
Internet Engineering Task Force (IETF) R. Kisteleki
Request for Comments: 7909 RIPE NCC
Updates: 2622, 4012 B. Haberman
Category: Standards Track JHU APL
ISSN: 2070-1721 June 2016

 Securing Routing Policy Specification Language (RPSL) Objects
 with Resource Public Key Infrastructure (RPKI) Signatures

Abstract

 This document describes a method that allows parties to
 electronically sign Routing Policy Specification Language objects and
 validate such electronic signatures. This allows relying parties to
 detect accidental or malicious modifications of such objects. It
 also allows parties who run Internet Routing Registries or similar
 databases, but do not yet have authentication (based on Routing
 Policy System Security) of the maintainers of certain objects, to
 verify that the additions or modifications of such database objects
 are done by the legitimate holder(s) of the Internet resources
 mentioned in those objects. This document updates RFCs 2622 and 4012
 to add the signature attribute to supported RPSL objects.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7909.

Kisteleki & Haberman Standards Track [Page 1]

RFC 7909 Securing RPSL June 2016

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Signature Syntax and Semantics 4
 2.1. General Attributes and Meta Information 4
 2.2. Signed Attributes . 5
 2.3. Storage of the Signature Data 6
 2.4. Number Resource Coverage 6
 2.5. Validity Time of the Signature 6
 3. Signature Creation and Validation Steps 6
 3.1. Canonicalization . 6
 3.2. Signature Creation 8
 3.3. Signature Validation 9
 4. Signed Object Types and Set of Signed Attributes 9
 5. Keys and Certificates Used for Signature and Verification . . 11
 6. Security Considerations 12
 7. References . 12
 7.1. Normative References 12
 7.2. Informative References 14
 Acknowledgements . 14
 Authors’ Addresses . 14

Kisteleki & Haberman Standards Track [Page 2]

RFC 7909 Securing RPSL June 2016

1. Introduction

 Objects stored in resource databases, like the RIPE DB, are generally
 protected by an authentication mechanism: anyone creating or
 modifying an object in the database has to have proper authorization
 to do so, and therefore has to go through an authentication procedure
 (provide a password, certificate, email signature, etc.). However,
 for objects transferred between resource databases, the
 authentication is not guaranteed. This means that when a Routing
 Policy Specification Language (RPSL) object is downloaded from a
 database, the consumer can reasonably claim that the object is
 authentic if it was locally created, but cannot make the same claim
 for an object imported from a different database. Also, once such an
 object is downloaded from the database, it becomes a simple (but
 still structured) text file with no integrity protection. More
 importantly, the authentication and integrity guarantees associated
 with these objects do not always ensure that the entity that
 generated them is authorized to make the assertions implied by the
 data contained in the objects.

 A potential use for resource certificates [RFC6487] is to use them to
 secure such (both imported and downloaded) database objects, by
 applying a digital signature over the object contents in lieu of
 methods such as Routing Policy System Security [RFC2725]. The signer
 of such signed database objects MUST possess a relevant resource
 certificate, which shows him/her as the legitimate holder of an
 Internet number resource. This mechanism allows the users of such
 database objects to verify that the contents are in fact produced by
 the legitimate holder(s) of the Internet resources mentioned in those
 objects. It also allows the signatures to cover whole RPSL objects,
 or just selected attributes of them. In other words, a digital
 signature created using the private key associated with a resource
 certificate can offer object security in addition to the channel
 security already present in most resource databases. Object security
 in turn allows such objects to be hosted in different databases and
 still be independently verifiable.

 While the approach outlined in this document mandates the use of the
 Resource Public Key Infrastructure (RPKI) for certificate
 distribution, it is not dependent upon the RPKI for correct
 functionality. Equivalent functionality can be achieved with a more
 traditional Certification Authority (CA), using the extensions
 described in [RFC3779] within the certificates, and the appropriate
 trust anchor material to verify the digital signature.

Kisteleki & Haberman Standards Track [Page 3]

RFC 7909 Securing RPSL June 2016

 The capitalized key words "MUST", "MUST NOT", "REQUIRED", "SHALL",
 "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

2. Signature Syntax and Semantics

 When signing an RPSL object [RFC2622] [RFC4012], the input for the
 signature process is transformed into a sequence of strings of ASCII
 data. The approach is similar to the one used in Domain Key
 Identified Mail (DKIM) [RFC6376]. In the case of RPSL, the object to
 be signed closely resembles an SMTP header, so it seems reasonable to
 adapt DKIM’s relevant features.

