
Internet Engineering Task Force (IETF) J. Gregorio
Request for Comments: 6570 Google
Category: Standards Track R. Fielding
ISSN: 2070-1721 Adobe
 M. Hadley
 MITRE
 M. Nottingham
 Rackspace
 D. Orchard
 Salesforce.com
 March 2012

 URI Template

Abstract

 A URI Template is a compact sequence of characters for describing a
 range of Uniform Resource Identifiers through variable expansion.
 This specification defines the URI Template syntax and the process
 for expanding a URI Template into a URI reference, along with
 guidelines for the use of URI Templates on the Internet.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6570.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Gregorio, et al. Standards Track [Page 1]

RFC 6570 URI Template March 2012

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction ..3
 1.1. Overview ...3
 1.2. Levels and Expression Types5
 1.3. Design Considerations9
 1.4. Limitations ...10
 1.5. Notational Conventions11
 1.6. Character Encoding and Unicode Normalization12
 2. Syntax ...13
 2.1. Literals ..13
 2.2. Expressions ...13
 2.3. Variables ...14
 2.4. Value Modifiers ...15
 2.4.1. Prefix Values15
 2.4.2. Composite Values16
 3. Expansion ..18
 3.1. Literal Expansion ...18
 3.2. Expression Expansion18
 3.2.1. Variable Expansion19
 3.2.2. Simple String Expansion: {var}21
 3.2.3. Reserved Expansion: {+var}22
 3.2.4. Fragment Expansion: {#var}23
 3.2.5. Label Expansion with Dot-Prefix: {.var}24
 3.2.6. Path Segment Expansion: {/var}24
 3.2.7. Path-Style Parameter Expansion: {;var}25
 3.2.8. Form-Style Query Expansion: {?var}26
 3.2.9. Form-Style Query Continuation: {&var}27
 4. Security Considerations ..27
 5. Acknowledgments ..28
 6. References ...28
 6.1. Normative References28
 6.2. Informative References29
 Appendix A. Implementation Hints30

Gregorio, et al. Standards Track [Page 2]

RFC 6570 URI Template March 2012

1. Introduction

1.1. Overview

 A Uniform Resource Identifier (URI) [RFC3986] is often used to
 identify a specific resource within a common space of similar
 resources (informally, a "URI space"). For example, personal web
 spaces are often delegated using a common pattern, such as

 http://example.com/˜fred/
 http://example.com/˜mark/

 or a set of dictionary entries might be grouped in a hierarchy by the
 first letter of the term, as in

 http://example.com/dictionary/c/cat
 http://example.com/dictionary/d/dog

 or a service interface might be invoked with various user input in a
 common pattern, as in

 http://example.com/search?q=cat&lang=en
 http://example.com/search?q=chien&lang=fr

 A URI Template is a compact sequence of characters for describing a
 range of Uniform Resource Identifiers through variable expansion.

 URI Templates provide a mechanism for abstracting a space of resource
 identifiers such that the variable parts can be easily identified and
 described. URI Templates can have many uses, including the discovery
 of available services, configuring resource mappings, defining
 computed links, specifying interfaces, and other forms of
 programmatic interaction with resources. For example, the above
 resources could be described by the following URI Templates:

 http://example.com/˜{username}/
 http://example.com/dictionary/{term:1}/{term}
 http://example.com/search{?q,lang}

 We define the following terms:

 expression: The text between ’{’ and ’}’, including the enclosing
 braces, as defined in Section 2.

 expansion: The string result obtained from a template expression
 after processing it according to its expression type, list of
 variable names, and value modifiers, as defined in Section 3.

Gregorio, et al. Standards Track [Page 3]

RFC 6570 URI Template March 2012

 template processor: A program or library that, given a URI Template
 and a set of variables with values, transforms the template string
 into a URI reference by parsing the template for expressions and
 substituting each one with its corresponding expansion.

 A URI Template provides both a structural description of a URI space
 and, when variable values are provided, machine-readable instructions
 on how to construct a URI corresponding to those values. A URI
 Template is transformed into a URI reference by replacing each
 delimited expression with its value as defined by the expression type
 and the values of variables named within the expression. The
 expression types range from simple string expansion to multiple
 name=value lists. The expansions are based on the URI generic
 syntax, allowing an implementation to process any URI Template
 without knowing the scheme-specific requirements of every possible
 resulting URI.

 For example, the following URI Template includes a form-style
 parameter expression, as indicated by the "?" operator appearing
 before the variable names.

 http://www.example.com/foo{?query,number}

 The expansion process for expressions beginning with the question-
 mark ("?") operator follows the same pattern as form-style interfaces
 on the World Wide Web:

 http://www.example.com/foo{?query,number}
 _____________/
 |
 |
 For each defined variable in [’query’, ’number’],
 substitute "?" if it is the first substitution or "&"
 thereafter, followed by the variable name, ’=’, and the
 variable’s value.

 If the variables have the values

 query := "mycelium"
 number := 100

 then the expansion of the above URI Template is

 http://www.example.com/foo?query=mycelium&number=100

 Alternatively, if ’query’ is undefined, then the expansion would be

 http://www.example.com/foo?number=100

Gregorio, et al. Standards Track [Page 4]

RFC 6570 URI Template March 2012

 or if both variables are undefined, then it would be

 http://www.example.com/foo

 A URI Template may be provided in absolute form, as in the examples
 above, or in relative form. A template is expanded before the
 resulting reference is resolved from relative to absolute form.

 Although the URI syntax is used for the result, the template string
 is allowed to contain the broader set of characters that can be found
 in Internationalized Resource Identifier (IRI) references [RFC3987].
 Therefore, a URI Template is also an IRI template, and the result of
 template processing can be transformed to an IRI by following the
 process defined in Section 3.2 of [RFC3987].

1.2. Levels and Expression Types

 URI Templates are similar to a macro language with a fixed set of
 macro definitions: the expression type determines the expansion
 process. The default expression type is simple string expansion,
 wherein a single named variable is replaced by its value as a string
 after pct-encoding any characters not in the set of unreserved URI
 characters (Section 1.5).

 Since most template processors implemented prior to this
 specification have only implemented the default expression type, we
 refer to these as Level 1 templates.

 .---.
 | Level 1 examples, with variables having values of |
 | |
 | var := "value" |
 | hello := "Hello World!" |
Op Expression Expansion

 ‘---’

 Level 2 templates add the plus ("+") operator, for expansion of
 values that are allowed to include reserved URI characters
 (Section 1.5), and the crosshatch ("#") operator for expansion of
 fragment identifiers.

