
Internet Engineering Task Force (IETF) N. Sakimura, Ed.
Request for Comments: 7636 Nomura Research Institute
Category: Standards Track J. Bradley
ISSN: 2070-1721 Ping Identity
 N. Agarwal
 Google
 September 2015

 Proof Key for Code Exchange by OAuth Public Clients

Abstract

 OAuth 2.0 public clients utilizing the Authorization Code Grant are
 susceptible to the authorization code interception attack. This
 specification describes the attack as well as a technique to mitigate
 against the threat through the use of Proof Key for Code Exchange
 (PKCE, pronounced "pixy").

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7636.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Sakimura, et al. Standards Track [Page 1]

RFC 7636 OAUTH PKCE September 2015

Table of Contents

 1. Introduction ..3
 1.1. Protocol Flow ..5
 2. Notational Conventions ..6
 3. Terminology ...7
 3.1. Abbreviations ..7
 4. Protocol ..8
 4.1. Client Creates a Code Verifier8
 4.2. Client Creates the Code Challenge8
 4.3. Client Sends the Code Challenge with the
 Authorization Request9
 4.4. Server Returns the Code9
 4.4.1. Error Response9
 4.5. Client Sends the Authorization Code and the Code
 Verifier to the Token Endpoint10
 4.6. Server Verifies code_verifier before Returning the
 Tokens ..10
 5. Compatibility ..11
 6. IANA Considerations ..11
 6.1. OAuth Parameters Registry11
 6.2. PKCE Code Challenge Method Registry11
 6.2.1. Registration Template12
 6.2.2. Initial Registry Contents13
 7. Security Considerations ..13
 7.1. Entropy of the code_verifier13
 7.2. Protection against Eavesdroppers13
 7.3. Salting the code_challenge14
 7.4. OAuth Security Considerations14
 7.5. TLS Security Considerations15
 8. References ...15
 8.1. Normative References15
 8.2. Informative References16
 Appendix A. Notes on Implementing Base64url Encoding without
 Padding ...17
 Appendix B. Example for the S256 code_challenge_method17
 Acknowledgements ..19
 Authors’ Addresses ..20

Sakimura, et al. Standards Track [Page 2]

RFC 7636 OAUTH PKCE September 2015

1. Introduction

 OAuth 2.0 [RFC6749] public clients are susceptible to the
 authorization code interception attack.

 In this attack, the attacker intercepts the authorization code
 returned from the authorization endpoint within a communication path
 not protected by Transport Layer Security (TLS), such as inter-
 application communication within the client’s operating system.

 Once the attacker has gained access to the authorization code, it can
 use it to obtain the access token.

 Figure 1 shows the attack graphically. In step (1), the native
 application running on the end device, such as a smartphone, issues
 an OAuth 2.0 Authorization Request via the browser/operating system.
 The Redirection Endpoint URI in this case typically uses a custom URI
 scheme. Step (1) happens through a secure API that cannot be
 intercepted, though it may potentially be observed in advanced attack
 scenarios. The request then gets forwarded to the OAuth 2.0
 authorization server in step (2). Because OAuth requires the use of
 TLS, this communication is protected by TLS and cannot be
 intercepted. The authorization server returns the authorization code
 in step (3). In step (4), the Authorization Code is returned to the
 requester via the Redirection Endpoint URI that was provided in step
 (1).

 Note that it is possible for a malicious app to register itself as a
 handler for the custom scheme in addition to the legitimate OAuth 2.0
 app. Once it does so, the malicious app is now able to intercept the
 authorization code in step (4). This allows the attacker to request
 and obtain an access token in steps (5) and (6), respectively.

Sakimura, et al. Standards Track [Page 3]

RFC 7636 OAUTH PKCE September 2015

 +˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜+
 | End Device (e.g., Smartphone) |
 | |
 | +-------------+ +----------+ | (6) Access Token +----------+
 | |Legitimate | | Malicious|<--------------------| |
 | |OAuth 2.0 App| | App |-------------------->| |
 | +-------------+ +----------+ | (5) Authorization | |
 | | ^ ^ | Grant | |
 | | \ | | | |
 | | \ (4) | | | |
 | (1) | \ Authz| | | |
 | Authz| \ Code | | | Authz |
 | Request| \ | | | Server |
 | | \ | | | |
 | | \ | | | |
 | v \ | | | |
 | +----------------------------+ | | |
 | | | | (3) Authz Code | |
 | | Operating System/ |<--------------------| |
 | | Browser |-------------------->| |
 | | | | (2) Authz Request | |
 | +----------------------------+ | +----------+
 +˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜+

 Figure 1: Authorization Code Interception Attack

 A number of pre-conditions need to hold for this attack to work:

 1. The attacker manages to register a malicious application on the
 client device and registers a custom URI scheme that is also used
 by another application. The operating systems must allow a custom
 URI scheme to be registered by multiple applications.