2.1. General Attributes and Meta Information

 The digital signature associated with an RPSL object is itself a new
 attribute named "signature". It consists of mandatory and optional
 fields. These fields are structured in a sequence of name and value
 pairs, separated by a semicolon ";" and a whitespace. Collectively,
 these fields make up the value for the new "signature" attribute.
 The "name" part of such a component is always a single ASCII
 character that serves as an identifier; the value is an ASCII string
 the contents of which depend on the field type. Mandatory fields
 MUST appear exactly once, whereas optional fields MUST appear at most
 once.

 Mandatory fields of the "signature" attribute:

 o Version of the signature (field "v"): This field MUST be set to
 "rpkiv1" and MAY be the first field of the signature attribute to
 simplify the parsing of the attributes’ fields. The signature
 format described in this document applies when the version field
 is set to "rpkiv1". All the rest of the signature attributes are
 defined by the value of the version field.

 o Reference to the certificate corresponding to the private key used
 to sign this object (field "c"): The value of this field MUST be a
 URL of type "rsync" [RFC5781] or "http(s)" [RFC7230] that points
 to a specific resource certificate in an RPKI repository
 [RFC6481]. Any non URL-safe characters (including semicolon ";"
 and plus "+") must be URL encoded [RFC3986].

 o Signature method (field "m"): What hash and signature algorithms
 were used to create the signature. This specification follows the
 algorithms defined in RFC 6485 [RFC6485]. The algorithms are
 referenced within the signature attribute by the ASCII names of
 the algorithms.

Kisteleki & Haberman Standards Track [Page 4]

RFC 7909 Securing RPSL June 2016

 o Time of signing (field "t"): The format of the value of this field
 MUST be in the Internet Date/Time ABNF format [RFC3339]. All
 times MUST be converted to Universal Coordinated Time (UTC), i.e.,
 the ABNF time-offset is always "Z".

 o The signed attributes (field "a"): This is a list of attribute
 names, separated by an ASCII "+" character (if more than one
 attribute is enumerated). The list must include any attribute at
 most once.

 o The signature itself (field "b"): This MUST be the last field in
 the list. The signature is the output of the signature algorithm
 using the appropriate private key and the calculated hash value of
 the object as inputs. The value of this field is the digital
 signature in base64 encoding (Section 4 of [RFC4648]).

 Optional fields of the "signature" attribute:

 o Signature expiration time (field "x"): The format of the value of
 this field MUST be in the Internet Date/Time format [RFC3339].
 All times MUST be represented in UTC.

2.2. Signed Attributes

 One can look at an RPSL object as an (ordered) set of attributes,
 each having a "key: value" syntax. Understanding this structure can
 help in developing more flexible methods for applying digital
 signatures.

 Some of these attributes are automatically added by the database,
 some are database-dependent, yet others do not carry operationally
 important information. This specification allows the maintainer of
 such an object to decide which attributes are important (signed) and
 which are not (not signed), from among all the attributes of the
 object; in other words, we define a way of including important
 attributes while excluding irrelevant ones. Allowing the maintainer
 of an object to select the attributes that are covered by the digital
 signature achieves the goals established in Section 1.

 The type of the object determines the minimum set of attributes that
 MUST be signed. The signer MAY choose to sign additional attributes,
 in order to provide integrity protection for those attributes too.

 When verifying the signature of an object, the verifier has to check
 whether the signature itself is valid, and whether all the specified
 attributes are referenced in the signature. If not, the verifier
 MUST reject the signature and treat the object as a regular, unsigned
 RPSL object.

Kisteleki & Haberman Standards Track [Page 5]

RFC 7909 Securing RPSL June 2016

2.3. Storage of the Signature Data

 The result of applying the signature mechanism once is exactly one
 new attribute for the object. As an illustration, the structure of a
 signed RPSL object is as follows:

 attribute1: value1
 attribute2: value2
 attribute3: value3
 ...
 signature: v=rpkiv1; c=rsync://.....; m=sha256WithRSAEncryption;
 t=2014-12-31T23:59:60Z;
 a=attribute1+attribute2+attribute3+...;
 b=<base64 data>

2.4. Number Resource Coverage

 Even if the signature over the object is valid according to the
 signature validation rules, it may not be relevant to the object; it
 also needs to cover the relevant Internet number resources mentioned
 in the object.

 Therefore, the Internet number resources present in [RFC3779]
 extensions of the certificate referred to in the "c" field of the
 signature MUST cover the resources in the primary key of the object
 (e.g., value of the "aut-num:" attribute of an aut-num object, value
 of the "inetnum:" attribute of an inetnum object, values of "route:",
 and "origin:" attributes of a route object, etc.).

