
X Session Management Library

Version 1.0

X Consortium Standard

X Version 11, Release 7

libSM 1.1.1

Ralph Mor

X Consortium

Copyright © 1993, 1994 X Consortium

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the ‘‘Software’’), to deal in the Software without restriction, including without limita-
tion the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Soft-
ware, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE IS PROVIDED ‘‘A S IS’’, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY , FIT-
NESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE X
CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNEC-
TION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or other-
wise to promote the sale, use or other dealings in this Software without prior written authorization from the
X Consortium.

X Window System is a trademark of The Open Group.

1. Overview of Session Management

The purpose of the X Session Management Protocol (XSMP) is to provide a uniform mechanism for users
to save and restore their sessions.A session is a group of clients, each of which has a particular state.The
session is controlled by a network service called thesession manager. The session manager issues com-
mands to its clients on behalf of the user. These commands may cause clients to save their state or to termi-
nate. Itis expected that the client will save its state in such a way that the client can be restarted at a later
time and resume its operation as if it had never been terminated.A client’s state might include information
about the file currently being edited, the current position of the insertion point within the file, or the start of
an uncommitted transaction. The means by which clients are restarted is unspecified by this protocol.

For purposes of this protocol, aclient of the session manager is defined as a connection to the session man-
ager. A client is typically, though not necessarily, a process running an application program connected to
an X display. Howev er, a client may be connected to more than one X display or not be connected to any X
displays at all.

2. The Session Management Library

The Session Management Library (SMlib) is a low-level "C" language interface to XSMP. It is expected
that higher level toolkits, such as Xt, will hide many of the details of session management from clients.
Higher level toolkits might also be developed for session managers to use, but no such effort is currently
under way.

SMlib has two parts to it:

• One set of functions for clients that want to be part of a session

• One set of functions for session managers to call

Some applications will use both sets of functions and act asnested session managers. That is, they will be
both a session manager and a client of another session. An example is a mail program that could start a text
editor for editing the text of a mail message. The mail program is part of a regular session and, at the same
time, is also acting as a session manager to the editor.

Clients initialize by connecting to the session manager and obtaining aclient-ID that uniquely identifies
them in the session.The session manager maintains a list of properties for each client in the session.These
properties describe the client’s environment and, most importantly, describe how the client can be restarted
(via anSmRestartCommand). Clientsare expected to save their state in such a way as to allow multiple
instantiations of themselves to be managed independently. For example, clients may use their client-ID as
part of a filename in which to store the state for a particular instantiation. The client-ID should be saved as
part of theSmRestartCommand so that the client will retain the same ID after it is restarted.

Once the client initializes itself with the session manager, it must be ready to respond to messages from the
session manager. For example, it might be asked to save its state or to terminate. In the case of a shut-
down, the session manager might give each client a chance to interact with the user and cancel the shut-
down.

3. Understanding SMlib’s Dependence on ICE

The X Session Management Protocol is layered on top of the Inter-Client Exchange (ICE) Protocol.The
ICE protocol is designed to multiplex sev eral protocols over a single connection. As a result, working with
SMlib requires a little knowledge of how the ICE library works.

The ICE library utilizes callbacks to process messages. When a client detects that there is data to read on
an ICE connection, it should call theIceProcessMessages function. IceProcessMessages will read the
message header and look at the major opcode in order to determine which protocol the message was
intended for. The appropriate protocol library will then be triggered to unpack the message and hand it off
to the client via a callback.

The main point to be aware of is that an application using SMlib must have some code that detects when
there is data to read on an ICE connection.This can be done via aselect call on the file descriptor for the
ICE connection, but more typically, XtAppAddInput will be used to register a callback that will invoke
IceProcessMessages each time there is data to read on the ICE connection.

− 1 −

X Session Management Library libSM 1.1.1

To further complicate things, knowing which file descriptors to callselect on requires an understanding of
how ICE connections are created.On the client side, a call must be made toSmcOpenConnection in
order to open a connection with a session manager. SmcOpenConnection will internally make a call into
IceOpenConnection, which will, in turn, determine if an ICE connection already exists between the client
and session manager. Most likely, a connection will not already exist and a new ICE connection will be
created. Themain point to be aware of is that, on the client side, it is not obvious when ICE connections
get created or destroyed, because connections are shared when possible.To deal with this, the ICE library
lets the application register watch procedures that will be invoked each time an ICE connection is opened or
closed. Thesewatch procedures could be used to add or remove ICE file descriptors from the list of
descriptors to callselect on.

On the session manager side, things work a bit differently. The session manager has complete control over
the creation of ICE connections.The session manager has to first callIceListenForConnections in order
to start listening for connections from clients.Once a connection attempt is detected,IceAcceptConnec-
tion must be called, and the session manager can simply add the new ICE file descriptor to the list of
descriptors to callselect on.

For further information on the library functions related to ICE connections, see theInter-Client Exchange
Library standard.

4. Header Files and Library Name

Applications (both session managers and clients) should include the header file <X11/SM/SMlib.h>. This
header file defines all of the SMlib data structures and function prototypes.SMlib.h includes the header
file <X11/SM/SM.h>, which defines all of the SMlib constants.

Because SMlib is dependent on ICE, applications should link against SMlib and ICElib by using-lSM
-lICE.

5. Session Management Client (Smc) Functions

This section discusses how Session Management clients:

• Connect to the Session Manager

• Close the connection

• Modify callbacks

• Set, delete, and retrieve Session Manager properties

• Interact with the user

• Request a ‘‘Save Yourself ’’

• Request a ‘‘Save Yourself Phase 2’’

• Complete a ‘‘Save Yourself ’’

• Use Smc informational functions

• Handle Errors

5.1. Connecting to the Session Manager

To open a connection with a session manager, useSmcOpenConnection.

− 2 −

X Session Management Library libSM 1.1.1

SmcConn SmcOpenConnection(network_ids_list, context, xsmp_major_rev, xsmp_minor_rev,
mask, callbacks, previous_id, client_id_ret, error_length, error_string_ret)

char *network_ids_list;
SmPointercontext;
int xsmp_major_rev;
int xsmp_minor_rev;
unsigned longmask;
SmcCallbacks *callbacks;
char *previous_id;
char **client_id_ret;
int error_length;
char *error_string_ret;

network_ids_list Specifies the network ID(s) of the session manager.

context A pointer to an opaque object or NULL. Used to determine if an ICE connection can be
shared (see below).

xsmp_major_rev The highest major version of the XSMP the application supports.

xsmp_minor_rev The highest minor version of the XSMP the application supports (for the specified
xsmp_major_rev).

mask A mask indicating which callbacks to register.

callbacks The callbacks to register. These callbacks are used to respond to messages from the ses-
sion manager.

previous_id The client ID from the previous session.

client_id_ret The client ID for the current session is returned.

error_length Length of the error_string_ret argument passed in.

error_string_ret Returns a null-terminated error message, if any. The error_string_ret argument points to
user supplied memory. No more than error_length bytes are used.

The network_ids_list argument is a null-terminated string containing a list of network IDs for the session
manager, separated by commas. If network_ids_list is NULL, the value of theSESSION_MANAGER
environment variable will be used. Each network ID has the following format:

tcp/<hostname>:<portnumber> or
decnet/<hostname>::<objname> or
local/<hostname>:<path>

An attempt will be made to use the first network ID. If that fails, an attempt will be made using the second
network ID, and so on.