Gregorio, et al. Standards Track [Page 5]

RFC 6570 URI Template March 2012

 .---.
 | Level 2 examples, with variables having values of |
 | |
 | var := "value" |
 | hello := "Hello World!" |
 | path := "/foo/bar" |
Op Expression Expansion

+
-----+---
#
 ‘---’

 Level 3 templates allow multiple variables per expression, each
 separated by a comma, and add more complex operators for dot-prefixed
 labels, slash-prefixed path segments, semicolon-prefixed path
 parameters, and the form-style construction of a query syntax
 consisting of name=value pairs that are separated by an ampersand
 character.

 .---.
 | Level 3 examples, with variables having values of |
 | |
 | var := "value" |
 | hello := "Hello World!" |
 | empty := "" |
 | path := "/foo/bar" |
 | x := "1024" |
 | y := "768" |
Op Expression Expansion

Gregorio, et al. Standards Track [Page 6]

RFC 6570 URI Template March 2012

 |-----+---|
+	Reserved expansion with multiple variables (Sec 3.2.3)
	{+x,hello,y} 1024,Hello%20World!,768
	{+path,x}/here /foo/bar,1024/here
-----+---	
#	Fragment expansion with multiple variables (Sec 3.2.4)
	{#x,hello,y} #1024,Hello%20World!,768
	{#path,x}/here #/foo/bar,1024/here
-----+---	
.	Label expansion, dot-prefixed (Sec 3.2.5)
	X{.var} X.value
	X{.x,y} X.1024.768
-----+---	
/	Path segments, slash-prefixed (Sec 3.2.6)
	{/var} /value
	{/var,x}/here /value/1024/here
-----+---	
;	Path-style parameters, semicolon-prefixed (Sec 3.2.7)
	{;x,y} ;x=1024;y=768
	{;x,y,empty} ;x=1024;y=768;empty
-----+---	
?	Form-style query, ampersand-separated (Sec 3.2.8)
	{?x,y} ?x=1024&y=768
	{?x,y,empty} ?x=1024&y=768&empty=
-----+---	
&	Form-style query continuation (Sec 3.2.9)
	?fixed=yes{&x} ?fixed=yes&x=1024
	{&x,y,empty} &x=1024&y=768&empty=
 ‘---’

 Finally, Level 4 templates add value modifiers as an optional suffix
 to each variable name. A prefix modifier (":") indicates that only a
 limited number of characters from the beginning of the value are used
 by the expansion (Section 2.4.1). An explode ("*") modifier

Gregorio, et al. Standards Track [Page 7]

RFC 6570 URI Template March 2012

 indicates that the variable is to be treated as a composite value,
 consisting of either a list of names or an associative array of
 (name, value) pairs, that is expanded as if each member were a
 separate variable (Section 2.4.2).

 .---.
 | Level 4 examples, with variables having values of |
 | |
 | var := "value" |
 | hello := "Hello World!" |
 | path := "/foo/bar" |
 | list := ("red", "green", "blue") |
 | keys := [("semi",";"),("dot","."),("comma",",")] |
 | |
Op Expression Expansion
-----+---
+
-----+---
#
-----+---
.

Gregorio, et al. Standards Track [Page 8]

RFC 6570 URI Template March 2012

	X{.list*} X.red.green.blue
	X{.keys} X.semi,%3B,dot,.,comma,%2C
	X{.keys*} X.semi=%3B.dot=..comma=%2C
-----+---	
/	Path segments, slash-prefixed (Sec 3.2.6)
	{/var:1,var} /v/value
	{/list} /red,green,blue
	{/list*} /red/green/blue
	{/list*,path:4} /red/green/blue/%2Ffoo
	{/keys} /semi,%3B,dot,.,comma,%2C
	{/keys*} /semi=%3B/dot=./comma=%2C
-----+---	
;	Path-style parameters, semicolon-prefixed (Sec 3.2.7)
	{;hello:5} ;hello=Hello
	{;list} ;list=red,green,blue
	{;list*} ;list=red;list=green;list=blue
	{;keys} ;keys=semi,%3B,dot,.,comma,%2C
	{;keys*} ;semi=%3B;dot=.;comma=%2C
-----+---	
?	Form-style query, ampersand-separated (Sec 3.2.8)
	{?var:3} ?var=val
	{?list} ?list=red,green,blue
	{?list*} ?list=red&list=green&list=blue
	{?keys} ?keys=semi,%3B,dot,.,comma,%2C
	{?keys*} ?semi=%3B&dot=.&comma=%2C
-----+---	
&	Form-style query continuation (Sec 3.2.9)
	{&var:3} &var=val
	{&list} &list=red,green,blue
	{&list*} &list=red&list=green&list=blue
	{&keys} &keys=semi,%3B,dot,.,comma,%2C
	{&keys*} &semi=%3B&dot=.&comma=%2C
 ‘---’

1.3. Design Considerations

 Mechanisms similar to URI Templates have been defined within several
 specifications, including WSDL [WSDL], WADL [WADL], and OpenSearch
 [OpenSearch]. This specification extends and formally defines the

Gregorio, et al. Standards Track [Page 9]

RFC 6570 URI Template March 2012

 syntax so that URI Templates can be used consistently across multiple
 Internet applications and within Internet message fields, while at
 the same time retaining compatibility with those earlier definitions.

 The URI Template syntax has been designed to carefully balance the
 need for a powerful expansion mechanism with the need for ease of
 implementation. The syntax is designed to be trivial to parse while
 at the same time providing enough flexibility to express many common
 template scenarios. Implementations are able to parse the template
 and perform the expansions in a single pass.

 Templates are simple and readable when used with common examples
 because the single-character operators match the URI generic syntax
 delimiters. The operator’s associated delimiter (".", ";", "/", "?",
 "&", and "#") is omitted when none of the listed variables are
 defined. Likewise, the expansion process for ";" (path-style
 parameters) will omit the "=" when the variable value is empty,
 whereas the process for "?" (form-style parameters) will not omit the
 "=" when the value is empty. Multiple variables and list values have
 their values joined with "," if there is no predefined joining
 mechanism for the operator. The "+" and "#" operators will
 substitute unencoded reserved characters found inside the variable
 values; the other operators will pct-encode reserved characters found
 in the variable values prior to expansion.

 The most common cases for URI spaces can be described with Level 1
 template expressions. If we were only concerned with URI generation,
 then the template syntax could be limited to just simple variable
 expansion, since more complex forms could be generated by changing
 the variable values. However, URI Templates have the additional goal
 of describing the layout of identifiers in terms of preexisting data
 values. Therefore, the template syntax includes operators that
 reflect how resource identifiers are commonly allocated. Likewise,
 since prefix substrings are often used to partition large spaces of
 resources, modifiers on variable values provide a way to specify both
 the substring and the full value string with a single variable name.