2.5. Validity Time of the Signature

 The validity time interval of a signature is the intersection of the
 validity time of the certificate used to verify the signature, the
 "not before" time specified by the "t" field of the signature, and
 the optional "not after" time specified by the "x" field of the
 signature.

 When checking multiple signatures, these checks are individually
 applied to each signature.

3. Signature Creation and Validation Steps

3.1. Canonicalization

 The notion of canonicalization is essential to digital signature
 generation and validation whenever data representations may change
 between a signer and one or more signature verifiers.
 Canonicalization defines how one transforms a representation of data

Kisteleki & Haberman Standards Track [Page 6]

RFC 7909 Securing RPSL June 2016

 into a series of bits for signature generation and verification. The
 task of canonicalization is to make irrelevant differences in
 representations of the same object, which would otherwise cause
 signature verification to fail. Examples of this could be:

 o data transformations applied by the databases that host these
 objects (such as notational changes for IPv4/IPv6 prefixes,
 automatic addition/modification of "changed" attributes, etc.)

 o the difference of line terminators across different systems

 This means that the destination database might change parts of the
 submitted data after it was signed, which would cause signature
 verification to fail. This document specifies strict
 canonicalization rules to overcome this problem.

 The following steps MUST be applied in order to achieve canonicalized
 representation of an object, before the actual signature
 (verification) process can begin:

 1. Comments (anything beginning with a "#") MUST be omitted.

 2. Any trailing whitespace MUST be omitted.

 3. A multi-line attribute MUST be converted into its single-line
 equivalent. This is accomplished by:

 * Converting all line endings to a single blank space (ASCII
 code 32).

 * Concatenating all lines into a single line.

 * Replacing the trailing blank space with a single new line
 ("\n", ASCII code 10).

 4. Numerical fields MUST be converted to canonical representations.
 These include:

 * Date and time fields MUST be converted to UTC and MUST be
 represented in the Internet Date/Time format [RFC3339].

 * AS numbers MUST be converted to ASPLAIN syntax [RFC5396].

 * IPv6 addresses MUST be canonicalized as defined in [RFC5952].

 * IPv4 addresses MUST be represented as the ipv4-address type
 defined by RPSL [RFC2622].

Kisteleki & Haberman Standards Track [Page 7]

RFC 7909 Securing RPSL June 2016

 * All IP prefixes (IPv4 and IPv6) MUST be represented in
 Classless Inter-Domain Routing (CIDR) notation [RFC4632].

 5. All ranges, lists, or sets of numerical fields are represented
 using the appropriate RPSL attribute and each numerical element
 contained within those attributes MUST conform to the
 canonicalization rules in this document. The ordering of values
 within such fields MUST be maintained during database transfers.

 6. The name of each attribute MUST be converted into lower case, and
 MUST be kept as part of the attribute line.

 7. Tab characters ("\t", ASCII code 09) MUST be converted into
 spaces.

 8. Multiple whitespaces MUST be collapsed into a single space (" ",
 ASCII code 32) character.

 9. All line endings MUST be converted into a single new line ("\n",
 ASCII code 10) character, (thus avoiding CR vs. CRLF
 differences).

3.2. Signature Creation

 Given an RPSL object and corresponding certificate, in order to
 create the digital signature, the following steps MUST be performed:

 1. Create a list of attribute names referring to the attributes that
 will be signed (contents of the "a" field). The minimum set of
 these attributes is determined by the object type; the signer MAY
 select additional attributes.

 2. Arrange the selected attributes according to the selection
 sequence specified in the "a" field as above, omitting all
 attributes that will not be signed.

 3. Construct the new "signature" attribute, with all its fields,
 leaving the value of the "b" field empty.

 4. Apply canonicalization rules to the result (including the
 "signature" attribute).

 5. Create the signature over the results of the canonicalization
 process (according to the signature and hash algorithms specified
 in the "m" field of the signature attribute).

 6. Insert the base64-encoded value of the signature as the value of
 the "b" field.

Kisteleki & Haberman Standards Track [Page 8]

RFC 7909 Securing RPSL June 2016

 7. Append the resulting "signature" attribute to the original
 object.

3.3. Signature Validation

 In order to validate a signature over such an object, the following
 steps MUST be performed:

 1. Verify the syntax of the "signature" attribute (i.e., whether it
 contains the mandatory and optional components and the syntax of
 these fields matches the specification as described in
 Section 2.1).

 2. Fetch the certificate referred to in the "c" field of the
 "signature" attribute, and check its validity using the steps
 described in [RFC6487].