After the connection is established,SmcOpenConnection registers the client with the session manager. If
the client is being restarted from a previous session, previous_id should contain a null terminated string rep-
resenting the client ID from the previous session.If the client is first joining the session, previous_id
should be set to NULL.If previous_id is specified but is determined to be invalid by the session manager,
SMlib will re-register the client with previous_id set to NULL.

If SmcOpenConnection succeeds, it returns an opaque connection pointer of typeSmcConn and the
client_id_ret argument contains the client ID to be used for this session.The client_id_ret should be freed
with a call tofree when no longer needed. On failure, SmcOpenConnection returns NULL, and the rea-
son for failure is returned in error_string_ret.

Note that SMlib uses the ICE protocol to establish a connection with the session manager. If an ICE con-
nection already exists between the client and session manager, it might be possible for the same ICE con-
nection to be used for session management.

− 3 −

X Session Management Library libSM 1.1.1

The context argument indicates how willing the client is to share the ICE connection with other protocols.
If context is NULL, then the caller is always willing to share the connection. If context is not NULL, then
the caller is not willing to use a previously opened ICE connection that has a different non-NULL context
associated with it.

As previously discussed (section 3, ‘‘Understanding SMlib’s Dependence on ICE’’), the client will have to
keep track of when ICE connections are created or destroyed (usingIceAddConnectionWatch and IceRe-
moveConnectionWatch), and will have to call IceProcessMessages each time aselect shows that there is
data to read on an ICE connection.For further information, see theInter-Client Exchange Library stan-
dard.

The callbacks argument contains a set of callbacks used to respond to session manager events. Themask
argument specifies which callbacks are set.All of the callbacks specified in this version of SMlib are
mandatory. The mask argument is necessary in order to maintain backwards compatibility in future ver-
sions of the library.

The following values may be ORed together to obtain a mask value:

SmcSaveYourselfProcMask
SmcDieProcMask
SmcSaveCompleteProcMask
SmcShutdownCancelledProcMask

For each callback, the client can register a pointer to client data.When SMlib invokes the callback, it will
pass the client data pointer.

typedef struct {

struct {
SmcSaveYourselfProc callback;
SmPointer client_data;

} sav e_yourself;

struct {
SmcDieProc callback;
SmPointer client_data;

} die;

struct {
SmcSaveCompleteProc callback;
SmPointer client_data;

} sav e_complete;

struct {
SmcShutdownCancelledProc callback;
SmPointer client_data;

} shutdown_cancelled;

} SmcCallbacks;

5.1.1. The Save Yourself Callback

− 4 −

X Session Management Library libSM 1.1.1

The Save Yourself callback is of typeSmcSaveYourselfProc.

typedef void (*SmcSaveYourselfProc)();

void SaveYourselfProc (smc_conn, client_data, save_type, shutdown, interact_style, fast)
SmcConnsmc_conn;
SmPointerclient_data;
int save_type;
Bool shutdown;
int interact_style;
Bool fast;

smc_conn The session management connection object.

client_data Client data specified when the callback was registered.

save_type Specifies the type of information that should be saved.

shutdown Specifies if a shutdown is taking place.

interact_style The type of interaction allowed with the user.

fast If True, the client should save its state as quickly as possible.

The session manager sends a ‘‘Save Yourself ’’ message to a client either to checkpoint it or just before ter-
mination so that it can save its state. The client responds with zero or more calls toSmcSetProperties to
update the properties indicating how to restart the client. When all the properties have been set, the client
calls SmcSaveYourselfDone.

If interact_style isSmInteractStyleNone, the client must not interact with the user while saving state.If
interact_style isSmInteractStyleErrors, the client may interact with the user only if an error condition
arises. Ifinteract_style isSmInteractStyleAny, then the client may interact with the user for any purpose.
Because only one client can interact with the user at a time, the client must callSmcInteractRequest and
wait for an ‘‘Interact’’ message from the session manager. When the client is done interacting with the
user, it calls SmcInteractDone. The client may only callSmcInteractRequest after it receives a ‘‘Save
Yourself ’’ message and before it callsSmcSaveYourselfDone.

If save_type isSmSaveLocal, the client must update the properties to reflect its current state.Specifically,
it should save enough information to restore the state as seen by the user of this client. It should not affect
the state as seen by other users. If save_type isSmSaveGlobal, the user wants the client to commit all of
its data to permanent, globally accessible storage. If save_type isSmSaveBoth, the client should do both
of these (it should first commit the data to permanent storage before updating its properties).

Some examples are as follows:

• If a word processor were sent a ‘‘Save Yourself ’’ w ith a type ofSmSaveLocal, it could create a tem-
porary file that included the current contents of the file, the location of the cursor, and other aspects
of the current editing session.It would then update its SmRestartCommand property with enough
information to find this temporary file.

• If a word processor were sent a ‘‘Save Yourself ’’ w ith a type ofSmSaveGlobal, it would simply
save the currently edited file.

• If a word processor were sent a ‘‘Save Yourself ’’ w ith a type ofSmSaveBoth, it would first save the
currently edited file. It would then create a temporary file with information such as the current posi-
tion of the cursor and what file is being edited.Finally, it would update its SmRestartCommand
property with enough information to find the temporary file.

The shutdown argument specifies whether the system is being shut down. The interaction is different
depending on whether or not shutdown is set. If not shutting down, the client should save its state and wait
for a ‘‘Save Complete’’ message. Ifshutting down, the client must save state and then prevent interaction
until it receives either a ‘‘Die’’ or a ‘‘Shutdown Cancelled.’’

− 5 −

X Session Management Library libSM 1.1.1

The fast argument specifies that the client should save its state as quickly as possible.For example, if the
session manager knows that power is about to fail, it would set fast toTrue.

5.1.2. The Die Callback

The Die callback is of typeSmcDieProc.

typedef void (*SmcDieProc)();

void DieProc(smc_conn, client_data)
SmcConnsmc_conn;
SmPointerclient_data;

smc_conn The session management connection object.

client_data Client data specified when the callback was registered.

The session manager sends a ‘‘Die’ ’ message to a client when it wants it to die. The client should respond
by calling SmcCloseConnection. A session manager that behaves properly will send a ‘‘Save Yourself ’’
message before the ‘‘Die’’ message.

5.1.3. The Save Complete Callback

The Save Complete callback is of typeSmcSaveCompleteProc.

typedef void (*SmcSaveCompleteProc)();

void SaveCompleteProc (smc_conn, client_data)
SmcConnsmc_conn;
SmPointerclient_data;

smc_conn The session management connection object.

client_data Client data specified when the callback was registered.

When the session manager is done with a checkpoint, it will send each of the clients a ‘‘Save Complete’’
message. Theclient is then free to change its state.

5.1.4. The Shutdown Cancelled Callback

The Shutdown Cancelled callback is of typeSmcShutdownCancelledProc.

typedef void (*SmcShutdownCancelledProc)();

void ShutdownCancelledProc (smc_conn, client_data)
SmcConnsmc_conn;
SmPointerclient_data;

smc_conn The session management connection object.

client_data Client data specified when the callback was registered.

The session manager sends a ‘‘Shutdown Cancelled’’ message when the user cancelled the shutdown during
an interaction (see section 5.5, ‘‘Interacting With the User’’). The client can now continue as if the shut-
down had never happened. Ifthe client has not calledSmcSaveYourselfDone yet, it can either abort the
save and then callSmcSaveYourselfDone with the success argument set toFalse, or it can continue with
the save and then callSmcSaveYourselfDone with the success argument set to reflect the outcome of the
save.

− 6 −

X Session Management Library libSM 1.1.1

5.2. Closing the Connection

To close a connection with a session manager, useSmcCloseConnection.

