
RFC 740 RTB 42423 22 Nov 77
NETRJS Protocol

Network Working Group R. Braden
Request for Comments: 740 UCLA-CCN
NIC: 42423 22 November 1977
Obsoletes: 189, 599

 NETRJS PROTOCOL

A. Introduction

 NETRJS, a private protocol for remote job entry service, was defined
 and implemented by the UCLA Campus Computing Network (CCN) for batch
 job submission to an IBM 360 Model 91. CCN’s NETRJS server allows a
 remote user, or a daemon process working in behalf of a user, to
 access CCN’s RJS ("Remote Job Service") subsystem. RJS provides
 remote job entry service to real remote batch (card reader/line
 printer) terminals over direct communications lines as well as to the
 ARPANET.

 A batch user at a remote host needs a NETRJS user process to
 communicate with the NETRJS server at the batch host. An active
 NETRJS user process simulates a "Virtual Remote Batch Terminal", or
 "VRBT".

 A VRBT may have virtual card readers, printers, and punches. In
 addition, every VRBT has a virtual remote operator console. Using a
 virtual card reader, a Network user can transmit a stream of card
 images comprising one or more batch jobs, complete with job control
 language ("JCL"), to the batch server host. The NETRJS server will
 cause these jobs to be spooled into the batch system to be executed
 according to their priority. NETRJS will automatically return the
 print and/or punch output images which are created by these jobs to
 the virtual printer and/or card punch at the VRBT from which the job
 was submitted. The batch user can wait for his output, or he can
 signoff and signon again later to receive it.

 To initiate a NETRJS session, the user process must execute a
 standard ICP to a fixed socket at the server. The result is to
 establish a full-duplex Telnet connection for the virtual remote
 operator console, allowing the VRBT to signon to RJS. The virtual
 remote operator console can then be used to issue commands to NETRJS
 and to receive status, confirmation, and error messages from the

Braden [page 1]

RFC 740 RTB 42423 22 Nov 77
NETRJS Protocol

 server. The most important remote operator commands are summarized
 in Appendix D.

 Different VRBT’s are distinguished by 8-character terminal id’s,
 which are assigned by the server site to individual batch users or
 user groups.

B. Connections and Protocols

 The protocol uses up to five connections between the user and server
 processes. The operator console uses a a full-duplex Telnet
 connection. The data transfer streams for the virtual card reader,
 printer, and punch each use a separate simplex connection under a
 data transfer protocol defined in Appendix A. This document will use
 the term "channel" for one of these simplex data transfer connections
 and will designate a connection "input" or "output" with reference to
 the server.

 A particular data transfer channel needs to be open only while it is
 in use, and different channels may be used sequentially or
 simultaneously. CCN’s NETRJS server will support simultaneous
 operation of a virtual card reader, a virtual printer, and a virtual
 punch (in addition to the operator console) on the same VRBT process.
 The NETRJS protocol could easily be extended to any number of
 simultaneously-operating virtual card readers, printers, and punches.

 The NETRJS server takes a passive role in opening the data channels:
 the server only "listens" for an RFC from the user process. NETRJS is
 defined with an 8-bit byte size on all data channels.

 Some implementations of NETRJS user processes are daemons, operating
 as background processes to submit jobs from a list of user requests;
 other implementations are interactive processes executed directly
 under terminal control by remote users. In the latter case, the VRBT
 process generally multiplexes the user terminal between NETRJS, i.e.,
 acting as the remote operator console, and entering local commands to
 control the VRBT. Local VRBT commands allow selection of the files
 containing job streams to be sent to the server as well as files to
 receive job output from the server. Other local commands would cause
 the VRBT to open data transfer channels to the NETRJS server and to
 close these channels to free buffer space or abort transmission.

 The user process has a choice of three ICP sockets, to select the
 character set of the VRBT -- ASCII-68, ASCII-63, or EBCDIC. The
 server will make the corresponding translation of the data in the
 card reader and printer channels. (In the CCN implementation of
 NETRJS, an EBCDIC VRBT will transmit and receive, without

Braden [page 2]

RFC 740 RTB 42423 22 Nov 77
NETRJS Protocol

 translation, "transparent" streams of 8-bit bytes, since CCN is an
 EBCDIC installation). The punch stream will always be transparent,
 outputting "binary decks" of 80-byte records untranslated. The
 operator console connections always use Network ASCII, as defined by
 the Telnet protocol.

