
Internet Engineering Task Force (IETF) O. Bonaventure
Request for Comments: 8041 UCLouvain
Category: Informational C. Paasch
ISSN: 2070-1721 Apple, Inc.
 G. Detal
 Tessares
 January 2017

 Use Cases and Operational Experience with Multipath TCP

Abstract

 This document discusses both use cases and operational experience
 with Multipath TCP (MPTCP) in real networks. It lists several
 prominent use cases where Multipath TCP has been considered and is
 being used. It also gives insight to some heuristics and decisions
 that have helped to realize these use cases and suggests possible
 improvements.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are a candidate for any level of Internet
 Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc8041.

Bonaventure, et al. Informational [Page 1]

RFC 8041 MPTCP Experience January 2017

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction ..3
 2. Use Cases ...4
 2.1. Datacenters ..4
 2.2. Cellular/WiFi Offload5
 2.3. Multipath TCP Proxies8
 3. Operational Experience ..9
 3.1. Middlebox Interference9
 3.2. Congestion Control ..11
 3.3. Subflow Management ..12
 3.4. Implemented Subflow Managers13
 3.5. Subflow Destination Port15
 3.6. Closing Subflows ..16
 3.7. Packet Schedulers ...17
 3.8. Segment Size Selection18
 3.9. Interactions with the Domain Name System19
 3.10. Captive Portals ..20
 3.11. Stateless Webservers20
 3.12. Load-Balanced Server Farms21
 4. Security Considerations ..21
 5. References ...23
 5.1. Normative References23
 5.2. Informative References23
 Acknowledgements ..30
 Authors’ Addresses ..30

Bonaventure, et al. Informational [Page 2]

RFC 8041 MPTCP Experience January 2017

1. Introduction

 Multipath TCP was specified in [RFC6824] and five independent
 implementations have been developed. As of November 2016, Multipath
 TCP has been or is being implemented on the following platforms:

 o Linux kernel [MultipathTCP-Linux]

 o Apple iOS and macOS

 o Citrix load balancers

 o FreeBSD [FreeBSD-MPTCP]

 o Oracle Solaris

 The first three implementations are known to interoperate. Three of
 these implementations are open source (Linux kernel, FreeBSD and
 Apple’s iOS and macOS). Apple’s implementation is widely deployed.

 Since the publication of [RFC6824] as an Experimental RFC, experience
 has been gathered by various network researchers and users about the
 operational issues that arise when Multipath TCP is used in today’s
 Internet.

 When the MPTCP working group was created, several use cases for
 Multipath TCP were identified [RFC6182]. Since then, other use cases
 have been proposed and some have been tested and even deployed. We
 describe these use cases in Section 2.

 Section 3 focuses on the operational experience with Multipath TCP.
 Most of this experience comes from the utilization of the Multipath
 TCP implementation in the Linux kernel [MultipathTCP-Linux]. This
 open-source implementation has been downloaded and implemented by
 thousands of users all over the world. Many of these users have
 provided direct or indirect feedback by writing documents (scientific
 articles or blog messages) or posting to the mptcp-dev mailing list
 (see https://listes-2.sipr.ucl.ac.be/sympa/arc/mptcp-dev). This
 Multipath TCP implementation is actively maintained and continuously
 improved. It is used on various types of hosts, ranging from
 smartphones or embedded routers to high-end servers.

 The Multipath TCP implementation in the Linux kernel is not, by far,
 the most widespread deployment of Multipath TCP. Since September
 2013, Multipath TCP is also supported on smartphones and tablets
 beginning with iOS7 [IETFJ]. There are likely hundreds of millions
 of MPTCP-enabled devices. This Multipath TCP implementation is

Bonaventure, et al. Informational [Page 3]

RFC 8041 MPTCP Experience January 2017

 currently only used to support the Siri voice recognition/control
 application. Some lessons learned from this deployment are described
 in [IETFJ].

 Section 3 is organized as follows. Supporting the middleboxes was
 one of the difficult issues in designing the Multipath TCP protocol.
 We explain in Section 3.1 which types of middleboxes the Linux Kernel
 implementation of Multipath TCP supports and how it reacts upon
 encountering these. Section 3.2 summarizes the MPTCP-specific
 congestion controls that have been implemented. Sections 3.3 to 3.7
 discuss heuristics and issues with respect to subflow management as
 well as the scheduling across the subflows. Section 3.8 explains
 some problems that occurred with subflows having different Maximum
 Segment Size (MSS) values. Section 3.9 presents issues with respect
 to content delivery networks and suggests a solution to this issue.
 Finally, Section 3.10 documents an issue with captive portals where
 MPTCP will behave suboptimally.

2. Use Cases

 Multipath TCP has been tested in several use cases. There is already
 an abundant amount of scientific literature on Multipath TCP
 [MPTCPBIB]. Several of the papers published in the scientific
 literature have identified possible improvements that are worth being
 discussed here.

2.1. Datacenters

 A first, although initially unexpected, documented use case for
 Multipath TCP has been in datacenters [HotNets][SIGCOMM11]. Today’s
 datacenters are designed to provide several paths between single-
 homed servers. The multiplicity of these paths comes from the
 utilization of Equal-Cost Multipath (ECMP) and other load-balancing
 techniques inside the datacenter. Most of the deployed load-
 balancing techniques in datacenters rely on hashes computed over the
 five tuple. Thus, all packets from the same TCP connection follow
 the same path: so they are not reordered. The results in [HotNets]
 demonstrate by simulations that Multipath TCP can achieve a better
 utilization of the available network by using multiple subflows for
 each Multipath TCP session. Although [RFC6182] assumes that at least
 one of the communicating hosts has several IP addresses, [HotNets]
 demonstrates that Multipath TCP is beneficial when both hosts are
 single-homed. This idea is analyzed in more details in [SIGCOMM11],
 where the Multipath TCP implementation in the Linux kernel is
 modified to be able to use several subflows from the same IP address.
 Measurements in a public datacenter show the quantitative benefits of
 Multipath TCP [SIGCOMM11] in this environment.

Bonaventure, et al. Informational [Page 4]

RFC 8041 MPTCP Experience January 2017

 Although ECMP is widely used inside datacenters, this is not the only
 environment where there are different paths between a pair of hosts.
 ECMP and other load-balancing techniques such as Link Aggregation
 Groups (LAGs) are widely used in today’s networks; having multiple
 paths between a pair of single-homed hosts is becoming the norm
 instead of the exception. Although these multiple paths often have
 the same cost (from an IGP metrics viewpoint), they do not
 necessarily have the same performance. For example, [IMC13c] reports
 the results of a long measurement study showing that load-balanced
 Internet paths between that same pair of hosts can have huge delay
 differences.

2.2. Cellular/WiFi Offload

 A second use case that has been explored by several network
 researchers is the cellular/WiFi offload use case. Smartphones or
 other mobile devices equipped with two wireless interfaces are a very
 common use case for Multipath TCP. In September 2015, this is also
 the largest deployment of MPTCP-enabled devices [IETFJ]. It has been
 briefly discussed during IETF 88 [IETF88], but there is no published
 paper or report that analyses this deployment. For this reason, we
 only discuss published papers that have mainly used the Multipath TCP
 implementation in the Linux kernel for their experiments.

 The performance of Multipath TCP in wireless networks was briefly
 evaluated in [NSDI12]. One experiment analyzes the performance of
 Multipath TCP on a client with two wireless interfaces. This
 evaluation shows that when the receive window is large, Multipath TCP
 can efficiently use the two available links. However, if the window
 becomes smaller, then packets sent on a slow path can block the
 transmission of packets on a faster path. In some cases, the
 performance of Multipath TCP over two paths can become lower than the
 performance of regular TCP over the best performing path. Two
 heuristics, reinjection and penalization, are proposed in [NSDI12] to
 solve this identified performance problem. These two heuristics have
 since been used in the Multipath TCP implementation in the Linux
 kernel. [CONEXT13] explored the problem in more detail and revealed
 some other scenarios where Multipath TCP can have difficulties in
 efficiently pooling the available paths. Improvements to the
 Multipath TCP implementation in the Linux kernel are proposed in
 [CONEXT13] to cope with some of these problems.