SmcCloseStatus SmcCloseConnection(smc_conn, count, reason_msgs)
SmcConnsmc_conn;
int count;
char **reason_msgs;

smc_conn The session management connection object.

count The number of reason messages.

reason_msgs The reasons for closing the connection.

The reason_msgs argument will most likely be NULL if resignation is expected by the client. Otherwise, it
contains a list of null-terminated Compound Text strings representing the reason for termination. The ses-
sion manager should display these reason messages to the user.

Note that SMlib used the ICE protocol to establish a connection with the session manager, and various pro-
tocols other than session management may be active on the ICE connection.When SmcCloseConnection
is called, the ICE connection will be closed only if all protocols have been shutdown on the connection.
Check the ICElib standard forIceAddConnectionWatch and IceRemoveConnectionWatch to learn how
to set up a callback to be invoked each time an ICE connection is opened or closed.Typically this callback
adds/removes the ICE file descriptor from the list of active descriptors to callselect on (or callsXtAp-
pAddInput or XtRemoveInput).

SmcCloseConnection returns one of the following values:

• SmcClosedNow − the ICE connection was closed at this time, the watch procedures were invoked,
and the connection was freed.

• SmcClosedASAP − an IO error had occurred on the connection, but SmcCloseConnection is being
called within a nestedIceProcessMessages. The watch procedures have been invoked at this time,
but the connection will be freed as soon as possible (when the nesting level reaches zero andIcePro-
cessMessages returns a status ofIceProcessMessagesConnectionClosed).

• SmcConnectionInUse − the connection was not closed at this time, because it is being used by other
active protocols.

5.3. Modifying Callbacks

To modify callbacks set up inSmcOpenConnection, useSmcModifyCallbacks.

void SmcModifyCallbacks(smc_conn, mask, callbacks)
SmcConnsmc_conn;
unsigned longmask;
SmcCallbacks *callbacks;

smc_conn The session management connection object.

mask A mask indicating which callbacks to modify.

callbacks The new callbacks.

When specifying a value for the mask argument, the following values may be ORed together:

SmcSaveYourselfProcMask
SmcDieProcMask
SmcSaveCompleteProcMask
SmcShutdownCancelledProcMask

− 7 −

X Session Management Library libSM 1.1.1

5.4. Setting, Deleting, and Retrieving Session Management Properties

To set session management properties for this client, useSmcSetProperties.

void SmcSetProperties(smc_conn, num_props, props)
SmcConnsmc_conn;
int num_props;
SmProp **props;

smc_conn The session management connection object.

num_props The number of properties.

props The list of properties to set.

The properties are specified as an array of property pointers.Previously set property values may be over-
written using theSmcSetProperties function. Notethat the session manager is not expected to restore
property values when the session is restarted.Because of this, clients should not try to use the session man-
ager as a database for storing application specific state.

For a description of session management properties and theSmProp structure, see section 7, ‘‘Session
Management Properties.’’

To delete properties previously set by the client, useSmcDeleteProperties.

void SmcDeleteProperties(smc_conn, num_props, prop_names)
SmcConnsmc_conn;
int num_props;
char **prop_names;

smc_conn The session management connection object.

num_props The number of properties.

prop_names The list of properties to delete.

To get properties previously stored by the client, useSmcGetProperties.

Status SmcGetProperties(smc_conn, prop_reply_proc, client_data)
SmcConnsmc_conn;
SmcPropReplyProcprop_reply_proc;
SmPointerclient_data;

smc_conn The session management connection object.

prop_reply_proc The callback to be invoked when the properties reply comes back.

client_data This pointer to client data will be passed to theSmcPropReplyProc callback.

The return value ofSmcGetProperties is zero for failure and a positive value for success.

Note that the library does not block until the properties reply comes back.Rather, a callback of type
SmcPropReplyProc is invoked when the data is ready.

− 8 −

X Session Management Library libSM 1.1.1

typedef void (*SmcPropReplyProc)();

void PropReplyProc(smc_conn, client_data, num_props, props)
SmcConnsmc_conn;
SmPointerclient_data;
int num_props;
SmProp **props;

smc_conn The session management connection object.

client_data Client data specified when the callback was registered.

num_props The number of properties returned.

props The list of properties returned.

To free each property, use SmFreeProperty (see section 8, ‘‘Freeing Data’’). To free the actual array of
pointers, usefree.

5.5. Interacting With the User

After receiving a ‘‘Save Yourself ’’ message with an interact_style ofSmInteractStyleErrors or SmInter-
actStyleAny, the client may choose to interact with the user. Because only one client can interact with the
user at a time, the client must callSmcInteractRequest and wait for an ‘‘Interact’’ message from the ses-
sion manager.

Status SmcInteractRequest(smc_conn, dialog_type, interact_proc, client_data)
SmcConnsmc_conn;
int dialog_type;
SmcInteractProcinteract_proc;
SmPointerclient_data;

smc_conn The session management connection object.

dialog_type The type of dialog the client wishes to present to the user.

interact_proc The callback to be invoked when the ‘‘Interact’’ message arrives from the session man-
ager.

client_data This pointer to client data will be passed to theSmcInteractProc callback when the
‘‘ Interact’’ message arrives.

The return value ofSmcInteractRequest is zero for failure and a positive value for success.

The dialog_type argument specifies eitherSmDialogError, indicating that the client wants to start an error
dialog, orSmDialogNormal, meaning that the client wishes to start a nonerror dialog.

Note that if a shutdown is in progress, the user may have the option of cancelling the shutdown. If the shut-
down is cancelled, the clients that have not interacted yet with the user will receive a ‘‘Shutdown Can-
celled’’ message instead of the ‘‘Interact’’ message.

The SmcInteractProc callback will be invoked when the ‘‘Interact’’ message arrives from the session
manager.

typedef void (*SmcInteractProc)();

void InteractProc(smc_conn, client_data)
SmcConnsmc_conn;
SmPointerclient_data;

− 9 −

X Session Management Library libSM 1.1.1

smc_conn The session management connection object.

client_data Client data specified when the callback was registered.

After interacting with the user (in response to an ‘‘Interact’’ message), you should callSmcInteractDone.

void SmcInteractDone(smc_conn, cancel_shutdown)
SmcConnsmc_conn;
Bool cancel_shutdown;

smc_conn The session management connection object.

cancel_shutdown If True, indicates that the user requests that the entire shutdown be cancelled.

The cancel_shutdown argument may only beTrue if the corresponding ‘‘Save Yourself ’’ specified True
for shutdown andSmInteractStyleErrors or SmInteractStyleAny for the interact_style.

5.6. Requesting a Sav e Yourself

To request a checkpoint from the session manager, useSmcRequestSaveYourself.

void SmcRequestSaveYourself (smc_conn, save_type, shutdown, interact_style, fast, global)
SmcConnsmc_conn;
int save_type;
Bool shutdown;
int interact_style;
Bool fast;
Bool global;

smc_conn The session management connection object.

save_type Specifies the type of information that should be saved.

shutdown Specifies if a shutdown is taking place.

interact_style The type of interaction allowed with the user.

fast If True, the client should save its state as quickly as possible.

global Controls who gets the ‘‘Save Yourself.’’

The save_type, shutdown, interact_style, and fast arguments are discussed in more detail in section 5.1.1,
‘‘ The Save Yourself Callback.’’