 2. The OAuth 2.0 authorization code grant is used.

 3. The attacker has access to the OAuth 2.0 [RFC6749] "client_id" and
 "client_secret" (if provisioned). All OAuth 2.0 native app
 client-instances use the same "client_id". Secrets provisioned in
 client binary applications cannot be considered confidential.

 4. Either one of the following condition is met:

 4a. The attacker (via the installed application) is able to
 observe only the responses from the authorization endpoint.
 When "code_challenge_method" value is "plain", only this
 attack is mitigated.

Sakimura, et al. Standards Track [Page 4]

RFC 7636 OAUTH PKCE September 2015

 4b. A more sophisticated attack scenario allows the attacker to
 observe requests (in addition to responses) to the
 authorization endpoint. The attacker is, however, not able to
 act as a man in the middle. This was caused by leaking http
 log information in the OS. To mitigate this,
 "code_challenge_method" value must be set either to "S256" or
 a value defined by a cryptographically secure
 "code_challenge_method" extension.

 While this is a long list of pre-conditions, the described attack has
 been observed in the wild and has to be considered in OAuth 2.0
 deployments. While the OAuth 2.0 threat model (Section 4.4.1 of
 [RFC6819]) describes mitigation techniques, they are, unfortunately,
 not applicable since they rely on a per-client instance secret or a
 per-client instance redirect URI.

 To mitigate this attack, this extension utilizes a dynamically
 created cryptographically random key called "code verifier". A
 unique code verifier is created for every authorization request, and
 its transformed value, called "code challenge", is sent to the
 authorization server to obtain the authorization code. The
 authorization code obtained is then sent to the token endpoint with
 the "code verifier", and the server compares it with the previously
 received request code so that it can perform the proof of possession
 of the "code verifier" by the client. This works as the mitigation
 since the attacker would not know this one-time key, since it is sent
 over TLS and cannot be intercepted.

1.1. Protocol Flow

 +-------------------+
 | Authz Server |
 +--------+ | +---------------+ |
 | |--(A)- Authorization Request ---->| | | |
 | | + t(code_verifier), t_m | | Authorization | |
 | | | | Endpoint | |
 | |<-(B)---- Authorization Code -----| | |
 | | | +---------------+ |
 | Client | | |
 | | | +---------------+ |
 | |--(C)-- Access Token Request ---->| | |
 | | + code_verifier | | Token | |
 | | | | Endpoint | |
 | |<-(D)------ Access Token ---------| | |
 +--------+ | +---------------+ |
 +-------------------+

 Figure 2: Abstract Protocol Flow

Sakimura, et al. Standards Track [Page 5]

RFC 7636 OAUTH PKCE September 2015

 This specification adds additional parameters to the OAuth 2.0
 Authorization and Access Token Requests, shown in abstract form in
 Figure 2.

 A. The client creates and records a secret named the "code_verifier"
 and derives a transformed version "t(code_verifier)" (referred to
 as the "code_challenge"), which is sent in the OAuth 2.0
 Authorization Request along with the transformation method "t_m".

 B. The Authorization Endpoint responds as usual but records
 "t(code_verifier)" and the transformation method.

 C. The client then sends the authorization code in the Access Token
 Request as usual but includes the "code_verifier" secret generated
 at (A).

 D. The authorization server transforms "code_verifier" and compares
 it to "t(code_verifier)" from (B). Access is denied if they are
 not equal.

 An attacker who intercepts the authorization code at (B) is unable to
 redeem it for an access token, as they are not in possession of the
 "code_verifier" secret.

2. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 "Key words for use in RFCs to Indicate Requirement Levels" [RFC2119].
 If these words are used without being spelled in uppercase, then they
 are to be interpreted with their natural language meanings.

 This specification uses the Augmented Backus-Naur Form (ABNF)
 notation of [RFC5234].

