-NULL,XmbSetWMProperties sets the WM_CLASS prop-
erty. If the res_name member in theXClassHint structure is set to the NULL pointer and the
RESOURCE_NAME environment variable is set, the value of the environment variable is substi-
tuted for res_name. If the res_name member is NULL, the environment variable is not set, and
argv and argv[0] are set, then the value of argv[0], stripped of any directory prefixes, is substi-
tuted for res_name.

It is assumed that the supplied class_hints.res_name and argv, the RESOURCE_NAME environ-
ment variable, and the hostname of the machine are in the encoding of the locale announced for
the LC_CTYPE category (on POSIX-compliant systems, the LC_CTYPE, else LANG environ-
ment variable). Thecorresponding WM_CLASS, WM_COMMAND, and
WM_CLIENT_MACHINE properties are typed according to the local host locale announcer. No

341

Xlib − C Library libX11 1.3.2

encoding conversion is performed prior to storage in the properties.

For clients that need to process the property text in a locale,XmbSetWMProperties sets the
WM_LOCALE_NAME property to be the name of the current locale. The name is assumed to be
in the Host Portable Character Encoding and is converted to STRING for storage in the property.

XmbSetWMProperties can generateBadAlloc andBadWindow errors.

To set a window’s standard window manager properties with strings in client-specified encodings,
useXSetWMProperties. The standard window manager properties for a given window are
WM_NAME, WM_ICON_NAME, WM_HINTS, WM_NORMAL_HINTS, WM_CLASS,
WM_COMMAND, and WM_CLIENT_MACHINE.

void XSetWMProperties(display, w, window_name, icon_name, argv, argc, normal_hints, wm_hints, class_hints)
Display *display;
Windoww;
XTextProperty *window_name;
XTextProperty *icon_name;
char **argv;
int argc;
XSizeHints *normal_hints;
XWMHints *wm_hints;
XClassHint *class_hints;

display Specifies the connection to the X server.

w Specifies the window.

window_name Specifies the window name, which should be a null-terminated string.

icon_name Specifies the icon name, which should be a null-terminated string.

argv Specifies the application’s argument list.

argc Specifies the number of arguments.

normal_hints Specifies the size hints for the window in its normal state.

wm_hints Specifies theXWMHints structure to be used.

class_hints Specifies theXClassHint structure to be used.

The XSetWMProperties convenience function provides a single programming interface for set-
ting those essential window properties that are used for communicating with other clients (partic-
ularly window and session managers).

If the window_name argument is non-NULL,XSetWMProperties calls XSetWMName, which,
in turn, sets the WM_NAME property (see section 14.1.4). If the icon_name argument is non-
NULL, XSetWMProperties calls XSetWMIconName, which sets the WM_ICON_NAME
property (see section 14.1.5). If the argv argument is non-NULL,XSetWMProperties calls
XSetCommand, which sets the WM_COMMAND property (see section 14.2.1). Note that an
argc of zero is allowed to indicate a zero-length command. Note also that the hostname of this
machine is stored usingXSetWMClientMachine (see section 14.2.2).

If the normal_hints argument is non-NULL,XSetWMProperties calls XSetWMNormalHints ,
which sets the WM_NORMAL_HINTS property (see section 14.1.7). If the wm_hints argument
is non-NULL, XSetWMProperties calls XSetWMHints , which sets the WM_HINTS property
(see section 14.1.6).

If the class_hints argument is non-NULL,XSetWMProperties calls XSetClassHint, which sets
the WM_CLASS property (see section 14.1.8). If the res_name member in theXClassHint
structure is set to the NULL pointer and the RESOURCE_NAME environment variable is set,
then the value of the environment variable is substituted for res_name. If the res_name member is

342

Xlib − C Library libX11 1.3.2

NULL, the environment variable is not set, and argv and argv[0] are set, then the value of argv[0],
stripped of any directory prefixes, is substituted for res_name.

XSetWMProperties can generateBadAlloc andBadWindow errors.

14.2. Clientto Session Manager Communication
This section discusses how to:

• Set and read the WM_COMMAND property

• Set and read the WM_CLIENT_MACHINE property

14.2.1. Settingand Reading the WM_COMMAND Property
Xlib provides functions that you can use to set and read the WM_COMMAND property for a
given window.

To set a window’s WM_COMMAND property, useXSetCommand.

XSetCommand (display, w, argv, argc)
Display *display;
Windoww;
char **argv;
int argc;

display Specifies the connection to the X server.

w Specifies the window.

argv Specifies the application’s argument list.

argc Specifies the number of arguments.

The XSetCommand function sets the command and arguments used to invoke the application.
(Typically, argv is the argv array of your main program.) If the strings are not in the Host Porta-
ble Character Encoding, the result is implementation-dependent.

XSetCommandcan generateBadAlloc andBadWindow errors.

To read a window’s WM_COMMAND property, useXGetCommand.

Status XGetCommand(display, w, argv_return, argc_return)
Display *display;
Windoww;
char ***argv_return;
int *argc_return;

display Specifies the connection to the X server.

w Specifies the window.

argv_return Returns the application’s argument list.

argc_return Returns the number of arguments returned.

The XGetCommand function reads the WM_COMMAND property from the specified window
and returns a string list. If the WM_COMMAND property exists, it is of type STRING and for-
mat 8. If sufficient memory can be allocated to contain the string list,XGetCommand fills in
the argv_return and argc_return arguments and returns a nonzero status. Otherwise, it returns a
zero status. If the data returned by the server is in the Latin Portable Character Encoding, then
the returned strings are in the Host Portable Character Encoding. Otherwise, the result is

343

Xlib − C Library libX11 1.3.2

implementation-dependent. To free the memory allocated to the string list, useXFreeStringList .

14.2.2. Settingand Reading the WM_CLIENT_MACHINE Property
Xlib provides functions that you can use to set and read the WM_CLIENT_MACHINE property
for a given window.

To set a window’s WM_CLIENT_MACHINE property, useXSetWMClientMachine .

void XSetWMClientMachine(display, w, text_prop)
Display *display;
Windoww;
XTextProperty *text_prop;

display Specifies the connection to the X server.

w Specifies the window.

text_prop Specifies theXTextProperty structure to be used.

The XSetWMClientMachine convenience function callsXSetTextProperty to set the
WM_CLIENT_MACHINE property.

To read a window’s WM_CLIENT_MACHINE property, useXGetWMClientMachine .

Status XGetWMClientMachine(display, w, text_prop_return)
Display *display;
Windoww;
XTextProperty *text_prop_return;

display Specifies the connection to the X server.

w Specifies the window.

text_prop_returnReturns theXTextProperty structure.

The XGetWMClientMachine convenience function performs anXGetTextProperty on the
WM_CLIENT_MACHINE property. It returns a nonzero status on success; otherwise, it returns
a zero status.

14.3. StandardColormaps
Applications with color palettes, smooth-shaded drawings, or digitized images demand large
numbers of colors. In addition, these applications often require an efficient mapping from color
triples to pixel values that display the appropriate colors.

As an example, consider a three-dimensional display program that wants to draw a smoothly
shaded sphere. At each pixel in the image of the sphere, the program computes the intensity and
color of light reflected back to the viewer. The result of each computation is a triple of red, green,
and blue (RGB) coefficients in the range 0.0 to 1.0.To draw the sphere, the program needs a col-
ormap that provides a large range of uniformly distributed colors. The colormap should be
arranged so that the program can convert its RGB triples into pixel values very quickly, because
drawing the entire sphere requires many such conversions.

On many current workstations, the display is limited to 256 or fewer colors. Applications must
allocate colors carefully, not only to make sure they cover the entire range they need but also to
make use of as many of the available colors as possible. On a typical X display, many applica-
tions are active at once. Mostworkstations have only one hardware look-up table for colors, so
only one application colormap can be installed at a given time. Theapplication using the

344

Xlib − C Library libX11 1.3.2

installed colormap is displayed correctly, and the other applications go technicolor and are dis-
played with false colors.

As another example, consider a user who is running an image processing program to display
earth-resources data. The image processing program needs a colormap set up with 8 reds, 8
greens, and 4 blues, for a total of 256 colors. Because some colors are already in use in the
default colormap, the image processing program allocates and installs a new colormap.

The user decides to alter some of the colors in the image by invoking a color palette program to
mix and choose colors. The color palette program also needs a colormap with eight reds, eight
greens, and four blues, so just like the image processing program, it must allocate and install a
new colormap.

Because only one colormap can be installed at a time, the color palette may be displayed incor-
rectly whenever the image processing program is active. Conversely, whenever the palette pro-
gram is active, the image may be displayed incorrectly. The user can never match or compare
colors in the palette and image. Contention for colormap resources can be reduced if applications
with similar color needs share colormaps.

The image processing program and the color palette program could share the same colormap if
there existed a convention that described how the colormap was set up. Whenever either program
was active, both would be displayed correctly.

The standard colormap properties define a set of commonly used colormaps. Applications that
share these colormaps and conventions display true colors more often and provide a better inter-
face to the user.

Standard colormaps allow applications to share commonly used color resources. This allows
many applications to be displayed in true colors simultaneously, even when each application
needs an entirely filled colormap.

Several standard colormaps are described in this section. Usually, a window manager creates
these colormaps. Applications should use the standard colormaps if they already exist.

To allocate anXStandardColormap structure, useXAllocStandardColormap .

XStandardColormap *XAllocStandardColormap()

The XAllocStandardColormap function allocates and returns a pointer to anXStandardCol-
ormap structure. Notethat all fields in theXStandardColormap structure are initially set to
zero. If insufficient memory is available, XAllocStandardColormap returns NULL. To free the
memory allocated to this structure, useXFree.

The XStandardColormap structure contains:

345

Xlib − C Library libX11 1.3.2

/* Hints */

#define ReleaseByFreeingColormap ((XID) 1L)

/* Values */

typedef struct {
Colormap colormap;
unsigned long red_max;
unsigned long red_mult;
unsigned long green_max;
unsigned long green_mult;
unsigned long blue_max;
unsigned long blue_mult;
unsigned long base_pixel;
VisualID visualid;
XID killid;

} X StandardColormap;

The colormap member is the colormap created by theXCreateColormap function. The
red_max, green_max, and blue_max members give the maximum red, green, and blue values,
respectively. Each color coefficient ranges from zero to its max, inclusive. For example, a com-
mon colormap allocation is 3/3/2 (3 planes for red, 3 planes for green, and 2 planes for blue).
This colormap would have red_max = 7, green_max = 7, and blue_max = 3. An alternate alloca-
tion that uses only 216 colors is red_max = 5, green_max = 5, and blue_max = 5.

The red_mult, green_mult, and blue_mult members give the scale factors used to compose a full
pixel value. (Seethe discussion of the base_pixel members for further information.)For a 3/3/2
allocation, red_mult might be 32, green_mult might be 4, and blue_mult might be 1.For a 6-col-
ors-each allocation, red_mult might be 36, green_mult might be 6, and blue_mult might be 1.

The base_pixel member gives the base pixel value used to compose a full pixel value. Usually,
the base_pixel is obtained from a call to theXAllocColorPlanes function. Given integer red,
green, and blue coefficients in their appropriate ranges, one then can compute a corresponding
pixel value by using the following expression:

(r * red_mult + g * green_mult + b * blue_mult + base_pixel) & 0xFFFFFFFF

For GrayScalecolormaps, only the colormap, red_max, red_mult, and base_pixel members are
defined. Theother members are ignored.To compute aGrayScalepixel value, use the follow-
ing expression:

(gray * red_mult + base_pixel) & 0xFFFFFFFF

Negative multipliers can be represented by converting the 2’s complement representation of the
multiplier into an unsigned long and storing the result in the appropriate _mult field. The step of
masking by 0xFFFFFFFF effectively converts the resulting positive multiplier into a negative one.
The masking step will take place automatically on many machine architectures, depending on the
size of the integer type used to do the computation.

The visualid member gives the ID number of the visual from which the colormap was created.
The killid member gives a resource ID that indicates whether the cells held by this standard col-
ormap are to be released by freeing the colormap ID or by calling theXKillClient function on
the indicated resource. (Note that this method is necessary for allocating out of an existing col-
ormap.)

The properties containing theXStandardColormap information have the type
RGB_COLOR_MAP.

346

Xlib − C Library libX11 1.3.2

The remainder of this section discusses standard colormap properties and atoms as well as how to
manipulate standard colormaps.

14.3.1. StandardColormap Properties and Atoms
Several standard colormaps are available. Eachstandard colormap is defined by a property, and
each such property is identified by an atom. The following list names the atoms and describes the
colormap associated with each one. The <X11/Xatom.h> header file contains the definitions for
each of the following atoms, which are prefixed with XA_.

RGB_DEFAULT_MAP
This atom names a property. The value of the property is an array ofXStandardCol-
ormap structures. Eachentry in the array describes an RGB subset of the default color
map for the Visual specified by visual_id.

Some applications only need a few RGB colors and may be able to allocate them from the
system default colormap. This is the ideal situation because the fewer colormaps that are
active in the system the more applications are displayed with correct colors at all times.

A typical allocation for the RGB_DEFAULT_MAP on 8-plane displays is 6 reds, 6 greens,
and 6 blues. This gives 216 uniformly distributed colors (6 intensities of 36 different hues)
and still leaves 40 elements of a 256-element colormap available for special-purpose colors
for text, borders, and so on.

RGB_BEST_MAP
This atom names a property. The value of the property is anXStandardColormap.

The property defines the best RGB colormap available on the screen. (Of course, this is a
subjective evaluation.) Many image processing and three-dimensional applications need to
use all available colormap cells and to distribute as many perceptually distinct colors as
possible over those cells. This implies that there may be more green values available than
red, as well as more green or red than blue.

For an 8-planePseudoColorvisual, RGB_BEST_MAP is likely to be a 3/3/2 allocation.
For a 24-planeDirectColor visual, RGB_BEST_MAP is normally an 8/8/8 allocation.

RGB_RED_MAP
RGB_GREEN_MAP
RGB_BLUE_MAP

These atoms name properties. The value of each property is anXStandardColormap.

The properties define all-red, all-green, and all-blue colormaps, respectively. These maps
are used by applications that want to make color-separated images.For example, a user
might generate a full-color image on an 8-plane display both by rendering an image three
times (once with high color resolution in red, once with green, and once with blue) and by
multiply exposing a single frame in a camera.

RGB_GRAY_MAP
This atom names a property. The value of the property is anXStandardColormap.

The property describes the bestGrayScalecolormap available on the screen. As previ-
ously mentioned, only the colormap, red_max, red_mult, and base_pixel members of the
XStandardColormap structure are used forGrayScalecolormaps.

14.3.2. Settingand Obtaining Standard Colormaps
Xlib provides functions that you can use to set and obtain anXStandardColormap structure.

To set anXStandardColormap structure, useXSetRGBColormaps.

347

Xlib − C Library libX11 1.3.2

void XSetRGBColormaps(display, w, std_colormap, count, property)
Display *display;
Windoww;
XStandardColormap *std_colormap;
int count;
Atom property;

display Specifies the connection to the X server.

w Specifies the window.

std_colormap Specifies theXStandardColormap structure to be used.

count Specifies the number of colormaps.

property Specifies the property name.

The XSetRGBColormaps function replaces the RGB colormap definition in the specified prop-
erty on the named window. If the property does not already exist,XSetRGBColormapssets the
RGB colormap definition in the specified property on the named window. The property is stored
with a type of RGB_COLOR_MAP and a format of 32. Note that it is the caller’s responsibility
to honor the ICCCM restriction that only RGB_DEFAULT_MAP contain more than one defini-
tion.

The XSetRGBColormaps function usually is only used by window or session managers.To cre-
ate a standard colormap, follow this procedure:

1. Opena new connection to the same server.

2. Grabthe server.

3. Seeif the property is on the property list of the root window for the screen.

4. If the desired property is not present:

• Create a colormap (unless you are using the default colormap of the screen).

• Determine the color characteristics of the visual.

• Allocate cells in the colormap (or create it withAllocAll).

• Call XStoreColors to store appropriate color values in the colormap.

• Fill in the descriptive members in theXStandardColormap structure.

• Attach the property to the root window.

• UseXSetCloseDownModeto make the resource permanent.

5. Ungrabthe server.

XSetRGBColormapscan generateBadAlloc, BadAtom, and BadWindow errors.

To obtain theXStandardColormap structure associated with the specified property, use
XGetRGBColormaps.

348

Xlib − C Library libX11 1.3.2

Status XGetRGBColormaps(display, w, std_colormap_return, count_return, property)
Display *display;
Windoww;
XStandardColormap **std_colormap_return;
int *count_return;
Atom property;

display Specifies the connection to the X server.

w Specifies the window.

std_colormap_return
Returns theXStandardColormap structure.

count_return Returns the number of colormaps.

property Specifies the property name.

The XGetRGBColormaps function returns the RGB colormap definitions stored in the specified
property on the named window. If the property exists, is of type RGB_COLOR_MAP, is of for-
mat 32, and is long enough to contain a colormap definition,XGetRGBColormaps allocates and
fills in space for the returned colormaps and returns a nonzero status. If the visualid is not
present,XGetRGBColormaps assumes the default visual for the screen on which the window is
located; if the killid is not present,None is assumed, which indicates that the resources cannot be
released. Otherwise,none of the fields are set, andXGetRGBColormaps returns a zero status.
Note that it is the caller’s responsibility to honor the ICCCM restriction that only
RGB_DEFAULT_MAP contain more than one definition.

XGetRGBColormaps can generateBadAtom andBadWindow errors.

349

Xlib − C Library libX11 1.3.2

Chapter 15

Resource Manager Functions

A program often needs a variety of options in the X environment (for example, fonts, colors,
icons, and cursors). Specifying all of these options on the command line is awkward because
users may want to customize many aspects of the program and need a convenient way to establish
these customizations as the default settings. The resource manager is provided for this purpose.
Resource specifications are usually stored in human-readable files and in server properties.

The resource manager is a database manager with a twist. In most database systems, you perform
a query using an imprecise specification, and you get back a set of records. The resource man-
ager, howev er, allows you to specify a large set of values with an imprecise specification, to query
the database with a precise specification, and to get back only a single value. Thisshould be used
by applications that need to know what the user prefers for colors, fonts, and other resources. It is
this use as a database for dealing with X resources that inspired the name ‘‘Resource Manager,’’
although the resource manager can be and is used in other ways.

For example, a user of your application may want to specify that all windows should have a blue
background but that all mail-reading windows should have a red background.With well-engi-
neered and coordinated applications, a user can define this information using only two lines of
specifications.

As an example of how the resource manager works, consider a mail-reading application called
xmh. Assumethat it is designed so that it uses a complex window hierarchy all the way down to
individual command buttons, which may be actual small subwindows in some toolkits. These are
often called objects or widgets. In such toolkit systems, each user interface object can be com-
posed of other objects and can be assigned a name and a class. Fully qualified names or classes
can have arbitrary numbers of component names, but a fully qualified name always has the same
number of component names as a fully qualified class. This generally reflects the structure of the
application as composed of these objects, starting with the application itself.

For example, the xmh mail program has a name ‘‘xmh’’ and is one of a class of ‘‘Mail’’ pro-
grams. Byconvention, the first character of class components is capitalized, and the first letter of
name components is in lowercase. Eachname and class finally has an attribute (for example,
‘‘ foreground’’ or ‘ ‘font’ ’). If each window is properly assigned a name and class, it is easy for the
user to specify attributes of any portion of the application.

At the top level, the application might consist of a paned window (that is, a window divided into
several sections) named ‘‘toc’’. Onepane of the paned window is a button box window named
‘‘ buttons’’ and is filled with command buttons. Oneof these command buttons is used to incorpo-
rate new mail and has the name ‘‘incorporate’’. This window has a fully qualified name,
‘‘ xmh.toc.buttons.incorporate’’, and a fully qualified class, ‘‘Xmh.Paned.Box.Command’’. Its
fully qualified name is the name of its parent, ‘‘xmh.toc.buttons’’, followed by its name, ‘‘incor-
porate’’. Its class is the class of its parent, ‘‘Xmh.Paned.Box’’, followed by its particular class,
‘‘ Command’’. The fully qualified name of a resource is the attribute’s name appended to the
object’s fully qualified name, and the fully qualified class is its class appended to the object’s
class.

The incorporate button might need the following resources: Title string, Font, Foreground color
for its inactive state, Background color for its inactive state, Foreground color for its active state,
and Background color for its active state. Eachresource is considered to be an attribute of the
button and, as such, has a name and a class.For example, the foreground color for the button in
its active state might be named ‘‘activeForeground’’, and its class might be ‘‘Foreground’’.

350

Xlib − C Library libX11 1.3.2

When an application looks up a resource (for example, a color), it passes the complete name and
complete class of the resource to a look-up routine. The resource manager compares this com-
plete specification against the incomplete specifications of entries in the resource database, finds
the best match, and returns the corresponding value for that entry.

The definitions for the resource manager are contained in <X11/Xresource.h>.

15.1. Resource File Syntax
The syntax of a resource file is a sequence of resource lines terminated by newline characters or
the end of the file. The syntax of an individual resource line is:

ResourceLine = Comment | IncludeFile | ResourceSpec | <empty line>
Comment = "!" {<any character except null or newline>}
IncludeFile = "#" WhiteSpace "include" WhiteSpace FileName WhiteSpace
FileName = <valid filename for operating system>
ResourceSpec =WhiteSpace ResourceName WhiteSpace ":" WhiteSpace Value
ResourceName = [Binding] {Component Binding} ComponentName
Binding = "." | "*"
WhiteSpace = {<space> | <horizontal tab>}
Component = "?" | ComponentName
ComponentName = NameChar {NameChar}
NameChar = "a"−"z" | "A"−"Z" | "0"−"9" | "_" | "-"
Value = {<any character except null or unescaped newline>}

Elements separated by vertical bar (|) are alternatives. Curlybraces ({...}) indicate zero or more
repetitions of the enclosed elements. Square brackets ([...]) indicate that the enclosed element is
optional. Quotes("...") are used around literal characters.

IncludeFile lines are interpreted by replacing the line with the contents of the specified file. The
word ‘‘include’’ must be in lowercase. Thefile name is interpreted relative to the directory of the
file in which the line occurs (for example, if the file name contains no directory or contains a rela-
tive directory specification).

If a ResourceName contains a contiguous sequence of two or more Binding characters, the
sequence will be replaced with a single ‘‘.’’ character if the sequence contains only ‘‘.’’ characters;
otherwise, the sequence will be replaced with a single ‘‘*’’ character.

A resource database never contains more than one entry for a given ResourceName. Ifa resource
file contains multiple lines with the same ResourceName, the last line in the file is used.

Any white space characters before or after the name or colon in a ResourceSpec are ignored.To
allow a Value to begin with white space, the two-character sequence ‘‘ \ space’’ (backslash fol-
lowed by space) is recognized and replaced by a space character, and the two-character sequence
‘‘ \ tab’’ (backslash followed by horizontal tab) is recognized and replaced by a horizontal tab
character. To allow a Value to contain embedded newline characters, the two-character sequence
‘‘ \ n ’’ i s recognized and replaced by a newline character. To allow a Value to be broken across
multiple lines in a text file, the two-character sequence ‘‘ \ newline’’ (backslash followed by new-
line) is recognized and removed from the value. To allow a Value to contain arbitrary character
codes, the four-character sequence ‘‘ \ nnn’’ , where eachn is a digit character in the range of
‘‘ 0’’−‘‘ 7’’, is recognized and replaced with a single byte that contains the octal value specified by
the sequence. Finally, the two-character sequence ‘‘ \ \’’ is recognized and replaced with a single
backslash.

As an example of these sequences, the following resource line contains a value consisting of four
characters: a backslash, a null, a ‘‘z’’, and a newline:

magic.values: \\\000 \
z\ n

351

Xlib − C Library libX11 1.3.2

15.2. Resource Manager Matching Rules
The algorithm for determining which resource database entry matches a given query is the heart
of the resource manager. All queries must fully specify the name and class of the desired
resource (use of the characters ‘‘*’’ and ‘‘?’’ is not permitted). The library supports up to 100
components in a full name or class. Resources are stored in the database with only partially spec-
ified names and classes, using pattern matching constructs. An asterisk (*) is a loose binding and
is used to represent any number of intervening components, including none.A period (.) is a tight
binding and is used to separate immediately adjacent components.A question mark (?) is used to
match any single component name or class.A database entry cannot end in a loose binding; the
final component (which cannot be the character ‘‘?’’) must be specified. The lookup algorithm
searches the database for the entry that most closely matches (is most specific for) the full name
and class being queried. When more than one database entry matches the full name and class,
precedence rules are used to select just one.

The full name and class are scanned from left to right (from highest level in the hierarchy to low-
est), one component at a time. At each level, the corresponding component and/or binding of
each matching entry is determined, and these matching components and bindings are compared
according to precedence rules. Each of the rules is applied at each level before moving to the
next level, until a rule selects a single entry over all others. The rules, in order of precedence, are:

1. Anentry that contains a matching component (whether name, class, or the character ‘‘?’’)
takes precedence over entries that elide the level (that is, entries that match the level in a
loose binding).

2. Anentry with a matching name takes precedence over both entries with a matching class
and entries that match using the character ‘‘?’’. An entry with a matching class takes prece-
dence over entries that match using the character ‘‘?’’.

3. Anentry preceded by a tight binding takes precedence over entries preceded by a loose
binding.

To illustrate these rules, consider the following resource database entries:

xmh*Paned*activeForeground: red (entry A)
*incorporate.Foreground: blue (entry B)
xmh.toc*Command*activeForeground: green (entry C)
xmh.toc*?.Foreground: white (entry D)
xmh.toc*Command.activeForeground: black (entry E)

Consider a query for the resource:

xmh.toc.messagefunctions.incorporate.activeForeground(name)
Xmh.Paned.Box.Command.Foreground (class)

At the first level (xmh, Xmh), rule 1 eliminates entry B. At the second level (toc, Paned), rule 2
eliminates entry A. At the third level (messagefunctions, Box), no entries are eliminated. At the
fourth level (incorporate, Command), rule 2 eliminates entry D. At the fifth level (activeFore-
ground, Foreground), rule 3 eliminates entry C.

15.3. Quarks
Most uses of the resource manager involve defining names, classes, and representation types as
string constants. However, always referring to strings in the resource manager can be slow,
because it is so heavily used in some toolkits.To solve this problem, a shorthand for a string is
used in place of the string in many of the resource manager functions. Simple comparisons can
be performed rather than string comparisons. The shorthand name for a string is called a quark
and is the typeXrmQuark . On some occasions, you may want to allocate a quark that has no
string equivalent.

352

Xlib − C Library libX11 1.3.2

A quark is to a string what an atom is to a string in the server, but its use is entirely local to your
application.

To allocate a new quark, useXrmUniqueQuark .

XrmQuark XrmUniqueQuark()

The XrmUniqueQuark function allocates a quark that is guaranteed not to represent any string
that is known to the resource manager.