 The first experimental analysis of Multipath TCP in a public wireless
 environment was presented in [Cellnet12]. These measurements explore
 the ability of Multipath TCP to use two wireless networks (real WiFi
 and 3G networks). Three modes of operation are compared. The first
 mode of operation is the simultaneous use of the two wireless
 networks. In this mode, Multipath TCP pools the available resources

Bonaventure, et al. Informational [Page 5]

RFC 8041 MPTCP Experience January 2017

 and uses both wireless interfaces. This mode provides fast handover
 from WiFi to cellular or the opposite when the user moves.
 Measurements presented in [CACM14] show that the handover from one
 wireless network to another is not an abrupt process. When a host
 moves, there are regions where the quality of one of the wireless
 networks is weaker than the other, but the host considers this
 wireless network to still be up. When a mobile host enters such
 regions, its ability to send packets over another wireless network is
 important to ensure a smooth handover. This is clearly illustrated
 from the packet trace discussed in [CACM14].

 Many cellular networks use volume-based pricing; users often prefer
 to use unmetered WiFi networks when available instead of metered
 cellular networks. [Cellnet12] implements support for the MP_PRIO
 option to explore two other modes of operation.

 In the backup mode, Multipath TCP opens a TCP subflow over each
 interface, but the cellular interface is configured in backup mode.
 This implies that data flows only over the WiFi interface when both
 interfaces are considered to be active. If the WiFi interface fails,
 then the traffic switches quickly to the cellular interface, ensuring
 a smooth handover from the user’s viewpoint [Cellnet12]. The cost of
 this approach is that the WiFi and cellular interfaces are likely to
 remain active all the time since all subflows are established over
 the two interfaces.

 The single-path mode is slightly different. This mode benefits from
 the break-before-make capability of Multipath TCP. When an MPTCP
 session is established, a subflow is created over the WiFi interface.
 No packet is sent over the cellular interface as long as the WiFi
 interface remains up [Cellnet12]. This implies that the cellular
 interface can remain idle and battery capacity is preserved. When
 the WiFi interface fails, a new subflow is established over the
 cellular interface in order to preserve the established Multipath TCP
 sessions. Compared to the backup mode described earlier,
 measurements reported in [Cellnet12] indicate that this mode of
 operation is characterized by a throughput drop while the cellular
 interface is brought up and the subflows are reestablished.

 From a protocol viewpoint, [Cellnet12] discusses the problem posed by
 the unreliability of the REMOVE_ADDR option and proposes a small
 protocol extension to allow hosts to reliably exchange this option.
 It would be useful to analyze packet traces to understand whether the
 unreliability of the REMOVE_ADDR option poses an operational problem
 in real deployments.

Bonaventure, et al. Informational [Page 6]

RFC 8041 MPTCP Experience January 2017

 Another study of the performance of Multipath TCP in wireless
 networks was reported in [IMC13b]. This study uses laptops connected
 to various cellular ISPs and WiFi hotspots. It compares various file
 transfer scenarios. [IMC13b] observes that 4-path MPTCP outperforms
 2-path MPTCP, especially for larger files. However, for three
 congestion-control algorithms (LIA, OLIA, and Reno -- see
 Section 3.2), there is no significant performance difference for file
 sizes smaller than 4 MB.

 A different study of the performance of Multipath TCP with two
 wireless networks is presented in [INFOCOM14]. In this study the two
 networks had different qualities: a good network and a lossy network.
 When using two paths with different packet-loss ratios, the Multipath
 TCP congestion-control scheme moves traffic away from the lossy link
 that is considered to be congested. However, [INFOCOM14] documents
 an interesting scenario that is summarized hereafter.

 client ----------- path1 -------- server
 | |
 +--------------- path2 ------------+

 Figure 1: Simple network topology

 Initially, the two paths in Figure 1 have the same quality and
 Multipath TCP distributes the load over both of them. During the
 transfer, the path2 becomes lossy, e.g., because the client moves.
 Multipath TCP detects the packet losses and they are retransmitted
 over path1. This enables the data transfer to continue over this
 path. However, the subflow over path2 is still up and transmits one
 packet from time to time. Although the N packets have been
 acknowledged over the first subflow (at the MPTCP level), they have
 not been acknowledged at the TCP level over the second subflow. To
 preserve the continuity of the sequence numbers over the second
 subflow, TCP will continue to retransmit these segments until either
 they are acknowledged or the maximum number of retransmissions is
 reached. This behavior is clearly inefficient and may lead to
 blocking since the second subflow will consume window space to be
 able to retransmit these packets. [INFOCOM14] proposes a new
 Multipath TCP option to solve this problem. In practice, a new TCP
 option is probably not required. When the client detects that the
 data transmitted over the second subflow has been acknowledged over
 the first subflow, it could decide to terminate the second subflow by
 sending a RST segment. If the interface associated to this subflow
 is still up, a new subflow could be immediately reestablished. It
 would then be immediately usable to send new data and would not be
 forced to first retransmit the previously transmitted data. As of
 this writing, this dynamic management of the subflows is not yet
 implemented in the Multipath TCP implementation in the Linux kernel.

Bonaventure, et al. Informational [Page 7]

RFC 8041 MPTCP Experience January 2017

 Some studies have started to analyze the performance of Multipath TCP
 on smartphones with real applications. In contrast with the bulk
 transfers that are used by many publications, many deployed
 applications do not exchange huge amounts of data and mainly use
 small connections. [COMMAG2016] proposes a software testing
 framework that allows to automate Android applications to study their
 interactions with Multipath TCP. [PAM2016] analyses a one-month
 packet trace of all the packets exchanged by a dozen of smartphones
 utilized by regular users. This analysis reveals that short
 connections are important on smartphones and that the main benefit of
 using Multipath TCP on smartphones is the ability to perform seamless
 handovers between different wireless networks. Long connections
 benefit from these handovers.

2.3. Multipath TCP Proxies

 As Multipath TCP is not yet widely deployed on both clients and
 servers, several deployments have used various forms of proxies. Two
 families of solutions are currently being used or tested.

 A first use case is when an MPTCP-enabled client wants to use several
 interfaces to reach a regular TCP server. A typical use case is a
 smartphone that needs to use both its WiFi and its cellular interface
 to transfer data. Several types of proxies are possible for this use
 case. An HTTP proxy deployed on a MPTCP-capable server would enable
 the smartphone to use Multipath TCP to access regular web servers.
 Obviously, this solution only works for applications that rely on
 HTTP. Another possibility is to use a proxy that can convert any
 Multipath TCP connection into a regular TCP connection. MPTCP-
 specific proxies have been proposed [HotMiddlebox13b] [HAMPEL].

 Another possibility leverages the SOCKS protocol [RFC1928]. SOCKS is
 often used in enterprise networks to allow clients to reach external
 servers. For this, the client opens a TCP connection to the SOCKS
 server that relays it to the final destination. If both the client
 and the SOCKS server use Multipath TCP, but not the final
 destination, then Multipath TCP can still be used on the path between
 the clients and the SOCKS server. At IETF 93, Korea Telecom
 announced that they have deployed (in June 2015) a commercial service
 that uses Multipath TCP on smartphones. These smartphones access
 regular TCP servers through a SOCKS proxy. This enables them to
 achieve throughputs of up to 850 Mbps [KT].