1.4. Limitations

 Since a URI Template describes a superset of the identifiers, there
 is no implication that every possible expansion for each delimited
 variable expression corresponds to a URI of an existing resource.
 Our expectation is that an application constructing URIs according to
 the template will be provided with an appropriate set of values for
 the variables being substituted, or at least a means of validating
 user data-entry for those values.

Gregorio, et al. Standards Track [Page 10]

RFC 6570 URI Template March 2012

 URI Templates are not URIs: they do not identify an abstract or
 physical resource, they are not parsed as URIs, and they should not
 be used in places where a URI would be expected unless the template
 expressions will be expanded by a template processor prior to use.
 Distinct field, element, or attribute names should be used to
 differentiate protocol elements that carry a URI Template from those
 that expect a URI reference.

 Some URI Templates can be used in reverse for the purpose of variable
 matching: comparing the template to a fully formed URI in order to
 extract the variable parts from that URI and assign them to the named
 variables. Variable matching only works well if the template
 expressions are delimited by the beginning or end of the URI or by
 characters that cannot be part of the expansion, such as reserved
 characters surrounding a simple string expression. In general,
 regular expression languages are better suited for variable matching.

1.5. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 This specification uses the Augmented Backus-Naur Form (ABNF)
 notation of [RFC5234]. The following ABNF rules are imported from
 the normative references [RFC5234], [RFC3986], and [RFC3987].

 ALPHA = %x41-5A / %x61-7A ; A-Z / a-z
 DIGIT = %x30-39 ; 0-9
 HEXDIG = DIGIT / "A" / "B" / "C" / "D" / "E" / "F"
 ; case-insensitive

 pct-encoded = "%" HEXDIG HEXDIG
 unreserved = ALPHA / DIGIT / "-" / "." / "_" / "˜"
 reserved = gen-delims / sub-delims
 gen-delims = ":" / "/" / "?" / "#" / "[" / "]" / "@"
 sub-delims = "!" / "$" / "&" / "’" / "(" / ")"
 / "*" / "+" / "," / ";" / "="

 ucschar = %xA0-D7FF / %xF900-FDCF / %xFDF0-FFEF
 / %x10000-1FFFD / %x20000-2FFFD / %x30000-3FFFD
 / %x40000-4FFFD / %x50000-5FFFD / %x60000-6FFFD
 / %x70000-7FFFD / %x80000-8FFFD / %x90000-9FFFD
 / %xA0000-AFFFD / %xB0000-BFFFD / %xC0000-CFFFD
 / %xD0000-DFFFD / %xE1000-EFFFD

 iprivate = %xE000-F8FF / %xF0000-FFFFD / %x100000-10FFFD

Gregorio, et al. Standards Track [Page 11]

RFC 6570 URI Template March 2012

1.6. Character Encoding and Unicode Normalization

 This specification uses the terms "character", "character encoding
 scheme", "code point", "coded character set", "glyph", "non-ASCII",
 "normalization", "protocol element", and "regular expression" as they
 are defined in [RFC6365].

 The ABNF notation defines its terminal values to be non-negative
 integers (code points) that are a superset of the US-ASCII coded
 character set [ASCII]. This specification defines terminal values as
 code points within the Unicode coded character set [UNIV6].

 In spite of the syntax and template expansion process being defined
 in terms of Unicode code points, it should be understood that
 templates occur in practice as a sequence of characters in whatever
 form or encoding is suitable for the context in which they occur,
 whether that be octets embedded in a network protocol element or
 glyphs painted on the side of a bus. This specification does not
 mandate any particular character encoding scheme for mapping between
 URI Template characters and the octets used to store or transmit
 those characters. When a URI Template appears in a protocol element,
 the character encoding scheme is defined by that protocol; without
 such a definition, a URI Template is assumed to be in the same
 character encoding scheme as the surrounding text. It is only during
 the process of template expansion that a string of characters in a
 URI Template is REQUIRED to be processed as a sequence of Unicode
 code points.

 The Unicode Standard [UNIV6] defines various equivalences between
 sequences of characters for various purposes. Unicode Standard Annex
 #15 [UTR15] defines various Normalization Forms for these
 equivalences. The normalization form determines how to consistently
 encode equivalent strings. In theory, all URI processing
 implementations, including template processors, should use the same
 normalization form for generating a URI reference. In practice, they
 do not. If a value has been provided by the same server as the
 resource, then it can be assumed that the string is already in the
 form expected by that server. If a value is provided by a user, such
 as via a data-entry dialog, then the string SHOULD be normalized as
 Normalization Form C (NFC: Canonical Decomposition, followed by
 Canonical Composition) prior to being used in expansions by a
 template processor.

 Likewise, when non-ASCII data that represents readable strings is
 pct-encoded for use in a URI reference, a template processor MUST
 first encode the string as UTF-8 [RFC3629] and then pct-encode any
 octets that are not allowed in a URI reference.

Gregorio, et al. Standards Track [Page 12]

RFC 6570 URI Template March 2012

2. Syntax

 A URI Template is a string of printable Unicode characters that
 contains zero or more embedded variable expressions, each expression
 being delimited by a matching pair of braces (’{’, ’}’).

 URI-Template = *(literals / expression)

 Although templates (and template processor implementations) are
 described above in terms of four gradual levels, we define the URI-
 Template syntax in terms of the ABNF for Level 4. A template
 processor limited to lower-level templates MAY exclude the ABNF rules
 applicable only to higher levels. However, it is RECOMMENDED that
 all parsers implement the full syntax such that unsupported levels
 can be properly identified as such to the end user.

2.1. Literals

 The characters outside of expressions in a URI Template string are
 intended to be copied literally to the URI reference if the character
 is allowed in a URI (reserved / unreserved / pct-encoded) or, if not
 allowed, copied to the URI reference as the sequence of pct-encoded
 triplets corresponding to that character’s encoding in UTF-8
 [RFC3629].

 literals = %x21 / %x23-24 / %x26 / %x28-3B / %x3D / %x3F-5B
 / %x5D / %x5F / %x61-7A / %x7E / ucschar / iprivate
 / pct-encoded
 ; any Unicode character except: CTL, SP,
 ; DQUOTE, "’", "%" (aside from pct-encoded),
 ; "<", ">", "\", "^", "‘", "{", "|", "}"

2.2. Expressions

 Template expressions are the parameterized parts of a URI Template.
 Each expression contains an optional operator, which defines the
 expression type and its corresponding expansion process, followed by
 a comma-separated list of variable specifiers (variable names and
 optional value modifiers). If no operator is provided, the
 expression defaults to simple variable expansion of unreserved
 values.

 expression = "{" [operator] variable-list "}"
 operator = op-level2 / op-level3 / op-reserve
 op-level2 = "+" / "#"
 op-level3 = "." / "/" / ";" / "?" / "&"
 op-reserve = "=" / "," / "!" / "@" / "|"

Gregorio, et al. Standards Track [Page 13]

RFC 6570 URI Template March 2012

 The operator characters have been chosen to reflect each of their
 roles as reserved characters in the URI generic syntax. The
 operators defined in Section 3 of this specification include:

 + Reserved character strings;

 # Fragment identifiers prefixed by "#";

 . Name labels or extensions prefixed by ".";

 / Path segments prefixed by "/";

 ; Path parameter name or name=value pairs prefixed by ";";

 ? Query component beginning with "?" and consisting of
 name=value pairs separated by "&"; and,

 & Continuation of query-style &name=value pairs within
 a literal query component.