Each name, class, and representation type is typedef’d as an XrmQuark .

typedef int XrmQuark, *XrmQuarkList;
typedef XrmQuark XrmName;
typedef XrmQuark XrmClass;
typedef XrmQuark XrmRepresentation;
#define NULLQUARK ((XrmQuark) 0)

Lists are represented as null-terminated arrays of quarks. The size of the array must be large
enough for the number of components used.

typedef XrmQuarkList XrmNameList;
typedef XrmQuarkList XrmClassList;

To convert a string to a quark, useXrmStringToQuark or XrmPermStringToQuark .

#define XrmStringToName(string) XrmStringToQuark(string)
#define XrmStringToClass(string) XrmStringToQuark(string)
#define XrmStringToRepresentation(string) XrmStringToQuark(string)

XrmQuark XrmStringToQuark (string)
char *string;

XrmQuark XrmPermStringToQuark (string)
char *string;

string Specifies the string for which a quark is to be allocated.

These functions can be used to convert from string to quark representation. If the string is not in
the Host Portable Character Encoding, the conversion is implementation-dependent. The string
argument toXrmStringToQuark need not be permanently allocated storage.XrmPermString-
ToQuark is just likeXrmStringToQuark , except that Xlib is permitted to assume the string
argument is permanently allocated, and, hence, that it can be used as the value to be returned by
XrmQuarkToString .

For any giv en quark, if XrmStringToQuark returns a non-NULL value, all future calls will
return the same value (identical address).

To convert a quark to a string, useXrmQuarkToString .

353

Xlib − C Library libX11 1.3.2

#define XrmNameToString(name) XrmQuarkToString(name)
#define XrmClassToString(class) XrmQuarkToString(class)
#define XrmRepresentationToString(type) XrmQuarkToString(type)

char *XrmQuarkToString (quark)
XrmQuarkquark;

quark Specifies the quark for which the equivalent string is desired.

These functions can be used to convert from quark representation to string. The string pointed to
by the return value must not be modified or freed. The returned string is byte-for-byte equal to
the original string passed to one of the string-to-quark routines. If no string exists for that quark,
XrmQuarkToString returns NULL. For any giv en quark, if XrmQuarkToString returns a
non-NULL value, all future calls will return the same value (identical address).

To convert a string with one or more components to a quark list, useXrmStringToQuarkList .

#define XrmStringToNameList(str, name) XrmStringToQuarkList((str), (name))
#define XrmStringToClassList(str, class) XrmStringToQuarkList((str), (class))

void XrmStringToQuarkList (string, quarks_return)
char *string;
XrmQuarkListquarks_return;

string Specifies the string for which a quark list is to be allocated.

quarks_return Returns the list of quarks. The caller must allocate sufficient space for the quarks
list before callingXrmStringToQuarkList .

The XrmStringToQuarkList function converts the null-terminated string (generally a fully qual-
ified name) to a list of quarks. Note that the string must be in the valid ResourceName format
(see section 15.1). If the string is not in the Host Portable Character Encoding, the conversion is
implementation-dependent.

A binding list is a list of typeXrmBindingList and indicates if components of name or class lists
are bound tightly or loosely (that is, if wildcarding of intermediate components is specified).

typedef enum {XrmBindTightly, XrmBindLoosely} XrmBinding, *XrmBindingList;

XrmBindTightly indicates that a period separates the components, andXrmBindLoosely indi-
cates that an asterisk separates the components.

To convert a string with one or more components to a binding list and a quark list, useXrm-
StringToBindingQuarkList .

354

Xlib − C Library libX11 1.3.2

XrmStringToBindingQuarkList (string, bindings_return, quarks_return)
char *string;
XrmBindingListbindings_return;
XrmQuarkListquarks_return;

string Specifies the string for which a quark list is to be allocated.

bindings_returnReturns the binding list. The caller must allocate sufficient space for the binding
list before callingXrmStringToBindingQuarkList .

quarks_return Returns the list of quarks. The caller must allocate sufficient space for the quarks
list before callingXrmStringToBindingQuarkList .

Component names in the list are separated by a period or an asterisk character. The string must
be in the format of a valid ResourceName (see section 15.1). If the string does not start with a
period or an asterisk, a tight binding is assumed.For example, the string ‘‘*a.b*c’’ becomes:

quarks: a b c
bindings: loose tight loose

15.4. Creating and Storing Databases
A resource database is an opaque type,XrmDatabase. Each database value is stored in anXrm-
Value structure. Thisstructure consists of a size, an address, and a representation type. The size
is specified in bytes. The representation type is a way for you to store data tagged by some appli-
cation-defined type (for example, the strings ‘‘font’’ or ‘ ‘color’’). It has nothing to do with the C
data type or with its class. TheXrmValue structure is defined as:

typedef struct {
unsigned int size;
XPointer addr;

} X rmValue, *XrmValuePtr;

To initialize the resource manager, useXrmInitialize .

void XrmInitialize();

To retrieve a database from disk, useXrmGetFileDatabase.

XrmDatabase XrmGetFileDatabase(filename)
char *filename;

filename Specifies the resource database file name.

The XrmGetFileDatabase function opens the specified file, creates a new resource database, and
loads it with the specifications read in from the specified file. The specified file should contain a
sequence of entries in valid ResourceLine format (see section 15.1); the database that results from
reading a file with incorrect syntax is implementation-dependent. The file is parsed in the current
locale, and the database is created in the current locale. If it cannot open the specified file,
XrmGetFileDatabase returns NULL.

355

Xlib − C Library libX11 1.3.2

To store a copy of a database to disk, useXrmPutFileDatabase.

void XrmPutFileDatabase(database, stored_db)
XrmDatabasedatabase;
char *stored_db;

database Specifies the database that is to be used.

stored_db Specifies the file name for the stored database.

The XrmPutFileDatabase function stores a copy of the specified database in the specified file.
Te xt is written to the file as a sequence of entries in valid ResourceLine format (see section 15.1).
The file is written in the locale of the database. Entries containing resource names that are not in
the Host Portable Character Encoding or containing values that are not in the encoding of the
database locale, are written in an implementation-dependent manner. The order in which entries
are written is implementation-dependent. Entries with representation types other than ‘‘String’’
are ignored.

To obtain a pointer to the screen-independent resources of a display, useXResourceManager-
String .

char *XResourceManagerString(display)
Display *display;

display Specifies the connection to the X server.

The XResourceManagerStringfunction returns the RESOURCE_MANAGER property from
the server’s root window of screen zero, which was returned when the connection was opened
usingXOpenDisplay. The property is converted from type STRING to the current locale. The
conversion is identical to that produced byXmbTextPropertyToTextList for a single element
STRING property. The returned string is owned by Xlib and should not be freed by the client.
The property value must be in a format that is acceptable toXrmGetStringDatabase. If no
property exists, NULL is returned.

To obtain a pointer to the screen-specific resources of a screen, useXScreenResourceString.

char *XScreenResourceString(screen)
Screen *screen;

screen Specifies the screen.

The XScreenResourceStringfunction returns the SCREEN_RESOURCES property from the
root window of the specified screen. The property is converted from type STRING to the current
locale. Theconversion is identical to that produced byXmbTextPropertyToTextList for a sin-
gle element STRING property. The property value must be in a format that is acceptable to
XrmGetStringDatabase. If no property exists, NULL is returned. The caller is responsible for
freeing the returned string by usingXFree.

To create a database from a string, useXrmGetStringDatabase.

356

Xlib − C Library libX11 1.3.2

XrmDatabase XrmGetStringDatabase(data)
char *data;

data Specifies the database contents using a string.

The XrmGetStringDatabase function creates a new database and stores the resources specified
in the specified null-terminated string.XrmGetStringDatabase is similar toXrmGetFile-
Databaseexcept that it reads the information out of a string instead of out of a file. The string
should contain a sequence of entries in valid ResourceLine format (see section 15.1) terminated
by a null character; the database that results from using a string with incorrect syntax is imple-
mentation-dependent. Thestring is parsed in the current locale, and the database is created in the
current locale.

To obtain the locale name of a database, useXrmLocaleOfDatabase.

char *XrmLocaleOfDatabase(database)
XrmDatabasedatabase;

database Specifies the resource database.

The XrmLocaleOfDatabase function returns the name of the locale bound to the specified data-
base, as a null-terminated string. The returned locale name string is owned by Xlib and should
not be modified or freed by the client. Xlib is not permitted to free the string until the database is
destroyed. Untilthe string is freed, it will not be modified by Xlib.

To destroy a resource database and free its allocated memory, useXrmDestroyDatabase.

void XrmDestroyDatabase (database)
XrmDatabasedatabase;

database Specifies the resource database.

If database is NULL,XrmDestroyDatabasereturns immediately.

To associate a resource database with a display, useXrmSetDatabase.

void XrmSetDatabase(display, database)
Display *display;
XrmDatabasedatabase;

display Specifies the connection to the X server.

database Specifies the resource database.

The XrmSetDatabasefunction associates the specified resource database (or NULL) with the
specified display. The database previously associated with the display (if any) is not destroyed.
A client or toolkit may find this function convenient for retaining a database once it is con-
structed.

To get the resource database associated with a display, useXrmGetDatabase.

357

Xlib − C Library libX11 1.3.2

XrmDatabase XrmGetDatabase(display)
Display *display;

display Specifies the connection to the X server.

The XrmGetDatabase function returns the database associated with the specified display. It
returns NULL if a database has not yet been set.

15.5. Merging Resource Databases
To merge the contents of a resource file into a database, useXrmCombineFileDatabase.

Status XrmCombineFileDatabase(filename, target_db, override)
char *filename;
XrmDatabase *target_db;
Bool override;

filename Specifies the resource database file name.

target_db Specifies the resource database into which the source database is to be merged.

override Specifies whether source entries override target ones.

The XrmCombineFileDatabasefunction merges the contents of a resource file into a database.
If the same specifier is used for an entry in both the file and the database, the entry in the file will
replace the entry in the database if override isTr ue; otherwise, the entry in the file is discarded.
The file is parsed in the current locale. If the file cannot be read, a zero status is returned; other-
wise, a nonzero status is returned. If target_db contains NULL,XrmCombineFileDatabasecre-
ates and returns a new database to it. Otherwise, the database pointed to by target_db is not
destroyed by the merge. Thedatabase entries are merged without changing values or types,
regardless of the locale of the database. The locale of the target database is not modified.

To merge the contents of one database into another database, useXrmCombineDatabase.

void XrmCombineDatabase(source_db, target_db, override)
XrmDatabasesource_db, *target_db;
Bool override;

source_db Specifies the resource database that is to be merged into the target database.

target_db Specifies the resource database into which the source database is to be merged.

override Specifies whether source entries override target ones.

The XrmCombineDatabasefunction merges the contents of one database into another. If the
same specifier is used for an entry in both databases, the entry in the source_db will replace the
entry in the target_db if override isTr ue; otherwise, the entry in source_db is discarded. If tar-
get_db contains NULL,XrmCombineDatabasesimply stores source_db in it. Otherwise,
source_db is destroyed by the merge, but the database pointed to by target_db is not destroyed.
The database entries are merged without changing values or types, regardless of the locales of the
databases. Thelocale of the target database is not modified.

To merge the contents of one database into another database with override semantics, useXrm-
MergeDatabases.

358

Xlib − C Library libX11 1.3.2

void XrmMergeDatabases(source_db, target_db)
XrmDatabasesource_db, *target_db;

source_db Specifies the resource database that is to be merged into the target database.

target_db Specifies the resource database into which the source database is to be merged.

Calling theXrmMergeDatabasesfunction is equivalent to calling theXrmCombineDatabase
function with an override argument ofTr ue.

15.6. LookingUp Resources
To retrieve a resource from a resource database, useXrmGetResource, XrmQGetResource, or
XrmQGetSearchResource.

Bool XrmGetResource(database, str_name, str_class, str_type_return, value_return)
XrmDatabasedatabase;
char *str_name;
char *str_class;
char **str_type_return;
XrmValue *value_return;

database Specifies the database that is to be used.

str_name Specifies the fully qualified name of the value being retrieved (as a string).

str_class Specifies the fully qualified class of the value being retrieved (as a string).

str_type_returnReturns the representation type of the destination (as a string).

value_return Returns the value in the database.

Bool XrmQGetResource(database, quark_name, quark_class, quark_type_return, value_return)
XrmDatabasedatabase;
XrmNameListquark_name;
XrmClassListquark_class;
XrmRepresentation *quark_type_return;
XrmValue *value_return;

database Specifies the database that is to be used.

quark_name Specifies the fully qualified name of the value being retrieved (as a quark).

quark_class Specifies the fully qualified class of the value being retrieved (as a quark).

quark_type_return
Returns the representation type of the destination (as a quark).

value_return Returns the value in the database.

The XrmGetResourceandXrmQGetResource functions retrieve a resource from the specified
database. Bothtake a fully qualified name/class pair, a destination resource representation, and
the address of a value (size/address pair). The value and returned type point into database mem-
ory; therefore, you must not modify the data.

The database only frees or overwrites entries onXrmPutResource, XrmQPutResource, or
XrmMergeDatabases. A client that is not storing new values into the database or is not merging

359

Xlib − C Library libX11 1.3.2

the database should be safe using the address passed back at any time until it exits. If a resource
was found, bothXrmGetResourceandXrmQGetResource returnTr ue; otherwise, they return
False.

Most applications and toolkits do not make random probes into a resource database to fetch
resources. TheX toolkit access pattern for a resource database is quite stylized.A series of from
1 to 20 probes is made with only the last name/class differing in each probe. TheXrmGetRe-
source function is at worst a 2n algorithm, wheren is the length of the name/class list. This can
be improved upon by the application programmer by prefetching a list of database levels that
might match the first part of a name/class list.

To obtain a list of database levels, useXrmQGetSearchList.

typedef XrmHashTable *XrmSearchList;

Bool XrmQGetSearchList(database, names, classes, list_return, list_length)
XrmDatabasedatabase;
XrmNameListnames;
XrmClassListclasses;
XrmSearchListlist_return;
int list_length;

database Specifies the database that is to be used.

names Specifies a list of resource names.

classes Specifies a list of resource classes.

list_return Returns a search list for further use. The caller must allocate sufficient space for
the list before callingXrmQGetSearchList.

list_length Specifies the number of entries (not the byte size) allocated for list_return.

The XrmQGetSearchList function takes a list of names and classes and returns a list of database
levels where a match might occur. The returned list is in best-to-worst order and uses the same
algorithm asXrmGetResource for determining precedence. If list_return was large enough for
the search list,XrmQGetSearchList returnsTr ue; otherwise, it returnsFalse.

The size of the search list that the caller must allocate is dependent upon the number of levels and
wildcards in the resource specifiers that are stored in the database. The worst case length is 3n,
wheren is the number of name or class components in names or classes.

When usingXrmQGetSearchList followed by multiple probes for resources with a common
name and class prefix, only the common prefix should be specified in the name and class list to
XrmQGetSearchList.

To search resource database levels for a given resource, useXrmQGetSearchResource.

360

Xlib − C Library libX11 1.3.2

Bool XrmQGetSearchResource(list, name, class, type_return, value_return)
XrmSearchListlist ;
XrmNamename;
XrmClassclass;
XrmRepresentation *type_return;
XrmValue *value_return;

list Specifies the search list returned byXrmQGetSearchList.
name Specifies the resource name.

class Specifies the resource class.

type_return Returns data representation type.

value_return Returns the value in the database.

The XrmQGetSearchResourcefunction searches the specified database levels for the resource
that is fully identified by the specified name and class. The search stops with the first match.
XrmQGetSearchResourcereturnsTr ue if the resource was found; otherwise, it returnsFalse.

A call to XrmQGetSearchList with a name and class list containing all but the last component
of a resource name followed by a call toXrmQGetSearchResourcewith the last component
name and class returns the same database entry asXrmGetResourceandXrmQGetResource
with the fully qualified name and class.

15.7. Storinginto a Resource Database
To store resources into the database, useXrmPutResource or XrmQPutResource. Both func-
tions take a partial resource specification, a representation type, and a value. Thisvalue is copied
into the specified database.

void XrmPutResource(database, specifier, type, value)
XrmDatabase *database;
char *specifier;
char *type;
XrmValue *value;

database Specifies the resource database.

specifier Specifies a complete or partial specification of the resource.

type Specifies the type of the resource.

value Specifies the value of the resource, which is specified as a string.

If database contains NULL,XrmPutResource creates a new database and returns a pointer to it.
XrmPutResource is a convenience function that callsXrmStringToBindingQuarkList fol-
lowed by:

XrmQPutResource(database, bindings, quarks, XrmStringToQuark(type), value)

If the specifier and type are not in the Host Portable Character Encoding, the result is implemen-
tation-dependent. Thevalue is stored in the database without modification.

361

Xlib − C Library libX11 1.3.2

void XrmQPutResource(database, bindings, quarks, type, value)
XrmDatabase *database;
XrmBindingListbindings;
XrmQuarkListquarks;
XrmRepresentationtype;
XrmValue *value;

database Specifies the resource database.

bindings Specifies a list of bindings.

quarks Specifies the complete or partial name or the class list of the resource.

type Specifies the type of the resource.

value Specifies the value of the resource, which is specified as a string.

If database contains NULL,XrmQPutResource creates a new database and returns a pointer to
it. If a resource entry with the identical bindings and quarks already exists in the database, the
previous type and value are replaced by the new specified type and value. Thevalue is stored in
the database without modification.

To add a resource that is specified as a string, useXrmPutStringResource.

void XrmPutStringResource(database, specifier, value)
XrmDatabase *database;
char *specifier;
char *value;

database Specifies the resource database.

specifier Specifies a complete or partial specification of the resource.

value Specifies the value of the resource, which is specified as a string.

If database contains NULL,XrmPutStringResource creates a new database and returns a
pointer to it. XrmPutStringResource adds a resource with the specified value to the specified
database.XrmPutStringResource is a convenience function that first callsXrmStringToBind-
ingQuarkList on the specifier and then callsXrmQPutResource, using a ‘‘String’’ representa-
tion type. If the specifier is not in the Host Portable Character Encoding, the result is implemen-
tation-dependent. Thevalue is stored in the database without modification.

To add a string resource using quarks as a specification, useXrmQPutStringResource.

void XrmQPutStringResource(database, bindings, quarks, value)
XrmDatabase *database;
XrmBindingListbindings;
XrmQuarkListquarks;
char *value;

database Specifies the resource database.

bindings Specifies a list of bindings.

quarks Specifies the complete or partial name or the class list of the resource.

value Specifies the value of the resource, which is specified as a string.

If database contains NULL,XrmQPutStringResource creates a new database and returns a

362

Xlib − C Library libX11 1.3.2

pointer to it. XrmQPutStringResource is a convenience routine that constructs anXrmValue
for the value string (by callingstrlen to compute the size) and then callsXrmQPutResource,
using a ‘‘String’’ representation type. The value is stored in the database without modification.

To add a single resource entry that is specified as a string that contains both a name and a value,
useXrmPutLineResource.

void XrmPutLineResource(database, line)
XrmDatabase *database;
char *line;

database Specifies the resource database.

line Specifies the resource name and value pair as a single string.

If database contains NULL,XrmPutLineResource creates a new database and returns a pointer
to it. XrmPutLineResource adds a single resource entry to the specified database. The line
should be in valid ResourceLine format (see section 15.1) terminated by a newline or null charac-
ter; the database that results from using a string with incorrect syntax is implementation-depen-
dent. Thestring is parsed in the locale of the database. If theResourceNameis not in the Host
Portable Character Encoding, the result is implementation-dependent. Note that comment lines
are not stored.

15.8. EnumeratingDatabase Entries
To enumerate the entries of a database, useXrmEnumerateDatabase.

#define XrmEnumAllLe vels 0
#define XrmEnumOneLevel 1

Bool XrmEnumerateDatabase(database, name_prefix, class_prefix, mode, proc, arg)
XrmDatabasedatabase;
XrmNameListname_prefix;
XrmClassListclass_prefix;
int mode;
Bool (*proc)();
XPointerarg;

database Specifies the resource database.

name_prefix Specifies the resource name prefix.

class_prefix Specifies the resource class prefix.

mode Specifies the number of levels to enumerate.

proc Specifies the procedure that is to be called for each matching entry.

arg Specifies the user-supplied argument that will be passed to the procedure.

The XrmEnumerateDatabasefunction calls the specified procedure for each resource in the
database that would match some completion of the given name/class resource prefix. The order
in which resources are found is implementation-dependent. If mode isXrmEnumOneLevel , a
resource must match the given name/class prefix with just a single name and class appended. If
mode isXrmEnumAllLe vels, the resource must match the given name/class prefix with one or
more names and classes appended. If the procedure returnsTr ue, the enumeration terminates
and the function returnsTr ue. If the procedure always returnsFalse, all matching resources are
enumerated and the function returnsFalse.

363

Xlib − C Library libX11 1.3.2

The procedure is called with the following arguments:

(*proc)(database, bindings, quarks, type, value, arg)
XrmDatabase *database;
XrmBindingListbindings;
XrmQuarkListquarks;
XrmRepresentation *type;
XrmValue *value;
XPointerarg;

The bindings and quarks lists are terminated byNULLQ UARK . Note that pointers to the data-
base and type are passed, but these values should not be modified.

The procedure must not modify the database. If Xlib has been initialized for threads, the proce-
dure is called with the database locked and the result of a call by the procedure to any Xlib func-
tion using the same database is not defined.

15.9. Parsing Command Line Options
The XrmParseCommand function can be used to parse the command line arguments to a pro-
gram and modify a resource database with selected entries from the command line.

typedef enum {
XrmoptionNoArg, /* Value is specified in XrmOptionDescRec.value */
XrmoptionIsArg, /* Value is the option string itself */
XrmoptionStickyArg, /* Value is characters immediately following option */
XrmoptionSepArg, /* Value is next argument in argv */
XrmoptionResArg, /* Resource and value in next argument in argv */
XrmoptionSkipArg, /* Ignore this option and the next argument in argv */
XrmoptionSkipLine, /*Ignore this option and the rest of argv */
XrmoptionSkipNArgs /* Ignore this option and the next

XrmOptionDescRec.value arguments in argv */
} X rmOptionKind;

Note thatXrmoptionSkipArg is equivalent toXrmoptionSkipNArgs with theXrmOptionDe-
scRec.valuefield containing the value one. Note also that the value zero forXrmoptionSkip-
NArgs indicates that only the option itself is to be skipped.

typedef struct {
char *option; /* Option specification string in argv */
char *specifier; /* Binding and resource name (sans application name) */
XrmOptionKind argKind; /* Which style of option it is */
XPointer value; /*Value to provide if XrmoptionNoArg or

XrmoptionSkipNArgs */
} X rmOptionDescRec, *XrmOptionDescList;

To load a resource database from a C command line, useXrmParseCommand.

364

Xlib − C Library libX11 1.3.2

void XrmParseCommand (database, table, table_count, name, argc_in_out, argv_in_out)
XrmDatabase *database;
XrmOptionDescListtable;
int table_count;
char *name;
int *argc_in_out;
char **argv_in_out;

database Specifies the resource database.

table Specifies the table of command line arguments to be parsed.

table_count Specifies the number of entries in the table.

name Specifies the application name.

argc_in_out Specifies the number of arguments and returns the number of remaining argu-
ments.

argv_in_out Specifies the command line arguments and returns the remaining arguments.

The XrmParseCommand function parses an (argc, argv) pair according to the specified option
table, loads recognized options into the specified database with type ‘‘String,’’ and modifies the
(argc, argv) pair to remove all recognized options. If database contains NULL,XrmParseCom-
mand creates a new database and returns a pointer to it. Otherwise, entries are added to the data-
base specified. If a database is created, it is created in the current locale.

The specified table is used to parse the command line. Recognized options in the table are
removed from argv, and entries are added to the specified resource database in the order they
occur in argv. The table entries contain information on the option string, the option name, the
style of option, and a value to provide if the option kind isXrmoptionNoArg . The option names
are compared byte-for-byte to arguments in argv, independent of any locale. Theresource values
given in the table are stored in the resource database without modification. All resource database
entries are created using a ‘‘String’’ representation type. The argc argument specifies the number
of arguments in argv and is set on return to the remaining number of arguments that were not
parsed. Thename argument should be the name of your application for use in building the data-
base entry. The name argument is prefixed to the resourceName in the option table before storing
a database entry. The name argument is treated as a single component, even if it has embedded
periods. Noseparating (binding) character is inserted, so the table must contain either a period (.)
or an asterisk (*) as the first character in each resourceName entry. To specify a more completely
qualified resource name, the resourceName entry can contain multiple components. If the name
argument and the resourceNames are not in the Host Portable Character Encoding, the result is
implementation-dependent.

The following provides a sample option table:

static XrmOptionDescRec opTable[] = {
{"−background", "*background", XrmoptionSepArg, (XPointer)NULL},
{"−bd", "*borderColor", XrmoptionSepArg, (XPointer)NULL},
{"−bg", "*background", XrmoptionSepArg, (XPointer)NULL},
{"−borderwidth", "*TopLevelShell.borderWidth", XrmoptionSepArg, (XPointer)NULL},
{"−bordercolor", "*borderColor", XrmoptionSepArg, (XPointer)NULL},
{"−bw", "*T opLevelShell.borderWidth", XrmoptionSepArg, (XPointer)NULL},
{"−display", ".display", XrmoptionSepArg, (XPointer)NULL},
{"−fg", "*fore ground", XrmoptionSepArg, (XPointer)NULL},
{"−fn", "*font", XrmoptionSepArg, (XPointer)NULL},
{"−font", "*font", XrmoptionSepArg, (XPointer)NULL},
{"−foreground", "*foreground", XrmoptionSepArg, (XPointer)NULL},

365

Xlib − C Library libX11 1.3.2

{"−geometry", ".TopLevelShell.geometry", XrmoptionSepArg, (XPointer)NULL},
{"−iconic", ".TopLevelShell.iconic", XrmoptionNoArg, (XPointer)"on"},
{"−name", ".name", XrmoptionSepArg, (XPointer)NULL},
{"−reverse", "*reverseVideo", XrmoptionNoArg, (XPointer)"on"},
{"−rv", "*re verseVideo", XrmoptionNoArg, (XPointer)"on"},
{"−synchronous", "*synchronous", XrmoptionNoArg, (XPointer)"on"},
{"−title", ".TopLevelShell.title", XrmoptionSepArg, (XPointer)NULL},
{"−xrm", NULL, XrmoptionResArg, (XPointer)NULL},
};

In this table, if the −background (or −bg) option is used to set background colors, the stored
resource specifier matches all resources of attribute background. If the −borderwidth option is
used, the stored resource specifier applies only to border width attributes of class TopLevelShell
(that is, outer-most windows, including pop-up windows). If the −title option is used to set a win-
dow name, only the topmost application windows receive the resource.

When parsing the command line, any unique unambiguous abbreviation for an option name in the
table is considered a match for the option. Note that uppercase and lowercase matter.

366

Xlib − C Library libX11 1.3.2

Chapter 16

Application Utility Functions

Once you have initialized the X system, you can use the Xlib utility functions to:

• Use keyboard utility functions

• Use Latin-1 keyboard event functions

• Allocate permanent storage

• Parse the window geometry

• Manipulate regions

• Use cut buffers

• Determine the appropriate visual type

• Manipulate images

• Manipulate bitmaps

• Use the context manager

As a group, the functions discussed in this chapter provide the functionality that is frequently
needed and that spans toolkits. Many of these functions do not generate actual protocol requests
to the server.