If global is set toTrue, then the resulting ‘‘Save Yourself ’’ should be sent to all clients in the session.For
example, a vendor of a Uninterruptible Power Supply (UPS) might include a Session Management client
that would monitor the status of the UPS and generate a fast shutdown if the power is about to be lost.

If global is set toFalse, then the ‘‘Save Yourself ’’ should only be sent to the client that requested it.

5.7. Requesting a Sav e Yourself Phase 2

In response to a ‘‘Save Yourself, the client may request to be informed when all the other clients are quies-
cent so that it can save their state.To do so, useSmcRequestSaveYourselfPhase2.

Status SmcRequestSaveYourselfPhase2 (smc_conn, save_yourself_phase2_proc, client_data)
SmcConnsmc_conn;
SmcSaveYourselfPhase2Procsave_yourself_phase2_proc;
SmPointerclient_data;

− 10 −

X Session Management Library libSM 1.1.1

smc_conn The session management connection object.

save_yourself_phase2_proc
The callback to be invoked when the ‘‘Save Yourself Phase 2’’ message arrives from the
session manager.

client_data This pointer to client data will be passed to theSmcSaveYourselfPhase2Proc callback
when the ‘‘Save Yourself Phase 2’’ message arrives.

The return value ofSmcRequestSaveYourselfPhase2 is zero for failure and a positive value for success.

This request is needed by clients that manage other clients (for example, window managers, workspace
managers, and so on). The manager must make sure that all of the clients that are being managed are in an
idle state so that their state can be saved.

5.8. Completing a Sav e Yourself

After saving state in response to a ‘‘Save Yourself ’’ message, you should callSmcSaveYourselfDone.

void SmcSaveYourselfDone (smc_conn, success)
SmcConnsmc_conn;
Bool success;

smc_conn The session management connection object.

success If True, the ‘‘Save Yourself ’’ operation was completed successfully.

Before callingSmcSaveYourselfDone, the client must have set each required property at least once since
the client registered with the session manager.

5.9. Using Smc Informational Functions

int SmcProtocolVersion (smc_conn)
SmcConnsmc_conn;

SmcProtocolVersion returns the major version of the session management protocol associated with this
session.

int SmcProtocolRevision (smc_conn)
SmcConnsmc_conn;

SmcProtocolRevision returns the minor version of the session management protocol associated with this
session.

char *SmcVendor (smc_conn)
SmcConnsmc_conn;

SmcVendor returns a string that provides some identification of the owner of the session manager. The
string should be freed with a call tofree.

− 11 −

X Session Management Library libSM 1.1.1

char *SmcRelease(smc_conn)
SmcConnsmc_conn;

SmcRelease returns a string that provides the release number of the session manager. The string should be
freed with a call tofree.

char *SmcClientID(smc_conn)
SmcConnsmc_conn;

SmcClientID returns a null-terminated string for the client ID associated with this connection. This infor-
mation was also returned inSmcOpenConnection (it is provided here for convenience). Callfree on this
pointer when the client ID is no longer needed.

IceConn SmcGetIceConnection(smc_conn)
SmcConnsmc_conn;

SmcGetIceConnection returns the ICE connection object associated with this session management con-
nection object. The ICE connection object can be used to get some additional information about the con-
nection. Someof the more useful functions which can be used on the IceConn areIceConnectionNum-
ber, IceConnectionString, IceLastSentSequenceNumber, IceLastReceivedSequenceNumber, and
IcePing. For further information, see theInter-Client Exchange Library standard.

5.10. Error Handling

If the client receives an unexpected protocol error from the session manager, an error handler is invoked by
SMlib. A default error handler exists that simply prints the error message tostderr and exits if the severity
of the error is fatal. Theclient can change this error handler by calling theSmcSetErrorHandler func-
tion.

SmcErrorHandler SmcSetErrorHandler(handler)
SmcErrorHandlerhandler;

handler The error handler. You should pass NULL to restore the default handler.

SmcSetErrorHandler returns the previous error handler.

The SmcErrorHandler has the following type:

typedef void (*SmcErrorHandler)();

void ErrorHandler(smc_conn, swap, offending_minor_opcode, offending_sequence_num, error_class, severity, values)
SmcConnsmc_conn;
Bool swap;
int offending_minor_opcode;
unsigned longoffending_sequence_num;
int error_class;
int severity;
IcePointervalues;

smc_conn The session management connection object.

− 12 −

X Session Management Library libSM 1.1.1

swap A flag that indicates if the specified values need byte swapping.

offending_minor_opcode
The minor opcode of the offending message.

offending_sequence_num
The sequence number of the offending message.

error_class The error class of the offending message.

severity IceCanContinue, IceFatalToProtocol, or IceFatalToConnection.

values Any additional error values specific to the minor opcode and class.

Note that this error handler is invoked for protocol related errors.To install an error handler to be invoked
when an IO error occurs, useIceSetIOErrorHandler. For further information, see theInter-Client
Exchange Library standard.

6. Session Management Server (Sms) Functions

This section discusses how Session Management servers:

• Initialize the library

• Register the client

• Send a ‘‘Save Yourself ’’ message

• Send a ‘‘Save Yourself Phase 2’’ message

• Send an ‘‘Interact’’ message

• Send a ‘‘Save Complete’’ message

• Send a ‘‘Die’’ message

• Cancel a shutdown

• Return properties

• Ping a client

• Clean up after a client disconnects

• Use Sms informational functions

• Handle errors

6.1. Initializing the Library

SmsInitialize is the first SMlib function that should be called by a session manager. It provides informa-
tion about the session manager and registers a callback that will be invoked each time a new client connects
to the session manager.

Status SmsInitialize(vendor, release, new_client_proc, manager_data, host_based_auth_proc,
error_length, error_string_ret)

char *vendor;
char *release;
SmsNewClientProcnew_client_proc;
SmPointermanager_data;
IceHostBasedAuthProchost_based_auth_proc;
int error_length;
char *error_string_ret;

vendor A string specifying the session manager vendor.

release A string specifying the session manager release number.

new_client_proc Callback to be invoked each time a new client connects to the session manager.

− 13 −

X Session Management Library libSM 1.1.1

manager_data When theSmsNewClientProc callback is invoked, this pointer to manager data will be
passed.

host_based_auth_proc
Host based authentication callback.

error_length Length of the error_string_ret argument passed in.

error_string_ret Returns a null-terminated error message, if any. The error_string_ret points to user sup-
plied memory. No more than error_length bytes are used.

After the SmsInitialize function is called, the session manager should call theIceListenForConnections
function to listen for new connections. Afterwards, each time a client connects, the session manager should
call IceAcceptConnection.

See section 9, ‘‘A uthentication of Clients,’’ f or more details on authentication (including host based authen-
tication). Also see theInter-Client Exchange Library standard for further details on listening for and
accepting ICE connections.

Each time a new client connects to the session manager, the SmsNewClientProc callback is invoked. The
session manager obtains a new opaque connection object that it should use for all future interaction with the
client. At this time, the session manager must also register a set of callbacks to respond to the different
messages that the client might send.

typedef Status (*SmsNewClientProc)();

Status NewClientProc (sms_conn, manager_data, mask_ret, callbacks_ret, failure_reason_ret)
SmsConnsms_conn;
SmPointermanager_data;
unsigned long *mask_ret;
SmsCallbacks *callbacks_ret;
char **failure_reason_ret;

sms_conn A new opaque connection object.

manager_data Manager data specified when the callback was registered.

mask_ret On return, indicates which callbacks were set by the session manager.

callbacks_ret On return, contains the callbacks registered by the session manager.

failure_reason_retFailure reason returned.