Bonaventure, et al. Informational [Page 8]

RFC 8041 MPTCP Experience January 2017

 Measurements performed with Android smartphones [Mobicom15] show that
 popular applications work correctly through a SOCKS proxy and MPTCP-
 enabled smartphones. Thanks to Multipath TCP, long-lived connections
 can be spread over the two available interfaces. However, for short-
 lived connections, most of the data is sent over the initial subflow
 that is created over the interface corresponding to the default route
 and the second subflow is almost not used [PAM2016].

 A second use case is when Multipath TCP is used by middleboxes,
 typically inside access networks. Various network operators are
 discussing and evaluating solutions for hybrid access networks
 [TR-348]. Such networks arise when a network operator controls two
 different access network technologies, e.g., wired and cellular, and
 wants to combine them to improve the bandwidth offered to the end
 users [HYA-ARCH]. Several solutions are currently investigated for
 such networks [TR-348]. Figure 2 shows the organization of such a
 network. When a client creates a normal TCP connection, it is
 intercepted by the Hybrid CPE (HPCE) that converts it in a Multipath
 TCP connection so that it can use the available access networks (DSL
 and LTE in the example). The Hybrid Access Gateway (HAG) does the
 opposite to ensure that the regular server sees a normal TCP
 connection. Some of the solutions currently discussed for hybrid
 networks use Multipath TCP on the HCPE and the HAG. Other solutions
 rely on tunnels between the HCPE and the HAG [GRE-NOTIFY].

 client --- HCPE ------ DSL ------- HAG --- internet --- server
 | |
 +------- LTE -----------+

 Figure 2: Hybrid Access Network

3. Operational Experience

3.1. Middlebox Interference

 The interference caused by various types of middleboxes has been an
 important concern during the design of the Multipath TCP protocol.
 Three studies on the interactions between Multipath TCP and
 middleboxes are worth discussing.

Bonaventure, et al. Informational [Page 9]

RFC 8041 MPTCP Experience January 2017

 The first analysis appears in [IMC11]. This paper was the main
 motivation for Multipath TCP incorporating various techniques to cope
 with middlebox interference. More specifically, Multipath TCP has
 been designed to cope with middleboxes that:

 o change source or destination addresses

 o change source or destination port numbers

 o change TCP sequence numbers

 o split or coalesce segments

 o remove TCP options

 o modify the payload of TCP segments

 These middlebox interferences have all been included in the MBtest
 suite [MBTest]. This test suite is used in [HotMiddlebox13] to
 verify the reaction of the Multipath TCP implementation in the Linux
 kernel [MultipathTCP-Linux] when faced with middlebox interference.
 The test environment used for this evaluation is a dual-homed client
 connected to a single-homed server. The middlebox behavior can be
 activated on any of the paths. The main results of this analysis
 are:

 o the Multipath TCP implementation in the Linux kernel is not
 affected by a middlebox that performs NAT or modifies TCP sequence
 numbers

 o when a middlebox removes the MP_CAPABLE option from the initial
 SYN segment, the Multipath TCP implementation in the Linux kernel
 falls back correctly to regular TCP

 o when a middlebox removes the DSS option from all data segments,
 the Multipath TCP implementation in the Linux kernel falls back
 correctly to regular TCP

 o when a middlebox performs segment coalescing, the Multipath TCP
 implementation in the Linux kernel is still able to accurately
 extract the data corresponding to the indicated mapping

 o when a middlebox performs segment splitting, the Multipath TCP
 implementation in the Linux kernel correctly reassembles the data
 corresponding to the indicated mapping. [HotMiddlebox13] shows,
 in Figure 4 in Section 3.3, a corner case with segment splitting
 that may lead to a desynchronization between the two hosts.

Bonaventure, et al. Informational [Page 10]

RFC 8041 MPTCP Experience January 2017

 The interactions between Multipath TCP and real deployed middleboxes
 are also analyzed in [HotMiddlebox13]; a particular scenario with the
 FTP Application Level Gateway running on a NAT is described.

 Middlebox interference can also be detected by analyzing packet
 traces on MPTCP-enabled servers. A closer look at the packets
 received on the multipath-tcp.org server [TMA2015] shows that among
 the 184,000 Multipath TCP connections, only 125 of them were falling
 back to regular TCP. These connections originated from 28 different
 client IP addresses. These include 91 HTTP connections and 34 FTP
 connections. The FTP interference is expected since Application
 Level Gateways used for FTP modify the TCP payload and the DSS
 Checksum detects these modifications. The HTTP interference appeared
 only on the direction from server to client and could have been
 caused by transparent proxies deployed in cellular or enterprise
 networks. A longer trace is discussed in [COMCOM2016] and similar
 conclusions about the middlebox interference are provided.

 From an operational viewpoint, knowing that Multipath TCP can cope
 with various types of middlebox interference is important. However,
 there are situations where the network operators need to gather
 information about where a particular middlebox interference occurs.
 The tracebox software [tracebox] described in [IMC13a] is an
 extension of the popular traceroute software that enables network
 operators to check at which hop a particular field of the TCP header
 (including options) is modified. It has been used by several network
 operators to debug various middlebox interference problems.
 Experience with tracebox indicates that supporting the ICMP extension
 defined in [RFC1812] makes it easier to debug middlebox problems in
 IPv4 networks.

 Users of the Multipath TCP implementation have reported some
 experience with middlebox interference. The strangest scenario has
 been a middlebox that accepts the Multipath TCP options in the SYN
 segment but later replaces Multipath TCP options with a TCP EOL
 option [StrangeMbox]. This causes Multipath TCP to perform a
 fallback to regular TCP without any impact on the application.

3.2. Congestion Control

 Congestion control has been an important challenge for Multipath TCP.
 The coupled congestion-control scheme defined in [RFC6356] in an
 adaptation of the NewReno algorithm. A detailed description of this
 coupled algorithm is provided in [NSDI11]. It is the default scheme
 in the Linux implementation of Multipath TCP, but Linux supports
 other schemes.

Bonaventure, et al. Informational [Page 11]

RFC 8041 MPTCP Experience January 2017

 The second congestion-control scheme is OLIA [CONEXT12]. It is also
 an adaptation of the NewReno single path congestion-control scheme to
 support multiple paths. Simulations [CONEXT12] and measurements
 [CONEXT13] have shown that it provides some performance benefits
 compared to the default coupled congestion-control scheme.

 The delay-based scheme proposed in [ICNP12] has also been ported to
 the Multipath TCP implementation in the Linux kernel. It has been
 evaluated by using simulations [ICNP12] and measurements [PaaschPhD].

 BALIA, defined in [BALIA], provides a better balance between TCP
 friendliness, responsiveness, and window oscillation.

 These different congestion-control schemes have been compared in
 several articles. [CONEXT13] and [PaaschPhD] compare these
 algorithms in an emulated environment. The evaluation showed that
 the delay-based congestion-control scheme is less able to efficiently
 use the available links than the three other schemes.

3.3. Subflow Management

 The multipath capability of Multipath TCP comes from the utilization
 of one subflow per path. The Multipath TCP architecture [RFC6182]
 and the protocol specification [RFC6824] define the basic usage of
 the subflows and the protocol mechanisms that are required to create
 and terminate them. However, there are no guidelines on how subflows
 are used during the lifetime of a Multipath TCP session. Most of the
 published experiments with Multipath TCP have been performed in
 controlled environments. Still, based on the experience running them
 and discussions on the mptcp-dev mailing list, interesting lessons
 have been learned about the management of these subflows.

 From a subflow viewpoint, the Multipath TCP protocol is completely
 symmetrical. Both the clients and the server have the capability to
 create subflows. However, in practice, the existing Multipath TCP
 implementations have opted for a strategy where only the client
 creates new subflows. The main motivation for this strategy is that
 often the client resides behind a NAT or a firewall, preventing
 passive subflow openings on the client. Although there are
 environments such as datacenters where this problem does not occur,
 as of this writing, no precise requirement has emerged for allowing
 the server to create new subflows.