 3. Extract the list of attributes that were signed using the signer
 from the "a" field of the "signature" attribute.

 4. Verify that the list of signed attributes includes the minimum
 set of attributes for that object type.

 5. Arrange the selected attributes according to the selection
 sequence provided in the value of the "a" field, omitting all
 unsigned attributes.

 6. Replace the value of the signature field "b" of the "signature"
 attribute with an empty string.

 7. Apply the canonicalization procedure to the selected attributes
 (including the "signature" attribute).

 8. Check the validity of the signature using the signature algorithm
 specified in the "m" field of the signature attribute, the public
 key contained in the certificate mentioned in the "c" field of
 the signature, the signature value specified in the "b" field of
 the signature attribute, and the output of the canonicalization
 process.

4. Signed Object Types and Set of Signed Attributes

 This section describes a list of object types that MAY be signed
 using this approach. For each object type, the set of attributes
 that MUST be signed for these object types (the minimum set noted in
 Section 3.3 is enumerated.

Kisteleki & Haberman Standards Track [Page 9]

RFC 7909 Securing RPSL June 2016

 This list generally excludes attributes that are used to maintain
 referential integrity in the databases that carry these objects,
 since these usually make sense only within the context of such a
 database, whereas the scope of the signatures is only one specific
 object. Since the attributes in the referred object (such as mnt-by,
 admin-c, tech-c, etc.) can change without any modifications to the
 signed object, signing such attributes could lead to a false sense of
 security in terms of the contents of the signed data; therefore,
 including such attributes should only be done in order to provide
 full integrity protection of the object itself.

 The newly constructed "signature" attribute is always included in the
 list. The signature under construction MUST NOT include signature
 attributes that are already present in the object.

 as-block:

 * as-block

 * signature

 aut-num:

 * aut-num
 * as-name
 * member-of
 * import
 * mp-import
 * export
 * mp-export
 * default
 * mp-default
 * signature

 inet[6]num:

 * inet[6]num
 * netname
 * country
 * status
 * signature

Kisteleki & Haberman Standards Track [Page 10]

RFC 7909 Securing RPSL June 2016

 route[6]:

 * route[6]
 * origin
 * holes
 * member-of
 * signature

 It should be noted that the approach defined in this document has a
 limitation in signing route[6] objects. This document only supports
 a single signature per object. This means that it is not possible to
 properly sign route[6] objects where one resource holder possesses
 the Autonomous System Number (ASN) and another resource holder
 possesses the referenced prefix. A future version of this
 specification may resolve this limitation.

 For each signature, the extension described in RFC 3779 that appears
 in the certificate used to verify the signature MUST include a
 resource entry that is equivalent to, or covers (i.e., is "less
 specific" than) the following resources mentioned in the object the
 signature is attached to:

 o For the as-block object type: the resource in the "as-block"
 attribute.

 o For the aut-num object type: the resource in the "aut-num"
 attribute.

 o For the inet[6]num object type: the resource in the "inet[6]num"
 attribute.

 o For the route[6] object type: the resource in the "route[6]" or
 "origin" (or both) attributes.

5. Keys and Certificates Used for Signature and Verification

 The certificate that is referred to in the signature (in the "c"
 field):

 o MUST be an end-entity (i.e., non-CA) certificate

 o MUST conform to the X.509 PKIX Resource Certificate profile
 [RFC6487]

 o MUST have the extension described in RFC 3779 that covers the
 Internet number resource included in a signed attribute [RFC3779]

Kisteleki & Haberman Standards Track [Page 11]

RFC 7909 Securing RPSL June 2016

 The certificate generated will omit the Subject Information Access
 (SIA) extension mandated by RFC 6487 as that extension requires an
 rsync URI for the accessLocation form and RPSL currently does not
 support database access via rsync.

6. Security Considerations

 RPSL objects stored in the Internet Routing Registry (IRR) databases
 are public, and as such there is no need for confidentiality. Each
 signed RPSL object can have its integrity and authenticity verified
 using the supplied digital signature and the referenced certificate.

 Since the RPSL signature approach leverages X.509 extensions, the
 security considerations in [RFC3779] apply here as well.
 Additionally, implementers MUST follow the certificate validation
 steps described in RFC 6487.

 The maintainer of an object has the ability to include attributes in
 the signature that are not included in the resource certificate used
 to create the signature. Potentially, a maintainer may include
 attributes that reference resources the maintainer is not authorized
 to use.

 It should be noted that this digital signature does not preclude
 monkey-in-the-middle attacks where the adversary either intercepts
 RPSL object transfers, deletes the signature attribute, modifies the
 contents, or intercepts the transfer and drops the objects destined
 for the requester.