If a failure occurs, theSmsNewClientProc should return a zero status as well as allocate and return a fail-
ure reason string in failure_reason_ret. SMlibwill be responsible for freeing this memory.

The session manager must register a set of callbacks to respond to client events. Themask_ret argument
specifies which callbacks are set.All of the callbacks specified in this version of SMlib are mandatory.
The mask_ret argument is necessary in order to maintain backwards compatibility in future versions of the
library.

The following values may be ORed together to obtain a mask value:

SmsRegisterClientProcMask
SmsInteractRequestProcMask
SmsInteractDoneProcMask
SmsSaveYourselfRequestProcMask
SmsSaveYourselfP2RequestProcMask
SmsSaveYourselfDoneProcMask
SmsCloseConnectionProcMask
SmsSetPropertiesProcMask
SmsDeletePropertiesProcMask

− 14 −

X Session Management Library libSM 1.1.1

SmsGetPropertiesProcMask

For each callback, the session manager can register a pointer to manager data specific to that callback.This
pointer will be passed to the callback when it is invoked by SMlib.

typedef struct {
struct {

SmsRegisterClientProc callback;
SmPointer manager_data;

} r egister_client;

struct {
SmsInteractRequestProc callback;
SmPointer manager_data;

} i nteract_request;

struct {
SmsInteractDoneProc callback;
SmPointer manager_data;

} i nteract_done;

struct {
SmsSaveYourselfRequestProc callback;
SmPointer manager_data;

} sav e_yourself_request;

struct {
SmsSaveYourselfPhase2RequestProc callback;
SmPointer manager_data;

} sav e_yourself_phase2_request;

struct {
SmsSaveYourselfDoneProc callback;
SmPointer manager_data;

} sav e_yourself_done;

struct {
SmsCloseConnectionProc callback;
SmPointer manager_data;

} close_connection;

struct {
SmsSetPropertiesProc callback;
SmPointer manager_data;

} set_properties;

struct {
SmsDeletePropertiesProc callback;
SmPointer manager_data;

} delete_properties;

struct {
SmsGetPropertiesProc callback;
SmPointer manager_data;

− 15 −

X Session Management Library libSM 1.1.1

} get_properties;

} SmsCallbacks;

6.1.1. The Register Client Callback

The Register Client callback is the first callback that will be invoked after the client connects to the session
manager. Its type isSmsRegisterClientProc.

typedef Status (*SmsRegisterClientProc();

Status RegisterClientProc (sms_conn, manager_data, previous_id)
SmsConnsms_conn;
SmPointermanager_data;
char *previous_id;

sms_conn The session management connection object.

manager_data Manager data specified when the callback was registered.

previous_id The client ID from the previous session.

Before any further interaction takes place with the client, the client must be registered with the session
manager.

If the client is being restarted from a previous session, previous_id will contain a null-terminated string rep-
resenting the client ID from the previous session.Call free on the previous_id pointer when it is no longer
needed. Ifthe client is first joining the session, previous_id will be NULL.

If previous_id is invalid, the session manager should not register the client at this time.This callback
should return a status of zero, which will cause an error message to be sent to the client. The client should
re-register with previous_id set to NULL.

Otherwise, the session manager should register the client with a unique client ID by calling theSmsRegis-
terClientReply function (to be discussed shortly), and theSmsRegisterClientProc callback should return
a status of one.

6.1.2. The Interact Request Callback

The Interact Request callback is of typeSmsInteractRequestProc.

typedef void (*SmsInteractRequestProc)();

void InteractRequestProc(sms_conn, manager_data, dialog_type)
SmsConnsms_conn;
SmPointermanager_data;
int dialog_type;

sms_conn The session management connection object.

manager_data Manager data specified when the callback was registered.

dialog_type The type of dialog the client wishes to present to the user.

When a client receives a ‘‘Save Yourself ’’ message with an interact_style ofSmInteractStyleErrors or
SmInteractStyleAny, the client may choose to interact with the user. Because only one client can interact
with the user at a time, the client must request to interact with the user. The session manager should keep a
queue of all clients wishing to interact.It should send an ‘‘Interact’’ message to one client at a time and
wait for an ‘‘Interact Done’’ message before continuing with the next client.

− 16 −

X Session Management Library libSM 1.1.1

The dialog_type argument specifies eitherSmDialogError, indicating that the client wants to start an error
dialog, orSmDialogNormal, meaning that the client wishes to start a nonerror dialog.

If a shutdown is in progress, the user may have the option of cancelling the shutdown. If the shutdown is
cancelled (specified in the ‘‘Interact Done’’ message), the session manager should send a ‘‘Shutdown Can-
celled’’ message to each client that requested to interact.

6.1.3. The Interact Done Callback

When the client is done interacting with the user, the SmsInteractDoneProc callback will be invoked.

typedef void (*SmsInteractDoneProc)();

void InteractDoneProc(sms_conn, manager_data, cancel_shutdown)
SmsConnsms_conn;
SmPointermanager_data;
Bool cancel_shutdown;

sms_conn The session management connection object.

manager_data Manager data specified when the callback was registered.

cancel_shutdown Specifies if the user requests that the entire shutdown be cancelled.

Note that the shutdown can be cancelled only if the corresponding ‘‘Save Yourself ’’ specified True for
shutdown andSmInteractStyleErrors or SmInteractStyleAny for the interact_style.

6.1.4. The Save Yourself Request Callback

The Save Yourself Request callback is of typeSmsSaveYourselfRequestProc.

typedef void (*SmsSaveYourselfRequestProc)();

void SaveYourselfRequestProc (sms_conn, manager_data, save_type, shutdown, interact_style, fast, global)
SmsConnsms_conn;
SmPointermanager_data;
int save_type;
Bool shutdown;
int interact_style;
Bool fast;
Bool global;

sms_conn The session management connection object.

manager_data Manager data specified when the callback was registered.

save_type Specifies the type of information that should be saved.

shutdown Specifies if a shutdown is taking place.

interact_style The type of interaction allowed with the user.

fast If True, the client should save its state as quickly as possible.

global Controls who gets the ‘‘Save Yourself.’’

The Save Yourself Request prompts the session manager to initiate a checkpoint or shutdown. For informa-
tion on the save_type, shutdown, interact_style, and fast arguments, see section 6.3, ‘‘Sending a Save Your-
self Message.’’

If global is set toTrue, then the resulting ‘‘Save Yourself ’’ should be sent to all applications. If global is
set toFalse, then the ‘‘Save Yourself ’’ should only be sent to the client that requested it.

− 17 −

X Session Management Library libSM 1.1.1

6.1.5. The Save Yourself Phase 2 Request Callback

The Save Yourself Phase 2 Request callback is of typeSmsSaveYourselfPhase2RequestProc.

typedef void (*SmsSaveYourselfPhase2RequestProc)();

void SmsSaveYourselfPhase2RequestProc (sms_conn, manager_data)
SmsConnsms_conn;
SmPointermanager_data;

sms_conn The session management connection object.

manager_data Manager data specified when the callback was registered.

This request is sent by clients that manage other clients (for example, window managers, workspace man-
agers, and so on). Such managers must make sure that all of the clients that are being managed are in an
idle state so that their state can be saved.

6.1.6. The Save Yourself Done Callback

When the client is done saving its state in response to a ‘‘Save Yourself ’’ message, theSmsSaveYourself-
DoneProc will be invoked.

typedef void (*SmsSaveYourselfDoneProc)();

void SaveYourselfDoneProc (sms_conn, manager_data, success)
SmsConnsms_conn;
SmPointermanager_data;
Bool success;

sms_conn The session management connection object.

manager_data Manager data specified when the callback was registered.

success If True, the Save Yourself operation was completed successfully.