Bonaventure, et al. Informational [Page 12]

RFC 8041 MPTCP Experience January 2017

3.4. Implemented Subflow Managers

 The Multipath TCP implementation in the Linux kernel includes several
 strategies to manage the subflows that compose a Multipath TCP
 session. The basic subflow manager is the full-mesh. As the name
 implies, it creates a full-mesh of subflows between the communicating
 hosts.

 The most frequent use case for this subflow manager is a multihomed
 client connected to a single-homed server. In this case, one subflow
 is created for each interface on the client. The current
 implementation of the full-mesh subflow manager is static. The
 subflows are created immediately after the creation of the initial
 subflow. If one subflow fails during the lifetime of the Multipath
 TCP session (e.g., due to excessive retransmissions or the loss of
 the corresponding interface), it is not always reestablished. There
 is ongoing work to enhance the full-mesh path manager to deal with
 such events.

 When the server is multihomed, using the full-mesh subflow manager
 may lead to a large number of subflows being established. For
 example, consider a dual-homed client connected to a server with
 three interfaces. In this case, even if the subflows are only
 created by the client, six subflows will be established. This may be
 excessive in some environments, in particular when the client and/or
 the server have a large number of interfaces. Implementations should
 limit the number of subflows that are used.

 Creating subflows between multihomed clients and servers may
 sometimes lead to operational issues as observed by discussions on
 the mptcp-dev mailing list. In some cases, the network operators
 would like to have a better control on how the subflows are created
 by Multipath TCP [MPTCP-MAX-SUB]. This might require the definition
 of policy rules to control the operation of the subflow manager. The
 two scenarios below illustrate some of these requirements.

 host1 ---------- switch1 ----- host2
 | | |
 +-------------- switch2 --------+

 Figure 3: Simple Switched Network Topology

Bonaventure, et al. Informational [Page 13]

RFC 8041 MPTCP Experience January 2017

 Consider the simple network topology shown in Figure 3. From an
 operational viewpoint, a network operator could want to create two
 subflows between the communicating hosts. From a bandwidth
 utilization viewpoint, the most natural paths are host1-switch1-host2
 and host1-switch2-host2. However, a Multipath TCP implementation
 running on these two hosts may sometimes have difficulties to obtain
 this result.

 To understand the difficulty, let us consider different allocation
 strategies for the IP addresses. A first strategy is to assign two
 subnets: subnetA (resp. subnetB) contains the IP addresses of host1’s
 interface to switch1 (resp. switch2) and host2’s interface to switch1
 (resp. switch2). In this case, a Multipath TCP subflow manager
 should only create one subflow per subnet. To enforce the
 utilization of these paths, the network operator would have to
 specify a policy that prefers the subflows in the same subnet over
 subflows between addresses in different subnets. It should be noted
 that the policy should probably also specify how the subflow manager
 should react when an interface or subflow fails.

 A second strategy is to use a single subnet for all IP addresses. In
 this case, it becomes more difficult to specify a policy that
 indicates which subflows should be established.

 The second subflow manager that is currently supported by the
 Multipath TCP implementation in the Linux kernel is the ndiffport
 subflow manager. This manager was initially created to exploit the
 path diversity that exists between single-homed hosts due to the
 utilization of flow-based load-balancing techniques [SIGCOMM11].
 This subflow manager creates N subflows between the same pair of IP
 addresses. The N subflows are created by the client and differ only
 in the source port selected by the client. It was not designed to be
 used on multihomed hosts.

 A more flexible subflow manager has been proposed, implemented and
 evaluated in [CONEXT15]. This subflow manager exposes various kernel
 events to a user space daemon that decides when subflows need to be
 created and terminated based on various policies.

Bonaventure, et al. Informational [Page 14]

RFC 8041 MPTCP Experience January 2017

3.5. Subflow Destination Port

 The Multipath TCP protocol relies on the token contained in the
 MP_JOIN option to associate a subflow to an existing Multipath TCP
 session. This implies that there is no restriction on the source
 address, destination address and source or destination ports used for
 the new subflow. The ability to use different source and destination
 addresses is key to support multihomed servers and clients. The
 ability to use different destination port numbers is worth discussing
 because it has operational implications.

 For illustration, consider a dual-homed client that creates a second
 subflow to reach a single-homed server as illustrated in Figure 4.

 client ------- r1 --- internet --- server
 | |
 +----------r2-------+

 Figure 4: Multihomed-Client Connected to Single-Homed Server

 When the Multipath TCP implementation in the Linux kernel creates the
 second subflow, it uses the same destination port as the initial
 subflow. This choice is motivated by the fact that the server might
 be protected by a firewall and only accept TCP connections (including
 subflows) on the official port number. Using the same destination
 port for all subflows is also useful for operators that rely on the
 port numbers to track application usage in their network.

 There have been suggestions from Multipath TCP users to modify the
 implementation to allow the client to use different destination ports
 to reach the server. This suggestion seems mainly motivated by
 traffic-shaping middleboxes that are used in some wireless networks.
 In networks where different shaping rates are associated with
 different destination port numbers, this could allow Multipath TCP to
 reach a higher performance. This behavior is valid according to the
 Multipath TCP specification [RFC6824]. An application could use an
 enhanced socket API [SOCKET] to behave in this way.

 However, from an implementation point-of-view supporting different
 destination ports for the same Multipath TCP connection can cause
 some issues. A legacy implementation of a TCP stack creates a
 listening socket to react upon incoming SYN segments. The listening
 socket is handling the SYN segments that are sent on a specific port
 number. Demultiplexing incoming segments can thus be done solely by
 looking at the IP addresses and the port numbers. With Multipath TCP
 however, incoming SYN segments may have an MP_JOIN option with a
 different destination port. This means that all incoming segments

Bonaventure, et al. Informational [Page 15]

RFC 8041 MPTCP Experience January 2017

 that did not match on an existing listening-socket or an already
 established socket must be parsed for an eventual MP_JOIN option.
 This imposes an additional cost on servers, previously not existent
 on legacy TCP implementations.

3.6. Closing Subflows

 client server
 | |
 MPTCP: ESTABLISHED | | MPTCP: ESTABLISHED
 Sub: ESTABLISHED | | Sub: ESTABLISHED
 | |
 | DATA_FIN |
 MPTCP: CLOSE-WAIT | <------------------------ | close() (step 1)
 Sub: ESTABLISHED | DATA_ACK |
 | ------------------------> | MPTCP: FIN-WAIT-2
 | | Sub: ESTABLISHED
 | |
 | DATA_FIN + subflow-FIN |
 close()/shutdown() | ------------------------> | MPTCP: TIME-WAIT
 (step 2) | DATA_ACK | Sub: CLOSE-WAIT
 MPTCP: CLOSED | <------------------------ |
 Sub: FIN-WAIT-2 | |
 | |
 | subflow-FIN |
 MPTCP: CLOSED | <------------------------ | subflow-close()
 Sub: TIME-WAIT | subflow-ACK |
 (step 3) | ------------------------> | MPTCP: TIME-WAIT
 | | Sub: CLOSED
 | |

 Figure 5: Multipath TCP may not be able to avoid time-wait state on
 the subflow (indicated as Sub in the drawing), even if enforced by
 the application on the client-side.