 The operator characters equals ("="), comma (","), exclamation ("!"),
 at sign ("@"), and pipe ("|") are reserved for future extensions.

 The expression syntax specifically excludes use of the dollar ("$")
 and parentheses ["(" and ")"] characters so that they remain
 available for use outside the scope of this specification. For
 example, a macro language might use these characters to apply macro
 substitution to a string prior to that string being processed as a
 URI Template.

2.3. Variables

 After the operator (if any), each expression contains a list of one
 or more comma-separated variable specifiers (varspec). The variable
 names serve multiple purposes: documentation for what kinds of values
 are expected, identifiers for associating values within a template
 processor, and the literal string to use for the name in name=value
 expansions (aside from when exploding an associative array).
 Variable names are case-sensitive because the name might be expanded
 within a case-sensitive URI component.

 variable-list = varspec *("," varspec)
 varspec = varname [modifier-level4]
 varname = varchar *(["."] varchar)
 varchar = ALPHA / DIGIT / "_" / pct-encoded

Gregorio, et al. Standards Track [Page 14]

RFC 6570 URI Template March 2012

 A varname MAY contain one or more pct-encoded triplets. These
 triplets are considered an essential part of the variable name and
 are not decoded during processing. A varname containing pct-encoded
 characters is not the same variable as a varname with those same
 characters decoded. Applications that provide URI Templates are
 expected to be consistent in their use of pct-encoding within
 variable names.

 An expression MAY reference variables that are unknown to the
 template processor or whose value is set to a special "undefined"
 value, such as undef or null. Such undefined variables are given
 special treatment by the expansion process (Section 3.2.1).

 A variable value that is a string of length zero is not considered
 undefined; it has the defined value of an empty string.

 In Level 4 templates, a variable may have a composite value in the
 form of a list of values or an associative array of (name, value)
 pairs. Such value types are not directly indicated by the template
 syntax, but they do have an impact on the expansion process
 (Section 3.2.1).

 A variable defined as a list value is considered undefined if the
 list contains zero members. A variable defined as an associative
 array of (name, value) pairs is considered undefined if the array
 contains zero members or if all member names in the array are
 associated with undefined values.

2.4. Value Modifiers

 Each of the variables in a Level 4 template expression can have a
 modifier indicating either that its expansion is limited to a prefix
 of the variable’s value string or that its expansion is exploded as a
 composite value in the form of a value list or an associative array
 of (name, value) pairs.

 modifier-level4 = prefix / explode

2.4.1. Prefix Values

 A prefix modifier indicates that the variable expansion is limited to
 a prefix of the variable’s value string. Prefix modifiers are often
 used to partition an identifier space hierarchically, as is common in
 reference indices and hash-based storage. It also serves to limit
 the expanded value to a maximum number of characters. Prefix
 modifiers are not applicable to variables that have composite values.

Gregorio, et al. Standards Track [Page 15]

RFC 6570 URI Template March 2012

 prefix = ":" max-length
 max-length = %x31-39 0*3DIGIT ; positive integer < 10000

 The max-length is a positive integer that refers to a maximum number
 of characters from the beginning of the variable’s value as a Unicode
 string. Note that this numbering is in characters, not octets, in
 order to avoid splitting between the octets of a multi-octet-encoded
 character or within a pct-encoded triplet. If the max-length is
 greater than the length of the variable’s value, then the entire
 value string is used.

 For example,

 Given the variable assignments

 var := "value"
 semi := ";"

 Example Template Expansion

 {var} value
 {var:20} value
 {var:3} val
 {semi} %3B
 {semi:2} %3B

2.4.2. Composite Values

 An explode ("*") modifier indicates that the variable is to be
 treated as a composite value consisting of either a list of values or
 an associative array of (name, value) pairs. Hence, the expansion
 process is applied to each member of the composite as if it were
 listed as a separate variable. This kind of variable specification
 is significantly less self-documenting than non-exploded variables,
 since there is less correspondence between the variable name and how
 the URI reference appears after expansion.

 explode = "*"

 Since URI Templates do not contain an indication of type or schema,
 the type for an exploded variable is assumed to be determined by
 context. For example, the processor might be supplied values in a
 form that differentiates values as strings, lists, or associative
 arrays. Likewise, the context in which the template is used (script,
 mark-up language, Interface Definition Language, etc.) might define
 rules for associating variable names with types, structures, or
 schema.

Gregorio, et al. Standards Track [Page 16]

RFC 6570 URI Template March 2012

 Explode modifiers improve brevity in the URI Template syntax. For
 example, a resource that provides a geographic map for a given street
 address might accept a hundred permutations on fields for address
 input, including partial addresses (e.g., just the city or postal
 code). Such a resource could be described as a template with each
 and every address component listed in order, or with a far more
 simple template that makes use of an explode modifier, as in

 /mapper{?address*}

 along with some context that defines what the variable named
 "address" can include, such as by reference to some other standard
 for addressing (e.g., [UPU-S42]). A recipient aware of the schema
 can then provide appropriate expansions, such as:

 /mapper?city=Newport%20Beach&state=CA

 The expansion process for exploded variables is dependent on both the
 operator being used and whether the composite value is to be treated
 as a list of values or as an associative array of (name, value)
 pairs. Structures are processed as if they are an associative array
 with names corresponding to the fields in the structure definition
 and "." separators used to indicate name hierarchy in substructures.

 If a variable has a composite structure and only some of the fields
 in that structure have defined values, then only the defined pairs
 are present in the expansion. This can be useful for templates that
 consist of a large number of potential query terms.