16.1. UsingKeyboard Utility Functions
This section discusses mapping between KeyCodes and KeySyms, classifying KeySyms, and
mapping between KeySyms and string names. The first three functions in this section operate on
a cached copy of the server keyboard mapping. The first four KeySyms for each KeyCode are
modified according to the rules given in section 12.7.To obtain the untransformed KeySyms
defined for a key, use the functions described in section 12.7.

To obtain a KeySym for the KeyCode of an event, useXLookupKeysym.

Ke ySym XLookupKeysym(key_event, index)
XKeyEvent *key_event;
int index;

key_event Specifies theKeyPressor KeyReleaseev ent.

index Specifies the index into the KeySyms list for the event’s KeyCode.

The XLookupKeysym function uses a given keyboard event and the index you specified to
return the KeySym from the list that corresponds to the KeyCode member in theXKeyPressedE-
vent or XKeyReleasedEventstructure. Ifno KeySym is defined for the KeyCode of the event,
XLookupKeysym returnsNoSymbol.

To obtain a KeySym for a specific KeyCode, useXKeycodeToKeysym.

367

Xlib − C Library libX11 1.3.2

Ke ySym XKeycodeToKeysym (display, keycode, index)
Display *display;
Ke yCodekeycode;
int index;

display Specifies the connection to the X server.

keycode Specifies the KeyCode.

index Specifies the element of KeyCode vector.

The XKeycodeToKeysymfunction uses internal Xlib tables and returns the KeySym defined for
the specified KeyCode and the element of the KeyCode vector. If no symbol is defined,XKey-
codeToKeysymreturnsNoSymbol.

To obtain a KeyCode for a key having a specific KeySym, useXKeysymToKeycode.

Ke yCode XKeysymToKeycode (display, keysym)
Display *display;
Ke ySymkeysym;

display Specifies the connection to the X server.

keysym Specifies the KeySym that is to be searched for.

If the specified KeySym is not defined for any KeyCode,XKeysymToKeycodereturns zero.

The mapping between KeyCodes and KeySyms is cached internal to Xlib. When this information
is changed at the server, an Xlib function must be called to refresh the cache.To refresh the
stored modifier and keymap information, useXRefreshKeyboardMapping.

XRefreshKeyboardMapping(event_map)
XMappingEvent *event_map;

event_map Specifies the mapping event that is to be used.

The XRefreshKeyboardMapping function refreshes the stored modifier and keymap informa-
tion. You usually call this function when aMappingNotify ev ent with a request member of
MappingKeyboard or MappingModifier occurs. Theresult is to update Xlib’s knowledge of
the keyboard.

To obtain the uppercase and lowercase forms of a KeySym, useXConvertCase.

void XConvertCase(keysym, lower_return, upper_return)
Ke ySymkeysym;
Ke ySym *lower_return;
Ke ySym *upper_return;

keysym Specifies the KeySym that is to be converted.

lower_return Returns the lowercase form of keysym, or keysym.

upper_return Returns the uppercase form of keysym, or keysym.

The XConvertCase function returns the uppercase and lowercase forms of the specified Keysym,

368

Xlib − C Library libX11 1.3.2

if the KeySym is subject to case conversion; otherwise, the specified KeySym is returned to both
lower_return and upper_return. Support for conversion of other than Latin and Cyrillic KeySyms
is implementation-dependent.

Ke ySyms have string names as well as numeric codes.To convert the name of the KeySym to the
Ke ySym code, useXStringToKeysym.

Ke ySym XStringToKeysym (string)
char *string;

string Specifies the name of the KeySym that is to be converted.

Standard KeySym names are obtained from <X11/keysymdef.h> by removing the XK_ prefix
from each name.Ke ySyms that are not part of the Xlib standard also may be obtained with this
function. Theset of KeySyms that are available in this manner and the mechanisms by which
Xlib obtains them is implementation-dependent.

If the KeySym name is not in the Host Portable Character Encoding, the result is implementation-
dependent. Ifthe specified string does not match a valid KeySym, XStringToKeysym returns
NoSymbol.

To convert a KeySym code to the name of the KeySym, useXKeysymToString.

char *XKeysymToString (keysym)
Ke ySymkeysym;

keysym Specifies the KeySym that is to be converted.

The returned string is in a static area and must not be modified. The returned string is in the Host
Portable Character Encoding. If the specified KeySym is not defined,XKeysymToString returns
a NULL.

16.1.1. KeySym Classification Macros
You may want to test if a KeySym is, for example, on the keypad or on one of the function keys.
You can use KeySym macros to perform the following tests.

IsCursorKey (keysym)

keysym Specifies the KeySym that is to be tested.

ReturnsTr ue if the specified KeySym is a cursor key.

IsFunctionKey (keysym)

keysym Specifies the KeySym that is to be tested.

ReturnsTr ue if the specified KeySym is a function key.

369

Xlib − C Library libX11 1.3.2

IsKeypadKey (keysym)

keysym Specifies the KeySym that is to be tested.

ReturnsTr ue if the specified KeySym is a standard keypad key.

IsPrivateKeypadKey (keysym)

keysym Specifies the KeySym that is to be tested.

ReturnsTr ue if the specified KeySym is a vendor-private keypad key.

IsMiscFunctionKey (keysym)

keysym Specifies the KeySym that is to be tested.

ReturnsTr ue if the specified KeySym is a miscellaneous function key.

IsModifierKey (keysym)

keysym Specifies the KeySym that is to be tested.

ReturnsTr ue if the specified KeySym is a modifier key.

IsPFKey (keysym)

keysym Specifies the KeySym that is to be tested.

ReturnsTr ue if the specified KeySym is a PF key.

16.2. UsingLatin-1 Keyboard Event Functions
Chapter 13 describes internationalized text input facilities, but sometimes it is expedient to write
an application that only deals with Latin-1 characters and ASCII controls, so Xlib provides a sim-
ple function for that purpose.XLookupString handles the standard modifier semantics
described in section 12.7. This function does not use any of the input method facilities described
in chapter 13 and does not depend on the current locale.

To map a key event to an ISO Latin-1 string, useXLookupString .

370

Xlib − C Library libX11 1.3.2

int XLookupString(event_struct, buffer_return, bytes_buffer, keysym_return, status_in_out)
XKeyEvent *event_struct;
char *buffer_return;
int bytes_buffer;
Ke ySym *keysym_return;
XComposeStatus *status_in_out;

event_struct Specifies the key event structure to be used.You can passXKeyPressedEvent
or XKeyReleasedEvent.

buffer_return Returns the translated characters.

bytes_buffer Specifies the length of the buffer. No more than bytes_buffer of translation are
returned.

keysym_return Returns the KeySym computed from the event if this argument is not NULL.

status_in_out Specifies or returns theXComposeStatusstructure or NULL.

The XLookupString function translates a key event to a KeySym and a string. The KeySym is
obtained by using the standard interpretation of theShift , Lock , group, and numlock modifiers
as defined in the X Protocol specification. If the KeySym has been rebound (seeXRebind-
Keysym), the bound string will be stored in the buffer. Otherwise, the KeySym is mapped, if
possible, to an ISO Latin-1 character or (if the Control modifier is on) to an ASCII control charac-
ter, and that character is stored in the buffer.XLookupString returns the number of characters
that are stored in the buffer.

If present (non-NULL), theXComposeStatusstructure records the state, which is private to
Xlib, that needs preservation across calls toXLookupString to implement compose processing.
The creation ofXComposeStatusstructures is implementation-dependent; a portable program
must pass NULL for this argument.

XLookupString depends on the cached keyboard information mentioned in the previous section,
so it is necessary to useXRefreshKeyboardMapping to keep this information up-to-date.

To rebind the meaning of a KeySym forXLookupString , useXRebindKeysym.

XRebindKeysym(display, keysym, list, mod_count, string, num_bytes)
Display *display;
Ke ySymkeysym;
Ke ySym list [];
int mod_count;
unsigned char *string;
int num_bytes;

display Specifies the connection to the X server.

keysym Specifies the KeySym that is to be rebound.

list Specifies the KeySyms to be used as modifiers.

mod_count Specifies the number of modifiers in the modifier list.

string Specifies the string that is copied and will be returned byXLookupString .

num_bytes Specifies the number of bytes in the string argument.

The XRebindKeysym function can be used to rebind the meaning of a KeySym for the client. It
does not redefine any key in the X server but merely provides an easy way for long strings to be
attached to keys. XLookupString returns this string when the appropriate set of modifier keys

371

Xlib − C Library libX11 1.3.2

are pressed and when the KeySym would have been used for the translation. No text conversions
are performed; the client is responsible for supplying appropriately encoded strings. Note that
you can rebind a KeySym that may not exist.

16.3. AllocatingPermanent Storage
To allocate some memory you will never giv e back, useXpermalloc.

char *Xpermalloc(size)
unsigned intsize;

The Xpermalloc function allocates storage that can never be freed for the life of the program.
The memory is allocated with alignment for the C type double. This function may provide some
performance and space savings over the standard operating system memory allocator.

16.4. Parsing the Window Geometry
To parse standard window geometry strings, useXParseGeometry.

int XParseGeometry (parsestring, x_return, y_return, width_return, height_return)
char *parsestring;
int *x_return, *y_return;
unsigned int *width_return, *height_return;

parsestring Specifies the string you want to parse.

x_return
y_return Return the x and y offsets.

width_return
height_return Return the width and height determined.

By convention, X applications use a standard string to indicate window size and placement.
XParseGeometrymakes it easier to conform to this standard because it allows you to parse the
standard window geometry. Specifically, this function lets you parse strings of the form:

[=][<width>{xX}< height>][{+-}< xoffset>{+-}< yoffset>]

The fields map into the arguments associated with this function. (Items enclosed in <> are inte-
gers, items in [] are optional, and items enclosed in {} i ndicate ‘‘choose one of.’’ N ote that the
brackets should not appear in the actual string.) If the string is not in the Host Portable Character
Encoding, the result is implementation-dependent.

The XParseGeometryfunction returns a bitmask that indicates which of the four values (width,
height, xoffset, and yoffset) were actually found in the string and whether the x and y values are
negative. By convention, −0 is not equal to +0, because the user needs to be able to say ‘‘position
the window relative to the right or bottom edge.’’ For each value found, the corresponding argu-
ment is updated.For each value not found, the argument is left unchanged. The bits are repre-
sented byXValue, YValue, WidthValue, HeightValue, XNegative, or YNegative and are
defined in <X11/Xutil.h>. They will be set whenever one of the values is defined or one of the
signs is set.

If the function returns either theXValue or YValue flag, you should place the window at the
requested position.

To construct a window’s geometry information, useXWMGeometry .

372

Xlib − C Library libX11 1.3.2

int XWMGeometry(display, screen, user_geom, def_geom, bwidth, hints, x_return, y_return,
width_return, height_return, gravity_return)

Display *display;
int screen;
char *user_geom;
char *def_geom;
unsigned intbwidth;
XSizeHints *hints;
int *x_return, *y_return;
int *width_return;
int *height_return;
int *gravity_return;

display Specifies the connection to the X server.

screen Specifies the screen.

user_geom Specifies the user-specified geometry or NULL.

def_geom Specifies the application’s default geometry or NULL.

bwidth Specifies the border width.

hints Specifies the size hints for the window in its normal state.

x_return
y_return Return the x and y offsets.

width_return
height_return Return the width and height determined.

gravity_return Returns the window gravity.

The XWMGeometry function combines any geometry information (given in the format used by
XParseGeometry) specified by the user and by the calling program with size hints (usually the
ones to be stored in WM_NORMAL_HINTS) and returns the position, size, and gravity (North-
WestGravity , NorthEastGravity , SouthEastGravity, or SouthWestGravity) that describe the
window. If the base size is not set in theXSizeHints structure, the minimum size is used if set.
Otherwise, a base size of zero is assumed. If no minimum size is set in the hints structure, the
base size is used.A mask (in the form returned byXParseGeometry) that describes which val-
ues came from the user specification and whether or not the position coordinates are relative to
the right and bottom edges is returned. Note that these coordinates will have already been
accounted for in the x_return and y_return values.

Note that invalid geometry specifications can cause a width or height of zero to be returned. The
caller may pass the address of the hints win_gravity field as gravity_return to update the hints
directly.

16.5. Manipulating Regions
Regions are arbitrary sets of pixel locations. Xlib provides functions for manipulating regions.
The opaque typeRegion is defined in <X11/Xutil.h>. Xlib provides functions that you can use
to manipulate regions. Thissection discusses how to:

• Create, copy, or destroy regions

• Move or shrink regions

• Compute with regions

• Determine if regions are empty or equal

• Locate a point or rectangle in a region

373

Xlib − C Library libX11 1.3.2

16.5.1. Creating, Copying, or Destroying Regions
To create a new empty region, useXCreateRegion.

Region XCreateRegion ()

To generate a region from a polygon, useXPolygonRegion.

Region XPolygonRegion (points, n, fill_rule)
XPointpoints[];
int n;
int fill_rule;

points Specifies an array of points.

n Specifies the number of points in the polygon.

fill_rule Specifies the fill-rule you want to set for the specified GC.You can passEven-
OddRule or WindingRule.

The XPolygonRegionfunction returns a region for the polygon defined by the points array. For
an explanation of fill_rule, seeXCreateGC.

To set the clip-mask of a GC to a region, useXSetRegion.

XSetRegion (display, gc, r)
Display *display;
GC gc;
Regionr ;

display Specifies the connection to the X server.

gc Specifies the GC.

r Specifies the region.

The XSetRegionfunction sets the clip-mask in the GC to the specified region. Theregion is
specified relative to the drawable’s origin. Theresulting GC clip origin is implementation-depen-
dent. Onceit is set in the GC, the region can be destroyed.

To deallocate the storage associated with a specified region, useXDestroyRegion.

XDestroyRegion (r)
Regionr ;

r Specifies the region.

16.5.2. Moving or Shrinking Regions
To move a region by a specified amount, useXOffsetRegion.

374

Xlib − C Library libX11 1.3.2

XOffsetRegion (r , dx, dy)
Regionr ;
int dx, dy;

r Specifies the region.

dx
dy Specify the x and y coordinates, which define the amount you want to move the

specified region.

To reduce a region by a specified amount, useXShrinkRegion.

XShrinkRegion (r , dx, dy)
Regionr ;
int dx, dy;

r Specifies the region.

dx
dy Specify the x and y coordinates, which define the amount you want to shrink the

specified region.

Positive values shrink the size of the region, and negative values expand the region.

16.5.3. Computingwith Regions

To generate the smallest rectangle enclosing a region, useXClipBox .

XClipBox (r , rect_return)
Regionr ;
XRectangle *rect_return;

r Specifies the region.

rect_return Returns the smallest enclosing rectangle.

The XClipBox function returns the smallest rectangle enclosing the specified region.

To compute the intersection of two regions, useXIntersectRegion.

XIntersectRegion (sra, srb, dr_return)
Regionsra, srb, dr_return;

sra
srb Specify the two regions with which you want to perform the computation.

dr_return Returns the result of the computation.

To compute the union of two regions, useXUnionRegion.

375

Xlib − C Library libX11 1.3.2

XUnionRegion (sra, srb, dr_return)
Regionsra, srb, dr_return;

sra
srb Specify the two regions with which you want to perform the computation.

dr_return Returns the result of the computation.

To create a union of a source region and a rectangle, useXUnionRectWithRegion.

XUnionRectWithRegion (rectangle, src_region, dest_region_return)
XRectangle *rectangle;
Regionsrc_region;
Regiondest_region_return;

rectangle Specifies the rectangle.

src_region Specifies the source region to be used.

dest_region_return
Returns the destination region.

The XUnionRectWithRegion function updates the destination region from a union of the speci-
fied rectangle and the specified source region.

To subtract two regions, useXSubtractRegion.

XSubtractRegion (sra, srb, dr_return)
Regionsra, srb, dr_return;

sra
srb Specify the two regions with which you want to perform the computation.

dr_return Returns the result of the computation.

The XSubtractRegion function subtracts srb from sra and stores the results in dr_return.

To calculate the difference between the union and intersection of two regions, useXXorRegion.

XXorRegion (sra, srb, dr_return)
Regionsra, srb, dr_return;

sra
srb Specify the two regions with which you want to perform the computation.

dr_return Returns the result of the computation.

16.5.4. Determiningif Regions Are Empty or Equal
To determine if the specified region is empty, useXEmptyRegion.

376

Xlib − C Library libX11 1.3.2

Bool XEmptyRegion (r)
Regionr ;

r Specifies the region.

The XEmptyRegion function returnsTr ue if the region is empty.

To determine if two regions have the same offset, size, and shape, useXEqualRegion.

Bool XEqualRegion (r1, r2)
Regionr1, r2;

r1
r2 Specify the two regions.

The XEqualRegion function returnsTr ue if the two regions have the same offset, size, and
shape.

16.5.5. Locatinga Point or a Rectangle in a Region
To determine if a specified point resides in a specified region, useXPointInRegion.

Bool XPointInRegion (r , x, y)
Regionr ;
int x, y;

r Specifies the region.

x
y Specify the x and y coordinates, which define the point.

The XPointInRegion function returnsTr ue if the point (x, y) is contained in the region r.

To determine if a specified rectangle is inside a region, useXRectInRegion.

int XRectInRegion (r , x, y, width, height)
Regionr ;
int x, y;
unsigned intwidth, height;

r Specifies the region.

x
y Specify the x and y coordinates, which define the coordinates of the upper-left

corner of the rectangle.

width
height Specify the width and height, which define the rectangle.

The XRectInRegion function returnsRectangleIn if the rectangle is entirely in the specified
region,RectangleOut if the rectangle is entirely out of the specified region, andRectanglePart
if the rectangle is partially in the specified region.

377

Xlib − C Library libX11 1.3.2

16.6. UsingCut Buffers
Xlib provides functions to manipulate cut buffers, a very simple form of cut-and-paste inter-client
communication. Selectionsare a much more powerful and useful mechanism for interchanging
data between clients (see section 4.5) and generally should be used instead of cut buffers.

Cut buffers are implemented as properties on the first root window of the display. The buffers can
only contain text, in the STRING encoding. The text encoding is not changed by Xlib when
fetching or storing. Eight buffers are provided and can be accessed as a ring or as explicit buffers
(numbered 0 through 7).

To store data in cut buffer 0, useXStoreBytes.

XStoreBytes (display, bytes, nbytes)
Display *display;
char *bytes;
int nbytes;

display Specifies the connection to the X server.

bytes Specifies the bytes, which are not necessarily ASCII or null-terminated.

nbytes Specifies the number of bytes to be stored.

The data can have embedded null characters and need not be null-terminated. The cut buffer’s
contents can be retrieved later by any client callingXFetchBytes.
XStoreBytescan generate aBadAlloc error.

To store data in a specified cut buffer, useXStoreBuffer .

XStoreBuffer (display, bytes, nbytes, buffer)
Display *display;
char *bytes;
int nbytes;
int buffer;

display Specifies the connection to the X server.

bytes Specifies the bytes, which are not necessarily ASCII or null-terminated.

nbytes Specifies the number of bytes to be stored.

buffer Specifies the buffer in which you want to store the bytes.

If an invalid buffer is specified, the call has no effect. Thedata can have embedded null charac-
ters and need not be null-terminated.

XStoreBuffer can generate aBadAlloc error.

To return data from cut buffer 0, useXFetchBytes.

378

Xlib − C Library libX11 1.3.2

char *XFetchBytes(display, nbytes_return)
Display *display;
int *nbytes_return;

display Specifies the connection to the X server.

nbytes_return Returns the number of bytes in the buffer.

The XFetchBytes function returns the number of bytes in the nbytes_return argument, if the
buffer contains data. Otherwise, the function returns NULL and sets nbytes to 0. The appropriate
amount of storage is allocated and the pointer returned. The client must free this storage when
finished with it by callingXFree.

To return data from a specified cut buffer, useXFetchBuffer .

char *XFetchBuffer (display, nbytes_return, buffer)
Display *display;
int *nbytes_return;
int buffer;

display Specifies the connection to the X server.

nbytes_return Returns the number of bytes in the buffer.

buffer Specifies the buffer from which you want the stored data returned.

The XFetchBuffer function returns zero to the nbytes_return argument if there is no data in the
buffer or if an invalid buffer is specified.

To rotate the cut buffers, useXRotateBuffers.

XRotateBuffers (display, rotate)
Display *display;
int rotate;

display Specifies the connection to the X server.

rotate Specifies how much to rotate the cut buffers.

The XRotateBuffers function rotates the cut buffers, such that buffer 0 becomes buffer n, buffer
1 becomes n + 1 mod 8, and so on. This cut buffer numbering is global to the display. Note that
XRotateBuffers generatesBadMatch errors if any of the eight buffers have not been created.

16.7. Determiningthe Appropriate Visual Type
A single display can support multiple screens. Each screen can have sev eral different visual types
supported at different depths.You can use the functions described in this section to determine
which visual to use for your application.

The functions in this section use the visual information masks and theXVisualInfo structure,
which is defined in <X11/Xutil.h> and contains:

379

Xlib − C Library libX11 1.3.2

/* Visual information mask bits */

#define VisualNoMask 0x0
#define VisualIDMask 0x1
#define VisualScreenMask 0x2
#define VisualDepthMask 0x4
#define VisualClassMask 0x8
#define VisualRedMaskMask 0x10
#define VisualGreenMaskMask 0x20
#define VisualBlueMaskMask 0x40
#define VisualColormapSizeMask 0x80
#define VisualBitsPerRGBMask 0x100
#define VisualAllMask 0x1FF

/* Values */

typedef struct {
Visual *visual;
VisualID visualid;
int screen;
unsigned int depth;
int class;
unsigned long red_mask;
unsigned long green_mask;
unsigned long blue_mask;
int colormap_size;
int bits_per_rgb;

} X VisualInfo;

To obtain a list of visual information structures that match a specified template, useXGetVisual-
Info .

XVisualInfo *XGetVisualInfo (display, vinfo_mask, vinfo_template, nitems_return)
Display *display;
longvinfo_mask;
XVisualInfo *vinfo_template;
int *nitems_return;

display Specifies the connection to the X server.

vinfo_mask Specifies the visual mask value.

vinfo_templateSpecifies the visual attributes that are to be used in matching the visual structures.

nitems_return Returns the number of matching visual structures.

The XGetVisualInfo function returns a list of visual structures that have attributes equal to the
attributes specified by vinfo_template. If no visual structures match the template using the speci-
fied vinfo_mask,XGetVisualInfo returns a NULL.To free the data returned by this function,
useXFree.

To obtain the visual information that matches the specified depth and class of the screen, use
XMatchVisualInfo .

380

Xlib − C Library libX11 1.3.2

Status XMatchVisualInfo (display, screen, depth, class, vinfo_return)
Display *display;
int screen;
int depth;
int class;
XVisualInfo *vinfo_return;

display Specifies the connection to the X server.

screen Specifies the screen.

depth Specifies the depth of the screen.

class Specifies the class of the screen.

vinfo_return Returns the matched visual information.

The XMatchVisualInfo function returns the visual information for a visual that matches the
specified depth and class for a screen. Because multiple visuals that match the specified depth
and class can exist, the exact visual chosen is undefined. If a visual is found,XMatchVisualInfo
returns nonzero and the information on the visual to vinfo_return. Otherwise, when a visual is
not found,XMatchVisualInfo returns zero.

16.8. Manipulating Images
Xlib provides several functions that perform basic operations on images. All operations on
images are defined using anXImage structure, as defined in <X11/Xlib.h>. Becausethe number
of different types of image formats can be very large, this hides details of image storage properly
from applications.

This section describes the functions for generic operations on images. Manufacturers can provide
very fast implementations of these for the formats frequently encountered on their hardware.
These functions are neither sufficient nor desirable to use for general image processing. Rather,
they are here to provide minimal functions on screen format images. The basic operations for
getting and putting images areXGetImage andXPutImage.

Note that no functions have been defined, as yet, to read and write images to and from disk files.

The XImage structure describes an image as it exists in the client’s memory. The user can
request that some of the members such as height, width, and xoffset be changed when the image
is sent to the server. Note that bytes_per_line in concert with offset can be used to extract a sub-
set of the image. Other members (for example, byte order, bitmap_unit, and so forth) are charac-
teristics of both the image and the server. If these members differ between the image and the
server,XPutImage makes the appropriate conversions. Thefirst byte of the first line of plane n
must be located at the address (data + (n * height * bytes_per_line)).For a description of the
XImage structure, see section 8.7.

To allocate anXImage structure and initialize it with image format values from a display, use
XCreateImage.

381

Xlib − C Library libX11 1.3.2

XImage *XCreateImage(display, visual, depth, format, offset, data, width, height, bitmap_pad,
bytes_per_line)

Display *display;
Visual *visual;
unsigned intdepth;
int format;
int offset;
char *data;
unsigned intwidth;
unsigned intheight;
int bitmap_pad;
int bytes_per_line;

display Specifies the connection to the X server.

visual Specifies theVisual structure.

depth Specifies the depth of the image.

format Specifies the format for the image.You can passXYBitmap , XYPixmap , or
ZPixmap.

offset Specifies the number of pixels to ignore at the beginning of the scanline.

data Specifies the image data.

width Specifies the width of the image, in pixels.

height Specifies the height of the image, in pixels.

bitmap_pad Specifies the quantum of a scanline (8, 16, or 32). In other words, the start of one
scanline is separated in client memory from the start of the next scanline by an
integer multiple of this many bits.

bytes_per_lineSpecifies the number of bytes in the client image between the start of one scan-
line and the start of the next.

The XCreateImage function allocates the memory needed for anXImage structure for the spec-
ified display but does not allocate space for the image itself. Rather, it initializes the structure
byte-order, bit-order, and bitmap-unit values from the display and returns a pointer to theXIm-
agestructure. Thered, green, and blue mask values are defined for Z format images only and are
derived from theVisual structure passed in. Other values also are passed in. The offset permits
the rapid displaying of the image without requiring each scanline to be shifted into position. If
you pass a zero value in bytes_per_line, Xlib assumes that the scanlines are contiguous in mem-
ory and calculates the value of bytes_per_line itself.

Note that when the image is created usingXCreateImage, XGetImage, or XSubImage, the
destroy procedure that theXDestroyImage function calls frees both the image structure and the
data pointed to by the image structure.

The basic functions used to get a pixel, set a pixel, create a subimage, and add a constant value to
an image are defined in the image object. The functions in this section are really macro invoca-
tions of the functions in the image object and are defined in <X11/Xutil.h>.

To obtain a pixel value in an image, useXGetPixel.

382

Xlib − C Library libX11 1.3.2

unsigned long XGetPixel (ximage, x, y)
XImage *ximage;
int x;
int y;

ximage Specifies the image.

x
y Specify the x and y coordinates.

The XGetPixel function returns the specified pixel from the named image. The pixel value is
returned in normalized format (that is, the least significant byte of the long is the least significant
byte of the pixel). Theimage must contain the x and y coordinates.