 STRING denotes a sequence of zero or more ASCII [RFC20] characters.

 OCTETS denotes a sequence of zero or more octets.

 ASCII(STRING) denotes the octets of the ASCII [RFC20] representation
 of STRING where STRING is a sequence of zero or more ASCII
 characters.

 BASE64URL-ENCODE(OCTETS) denotes the base64url encoding of OCTETS,
 per Appendix A, producing a STRING.

Sakimura, et al. Standards Track [Page 6]

RFC 7636 OAUTH PKCE September 2015

 BASE64URL-DECODE(STRING) denotes the base64url decoding of STRING,
 per Appendix A, producing a sequence of octets.

 SHA256(OCTETS) denotes a SHA2 256-bit hash [RFC6234] of OCTETS.

3. Terminology

 In addition to the terms defined in OAuth 2.0 [RFC6749], this
 specification defines the following terms:

 code verifier
 A cryptographically random string that is used to correlate the
 authorization request to the token request.

 code challenge
 A challenge derived from the code verifier that is sent in the
 authorization request, to be verified against later.

 code challenge method
 A method that was used to derive code challenge.

 Base64url Encoding
 Base64 encoding using the URL- and filename-safe character set
 defined in Section 5 of [RFC4648], with all trailing ’=’
 characters omitted (as permitted by Section 3.2 of [RFC4648]) and
 without the inclusion of any line breaks, whitespace, or other
 additional characters. (See Appendix A for notes on implementing
 base64url encoding without padding.)

3.1. Abbreviations

 ABNF Augmented Backus-Naur Form

 Authz Authorization

 PKCE Proof Key for Code Exchange

 MITM Man-in-the-middle

 MTI Mandatory To Implement

Sakimura, et al. Standards Track [Page 7]

RFC 7636 OAUTH PKCE September 2015

4. Protocol

4.1. Client Creates a Code Verifier

 The client first creates a code verifier, "code_verifier", for each
 OAuth 2.0 [RFC6749] Authorization Request, in the following manner:

 code_verifier = high-entropy cryptographic random STRING using the
 unreserved characters [A-Z] / [a-z] / [0-9] / "-" / "." / "_" / "˜"
 from Section 2.3 of [RFC3986], with a minimum length of 43 characters
 and a maximum length of 128 characters.

 ABNF for "code_verifier" is as follows.

 code-verifier = 43*128unreserved
 unreserved = ALPHA / DIGIT / "-" / "." / "_" / "˜"
 ALPHA = %x41-5A / %x61-7A
 DIGIT = %x30-39

 NOTE: The code verifier SHOULD have enough entropy to make it
 impractical to guess the value. It is RECOMMENDED that the output of
 a suitable random number generator be used to create a 32-octet
 sequence. The octet sequence is then base64url-encoded to produce a
 43-octet URL safe string to use as the code verifier.

4.2. Client Creates the Code Challenge

 The client then creates a code challenge derived from the code
 verifier by using one of the following transformations on the code
 verifier:

 plain
 code_challenge = code_verifier

 S256
 code_challenge = BASE64URL-ENCODE(SHA256(ASCII(code_verifier)))

 If the client is capable of using "S256", it MUST use "S256", as
 "S256" is Mandatory To Implement (MTI) on the server. Clients are
 permitted to use "plain" only if they cannot support "S256" for some
 technical reason and know via out-of-band configuration that the
 server supports "plain".

 The plain transformation is for compatibility with existing
 deployments and for constrained environments that can’t use the S256
 transformation.

Sakimura, et al. Standards Track [Page 8]

RFC 7636 OAUTH PKCE September 2015

 ABNF for "code_challenge" is as follows.

 code-challenge = 43*128unreserved
 unreserved = ALPHA / DIGIT / "-" / "." / "_" / "˜"
 ALPHA = %x41-5A / %x61-7A
 DIGIT = %x30-39

4.3. Client Sends the Code Challenge with the Authorization Request

 The client sends the code challenge as part of the OAuth 2.0
 Authorization Request (Section 4.1.1 of [RFC6749]) using the
 following additional parameters:

 code_challenge
 REQUIRED. Code challenge.

 code_challenge_method
 OPTIONAL, defaults to "plain" if not present in the request. Code
 verifier transformation method is "S256" or "plain".

4.4. Server Returns the Code

 When the server issues the authorization code in the authorization
 response, it MUST associate the "code_challenge" and
 "code_challenge_method" values with the authorization code so it can
 be verified later.