Before the ‘‘Save Yourself Done’’ was sent, the client must have set each required property at least once
since it registered with the session manager.

6.1.7. The Connection Closed Callback

If the client properly terminates (that is, it callsSmcCloseConnection), the SmsCloseConnectionProc
callback is invoked.

typedef void (*SmsCloseConnectionProc)();

void CloseConnectionProc(sms_conn, manager_data, count, reason_msgs)
SmsConnsms_conn;
SmPointermanager_data;
int count;
char **reason_msgs;

sms_conn The session management connection object.

manager_data Manager data specified when the callback was registered.

count The number of reason messages.

reason_msgs The reasons for closing the connection.

− 18 −

X Session Management Library libSM 1.1.1

The reason_msgs argument will most likely be NULL and the count argument zero (0) if resignation is
expected by the user. Otherwise, it contains a list of null-terminated Compound Text strings representing
the reason for termination. The session manager should display these reason messages to the user.

Call SmFreeReasons to free the reason messages.For further information, see section 8, ‘‘Freeing Data.’’

6.1.8. The Set Properties Callback

When the client sets session management properties, theSmsSetPropertiesProc callback will be invoked.

typedef void (*SmsSetPropertiesProc)();

void SetPropertiesProc(sms_conn, manager_data, num_props, props)
SmsConnsms_conn;
SmPointermanager_data;
int num_props;
SmProp **props;

smc_conn The session management connection object.

manager_data Manager data specified when the callback was registered.

num_props The number of properties.

props The list of properties to set.

The properties are specified as an array of property pointers.For a description of session management
properties and theSmProp structure, see section 7, ‘‘Session Management Properties.’’

Previously set property values may be over-written. Someproperties have predefined semantics. The ses-
sion manager is required to store nonpredefined properties.

To free each property, use SmFreeProperty. For further information, see section 8, ‘‘Freeing Data.’’ You
should free the actual array of pointers with a call tofree.

6.1.9. The Delete Properties Callback

When the client deletes session management properties, theSmsDeletePropertiesProc callback will be
invoked.

typedef void (*SmsDeletePropertiesProc)();

void DeletePropertiesProc(sms_conn, manager_data, num_props, prop_names)
SmsConnsms_conn;
SmPointermanager_data;
int num_props;
char **prop_names;

smc_conn The session management connection object.

manager_data Manager data specified when the callback was registered.

num_props The number of properties.

prop_names The list of properties to delete.

The properties are specified as an array of strings.For a description of session management properties and
the SmProp structure, see section 7, ‘‘Session Management Properties.’’

− 19 −

X Session Management Library libSM 1.1.1

6.1.10. The Get Properties Callback

The SmsGetPropertiesProc callback is invoked when the client wants to retrieve properties it set.

typedef void (*SmsGetPropertiesProc)();

void GetPropertiesProc(sms_conn, manager_data)
SmsConnsms_conn;
SmPointermanager_data;

smc_conn The session management connection object.

manager_data Manager data specified when the callback was registered.

The session manager should respond by callingSmsReturnProperties. All of the properties set for this
client should be returned.

6.2. Registering the Client

To register a client (in response to aSmsRegisterClientProc callback), useSmsRegisterClientReply.

Status SmsRegisterClientReply (sms_conn, client_id)
SmsConnsms_conn;
char *client_id;

sms_conn The session management connection object.

client_id A null-terminated string representing a unique client ID.

The return value ofSmsRegisterClientReply is zero for failure and a positive value for success.Failure
will occur if SMlib can not allocate memory to hold a copy of the client ID for it’s own internal needs.

If a non-NULL previous_id was specified when the client registered itself, client_id should be identical to
previous_id.

Otherwise, client_id should be a unique ID freshly generated by the session manager. In addition, the ses-
sion manager should send a ‘‘Save Yourself ’’ message with type = Local, shutdown = False, interact-style =
None, and fast = False immediately after registering the client.

Note that once a client ID has been assigned to the client, the client keeps this ID indefinitely. If the client
is terminated and restarted, it will be reassigned the same ID. It is desirable to be able to pass client IDs
around from machine to machine, from user to user, and from session manager to session manager, while
retaining the identity of the client.This, combined with the indefinite persistence of client IDs, means that
client IDs need to be globally unique.

You should call theSmsGenerateClientID function to generate a globally unique client ID.

char *SmsGenerateClientID(sms_conn)
SmsConnsms_conn;

sms_conn The session management connection object.

NULL will be returned if the ID could not be generated.Otherwise, the return value of the function is the
client ID. It should be freed with a call tofree when no longer needed.

6.3. Sending a Sav e Yourself Message

− 20 −

X Session Management Library libSM 1.1.1

To send a ‘‘Save Yourself ’’ to a client, useSmsSaveYourself.

void SmsSaveYourself (sms_conn, save_type, shutdown, interact_style, fast)
SmsConnsms_conn;
int save_type;
Bool shutdown;
int interact_style;
Bool fast;

sms_conn The session management connection object.

save_type Specifies the type of information that should be saved.

shutdown Specifies if a shutdown is taking place.

interact_style The type of interaction allowed with the user.

fast If True, the client should save its state as quickly as possible.

The session manager sends a ‘‘Save Yourself ’’ message to a client either to checkpoint it or just before ter-
mination so that it can save its state.The client responds with zero or more ‘‘Set Properties’’ messages to
update the properties indicating how to restart the client. When all the properties have been set, the client
sends a ‘‘Save Yourself Done’’ message.

If interact_style isSmInteractStyleNone, the client must not interact with the user while saving state.If
interact_style isSmInteractStyleErrors, the client may interact with the user only if an error condition
arises. Ifinteract_style isSmInteractStyleAny, then the client may interact with the user for any purpose.
The client must send an ‘‘Interact Request’’ message and wait for an ‘‘Interact’’ message from the session
manager before it can interact with the user. When the client is done interacting with the user, it should
send an ‘‘Interact Done’’ message. The‘‘ Interact Request’’ message can be sent any time after a ‘‘Save
Yourself ’’ and before a ‘‘Save Yourself Done.’’

If save_type isSmSaveLocal, the client must update the properties to reflect its current state.Specifically,
it should save enough information to restore the state as seen by the user of this client. It should not affect
the state as seen by other users.If save_type isSmSaveGlobal the user wants the client to commit all of
its data to permanent, globally accessible storage. If save_type isSmSaveBoth, the client should do both
of these (it should first commit the data to permanent storage before updating its properties).

The shutdown argument specifies whether the session is being shut down. The interaction is different
depending on whether or not shutdown is set. If not shutting down, then the client can save and resume
normal operation. If shutting down, the client must save and then must prevent interaction until it receives
either a ‘‘Die’’ or a ‘‘Shutdown Cancelled,’’ because anything the user does after the save will be lost.

The fast argument specifies that the client should save its state as quickly as possible.For example, if the
session manager knows that power is about to fail, it should set fast toTrue.

6.4. Sending a Sav e Yourself Phase 2 Message

In order to send a ‘‘Save Yourself Phase 2’’ message to a client, useSmsSaveYourselfPhase2.

void SmsSaveYourselfPhase2 (sms_conn)
SmsConnsms_conn;

sms_conn The session management connection object.

The session manager sends this message to a client that has previously sent a ‘‘Save Yourself Phase 2
Request’’ message. Thismessage informs the client that all other clients are in a fixed state and this client
can save state that is associated with other clients.