To set a pixel value in an image, useXPutPixel.

XPutPixel (ximage, x, y, pixel)
XImage *ximage;
int x;
int y;
unsigned longpixel;

ximage Specifies the image.

x
y Specify the x and y coordinates.

pixel Specifies the new pixel value.

The XPutPixel function overwrites the pixel in the named image with the specified pixel value.
The input pixel value must be in normalized format (that is, the least significant byte of the long is
the least significant byte of the pixel). Theimage must contain the x and y coordinates.

To create a subimage, useXSubImage.

XImage *XSubImage(ximage, x, y, subimage_width, subimage_height)
XImage *ximage;
int x;
int y;
unsigned intsubimage_width;
unsigned intsubimage_height;

ximage Specifies the image.

x
y Specify the x and y coordinates.

subimage_widthSpecifies the width of the new subimage, in pixels.

subimage_heightSpecifies the height of the new subimage, in pixels.

The XSubImage function creates a new image that is a subsection of an existing one. It allocates
the memory necessary for the newXImage structure and returns a pointer to the new image. The
data is copied from the source image, and the image must contain the rectangle defined by x, y,
subimage_width, and subimage_height.

383

Xlib − C Library libX11 1.3.2

To increment each pixel in an image by a constant value, useXAddPixel .

XAddPixel (ximage, value)
XImage *ximage;
longvalue;

ximage Specifies the image.

value Specifies the constant value that is to be added.

The XAddPixel function adds a constant value to every pixel in an image. It is useful when you
have a base pixel value from allocating color resources and need to manipulate the image to that
form.

To deallocate the memory allocated in a previous call toXCreateImage, useXDestroyImage.

XDestroyImage (ximage)
XImage *ximage;

ximage Specifies the image.

The XDestroyImage function deallocates the memory associated with theXImage structure.

Note that when the image is created usingXCreateImage, XGetImage, or XSubImage, the
destroy procedure that this macro calls frees both the image structure and the data pointed to by
the image structure.

16.9. Manipulating Bitmaps
Xlib provides functions that you can use to read a bitmap from a file, save a bitmap to a file, or
create a bitmap. This section describes those functions that transfer bitmaps to and from the
client’s file system, thus allowing their reuse in a later connection (for example, from an entirely
different client or to a different display or server).

The X version 11 bitmap file format is:

#definename_widthwidth
#definename_heightheight
#definename_x_hotx
#definename_y_hoty
static unsigned charname_bits[] = { 0xNN,... }

The lines for the variables ending with _x_hot and _y_hot suffixes are optional because they are
present only if a hotspot has been defined for this bitmap. The lines for the other variables are
required. Theword ‘‘unsigned’’ is optional; that is, the type of the _bits array can be ‘‘char’’ or
‘‘ unsigned char’’. The_bits array must be large enough to contain the size bitmap. The bitmap
unit is 8.

To read a bitmap from a file and store it in a pixmap, useXReadBitmapFile.

384

Xlib − C Library libX11 1.3.2

int XReadBitmapFile(display, d, filename, width_return, height_return, bitmap_return, x_hot_return,
y_hot_return)

Display *display;
Drawabled;
char *filename;
unsigned int *width_return, *height_return;
Pixmap *bitmap_return;
int *x_hot_return, *y_hot_return;

display Specifies the connection to the X server.

d Specifies the drawable that indicates the screen.

filename Specifies the file name to use. The format of the file name is operating-system
dependent.

width_return
height_return Return the width and height values of the read in bitmap file.

bitmap_return Returns the bitmap that is created.

x_hot_return
y_hot_return Return the hotspot coordinates.

The XReadBitmapFile function reads in a file containing a bitmap. The file is parsed in the
encoding of the current locale. The ability to read other than the standard format is implementa-
tion-dependent. Ifthe file cannot be opened,XReadBitmapFile returnsBitmapOpenFailed. If
the file can be opened but does not contain valid bitmap data, it returnsBitmapFileInvalid . If
insufficient working storage is allocated, it returnsBitmapNoMemory . If the file is readable and
valid, it returnsBitmapSuccess.
XReadBitmapFile returns the bitmap’s height and width, as read from the file, to width_return
and height_return. It then creates a pixmap of the appropriate size, reads the bitmap data from the
file into the pixmap, and assigns the pixmap to the caller’s variable bitmap. The caller must free
the bitmap usingXFreePixmap when finished. Ifname_x_hot andname_y_hot exist,XRead-
BitmapFile returns them to x_hot_return and y_hot_return; otherwise, it returns −1,−1.

XReadBitmapFile can generateBadAlloc, BadDrawable, and BadGC errors.

To read a bitmap from a file and return it as data, useXReadBitmapFileData.

int XReadBitmapFileData(filename, width_return, height_return, data_return, x_hot_return, y_hot_return)
char *filename;
unsigned int *width_return, *height_return;
unsigned char *data_return;
int *x_hot_return, *y_hot_return;

filename Specifies the file name to use. The format of the file name is operating-system
dependent.

width_return
height_return Return the width and height values of the read in bitmap file.

data_return Returns the bitmap data.

x_hot_return
y_hot_return Return the hotspot coordinates.

The XReadBitmapFileData function reads in a file containing a bitmap, in the same manner as
XReadBitmapFile, but returns the data directly rather than creating a pixmap in the server. The

385

Xlib − C Library libX11 1.3.2

bitmap data is returned in data_return; the client must free this storage when finished with it by
calling XFree. The status and other return values are the same as forXReadBitmapFile.

To write out a bitmap from a pixmap to a file, useXWriteBitmapFile .

int XWriteBitmapFile(display, filename, bitmap, width, height, x_hot, y_hot)
Display *display;
char *filename;
Pixmapbitmap;
unsigned intwidth, height;
int x_hot, y_hot;

display Specifies the connection to the X server.

filename Specifies the file name to use. The format of the file name is operating-system
dependent.

bitmap Specifies the bitmap.

width
height Specify the width and height.

x_hot
y_hot Specify where to place the hotspot coordinates (or −1,−1 if none are present) in

the file.

The XWriteBitmapFile function writes a bitmap out to a file in the X Version 11 format. The
name used in the output file is derived from the file name by deleting the directory prefix. The
file is written in the encoding of the current locale. If the file cannot be opened for writing, it
returnsBitmapOpenFailed. If insufficient memory is allocated,XWriteBitmapFile returns
BitmapNoMemory ; otherwise, on no error, it returnsBitmapSuccess. If x_hot and y_hot are
not −1, −1,XWriteBitmapFile writes them out as the hotspot coordinates for the bitmap.

XWriteBitmapFile can generateBadDrawable andBadMatch errors.

To create a pixmap and then store bitmap-format data into it, useXCreatePixmapFromBitmap-
Data.

Pixmap XCreatePixmapFromBitmapData(display, d, data, width, height, fg, bg, depth)
Display *display;
Drawabled;
char *data;
unsigned intwidth, height;
unsigned longfg, bg;
unsigned intdepth;

display Specifies the connection to the X server.

d Specifies the drawable that indicates the screen.

data Specifies the data in bitmap format.

width
height Specify the width and height.

fg
bg Specify the foreground and background pixel values to use.

depth Specifies the depth of the pixmap.

386

Xlib − C Library libX11 1.3.2

The XCreatePixmapFromBitmapData function creates a pixmap of the given depth and then
does a bitmap-formatXPutImage of the data into it. The depth must be supported by the screen
of the specified drawable, or aBadMatch error results.

XCreatePixmapFromBitmapData can generateBadAlloc, BadDrawable, BadGC, and Bad-
Value errors.

To include a bitmap written out byXWriteBitmapFile in a program directly, as opposed to read-
ing it in every time at run time, useXCreateBitmapFromData.

Pixmap XCreateBitmapFromData(display, d, data, width, height)
Display *display;
Drawabled;
char *data;
unsigned intwidth, height;

display Specifies the connection to the X server.

d Specifies the drawable that indicates the screen.

data Specifies the location of the bitmap data.

width
height Specify the width and height.

The XCreateBitmapFromData function allows you to include in your C program (using
#include) a bitmap file that was written out byXWriteBitmapFile (X version 11 format only)
without reading in the bitmap file. The following example creates a gray bitmap:

#include "gray.bitmap"

Pixmap bitmap;
bitmap = XCreateBitmapFromData(display, window, gray_bits, gray_width, gray_height);

If insufficient working storage was allocated,XCreateBitmapFromData returnsNone. It is
your responsibility to free the bitmap usingXFreePixmap when finished.

XCreateBitmapFromData can generateBadAlloc andBadGC errors.

16.10. Usingthe Context Manager
The context manager provides a way of associating data with an X resource ID (mostly typically
a window) in your program. Note that this is local to your program; the data is not stored in the
server on a property list. Any amount of data in any number of pieces can be associated with a
resource ID, and each piece of data has a type associated with it. The context manager requires
knowledge of the resource ID and type to store or retrieve data.

Essentially, the context manager can be viewed as a two-dimensional, sparse array: one dimen-
sion is subscripted by the X resource ID and the other by a context type field. Each entry in the
array contains a pointer to the data. Xlib provides context management functions with which you
can save data values, get data values, delete entries, and create a unique context type. The sym-
bols used are in <X11/Xutil.h>.

To sav ea data value that corresponds to a resource ID and context type, useXSaveContext.

387

Xlib − C Library libX11 1.3.2

int XSaveContext(display, rid, context, data)
Display *display;
XID rid ;
XContextcontext;
XPointerdata;

display Specifies the connection to the X server.

rid Specifies the resource ID with which the data is associated.

context Specifies the context type to which the data belongs.

data Specifies the data to be associated with the window and type.

If an entry with the specified resource ID and type already exists,XSaveContext overrides it
with the specified context. TheXSaveContext function returns a nonzero error code if an error
has occurred and zero otherwise. Possible errors areXCNOMEM (out of memory).

To get the data associated with a resource ID and type, useXFindContext .

int XFindContext(display, rid, context, data_return)
Display *display;
XID rid ;
XContextcontext;
XPointer *data_return;

display Specifies the connection to the X server.

rid Specifies the resource ID with which the data is associated.

context Specifies the context type to which the data belongs.

data_return Returns the data.

Because it is a return value, the data is a pointer. The XFindContext function returns a nonzero
error code if an error has occurred and zero otherwise. Possible errors areXCNOENT (context-
not-found).

To delete an entry for a given resource ID and type, useXDeleteContext.

int XDeleteContext(display, rid, context)
Display *display;
XID rid;
XContextcontext;

display Specifies the connection to the X server.

rid Specifies the resource ID with which the data is associated.

context Specifies the context type to which the data belongs.

The XDeleteContext function deletes the entry for the given resource ID and type from the data
structure. Thisfunction returns the same error codes thatXFindContext returns if called with
the same arguments.XDeleteContextdoes not free the data whose address was saved.

To create a unique context type that may be used in subsequent calls toXSaveContext and
XFindContext , useXUniqueContext.

388

Xlib − C Library libX11 1.3.2

XContext XUniqueContext()

389

Xlib − C Library libX11 1.3.2

Appendix A

Xlib Functions and Protocol Requests

This appendix provides two tables that relate to Xlib functions and the X protocol. The following
table lists each Xlib function (in alphabetical order) and the corresponding protocol request that it
generates.

Xlib Function Protocol Request

XActivateScreenSaver ForceScreenSaver
XAddHost ChangeHosts
XAddHosts ChangeHosts
XAddToSaveSet ChangeSaveSet
XAllocColor AllocColor
XAllocColorCells AllocColorCells
XAllocColorPlanes AllocColorPlanes
XAllocNamedColor AllocNamedColor
XAllowEvents AllowEvents
XAutoRepeatOff ChangeKeyboardControl
XAutoRepeatOn ChangeKeyboardControl
XBell Bell
XChangeActivePointerGrab ChangeActivePointerGrab
XChangeGC ChangeGC
XChangeKeyboardControl ChangeKeyboardControl
XChangeKeyboardMapping ChangeKeyboardMapping
XChangePointerControl ChangePointerControl
XChangeProperty ChangeProperty
XChangeSaveSet ChangeSaveSet
XChangeWindowAttributes ChangeWindowAttributes
XCirculateSubwindows CirculateWindow
XCirculateSubwindowsDown CirculateWindow
XCirculateSubwindowsUp CirculateWindow
XClearArea ClearArea
XClearWindow ClearArea
XConfigureWindow ConfigureWindow
XConvertSelection ConvertSelection
XCopyArea CopyArea
XCopyColormapAndFree CopyColormapAndFree
XCopyGC CopyGC
XCopyPlane CopyPlane
XCreateBitmapFromData CreateGC

CreatePixmap
FreeGC
PutImage

XCreateColormap CreateColormap
XCreateFontCursor CreateGlyphCursor
XCreateGC CreateGC
XCreateGlyphCursor CreateGlyphCursor
XCreatePixmap CreatePixmap

390

Xlib − C Library libX11 1.3.2

Xlib Function Protocol Request

XCreatePixmapCursor CreateCursor
XCreatePixmapFromData CreateGC

CreatePixmap
FreeGC
PutImage

XCreateSimpleWindow CreateWindow
XCreateWindow CreateWindow
XDefineCursor ChangeWindowAttributes
XDeleteProperty DeleteProperty
XDestroySubwindows DestroySubwindows
XDestroyWindow DestroyWindow
XDisableAccessControl SetAccessControl
XDrawArc PolyArc
XDrawArcs PolyArc
XDrawImageString ImageText8
XDrawImageString16 ImageText16
XDrawLine PolySegment
XDrawLines PolyLine
XDrawPoint PolyPoint
XDrawPoints PolyPoint
XDrawRectangle PolyRectangle
XDrawRectangles PolyRectangle
XDrawSegments PolySegment
XDrawString PolyText8
XDrawString16 PolyText16
XDrawText PolyText8
XDrawText16 PolyText16
XEnableAccessControl SetAccessControl
XFetchBytes GetProperty
XFetchName GetProperty
XFillArc PolyFillArc
XFillArcs PolyFillArc
XFillPolygon FillPoly
XFillRectangle PolyFillRectangle
XFillRectangles PolyFillRectangle
XForceScreenSaver ForceScreenSaver
XFreeColormap FreeColormap
XFreeColors FreeColors
XFreeCursor FreeCursor
XFreeFont CloseFont
XFreeGC FreeGC
XFreePixmap FreePixmap
XGetAtomName GetAtomName
XGetClassHint GetProperty
XGetFontPath GetFontPath
XGetGeometry GetGeometry
XGetIconName GetProperty
XGetIconSizes GetProperty
XGetImage GetImage
XGetInputFocus GetInputFocus
XGetKeyboardControl GetKeyboardControl

391

Xlib − C Library libX11 1.3.2

Xlib Function Protocol Request

XGetKeyboardMapping GetKeyboardMapping
XGetModifierMapping GetModifierMapping
XGetMotionEvents GetMotionEvents
XGetNormalHints GetProperty
XGetPointerControl GetPointerControl
XGetPointerMapping GetPointerMapping
XGetRGBColormaps GetProperty
XGetScreenSaver GetScreenSaver
XGetSelectionOwner GetSelectionOwner
XGetSizeHints GetProperty
XGetTextProperty GetProperty
XGetTransientForHint GetProperty
XGetWMClientMachine GetProperty
XGetWMColormapWindows GetProperty

InternAtom
XGetWMHints GetProperty
XGetWMIconName GetProperty
XGetWMName GetProperty
XGetWMNormalHints GetProperty
XGetWMProtocols GetProperty

InternAtom
XGetWMSizeHints GetProperty
XGetWindowAttributes GetWindowAttributes

GetGeometry
XGetWindowProperty GetProperty
XGetZoomHints GetProperty
XGrabButton GrabButton
XGrabKey GrabKey
XGrabKeyboard GrabKeyboard
XGrabPointer GrabPointer
XGrabServer GrabServer
XIconifyWindow InternAtom

SendEvent
XInitExtension QueryExtension
XInstallColormap InstallColormap
XInternAtom InternAtom
XKillClient KillClient
XListExtensions ListExtensions
XListFonts ListFonts
XListFontsWithInfo ListFontsWithInfo
XListHosts ListHosts
XListInstalledColormaps ListInstalledColormaps
XListProperties ListProperties
XLoadFont OpenFont
XLoadQueryFont OpenFont

QueryFont
XLookupColor LookupColor
XLowerWindow ConfigureWindow
XMapRaised ConfigureWindow

MapWindow
XMapSubwindows MapSubwindows

392

Xlib − C Library libX11 1.3.2

Xlib Function Protocol Request

XMapWindow MapWindow
XMoveResizeWindow ConfigureWindow
XMoveWindow ConfigureWindow
XNoOp NoOperation
XOpenDisplay CreateGC
XParseColor LookupColor
XPutImage PutImage
XQueryBestCursor QueryBestSize
XQueryBestSize QueryBestSize
XQueryBestStipple QueryBestSize
XQueryBestTile QueryBestSize
XQueryColor QueryColors
XQueryColors QueryColors
XQueryExtension QueryExtension
XQueryFont QueryFont
XQueryKeymap QueryKeymap
XQueryPointer QueryPointer
XQueryTextExtents QueryTextExtents
XQueryTextExtents16 QueryTextExtents
XQueryTree QueryTree
XRaiseWindow ConfigureWindow
XReadBitmapFile CreateGC

CreatePixmap
FreeGC
PutImage

XRecolorCursor RecolorCursor
XReconfigureWMWindow ConfigureWindow

SendEvent
XRemoveFromSaveSet ChangeSaveSet
XRemoveHost ChangeHosts
XRemoveHosts ChangeHosts
XReparentWindow ReparentWindow
XResetScreenSaver ForceScreenSaver
XResizeWindow ConfigureWindow
XRestackWindows ConfigureWindow
XRotateBuffers RotateProperties
XRotateWindowProperties RotateProperties
XSelectInput ChangeWindowAttributes
XSendEvent SendEvent
XSetAccessControl SetAccessControl
XSetArcMode ChangeGC
XSetBackground ChangeGC
XSetClassHint ChangeProperty
XSetClipMask ChangeGC
XSetClipOrigin ChangeGC
XSetClipRectangles SetClipRectangles
XSetCloseDownMode SetCloseDownMode
XSetCommand ChangeProperty
XSetDashes SetDashes
XSetFillRule ChangeGC
XSetFillStyle ChangeGC

393

Xlib − C Library libX11 1.3.2

Xlib Function Protocol Request

XSetFont ChangeGC
XSetFontPath SetFontPath
XSetForeground ChangeGC
XSetFunction ChangeGC
XSetGraphicsExposures ChangeGC
XSetIconName ChangeProperty
XSetIconSizes ChangeProperty
XSetInputFocus SetInputFocus
XSetLineAttributes ChangeGC
XSetModifierMapping SetModifierMapping
XSetNormalHints ChangeProperty
XSetPlaneMask ChangeGC
XSetPointerMapping SetPointerMapping
XSetRGBColormaps ChangeProperty
XSetScreenSaver SetScreenSaver
XSetSelectionOwner SetSelectionOwner
XSetSizeHints ChangeProperty
XSetStandardProperties ChangeProperty
XSetState ChangeGC
XSetStipple ChangeGC
XSetSubwindowMode ChangeGC
XSetTextProperty ChangeProperty
XSetTile ChangeGC
XSetTransientForHint ChangeProperty
XSetTSOrigin ChangeGC
XSetWMClientMachine ChangeProperty
XSetWMColormapWindows ChangeProperty

InternAtom
XSetWMHints ChangeProperty
XSetWMIconName ChangeProperty
XSetWMName ChangeProperty
XSetWMNormalHints ChangeProperty
XSetWMProperties ChangeProperty
XSetWMProtocols ChangeProperty

InternAtom
XSetWMSizeHints ChangeProperty
XSetWindowBackground ChangeWindowAttributes
XSetWindowBackgroundPixmap ChangeWindowAttributes
XSetWindowBorder ChangeWindowAttributes
XSetWindowBorderPixmap ChangeWindowAttributes
XSetWindowBorderWidth ConfigureWindow
XSetWindowColormap ChangeWindowAttributes
XSetZoomHints ChangeProperty
XStoreBuffer ChangeProperty
XStoreBytes ChangeProperty
XStoreColor StoreColors
XStoreColors StoreColors
XStoreName ChangeProperty
XStoreNamedColor StoreNamedColor
XSync GetInputFocus
XSynchronize GetInputFocus

394

Xlib − C Library libX11 1.3.2

Xlib Function Protocol Request

XTranslateCoordinates TranslateCoordinates
XUndefineCursor ChangeWindowAttributes
XUngrabButton UngrabButton
XUngrabKey UngrabKey
XUngrabKeyboard UngrabKeyboard
XUngrabPointer UngrabPointer
XUngrabServer UngrabServer
XUninstallColormap UninstallColormap
XUnloadFont CloseFont
XUnmapSubwindows UnmapSubwindows
XUnmapWindow UnmapWindow
XWarpPointer WarpPointer
XWithdrawWindow SendEvent

UnmapWindow

395

Xlib − C Library libX11 1.3.2

The following table lists each X protocol request (in alphabetical order) and the Xlib functions
that reference it.

Protocol Request Xlib Function

AllocColor XAllocColor
AllocColorCells XAllocColorCells
AllocColorPlanes XAllocColorPlanes
AllocNamedColor XAllocNamedColor
AllowEvents XAllowEvents
Bell XBell
ChangeActivePointerGrab XChangeActivePointerGrab
ChangeGC XChangeGC

XSetArcMode
XSetBackground
XSetClipMask
XSetClipOrigin
XSetFillRule
XSetFillStyle
XSetFont
XSetForeground
XSetFunction
XSetGraphicsExposures
XSetLineAttributes
XSetPlaneMask
XSetState
XSetStipple
XSetSubwindowMode
XSetTile
XSetTSOrigin

ChangeHosts XAddHost
XAddHosts
XRemoveHost
XRemoveHosts

ChangeKeyboardControl XAutoRepeatOff
XAutoRepeatOn
XChangeKeyboardControl

ChangeKeyboardMapping XChangeKeyboardMapping
ChangePointerControl XChangePointerControl
ChangeProperty XChangeProperty

XSetClassHint
XSetCommand
XSetIconName
XSetIconSizes
XSetNormalHints
XSetRGBColormaps
XSetSizeHints
XSetStandardProperties
XSetTextProperty
XSetTransientForHint
XSetWMClientMachine
XSetWMColormapWindows
XSetWMHints

396

Xlib − C Library libX11 1.3.2

Protocol Request Xlib Function

XSetWMIconName
XSetWMName
XSetWMNormalHints
XSetWMProperties
XSetWMProtocols
XSetWMSizeHints
XSetZoomHints
XStoreBuffer
XStoreBytes
XStoreName

ChangeSaveSet XAddToSaveSet
XChangeSaveSet
XRemoveFromSaveSet

ChangeWindowAttributes XChangeWindowAttributes
XDefineCursor
XSelectInput
XSetWindowBackground
XSetWindowBackgroundPixmap
XSetWindowBorder
XSetWindowBorderPixmap
XSetWindowColormap
XUndefineCursor

CirculateWindow XCirculateSubwindowsDown
XCirculateSubwindowsUp
XCirculateSubwindows

ClearArea XClearArea
XClearWindow

CloseFont XFreeFont
XUnloadFont

ConfigureWindow XConfigureWindow
XLowerWindow
XMapRaised
XMoveResizeWindow
XMoveWindow
XRaiseWindow
XReconfigureWMWindow
XResizeWindow
XRestackWindows
XSetWindowBorderWidth

ConvertSelection XConvertSelection
CopyArea XCopyArea
CopyColormapAndFree XCopyColormapAndFree
CopyGC XCopyGC
CopyPlane XCopyPlane
CreateColormap XCreateColormap
CreateCursor XCreatePixmapCursor
CreateGC XCreateGC

XCreateBitmapFromData
XCreatePixmapFromData
XOpenDisplay
XReadBitmapFile

397

Xlib − C Library libX11 1.3.2

Protocol Request Xlib Function

CreateGlyphCursor XCreateFontCursor
XCreateGlyphCursor

CreatePixmap XCreatePixmap
XCreateBitmapFromData
XCreatePixmapFromData
XReadBitmapFile

CreateWindow XCreateSimpleWindow
XCreateWindow

DeleteProperty XDeleteProperty
DestroySubwindows XDestroySubwindows
DestroyWindow XDestroyWindow
FillPoly XFillPolygon
ForceScreenSaver XActivateScreenSaver

XForceScreenSaver
XResetScreenSaver

FreeColormap XFreeColormap
FreeColors XFreeColors
FreeCursor XFreeCursor
FreeGC XFreeGC

XCreateBitmapFromData
XCreatePixmapFromData
XReadBitmapFile

FreePixmap XFreePixmap
GetAtomName XGetAtomName
GetFontPath XGetFontPath
GetGeometry XGetGeometry

XGetWindowAttributes
GetImage XGetImage
GetInputFocus XGetInputFocus

XSync
XSynchronize

GetKeyboardControl XGetKeyboardControl
GetKeyboardMapping XGetKeyboardMapping
GetModifierMapping XGetModifierMapping
GetMotionEvents XGetMotionEvents
GetPointerControl XGetPointerControl
GetPointerMapping XGetPointerMapping
GetProperty XFetchBytes

XFetchName
XGetClassHint
XGetIconName
XGetIconSizes
XGetNormalHints
XGetRGBColormaps
XGetSizeHints
XGetTextProperty
XGetTransientForHint
XGetWMClientMachine
XGetWMColormapWindows
XGetWMHints
XGetWMIconName

398

Xlib − C Library libX11 1.3.2

Protocol Request Xlib Function

XGetWMName
XGetWMNormalHints
XGetWMProtocols
XGetWMSizeHints
XGetWindowProperty
XGetZoomHints

GetSelectionOwner XGetSelectionOwner
GetWindowAttributes XGetWindowAttributes
GrabButton XGrabButton
GrabKey XGrabKey
GrabKeyboard XGrabKeyboard
GrabPointer XGrabPointer
GrabServer XGrabServer
ImageText8 XDrawImageString
ImageText16 XDrawImageString16
InstallColormap XInstallColormap
InternAtom XGetWMColormapWindows

XGetWMProtocols
XIconifyWindow
XInternAtom
XSetWMColormapWindows
XSetWMProtocols

KillClient XKillClient
ListExtensions XListExtensions
ListFonts XListFonts
ListFontsWithInfo XListFontsWithInfo
ListHosts XListHosts
ListInstalledColormaps XListInstalledColormaps
ListProperties XListProperties
LookupColor XLookupColor

XParseColor
MapSubwindows XMapSubwindows
MapWindow XMapRaised

XMapWindow
NoOperation XNoOp
OpenFont XLoadFont

XLoadQueryFont
PolyArc XDrawArc

XDrawArcs
PolyFillArc XFillArc

XFillArcs
PolyFillRectangle XFillRectangle

XFillRectangles
PolyLine XDrawLines
PolyPoint XDrawPoint

XDrawPoints
PolyRectangle XDrawRectangle

XDrawRectangles
PolySegment XDrawLine

XDrawSegments
PolyText8 XDrawString

399

Xlib − C Library libX11 1.3.2

Protocol Request Xlib Function

XDrawText
PolyText16 XDrawString16

XDrawText16
PutImage XPutImage

XCreateBitmapFromData
XCreatePixmapFromData
XReadBitmapFile

QueryBestSize XQueryBestCursor
XQueryBestSize
XQueryBestStipple
XQueryBestTile

QueryColors XQueryColor
XQueryColors

QueryExtension XInitExtension
XQueryExtension

QueryFont XLoadQueryFont
XQueryFont

QueryKeymap XQueryKeymap
QueryPointer XQueryPointer
QueryTextExtents XQueryTextExtents

XQueryTextExtents16
QueryTree XQueryTree
RecolorCursor XRecolorCursor
ReparentWindow XReparentWindow
RotateProperties XRotateBuffers

XRotateWindowProperties
SendEvent XIconifyWindow

XReconfigureWMWindow
XSendEvent
XWithdrawWindow

SetAccessControl XDisableAccessControl
XEnableAccessControl
XSetAccessControl

SetClipRectangles XSetClipRectangles
SetCloseDownMode XSetCloseDownMode
SetDashes XSetDashes
SetFontPath XSetFontPath
SetInputFocus XSetInputFocus
SetModifierMapping XSetModifierMapping
SetPointerMapping XSetPointerMapping
SetScreenSaver XGetScreenSaver

XSetScreenSaver
SetSelectionOwner XSetSelectionOwner
StoreColors XStoreColor

XStoreColors
StoreNamedColor XStoreNamedColor
TranslateCoordinates XTranslateCoordinates
UngrabButton XUngrabButton
UngrabKey XUngrabKey
UngrabKeyboard XUngrabKeyboard
UngrabPointer XUngrabPointer

400

Xlib − C Library libX11 1.3.2

Protocol Request Xlib Function

UngrabServer XUngrabServer
UninstallColormap XUninstallColormap
UnmapSubwindows XUnmapSubWindows
UnmapWindow XUnmapWindow

XWithdrawWindow
WarpPointer XWarpPointer

401

Xlib − C Library libX11 1.3.2

Appendix B

X Font Cursors

The following are the available cursors that can be used withXCreateFontCursor.