 Figure 5 shows a very particular issue within Multipath TCP. Many
 high-performance applications try to avoid TIME-WAIT state by
 deferring the closure of the connection until the peer has sent a
 FIN. That way, the client on the left of Figure 5 does a passive
 closure of the connection, transitioning from CLOSE-WAIT to Last-ACK
 and finally freeing the resources after reception of the ACK of the
 FIN. An application running on top of an MPTCP-enabled Linux kernel
 might also use this approach. The difference here is that the
 close() of the connection (step 1 in Figure 5) only triggers the

Bonaventure, et al. Informational [Page 16]

RFC 8041 MPTCP Experience January 2017

 sending of a DATA_FIN. Nothing guarantees that the kernel is ready
 to combine the DATA_FIN with a subflow-FIN. The reception of the
 DATA_FIN will make the application trigger the closure of the
 connection (step 2), trying to avoid TIME-WAIT state with this late
 closure. This time, the kernel might decide to combine the DATA_FIN
 with a subflow-FIN. This decision will be fatal, as the subflow’s
 state machine will not transition from CLOSE_WAIT to Last-ACK, but
 rather go through FIN_WAIT-2 into TIME-WAIT state. The TIME-WAIT
 state will consume resources on the host for at least 2 MSL (Maximum
 Segment Lifetime). Thus, a smart application that tries to avoid
 TIME-WAIT state by doing late closure of the connection actually ends
 up with one of its subflows in TIME-WAIT state. A high-performance
 Multipath TCP kernel implementation should honor the desire of the
 application to do passive closure of the connection and successfully
 avoid TIME-WAIT state -- even on the subflows.

 The solution to this problem lies in an optimistic assumption that a
 host doing active-closure of a Multipath TCP connection by sending a
 DATA_FIN will soon also send a FIN on all its subflows. Thus, the
 passive closer of the connection can simply wait for the peer to send
 exactly this FIN -- enforcing passive closure even on the subflows.
 Of course, to avoid consuming resources indefinitely, a timer must
 limit the time our implementation waits for the FIN.

3.7. Packet Schedulers

 In a Multipath TCP implementation, the packet scheduler is the
 algorithm that is executed when transmitting each packet to decide on
 which subflow it needs to be transmitted. The packet scheduler
 itself does not have any impact on the interoperability of Multipath
 TCP implementations. However, it may clearly impact the performance
 of Multipath TCP sessions. The Multipath TCP implementation in the
 Linux kernel supports a pluggable architecture for the packet
 scheduler [PaaschPhD]. As of this writing, two schedulers have been
 implemented: round-robin and lowest-rtt-first. The second scheduler
 relies on the round-trip time (rtt) measured on each TCP subflow and
 sends first segments over the subflow having the lowest round-trip
 time. They are compared in [CSWS14]. The experiments and
 measurements described in [CSWS14] show that the lowest-rtt-first
 scheduler appears to be the best compromise from a performance
 viewpoint. Another study of the packet schedulers is presented in
 [PAMS2014]. This study relies on simulations with the Multipath TCP
 implementation in the Linux kernel. They compare the lowest-rtt-
 first with the round-robin and a random scheduler. They show some
 situations where the lowest-rtt-first scheduler does not perform as
 well as the other schedulers, but there are many scenarios where the

Bonaventure, et al. Informational [Page 17]

RFC 8041 MPTCP Experience January 2017

 opposite is true. [PAMS2014] notes that "it is highly likely that
 the optimal scheduling strategy depends on the characteristics of the
 paths being used."

3.8. Segment Size Selection

 When an application performs a write/send system call, the kernel
 allocates a packet buffer (sk_buff in Linux) to store the data the
 application wants to send. The kernel will store at most one MSS
 (Maximum Segment Size) of data per buffer. As the MSS can differ
 amongst subflows, an MPTCP implementation must select carefully the
 MSS used to generate application data. The Linux kernel
 implementation had various ways of selecting the MSS: minimum or
 maximum amongst the different subflows. However, these heuristics of
 MSS selection can cause significant performance issues in some
 environments. Consider the following example. An MPTCP connection
 has two established subflows that respectively use an MSS of 1420 and
 1428 bytes. If MPTCP selects the maximum, then the application will
 generate segments of 1428 bytes of data. An MPTCP implementation
 will have to split the segment in two (1420-byte and 8-byte) segments
 when pushing on the subflow with the smallest MSS. The latter
 segment will introduce a large overhead as this single data segment
 will use 2 slots in the congestion window (in packets) therefore
 reducing by roughly twice the potential throughput (in bytes/s) of
 this subflow. Taking the smallest MSS does not solve the issue as
 there might be a case where the subflow with the smallest MSS only
 sends a few packets, therefore reducing the potential throughput of
 the other subflows.

 The Linux implementation recently took another approach [DetalMSS].
 Instead of selecting the minimum and maximum values, it now
 dynamically adapts the MSS based on the contribution of all the
 subflows to the connection’s throughput. For each subflow, it
 computes the potential throughput achieved by selecting each MSS
 value and by taking into account the lost space in the congestion
 window. It then selects the MSS that allows to achieve the highest
 potential throughput.

 Given the prevalence of middleboxes that clamp the MSS, Multipath TCP
 implementations must be able to efficiently support subflows with
 different MSS values. The strategy described above is a possible
 solution to this problem.

Bonaventure, et al. Informational [Page 18]

RFC 8041 MPTCP Experience January 2017

3.9. Interactions with the Domain Name System

 Multihomed clients such as smartphones can send DNS queries over any
 of their interfaces. When a single-homed client performs a DNS
 query, it receives from its local resolver the best answer for its
 request. If the client is multihomed, the answer in response to the
 DNS query may vary with the interface over which it has been sent.

 cdn1
 |
 client -- cellular -- internet -- cdn3
 | |
 +----- wifi --------+
 |
 cdn2

 Figure 6: Simple Network Topology

 If the client sends a DNS query over the WiFi interface, the answer
 will point to the cdn2 server while the same request sent over the
 cellular interface will point to the cdn1 server. This might cause
 problems for CDN providers that locate their servers inside ISP
 networks and have contracts that specify that the CDN server will
 only be accessed from within this particular ISP. Assume now that
 both the client and the CDN servers support Multipath TCP. In this
 case, a Multipath TCP session from cdn1 or cdn2 would potentially use
 both the cellular network and the WiFi network. Serving the client
 from cdn2 over the cellular interface could violate the contract
 between the CDN provider and the network operators. A similar
 problem occurs with regular TCP if the client caches DNS replies.
 For example, the client obtains a DNS answer over the cellular
 interface and then stops this interface and starts to use its WiFi
 interface. If the client retrieves data from cdn1 over its WiFi
 interface, this may also violate the contract between the CDN and the
 network operators.

 A possible solution to prevent this problem would be to modify the
 DNS resolution on the client. The client subnet Extension Mechanisms
 for DNS (EDNS) defined in [RFC7871] could be used for this purpose.
 When the client sends a DNS query from its WiFi interface, it should
 also send the client subnet corresponding to the cellular interface
 in this request. This would indicate to the resolver that the answer
 should be valid for both the WiFi and the cellular interfaces (e.g.,
 the cdn3 server).

Bonaventure, et al. Informational [Page 19]

RFC 8041 MPTCP Experience January 2017

3.10. Captive Portals

 Multipath TCP enables a host to use different interfaces to reach a
 server. In theory, this should ensure connectivity when at least one
 of the interfaces is active. However, in practice, there are some
 particular scenarios with captive portals that may cause operational
 problems. The reference environment is shown in Figure 7.

 client ----- network1
 |
 +------- internet ------------- server

 Figure 7: Issue with Captive Portal

 The client is attached to two networks: network1 that provides
 limited connectivity and the entire Internet through the second
 network interface. In practice, this scenario corresponds to an open
 WiFi network with a captive portal for network1 and a cellular
 service for the second interface. On many smartphones, the WiFi
 interface is preferred over the cellular interface. If the
 smartphone learns a default route via both interfaces, it will
 typically prefer to use the WiFi interface to send its DNS request
 and create the first subflow. This is not optimal with Multipath
 TCP. A better approach would probably be to try a few attempts on
 the WiFi interface and then, upon failure of these attempts, try to
 use the second interface for the initial subflow as well.

3.11. Stateless Webservers

 MPTCP has been designed to interoperate with webservers that benefit
 from SYN-cookies to protect against SYN-flooding attacks [RFC4987].
 MPTCP achieves this by echoing the keys negotiated during the
 MP_CAPABLE handshake in the third ACK of the three-way handshake.
 Reception of this third ACK then allows the server to reconstruct the
 state specific to MPTCP.