 The NETRJS protocol provides data compression, replacing repeated
 blanks or other characters by repeat counts. However, when the
 terminal id is assigned, a particular network VRBT may be specified
 to use no data compression. In this case, NETRJS will simply
 truncate trailing blanks and send records in a simple "op
 code-length-data" form, called "truncated format" (see Appendix A).

C. Starting and Terminating a Session

 The remote user establishes a connection to the NETRJS server by
 executing an ICP to the contact socket 71 (decimal) for EBCDIC,
 socket 73 (decimal) for ASCII-68, or to socket 75 (decimal) for
 ASCII-63. A successful ICP results in a pair of connections which are
 in fact the NETRJS operator console connections. NETRJS will send a
 READY message over the operator output connection.

 The user (process) must now enter a valid NETRJS signon command
 ("SIGNON terminal-id") through the virtual remote operator console.
 RJS will normally acknowledge signon with a console message; however,
 if there is no available NETRJS server port, NETRJS will indicate
 refusal by closing both operator connections. If the user fails to
 enter a valid signon within 3 minutes, NETRJS will close the operator
 connections. If the VRBT attempts to open data transfer channels
 before the signon command is accepted, the data transfer channels
 will be refused with an error message to the VRBT operator console.

 Suppose that S is the even number sent in the ICP; then the NETRJS
 connections have sockets at the server with fixed relation to S, as
 shown in the following table:

 Channel Server Socket User Socket
 ------- ------------- -----------
 Remote Operator Console Input S U + 3 Telnet
 Remote Operator Console Output S + 1 U + 2 Telnet
 Data Transfer - Card Reader #1 S + 2 any odd number
 Data Transfer - Printer #1 S + 3 any even number
 Data Transfer - Punch #1 S + 5 any even number

 Once the VRBT has issued a valid signon, it can open data transfer
 channels and initiate input and output operations as explained in the
 following sections. To terminate the session, the VRBT may close all

Braden [page 3]

RFC 740 RTB 42423 22 Nov 77
NETRJS Protocol

 connections. Alternatively, it may enter a SIGNOFF command through
 the virtual remote operator console. Receiving a SIGNOFF, NETRJS
 will wait until the current job output streams are complete and then
 itself terminate the session by closing all connections.

D. Input Operations

 A job stream for submission to the NETRJS server is a series of
 logical records, each of which is a card image of at most 80
 characters. The user can submit a "stack" of successive jobs through
 the card reader channel with no end-of-job indication between jobs;
 NETRJS is able to parse the JCL sufficiently to recognize the
 beginning of each job.

 To submit a batch job or stack of jobs for execution, the user
 process must first open the card reader channel by issuing an Init
 for foreign socket S+2 and the appropriate local socket. NETRJS,
 which is listening on socket S+2, will return an RTS command to open
 the channel. When the channel is open, the user can begin sending his
 job stream using the protocol defined in Apendix A. For each job
 successfully spooled, NETRJS will send a confirming message to the
 remote operator console.

 At the end of the job stack, the user process must send an
 End-of-Data transaction to initiate processing of the last job.
 NETRJS will then close the channel (to avoid holding buffer space
 unnecessarily). At any time during the session, the user process can
 re-open the card reader channel and transmit another job stack. It
 can also terminate the session and signon later to get the output.

 If the user process leaves the channel open for 5 minutes without
 sending any bits, the server will abort (close) the channel. The user
 process can abort the card reader channel at any time by closing the
 channel; NETRJS will then discard the last partially spooled job.
 If NETRJS finds an error (e.g., transaction sequence number error or
 a dropped bit), it will abort the channel by closing the channel
 prematurely, and also inform the user process that the job was
 discarded (thus solving the race condition between End-of-Data and
 aborting). The user process should retransmit only those jobs in the
 stack that have not been completely spooled.

 If the user’s process, NCP, or host, or the Network itself fails
 during input, RJS will discard the job being transmitted. A message
 informing the user that this job was discarded will be generated and
 sent to him the next time he signs on. On the other hand, those jobs
 whose receipt have been acknowledged on the operator’s console will
 not be affected by the failure, but will be executed by the server.

Braden [page 4]

RFC 740 RTB 42423 22 Nov 77
NETRJS Protocol

E. Output Operations

 The VRBT may wait to set up a virtual printer or punch and open its
 channel until a STATUS message from NETRJS indicates output is ready;
 or it may leave the output channel(s) open during the entire session,
 ready to receive output whenever it becomes available. The VRBT can
 also control which one of several available jobs is to be returned by
 entering appropriate operator commands.