#define XC_X_cursor 0 #define XC_ll_angle 76
#define XC_arrow 2 #define XC_lr_angle 78
#define XC_based_arrow_down 4 #define XC_man 80
#define XC_based_arrow_up 6 #define XC_middlebutton 82
#define XC_boat 8 #define XC_mouse 84
#define XC_bogosity 10 #define XC_pencil 86
#define XC_bottom_left_corner 12 #define XC_pirate 88
#define XC_bottom_right_corner 14 #define XC_plus 90
#define XC_bottom_side 16 #define XC_question_arrow 92
#define XC_bottom_tee 18 #define XC_right_ptr 94
#define XC_box_spiral 20 #define XC_right_side 96
#define XC_center_ptr 22 #define XC_right_tee 98
#define XC_circle 24 #define XC_rightbutton 100
#define XC_clock 26 #define XC_rtl_logo 102
#define XC_coffee_mug 28 #define XC_sailboat 104
#define XC_cross 30 #define XC_sb_down_arrow 106
#define XC_cross_reverse 32 #define XC_sb_h_double_arrow 108
#define XC_crosshair 34 #define XC_sb_left_arrow 110
#define XC_diamond_cross 36 #define XC_sb_right_arrow 112
#define XC_dot 38 #define XC_sb_up_arrow 114
#define XC_dot_box_mask 40 #define XC_sb_v_double_arrow 116
#define XC_double_arrow 42 #define XC_shuttle 118
#define XC_draft_large 44 #define XC_sizing 120
#define XC_draft_small 46 #define XC_spider 122
#define XC_draped_box 48 #define XC_spraycan 124
#define XC_exchange 50 #define XC_star 126
#define XC_fleur 52 #define XC_target 128
#define XC_gobbler 54 #define XC_tcross 130
#define XC_gumby 56 #define XC_top_left_arrow 132
#define XC_hand1 58 #define XC_top_left_corner 134
#define XC_hand2 60 #define XC_top_right_corner 136
#define XC_heart 62 #define XC_top_side 138
#define XC_icon 64 #define XC_top_tee 140
#define XC_iron_cross 66 #define XC_trek 142
#define XC_left_ptr 68 #define XC_ul_angle 144
#define XC_left_side 70 #define XC_umbrella 146
#define XC_left_tee 72 #define XC_ur_angle 148
#define XC_leftbutton 74 #define XC_watch 150

#define XC_xterm 152

402

Xlib − C Library libX11 1.3.2

Appendix C

Extensions

Because X can evolve by extensions to the core protocol, it is important that extensions not be
perceived as second-class citizens. At some point, your favorite extensions may be adopted as
additional parts of the X Standard.

Therefore, there should be little to distinguish the use of an extension from that of the core proto-
col. To avoid having to initialize extensions explicitly in application programs, it is also impor-
tant that extensions perform lazy evaluations, automatically initializing themselves when called
for the first time.

This appendix describes techniques for writing extensions to Xlib that will run at essentially the
same performance as the core protocol requests.

Note

It is expected that a given extension to X consists of multiple requests. Defining 10
new features as 10 separate extensions is a bad practice. Rather, they should be pack-
aged into a single extension and should use minor opcodes to distinguish the
requests.

The symbols and macros used for writing stubs to Xlib are listed in <X11/Xlibint.h >.

Basic Protocol Support Routines
The basic protocol requests for extensions areXQueryExtension andXListExtensions.

Bool XQueryExtension(display, name, major_opcode_return, first_event_return, first_error_return)
Display *display;
char *name;
int *major_opcode_return;
int *first_event_return;
int *first_error_return;

display Specifies the connection to the X server.

name Specifies the extension name.

major_opcode_return
Returns the major opcode.

first_event_return
Returns the first event code, if any.

first_error_return
Returns the first error code, if any.

The XQueryExtension function determines if the named extension is present. If the extension is
not present,XQueryExtension returnsFalse; otherwise, it returnsTr ue. If the extension is
present,XQueryExtension returns the major opcode for the extension to major_opcode_return;
otherwise, it returns zero. Any minor opcode and the request formats are specific to the exten-
sion. If the extension involves additional event types,XQueryExtension returns the base event
type code to first_event_return; otherwise, it returns zero. The format of the events is specific to
the extension. Ifthe extension involves additional error codes,XQueryExtension returns the
base error code to first_error_return; otherwise, it returns zero. The format of additional data in

403

Xlib − C Library libX11 1.3.2

the errors is specific to the extension.

If the extension name is not in the Host Portable Character Encoding the result is implementation-
dependent. Uppercaseand lowercase matter; the strings ‘‘thing’’, ‘‘Thing’’, and ‘‘thinG’’ are all
considered different names.

char **XListExtensions(display, nextensions_return)
Display *display;
int *nextensions_return;

display Specifies the connection to the X server.

nextensions_return
Returns the number of extensions listed.

The XListExtensions function returns a list of all extensions supported by the server. If the data
returned by the server is in the Latin Portable Character Encoding, then the returned strings are in
the Host Portable Character Encoding. Otherwise, the result is implementation-dependent.

XFreeExtensionList(list)
char **list ;

list Specifies the list of extension names.

The XFreeExtensionList function frees the memory allocated byXListExtensions.

Hooking into Xlib
These functions allow you to hook into the library. They are not normally used by application
programmers but are used by people who need to extend the core X protocol and the X library
interface. Thefunctions, which generate protocol requests for X, are typically called stubs.

In extensions, stubs first should check to see if they hav einitialized themselves on a connection.
If they hav enot, they then should callXInitExtension to attempt to initialize themselves on the
connection.

If the extension needs to be informed of GC/font allocation or deallocation or if the extension
defines new event types, the functions described here allow the extension to be called when these
ev ents occur.

The XExtCodes structure returns the information fromXInitExtension and is defined in
<X11/Xlib.h>:

typedef struct _XExtCodes { /* public to extension, cannot be changed */
int extension; /*extension number */
int major_opcode; /* major op-code assigned by server */
int first_event; /* first event number for the extension */
int first_error; /* first error number for the extension */

} X ExtCodes;

404

Xlib − C Library libX11 1.3.2

XExtCodes *XInitExtension(display, name)
Display *display;
char *name;

display Specifies the connection to the X server.

name Specifies the extension name.

The XInitExtension function determines if the named extension exists. Then,it allocates storage
for maintaining the information about the extension on the connection, chains this onto the exten-
sion list for the connection, and returns the information the stub implementor will need to access
the extension. Ifthe extension does not exist,XInitExtension returns NULL.

If the extension name is not in the Host Portable Character Encoding, the result is implementa-
tion-dependent. Uppercaseand lowercase matter; the strings ‘‘thing’’, ‘‘Thing’’, and ‘‘thinG’’ are
all considered different names.

The extension number in theXExtCodes structure is needed in the other calls that follow. This
extension number is unique only to a single connection.

XExtCodes *XAddExtension(display)
Display *display;

display Specifies the connection to the X server.

For local Xlib extensions, theXAddExtension function allocates theXExtCodes structure,
bumps the extension number count, and chains the extension onto the extension list. (This per-
mits extensions to Xlib without requiring server extensions.)

Hooks into the Library
These functions allow you to define procedures that are to be called when various circumstances
occur. The procedures include the creation of a new GC for a connection, the copying of a GC,
the freeing of a GC, the creating and freeing of fonts, the conversion of events defined by exten-
sions to and from wire format, and the handling of errors.

All of these functions return the previous procedure defined for this extension.

int (*XESetCloseDisplay(display, extension, proc))()
Display *display;
int extension;
int (*proc)();

display Specifies the connection to the X server.

extension Specifies the extension number.

proc Specifies the procedure to call when the display is closed.

The XESetCloseDisplayfunction defines a procedure to be called whenever XCloseDisplay is
called. Itreturns any previously defined procedure, usually NULL.

WhenXCloseDisplay is called, your procedure is called with these arguments:

405

Xlib − C Library libX11 1.3.2

(*proc)(display, codes)
Display *display;
XExtCodes *codes;

int (*XESetCreateGC(display, extension, proc))()
Display *display;
int extension;
int (*proc)();

display Specifies the connection to the X server.

extension Specifies the extension number.

proc Specifies the procedure to call when a GC is closed.

The XESetCreateGC function defines a procedure to be called whenever a new GC is created. It
returns any previously defined procedure, usually NULL.

When a GC is created, your procedure is called with these arguments:

(*proc)(display, gc, codes)
Display *display;
GC gc;
XExtCodes *codes;

int (*XESetCopyGC(display, extension, proc))()
Display *display;
int extension;
int (*proc)();

display Specifies the connection to the X server.

extension Specifies the extension number.

proc Specifies the procedure to call when GC components are copied.

The XESetCopyGC function defines a procedure to be called whenever a GC is copied. It
returns any previously defined procedure, usually NULL.

When a GC is copied, your procedure is called with these arguments:

(*proc)(display, gc, codes)
Display *display;
GC gc;
XExtCodes *codes;

406

Xlib − C Library libX11 1.3.2

int (*XESetFreeGC(display, extension, proc))()
Display *display;
int extension;
int (*proc)();

display Specifies the connection to the X server.

extension Specifies the extension number.

proc Specifies the procedure to call when a GC is freed.

The XESetFreeGC function defines a procedure to be called whenever a GC is freed. Itreturns
any previously defined procedure, usually NULL.

When a GC is freed, your procedure is called with these arguments:

(*proc)(display, gc, codes)
Display *display;
GC gc;
XExtCodes *codes;

int (*XESetCreateFont(display, extension, proc))()
Display *display;
int extension;
int (*proc)();

display Specifies the connection to the X server.

extension Specifies the extension number.

proc Specifies the procedure to call when a font is created.

The XESetCreateFont function defines a procedure to be called whenever XLoadQueryFont
andXQueryFont are called. It returns any previously defined procedure, usually NULL.

WhenXLoadQueryFont or XQueryFont is called, your procedure is called with these argu-
ments:

(*proc)(display, fs, codes)
Display *display;
XFontStruct *fs;
XExtCodes *codes;

407

Xlib − C Library libX11 1.3.2

int (*XESetFreeFont(display, extension, proc))()
Display *display;
int extension;
int (*proc)();

display Specifies the connection to the X server.

extension Specifies the extension number.

proc Specifies the procedure to call when a font is freed.

The XESetFreeFont function defines a procedure to be called whenever XFreeFont is called. It
returns any previously defined procedure, usually NULL.

WhenXFreeFont is called, your procedure is called with these arguments:

(*proc)(display, fs, codes)
Display *display;
XFontStruct *fs;
XExtCodes *codes;

The XESetWireToEvent andXESetEventToWire functions allow you to define new events to
the library. An XEvent structure always has a type code (typeint) as the first component. This
uniquely identifies what kind of event it is. The second component is always the serial number
(type unsigned long) of the last request processed by the server. The third component is always
a Boolean (typeBool) indicating whether the event came from aSendEventprotocol request.
The fourth component is always a pointer to the display the event was read from. The fifth com-
ponent is always a resource ID of one kind or another, usually a window, carefully selected to be
useful to toolkit dispatchers. The fifth component should always exist, even if the event does not
have a natural destination; if there is no value from the protocol to put in this component, initial-
ize it to zero.

Note

There is an implementation limit such that your host event structure size cannot be
bigger than the size of theXEvent union of structures. There also is no way to guar-
antee that more than 24 elements or 96 characters in the structure will be fully porta-
ble between machines.

int (*XESetWireToEvent(display, event_number, proc))()
Display *display;
int event_number;
Status (*proc)();

display Specifies the connection to the X server.

event_number Specifies the event code.

proc Specifies the procedure to call when converting an event.

The XESetWireToEvent function defines a procedure to be called when an event needs to be
converted from wire format (xEvent) to host format (XEvent). Theev ent number defines which
protocol event number to install a conversion procedure for.XESetWireToEvent returns any
previously defined procedure.

408

Xlib − C Library libX11 1.3.2

Note

You can replace a core event conversion function with one of your own, although this
is not encouraged. It would, however, allow you to intercept a core event and modify
it before being placed in the queue or otherwise examined.

When Xlib needs to convert an event from wire format to host format, your procedure is called
with these arguments:

Status (*proc)(display, re, event)
Display *display;
XEvent *re;
xEvent *event;

Your procedure must return status to indicate if the conversion succeeded. The re argument is a
pointer to where the host format event should be stored, and the event argument is the 32-byte
wire event structure. In theXEvent structure you are creating, you must fill in the five required
members of the event structure.You should fill in the type member with the type specified for the
xEvent structure. You should copy all other members from thexEvent structure (wire format)
to theXEvent structure (host format).Your conversion procedure should returnTr ue if the
ev ent should be placed in the queue orFalse if it should not be placed in the queue.

To initialize the serial number component of the event, call _XSetLastRequestReadwith the
ev ent and use the return value.

unsigned long _XSetLastRequestRead(display, rep)
Display *display;
xGenericReply *rep;

display Specifies the connection to the X server.

rep Specifies the wire event structure.

The _XSetLastRequestReadfunction computes and returns a complete serial number from the
partial serial number in the event.

Status (*XESetEventToWire(display, event_number, proc))()
Display *display;
int event_number;
int (*proc)();

display Specifies the connection to the X server.

event_number Specifies the event code.

proc Specifies the procedure to call when converting an event.

The XESetEventToWire function defines a procedure to be called when an event needs to be
converted from host format (XEvent) to wire format (xEvent) form. Theev ent number defines
which protocol event number to install a conversion procedure for.XESetEventToWire returns
any previously defined procedure. It returns zero if the conversion fails or nonzero otherwise.

409

Xlib − C Library libX11 1.3.2

Note

You can replace a core event conversion function with one of your own, although this
is not encouraged. It would, however, allow you to intercept a core event and modify
it before being sent to another client.

When Xlib needs to convert an event from host format to wire format, your procedure is called
with these arguments:

(*proc)(display, re, event)
Display *display;
XEvent *re;
xEvent *event;

The re argument is a pointer to the host format event, and the event argument is a pointer to where
the 32-byte wire event structure should be stored.You should fill in the type with the type from
the XEvent structure. Allother members then should be copied from the host format to the
xEvent structure.

Bool (*XESetWireToError(display, error_number, proc)()
Display *display;
int error_number;
Bool (*proc)();

display Specifies the connection to the X server.

error_number Specifies the error code.

proc Specifies the procedure to call when an error is received.

The XESetWireToError function defines a procedure to be called when an extension error needs
to be converted from wire format to host format. The error number defines which protocol error
code to install the conversion procedure for.XESetWireToError returns any previously defined
procedure.

Use this function for extension errors that contain additional error values beyond those in a core X
error, when multiple wire errors must be combined into a single Xlib error, or when it is neces-
sary to intercept an X error before it is otherwise examined.

When Xlib needs to convert an error from wire format to host format, the procedure is called with
these arguments:

Bool (*proc)(display, he, we)
Display *display;
XErrorEvent *he;
xError *we;

The he argument is a pointer to where the host format error should be stored. The structure
pointed at by he is guaranteed to be as large as anXEvent structure and so can be cast to a type
larger than anXErrorEvent to store additional values. Ifthe error is to be completely ignored
by Xlib (for example, several protocol error structures will be combined into one Xlib error), then
the function should returnFalse; otherwise, it should returnTr ue.

410

Xlib − C Library libX11 1.3.2

int (*XESetError(display, extension, proc))()
Display *display;
int extension;
int (*proc)();

display Specifies the connection to the X server.

extension Specifies the extension number.

proc Specifies the procedure to call when an error is received.

Inside Xlib, there are times that you may want to suppress the calling of the external error han-
dling when an error occurs. This allows status to be returned on a call at the cost of the call being
synchronous (though most such functions are query operations, in any case, and are typically pro-
grammed to be synchronous).

When Xlib detects a protocol error in_XReply, it calls your procedure with these arguments:

int (*proc)(display, err, codes, ret_code)
Display *display;
xError *err;
XExtCodes *codes;
int *ret_code;

The err argument is a pointer to the 32-byte wire format error. The codes argument is a pointer to
the extension codes structure. The ret_code argument is the return code you may want_XReply
returned to.

If your procedure returns a zero value, the error is not suppressed, and the client’s error handler is
called. (For further information, see section 11.8.2.) If your procedure returns nonzero, the error
is suppressed, and_XReply returns the value of ret_code.

char *(*XESetErrorString(display, extension, proc))()
Display *display;
int extension;
char *(*proc)();

display Specifies the connection to the X server.

extension Specifies the extension number.

proc Specifies the procedure to call to obtain an error string.

The XGetErrorText function returns a string to the user for an error.XESetErrorString allows
you to define a procedure to be called that should return a pointer to the error message. The fol-
lowing is an example.

(*proc)(display, code, codes, buffer, nbytes)
Display *display;
int code;
XExtCodes *codes;
char *buffer;
int nbytes;

411

Xlib − C Library libX11 1.3.2

Your procedure is called with the error code for every error detected.You should copy nbytes of
a null-terminated string containing the error message into buffer.

void (*XESetPrintErrorValues(display, extension, proc))()
Display *display;
int extension;
void (*proc)();

display Specifies the connection to the X server.

extension Specifies the extension number.

proc Specifies the procedure to call when an error is printed.

The XESetPrintErrorValues function defines a procedure to be called when an extension error
is printed, to print the error values. Usethis function for extension errors that contain additional
error values beyond those in a core X error. It returns any previously defined procedure.

When Xlib needs to print an error, the procedure is called with these arguments:

void (*proc)(display, ev, fp)
Display *display;
XErrorEvent *ev;
void *fp;

The structure pointed at by ev is guaranteed to be as large as anXEvent structure and so can be
cast to a type larger than anXErrorEvent to obtain additional values set by usingXESetWire-
ToError . The underlying type of the fp argument is system dependent; on a POSIX-compliant
system, fp should be cast to type FILE*.

int (*XESetFlushGC(display, extension, proc))()
Display *display;
int extension;
int *(* proc)();

display Specifies the connection to the X server.

extension Specifies the extension number.

proc Specifies the procedure to call when a GC is flushed.

The procedure set by theXESetFlushGC function has the same interface as the procedure set by
the XESetCopyGC function, but is called when a GC cache needs to be updated in the server.

412

Xlib − C Library libX11 1.3.2

int (*XESetBeforeFlush(display, extension, proc))()
Display *display;
int extension;
int *(* proc)();

display Specifies the connection to the X server.

extension Specifies the extension number.

proc Specifies the procedure to call when a buffer is flushed.

The XESetBeforeFlushfunction defines a procedure to be called when data is about to be sent to
the server. When data is about to be sent, your procedure is called one or more times with these
arguments:

void (*proc)(display, codes, data, len)
Display *display;
XExtCodes *codes;
char *data;
long len;

The data argument specifies a portion of the outgoing data buffer, and its length in bytes is speci-
fied by the len argument. Your procedure must not alter the contents of the data and must not do
additional protocol requests to the same display.

Hooks onto Xlib Data Structures
Various Xlib data structures have provisions for extension procedures to chain extension supplied
data onto a list. These structures areGC, Visual, Screen, ScreenFormat, Display, and
XFontStruct . Because the list pointer is always the first member in the structure, a single set of
procedures can be used to manipulate the data on these lists.

The following structure is used in the functions in this section and is defined in <X11/Xlib.h>:

typedef struct _XExtData {
int number; /* number returned by XInitExtension */
struct _XExtData *next; /* next item on list of data for structure */
int (*free_private)(); /* if defined, called to free private */
XPointer private_data; /*data private to this extension. */

} X ExtData;

When any of the data structures listed above are freed, the list is walked, and the structure’s free
procedure (if any) is called. If free is NULL, then the library frees both the data pointed to by the
private_data member and the structure itself.

union { Display *display;
GC gc;
Visual *visual;
Screen *screen;
ScreenFormat *pixmap_format;
XFontStruct *font } XEDataObject;

413

Xlib − C Library libX11 1.3.2

XExtData **XEHeadOfExtensionList(object)
XEDataObjectobject;

object Specifies the object.

The XEHeadOfExtensionList function returns a pointer to the list of extension structures
attached to the specified object. In concert withXAddToExtensionList , XEHeadOfExtension-
List allows an extension to attach arbitrary data to any of the structures of types contained in
XEDataObject.

XAddToExtensionList(structure, ext_data)
XExtData **structure;
XExtData *ext_data;

structure Specifies the extension list.

ext_data Specifies the extension data structure to add.

The structure argument is a pointer to one of the data structures enumerated above. You must ini-
tialize ext_data->number with the extension number before calling this function.

XExtData *XFindOnExtensionList(structure, number)
struct _XExtData **structure;
int number;

structure Specifies the extension list.

number Specifies the extension number fromXInitExtension .

The XFindOnExtensionList function returns the first extension data structure for the extension
numbered number. It is expected that an extension will add at most one extension data structure
to any single data structure’s extension data list. There is no way to find additional structures.

The XAllocID macro, which allocates and returns a resource ID, is defined in <X11/Xlib.h>.

XAllocID (display)
Display *display;

display Specifies the connection to the X server.

This macro is a call through theDisplay structure to an internal resource ID allocator. It returns
a resource ID that you can use when creating new resources.

The XAllocIDs macro allocates and returns an array of resource ID.

414

Xlib − C Library libX11 1.3.2

XAllocIDs (display, ids_return, count)
Display *display;
XID * ids_return;
int count;

display Specifies the connection to the X server.

ids_return Returns the resource IDs.

rep Specifies the number of resource IDs requested.

This macro is a call through theDisplay structure to an internal resource ID allocator. It returns
resource IDs to the array supplied by the caller. To correctly handle automatic reuse of resource
IDs, you must callXAllocIDs when requesting multiple resource IDs. This call might generate
protocol requests.

GC Caching
GCs are cached by the library to allow merging of independent change requests to the same GC
into single protocol requests. This is typically called a write-back cache. Any extension proce-
dure whose behavior depends on the contents of a GC must flush the GC cache to make sure the
server has up-to-date contents in its GC.

The FlushGC macro checks the dirty bits in the library’s GC structure and calls_XFlushGC-
Cache if any elements have changed. TheFlushGC macro is defined as follows:

FlushGC (display, gc)
Display *display;
GC gc;

display Specifies the connection to the X server.

gc Specifies the GC.

Note that if you extend the GC to add additional resource ID components, you should ensure that
the library stub sends the change request immediately. This is because a client can free a resource
immediately after using it, so if you only stored the value in the cache without forcing a protocol
request, the resource might be destroyed before being set into the GC.You can use the
_XFlushGCCacheprocedure to force the cache to be flushed. The_XFlushGCCacheproce-
dure is defined as follows:

_XFlushGCCache (display, gc)
Display *display;
GC gc;

display Specifies the connection to the X server.

gc Specifies the GC.

Graphics Batching
If you extend X to add more poly graphics primitives, you may be able to take advantage of facili-
ties in the library to allow back-to-back single calls to be transformed into poly requests. This
may dramatically improve performance of programs that are not written using poly requests. A
pointer to anxReq, called last_req in the display structure, is the last request being processed.
By checking that the last request type, drawable, gc, and other options are the same as the new
one and that there is enough space left in the buffer, you may be able to just extend the previous

415

Xlib − C Library libX11 1.3.2

graphics request by extending the length field of the request and appending the data to the buffer.
This can improve performance by five times or more in naive programs. For example, here is the
source for theXDrawPoint stub. (Writing extension stubs is discussed in the next section.)

#include <X11/Xlibint.h>

/* precompute the maximum size of batching request allowed */

static int size = sizeof(xPolyPointReq) + EPERBATCH * sizeof(xPoint);

XDrawPoint(dpy, d, gc, x, y)
register Display *dpy;
Drawable d;
GC gc;
int x, y; /* INT16 */

{
xPoint *point;
LockDisplay(dpy);
FlushGC(dpy, gc);
{
register xPolyPointReq *req = (xPolyPointReq *) dpy->last_req;
/* if same as previous request, with same drawable, batch requests */
if (

(req->reqType == X_PolyPoint)
&& (req->drawable == d)
&& (req->gc == gc->gid)
&& (req->coordMode == CoordModeOrigin)
&& ((dpy->bufptr + sizeof (xPoint)) <= dpy->bufmax)
&& (((char *)dpy->bufptr - (char *)req) < size)) {
point = (xPoint *) dpy->bufptr;
req->length += sizeof (xPoint) >> 2;
dpy->bufptr += sizeof (xPoint);
}

else {
GetReqExtra(PolyPoint, 4, req); /* 1 point = 4 bytes */
req->drawable = d;
req->gc = gc->gid;
req->coordMode = CoordModeOrigin;
point = (xPoint *) (req + 1);
}

point->x = x;
point->y = y;
}
UnlockDisplay(dpy);
SyncHandle();

}

To keep clients from generating very long requests that may monopolize the server, there is
a symbol defined in <X11/Xlibint.h > of EPERBATCH on the number of requests batched.
Most of the performance benefit occurs in the first few merged requests. Note that
FlushGC is calledbeforepicking up the value of last_req, because it may modify this field.