 Typically, the "code_challenge" and "code_challenge_method" values
 are stored in encrypted form in the "code" itself but could
 alternatively be stored on the server associated with the code. The
 server MUST NOT include the "code_challenge" value in client requests
 in a form that other entities can extract.

 The exact method that the server uses to associate the
 "code_challenge" with the issued "code" is out of scope for this
 specification.

4.4.1. Error Response

 If the server requires Proof Key for Code Exchange (PKCE) by OAuth
 public clients and the client does not send the "code_challenge" in
 the request, the authorization endpoint MUST return the authorization
 error response with the "error" value set to "invalid_request". The
 "error_description" or the response of "error_uri" SHOULD explain the
 nature of error, e.g., code challenge required.

Sakimura, et al. Standards Track [Page 9]

RFC 7636 OAUTH PKCE September 2015

 If the server supporting PKCE does not support the requested
 transformation, the authorization endpoint MUST return the
 authorization error response with "error" value set to
 "invalid_request". The "error_description" or the response of
 "error_uri" SHOULD explain the nature of error, e.g., transform
 algorithm not supported.

4.5. Client Sends the Authorization Code and the Code Verifier to the
 Token Endpoint

 Upon receipt of the Authorization Code, the client sends the Access
 Token Request to the token endpoint. In addition to the parameters
 defined in the OAuth 2.0 Access Token Request (Section 4.1.3 of
 [RFC6749]), it sends the following parameter:

 code_verifier
 REQUIRED. Code verifier

 The "code_challenge_method" is bound to the Authorization Code when
 the Authorization Code is issued. That is the method that the token
 endpoint MUST use to verify the "code_verifier".

4.6. Server Verifies code_verifier before Returning the Tokens

 Upon receipt of the request at the token endpoint, the server
 verifies it by calculating the code challenge from the received
 "code_verifier" and comparing it with the previously associated
 "code_challenge", after first transforming it according to the
 "code_challenge_method" method specified by the client.

 If the "code_challenge_method" from Section 4.3 was "S256", the
 received "code_verifier" is hashed by SHA-256, base64url-encoded, and
 then compared to the "code_challenge", i.e.:

 BASE64URL-ENCODE(SHA256(ASCII(code_verifier))) == code_challenge

 If the "code_challenge_method" from Section 4.3 was "plain", they are
 compared directly, i.e.:

 code_verifier == code_challenge.

 If the values are equal, the token endpoint MUST continue processing
 as normal (as defined by OAuth 2.0 [RFC6749]). If the values are not
 equal, an error response indicating "invalid_grant" as described in
 Section 5.2 of [RFC6749] MUST be returned.

Sakimura, et al. Standards Track [Page 10]

RFC 7636 OAUTH PKCE September 2015

5. Compatibility

 Server implementations of this specification MAY accept OAuth2.0
 clients that do not implement this extension. If the "code_verifier"
 is not received from the client in the Authorization Request, servers
 supporting backwards compatibility revert to the OAuth 2.0 [RFC6749]
 protocol without this extension.

 As the OAuth 2.0 [RFC6749] server responses are unchanged by this
 specification, client implementations of this specification do not
 need to know if the server has implemented this specification or not
 and SHOULD send the additional parameters as defined in Section 4 to
 all servers.

6. IANA Considerations

 IANA has made the following registrations per this document.

6.1. OAuth Parameters Registry

 This specification registers the following parameters in the IANA
 "OAuth Parameters" registry defined in OAuth 2.0 [RFC6749].

 o Parameter name: code_verifier
 o Parameter usage location: token request
 o Change controller: IESG
 o Specification document(s): RFC 7636 (this document)

 o Parameter name: code_challenge
 o Parameter usage location: authorization request
 o Change controller: IESG
 o Specification document(s): RFC 7636 (this document)

 o Parameter name: code_challenge_method
 o Parameter usage location: authorization request
 o Change controller: IESG
 o Specification document(s): RFC 7636 (this document)

6.2. PKCE Code Challenge Method Registry

 This specification establishes the "PKCE Code Challenge Methods"
 registry. The new registry should be a sub-registry of the "OAuth
 Parameters" registry.