 However, one caveat to this mechanism is the unreliable nature of the
 third ACK. Indeed, when the third ACK gets lost, the server will not
 be able to reconstruct the MPTCP state. MPTCP will fall back to
 regular TCP in this case. This is in contrast to regular TCP. When
 the client starts sending data, the first data segment also includes
 the SYN-cookie, which allows the server to reconstruct the TCP-state.
 Further, this data segment will be retransmitted by the client in
 case it gets lost and thus is resilient against loss. MPTCP does not
 include the keys in this data segment and thus the server cannot
 reconstruct the MPTCP state.

Bonaventure, et al. Informational [Page 20]

RFC 8041 MPTCP Experience January 2017

 This issue might be considered as a minor one for MPTCP. Losing the
 third ACK should only happen when packet loss is high; in this case,
 MPTCP provides a lot of benefits as it can move traffic away from the
 lossy link. It is undesirable that MPTCP has a higher chance to fall
 back to regular TCP in those lossy environments.

 [MPTCP-DEPLOY] discusses this issue and suggests a modified handshake
 mechanism that ensures reliable delivery of the MP_CAPABLE, following
 the three-way handshake. This modification will make MPTCP reliable,
 even in lossy environments when servers need to use SYN-cookies to
 protect against SYN-flooding attacks.

3.12. Load-Balanced Server Farms

 Large-scale server farms typically deploy thousands of servers behind
 a single virtual IP (VIP). Steering traffic to these servers is done
 through Layer 4 load-balancers that ensure that a TCP-flow will
 always be routed to the same server [Presto08].

 As Multipath TCP uses multiple different TCP subflows to steer the
 traffic across the different paths, load-balancers need to ensure
 that all these subflows are routed to the same server. This implies
 that the load-balancers need to track the MPTCP-related state,
 allowing them to parse the token in the MP_JOIN and assign those
 subflows to the appropriate server. However, server farms typically
 deploy several load-balancers for reliability and capacity reasons.
 As a TCP subflow might get routed to any of these load-balancers,
 they would need to synchronize the MPTCP-related state -- a solution
 that is not feasible on a large scale.

 The token (carried in the MP_JOIN) contains the information
 indicating to which MPTCP-session the subflow belongs. As the token
 is a hash of the key, servers are not able to generate the token in
 such a way that the token can provide the necessary information to
 the load-balancers, which would allow them to route TCP subflows to
 the appropriate server. [MPTCP-LOAD] discusses this issue in detail
 and suggests two alternative MP_CAPABLE handshakes to overcome these.

4. Security Considerations

 This informational document discusses use cases and operational
 experience with Multipath TCP. An extensive analysis of the
 remaining security issues in the Multipath TCP specification has been
 published in [RFC7430], together with suggestions for possible
 solutions.

Bonaventure, et al. Informational [Page 21]

RFC 8041 MPTCP Experience January 2017

 From a security viewpoint, it is important to note that Multipath
 TCP, like other multipath solutions such as SCTP, has the ability to
 send packets belonging to a single connection over different paths.
 This design feature of Multipath TCP implies that middleboxes that
 have been deployed on-path assuming that they would observe all the
 packets exchanged for a given connection in both directions may not
 function correctly anymore. A typical example are firewalls,
 Intrusion Detection System (IDS) or deep packet inspections (DPIs)
 deployed in enterprise networks. Those devices expect to observe all
 the packets from all TCP connections. With Multipath TCP, those
 middleboxes may not observe anymore all packets since some of them
 may follow a different path. The two examples below illustrate
 typical deployments of such middleboxes. The first example,
 Figure 8, shows an MPTCP-enabled smartphone attached to both an
 enterprise and a cellular network. If a Multipath TCP connection is
 established by the smartphone towards a server, some of the packets
 sent by the smartphone or the server may be transmitted over the
 cellular network and thus be invisible for the enterprise middlebox.

 smartphone +----- enterprise net --- MBox----+------ server
 | |
 +----- cellular net -------------+

 Figure 8: Enterprise Middlebox May Not Observe
 All Packets from Multihomed Host

 The second example, Figure 9, shows a possible issue when multiple
 middleboxes are deployed inside a network. For simplicity, we assume
 that network1 is the default IPv4 path while network2 is the default
 IPv6 path. A similar issue could occur with per-flow load-balancing
 such as ECMP [RFC2992]. With regular TCP, all packets from each
 connection would either pass through Mbox1 or Mbox2. With Multipath
 TCP, the client can easily establish a subflow over network1 and
 another over network2 and each middlebox would only observe a part of
 the traffic of the end-to-end Multipath TCP connection.

 client ----R-- network1 --- MBox1 -----R------------- server
 | |
 +-- network2 --- MBox2 -----+

 Figure 9: Interactions between
 Load-Balancing and Security Middleboxes

 In these two cases, it is possible for an attacker to evade some
 security measures operating on the TCP byte stream and implemented on
 the middleboxes by controlling the bytes that are actually sent over
 each subflow and there are tools that ease those kinds of evasion
 [PZ15] [PT14]. This is not a security issue for Multipath TCP itself

Bonaventure, et al. Informational [Page 22]

RFC 8041 MPTCP Experience January 2017

 since Multipath TCP behaves correctly. However, this demonstrates
 the difficulty of enforcing security policies by relying only on
 on-path middleboxes instead of enforcing them directly on the
 endpoints.

5. References

5.1. Normative References

 [RFC6182] Ford, A., Raiciu, C., Handley, M., Barre, S., and J.
 Iyengar, "Architectural Guidelines for Multipath TCP
 Development", RFC 6182, DOI 10.17487/RFC6182, March 2011,
 <http://www.rfc-editor.org/info/rfc6182>.

 [RFC6824] Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
 "TCP Extensions for Multipath Operation with Multiple
 Addresses", RFC 6824, DOI 10.17487/RFC6824, January 2013,
 <http://www.rfc-editor.org/info/rfc6824>.

5.2. Informative References

 [BALIA] Peng, Q., Walid, A., Hwang, J., and S. Low, "Multipath
 TCP: analysis, design, and implementation", IEEE/ACM
 Trans. on Networking (TON), Volume 24, Issue 1, February
 2016.

 [CACM14] Paasch, C. and O. Bonaventure, "Multipath TCP",
 Communications of the ACM, 57(4):51-57, April 2014,
 <http://inl.info.ucl.ac.be/publications/multipath-tcp>.

 [Cellnet12]
 Paasch, C., Detal, G., Duchene, F., Raiciu, C., and O.
 Bonaventure, "Exploring Mobile/WiFi Handover with
 Multipath TCP", ACM SIGCOMM workshop on Cellular
 Networks (Cellnet12), August 2012,
 <http://inl.info.ucl.ac.be/publications/
 exploring-mobilewifi-handover-multipath-tcp>.

 [COMCOM2016]
 Tran, V., De Coninck, Q., Hesmans, B., Sadre, R., and O.
 Bonaventure, "Observing real Multipath TCP traffic",
 Computer Communications, DOI 10.1016/j.comcom.2016.01.014,
 April 2016, <http://inl.info.ucl.ac.be/publications/
 observing-real-multipath-tcp-traffic>.

Bonaventure, et al. Informational [Page 23]

RFC 8041 MPTCP Experience January 2017

 [COMMAG2016]
 De Coninck, Q., Baerts, M., Hesmans, B., and O.
 Bonaventure, "Observing Real Smartphone Applications over
 Multipath TCP", IEEE Communications Magazine Network
 Testing Series, 54(3), March 2016,
 <http://inl.info.ucl.ac.be/publications/observing-real-
 smartphone-applications-over-multipath-tcp>.