416

Xlib − C Library libX11 1.3.2

Writing Extension Stubs
All X requests always contain the length of the request, expressed as a 16-bit quantity of 32
bits. Thismeans that a single request can be no more than 256K bytes in length. Some
servers may not support single requests of such a length. The value of
dpy->max_request_size contains the maximum length as defined by the server implementa-
tion. For further information, see ‘‘X Window System Protocol.’’

Requests, Replies, and Xproto.h
The <X11/Xproto.h> file contains three sets of definitions that are of interest to the stub
implementor: request names, request structures, and reply structures.

You need to generate a file equivalent to <X11/Xproto.h> for your extension and need to
include it in your stub procedure. Each stub procedure also must include <X11/Xlibint.h >.

The identifiers are deliberately chosen in such a way that, if the request is called
X_DoSomething, then its request structure is xDoSomethingReq, and its reply is xDoSome-
thingReply. The GetReq family of macros, defined in <X11/Xlibint.h >, takes advantage of
this naming scheme.

For each X request, there is a definition in <X11/Xproto.h> that looks similar to this:

#define X_DoSomething 42

In your extension header file, this will be a minor opcode, instead of a major opcode.

Request Format
Every request contains an 8-bit major opcode and a 16-bit length field expressed in units of
4 bytes. Every request consists of 4 bytes of header (containing the major opcode, the
length field, and a data byte) followed by zero or more additional bytes of data. The length
field defines the total length of the request, including the header. The length field in a
request must equal the minimum length required to contain the request. If the specified
length is smaller or larger than the required length, the server should generate aBadLength
error. Unused bytes in a request are not required to be zero. Extensions should be designed
in such a way that long protocol requests can be split up into smaller requests, if it is possi-
ble to exceed the maximum request size of the server. The protocol guarantees the maxi-
mum request size to be no smaller than 4096 units (16384 bytes).

Major opcodes 128 through 255 are reserved for extensions. Extensionsare intended to
contain multiple requests, so extension requests typically have an additional minor opcode
encoded in the second data byte in the request header, but the placement and interpretation
of this minor opcode as well as all other fields in extension requests are not defined by the
core protocol. Every request is implicitly assigned a sequence number (starting with one)
used in replies, errors, and events.

To help but not cure portability problems to certain machines, theB16 andB32 macros
have been defined so that they can become bitfield specifications on some machines.For
example, on a Cray, these should be used for all 16-bit and 32-bit quantities, as discussed
below.

Most protocol requests have a corresponding structure typedef in <X11/Xproto.h>, which
looks like:

417

Xlib − C Library libX11 1.3.2

typedef struct _DoSomethingReq {
CARD8 reqType; /* X_DoSomething */
CARD8 someDatum; /* used differently in different requests */
CARD16 length B16; /* total # of bytes in request, divided by 4 */
...
/* request-specific data */
...

} x DoSomethingReq;

If a core protocol request has a single 32-bit argument, you need not declare a request struc-
ture in your extension header file. Instead, such requests use thexResourceReqstructure
in <X11/Xproto.h>. Thisstructure is used for any request whose single argument is a
Window, Pixmap, Drawable, GContext, Font , Cursor , Colormap, Atom , or Visu-
alID .

typedef struct _ResourceReq {
CARD8 reqType; /* the request type, e.g. X_DoSomething */
BYTE pad; /* not used */
CARD16 length B16; /* 2 (= total # of bytes in request, divided by 4) */
CARD32 id B32; /* the Window, Drawable, Font, GContext, etc. */

} x ResourceReq;

If convenient, you can do something similar in your extension header file.

In both of these structures, the reqType field identifies the type of the request (for example,
X_MapWindow or X_CreatePixmap). Thelength field tells how long the request is in units
of 4-byte longwords. Thislength includes both the request structure itself and any variable-
length data, such as strings or lists, that follow the request structure. Request structures
come in different sizes, but all requests are padded to be multiples of four bytes long.

A few protocol requests take no arguments at all. Instead, they use thexReq structure in
<X11/Xproto.h>, which contains only a reqType and a length (and a pad byte).

If the protocol request requires a reply, then <X11/Xproto.h> also contains a reply structure
typedef:

typedef struct _DoSomethingReply {
BYTE type; /* always X_Reply */
BYTE someDatum; /* used differently in different requests */
CARD16 sequenceNumber B16; /* # of requests sent so far */
CARD32 length B32; /* # of additional bytes, divided by 4 */
...
/* request-specific data */
...

} x DoSomethingReply;

Most of these reply structures are 32 bytes long. If there are not that many reply values,
then they contain a sufficient number of pad fields to bring them up to 32 bytes. The length
field is the total number of bytes in the request minus 32, divided by 4. This length will be
nonzero only if:

418

Xlib − C Library libX11 1.3.2

• The reply structure is followed by variable-length data, such as a list or string.

• The reply structure is longer than 32 bytes.

Only GetWindowAttributes , QueryFont, QueryKeymap, and GetKeyboardControl
have reply structures longer than 32 bytes in the core protocol.

A few protocol requests return replies that contain no data. <X11/Xproto.h> does not
define reply structures for these. Instead, they use thexGenericReply structure, which
contains only a type, length, and sequence number (and sufficient padding to make it 32
bytes long).

Starting to Write a Stub Procedure
An Xlib stub procedure should start like this:

#include "<X11/Xlibint.h>

XDoSomething (arguments, ...)
/* argument declarations */
{

register XDoSomethingReq *req;
...

If the protocol request has a reply, then the variable declarations should include the reply
structure for the request. The following is an example:

xDoSomethingReply rep;

Locking Data Structures
To lock the display structure for systems that want to support multithreaded access to a sin-
gle display connection, each stub will need to lock its critical section. Generally, this sec-
tion is the point from just before the appropriate GetReq call until all arguments to the call
have been stored into the buffer. The precise instructions needed for this locking depend
upon the machine architecture.Tw o calls, which are generally implemented as macros,
have been provided.

LockDisplay(display)
Display *display;

UnlockDisplay(display)
Display *display;

display Specifies the connection to the X server.

Sending the Protocol Request and Arguments
After the variable declarations, a stub procedure should call one of four macros defined in
<X11/Xlibint.h >: GetReq, GetReqExtra, GetResReq, or GetEmptyReq. All of these
macros take, as their first argument, the name of the protocol request as declared in
<X11/Xproto.h> except with X_ removed. Eachone declares aDisplay structure pointer,
called dpy, and a pointer to a request structure, called req, which is of the appropriate type.
The macro then appends the request structure to the output buffer, fills in its type and length
field, and sets req to point to it.

If the protocol request has no arguments (for instance, X_GrabServer), then useGetEmp-
tyReq.

419

Xlib − C Library libX11 1.3.2

GetEmptyReq (DoSomething, req);

If the protocol request has a single 32-bit argument (such as aPixmap, Window, Draw-
able, Atom , and so on), then useGetResReq. The second argument to the macro is the
32-bit object. X_MapWindow is a good example.

GetResReq (DoSomething, rid, req);

The rid argument is thePixmap, Window, or other resource ID.

If the protocol request takes any other argument list, then callGetReq. After theGetReq,
you need to set all the other fields in the request structure, usually from arguments to the
stub procedure.

GetReq (DoSomething, req);
/* fill in arguments here */
req->arg1 = arg1;
req->arg2 = arg2;
...

A few stub procedures (such asXCreateGC andXCreatePixmap) return a resource ID to
the caller but pass a resource ID as an argument to the protocol request. Such procedures
use the macroXAllocID to allocate a resource ID from the range of IDs that were assigned
to this client when it opened the connection.

rid = req->rid = XAllocID();
...
return (rid);

Finally, some stub procedures transmit a fixed amount of variable-length data after the
request. Typically, these procedures (such asXMoveWindow andXSetBackground) are
special cases of more general functions likeXMoveResizeWindowandXChangeGC.
These procedures useGetReqExtra, which is the same asGetReq except that it takes an
additional argument (the number of extra bytes to allocate in the output buffer after the
request structure). This number should always be a multiple of four.

Variable Length Arguments
Some protocol requests take additional variable-length data that follow the xDoSomethin-
gReq structure. Theformat of this data varies from request to request. Some requests
require a sequence of 8-bit bytes, others a sequence of 16-bit or 32-bit entities, and still oth-
ers a sequence of structures.

It is necessary to add the length of any variable-length data to the length field of the request
structure. Thatlength field is in units of 32-bit longwords. Ifthe data is a string or other
sequence of 8-bit bytes, then you must round the length up and shift it before adding:

req->length += (nbytes+3)>>2;

To transmit variable-length data, use theData macros. Ifthe data fits into the output buffer,
then this macro copies it to the buffer. If it does not fit, however, the Data macro calls
_XSend, which transmits first the contents of the buffer and then your data. TheData
macros take three arguments: the display, a pointer to the beginning of the data, and the
number of bytes to be sent.

420

Xlib − C Library libX11 1.3.2

Data(display, (char *)data, nbytes);

Data16(display, (short *)data, nbytes);

Data32(display, (long *) data, nbytes);

Data, Data16, and Data32 are macros that may use their last argument more than once, so
that argument should be a variable rather than an expression such as ‘‘nitems*sizeof(item)’’.
You should do that kind of computation in a separate statement before calling them. Use
the appropriate macro when sending byte, short, or long data.

If the protocol request requires a reply, then call the procedure_XSend instead of theData
macro. _XSend takes the same arguments, but because it sends your data immediately
instead of copying it into the output buffer (which would later be flushed anyway by the fol-
lowing call on_XReply), it is faster.

Replies
If the protocol request has a reply, then call_XReply after you have finished dealing with
all the fixed-length and variable-length arguments._XReply flushes the output buffer and
waits for anxReply packet to arrive. If any events arrive in the meantime,_XReply places
them in the queue for later use.

Status _XReply(display, rep, extra, discard)
Display *display;
xReply *rep;
int extra;
Bool discard;

display Specifies the connection to the X server.

rep Specifies the reply structure.

extra Specifies the number of 32-bit words expected after the replay.

discard Specifies if any data beyond that specified in the extra argument should be
discarded.

The _XReply function waits for a reply packet and copies its contents into the specified
rep. _XReply handles error and event packets that occur before the reply is received.
_XReply takes four arguments:

• A Display * structure

• A pointer to a reply structure (which must be cast to anxReply *)

• The number of additional 32-bit words (beyond sizeof(xReply) = 32 bytes) in the
reply structure

• A Boolean that indicates whether_XReply is to discard any additional bytes beyond
those it was told to read

Because most reply structures are 32 bytes long, the third argument is usually 0. The only
core protocol exceptions are the replies toGetWindowAttributes , QueryFont,
QueryKeymap, and GetKeyboardControl , which have longer replies.

The last argument should beFalse if the reply structure is followed by additional variable-
length data (such as a list or string). It should beTr ue if there is not any variable-length
data.

421

Xlib − C Library libX11 1.3.2

Note

This last argument is provided for upward-compatibility reasons to allow a
client to communicate properly with a hypothetical later version of the server
that sends more data than the client expected. For example, some later version
of GetWindowAttributes might use a larger, but compatible,xGetWin-
dowAttributesReply that contains additional attribute data at the end.

_XReply returnsTr ue if it received a reply successfully orFalse if it received any sort of
error.

For a request with a reply that is not followed by variable-length data, you write something
like:

_XReply(display, (xReply *)&rep, 0, True);
*ret1 = rep.ret1;
*ret2 = rep.ret2;
*ret3 = rep.ret3;
...
UnlockDisplay(dpy);
SyncHandle();
return (rep.ret4);
}

If there is variable-length data after the reply, change theTr ue to False, and use the appro-
priate_XRead function to read the variable-length data.

_XRead(display, data_return, nbytes)
Display *display;
char *data_return;
longnbytes;

display Specifies the connection to the X server.

data_return Specifies the buffer.

nbytes Specifies the number of bytes required.

The _XRead function reads the specified number of bytes into data_return.

_XRead16(display, data_return, nbytes)
Display *display;
short *data_return;
longnbytes;

display Specifies the connection to the X server.

data_return Specifies the buffer.

nbytes Specifies the number of bytes required.

The _XRead16function reads the specified number of bytes, unpacking them as 16-bit
quantities, into the specified array as shorts.

422

Xlib − C Library libX11 1.3.2

_XRead32(display, data_return, nbytes)
Display *display;
long *data_return;
longnbytes;

display Specifies the connection to the X server.

data_return Specifies the buffer.

nbytes Specifies the number of bytes required.

The _XRead32function reads the specified number of bytes, unpacking them as 32-bit
quantities, into the specified array as longs.

_XRead16Pad(display, data_return, nbytes)
Display *display;
short *data_return;
longnbytes;

display Specifies the connection to the X server.

data_return Specifies the buffer.

nbytes Specifies the number of bytes required.

The _XRead16Padfunction reads the specified number of bytes, unpacking them as 16-bit
quantities, into the specified array as shorts. If the number of bytes is not a multiple of four,
_XRead16Padreads and discards up to two additional pad bytes.

_XReadPad(display, data_return, nbytes)
Display *display;
char *data_return;
longnbytes;

display Specifies the connection to the X server.

data_return Specifies the buffer.

nbytes Specifies the number of bytes required.

The _XReadPadfunction reads the specified number of bytes into data_return. If the num-
ber of bytes is not a multiple of four,_XReadPadreads and discards up to three additional
pad bytes.

Each protocol request is a little different. For further information, see the Xlib sources for
examples.

Synchronous Calling
Each procedure should have a call, just before returning to the user, to a macro calledSyn-
cHandle. If synchronous mode is enabled (seeXSynchronize), the request is sent immedi-
ately. The library, howev er, waits until any error the procedure could generate at the server
has been handled.

Allocating and Deallocating Memory
To support the possible reentry of these procedures, you must observe sev eral conventions
when allocating and deallocating memory, most often done when returning data to the user
from the window system of a size the caller could not know in advance (for example, a list

423

Xlib − C Library libX11 1.3.2

of fonts or a list of extensions). Thestandard C library functions on many systems are not
protected against signals or other multithreaded uses. The following analogies to standard
I/O library functions have been defined:

Xmalloc() Replacesmalloc()
XFree() Replacesfree()
Xcalloc() Replacescalloc()

These should be used in place of any calls you would make to the normal C library func-
tions.

If you need a single scratch buffer inside a critical section (for example, to pack and unpack
data to and from the wire protocol), the general memory allocators may be too expensive to
use (particularly in output functions, which are performance critical). The following func-
tion returns a scratch buffer for use within a critical section:

char *_XAllocScratch(display, nbytes)
Display *display;
unsigned longnbytes;

display Specifies the connection to the X server.

nbytes Specifies the number of bytes required.

This storage must only be used inside of a critical section of your stub. The returned pointer
cannot be assumed valid after any call that might permit another thread to execute inside
Xlib. For example, the pointer cannot be assumed valid after any use of theGetReq or
Data families of macros, after any use of_XReply, or after any use of the_XSendor
_XRead families of functions.

The following function returns a scratch buffer for use across critical sections:

char *_XAllocTemp(display, nbytes)
Display *display;
unsigned longnbytes;

display Specifies the connection to the X server.

nbytes Specifies the number of bytes required.

This storage can be used across calls that might permit another thread to execute inside
Xlib. The storage must be explicitly returned to Xlib. The following function returns the
storage:

void _XFreeTemp(display, buf, nbytes)
Display *display;
char *buf ;
unsigned longnbytes;

display Specifies the connection to the X server.

buf Specifies the buffer to return.

nbytes Specifies the size of the buffer.

You must pass back the same pointer and size that were returned by_XAllocTemp.

424

Xlib − C Library libX11 1.3.2

Portability Considerations
Many machine architectures, including many of the more recent RISC architectures, do not
correctly access data at unaligned locations; their compilers pad out structures to preserve
this characteristic. Many other machines capable of unaligned references pad inside of
structures as well to preserve alignment, because accessing aligned data is usually much
faster. Because the library and the server use structures to access data at arbitrary points in
a byte stream, all data in request and reply packetsmustbe naturally aligned; that is, 16-bit
data starts on 16-bit boundaries in the request and 32-bit data on 32-bit boundaries. All
requestsmustbe a multiple of 32 bits in length to preserve the natural alignment in the data
stream. You must pad structures out to 32-bit boundaries.Pad information does not have to
be zeroed unless you want to preserve such fields for future use in your protocol requests.
Floating point varies radically between machines and should be avoided completely if at all
possible.

This code may run on machines with 16-bit ints. So, if any integer argument, variable, or
return value either can take only nonnegative values or is declared as aCARD16 in the pro-
tocol, be sure to declare it asunsigned int and not asint . (This, of course, does not apply
to Booleans or enumerations.)

Similarly, if any integer argument or return value is declaredCARD32 in the protocol,
declare it as anunsigned longand not asint or long. This also goes for any internal vari-
ables that may take on values larger than the maximum 16-bitunsigned int.
The library currently assumes that achar is 8 bits, ashort is 16 bits, anint is 16 or 32 bits,
and along is 32 bits. ThePackData macro is a half-hearted attempt to deal with the possi-
bility of 32 bit shorts. However, much more work is needed to make this work properly.

Deriving the Correct Extension Opcode
The remaining problem a writer of an extension stub procedure faces that the core protocol
does not face is to map from the call to the proper major and minor opcodes. While there
are a number of strategies, the simplest and fastest is outlined below.

1. Declarean array of pointers, _NFILE long (this is normally found in <stdio.h> and is
the number of file descriptors supported on the system) of typeXExtCodes. Make
sure these are all initialized to NULL.

2. Whenyour stub is entered, your initialization test is just to use the display pointer
passed in to access the file descriptor and an index into the array. If the entry is
NULL, then this is the first time you are entering the procedure for this display. Call
your initialization procedure and pass to it the display pointer.

3. Oncein your initialization procedure, callXInitExtension ; if it succeeds, store the
pointer returned into this array. Make sure to establish a close display handler to
allow you to zero the entry. Do whatever other initialization your extension requires.
(For example, install event handlers and so on.)Your initialization procedure would
normally return a pointer to theXExtCodes structure for this extension, which is
what would normally be found in your array of pointers.

4. After returning from your initialization procedure, the stub can now continue nor-
mally, because it has its major opcode safely in its hand in theXExtCodes structure.

425

Xlib − C Library libX11 1.3.2

Appendix D

Compatibility Functions

The X Version 11 and X Version 10 functions discussed in this appendix are obsolete, have
been superseded by newer X Version 11 functions, and are maintained for compatibility rea-
sons only.

X Version 11 Compatibility Functions
You can use the X Version 11 compatibility functions to:

• Set standard properties

• Set and get window sizing hints

• Set and get anXStandardColormap structure

• Parse window geometry

• Get X environment defaults

Setting Standard Properties
To specify a minimum set of properties describing the simplest application, useXSetStan-
dardProperties. This function has been superseded byXSetWMProperties and sets all or
portions of the WM_NAME, WM_ICON_NAME, WM_HINTS, WM_COMMAND, and
WM_NORMAL_HINTS properties.

XSetStandardProperties (display, w, window_name, icon_name, icon_pixmap, argv, argc, hints)
Display *display;
Windoww;
char *window_name;
char *icon_name;
Pixmapicon_pixmap;
char **argv;
int argc;
XSizeHints *hints;

display Specifies the connection to the X server.

w Specifies the window.

window_name Specifies the window name, which should be a null-terminated string.

icon_name Specifies the icon name, which should be a null-terminated string.

icon_pixmap Specifies the bitmap that is to be used for the icon orNone.

argv Specifies the application’s argument list.

argc Specifies the number of arguments.

hints Specifies a pointer to the size hints for the window in its normal state.

The XSetStandardPropertiesfunction provides a means by which simple applications set
the most essential properties with a single call.XSetStandardPropertiesshould be used
to give a window manager some information about your program’s preferences. Itshould
not be used by applications that need to communicate more information than is possible
with XSetStandardProperties. (Typically, argv is the argv array of your main program.)

426

Xlib − C Library libX11 1.3.2

If the strings are not in the Host Portable Character Encoding, the result is implementation-
dependent.

XSetStandardPropertiescan generateBadAlloc andBadWindow errors.

Setting and Getting Window Sizing Hints
Xlib provides functions that you can use to set or get window sizing hints. The functions
discussed in this section use the flags and theXSizeHints structure, as defined in the
<X11/Xutil.h> header file and use the WM_NORMAL_HINTS property.

To set the size hints for a given window in its normal state, useXSetNormalHints. This
function has been superseded byXSetWMNormalHints .

XSetNormalHints (display, w, hints)
Display *display;
Windoww;
XSizeHints *hints;

display Specifies the connection to the X server.

w Specifies the window.

hints Specifies a pointer to the size hints for the window in its normal state.

The XSetNormalHints function sets the size hints structure for the specified window.
Applications useXSetNormalHints to inform the window manager of the size or position
desirable for that window. In addition, an application that wants to move or resize itself
should callXSetNormalHints and specify its new desired location and size as well as mak-
ing direct Xlib calls to move or resize. Thisis because window managers may ignore redi-
rected configure requests, but they pay attention to property changes.

To set size hints, an application not only must assign values to the appropriate members in
the hints structure but also must set the flags member of the structure to indicate which
information is present and where it came from.A call to XSetNormalHints is meaning-
less, unless the flags member is set to indicate which members of the structure have been
assigned values.

XSetNormalHints can generateBadAlloc andBadWindow errors.

To return the size hints for a window in its normal state, useXGetNormalHints . This
function has been superseded byXGetWMNormalHints .

Status XGetNormalHints(display, w, hints_return)
Display *display;
Windoww;
XSizeHints *hints_return;

display Specifies the connection to the X server.

w Specifies the window.

hints_return Returns the size hints for the window in its normal state.

The XGetNormalHints function returns the size hints for a window in its normal state. It
returns a nonzero status if it succeeds or zero if the application specified no normal size
hints for this window.

XGetNormalHints can generate aBadWindow error.

427

Xlib − C Library libX11 1.3.2

The next two functions set and read the WM_ZOOM_HINTS property.

To set the zoom hints for a window, useXSetZoomHints. This function is no longer sup-
ported by theInter-Client Communication Conventions Manual.

XSetZoomHints (display, w, zhints)
Display *display;
Windoww;
XSizeHints *zhints;

display Specifies the connection to the X server.

w Specifies the window.

zhints Specifies a pointer to the zoom hints.

Many window managers think of windows in one of three states: iconic, normal, or zoomed.
The XSetZoomHints function provides the window manager with information for the win-
dow in the zoomed state.

XSetZoomHints can generateBadAlloc andBadWindow errors.

To read the zoom hints for a window, useXGetZoomHints. This function is no longer
supported by theInter-Client Communication Conventions Manual.

Status XGetZoomHints(display, w, zhints_return)
Display *display;
Windoww;
XSizeHints *zhints_return;

display Specifies the connection to the X server.

w Specifies the window.

zhints_return Returns the zoom hints.

The XGetZoomHints function returns the size hints for a window in its zoomed state. It
returns a nonzero status if it succeeds or zero if the application specified no zoom size hints
for this window.

XGetZoomHints can generate aBadWindow error.

To set the value of any property of type WM_SIZE_HINTS, useXSetSizeHints. This
function has been superseded byXSetWMSizeHints.

XSetSizeHints (display, w, hints, property)
Display *display;
Windoww;
XSizeHints *hints;
Atom property;

display Specifies the connection to the X server.

w Specifies the window.

hints Specifies a pointer to the size hints.

property Specifies the property name.

The XSetSizeHintsfunction sets theXSizeHints structure for the named property and the

428

Xlib − C Library libX11 1.3.2

specified window. This is used byXSetNormalHints andXSetZoomHints and can be
used to set the value of any property of type WM_SIZE_HINTS. Thus, it may be useful if
other properties of that type get defined.

XSetSizeHintscan generateBadAlloc, BadAtom, and BadWindow errors.

To read the value of any property of type WM_SIZE_HINTS, useXGetSizeHints. This
function has been superseded byXGetWMSizeHints.

Status XGetSizeHints(display, w, hints_return, property)
Display *display;
Windoww;
XSizeHints *hints_return;
Atom property;

display Specifies the connection to the X server.

w Specifies the window.

hints_return Returns the size hints.

property Specifies the property name.

The XGetSizeHints function returns theXSizeHints structure for the named property and
the specified window. This is used byXGetNormalHints andXGetZoomHints. It also
can be used to retrieve the value of any property of type WM_SIZE_HINTS. Thus, it may
be useful if other properties of that type get defined.XGetSizeHints returns a nonzero sta-
tus if a size hint was defined or zero otherwise.

XGetSizeHints can generateBadAtom andBadWindow errors.

Getting and Setting an XStandardColormap Structure
To get theXStandardColormap structure associated with one of the described atoms, use
XGetStandardColormap. This function has been superseded byXGetRGBColormap.

Status XGetStandardColormap(display, w, colormap_return, property)
Display *display;
Windoww;
XStandardColormap *colormap_return;
Atom property; /* RGB_BEST_MAP, etc. */

display Specifies the connection to the X server.

w Specifies the window.

colormap_returnReturns the colormap associated with the specified atom.

property Specifies the property name.

The XGetStandardColormap function returns the colormap definition associated with the
atom supplied as the property argument.XGetStandardColormap returns a nonzero sta-
tus if successful and zero otherwise.For example, to fetch the standardGrayScalecol-
ormap for a display, you useXGetStandardColormap with the following syntax:

XGetStandardColormap(dpy, DefaultRootWindow(dpy), &cmap, XA_RGB_GRAY_MAP);

See section 14.3 for the semantics of standard colormaps.

429

Xlib − C Library libX11 1.3.2

XGetStandardColormap can generateBadAtom andBadWindow errors.

To set a standard colormap, useXSetStandardColormap. This function has been super-
seded byXSetRGBColormap.

XSetStandardColormap(display, w, colormap, property)
Display *display;
Windoww;
XStandardColormap *colormap;
Atom property; /* RGB_BEST_MAP, etc. */

display Specifies the connection to the X server.

w Specifies the window.

colormap Specifies the colormap.

property Specifies the property name.

The XSetStandardColormap function usually is only used by window or session man-
agers.

XSetStandardColormap can generateBadAlloc, BadAtom, BadDrawable, and Bad-
Window errors.

Parsing Window Geometry
To parse window geometry given a user-specified position and a default position, useXGe-
ometry. This function has been superseded byXWMGeometry .

430

Xlib − C Library libX11 1.3.2

int XGeometry(display, screen, position, default_position, bwidth, fwidth, fheight, xadder,
yadder, x_return, y_return, width_return, height_return)

Display *display;
int screen;
char *position, *default_position;
unsigned intbwidth;
unsigned intfwidth, fheight;
int xadder, yadder;
int *x_return, *y_return;
int *width_return, *height_return;

display Specifies the connection to the X server.

screen Specifies the screen.

position
default_positionSpecify the geometry specifications.

bwidth Specifies the border width.

fheight
fwidth Specify the font height and width in pixels (increment size).

xadder
yadder Specify additional interior padding needed in the window.

x_return
y_return Return the x and y offsets.

width_return
height_return Return the width and height determined.