 Additional "code_challenge_method" types for use with the
 authorization endpoint are registered using the Specification
 Required policy [RFC5226], which includes review of the request by
 one or more Designated Experts (DEs). The DEs will ensure that there

Sakimura, et al. Standards Track [Page 11]

RFC 7636 OAUTH PKCE September 2015

 is at least a two-week review of the request on the oauth-ext-
 review@ietf.org mailing list and that any discussion on that list
 converges before they respond to the request. To allow for the
 allocation of values prior to publication, the Designated Expert(s)
 may approve registration once they are satisfied that an acceptable
 specification will be published.

 Registration requests and discussion on the oauth-ext-review@ietf.org
 mailing list should use an appropriate subject, such as "Request for
 PKCE code_challenge_method: example").

 The Designated Expert(s) should consider the discussion on the
 mailing list, as well as the overall security properties of the
 challenge method when evaluating registration requests. New methods
 should not disclose the value of the code_verifier in the request to
 the Authorization endpoint. Denials should include an explanation
 and, if applicable, suggestions as to how to make the request
 successful.

6.2.1. Registration Template

 Code Challenge Method Parameter Name:
 The name requested (e.g., "example"). Because a core goal of this
 specification is for the resulting representations to be compact,
 it is RECOMMENDED that the name be short -- not to exceed 8
 characters without a compelling reason to do so. This name is
 case-sensitive. Names may not match other registered names in a
 case-insensitive manner unless the Designated Expert(s) states
 that there is a compelling reason to allow an exception in this
 particular case.

 Change Controller:
 For Standards Track RFCs, state "IESG". For others, give the name
 of the responsible party. Other details (e.g., postal address,
 email address, and home page URI) may also be included.

 Specification Document(s):
 Reference to the document(s) that specifies the parameter,
 preferably including URI(s) that can be used to retrieve copies of
 the document(s). An indication of the relevant sections may also
 be included but is not required.

Sakimura, et al. Standards Track [Page 12]

RFC 7636 OAUTH PKCE September 2015

6.2.2. Initial Registry Contents

 Per this document, IANA has registered the Code Challenge Method
 Parameter Names defined in Section 4.2 in this registry.

 o Code Challenge Method Parameter Name: plain
 o Change Controller: IESG
 o Specification Document(s): Section 4.2 of RFC 7636 (this document)

 o Code Challenge Method Parameter Name: S256
 o Change Controller: IESG
 o Specification Document(s): Section 4.2 of RFC 7636 (this document)

7. Security Considerations

7.1. Entropy of the code_verifier

 The security model relies on the fact that the code verifier is not
 learned or guessed by the attacker. It is vitally important to
 adhere to this principle. As such, the code verifier has to be
 created in such a manner that it is cryptographically random and has
 high entropy that it is not practical for the attacker to guess.

 The client SHOULD create a "code_verifier" with a minimum of 256 bits
 of entropy. This can be done by having a suitable random number
 generator create a 32-octet sequence. The octet sequence can then be
 base64url-encoded to produce a 43-octet URL safe string to use as a
 "code_challenge" that has the required entropy.

7.2. Protection against Eavesdroppers

 Clients MUST NOT downgrade to "plain" after trying the "S256" method.
 Servers that support PKCE are required to support "S256", and servers
 that do not support PKCE will simply ignore the unknown
 "code_verifier". Because of this, an error when "S256" is presented
 can only mean that the server is faulty or that a MITM attacker is
 trying a downgrade attack.

 The "S256" method protects against eavesdroppers observing or
 intercepting the "code_challenge", because the challenge cannot be
 used without the verifier. With the "plain" method, there is a
 chance that "code_challenge" will be observed by the attacker on the
 device or in the http request. Since the code challenge is the same
 as the code verifier in this case, the "plain" method does not
 protect against the eavesdropping of the initial request.

 The use of "S256" protects against disclosure of the "code_verifier"
 value to an attacker.

Sakimura, et al. Standards Track [Page 13]

RFC 7636 OAUTH PKCE September 2015

 Because of this, "plain" SHOULD NOT be used and exists only for
 compatibility with deployed implementations where the request path is
 already protected. The "plain" method SHOULD NOT be used in new
 implementations, unless they cannot support "S256" for some technical
 reason.

 The "S256" code challenge method or other cryptographically secure
 code challenge method extension SHOULD be used. The "plain" code
 challenge method relies on the operating system and transport
 security not to disclose the request to an attacker.