 [CONEXT12] Khalili, R., Gast, N., Popovic, M., Upadhyay, U., and J.
 Leboudec, "MPTCP is not Pareto-Optimal: Performance Issues
 and a Possible Solution", CoNEXT ’12: Proceedings of the
 8th international conference on Emerging networking
 experiments and technologies, DOI 10.1145/2413176.2413178,
 December 2012.

 [CONEXT13] Paasch, C., Khalili, R., and O. Bonaventure, "On the
 Benefits of Applying Experimental Design to Improve
 Multipath TCP", Conference on emerging Networking
 EXperiments and Technologies (CoNEXT),
 DOI 10.1145/2535372.2535403, December 2013,
 <http://inl.info.ucl.ac.be/publications/benefits-applying-
 experimental-design-improve-multipath-tcp>.

 [CONEXT15] Hesmans, B., Detal, G., Barre, S., Bauduin, R., and O.
 Bonaventure, "SMAPP: Towards Smart Multipath TCP-enabled
 APPlications", Proc. Conext 2015, Heidelberg, Germany,
 December 2015, <http://inl.info.ucl.ac.be/publications/
 smapp-towards-smart-multipath-tcp-enabled-applications>.

 [CSWS14] Paasch, C., Ferlin, S., Alay, O., and O. Bonaventure,
 "Experimental evaluation of multipath TCP schedulers",
 CSWS ’14: Proceedings of the 2014 ACM SIGCOMM workshop on
 Capacity sharing workshop, DOI 10.1145/2630088.2631977,
 August 2014.

 [DetalMSS] Detal, G., "dynamically adapt mss value", Post on the
 mptcp-dev mailing list, September 2014,
 <https://listes-2.sipr.ucl.ac.be/sympa/arc/mptcp-dev/
 2014-09/msg00130.html>.

 [FreeBSD-MPTCP]
 Williams, N., "Multipath TCP For FreeBSD Kernel Patch
 v0.5", <http://caia.swin.edu.au/urp/newtcp/mptcp>.

Bonaventure, et al. Informational [Page 24]

RFC 8041 MPTCP Experience January 2017

 [GRE-NOTIFY]
 Leymann, N., Heidemann, C., Wasserman, M., Xue, L., and M.
 Zhang, "GRE Notifications for Hybrid Access", Work in
 Progress, draft-lhwxz-gre-notifications-hybrid-access-01,
 January 2015.

 [HAMPEL] Hampel, G., Rana, A., and T. Klein, "Seamless TCP mobility
 using lightweight MPTCP proxy", MobiWac ’13: Proceedings
 of the 11th ACM international symposium on Mobility
 management and wireless access,
 DOI 10.1145/2508222.2508226, November 2013.

 [HotMiddlebox13]
 Hesmans, B., Duchene, F., Paasch, C., Detal, G., and O.
 Bonaventure, "Are TCP Extensions Middlebox-proof?", CoNEXT
 workshop Hot Middlebox, December 2013,
 <http://inl.info.ucl.ac.be/publications/
 are-tcp-extensions-middlebox-proof>.

 [HotMiddlebox13b]
 Detal, G., Paasch, C., and O. Bonaventure, "Multipath in
 the Middle(Box)", HotMiddlebox ’13, December 2013,
 <http://inl.info.ucl.ac.be/publications/
 multipath-middlebox>.

 [HotNets] Raiciu, C., Pluntke, C., Barre, S., Greenhalgh, A.,
 Wischik, D., and M. Handley, "Data center networking with
 multipath TCP", Hotnetx-IX: Proceedings of the 9th ACM
 SIGCOMM Workshop on Hot Topics in Networks Article No. 10,
 DOI 10.1145/1868447.1868457, October 2010,
 <http://doi.acm.org/10.1145/1868447.1868457>.

 [HYA-ARCH] Leymann, N., Heidemann, C., Wasserman, M., Xue, L., and M.
 Zhang, "Hybrid Access Network Architecture", Work in
 Progress, draft-lhwxz-hybrid-access-network-
 architecture-02, January 2015.

 [ICNP12] Cao, Y., Xu, M., and X. Fu, "Delay-based congestion
 control for multipath TCP", 20th IEEE International
 Conference on Network Protocols (INCP),
 DOI 10.1109/ICNP.2012.6459978, October 2012.

 [IETF88] Stewart, L., "IETF 88 Meeting minutes of the MPTCP working
 group", November 2013, <https://www.ietf.org/proceedings/
 88/minutes/minutes-88-mptcp>.

Bonaventure, et al. Informational [Page 25]

RFC 8041 MPTCP Experience January 2017

 [IETFJ] Bonaventure, O. and S. Seo, "Multipath TCP Deployments",
 IETF Journal, Vol. 12, Issue 2, November 2016.

 [IMC11] Honda, M., Nishida, Y., Raiciu, C., Greenhalgh, A.,
 Handley, M., and H. Tokuda, "Is it still possible to
 extend TCP?", IMC ’11: Proceedings of the 2011 ACM SIGCOMM
 conference on Internet measurement conference,
 DOI 10.1145/2068816.2068834, November 2011,
 <http://doi.acm.org/10.1145/2068816.2068834>.

 [IMC13a] Detal, G., Hesmans, B., Bonaventure, O., Vanaubel, Y., and
 B. Donnet, "Revealing Middlebox Interference with
 Tracebox", Proceedings of the 2013 ACM SIGCOMM conference
 on Internet measurement conference,
 DOI 10.1145/2504730.2504757, October 2013,
 <http://inl.info.ucl.ac.be/publications/
 revealing-middlebox-interference-tracebox>.

 [IMC13b] Chen, Y., Lim, Y., Gibbens, R., Nahum, E., Khalili, R.,
 and D. Towsley, "A measurement-based study of MultiPath
 TCP performance over wireless network", ICM ’13:
 Proceedings of the 2013 conference on Internet
 measurement conference, DOI 10.1145/2504730.2504751,
 October 2013,
 <http://doi.acm.org/10.1145/2504730.2504751>.

 [IMC13c] Pelsser, C., Cittadini, L., Vissicchio, S., and R. Bush,
 "From Paris to Tokyo: on the suitability of ping to
 measure latency", IMC ’13: Proceedings of the 2013
 conference on Internet measurement Conference,
 DOI 10.1145/2504730.2504765, October 2013,
 <http://doi.acm.org/10.1145/2504730.2504765>.

 [INFOCOM14]
 Lim, Y., Chen, Y., Nahum, E., Towsley, D., and K. Lee,
 "Cross-layer path management in multi-path transport
 protocol for mobile devices", IEEE INFOCOM’14,
 DOI 10.1109/INFOCOM.2014.6848120, April 2014.

 [KT] Seo, S., "KT’s GiGA LTE", July 2015,
 <https://www.ietf.org/proceedings/93/slides/
 slides-93-mptcp-3.pdf>.

 [MBTest] Hesmans, B., "MBTest", October 2013,
 <https://bitbucket.org/bhesmans/mbtest>.

Bonaventure, et al. Informational [Page 26]

RFC 8041 MPTCP Experience January 2017

 [Mobicom15]
 De Coninck, Q., Baerts, M., Hesmans, B., and O.
 Bonaventure, "Poster - Evaluating Android Applications
 with Multipath TCP", Mobicom 2015 (Poster),
 DOI 10.1145/2789168.2795165, September 2015.

 [MPTCP-DEPLOY]
 Paasch, C., Biswas, A., and D. Haas, "Making Multipath TCP
 robust for stateless webservers", Work in Progress,
 draft-paasch-mptcp-syncookies-02, October 2015.

 [MPTCP-LOAD]
 Paasch, C., Greenway, G., and A. Ford, "Multipath TCP
 behind Layer-4 loadbalancers", Work in Progress,
 draft-paasch-mptcp-loadbalancer-00, September 2015.