 An explode modifier applied to a list variable causes the expansion
 to iterate over the list’s member values. For path and query
 parameter expansions, each member value is paired with the variable’s
 name as a (varname, value) pair. This allows path and query
 parameters to be repeated for multiple values, as in

 Given the variable assignments

 year := ("1965", "2000", "2012")
 dom := ("example", "com")

 Example Template Expansion

 find{?year*} find?year=1965&year=2000&year=2012
 www{.dom*} www.example.com

Gregorio, et al. Standards Track [Page 17]

RFC 6570 URI Template March 2012

3. Expansion

 The process of URI Template expansion is to scan the template string
 from beginning to end, copying literal characters and replacing each
 expression with the result of applying the expression’s operator to
 the value of each variable named in the expression. Each variable’s
 value MUST be formed prior to template expansion.

 The requirements on expansion for each aspect of the URI Template
 grammar are defined in this section. A non-normative algorithm for
 the expansion process as a whole is provided in Appendix A.

 If a template processor encounters a character sequence outside an
 expression that does not match the <URI-Template> grammar, then
 processing of the template SHOULD cease, the URI reference result
 SHOULD contain the expanded part of the template followed by the
 remainder unexpanded, and the location and type of error SHOULD be
 indicated to the invoking application.

 If an error is encountered in an expression, such as an operator or
 value modifier that the template processor does not recognize or does
 not yet support, or a character is found that is not allowed by the
 <expression> grammar, then the unprocessed parts of the expression
 SHOULD be copied to the result unexpanded, processing of the
 remainder of the template SHOULD continue, and the location and type
 of error SHOULD be indicated to the invoking application.

 If an error occurs, the result returned might not be a valid URI
 reference; it will be an incompletely expanded template string that
 is only intended for diagnostic use.

3.1. Literal Expansion

 If the literal character is allowed anywhere in the URI syntax
 (unreserved / reserved / pct-encoded), then it is copied directly to
 the result string. Otherwise, the pct-encoded equivalent of the
 literal character is copied to the result string by first encoding
 the character as its sequence of octets in UTF-8 and then encoding
 each such octet as a pct-encoded triplet.

3.2. Expression Expansion

 Each expression is indicated by an opening brace ("{") character and
 continues until the next closing brace ("}"). Expressions cannot be
 nested.

Gregorio, et al. Standards Track [Page 18]

RFC 6570 URI Template March 2012

 An expression is expanded by determining its expression type and then
 following that type’s expansion process for each comma-separated
 varspec in the expression. Level 1 templates are limited to the
 default operator (simple string value expansion) and a single
 variable per expression. Level 2 templates are limited to a single
 varspec per expression.

 The expression type is determined by looking at the first character
 after the opening brace. If the character is an operator, then
 remember the expression type associated with that operator for later
 expansion decisions and skip to the next character for the variable-
 list. If the first character is not an operator, then the expression
 type is simple string expansion and the first character is the
 beginning of the variable-list.

 The examples in the subsections below use the following definitions
 for variable values:

 count := ("one", "two", "three")
 dom := ("example", "com")
 dub := "me/too"
 hello := "Hello World!"
 half := "50%"
 var := "value"
 who := "fred"
 base := "http://example.com/home/"
 path := "/foo/bar"
 list := ("red", "green", "blue")
 keys := [("semi",";"),("dot","."),("comma",",")]
 v := "6"
 x := "1024"
 y := "768"
 empty := ""
 empty_keys := []
 undef := null

3.2.1. Variable Expansion

 A variable that is undefined (Section 2.3) has no value and is
 ignored by the expansion process. If all of the variables in an
 expression are undefined, then the expression’s expansion is the
 empty string.

 Variable expansion of a defined, non-empty value results in a
 substring of allowed URI characters. As described in Section 1.6,
 the expansion process is defined in terms of Unicode code points in
 order to ensure that non-ASCII characters are consistently pct-
 encoded in the resulting URI reference. One way for a template

Gregorio, et al. Standards Track [Page 19]

RFC 6570 URI Template March 2012

 processor to obtain a consistent expansion is to transcode the value
 string to UTF-8 (if it is not already in UTF-8) and then transform
 each octet that is not in the allowed set into the corresponding pct-
 encoded triplet. Another is to map directly from the value’s native
 character encoding to the set of allowed URI characters, with any
 remaining disallowed characters mapping to the sequence of pct-
 encoded triplets that correspond to the octet(s) of that character
 when encoded as UTF-8 [RFC3629].

 The allowed set for a given expansion depends on the expression type:
 reserved ("+") and fragment ("#") expansions allow the set of
 characters in the union of (unreserved / reserved / pct-encoded) to
 be passed through without pct-encoding, whereas all other expression
 types allow only unreserved characters to be passed through without
 pct-encoding. Note that the percent character ("%") is only allowed
 as part of a pct-encoded triplet and only for reserved/fragment
 expansion: in all other cases, a value character of "%" MUST be pct-
 encoded as "%25" by variable expansion.

 If a variable appears more than once in an expression or within
 multiple expressions of a URI Template, the value of that variable
 MUST remain static throughout the expansion process (i.e., the
 variable must have the same value for the purpose of calculating each
 expansion). However, if reserved characters or pct-encoded triplets
 occur in the value, they will be pct-encoded by some expression types
 and not by others.

 For a variable that is a simple string value, expansion consists of
 appending the encoded value to the result string. An explode
 modifier has no effect. A prefix modifier limits the expansion to
 the first max-length characters of the decoded value. If the value
 contains multi-octet or pct-encoded characters, care must be taken to
 avoid splitting the value in mid-character: count each Unicode code
 point as one character.

 For a variable that is an associative array, expansion depends on
 both the expression type and the presence of an explode modifier. If
 there is no explode modifier, expansion consists of appending a
 comma-separated concatenation of each (name, value) pair that has a
 defined value. If there is an explode modifier, expansion consists
 of appending each pair that has a defined value as either
 "name=value" or, if the value is the empty string and the expression
 type does not indicate form-style parameters (i.e., not a "?" or "&"
 type), simply "name". Both name and value strings are encoded in the
 same way as simple string values. A separator string is appended
 between defined pairs according to the expression type, as defined by
 the following table:

Gregorio, et al. Standards Track [Page 20]

RFC 6570 URI Template March 2012

 Type Separator
 "," (default)
 + ","
 # ","
 . "."
 / "/"
 ; ";"
 ? "&"
 & "&"

 For a variable that is a list of values, expansion depends on both
 the expression type and the presence of an explode modifier. If
 there is no explode modifier, the expansion consists of a comma-
 separated concatenation of the defined member string values. If
 there is an explode modifier and the expression type expands named
 parameters (";", "?", or "&"), then the list is expanded as if it
 were an associative array in which each member value is paired with
 the list’s varname. Otherwise, the value will be expanded as if it
 were a list of separate variable values, each value separated by the
 expression type’s associated separator as defined by the table above.