 To be prepared to receive printer (or punch) output from its jobs,
 the VRBT issues an Init for foreign socket S+3 or S+5 for printer or
 punch output, respectively. NETRJS is listening on these sockets and
 should immediately return an STR. However, it is possible that
 because of a buffer shortage, NETRJS will refuse the connection by
 returning a CLS; in this case, try again later.

 When NETRJS has job output for a particular virtual terminal and a
 corresponding open output channel, it will send the output as a
 series of logical records using the protocol in Appendix A. The
 first record will consist of the job name (8 characters) followed by
 a comma and then the ID string from the JOB card, if any. In the
 printer stream, the first column of each record after the first will
 be an ASA carriage control character (see Appendix C). A virtual
 printer in NETRJS has 254 columns, exclusive of carriage control;
 NETRJS will send up to 255 characters of a logical record it finds in
 a SYSOUT data set. If the user wishes to reject or fold records
 longer than some smaller record size, he can do so in his VRBT
 process.

 NETRJS will send an End-of-Data transaction and then close an output
 channel at the end of the output for each complete batch job; the
 remote site must then send a new RFC to start output for another job.
 This gives the remote site a chance to allocate a new file for each
 job without breaking the output within a job.

 If the batch user wants to cancel (or backspace or defer) the output
 of a particular job, he can enter appropriate NETRJS commands on the
 operator input channel (see Appendix D).

 If NETRJS encounters a permanent I/O error in reading the disk data
 set, it will notify the user via his console, skip forward to the
 next set of system messages or SYSOUT data set in the same job, and
 continue. If the user process stops accepting bits for 5 minutes, the
 server will abort the channel. In any case, the user will receive
 notification of termination of output data transfer for each job via
 a remote console message.

Braden [page 5]

RFC 740 RTB 42423 22 Nov 77
NETRJS Protocol

 If the user detects an error in the stream, he can issue a Backspace
 (BSP) command from his console to repeat the last "page" of output,
 or a Restart (RST) command to repeat from the last SYSOUT data set or
 the beginning of the job, or he can abort the channel by closing his
 socket. If he aborts the channel, NETRJS will simulate a Backspace
 command, and when the user re-opens the channel the job will begin
 transmission again from an earlier point in the same data set. This
 is true even if the user terminates the current session first and
 reopens the channnel in a later session; RJS saves the state of every
 incomplete output stream. However, before re-opening the channel he
 can defer this job for later output, restart it at the beginning, or
 cancel its output (see Appendix D). Note that aborting the channel
 is only effective if NETRJS has not yet sent the End-of-Data
 transaction.

 If the user’s process, NCP, or host or the Network itself fails
 during an output operation, NETRJS will act as if the channel had
 been aborted and the user signed off. NETRJS will discard the output
 of a job only after receiving the RFNM from the last data transfer
 message (containing an End-of-Data). In no case should a NETRJS user
 lose output from a batch job.

Braden [page 6]

RFC 740 RTB 42423 22 Nov 77
NETRJS Protocol

 APPENDIX A

 Data Transfer Protocol in NETRJS

 1. Introduction

 The records in the data transfer channels (for virtual card
 reader, printer, and punch) are generally grouped into
 transactions preceded by headers. The transaction header includes
 a sequence number and the length of the transaction. Network byte
 size must be 8 bits in these data streams.

 A transaction is the unit of buffering within the server software,
 and is limited to 880 8-bit bytes. Transactions can be as short as
 one record; however, those sites which are concerned with
 efficiency should send transactions as close as possible to the
 880 byte limit.

 There is no necessary connection between physical message
 boundaries and transactions ("logical messages"); the NCP can
 break a transaction arbitrarily into physical messages. The CCN
 server starts each transaction at the beginning of a new physical
 message, but this is not a requirement of the protocol.

 Each logical record within a transaction begins with an "op code"
 byte which contains the channel identification, so its value is
 unique to each channel but constant within a channel. This choice
 provides the receiver with a convenient way to verify
 bit-synchronization, and it also allows an extension in the future
 to true "multi-leaving" (i.e., multiplexing all channels within
 one connection in each direction).