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC2622] Alaettinoglu, C., Villamizar, C., Gerich, E., Kessens, D.,
 Meyer, D., Bates, T., Karrenberg, D., and M. Terpstra,
 "Routing Policy Specification Language (RPSL)", RFC 2622,
 DOI 10.17487/RFC2622, June 1999,
 <http://www.rfc-editor.org/info/rfc2622>.

 [RFC3339] Klyne, G. and C. Newman, "Date and Time on the Internet:
 Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,
 <http://www.rfc-editor.org/info/rfc3339>.

Kisteleki & Haberman Standards Track [Page 12]

RFC 7909 Securing RPSL June 2016

 [RFC3779] Lynn, C., Kent, S., and K. Seo, "X.509 Extensions for IP
 Addresses and AS Identifiers", RFC 3779,
 DOI 10.17487/RFC3779, June 2004,
 <http://www.rfc-editor.org/info/rfc3779>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <http://www.rfc-editor.org/info/rfc3986>.

 [RFC4012] Blunk, L., Damas, J., Parent, F., and A. Robachevsky,
 "Routing Policy Specification Language next generation
 (RPSLng)", RFC 4012, DOI 10.17487/RFC4012, March 2005,
 <http://www.rfc-editor.org/info/rfc4012>.

 [RFC4632] Fuller, V. and T. Li, "Classless Inter-domain Routing
 (CIDR): The Internet Address Assignment and Aggregation
 Plan", BCP 122, RFC 4632, DOI 10.17487/RFC4632, August
 2006, <http://www.rfc-editor.org/info/rfc4632>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <http://www.rfc-editor.org/info/rfc4648>.

 [RFC5396] Huston, G. and G. Michaelson, "Textual Representation of
 Autonomous System (AS) Numbers", RFC 5396,
 DOI 10.17487/RFC5396, December 2008,
 <http://www.rfc-editor.org/info/rfc5396>.

 [RFC5781] Weiler, S., Ward, D., and R. Housley, "The rsync URI
 Scheme", RFC 5781, DOI 10.17487/RFC5781, February 2010,
 <http://www.rfc-editor.org/info/rfc5781>.

 [RFC5952] Kawamura, S. and M. Kawashima, "A Recommendation for IPv6
 Address Text Representation", RFC 5952,
 DOI 10.17487/RFC5952, August 2010,
 <http://www.rfc-editor.org/info/rfc5952>.

 [RFC6481] Huston, G., Loomans, R., and G. Michaelson, "A Profile for
 Resource Certificate Repository Structure", RFC 6481,
 DOI 10.17487/RFC6481, February 2012,
 <http://www.rfc-editor.org/info/rfc6481>.

 [RFC6485] Huston, G., "The Profile for Algorithms and Key Sizes for
 Use in the Resource Public Key Infrastructure (RPKI)",
 RFC 6485, DOI 10.17487/RFC6485, February 2012,
 <http://www.rfc-editor.org/info/rfc6485>.

Kisteleki & Haberman Standards Track [Page 13]

RFC 7909 Securing RPSL June 2016

 [RFC6487] Huston, G., Michaelson, G., and R. Loomans, "A Profile for
 X.509 PKIX Resource Certificates", RFC 6487,
 DOI 10.17487/RFC6487, February 2012,
 <http://www.rfc-editor.org/info/rfc6487>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",
 RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <http://www.rfc-editor.org/info/rfc7230>.

7.2. Informative References

 [RFC2725] Villamizar, C., Alaettinoglu, C., Meyer, D., and S.
 Murphy, "Routing Policy System Security", RFC 2725,
 DOI 10.17487/RFC2725, December 1999,
 <http://www.rfc-editor.org/info/rfc2725>.

 [RFC6376] Crocker, D., Ed., Hansen, T., Ed., and M. Kucherawy, Ed.,
 "DomainKeys Identified Mail (DKIM) Signatures", STD 76,
 RFC 6376, DOI 10.17487/RFC6376, September 2011,
 <http://www.rfc-editor.org/info/rfc6376>.

Acknowledgements

 The authors would like to acknowledge the valued contributions from
 Jos Boumans, Tom Harrison, Steve Kent, Sandra Murphy, Magnus Nystrom,
 Alvaro Retana, Sean Turner, Geoff Huston, and Stephen Farrell in
 preparation of this document.

Authors’ Addresses

 Robert Kisteleki
 RIPE NCC

 Email: robert@ripe.net
 URI: http://www.ripe.net

 Brian Haberman
 Johns Hopkins University Applied Physics Lab

 Email: brian@innovationslab.net

Kisteleki & Haberman Standards Track [Page 14]