 If the code challenge method is "plain" and the code challenge is to
 be returned inside authorization "code" to achieve a stateless
 server, it MUST be encrypted in such a manner that only the server
 can decrypt and extract it.

7.3. Salting the code_challenge

 To reduce implementation complexity, salting is not used in the
 production of the code challenge, as the code verifier contains
 sufficient entropy to prevent brute-force attacks. Concatenating a
 publicly known value to a code verifier (containing 256 bits of
 entropy) and then hashing it with SHA256 to produce a code challenge
 would not increase the number of attempts necessary to brute force a
 valid value for code verifier.

 While the "S256" transformation is like hashing a password, there are
 important differences. Passwords tend to be relatively low-entropy
 words that can be hashed offline and the hash looked up in a
 dictionary. By concatenating a unique though public value to each
 password prior to hashing, the dictionary space that an attacker
 needs to search is greatly expanded.

 Modern graphics processors now allow attackers to calculate hashes in
 real time faster than they could be looked up from a disk. This
 eliminates the value of the salt in increasing the complexity of a
 brute-force attack for even low-entropy passwords.

7.4. OAuth Security Considerations

 All the OAuth security analysis presented in [RFC6819] applies, so
 readers SHOULD carefully follow it.

Sakimura, et al. Standards Track [Page 14]

RFC 7636 OAUTH PKCE September 2015

7.5. TLS Security Considerations

 Current security considerations can be found in "Recommendations for
 Secure Use of Transport Layer Security (TLS) and Datagram Transport
 Layer Security (DTLS)" [BCP195]. This supersedes the TLS version
 recommendations in OAuth 2.0 [RFC6749].

8. References

8.1. Normative References

 [BCP195] Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", BCP 195, RFC 7525, May 2015,
 <http://www.rfc-editor.org/info/bcp195>.

 [RFC20] Cerf, V., "ASCII format for network interchange", STD 80,
 RFC 20, DOI 10.17487/RFC0020, October 1969,
 <http://www.rfc-editor.org/info/rfc20>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66, RFC
 3986, DOI 10.17487/RFC3986, January 2005,
 <http://www.rfc-editor.org/info/rfc3986>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <http://www.rfc-editor.org/info/rfc4648>.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 DOI 10.17487/RFC5226, May 2008,
 <http://www.rfc-editor.org/info/rfc5226>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <http://www.rfc-editor.org/info/rfc5234>.

Sakimura, et al. Standards Track [Page 15]

RFC 7636 OAUTH PKCE September 2015

 [RFC6234] Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
 (SHA and SHA-based HMAC and HKDF)", RFC 6234,
 DOI 10.17487/RFC6234, May 2011,
 <http://www.rfc-editor.org/info/rfc6234>.

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
 RFC 6749, DOI 10.17487/RFC6749, October 2012,
 <http://www.rfc-editor.org/info/rfc6749>.

8.2. Informative References

 [RFC6819] Lodderstedt, T., Ed., McGloin, M., and P. Hunt, "OAuth 2.0
 Threat Model and Security Considerations", RFC 6819,
 DOI 10.17487/RFC6819, January 2013,
 <http://www.rfc-editor.org/info/rfc6819>.

Sakimura, et al. Standards Track [Page 16]

RFC 7636 OAUTH PKCE September 2015

Appendix A. Notes on Implementing Base64url Encoding without Padding

 This appendix describes how to implement a base64url-encoding
 function without padding, based upon the standard base64-encoding
 function that uses padding.

 To be concrete, example C# code implementing these functions is shown
 below. Similar code could be used in other languages.

 static string base64urlencode(byte [] arg)
 {
 string s = Convert.ToBase64String(arg); // Regular base64 encoder
 s = s.Split(’=’)[0]; // Remove any trailing ’=’s
 s = s.Replace(’+’, ’-’); // 62nd char of encoding
 s = s.Replace(’/’, ’_’); // 63rd char of encoding
 return s;
 }

 An example correspondence between unencoded and encoded values
 follows. The octet sequence below encodes into the string below,
 which when decoded, reproduces the octet sequence.