 The only provisions for transmission error detection in the
 current NETRJS protocol are (1) the "op code" byte to verify bit
 synchronization and (2) the transaction sequence number. Under the
 NETRJS protocol, a data transfer error must abort the entire
 transmission; there is no provision for restart.

Braden [page 7]

RFC 740 RTB 42423 22 Nov 77
NETRJS Protocol

 2. Meta-Notation

 The following description of the NETRJS data transfer protocol
 uses a formal notation derived from that proposed in RFC 31 by
 Bobrow and Sutherland. The notation consists of a series of
 productions for bit string variables. Each variable name which
 represents a fixed length field is followed by the length in bits
 (e.g., SEQNUMB(16)). Numbers enclosed in quotes are decimal,
 unless qualified by a leading X meaning hex. Since each hex digit
 is 4 bits, the length is not shown explicitly in hex numbers. For
 example, ’255’(8) and X’FF’ both represent a string of 8 one bits.

 The meta-syntactic operators are:

 | :alternative string

 [] :optional string

 () :grouping

 + :catenation of bit strings

 The numerical value of a bit string (interpreted as an integer) is
 symbolized by a lower case identifier preceding the string
 expression and separated by a colon. For example, in
 "i:FIELD(8)", i symbolizes the numeric value of the 8 bit string
 FIELD.

 Finally, we use Bobrow and Sutherland’s symbolism for iteration of
 a sub-string: (STRING-EXPRESSION = n); denotes n occurrences of
 STRING-EXPRESSION, implicitly catenated together. Here any n
 greater or equal to 0 is assumed unless n is explicitly
 restricted.

 3. Protocol Definition

 STREAM ::= (TRANSACTION = n) + [END-OF-DATA]

 That is, STREAM, the entire sequence of data on a particular
 open channel, is a sequence of n TRANSACTIONS followed by an
 END-OF-DATA marker (omitted if the sender aborts the channel).

 TRANSACTION ::= THEAD(72) + (RECORD = r) + (’0’(1) = f)

 That is, a transaction consists of a 72 bit header, r records,
 and f filler bits; it may not exceed 880*8 bits.

Braden [page 8]

RFC 740 RTB 42423 22 Nov 77
NETRJS Protocol

 THEAD ::= X’FF’+f:FILLER(8)+SEQNUMB(16)+LENGTH(32)+X’00’

 Transactions are to be consecutively numbered in the SEQNUMB
 field, starting with 0 in the first transaction after the
 channel is (re-) opened. The 32 bit LENGTH field gives the
 total length in bits of the r RECORD’s which follow. For
 convenience, the using site may add f additional filler bits at
 the end of the transaction to reach a convenient word boundary
 on his machine; the value f is transmitted in the FILLER field
 of THEAD.

 RECORD ::= COMPRESSED | TRUNCATED

 RJS will accept intermixed RECORD’s which are COMPRESSED or
 TRUNCATED in an input stream. RJS will send one or the other
 format in the printer and punch streams to a given VRBT; the
 choice is determined for each terminal id.

 COMPRESSED ::= ’2’(2) + DEVID(6) + (STRING = p) + ’0’(8)

 STRING ::= (’6’(3) + i:DUPCOUNT(5)) |

 This form represents a string of i consecutive blanks

 (’7’(3) + i:DUPCOUNT(5) + TEXTBYTE(8)) |

 This form represents string of i consecutive duplicates of
 TEXTBYTE.

 (’2’(2) + j:LENGTH(6) + (TEXTBYTE(8) = j))

 This form represents a string of j characters.

 TRUNCATED ::= ’3’(2) + DEVID(6) + n:COUNT(8) + (TEXTBYTE(8)=n)

 DEVID(6) ::= DEVNO(3) + t:DEVTYPE(3)

 DEVID identifies a particular virtual device, i.e., it
 identifies a channel. DEVTYPE specifies the type of device, as
 follows:

 t = 1: Output to remote operator console
 2: Input from remote operator console
 3: Input from card reader
 4: Output to printer
 5: Output to card punch
 6,7: Unused

Braden [page 9]

RFC 740 RTB 42423 22 Nov 77
NETRJS Protocol

 DEVNO identifies the particular device of type t at this remote
 site; at present only DEVNO = 0 is possible.

 END-OF-DATA ::=X’FE’

 Signals end of job (output) or job stack (input).