You pass in the border width (bwidth), size of the increments fwidth and fheight (typically
font width and height), and any additional interior space (xadder and yadder) to make it
easy to compute the resulting size. TheXGeometry function returns the position the win-
dow should be placed given a position and a default position.XGeometry determines the
placement of a window using a geometry specification as specified byXParseGeometry
and the additional information about the window. Giv en a fully qualified default geometry
specification and an incomplete geometry specification,XParseGeometryreturns a bit-
mask value as defined above in the XParseGeometrycall, by using the position argument.

The returned width and height will be the width and height specified by default_position as
overridden by any user-specified position. They are not affected by fwidth, fheight, xadder,
or yadder. The x and y coordinates are computed by using the border width, the screen
width and height, padding as specified by xadder and yadder, and the fheight and fwidth
times the width and height from the geometry specifications.

Getting the X Environment Defaults
The XGetDefault function provides a primitive interface to the resource manager facilities
discussed in chapter 15. It is only useful in very simple applications.

431

Xlib − C Library libX11 1.3.2

char *XGetDefault (display, program, option)
Display *display;
char *program;
char *option;

display Specifies the connection to the X server.

program Specifies the program name for the Xlib defaults (usually argv[0] of the
main program).

option Specifies the option name.

The XGetDefault function returns the value of the resourceprog.option, whereprog is the
program argument with the directory prefix removed andoptionmust be a single compo-
nent. Notethat multilevel resources cannot be used withXGetDefault. The class "Pro-
gram.Name" is always used for the resource lookup. If the specified option name does not
exist for this program,XGetDefault returns NULL. The strings returned byXGetDefault
are owned by Xlib and should not be modified or freed by the client.

If a database has been set withXrmSetDatabase, that database is used for the lookup.
Otherwise, a database is created and is set in the display (as if by callingXrmSet-
Database). Thedatabase is created in the current locale.To create a database,XGetDe-
fault uses resources from the RESOURCE_MANAGER property on the root window of
screen zero. If no such property exists, a resource file in the user’s home directory is used.
On a POSIX-conformant system, this file is$HOME/.Xdefaults . After loading these
defaults,XGetDefault merges additional defaults specified by the XENVIRONMENT
environment variable. IfXENVIRONMENT is defined, it contains a full path name for the
additional resource file. If XENVIRONMENT is not defined,XGetDefault looks for
$HOME/.Xdefaults-name, wherenamespecifies the name of the machine on which the
application is running.

X Version 10 Compatibility Functions
You can use the X Version 10 compatibility functions to:

• Draw and fill polygons and curves

• Associate user data with a value

Drawing and Filling Polygons and Curves
Xlib provides functions that you can use to draw or fill arbitrary polygons or curves. These
functions are provided mainly for compatibility with X Version 10 and have no server sup-
port. Thatis, they call other Xlib functions, not the server directly. Thus, if you just have
straight lines to draw, using XDrawLines or XDrawSegmentsis much faster.

The functions discussed here provide all the functionality of the X Version 10 functions
XDraw , XDrawFilled , XDrawPatterned, XDrawDashed, and XDrawTiled . They are
as compatible as possible given X Version 11’s new line-drawing functions. One thing to
note, however, is that VertexDrawLastPoint is no longer supported. Also, the error status
returned is the opposite of what it was under X Version 10 (this is the X Version 11 standard
error status).XAppendVertex andXClearVertexFlag from X Version 10 also are not
supported.

Just how the graphics context you use is set up actually determines whether you get dashes
or not, and so on. Lines are properly joined if they connect and include the closing of a
closed figure (seeXDrawLines). Thefunctions discussed here fail (return zero) only if
they run out of memory or are passed aVertex list that has aVertex with VertexStart-
Closedset that is not followed by aVertex with VertexEndClosed set.

432

Xlib − C Library libX11 1.3.2

To achieve the effects of the X Version 10XDraw , XDrawDashed, and XDrawPat-
terned, useXDraw .

#include <X11/X10.h>

Status XDraw(display, d, gc, vlist, vcount)
Display *display;
Drawabled;
GC gc;
Vertex *vlist;
int vcount;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

vlist Specifies a pointer to the list of vertices that indicate what to draw.

vcount Specifies how many vertices are in vlist.

The XDraw function draws an arbitrary polygon or curve. Thefigure drawn is defined by
the specified list of vertices (vlist). The points are connected by lines as specified in the
flags in the vertex structure.

Each Vertex, as defined in <X11/X10.h>, is a structure with the following members:

typedef struct _Vertex {
short x,y;
unsigned short flags;

} Vertex;

The x and y members are the coordinates of the vertex that are relative to either the upper
left inside corner of the drawable (if VertexRelative is zero) or the previous vertex (if Ver-
texRelative is one).

The flags, as defined in <X11/X10.h>, are as follows:

VertexRelative 0x0001 /* else absolute */
VertexDontDraw 0x0002 /* else draw */
VertexCur ved 0x0004 /* else straight */
VertexStartClosed 0x0008 /* else not */
VertexEndClosed 0x0010 /* else not */

• If VertexRelative is not set, the coordinates are absolute (that is, relative to the draw-
able’s origin). Thefirst vertex must be an absolute vertex.

• If VertexDontDraw is one, no line or curve is drawn from the previous vertex to this
one. Thisis analogous to picking up the pen and moving to another place before
drawing another line.

• If VertexCur ved is one, a spline algorithm is used to draw a smooth curve from the
previous vertex through this one to the next vertex. Otherwise,a straight line is
drawn from the previous vertex to this one. It makes sense to setVertexCur ved to
one only if a previous and next vertex are both defined (either explicitly in the array
or through the definition of a closed curve).

433

Xlib − C Library libX11 1.3.2

• It is permissible forVertexDontDraw bits andVertexCur ved bits both to be one.
This is useful if you want to define the previous point for the smooth curve but do not
want an actual curve drawing to start until this point.

• If VertexStartClosed is one, then this point marks the beginning of a closed curve.
This vertex must be followed later in the array by another vertex whose effective
coordinates are identical and that has aVertexEndClosed bit of one. The points in
between form a cycle to determine predecessor and successor vertices for the spline
algorithm.

This function uses these GC components: function, plane-mask, line-width, line-style, cap-
style, join-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. It
also uses these GC mode-dependent components: foreground, background, tile, stipple, tile-
stipple-x-origin, tile-stipple-y-origin, dash-offset, and dash-list.

To achieve the effects of the X Version 10XDrawTiled andXDrawFilled , useXDraw-
Filled .

#include <X11/X10.h>

Status XDrawFilled(display, d, gc, vlist, vcount)
Display *display;
Drawabled;
GC gc;
Vertex *vlist;
int vcount;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

vlist Specifies a pointer to the list of vertices that indicate what to draw.

vcount Specifies how many vertices are in vlist.

The XDrawFilled function draws arbitrary polygons or curves and then fills them.

This function uses these GC components: function, plane-mask, line-width, line-style, cap-
style, join-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. It
also uses these GC mode-dependent components: foreground, background, tile, stipple, tile-
stipple-x-origin, tile-stipple-y-origin, dash-offset, dash-list, fill-style, and fill-rule.

Associating User Data with a Value
These functions have been superseded by the context management functions (see section
16.10). Itis often necessary to associate arbitrary information with resource IDs. Xlib pro-
vides theXAssocTablefunctions that you can use to make such an association. Applica-
tion programs often need to be able to easily refer to their own data structures when an
ev ent arrives. TheXAssocTablesystem provides users of the X library with a method for
associating their own data structures with X resources (Pixmaps, Fonts, Windows, and so
on).

An XAssocTablecan be used to type X resources.For example, the user may want to have
three or four types of windows, each with different properties. This can be accomplished by
associating each X window ID with a pointer to a window property data structure defined
by theuser. A generic type has been defined in the X library for resource IDs. It is called
an XID.

434

Xlib − C Library libX11 1.3.2

There are a few guidelines that shouldbe observed when using anXAssocTable:
• All XIDs are relative to the specifieddisplay.

• Because of the hashing scheme used by the associationmechanism, the follow-
ing rules for determining the size of aXAssocTableshould be followed. Associa-
tions will be made and looked up moreefficiently if the table size (number of
buckets in the hashing system) is a power of two and if there are not more than 8
XIDs perbucket.

To return a pointer to a newXAssocTable, useXCreateAssocTable.

XAssocTable *XCreateAssocTable (size)
int size;

size Specifies the number of buckets in the hash system ofXAssocTable.

The size argument specifies the number of buckets in the hash system ofXAssocTable. For
reasons of efficiency the number of buckets should be a power of two. Some size sugges-
tions might be: use 32buckets per 100 objects,and a reasonable maximum number of
objects per buckets is 8.If an error allocating memory for theXAssocTableoccurs, a
NULL pointer is returned.

To create an entry in a given XAssocTable, useXMakeAssoc.

XMakeAssoc (display, table, x_id, data)
Display *display;
XAssocTable *table;
XID x_id;
char *data;

display Specifies the connection to the X server.

table Specifies the assoc table.

x_id Specifies the X resource ID.

data Specifies the data to be associated with the X resource ID.

The XMakeAssoc function inserts data into anXAssocTablekeyed on an XID. Data is
inserted into the table only once. Redundant inserts are ignored. The queue in each associ-
ation bucket is sorted from the lowest XID to the highest XID.

To obtain data from a given XAssocTable, useXLookUpAssoc.

char *XLookUpAssoc(display, table, x_id)
Display *display;
XAssocTable *table;
XID x_id;

display Specifies the connection to the X server.

table Specifies the assoc table.

x_id Specifies the X resource ID.

The XLookUpAssoc function retrieves the data stored in anXAssocTableby its XID. If
an appropriately matching XID can be found in the table,XLookUpAssoc returns the data

435

Xlib − C Library libX11 1.3.2

associated with it. If the x_id cannot be found in the table, it returns NULL.

To delete an entry from a given XAssocTable, useXDeleteAssoc.

XDeleteAssoc (display, table, x_id)
Display *display;
XAssocTable *table;
XID x_id;

display Specifies the connection to the X server.

table Specifies the assoc table.

x_id Specifies the X resource ID.

The XDeleteAssocfunction deletes an association in anXAssocTablekeyed on its XID.
Redundant deletes (and deletes of nonexistent XIDs) are ignored. Deleting associations in
no way impairs the performance of anXAssocTable.

To free the memory associated with a given XAssocTable, useXDestroyAssocTable.

XDestroyAssocTable (table)
XAssocTable *table;

table Specifies the assoc table.

436

Xlib − C Library libX11 1.3.2

Glossary

Access control list
X maintains a list of hosts from which client programs can be run. By default, only
programs on the local host and hosts specified in an initial list read by the server can
use the display. This access control list can be changed by clients on the local host.
Some server implementations can also implement other authorization mechanisms in
addition to or in place of this mechanism.The action of this mechanism can be condi-
tional based on the authorization protocol name and data received by the server at con-
nection setup.

Active grab
A grab is active when the pointer or keyboard is actually owned by the single grabbing
client.

Ancestors
If W is an inferior of A, then A is an ancestor of W.

Atom
An atom is a unique ID corresponding to a string name. Atoms are used to identify proper-
ties, types, and selections.

Background
An InputOutput window can have a background, which is defined as a pixmap.When re-
gions of the window hav e their contents lost or invalidated, the server automatically tiles
those regions with the background.

Backing store
When a server maintains the contents of a window, the pixels saved off -screen are known as
a backing store.

Base font name
A font name used to select a family of fonts whose members may be encoded in various
charsets. TheCharSetRegistry and CharSetEncoding fields of an XLFD name identify
the charset of the font.A base font name may be a full XLFD name, with all fourteen ’-’
delimiters, or an abbreviated XLFD name containing only the first 12 fields of an XLFD
name, up to but not includingCharSetRegistry, with or without the thirteenth ’-’, or a non-
XLFD name. Any XLFD fields may contain wild cards.

When creating anXFontSet, Xlib accepts from the client a list of one or more base font
names which select one or more font families. They are combined with charset names ob-
tained from the encoding of the locale to load the fonts required to render text.

Bit gravity
When a window is resized, the contents of the window are not necessarily discarded.It is
possible to request that the server relocate the previous contents to some region of the win-
dow (though no guarantees are made).This attraction of window contents for some location
of a window is known as bit gravity.

Bit plane
When a pixmap or window is thought of as a stack of bitmaps, each bitmap is called a bit
plane or plane.

437

Xlib − C Library libX11 1.3.2

Bitmap
A bitmap is a pixmap of depth one.

Border
An InputOutput window can have a border of equal thickness on all four sides of the win-
dow. The contents of the border are defined by a pixmap, and the server automatically
maintains the contents of the border. Exposure events are never generated for border re-
gions.

Button grabbing
Buttons on the pointer can be passively grabbed by a client. When the button is pressed, the
pointer is then actively grabbed by the client.

Byte order
For image (pixmap/bitmap) data, the server defines the byte order, and clients with different
native byte ordering must swap bytes as necessary. For all other parts of the protocol, the
client defines the byte order, and the server swaps bytes as necessary.

Character
A member of a set of elements used for the organization, control, or representation of text
(ISO2022, as adapted by XPG3).Note that in ISO2022 terms, a character is not bound to a
coded value until it is identified as part of a coded character set.

Character glyph
The abstract graphical symbol for a character. Character glyphs may or may not map one-
to-one to font glyphs, and may be context-dependent, varying with the adjacent characters.
Multiple characters may map to a single character glyph.

Character set
A collection of characters.

Charset
An encoding with a uniform, state-independent mapping from characters to codepoints.A
coded character set.

For display in X, there can be a direct mapping from a charset to one font, if the width of all
characters in the charset is either one or two bytes. A text string encoded in an encoding
such as Shift-JIS cannot be passed directly to the X server, because the text imaging re-
quests accept only single-width charsets (either 8 or 16 bits). Charsets which meet these re-
strictions can serve as ‘‘font charsets’’. Font charsets strictly speaking map font indices to
font glyphs, not characters to character glyphs.

Note that a single font charset is sometimes used as the encoding of a locale, for example,
ISO8859-1.

Children
The children of a window are its first-level subwindows.

Class
Windows can be of different classes or types. See the entries forInputOnly and In-
putOutput windows for further information about valid window types.

Client
An application program connects to the window system server by some interprocess com-
munication (IPC) path, such as a TCP connection or a shared memory buffer. This program
is referred to as a client of the window system server. More precisely, the client is the IPC
path itself. A program with multiple paths open to the server is viewed as multiple clients
by the protocol. Resource lifetimes are controlled by connection lifetimes, not by program
lifetimes.

438

Xlib − C Library libX11 1.3.2

Clipping region
In a graphics context, a bitmap or list of rectangles can be specified to restrict output to a
particular region of the window. The image defined by the bitmap or rectangles is called a
clipping region.

Coded character
A character bound to a codepoint.

Coded character set
A set of unambiguous rules that establishes a character set and the one-to-one relationship
between each character of the set and its bit representation. (ISO2022, as adapted by
XPG3) A definition of a one-to-one mapping of a set of characters to a set of codepoints.

Codepoint
The coded representation of a single character in a coded character set.

Colormap
A colormap consists of a set of entries defining color values. Thecolormap associated with
a window is used to display the contents of the window; each pixel value indexes the col-
ormap to produce an RGB value that drives the guns of a monitor. Depending on hardware
limitations, one or more colormaps can be installed at one time so that windows associated
with those maps display with true colors.

Connection
The IPC path between the server and client program is known as a connection.A client
program typically (but not necessarily) has one connection to the server over which requests
and events are sent.

Containment
A window contains the pointer if the window is viewable and the hotspot of the cursor is
within a visible region of the window or a visible region of one of its inferiors. The border
of the window is included as part of the window for containment. The pointer is in a win-
dow if the window contains the pointer but no inferior contains the pointer.

Coordinate system
The coordinate system has X horizontal and Y vertical, with the origin [0, 0] at the upper
left. Coordinatesare integral and coincide with pixel centers. Each window and pixmap
has its own coordinate system.For a window, the origin is inside the border at the inside
upper-left corner.

Cursor
A cursor is the visible shape of the pointer on a screen.It consists of a hotspot, a source bit-
map, a shape bitmap, and a pair of colors. The cursor defined for a window controls the vis-
ible appearance when the pointer is in that window.

Depth
The depth of a window or pixmap is the number of bits per pixel it has. The depth of a
graphics context is the depth of the drawables it can be used in conjunction with graphics
output.

Device
Ke yboards, mice, tablets, track-balls, button boxes, and so on are all collectively known as
input devices. Pointerscan have one or more buttons (the most common number is three).
The core protocol only deals with two devices: the keyboard and the pointer.

439

Xlib − C Library libX11 1.3.2

DirectColor
DirectColor is a class of colormap in which a pixel value is decomposed into three separate
subfields for indexing. Thefirst subfield indexes an array to produce red intensity values.
The second subfield indexes a second array to produce blue intensity values. Thethird sub-
field indexes a third array to produce green intensity values. TheRGB (red, green, and
blue) values in the colormap entry can be changed dynamically.

Display
A server, together with its screens and input devices, is called a display. The Xlib Display
structure contains all information about the particular display and its screens as well as the
state that Xlib needs to communicate with the display over a particular connection.

Drawable
Both windows and pixmaps can be used as sources and destinations in graphics operations.
These windows and pixmaps are collectively known as drawables. However, an InputOnly
window cannot be used as a source or destination in a graphics operation.

Encoding
A set of unambiguous rules that establishes a character set and a relationship between the
characters and their representations. The character set does not have to be fixed to a finite
pre-defined set of characters. The representations do not have to be of uniform length. Ex-
amples are an ISO2022 graphic set, a state-independent or state-dependent combination of
graphic sets, possibly including control sets, and the X Compound Text encoding.

In X, encodings are identified by a string which appears as: theCharSetRegistry and
CharSetEncoding components of an XLFD name; the name of a charset of the locale for
which a font could not be found; or an atom which identifies the encoding of a text property
or which names an encoding for a text selection target type. Encoding names should be
composed of characters from the X Portable Character Set.

Escapement
The escapement of a string is the distance in pixels in the primary draw direction from the
drawing origin to the origin of the next character (that is, the one following the given string)
to be drawn.

Event
Clients are informed of information asynchronously by means of events. Theseev ents can
be either asynchronously generated from devices or generated as side effects of client re-
quests. Events are grouped into types. The server never sends an event to a client unless the
client has specifically asked to be informed of that type of event. However, clients can force
ev ents to be sent to other clients. Events are typically reported relative to a window.

Event mask
Events are requested relative to a window. The set of event types a client requests relative to
a window is described by using an event mask.

Event propagation
Device-related events propagate from the source window to ancestor windows until some
client has expressed interest in handling that type of event or until the event is discarded ex-
plicitly.

Event source
The deepest viewable window that the pointer is in is called the source of a device-related
ev ent.

440

Xlib − C Library libX11 1.3.2

Event synchronization
There are certain race conditions possible when demultiplexing device events to clients (in
particular, deciding where pointer and keyboard events should be sent when in the middle of
window management operations).The event synchronization mechanism allows synchro-
nous processing of device events.

Exposure event
Servers do not guarantee to preserve the contents of windows when windows are obscured
or reconfigured. Exposure events are sent to clients to inform them when contents of re-
gions of windows have been lost.

Extension
Named extensions to the core protocol can be defined to extend the system.Extensions to
output requests, resources, and event types are all possible and expected.

Font
A font is an array of glyphs (typically characters).The protocol does no translation or inter-
pretation of character sets. The client simply indicates values used to index the glyph array.
A font contains additional metric information to determine interglyph and interline spacing.

Font glyph
The abstract graphical symbol for an index into a font.

Frozen events
Clients can freeze event processing during keyboard and pointer grabs.

GC
GC is an abbreviation for graphics context. SeeGraphics context.

Glyph
An identified abstract graphical symbol independent of any actual image. (ISO/IEC/DIS
9541-1) An abstract visual representation of a graphic character, not bound to a codepoint.

Glyph image
An image of a glyph, as obtained from a glyph representation displayed on a presentation
surface. (ISO/IEC/DIS9541-1)

Grab
Ke yboard keys, the keyboard, pointer buttons, the pointer, and the server can be grabbed for
exclusive use by a client. In general, these facilities are not intended to be used by normal
applications but are intended for various input and window managers to implement various
styles of user interfaces.

Graphics context
Various information for graphics output is stored in a graphics context (GC), such as fore-
ground pixel, background pixel, line width, clipping region, and so on.A graphics context
can only be used with drawables that have the same root and the same depth as the graphics
context.

Gravity
The contents of windows and windows themselves have a gravity, which determines how
the contents move when a window is resized. SeeBit gravity andWindow gravity .

GrayScale
GrayScale can be viewed as a degenerate case ofPseudoColor, in which the red, green,
and blue values in any giv en colormap entry are equal and thus, produce shades of gray.
The gray values can be changed dynamically.

441

Xlib − C Library libX11 1.3.2

Host Portable Character Encoding
The encoding of the X Portable Character Set on the host.The encoding itself is not defined
by this standard, but the encoding must be the same in all locales supported by Xlib on the
host. Ifa string is said to be in the Host Portable Character Encoding, then it only contains
characters from the X Portable Character Set, in the host encoding.

Hotspot
A cursor has an associated hotspot, which defines the point in the cursor corresponding to
the coordinates reported for the pointer.

Identifier
An identifier is a unique value associated with a resource that clients use to name that re-
source. Theidentifier can be used over any connection to name the resource.

Inferiors
The inferiors of a window are all of the subwindows nested below it: the children, the chil-
dren’s children, and so on.

Input focus
The input focus is usually a window defining the scope for processing of keyboard input.If
a generated keyboard event usually would be reported to this window or one of its inferiors,
the event is reported as usual. Otherwise, the event is reported with respect to the focus
window. The input focus also can be set such that all keyboard events are discarded and
such that the focus window is dynamically taken to be the root window of whatever screen
the pointer is on at each keyboard event.

Input manager
Control over keyboard input is typically provided by an input manager client, which usually
is part of a window manager.

InputOnly window
An InputOnly window is a window that cannot be used for graphics requests.InputOnly
windows are invisible and are used to control such things as cursors, input event generation,
and grabbing.InputOnly windows cannot have InputOutput windows as inferiors.

InputOutput window
An InputOutput window is the normal kind of window that is used for both input and out-
put. InputOutput windows can have both InputOutput and InputOnly windows as infe-
riors.

Internationalization
The process of making software adaptable to the requirements of different native languages,
local customs, and character string encodings. Making a computer program adaptable to
different locales without program source modifications or recompilation.

ISO2022
ISO standard for code extension techniques for 7-bit and 8-bit coded character sets.

Key grabbing
Ke ys on the keyboard can be passively grabbed by a client.When the key is pressed, the
keyboard is then actively grabbed by the client.

Keyboard grabbing
A client can actively grab control of the keyboard, and key events will be sent to that client
rather than the client the events would normally have been sent to.

Keysym
An encoding of a symbol on a keycap on a keyboard.

442

Xlib − C Library libX11 1.3.2

Latin-1
The coded character set defined by the ISO8859-1 standard.

Latin Portable Character Encoding
The encoding of the X Portable Character Set using the Latin-1 codepoints plus ASCII con-
trol characters.If a string is said to be in the Latin Portable Character Encoding, then it on-
ly contains characters from the X Portable Character Set, not all of Latin-1.

Locale
The international environment of a computer program defining the ‘‘localized’’ behavior of
that program at run-time. This information can be established from one or more sets of lo-
calization data.ANSI C defines locale-specific processing by C system library calls.See
ANSI C and the X/Open Portability Guide specifications for more details. In this specifica-
tion, on implementations that conform to the ANSI C library, the ‘‘current locale’’ is the
current setting of the LC_CTYPEsetlocalecategory. Associated with each locale is a text
encoding. Whentext is processed in the context of a locale, the text must be in the encod-
ing of the locale. The current locale affects Xlib in its:

• Encoding and processing of input method text

• Encoding of resource files and values

• Encoding and imaging of text strings

• Encoding and decoding for inter-client text communication

Locale name
The identifier used to select the desired locale for the host C library and X library functions.
On ANSI C library compliant systems, the locale argument to thesetlocalefunction.

Localization
The process of establishing information within a computer system specific to the operation
of particular native languages, local customs and coded character sets. (XPG3)

Mapped
A window is said to be mapped if a map call has been performed on it.Unmapped windows
and their inferiors are never viewable or visible.

Modifier keys
Shift, Control, Meta, Super, Hyper, Alt, Compose, Apple, CapsLock, ShiftLock, and similar
keys are called modifier keys.

Monochrome
Monochrome is a special case ofStaticGray in which there are only two colormap entries.

Multibyte
A character whose codepoint is stored in more than one byte; any encoding which can con-
tain multibyte characters; text in a multibyte encoding.The ‘‘char *’’ null-terminated string
datatype in ANSI C. Note that references in this document to multibyte strings imply only
that the stringsmaycontain multibyte characters.

Obscure
A window is obscured if some other window obscures it.A window can be partially ob-
scured and so still have visible regions. Window A obscures window B if both are viewable
InputOutput windows, if A is higher in the global stacking order, and if the rectangle de-
fined by the outside edges of A intersects the rectangle defined by the outside edges of B.
Note the distinction between obscures and occludes. Also note that window borders are in-
cluded in the calculation.

443

Xlib − C Library libX11 1.3.2

Occlude
A window is occluded if some other window occludes it.Window A occludes window B if
both are mapped, if A is higher in the global stacking order, and if the rectangle defined by
the outside edges of A intersects the rectangle defined by the outside edges of B. Note the
distinction between occludes and obscures. Also note that window borders are included in
the calculation and thatInputOnly windows never obscure other windows but can occlude
other windows.

Padding
Some padding bytes are inserted in the data stream to maintain alignment of the protocol re-
quests on natural boundaries.This increases ease of portability to some machine architec-
tures.

Parent window
If C is a child of P, then P is the parent of C.

Passive grab
Grabbing a key or button is a passive grab. The grab activates when the key or button is ac-
tually pressed.

Pixel value
A pixel is an N-bit value, where N is the number of bit planes used in a particular window
or pixmap (that is, is the depth of the window or pixmap). A pixel in a window indexes a
colormap to derive an actual color to be displayed.

Pixmap
A pixmap is a three-dimensional array of bits.A pixmap is normally thought of as a two-di-
mensional array of pixels, where each pixel can be a value from 0 to 2N−1, and where N is
the depth (z axis) of the pixmap.A pixmap can also be thought of as a stack of N bitmaps.
A pixmap can only be used on the screen that it was created in.

Plane
When a pixmap or window is thought of as a stack of bitmaps, each bitmap is called a plane
or bit plane.

Plane mask
Graphics operations can be restricted to only affect a subset of bit planes of a destination.A
plane mask is a bit mask describing which planes are to be modified.The plane mask is
stored in a graphics context.

Pointer
The pointer is the pointing device currently attached to the cursor and tracked on the
screens.

Pointer grabbing
A client can actively grab control of the pointer. Then button and motion events will be sent
to that client rather than the client the events would normally have been sent to.

Pointing device
A pointing device is typically a mouse, tablet, or some other device with effective dimen-
sional motion. The core protocol defines only one visible cursor, which tracks whatever
pointing device is attached as the pointer.