 Example Template Expansion

 {count} one,two,three
 {count*} one,two,three
 {/count} /one,two,three
 {/count*} /one/two/three
 {;count} ;count=one,two,three
 {;count*} ;count=one;count=two;count=three
 {?count} ?count=one,two,three
 {?count*} ?count=one&count=two&count=three
 {&count*} &count=one&count=two&count=three

3.2.2. Simple String Expansion: {var}

 Simple string expansion is the default expression type when no
 operator is given.

 For each defined variable in the variable-list, perform variable
 expansion, as defined in Section 3.2.1, with the allowed characters
 being those in the unreserved set. If more than one variable has a
 defined value, append a comma (",") to the result string as a
 separator between variable expansions.

Gregorio, et al. Standards Track [Page 21]

RFC 6570 URI Template March 2012

 Example Template Expansion

 {var} value
 {hello} Hello%20World%21
 {half} 50%25
 O{empty}X OX
 O{undef}X OX
 {x,y} 1024,768
 {x,hello,y} 1024,Hello%20World%21,768
 ?{x,empty} ?1024,
 ?{x,undef} ?1024
 ?{undef,y} ?768
 {var:3} val
 {var:30} value
 {list} red,green,blue
 {list*} red,green,blue
 {keys} semi,%3B,dot,.,comma,%2C
 {keys*} semi=%3B,dot=.,comma=%2C

3.2.3. Reserved Expansion: {+var}

 Reserved expansion, as indicated by the plus ("+") operator for Level
 2 and above templates, is identical to simple string expansion except
 that the substituted values may also contain pct-encoded triplets and
 characters in the reserved set.

 For each defined variable in the variable-list, perform variable
 expansion, as defined in Section 3.2.1, with the allowed characters
 being those in the set (unreserved / reserved / pct-encoded). If
 more than one variable has a defined value, append a comma (",") to
 the result string as a separator between variable expansions.

Gregorio, et al. Standards Track [Page 22]

RFC 6570 URI Template March 2012

 Example Template Expansion

 {+var} value
 {+hello} Hello%20World!
 {+half} 50%25

 {base}index http%3A%2F%2Fexample.com%2Fhome%2Findex
 {+base}index http://example.com/home/index
 O{+empty}X OX
 O{+undef}X OX

 {+path}/here /foo/bar/here
 here?ref={+path} here?ref=/foo/bar
 up{+path}{var}/here up/foo/barvalue/here
 {+x,hello,y} 1024,Hello%20World!,768
 {+path,x}/here /foo/bar,1024/here

 {+path:6}/here /foo/b/here
 {+list} red,green,blue
 {+list*} red,green,blue
 {+keys} semi,;,dot,.,comma,,
 {+keys*} semi=;,dot=.,comma=,

3.2.4. Fragment Expansion: {#var}

 Fragment expansion, as indicated by the crosshatch ("#") operator for
 Level 2 and above templates, is identical to reserved expansion
 except that a crosshatch character (fragment delimiter) is appended
 first to the result string if any of the variables are defined.

 Example Template Expansion

 {#var} #value
 {#hello} #Hello%20World!
 {#half} #50%25
 foo{#empty} foo#
 foo{#undef} foo
 {#x,hello,y} #1024,Hello%20World!,768
 {#path,x}/here #/foo/bar,1024/here
 {#path:6}/here #/foo/b/here
 {#list} #red,green,blue
 {#list*} #red,green,blue
 {#keys} #semi,;,dot,.,comma,,
 {#keys*} #semi=;,dot=.,comma=,

Gregorio, et al. Standards Track [Page 23]

RFC 6570 URI Template March 2012

3.2.5. Label Expansion with Dot-Prefix: {.var}

 Label expansion, as indicated by the dot (".") operator for Level 3
 and above templates, is useful for describing URI spaces with varying
 domain names or path selectors (e.g., filename extensions).

 For each defined variable in the variable-list, append "." to the
 result string and then perform variable expansion, as defined in
 Section 3.2.1, with the allowed characters being those in the
 unreserved set.

 Since "." is in the unreserved set, a value that contains a "." has
 the effect of adding multiple labels.

 Example Template Expansion

 {.who} .fred
 {.who,who} .fred.fred
 {.half,who} .50%25.fred
 www{.dom*} www.example.com
 X{.var} X.value
 X{.empty} X.
 X{.undef} X
 X{.var:3} X.val
 X{.list} X.red,green,blue
 X{.list*} X.red.green.blue
 X{.keys} X.semi,%3B,dot,.,comma,%2C
 X{.keys*} X.semi=%3B.dot=..comma=%2C
 X{.empty_keys} X
 X{.empty_keys*} X

3.2.6. Path Segment Expansion: {/var}

 Path segment expansion, as indicated by the slash ("/") operator in
 Level 3 and above templates, is useful for describing URI path
 hierarchies.

 For each defined variable in the variable-list, append "/" to the
 result string and then perform variable expansion, as defined in
 Section 3.2.1, with the allowed characters being those in the
 unreserved set.

 Note that the expansion process for path segment expansion is
 identical to that of label expansion aside from the substitution of
 "/" instead of ".". However, unlike ".", a "/" is a reserved
 character and will be pct-encoded if found in a value.

Gregorio, et al. Standards Track [Page 24]

RFC 6570 URI Template March 2012

 Example Template Expansion

 {/who} /fred
 {/who,who} /fred/fred
 {/half,who} /50%25/fred
 {/who,dub} /fred/me%2Ftoo
 {/var} /value
 {/var,empty} /value/
 {/var,undef} /value
 {/var,x}/here /value/1024/here
 {/var:1,var} /v/value
 {/list} /red,green,blue
 {/list*} /red/green/blue
 {/list*,path:4} /red/green/blue/%2Ffoo
 {/keys} /semi,%3B,dot,.,comma,%2C
 {/keys*} /semi=%3B/dot=./comma=%2C

3.2.7. Path-Style Parameter Expansion: {;var}

 Path-style parameter expansion, as indicated by the semicolon (";")
 operator in Level 3 and above templates, is useful for describing URI
 path parameters, such as "path;property" or "path;name=value".

 For each defined variable in the variable-list:

 o append ";" to the result string;

 o if the variable has a simple string value or no explode modifier
 is given, then:

 * append the variable name (encoded as if it were a literal
 string) to the result string;

 * if the variable’s value is not empty, append "=" to the result
 string;

 o perform variable expansion, as defined in Section 3.2.1, with the
 allowed characters being those in the unreserved set.