 [MPTCP-MAX-SUB]
 Boucadair, M. and C. Jacquenet, "Negotiating the Maximum
 Number of Multipath TCP (MPTCP) Subflows", Work in
 Progress draft-boucadair-mptcp-max-subflow-02, May 2016.

 [MPTCPBIB] Bonaventure, O., "Multipath TCP - Annotated bibliography",
 Technical report, April 2015,
 <https://github.com/obonaventure/mptcp-bib>.

 [MultipathTCP-Linux]
 Paasch, C., Barre, S., and . et al, "Multipath TCP - Linux
 Kernel implementation", <http://www.multipath-tcp.org>.

 [NSDI11] Wischik, D., Raiciu, C., Greenhalgh, A., and M. Handley,
 "Design, implementation and evaluation of congestion
 control for multipath TCP", NSDI11: In Proceedings of the
 8th USENIX conference on Networked systems design
 and implementation, 2011.

 [NSDI12] Raiciu, C., Paasch, C., Barre, S., Ford, A., Honda, M.,
 Duchene, F., Bonaventure, O., and M. Handley, "How Hard
 Can It Be? Designing and Implementing a Deployable
 Multipath TCP", NSDI ’12: USENIX Symposium of Networked
 Systems Design and implementation, April 2012,
 <http://inl.info.ucl.ac.be/publications/how-hard-can-it-
 be-designing-and-implementing-deployable-multipath-tcp>.

 [PaaschPhD]
 Paasch, C., "Improving Multipath TCP", Ph.D. Thesis ,
 November 2014, <http://inl.info.ucl.ac.be/publications/
 improving-multipath-tcp>.

Bonaventure, et al. Informational [Page 27]

RFC 8041 MPTCP Experience January 2017

 [PAM2016] De Coninck, Q., Baerts, M., Hesmans, B., and O.
 Bonaventure, "A First Analysis of Multipath TCP on
 Smartphones", 17th International Passive and Active
 Measurements Conference (PAM2016) volume 17, March 2016,
 <http://inl.info.ucl.ac.be/publications/
 first-analysis-multipath-tcp-smartphones>.

 [PAMS2014] Arzani, B., Gurney, A., Cheng, S., Guerin, R., and B. Loo,
 "Impact of Path Selection and Scheduling Policies on MPTCP
 Performance", PAMS2014, DOI 10.1109/WAINA.2014.121, May
 2014.

 [Presto08] Greenberg, A., Lahiri, P., Maltz, D., Patel, P., and S.
 Sengupta, "Towards a next generation data center
 architecture: scalability and commoditization", ACM
 PRESTO 2008, DOI 10.1145/1397718.1397732, August 2008,
 <http://dl.acm.org/citation.cfm?id=1397732>.

 [PT14] Pearce, C. and P. Thomas, "Multipath TCP Breaking Today’s
 Networks with Tomorrow’s Protocols", Proc.
 Blackhat Briefings, 2014, <http://www.blackhat.com/docs/
 us-14/materials/us-14-Pearce-Multipath-TCP-Breaking-
 Todays-Networks-With-Tomorrows-Protocols-WP.pdf>.

 [PZ15] Pearce, C. and S. Zeadally, "Ancillary Impacts of
 Multipath TCP on Current and Future Network Security",
 IEEE Internet Computing, vol. 19, no. 5, pp. 58-65,
 DOI 10.1109/MIC.2015.70, September 2015.

 [RFC1812] Baker, F., Ed., "Requirements for IP Version 4 Routers",
 RFC 1812, DOI 10.17487/RFC1812, June 1995,
 <http://www.rfc-editor.org/info/rfc1812>.

 [RFC1928] Leech, M., Ganis, M., Lee, Y., Kuris, R., Koblas, D., and
 L. Jones, "SOCKS Protocol Version 5", RFC 1928,
 DOI 10.17487/RFC1928, March 1996,
 <http://www.rfc-editor.org/info/rfc1928>.

 [RFC2992] Hopps, C., "Analysis of an Equal-Cost Multi-Path
 Algorithm", RFC 2992, DOI 10.17487/RFC2992, November 2000,
 <http://www.rfc-editor.org/info/rfc2992>.

 [RFC4987] Eddy, W., "TCP SYN Flooding Attacks and Common
 Mitigations", RFC 4987, DOI 10.17487/RFC4987, August 2007,
 <http://www.rfc-editor.org/info/rfc4987>.

Bonaventure, et al. Informational [Page 28]

RFC 8041 MPTCP Experience January 2017

 [RFC6356] Raiciu, C., Handley, M., and D. Wischik, "Coupled
 Congestion Control for Multipath Transport Protocols",
 RFC 6356, DOI 10.17487/RFC6356, October 2011,
 <http://www.rfc-editor.org/info/rfc6356>.

 [RFC7430] Bagnulo, M., Paasch, C., Gont, F., Bonaventure, O., and C.
 Raiciu, "Analysis of Residual Threats and Possible Fixes
 for Multipath TCP (MPTCP)", RFC 7430,
 DOI 10.17487/RFC7430, July 2015,
 <http://www.rfc-editor.org/info/rfc7430>.

 [RFC7871] Contavalli, C., van der Gaast, W., Lawrence, D., and W.
 Kumari, "Client Subnet in DNS Queries", RFC 7871,
 DOI 10.17487/RFC7871, May 2016,
 <http://www.rfc-editor.org/info/rfc7871>.

 [SIGCOMM11]
 Raiciu, C., Barre, S., Pluntke, C., Greenhalgh, A.,
 Wischik, D., and M. Handley, "Improving datacenter
 performance and robustness with multipath TCP", SIGCOMM
 ’11: Proceedings of the ACM SIGCOMM 2011 conference,
 DOI 10.1145/2018436.2018467, August 2011,
 <http://doi.acm.org/10.1145/2018436.2018467>.

 [SOCKET] Hesmans, B. and O. Bonaventure, "An enhanced socket API
 for Multipath TCP", Proceedings of the 2016 Applied
 Networking Research Workshop, DOI 10.1145/2959424.2959433,
 July 2016, <http://doi.acm.org/10.1145/2959424.2959433>.

 [StrangeMbox]
 Bonaventure, O., "Multipath TCP through a strange
 middlebox", Blog post, January 2015,
 <http://blog.multipath-tcp.org/blog/html/2015/01/30/
 multipath_tcp_through_a_strange_middlebox.html>.

 [TMA2015] Hesmans, B., Tran Viet, H., Sadre, R., and O. Bonaventure,
 "A First Look at Real Multipath TCP Traffic", Traffic
 Monitoring and Analysis, 2015,
 <http://inl.info.ucl.ac.be/publications/
 first-look-real-multipath-tcp-traffic>.

 [TR-348] Broadband Forum, ., "TR 348 - Hybrid Access Broadband
 Network Architecture", Issue: 1, July 2016,
 <https://www.broadband-forum.org/technical/download/
 TR-348.pdf>.

Bonaventure, et al. Informational [Page 29]

RFC 8041 MPTCP Experience January 2017

 [tracebox] Detal, G. and O. Tilmans, "Tracebox: A Middlebox Detection
 Tool", 2013, <http://www.tracebox.org>.

Acknowledgements

 This work was partially supported by the FP7-Trilogy2 project. We
 would like to thank all the implementers and users of the Multipath
 TCP implementation in the Linux kernel. This document has benefited
 from the comments of John Ronan, Yoshifumi Nishida, Phil Eardley,
 Jaehyun Hwang, Mirja Kuehlewind, Benoit Claise, Jari Arkko, Qin Wu,
 Spencer Dawkins, and Ben Campbell.

Authors’ Addresses

 Olivier Bonaventure
 UCLouvain

 Email: Olivier.Bonaventure@uclouvain.be

 Christoph Paasch
 Apple, Inc.

 Email: cpaasch@apple.com

 Gregory Detal
 Tessares

 Email: Gregory.Detal@tessares.net

Bonaventure, et al. Informational [Page 30]