POSIX
Portable Operating System Interface, ISO/IEC 9945-1 (IEEE Std 1003.1).

444

Xlib − C Library libX11 1.3.2

POSIX Portable Filename Character Set
The set of 65 characters which can be used in naming files on a POSIX-compliant host that
are correctly processed in all locales. The set is:

a..z A..Z 0..9 ._-

Property
Windows can have associated properties that consist of a name, a type, a data format, and
some data.The protocol places no interpretation on properties.They are intended as a gen-
eral-purpose naming mechanism for clients.For example, clients might use properties to
share information such as resize hints, program names, and icon formats with a window
manager.

Property list
The property list of a window is the list of properties that have been defined for the window.

PseudoColor
PseudoColor is a class of colormap in which a pixel value indexes the colormap entry to
produce an independent RGB value; that is, the colormap is viewed as an array of triples
(RGB values). TheRGB values can be changed dynamically.

Rectangle
A rectangle specified by [x,y,w,h] has an infinitely thin outline path with corners at [x,y],
[x+w,y], [x+w,y+h], and [x, y+h]. When a rectangle is filled, the lower-right edges are not
drawn. For example, if w=h=0, nothing would be drawn. For w=h=1, a single pixel would
be drawn.

Redirecting control
Window managers (or client programs) may enforce window layout policy in various ways.
When a client attempts to change the size or position of a window, the operation may be
redirected to a specified client rather than the operation actually being performed.

Reply
Information requested by a client program using the X protocol is sent back to the client
with a reply. Both events and replies are multiplexed on the same connection. Most re-
quests do not generate replies, but some requests generate multiple replies.

Request
A command to the server is called a request. It is a single block of data sent over a connec-
tion.

Resource
Windows, pixmaps, cursors, fonts, graphics contexts, and colormaps are known as re-
sources. They all have unique identifiers associated with them for naming purposes.The
lifetime of a resource usually is bounded by the lifetime of the connection over which the
resource was created.

RGB values
RGB values are the red, green, and blue intensity values that are used to define a color.
These values are always represented as 16-bit, unsigned numbers, with 0 the minimum in-
tensity and 65535 the maximum intensity. The X server scales these values to match the
display hardware.

Root
The root of a pixmap or graphics context is the same as the root of whatever drawable was
used when the pixmap or GC was created. The root of a window is the root window under
which the window was created.

445

Xlib − C Library libX11 1.3.2

Root window
Each screen has a root window covering it. The root window cannot be reconfigured or un-
mapped, but otherwise it acts as a full-fledged window. A root window has no parent.

Save set
The save set of a client is a list of other clients’ windows that, if they are inferiors of one of
the client’s windows at connection close, should not be destroyed and that should be
remapped if currently unmapped.Save sets are typically used by window managers to
avoid lost windows if the manager should terminate abnormally.

Scanline
A scanline is a list of pixel or bit values viewed as a horizontal row (all values having the
same y coordinate) of an image, with the values ordered by increasing the x coordinate.

Scanline order
An image represented in scanline order contains scanlines ordered by increasing the y coor-
dinate.

Screen
A server can provide several independent screens, which typically have physically indepen-
dent monitors. This would be the expected configuration when there is only a single
keyboard and pointer shared among the screens.A Screenstructure contains the informa-
tion about that screen and is linked to theDisplay structure.

Selection
A selection can be thought of as an indirect property with dynamic type.That is, rather than
having the property stored in the X server, it is maintained by some client (the owner). A
selection is global and is thought of as belonging to the user and being maintained by
clients, rather than being private to a particular window subhierarchy or a particular set of
clients. Whena client asks for the contents of a selection, it specifies a selection target type,
which can be used to control the transmitted representation of the contents.For example, if
the selection is ‘‘the last thing the user clicked on,’’ and that is currently an image, then the
target type might specify whether the contents of the image should be sent in XY format or
Z format.

The target type can also be used to control the class of contents transmitted; for example,
asking for the ‘‘looks’’ (fonts, line spacing, indentation, and so forth) of a paragraph selec-
tion, rather than the text of the paragraph. The target type can also be used for other purpos-
es. Theprotocol does not constrain the semantics.

Server
The server, which is also referred to as the X server, provides the basic windowing mecha-
nism. It handles IPC connections from clients, multiplexes graphics requests onto the
screens, and demultiplexes input back to the appropriate clients.

Server grabbing
The server can be grabbed by a single client for exclusive use. Thisprevents processing of
any requests from other client connections until the grab is completed.This is typically on-
ly a transient state for such things as rubber-banding, pop-up menus, or executing requests
indivisibly.

Shift sequence
ISO2022 defines control characters and escape sequences which temporarily (single shift)
or permanently (locking shift) cause a different character set to be in effect (‘‘invoking’’ a
character set).

Sibling
Children of the same parent window are known as sibling windows.

446

Xlib − C Library libX11 1.3.2

Stacking order
Sibling windows, similar to sheets of paper on a desk, can stack on top of each other. Win-
dows above both obscure and occlude lower windows. Therelationship between sibling
windows is known as the stacking order.

State-dependent encoding
An encoding in which an invocation of a charset can apply to multiple characters in se-
quence. Astate-dependent encoding begins in an ‘‘initial state’’ and enters other ‘‘shift
states’’ when specific ‘‘shift sequences’’ are encountered in the byte sequence. In ISO2022
terms, this means use of locking shifts, not single shifts.

State-independent encoding
Any encoding in which the invocations of the charsets are fixed, or span only a single char-
acter. In ISO2022 terms, this means use of at most single shifts, not locking shifts.

StaticColor
StaticColor can be viewed as a degenerate case ofPseudoColor in which the RGB values
are predefined and read-only.

StaticGray
StaticGray can be viewed as a degenerate case ofGrayScale in which the gray values are
predefined and read-only. The values are typically linear or near-linear increasing ramps.

Status
Many Xlib functions return a success status. If the function does not succeed, however, its
arguments are not disturbed.

Stipple
A stipple pattern is a bitmap that is used to tile a region to serve as an additional clip mask
for a fill operation with the foreground color.

STRING encoding
Latin-1, plus tab and newline.

String Equivalence
Tw o ISO Latin-1 STRING8 values are considered equal if they are the same length and if
corresponding bytes are either equal or are equivalent as follows: decimalvalues 65 to 90
inclusive (characters ‘‘A’’ t o ‘‘Z’ ’) are pairwise equivalent to decimal values 97 to 122 inclu-
sive (characters ‘‘a’’ to ‘ ‘z’ ’), decimal values 192 to 214 inclusive (characters ‘‘A grave’’ t o
‘‘ O diaeresis’’) are pairwise equivalent to decimal values 224 to 246 inclusive (characters ‘‘a
grave’’ t o ‘‘o diaeresis’’), and decimal values 216 to 222 inclusive (characters ‘‘O oblique’’
to ‘‘THORN’’) are pairwise equivalent to decimal values 246 to 254 inclusive (characters
‘‘ o oblique’’ to ‘ ‘thorn’’).

Ti le
A pixmap can be replicated in two dimensions to tile a region. Thepixmap itself is also
known as a tile.

Timestamp
A timestamp is a time value expressed in milliseconds. It is typically the time since the last
server reset.Timestamp values wrap around (after about 49.7 days). The server, giv en its
current time is represented by timestamp T, always interprets timestamps from clients by
treating half of the timestamp space as being earlier in time than T and half of the time-
stamp space as being later in time than T. One timestamp value, represented by the constant
CurrentTime , is nev er generated by the server. This value is reserved for use in requests to
represent the current server time.

447

Xlib − C Library libX11 1.3.2

Tr ueColor
Tr ueColor can be viewed as a degenerate case ofDirectColor in which the subfields in the
pixel value directly encode the corresponding RGB values. Thatis, the colormap has prede-
fined read-only RGB values. Thevalues are typically linear or near-linear increasing ramps.

Type
A type is an arbitrary atom used to identify the interpretation of property data.Types are
completely uninterpreted by the server. They are solely for the benefit of clients.X prede-
fines type atoms for many frequently used types, and clients also can define new types.

Viewable
A window is viewable if it and all of its ancestors are mapped. This does not imply that any
portion of the window is actually visible. Graphics requests can be performed on a window
when it is not viewable, but output will not be retained unless the server is maintaining
backing store.

Visible
A region of a window is visible if someone looking at the screen can actually see it; that is,
the window is viewable and the region is not occluded by any other window.

Whitespace
Any spacing character. On implementations that conform to the ANSI C library, whitespace
is any character for whichisspacereturns true.

Window gravity
When windows are resized, subwindows may be repositioned automatically relative to some
position in the window. This attraction of a subwindow to some part of its parent is known
as window gravity.

Window manager
Manipulation of windows on the screen and much of the user interface (policy) is typically
provided by a window manager client.

X Portable Character Set
A basic set of 97 characters which are assumed to exist in all locales supported by Xlib.
This set contains the following characters:

a..z A..Z 0..9
!"#$%&’()*+,-./:;<=>?@[\]ˆ_‘{|}˜
<space>, <tab>, and <newline>

This is the left/lower half (also called the G0 set) of the graphic character set of ISO8859-1
plus <space>, <tab>, and <newline>. It is also the set of graphic characters in 7-bit ASCII
plus the same three control characters. The actual encoding of these characters on the host
is system dependent; see the Host Portable Character Encoding.

XLFD
The X Logical Font Description Conventions that define a standard syntax for structured
font names.

XY format
The data for a pixmap is said to be in XY format if it is organized as a set of bitmaps repre-
senting individual bit planes with the planes appearing from most-significant to least-signifi-
cant bit order.

Z format
The data for a pixmap is said to be in Z format if it is organized as a set of pixel values in
scanline order.

448

Xlib − C Library libX11 1.3.2

References
ANSI Programming Language - C: ANSI X3.159-1989, December 14, 1989.

Draft Proposed Multibyte Extension of ANSI C, Draft 1.1, November 30, 1989, SC22/C
WG/SWG IPSJ/ITSCJ Japan.

ISO2022: Information processing - ISO 7-bit and 8-bit coded character sets - Code extension
techniques.

ISO8859-1: Information processing - 8-bit single-byte coded graphic character sets - Part 1: Latin
alphabet No. 1.

POSIX: Information Technology - Portable Operating System Interface (POSIX) - Part 1: System
Application Program Interface (API) [C Language], ISO/IEC 9945-1.

Te xt of ISO/IEC/DIS 9541-1, Information Processing - Font Information Interchange - Part 1:
Architecture.

X/Open Portability Guide, Issue 3, December 1988 (XPG3), X/Open Company, Ltd, Prentice-
Hall, Inc. 1989. ISBN 0-13-685835-8. (See especially Volume 3: XSI Supplementary Defini-
tions.)

449

Xlib − C Library libX11 1.3.2

450

Table of Contents

Table of Contents... ii
Acknowledgments ..iii
Chapter 1: Introduction to Xlib.. 1
1.1. Overview of the X Window System ..1
1.2. Errors... 3
1.3. Standard Header Files... 3
1.4. Generic Values and Types ...4
1.5. Naming and Argument Conventions within Xlib ... 4
1.6. Programming Considerations.. 5
1.7. Character Sets and Encodings... 5
1.8. Formatting Conventions ..6
Chapter 2: Display Functions... 7
2.1. Opening the Display... 7
2.2. Obtaining Information about the Display, Image Formats, or Screens............................. 8
2.2.1. Display Macros.. 9
2.2.2. Image Format Functions and Macros... 15
2.2.3. Screen Information Macros.. 18
2.3. Generating a NoOperation Protocol Request.. 22
2.4. Freeing Client-Created Data... 22
2.5. Closing the Display... 23
2.6. Using X Server Connection Close Operations.. 23
2.7. Using Xlib with Threads... 24
2.8. Using Internal Connections... 25
Chapter 3: Window Functions ..28
3.1. Visual Types ..28
3.2. Window Attributes ..29
3.2.1. Background Attribute ...32
3.2.2. Border Attribute ...33
3.2.3. Gravity Attributes ...33
3.2.4. Backing Store Attribute ...34
3.2.5. Save Under Flag... 34
3.2.6. Backing Planes and Backing Pixel Attributes ..35
3.2.7. Event Mask and Do Not Propagate Mask Attributes ...35
3.2.8. Override Redirect Flag... 35
3.2.9. Colormap Attribute ..35
3.2.10. Cursor Attribute ...35
3.3. Creating Windows ...36
3.4. Destroying Windows ...38
3.5. Mapping Windows ..39
3.6. Unmapping Windows ..41
3.7. Configuring Windows ...42
3.8. Changing Window Stacking Order... 46
3.9. Changing Window Attributes ..48
Chapter 4: Window Information Functions... 53
4.1. Obtaining Window Information ..53
4.2. Translating Screen Coordinates.. 56

4.3. Properties and Atoms.. 58
4.4. Obtaining and Changing Window Properties ..61
4.5. Selections.. 65
Chapter 5: Pixmap and Cursor Functions.. 68
5.1. Creating and Freeing Pixmaps.. 68
5.2. Creating, Recoloring, and Freeing Cursors... 69
Chapter 6: Color Management Functions.. 73
6.1. Color Structures.. 74
6.2. Color Strings... 76
6.2.1. RGB Device String Specification.. 77
6.2.2. RGB Intensity String Specification.. 78
6.2.3. Device-Independent String Specifications... 78
6.3. Color Conversion Contexts and Gamut Mapping... 78
6.4. Creating, Copying, and Destroying Colormaps.. 79
6.5. Mapping Color Names to Values ..80
6.6. Allocating and Freeing Color Cells.. 82
6.7. Modifying and Querying Colormap Cells.. 88
6.8. Color Conversion Context Functions.. 93
6.8.1. Getting and Setting the Color Conversion Context of a Colormap................................ 93
6.8.2. Obtaining the Default Color Conversion Context ..94
6.8.3. Color Conversion Context Macros... 94
6.8.4. Modifying Attributes of a Color Conversion Context ..95
6.8.5. Creating and Freeing a Color Conversion Context ..97
6.9. Converting between Color Spaces.. 98
6.10. Callback Functions.. 99
6.10.1. Prototype Gamut Compression Procedure... 99
6.10.2. Supplied Gamut Compression Procedures... 100
6.10.3. Prototype White Point Adjustment Procedure... 102
6.10.4. Supplied White Point Adjustment Procedures... 102
6.11. Gamut Querying Functions... 103
6.11.1. Red, Green, and Blue Queries.. 104
6.11.2. CIELab Queries... 106
6.11.3. CIELuv Queries... 107
6.11.4. TekHVC Queries.. 109
6.12. Color Management Extensions... 112
6.12.1. Color Spaces.. 112
6.12.2. Adding Device-Independent Color Spaces.. 112
6.12.3. Querying Color Space Format and Prefix.. 113
6.12.4. Creating Additional Color Spaces... 113
6.12.5. Parse String Callback... 114
6.12.6. Color Specification Conversion Callback.. 115
6.12.7. Function Sets.. 116
6.12.8. Adding Function Sets... 116
6.12.9. Creating Additional Function Sets... 116
Chapter 7: Graphics Context Functions... 119
7.1. Manipulating Graphics Context/State ...119
7.2. Using Graphics Context Convenience Routines... 128
7.2.1. Setting the Foreground, Background, Function, or Plane Mask.................................... 128
7.2.2. Setting the Line Attributes and Dashes.. 130
7.2.3. Setting the Fill Style and Fill Rule... 131
7.2.4. Setting the Fill Tile and Stipple... 131
7.2.5. Setting the Current Font ...134
7.2.6. Setting the Clip Region ..134
7.2.7. Setting the Arc Mode, Subwindow Mode, and Graphics Exposure.............................. 136

Chapter 8: Graphics Functions... 137
8.1. Clearing Areas.. 137
8.2. Copying Areas... 138
8.3. Drawing Points, Lines, Rectangles, and Arcs... 140
8.3.1. Drawing Single and Multiple Points.. 140
8.3.2. Drawing Single and Multiple Lines... 141
8.3.3. Drawing Single and Multiple Rectangles.. 143
8.3.4. Drawing Single and Multiple Arcs.. 144
8.4. Filling Areas.. 146
8.4.1. Filling Single and Multiple Rectangles.. 146
8.4.2. Filling a Single Polygon... 148
8.4.3. Filling Single and Multiple Arcs.. 148
8.5. Font Metrics.. 150
8.5.1. Loading and Freeing Fonts ..152
8.5.2. Obtaining and Freeing Font Names and Information.. 154
8.5.3. Computing Character String Sizes... 156
8.5.4. Computing Logical Extents... 157
8.5.5. Querying Character String Sizes.. 158
8.6. Drawing Text ... 160
8.6.1. Drawing Complex Text .. 161
8.6.2. Drawing Text Characters ..162
8.6.3. Drawing Image Text Characters ...163
8.7. Transferring Images between Client and Server ...164
Chapter 9: Window and Session Manager Functions.. 169
9.1. Changing the Parent of a Window .. 169
9.2. Controlling the Lifetime of a Window .. 170
9.3. Managing Installed Colormaps... 171
9.4. Setting and Retrieving the Font Search Path ...172
9.5. Grabbing the Server ..173
9.6. Killing Clients... 174
9.7. Controlling the Screen Saver .. 174
9.8. Controlling Host Access... 176
9.8.1. Adding, Getting, or Removing Hosts... 177
9.8.2. Changing, Enabling, or Disabling Access Control.. 179
Chapter 10: Events ...181
10.1. Event Types ...181
10.2. Event Structures.. 182
10.3. Event Masks.. 183
10.4. Event Processing Overview .. 184
10.5. Keyboard and Pointer Events ..186
10.5.1. Pointer Button Events ..186
10.5.2. Keyboard and Pointer Events ...187
10.6. Window Entry/Exit Events ..190
10.6.1. Normal Entry/Exit Events ..192
10.6.2. Grab and Ungrab Entry/Exit Events ..193
10.7. Input Focus Events ..193
10.7.1. Normal Focus Events and Focus Events While Grabbed.. 194
10.7.2. Focus Events Generated by Grabs... 196
10.8. Key Map State Notification Events ...197
10.9. Exposure Events ..197
10.9.1. Expose Events ..197
10.9.2. GraphicsExpose and NoExpose Events ...198
10.10. Window State Change Events ...199
10.10.1. CirculateNotify Events ...200

10.10.2. ConfigureNotify Events ...200
10.10.3. CreateNotify Events ...201
10.10.4. DestroyNotify Events ...202
10.10.5. GravityNotify Events ...203
10.10.6. MapNotify Events ..203
10.10.7. MappingNotify Events ...204
10.10.8. ReparentNotify Events ...204
10.10.9. UnmapNotify Events ..205
10.10.10. VisibilityNotify Events ..205
10.11. Structure Control Events ...206
10.11.1. CirculateRequest Events ..206
10.11.2. ConfigureRequest Events ...207
10.11.3. MapRequest Events ..208
10.11.4. ResizeRequest Events ..209
10.12. Colormap State Change Events ...209
10.13. Client Communication Events ..210
10.13.1. ClientMessage Events ..210
10.13.2. PropertyNotify Events ..210
10.13.3. SelectionClear Events ..211
10.13.4. SelectionRequest Events ..211
10.13.5. SelectionNotify Events ..212
Chapter 11: Event Handling Functions.. 214
11.1. Selecting Events ..214
11.2. Handling the Output Buffer ..215
11.3. Event Queue Management.. 215
11.4. Manipulating the Event Queue... 216
11.4.1. Returning the Next Event ...216
11.4.2. Selecting Events Using a Predicate Procedure.. 217
11.4.3. Selecting Events Using a Window or Event Mask... 219
11.5. Putting an Event Back into the Queue.. 221
11.6. Sending Events to Other Applications.. 222
11.7. Getting Pointer Motion History.. 223
11.8. Handling Protocol Errors.. 224
11.8.1. Enabling or Disabling Synchronization... 224
11.8.2. Using the Default Error Handlers.. 225
Chapter 12: Input Device Functions.. 230
12.1. Pointer Grabbing... 230
12.2. Keyboard Grabbing... 235
12.3. Resuming Event Processing.. 238
12.4. Moving the Pointer.. 240
12.5. Controlling Input Focus ..241
12.6. Manipulating the Keyboard and Pointer Settings... 243
12.7. Manipulating the Keyboard Encoding.. 248
Chapter 13: Locales and Internationalized Text Functions ..253
13.1. X Locale Management.. 253
13.2. Locale and Modifier Dependencies.. 255
13.3. Variable Argument Lists... 256
13.4. Output Methods.. 257
13.4.1. Output Method Overview .. 257
13.4.2. Output Method Functions.. 258
13.4.3. X Output Method Values ...259
13.4.3.1. Required Char Set... 260
13.4.3.2. Query Orientation... 260
13.4.3.3. Directional Dependent Drawing ...261

13.4.3.4. Context Dependent Drawing ...261
13.4.4. Output Context Functions.. 261
13.4.5. Output Context Values ...263
13.4.5.1. Base Font Name.. 264
13.4.5.2. Missing CharSet.. 264
13.4.5.3. Default String.. 265
13.4.5.4. Orientation.. 265
13.4.5.5. Resource Name and Class... 265
13.4.5.6. Font Info.. 265
13.4.5.7. OM Automatic.. 266
13.4.6. Creating and Freeing a Font Set... 266
13.4.7. Obtaining Font Set Metrics.. 270
13.4.8. Drawing Text Using Font Sets... 275
13.5. Input Methods... 278
13.5.1. Input Method Overview ... 279
13.5.1.1. Input Method Architecture.. 280
13.5.1.2. Input Contexts ...281
13.5.1.3. Getting Keyboard Input... 282
13.5.1.4. Focus Management... 282
13.5.1.5. Geometry Management... 282
13.5.1.6. Event Filtering... 283
13.5.1.7. Callbacks... 283
13.5.1.8. Visible Position Feedback Masks... 284
13.5.1.9. Preedit String Management... 284
13.5.2. Input Method Management.. 285
13.5.2.1. Hot Keys .. 286
13.5.2.2. Preedit State Operation... 286
13.5.3. Input Method Functions... 287
13.5.4. Input Method Values ..290
13.5.4.1. Query Input Style.. 290
13.5.4.2. Resource Name and Class... 291
13.5.4.3. Destroy Callback ...292
13.5.4.4. Query IM/IC Values List... 292
13.5.4.5. Visible Position... 292
13.5.4.6. Preedit Callback Behavior ..293
13.5.5. Input Context Functions... 293
13.5.6. Input Context Values ..296
13.5.6.1. Input Style... 297
13.5.6.2. Client Window .. 298
13.5.6.3. Focus Window ... 298
13.5.6.4. Resource Name and Class... 298
13.5.6.5. Geometry Callback... 298
13.5.6.6. Filter Events ..298
13.5.6.7. Destroy Callback ...299
13.5.6.8. String Conversion Callback.. 299
13.5.6.9. String Conversion ..299
13.5.6.10. Reset State... 300
13.5.6.11. Hot Keys .. 300
13.5.6.12. Hot Key State ..301
13.5.6.13. Preedit and Status Attributes ...301
13.5.6.13.1. Area.. 301
13.5.6.13.2. Area Needed... 301
13.5.6.13.3. Spot Location... 302
13.5.6.13.4. Colormap.. 302

13.5.6.13.5. Foreground and Background.. 302
13.5.6.13.6. Background Pixmap... 302
13.5.6.13.7. Font Set.. 302
13.5.6.13.8. Line Spacing.. 302
13.5.6.13.9. Cursor... 303
13.5.6.13.10. Preedit State... 303
13.5.6.13.11. Preedit State Notify Callback... 303
13.5.6.13.12. Preedit and Status Callbacks.. 304
13.5.7. Input Method Callback Semantics... 304
13.5.7.1. Geometry Callback... 305
13.5.7.2. Destroy Callback ...305
13.5.7.3. String Conversion Callback.. 306
13.5.7.4. Preedit State Callbacks... 307
13.5.7.5. Preedit Draw Callback ..307
13.5.7.6. Preedit Caret Callback.. 310
13.5.7.7. Status Callbacks.. 312
13.5.8. Event Filtering.. 313
13.5.9. Getting Keyboard Input.. 313
13.5.10. Input Method Conventions ...315
13.5.10.1. Client Conventions ..315
13.5.10.2. Synchronization Conventions ...315
13.6. String Constants.. 316
Chapter 14: Inter-Client Communication Functions.. 318
14.1. Client to Window Manager Communication.. 319
14.1.1. Manipulating Top-Level Windows ...319
14.1.2. Converting String Lists.. 321
14.1.3. Setting and Reading Text Properties ..325
14.1.4. Setting and Reading the WM_NAME Property... 326
14.1.5. Setting and Reading the WM_ICON_NAME Property... 328
14.1.6. Setting and Reading the WM_HINTS Property.. 329
14.1.7. Setting and Reading the WM_NORMAL_HINTS Property....................................... 331
14.1.8. Setting and Reading the WM_CLASS Property.. 335
14.1.9. Setting and Reading the WM_TRANSIENT_FOR Property...................................... 336
14.1.10. Setting and Reading the WM_PROT OCOLS Property... 337
14.1.11. Setting and Reading the WM_COLORMAP_WINDOWS Property........................ 338
14.1.12. Setting and Reading the WM_ICON_SIZE Property.. 339
14.1.13. Using Window Manager Convenience Functions.. 340
14.2. Client to Session Manager Communication... 343
14.2.1. Setting and Reading the WM_COMMAND Property... 343
14.2.2. Setting and Reading the WM_CLIENT_MACHINE Property................................... 344
14.3. Standard Colormaps.. 344
14.3.1. Standard Colormap Properties and Atoms... 347
14.3.2. Setting and Obtaining Standard Colormaps... 347
Chapter 15: Resource Manager Functions... 350
15.1. Resource File Syntax.. 351
15.2. Resource Manager Matching Rules.. 352
15.3. Quarks... 352
15.4. Creating and Storing Databases.. 355
15.5. Merging Resource Databases.. 358
15.6. Looking Up Resources.. 359
15.7. Storing into a Resource Database... 361
15.8. Enumerating Database Entries.. 363
15.9. Parsing Command Line Options... 364
Chapter 16: Application Utility Functions... 367

16.1. Using Keyboard Utility Functions.. 367
16.1.1. KeySym Classification Macros.. 369
16.2. Using Latin-1 Keyboard Event Functions... 370
16.3. Allocating Permanent Storage.. 372
16.4. Parsing the Window Geometry ...372
16.5. Manipulating Regions ...373
16.5.1. Creating, Copying, or Destroying Regions ..374
16.5.2. Moving or Shrinking Regions ..374
16.5.3. Computing with Regions ...375
16.5.4. Determining if Regions Are Empty or Equal... 376
16.5.5. Locating a Point or a Rectangle in a Region ..377
16.6. Using Cut Buffers ...378
16.7. Determining the Appropriate Visual Type ..379
16.8. Manipulating Images.. 381
16.9. Manipulating Bitmaps... 384
16.10. Using the Context Manager.. 387
Appendix A: Xlib Functions and Protocol Requests... 390
Appendix B: X Font Cursors.. 402
Appendix C: Extensions.. 403

Appendix D: Compatibility Functions.. 426
Glossary ..437

Index ... 451