Gregorio, et al. Standards Track [Page 25]

RFC 6570 URI Template March 2012

 Example Template Expansion

 {;who} ;who=fred
 {;half} ;half=50%25
 {;empty} ;empty
 {;v,empty,who} ;v=6;empty;who=fred
 {;v,bar,who} ;v=6;who=fred
 {;x,y} ;x=1024;y=768
 {;x,y,empty} ;x=1024;y=768;empty
 {;x,y,undef} ;x=1024;y=768
 {;hello:5} ;hello=Hello
 {;list} ;list=red,green,blue
 {;list*} ;list=red;list=green;list=blue
 {;keys} ;keys=semi,%3B,dot,.,comma,%2C
 {;keys*} ;semi=%3B;dot=.;comma=%2C

3.2.8. Form-Style Query Expansion: {?var}

 Form-style query expansion, as indicated by the question-mark ("?")
 operator in Level 3 and above templates, is useful for describing an
 entire optional query component.

 For each defined variable in the variable-list:

 o append "?" to the result string if this is the first defined value
 or append "&" thereafter;

 o if the variable has a simple string value or no explode modifier
 is given, append the variable name (encoded as if it were a
 literal string) and an equals character ("=") to the result
 string; and,

 o perform variable expansion, as defined in Section 3.2.1, with the
 allowed characters being those in the unreserved set.

 Example Template Expansion

 {?who} ?who=fred
 {?half} ?half=50%25
 {?x,y} ?x=1024&y=768
 {?x,y,empty} ?x=1024&y=768&empty=
 {?x,y,undef} ?x=1024&y=768
 {?var:3} ?var=val
 {?list} ?list=red,green,blue
 {?list*} ?list=red&list=green&list=blue
 {?keys} ?keys=semi,%3B,dot,.,comma,%2C
 {?keys*} ?semi=%3B&dot=.&comma=%2C

Gregorio, et al. Standards Track [Page 26]

RFC 6570 URI Template March 2012

3.2.9. Form-Style Query Continuation: {&var}

 Form-style query continuation, as indicated by the ampersand ("&")
 operator in Level 3 and above templates, is useful for describing
 optional &name=value pairs in a template that already contains a
 literal query component with fixed parameters.

 For each defined variable in the variable-list:

 o append "&" to the result string;

 o if the variable has a simple string value or no explode modifier
 is given, append the variable name (encoded as if it were a
 literal string) and an equals character ("=") to the result
 string; and,

 o perform variable expansion, as defined in Section 3.2.1, with the
 allowed characters being those in the unreserved set.

 Example Template Expansion

 {&who} &who=fred
 {&half} &half=50%25
 ?fixed=yes{&x} ?fixed=yes&x=1024
 {&x,y,empty} &x=1024&y=768&empty=
 {&x,y,undef} &x=1024&y=768

 {&var:3} &var=val
 {&list} &list=red,green,blue
 {&list*} &list=red&list=green&list=blue
 {&keys} &keys=semi,%3B,dot,.,comma,%2C
 {&keys*} &semi=%3B&dot=.&comma=%2C

4. Security Considerations

 A URI Template does not contain active or executable content.
 However, it might be possible to craft unanticipated URIs if an
 attacker is given control over the template or over the variable
 values within an expression that allows reserved characters in the
 expansion. In either case, the security considerations are largely
 determined by who provides the template, who provides the values to
 use for variables within the template, in what execution context the
 expansion occurs (client or server), and where the resulting URIs are
 used.

Gregorio, et al. Standards Track [Page 27]

RFC 6570 URI Template March 2012

 This specification does not limit where URI Templates might be used.
 Current implementations exist within server-side development
 frameworks and within client-side javascript for computed links or
 forms.

 Within frameworks, templates usually act as guides for where data
 might occur within later (request-time) URIs in client requests.
 Hence, the security concerns are not in the templates themselves, but
 rather in how the server extracts and processes the user-provided
 data within a normal Web request.

 Within client-side implementations, a URI Template has many of the
 same properties as HTML forms, except limited to URI characters and
 possibly included in HTTP header field values instead of just message
 body content. Care ought to be taken to ensure that potentially
 dangerous URI reference strings, such as those beginning with
 "javascript:", do not appear in the expansion unless both the
 template and the values are provided by a trusted source.

 Other security considerations are the same as those for URIs, as
 described in Section 7 of [RFC3986].

5. Acknowledgments

 The following people made contributions to this specification: Mike
 Burrows, Michaeljohn Clement, DeWitt Clinton, John Cowan, Stephen
 Farrell, Robbie Gates, Vijay K. Gurbani, Peter Johanson, Murray S.
 Kucherawy, James H. Manger, Tom Petch, Marc Portier, Pete Resnick,
 James Snell, and Jiankang Yao.

6. References

6.1. Normative References

 [ASCII] American National Standards Institute, "Coded Character
 Set - 7-bit American Standard Code for Information
 Interchange", ANSI X3.4, 1986.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter,
 "Uniform Resource Identifier (URI): Generic Syntax",
 STD 66, RFC 3986, January 2005.

Gregorio, et al. Standards Track [Page 28]

RFC 6570 URI Template March 2012

 [RFC3987] Duerst, M. and M. Suignard, "Internationalized Resource
 Identifiers (IRIs)", RFC 3987, January 2005.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [RFC6365] Hoffman, P. and J. Klensin, "Terminology Used in
 Internationalization in the IETF", BCP 166, RFC 6365,
 September 2011.

 [UNIV6] The Unicode Consortium, "The Unicode Standard, Version
 6.0.0", (Mountain View, CA: The Unicode Consortium,
 2011. ISBN 978-1-936213-01-6),
 <http://www.unicode.org/versions/Unicode6.0.0/>.

 [UTR15] Davis, M. and M. Duerst, "Unicode Normalization Forms",
 Unicode Standard Annex # 15, April 2003,
 <http://www.unicode.org/unicode/reports/tr15/
 tr15-23.html>.

6.2. Informative References

 [OpenSearch] Clinton, D., "OpenSearch 1.1", Draft 5, December 2011,
 <http://www.opensearch.org/Specifications/OpenSearch>.

 [UPU-S42] Universal Postal Union, "International Postal Address
 Components and Templates", UPU S42-1, November 2002,
 <http://www.upu.int/en/activities/addressing/
 standards.html>.

 [WADL] Hadley, M., "Web Application Description Language",
 World Wide Web Consortium Member Submission
 SUBM-wadl-20090831, August 2009,
 <http://www.w3.org/Submission/2009/
 SUBM-wadl-20090831/>.

 [WSDL] Weerawarana, S., Moreau, J., Ryman, A., and R.
 Chinnici, "Web Services Description Language (WSDL)
 Version 2.0 Part 1: Core Language", World Wide Web
 Consortium Recommendation REC-wsdl20-20070626,
 June 2007, <http://www.w3.org/TR/2007/
 REC-wsdl20-20070626>.