Braden [page 10]

RFC 740 RTB 42423 22 Nov 77
NETRJS Protocol

 APPENDIX B

 Telnet for VRBT Operator Console

 The remote operator console connections use the ASCII Telnet
 protocol. Specifically:

 1. The following one-to-one character mappings are used for the
 three EBCDIC graphics not in ASCII:

 ASCII in Telnet | NETRJS
 --
 broken vertical bar | solid vertical bar
 tilde | not sign
 back slash | cent sign

 2. Telnet controls are ignored.

 3. An operator console input line which exceeds 133 characters
 (exclusive of CR LF) is truncated by NETRJS.

 4. NETRJS accepts BS (Control-H) to delete a character and CAN
 (Control-X) to delete the current line. The sequence CR LF
 terminates each input and output line. HT (Control-I) is
 translated to a single space. An ETX (Control-C) terminates
 (aborts) the session. All other ASCII control characters are
 ignored.

 5. NETRJS translates the six ASCII graphics with no equivalent in
 EBCDIC into the character question mark ("?") on input.

Braden [page 11]

RFC 740 RTB 42423 22 Nov 77
NETRJS Protocol

 APPENDIX C

 Carriage Control

 The carriage control characters sent in a printer channel by NETRJS
 conform to IBM’s extended USASI code, defined by the following table:

 CODE ACTION BEFORE WRITING RECORD
 ---- ----------------------------
 Blank Space one line before printing
 0 Space two lines before printing
 - Space three lines before printing
 + Suppress space before printing
 1 Skip to channel 1
 2 Skip to channel 2
 3 Skip to channel 3
 4 Skip to channel 4
 5 Skip to channel 5
 6 Skip to channel 6
 7 Skip to channel 7
 8 Skip to channel 8
 9 Skip to channel 9
 A Skip to channel 10
 B Skip to channel 11
 C Skip to channel 12

Braden [page 12]

RFC 740 RTB 42423 22 Nov 77
NETRJS Protocol

 APPENDIX D

 Network/RJS Command Summary

 This section presents an overview of the RJS Operator Commands, for
 the complete form and parameter specifications please see references
 2 and 3.

 Terminal Control and Information Commands

 SIGNON First command of a session; identifies VRBT by giving
 its terminal id.

 SIGNOFF Last command of a session; RJS waits for any data
 transfer in progress to complete and then closes all
 connections.

 STATUS Outputs on the remote operator console a complete
 list, or a summary, of all jobs in the system for
 this VRBT, with an indication of their processing
 status in the batch host.

 ALERT Outputs on the remote operator console an "Alert"
 message, if any, from the computer operator. The
 Alert message is also automatically sent when the
 user does a SIGNON, or whenever the message changes.

 MSG Sends a message to the computer operator or to any
 other RJS terminal (real or virtual). A message from
 the computer operator or another RJS terminal will
 automatically appear on the remote operator console.

 Job Control and Routing Commands

 Under CCN’s job management system, the default destination for
 output is the input source. Thus, a job submitted under a given
 VRBT will be returned to that VRBT (i.e., the same terminal id),
 unless the user’s JCL overrides the default destination.

 RJS places print and punch output destined for a particular remote
 terminal into either an Active Queue or a Deferred Queue. When
 the user opens his print or punch output channel, RJS immediately
 starts sending job output from the Active Queue, and continues
 until this queue is empty. Job output in the Deferred Queue, on
 the other hand, must be called for by job name, (via a RESET
 command from the remote operator) before RJS will send it. The
 Active/Deferred choice for output from a job is determined by the

Braden [page 13]

RFC 740 RTB 42423 22 Nov 77
NETRJS Protocol

 deferral status of the VRBT when the job is entered; the deferral
 status, which is set to the Active option when the user signs on,
 may be changed by the SET command.

 SET Allows the remote user to change certain properties
 of his VRBT for the duration of the current session;

 (a) May change the default output destination to be
 another (real or virtual) RJS terminal or the
 central facility.

 (b) May change the deferral status of the VRBT.

 DEFER Moves the print and punch output for a specified job
 or set of jobs from the Active Queue to the Deferred
 Queue. If the job’s output is in the process of
 being transmitted over a channel, RJS aborts the
 channel and saves the current output location before
 moving the job to the Deferred Queue. A subsequent
 RESET command will return it to the Active Queue
 with an implied Backspace (BSP).

 RESET Moves specified job(s) from Deferred to Active Queue
 so they may be sent to user. A specific list of job
 names or all jobs can be moved with one RESET
 command.