− 21 −

X Session Management Library libSM 1.1.1

6.5. Sending an Interact Message

To send an ‘‘Interact’’ message to a client, useSmsInteract.

void SmsInteract(sms_conn)
SmsConnsms_conn;

sms_conn The session management connection object.

The ‘‘Interact’’ message grants the client the privilege of interacting with the user. When the client is done
interacting with the user, it must send an ‘‘Interact Done’’ message to the session manager.

6.6. Sending a Sav e Complete Message

To send a ‘‘Save Complete’’ message to a client, useSmsSaveComplete.

void SmsSaveComplete (sms_conn)
SmsConnsms_conn;

sms_conn The session management connection object.

The session manager sends this message when it is done with a checkpoint. The client is then free to
change its state.

6.7. Sending a Die Message

To send a ‘‘Die’’ message to a client, useSmsDie.

void SmsDie(sms_conn)
SmsConnsms_conn;

sms_conn The session management connection object.

Before the session manager terminates, it should wait for a ‘‘Connection Closed’’ message from each client
that it sent a ‘‘Die’’ message to, timing out appropriately.

6.8. Cancelling a Shutdown

To cancel a shutdown, useSmsShutdownCancelled.

void SmsShutdownCancelled (sms_conn)
SmsConnsms_conn;

sms_conn The session management connection object.

The client can now continue as if the shutdown had never happened. Ifthe client has not sent a ‘‘Save
Yourself Done’’ message yet, it can either abort the save and send a ‘‘Save Yourself Done’’ w ith the success
argument set toFalse, or it can continue with the save and send a ‘‘Save Yourself Done’’ w ith the success
argument set to reflect the outcome of the save.

6.9. Returning Properties

In response to a ‘‘Get Properties’’ message, the session manager should callSmsReturnProperties.

− 22 −

X Session Management Library libSM 1.1.1

void SmsReturnProperties(sms_conn, num_props, props)
SmsConnsms_conn;
int num_props;
SmProp **props;

sms_conn The session management connection object.

num_props The number of properties.

props The list of properties to return to the client.

The properties are returned as an array of property pointers.For a description of session management prop-
erties and theSmProp structure, see section 7, ‘‘Session Management Properties.’’

6.10. Pinging a Client

To check that a client is still alive, you should use theIcePing function provided by the ICE library. To do
so, the ICE connection must be obtained using theSmsGetIceConnection (see section 6.12, ‘‘Using Sms
Informational Functions’’).

void IcePing(ice_conn, ping_reply_proc, client_data)
IceConnice_conn;
IcePingReplyProcping_reply_proc;
IcePointerclient_data;

ice_conn A valid ICE connection object.

ping_reply_proc The callback to invoke when the Ping reply arrives.

client_data This pointer will be passed to theIcePingReplyProc callback.

When the Ping reply is ready (if ever), the IcePingReplyProc callback will be invoked. A session man-
ager should have some sort of timeout period, after which it assumes the client has unexpectedly died.

typedef void (*IcePingReplyProc)();

void PingReplyProc(ice_conn, client_data)
IceConnice_conn;
IcePointerclient_data;

ice_conn The ICE connection object.

client_data The client data specified in the call toIcePing.

6.11. Cleaning Up After a Client Disconnects

When the session manager receives a ‘‘Connection Closed’’ message or otherwise detects that the client
aborted the connection, it should call theSmsCleanUp function in order to free up the connection object.

void SmsCleanUp(sms_conn)
SmsConnsms_conn;

sms_conn The session management connection object.

− 23 −

X Session Management Library libSM 1.1.1

6.12. Using Sms Informational Functions

int SmsProtocolVersion (sms_conn)
SmsConnsms_conn;

SmsProtocolVersion returns the major version of the session management protocol associated with this
session.

int SmsProtocolRevision (sms_conn)
SmsConnsms_conn;

SmsProtocolRevision returns the minor version of the session management protocol associated with this
session.

char *SmsClientID(sms_conn)
SmsConnsms_conn;

SmsClientID returns a null-terminated string for the client ID associated with this connection.You should
call free on this pointer when the client ID is no longer needed.

To obtain the host name of a client, useSmsClientHostName. This host name will be needed to restart the
client.

char *SmsClientHostName(sms_conn)
SmsConnsms_conn;

The string returned is of the formprotocol/hostname, whereprotocol is one of {tcp, decnet, local}.You
should callfree on the string returned when it is no longer needed.

IceConn SmsGetIceConnection(sms_conn)
SmsConnsms_conn;

SmsGetIceConnection returns the ICE connection object associated with this session management con-
nection object.The ICE connection object can be used to get some additional information about the con-
nection. Someof the more useful functions which can be used on the IceConn areIceConnectionNum-
ber, and IceLastSequenceNumber. For further information, see theInter-Client Exchange Library stan-
dard.

6.13. Error Handling

If the session manager receives an unexpected protocol error from a client, an error handler is invoked by
SMlib. A default error handler exists which simply prints the error message (it does not exit). Thesession
manager can change this error handler by callingSmsSetErrorHandler.

SmsErrorHandler SmsSetErrorHandler(handler)
SmsErrorHandlerhandler;

− 24 −

X Session Management Library libSM 1.1.1

handler The error handler. You should pass NULL to restore the default handler.

SmsSetErrorHandler returns the previous error handler. The SmsErrorHandler has the following type:

typedef void (*SmsErrorHandler)();

void ErrorHandler(sms_conn, swap, offending_minor_opcode, offending_sequence_num, error_class, severity, values)
SmsConnsms_conn;
Bool swap;
int offending_minor_opcode;
unsigned longoffending_sequence_num;
int error_class;
int severity;
IcePointervalues;

sms_conn The session management connection object.

swap A flag which indicates if the specified values need byte swapping.

offending_minor_opcode
The minor opcode of the offending message.

offending_sequence_num
The sequence number of the offending message.

error_class The error class of the offending message.

severity IceCanContinue, IceFatalToProtocol, or IceFatalToConnection.

values Any additional error values specific to the minor opcode and class.

Note that this error handler is invoked for protocol related errors.To install an error handler to be invoked
when an IO error occurs, useIceSetIOErrorHandler. For further information, see theInter-Client
Exchange Library standard.

7. Session Management Properties

Each property is defined by theSmProc structure:

typedef struct {
char *name; /* name of property */
char *type; /* type of property */
int num_vals; /* number of values */
SmPropValue *vals; /* the list of values */

} SmProp;

typedef struct {
int length; /* the length of the value */
SmPointer value; /* the value */

} SmPropValue;

The X Session Management Protocol defines a list of predefined properties, several of which are required to
be set by the client. The following table specifies the predefined properties and indicates which ones are
required. Eachproperty has a type associated with it.

A type of SmCARD8 indicates that there is a single 1-byte value. A type of SmARRAY8 indicates that
there is a single array of bytes.A type of SmLISTofARRAY8 indicates that there is a list of array of bytes.

Name Type POSIX Type Required

− 25 −

X Session Management Library libSM 1.1.1

Name Type POSIX Type Required

SmCloneCommand OS-specific SmLISTofARRAY8 Yes
SmCurrentDirectory OS-specific SmARRAY8 No
SmDiscardCommand OS-specific SmLISTofARRAY8 No*
SmEnvironment OS-specific SmLISTofARRAY8 No
SmProcessID OS-specific SmARRAY8 No
SmProgram OS-specific SmARRAY8 Yes
SmRestartCommand OS-specific SmLISTofARRAY8 Yes
SmResignCommand OS-specific SmLISTofARRAY8 No
SmRestartStyleHint SmCARD8 SmCARD8 No
SmShutdownCommand OS-specific SmLISTofARRAY8 No
SmUserID SmARRAY8 SmARRAY8 Yes

* Required if any state is stored in an external repository (for example, state file).