Gregorio, et al. Standards Track [Page 29]

RFC 6570 URI Template March 2012

Appendix A. Implementation Hints

 The normative sections on expansion describe each operator with a
 separate expansion process for the sake of descriptive clarity. In
 actual implementations, we expect the expressions to be processed
 left-to-right using a common algorithm that has only minor variations
 in process per operator. This non-normative appendix describes one
 such algorithm.

 Initialize an empty result string and its non-error state.

 Scan the template and copy literals to the result string (as in
 Section 3.1) until an expression is indicated by a "{", an error is
 indicated by the presence of a non-literals character other than "{",
 or the template ends. When it ends, return the result string and its
 current error or non-error state.

 o If an expression is found, scan the template to the next "}" and
 extract the characters in between the braces.

 o If the template ends before a "}", then append the "{" and
 extracted characters to the result string and return with an error
 status indicating the expression is malformed.

 Examine the first character of the extracted expression for an
 operator.

 o If the expression ended (i.e., is "{}"), an operator is found that
 is unknown or unimplemented, or the character is not in the
 varchar set (Section 2.3), then append "{", the extracted
 expression, and "}" to the result string, remember that the result
 is in an error state, and then go back to scan the remainder of
 the template.

 o If a known and implemented operator is found, store the operator
 and skip to the next character to begin the varspec-list.

 o Otherwise, store the operator as NUL (simple string expansion).

 Use the following value table to determine the processing behavior by
 expression type operator. The entry for "first" is the string to
 append to the result first if any of the expression’s variables are
 defined. The entry for "sep" is the separator to append to the
 result before any second (or subsequent) defined variable expansion.
 The entry for "named" is a boolean for whether or not the expansion
 includes the variable or key name when no explode modifier is given.
 The entry for "ifemp" is a string to append to the name if its
 corresponding value is empty. The entry for "allow" indicates what

Gregorio, et al. Standards Track [Page 30]

RFC 6570 URI Template March 2012

 characters to allow unencoded within the value expansion: (U) means
 any character not in the unreserved set will be encoded; (U+R) means
 any character not in the union of (unreserved / reserved / pct-
 encoding) will be encoded; and, for both cases, each disallowed
 character is first encoded as its sequence of octets in UTF-8 and
 then each such octet is encoded as a pct-encoded triplet.

 .--.
NUL + . / ; ? & #
first
sep
named
ifemp
allow
 ‘--’

 With the above table in mind, process the variable-list as follows:

 For each varspec, extract a variable name and optional modifier from
 the expression by scanning the variable-list until a character not in
 the varname set is found or the end of the expression is reached.

 o If it is the end of the expression and the varname is empty, go
 back to scan the remainder of the template.

 o If it is not the end of the expression and the last character
 found indicates a modifier ("*" or ":"), remember that modifier.
 If it is an explode ("*"), scan the next character. If it is a
 prefix (":"), continue scanning the next one to four characters
 for the max-length represented as a decimal integer and then, if
 it is still not the end of the expression, scan the next
 character.

 o If it is not the end of the expression and the last character
 found is not a comma (","), append "{", the stored operator (if
 any), the scanned varname and modifier, the remaining expression,
 and "}" to the result string, remember that the result is in an
 error state, and then go back to scan the remainder of the
 template.

 Lookup the value for the scanned variable name, and then

 o If the varname is unknown or corresponds to a variable with an
 undefined value (Section 2.3), then skip to the next varspec.

Gregorio, et al. Standards Track [Page 31]

RFC 6570 URI Template March 2012

 o If this is the first defined variable for this expression, append
 the first string for this expression type to the result string and
 remember that it has been done. Otherwise, append the sep string
 to the result string.

 o If this variable’s value is a string, then

 * if named is true, append the varname to the result string using
 the same encoding process as for literals, and

 + if the value is empty, append the ifemp string to the result
 string and skip to the next varspec;

 + otherwise, append "=" to the result string.

 * if a prefix modifier is present and the prefix length is less
 than the value string length in number of Unicode characters,
 append that number of characters from the beginning of the
 value string to the result string, after pct-encoding any
 characters that are not in the allow set, while taking care not
 to split multi-octet or pct-encoded triplet characters that
 represent a single Unicode code point;

 * otherwise, append the value to the result string after pct-
 encoding any characters that are not in the allow set.

 o else if no explode modifier is given, then

 * if named is true, append the varname to the result string using
 the same encoding process as for literals, and

 + if the value is empty, append the ifemp string to the result
 string and skip to the next varspec;

 + otherwise, append "=" to the result string; and

 * if this variable’s value is a list, append each defined list
 member to the result string, after pct-encoding any characters
 that are not in the allow set, with a comma (",") appended to
 the result between each defined list member;

 * if this variable’s value is an associative array or any other
 form of paired (name, value) structure, append each pair with a
 defined value to the result string as "name,value", after pct-
 encoding any characters that are not in the allow set, with a
 comma (",") appended to the result between each defined pair.

Gregorio, et al. Standards Track [Page 32]

RFC 6570 URI Template March 2012

 o else if an explode modifier is given, then

 * if named is true, then for each defined list member or array
 (name, value) pair with a defined value, do:

 + if this is not the first defined member/value, append the
 sep string to the result string;

 + if this is a list, append the varname to the result string
 using the same encoding process as for literals;

 + if this is a pair, append the name to the result string
 using the same encoding process as for literals;

 + if the member/value is empty, append the ifemp string to the
 result string; otherwise, append "=" and the member/value to
 the result string, after pct-encoding any member/value
 characters that are not in the allow set.

 * else if named is false, then

 + if this is a list, append each defined list member to the
 result string, after pct-encoding any characters that are
 not in the allow set, with the sep string appended to the
 result between each defined list member.

 + if this is an array of (name, value) pairs, append each pair
 with a defined value to the result string as "name=value",
 after pct-encoding any characters that are not in the allow
 set, with the sep string appended to the result between each
 defined pair.

 When the variable-list for this expression is exhausted, go back to
 scan the remainder of the template.

Gregorio, et al. Standards Track [Page 33]

RFC 6570 URI Template March 2012

Authors’ Addresses

 Joe Gregorio
 Google

 EMail: joe@bitworking.org
 URI: http://bitworking.org/

 Roy T. Fielding
 Adobe Systems Incorporated

 EMail: fielding@gbiv.com
 URI: http://roy.gbiv.com/

 Marc Hadley
 The MITRE Corporation

 EMail: mhadley@mitre.org
 URI: http://mitre.org/

 Mark Nottingham
 Rackspace

 EMail: mnot@mnot.net
 URI: http://www.mnot.net/

 David Orchard
 Salesforce.com

 EMail: orchard@pacificspirit.com
 URI: http://www.pacificspirit.com/

Gregorio, et al. Standards Track [Page 34]