 ROUTE Re-routes output of specified jobs (or all jobs)
 waiting in the Active and Deferred Queues for the
 VRBT. The new destination may be any other RJS
 terminal or the central facility.

 ABORT Cancels a job which was successfully submitted and
 awaiting execution or is currently executing.

 Output Stream Control Commands

 BSP (BACKSPACE) "Backspaces" output stream within current sysout
 data set. Actual amount backspaced depends upon
 sysout blocking but is roughly equivalent to a page
 on the line printer.

 CAN (CANCEL) (a) On an output channel, CAN causes the rest of
 the output in the sysout data set currently being
 transmitted to be omitted. Alternatively, may omit
 the rest of the sysout data sets for the job
 currently being transmitted; however, the remaining

Braden [page 14]

RFC 740 RTB 42423 22 Nov 77
NETRJS Protocol

 system and accounting messages will be sent.

 (b) On an input channel, CAN causes RJS to ignore
 the job currently being read. However, the channel
 is not aborted as a result, and RJS will continue
 reading in jobs on the channel.

 (c) CAN can delete all sysout data sets for
 specified job(s) waiting in Active or Deferred
 Queue.

 RST (RESTART) (a) Restarts a specified output stream at the
 beginning of the current sysout data set or,
 optionally, at the beginning of the job.

 (b) Marks as restarted specified job(s) whose
 transmission was earlier interrupted by system
 failure or user action (e.g., DEFER command or
 aborting the channel). When RJS transmits these
 jobs again it will start at the beginning of the
 partially transmitted sysout data set or,
 optionally, at the beginning of the job. This
 function may be applied to jobs in either the Active
 or the Deferred Queue; however, if the job was in
 the Deferred Queue then RST also moves it to the
 Active Queue. If the job was never transmitted, RST
 has no effect other than this queue movement.

 REPEAT Sends additional copies of the output of specified
 jobs.

 EAM Echoes the card reader stream back in the printer
 and/or punch stream.

Braden [page 15]

RFC 740 RTB 42423 22 Nov 77
NETRJS Protocol

 APPENDIX E

 NETRJS TERMINAL OPTIONS

 When a new NETRJS virtual terminal is defined, certain options are
 available; these options are listed below.

 1. Truncated/Compressed Data Format

 A VRBT may use either the truncated data format (default) or
 the compressed format for printer and punch output. See
 Reference 9 for discussion of the virtues of compression.

 2. Automatic Coldstart Job Resubmission

 If "R" (Restart) is specified in the accounting field on the
 JOB card and if this option is chosen, RJS will automatically
 resubmit the job from the beginning if the server operating
 system should be "coldstarted" before all output from the job
 is returned. Otherwise, the job will be lost and must be
 resubmitted from the remote terminal in case of a coldstart.

 3. Automatic Output RESTART

 With this option, transmission of printer output which is
 interrupted by a broken connection always starts over at the
 beginning. Without this option, the output is backspaced
 approximately one page when restarted, unless the user forces
 the output to start over from the beginning with a RESTART
 command when the printer channel is re-opened and before
 printing begins.

 4. Password Protection

 This option allows a password to be supplied when a terminal is
 signed on, preventing unauthorized use of the terminal ID.

 5. Suppression of Punch Separator and Large Letters.

 This option suppresses both separator cards which RJS normally
 puts in front of each punched output deck, and separator pages
 on printed output containing the job name in large block
 letters. These separators are an operational aid when the
 ouptut is directed to a real printer or punch, but generally
 undesirable for an ARPA user who is saving the output in a file
 for on-line examination.

Braden [page 16]

RFC 740 RTB 42423 22 Nov 77
NETRJS Protocol

 APPENDIX F

 Character Translation by CCN Server

 A VRBT declares its character set for job input and output by the
 initial connection socket it chooses. A VRBT can have the ASCII-68,
 the ASCII-63, or the EBCDIC character set. The ASCII-63 character
 mapping was added to NETRJS at the request of users whose terminals
 are equipped with keyboards like those found on the model 33
 Teletype.

 Since CCN operates an EBCDIC machine, its NETRJS server translates
 ASCII input to EBCDIC and translates printer output back to ASCII.
 The details of this translation are described in the following.