• SmCloneCommand

This is like the SmRestartCommand, except it restarts a copy of the application. The only difference
is that the application does not supply its client ID at register time. On POSIX systems, this should
be of type SmLISTofARRAY8.

• SmCurrentDirectory

On POSIX-based systems, this specifies the value of the current directory that needs to be set up prior
to starting the SmProgram and should of type SmARRAY8.

• SmDiscardCommand

The discard command contains a command that when delivered to the host that the client is running
on (determined from the connection), will cause it to discard any information about the current state.
If this command is not specified, the Session Manager will assume that all of the client’s state is
encoded in the SmRestartCommand. On POSIX systems, the type should be SmLISTofARRAY8.

• SmEnvironment

On POSIX based systems, this will be of type SmLISTofARRAY8, where the ARRAY8s alternate
between environment variable name and environment variable value.

• SmProcessID

This specifies an OS-specific identifier for the process. On POSIX systems, this should contain the
return value ofgetpid turned into a Latin-1 (decimal) string.

• SmProgram

This is the name of the program that is running. On POSIX systems, this should be first parameter
passed toexecve and should be of type SmARRAY8.

• SmRestartCommand

The restart command contains a command that, when delivered to the host that the client is running
on (determined from the connection), will cause the client to restart in its current state.On POSIX-
based systems, this is of type SmLISTofARRAY8, and each of the elements in the array represents an
element in theargv array. This restart command should ensure that the client restarts with the speci-
fied client-ID.

• SmResignCommand

A client that sets the SmRestartStyleHint to SmRestartAnway uses this property to specify a com-
mand that undoes the effect of the client and removes any sav ed state. Asan example, consider a
user that runsxmodmap, which registers with the Session Manager, sets SmRestartStyleHint to
SmRestartAnyway, and then terminates.To allow the Session Manager (at the user’s request) to
undo this,xmodmap would register a SmResignCommand that undoes the effects of thexmodmap.

− 26 −

X Session Management Library libSM 1.1.1

• SmRestartStyleHint

If the RestartStyleHint property is present, it will contain the style of restarting the client prefers.If
this style is not specified, SmRestartIfRunning is assumed. The possible values are as follows:

Name Value

SmRestartIfRunning 0
SmRestartAnyway 1
SmRestartImmediately 2
SmRestartNever 3

The SmRestartIfRunning style is used in the usual case. The client should be restarted in the next
session if it was running at the end of the current session.

The SmRestartAnyway style is used to tell the Session Manager that the application should be
restarted in the next session even if it exits before the current session is terminated.It should be
noted that this is only a hint and the Session Manager will follow the policies specified by its users in
determining what applications to restart.

A client that uses SmRestartAnyway should also set the SmResignCommand and SmShutdownCom-
mand properties to commands that undo the state of the client after it exits.

The SmRestartImmediately style is like SmRestartAnyway, but, in addition, the client is meant to run
continuously. If the client exits, the Session Manager should try to restart it in the current session.

SmRestartNever style specifies that the client does not wish to be restarted in the next session.

• SmShutdownCommand

This command is executed at shutdown time to clean up after a client that is no longer running but
retained its state by setting SmRestartStyleHint to SmRestartAnyway. The client must not remove
any sav ed state as the client is still part of the session. As an example, consider a client that turns on
a camera at start up time. This client then exits. At session shutdown, the user wants the camera
turned off. This client would set the SmRestartStyleHint to SmRestartAnyway and would register a
SmShutdownCommand that would turn off the camera.

• SmUserID

Specifies the user ID. On POSIX-based systems, this will contain the user’s name (the pw_name
member of structpasswd).

8. Freeing Data

To free an individual property, useSmFreeProperty.

void SmFreeProperty(prop)
SmProp *prop;

prop The property to free.

To free the reason strings from theSmsCloseConnectionProc callback, useSmFreeReasons.

void SmFreeReasons(count, reasons)
int count;
char **reasons;

count The number of reason strings.

reasons The list of reason strings to free.

− 27 −

X Session Management Library libSM 1.1.1

9. Authentication of Clients

As stated earlier, the session management protocol is layered on top of ICE. Authentication occurs at two
levels in the ICE protocol:

• The first is when an ICE connection is opened.

• The second is when a Protocol Setup occurs on an ICE connection.

The authentication methods that are available are implementation-dependent (that is., dependent on the
ICElib and SMlib implementations in use).For further information, see theInter-Client Exchange Library
standard.

10. Working in a Multi-Threaded Environment

To declare that multiple threads in an application will be using SMlib (or any other library layered on top of
ICElib), you should callIceInitThreads. For further information, see theInter-Client Exchange Library
standard.

11. Acknowledgements

Thanks to the following people for their participation in the X Session Management design: Jordan Brown,
Ellis Cohen, Donna Converse, Stephen Gildea, Vania Joloboff, Stuart Marks, Bob Scheifler, Ralph Swick,
and Mike Wexler.

− 28 −

Table of Contents

1. Overview of Session Management.. 1
2. The Session Management Library... 1
3. Understanding SMlib’s Dependence on ICE... 1
4. Header Files and Library Name... 2
5. Session Management Client (Smc) Functions... 2
5.1. Connecting to the Session Manager... 2
5.1.1. The Save Yourself Callback... 4
5.1.2. The Die Callback... 6
5.1.3. The Save Complete Callback... 6
5.1.4. The Shutdown Cancelled Callback.. 6
5.2. Closing the Connection... 7
5.3. Modifying Callbacks.. 7
5.4. Setting, Deleting, and Retrieving Session Management Properties... 8
5.5. Interacting With the User.. 9
5.6. Requesting a Save Yourself ..10
5.7. Requesting a Save Yourself Phase 2... 10
5.8. Completing a Save Yourself ...11
5.9. Using Smc Informational Functions... 11
5.10. Error Handling.. 12
6. Session Management Server (Sms) Functions.. 13
6.1. Initializing the Library.. 13
6.1.1. The Register Client Callback... 16
6.1.2. The Interact Request Callback... 16
6.1.3. The Interact Done Callback... 17
6.1.4. The Save Yourself Request Callback... 17
6.1.5. The Save Yourself Phase 2 Request Callback... 18
6.1.6. The Save Yourself Done Callback... 18
6.1.7. The Connection Closed Callback.. 18
6.1.8. The Set Properties Callback... 19
6.1.9. The Delete Properties Callback... 19
6.1.10. The Get Properties Callback.. 20
6.2. Registering the Client... 20
6.3. Sending a Save Yourself Message.. 20
6.4. Sending a Save Yourself Phase 2 Message... 21
6.5. Sending an Interact Message.. 22
6.6. Sending a Save Complete Message... 22
6.7. Sending a Die Message... 22
6.8. Cancelling a Shutdown ...22
6.9. Returning Properties... 22
6.10. Pinging a Client.. 23
6.11. Cleaning Up After a Client Disconnects.. 23
6.12. Using Sms Informational Functions... 24
6.13. Error Handling.. 24
7. Session Management Properties.. 25
8. Freeing Data... 27
9. Authentication of Clients... 28
10. Working in a Multi-Threaded Environment ..28

iii

11. Acknowledgements ..28

iv