 3 236 255 224 193

 A-z_4ME

Appendix B. Example for the S256 code_challenge_method

 The client uses output of a suitable random number generator to
 create a 32-octet sequence. The octets representing the value in
 this example (using JSON array notation) are:

 [116, 24, 223, 180, 151, 153, 224, 37, 79, 250, 96, 125, 216, 173,
 187, 186, 22, 212, 37, 77, 105, 214, 191, 240, 91, 88, 5, 88, 83,
 132, 141, 121]

 Encoding this octet sequence as base64url provides the value of the
 code_verifier:

 dBjftJeZ4CVP-mB92K27uhbUJU1p1r_wW1gFWFOEjXk

 The code_verifier is then hashed via the SHA256 hash function to
 produce:

 [19, 211, 30, 150, 26, 26, 216, 236, 47, 22, 177, 12, 76, 152, 46,
 8, 118, 168, 120, 173, 109, 241, 68, 86, 110, 225, 137, 74, 203,
 112, 249, 195]

Sakimura, et al. Standards Track [Page 17]

RFC 7636 OAUTH PKCE September 2015

 Encoding this octet sequence as base64url provides the value of the
 code_challenge:

 E9Melhoa2OwvFrEMTJguCHaoeK1t8URWbuGJSstw-cM

 The authorization request includes:

 code_challenge=E9Melhoa2OwvFrEMTJguCHaoeK1t8URWbuGJSstw-cM
 &code_challenge_method=S256

 The authorization server then records the code_challenge and
 code_challenge_method along with the code that is granted to the
 client.

 In the request to the token_endpoint, the client includes the code
 received in the authorization response as well as the additional
 parameter:

 code_verifier=dBjftJeZ4CVP-mB92K27uhbUJU1p1r_wW1gFWFOEjXk

 The authorization server retrieves the information for the code
 grant. Based on the recorded code_challenge_method being S256, it
 then hashes and base64url-encodes the value of code_verifier:

 BASE64URL-ENCODE(SHA256(ASCII(code_verifier)))

 The calculated value is then compared with the value of
 "code_challenge":

 BASE64URL-ENCODE(SHA256(ASCII(code_verifier))) == code_challenge

 If the two values are equal, then the authorization server can
 provide the tokens as long as there are no other errors in the
 request. If the values are not equal, then the request must be
 rejected, and an error returned.

Sakimura, et al. Standards Track [Page 18]

RFC 7636 OAUTH PKCE September 2015

Acknowledgements

 The initial draft version of this specification was created by the
 OpenID AB/Connect Working Group of the OpenID Foundation.

 This specification is the work of the OAuth Working Group, which
 includes dozens of active and dedicated participants. In particular,
 the following individuals contributed ideas, feedback, and wording
 that shaped and formed the final specification:

 Anthony Nadalin, Microsoft
 Axel Nenker, Deutsche Telekom
 Breno de Medeiros, Google
 Brian Campbell, Ping Identity
 Chuck Mortimore, Salesforce
 Dirk Balfanz, Google
 Eduardo Gueiros, Jive Communications
 Hannes Tschonfenig, ARM
 James Manger, Telstra
 Justin Richer, MIT Kerberos
 Josh Mandel, Boston Children’s Hospital
 Lewis Adam, Motorola Solutions
 Madjid Nakhjiri, Samsung
 Michael B. Jones, Microsoft
 Paul Madsen, Ping Identity
 Phil Hunt, Oracle
 Prateek Mishra, Oracle
 Ryo Ito, mixi
 Scott Tomilson, Ping Identity
 Sergey Beryozkin
 Takamichi Saito
 Torsten Lodderstedt, Deutsche Telekom
 William Denniss, Google

Sakimura, et al. Standards Track [Page 19]

RFC 7636 OAUTH PKCE September 2015

Authors’ Addresses

 Nat Sakimura (editor)
 Nomura Research Institute
 1-6-5 Marunouchi, Marunouchi Kitaguchi Bldg.
 Chiyoda-ku, Tokyo 100-0005
 Japan

 Phone: +81-3-5533-2111
 Email: n-sakimura@nri.co.jp
 URI: http://nat.sakimura.org/

 John Bradley
 Ping Identity
 Casilla 177, Sucursal Talagante
 Talagante, RM
 Chile

 Phone: +44 20 8133 3718
 Email: ve7jtb@ve7jtb.com
 URI: http://www.thread-safe.com/

 Naveen Agarwal
 Google
 1600 Amphitheatre Parkway
 Mountain View, CA 94043
 United States

 Phone: +1 650-253-0000
 Email: naa@google.com
 URI: http://google.com/

Sakimura, et al. Standards Track [Page 20]