 For ASCII-68, the following rules are used:

 1. There is one-to-one mapping between the three ASCII characters
 broken vertical bar, tilde, and back slash, which are not in
 EBCDIC, and the three EBCDIC characters vertical bar, not
 sign, and cent sign (respectively), which are not in ASCII.

 2. The other six ASCII graphics not in EBCDIC are translated on
 input to unused EBCDIC codes, shown in the table below.

 3. The ASCII control DC4 is mapped to and from the EBCDIC control
 TM.

 4. The other EBCDIC characters not in ASCII are mapped in the
 printer stream into the ASCII question mark.

 For ASCII-63, the same rules are used except that the ASCII-63 codes
 X’60’ and X’7B’ - X’7E’ are mapped as in the following table.

 EBCDIC | ASCII-68 VRBT | ASCII-63 VRBT

 vertical bar X’4F’ | vertical bar X’7C’ | open bracket X’5B’
 not sign X’5F’ | tilde X’7E’ | close bracket X’5D’
 cent sign X’4A’ | back slash X’5C’ | back slash X’5C’
 underscore X’6D’ | underscore X’5F’ | left arrow X’5F’
 . X’71’ | up arrow X’5E’ | up arrow X’5E’
 open bracket X’AD’ | open bracket X’5B’ | . X’7C’
 close bracket X’BD’ | close bracket X’5D’ | . X’7E’
 . X’8B’ | open brace X’7B’ | . X’7B’
 . X’9B’ | close brace X’7D’ | . X’7D’
 . X’79’ | accent X’60’ | . X’60’

Braden [page 17]

RFC 740 RTB 42423 22 Nov 77
NETRJS Protocol

 APPENDIX G

 REFERENCES

 1. "Interim NETRJS Specifications", R. T. Braden. RFC #189: NIC
 #7133, July 15, 1971.

 This was the basic system programmer’s definition document. The
 proposed changes mentioned on the first page of RFC #189 were
 never implemented, since the DTP then in vogue became obsolete.

 2. "NETRJS Remote Operator Commands", R. T. Braden. NIC #7182,
 August 9, 1971

 This document together with References 3 and 8 define the remote
 operator (i.e. user) command language for NETRJS, and form the
 basic user documentation for NETRJS at CCN.

 3. "Implementation of a Remote Job Service", V. Martin and T. W.
 Springer. NIC #7183, July, 1971.

 4. "Remote Job Entry to CCN via UCLA Sigma 7; A scenario", UCLA/CCN.
 NIC #7748, November 15, 1971.

 This document described the first NETRJS user implementation
 available on a server host. This program is no longer of general
 interest.

 5. "Using Network Remote Job Entry", E. F. Harslem. RFC #307: NIC
 #9258, February 24, 1972.

 This document is out of date, but describes generally the Tenex
 NETRJS user process "RJS".

 6. "EBCDIC/ASCII Mapping for Network RJS", R. T. Braden. RFC #338:
 NIC #9931, May 17, 1972.

 The ASCII-63 mapping described here is no longer correct, but
 CCN’s standard ASCII-68/EBCDIC mapping is described correctly.
 This information is accurately described in Appendix F of the
 current document.

Braden [page 18]

RFC 740 RTB 42423 22 Nov 77
NETRJS Protocol

 7. "NETRJT--Remote Job Service Protocol for TIP’s", R. T. Braden. RFC
 #283: NIC 38165, December 20, 1971.

 This was an attempt to define an rje protocol to handle TIPs.
 Although NETRJT was never implemented, many of its features are
 incorporated in the current Network standard RJE protocol.

 8. "CCN NETRJS Server Messages to Remote User", R. T. Braden. NIC
 #20268, November 26, 1973.

 9. "FTP Data Compression", R. T. Braden. RFC #468: NIC #14742,
 March 8, 1973.

 10. "Update on NETRJS", R. T. Braden. RFC #599: NIC #20854, December
 13, 1973.

 This updated reference 1, the current document combines the two.

 11. "Network Remote Job Entry -- NETRJS", G. Hicks. RFC #325: NIC
 9632, April 6, 1972.

 12. "CCNRJS: Remote Job Entry between Tenex and UCLA-CCN", D.
 Crocker. NUTS Note 22, [ISI]<DOCUMENTATION>CCNRJS.DOC, March 5,
 1975.

 13. "Remote Job Service at UCSB", M. Krilanovich. RFC #477: NIC
 #14992, May 23, 1973.

Braden [page 19]

