
Network Working Group T. Iijima
Request for Comments: 5381 Y. Atarashi
Category: Informational H. Kimura
 M. Kitani
 Alaxala Networks Corp.
 H. Okita
 Hitachi, Ltd.
 October 2008

 Experience of Implementing NETCONF over SOAP

Status of This Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

IESG Note

 This document discusses implementation experience of NETCONF over
 SOAP. Note that Section 2.4 of RFC 4741 states, "A NETCONF
 implementation MUST support the SSH transport protocol mapping".
 Therefore, a NETCONF implementation that only supports the SOAP
 transport described in this document and not (at least) also SSH is
 not in compliance with the NETCONF standards.

Abstract

 This document describes how the authors developed a SOAP (Simple
 Object Access Protocol)-based NETCONF (Network Configuration
 Protocol) client and server. It describes an alternative SOAP
 binding for NETCONF that does not interoperate with an RFC 4743
 conformant implementation making use of cookies on top of the
 persistent transport connections of HTTP. When SOAP is used as a
 transport protocol for NETCONF, various kinds of development tools
 are available. By making full use of these tools, developers can
 significantly reduce their workload. The authors developed an NMS
 (Network Management System) and network equipment that can deal with
 NETCONF messages sent over SOAP. This document aims to provide
 NETCONF development guidelines gained from the experience of
 implementing a SOAP-based NETCONF client and server.

Iijima, et al. Informational [Page 1]

RFC 5381 Experience of Implementing NETCONF/SOAP October 2008

Table of Contents

 1. Introduction ..3
 1.1. NETCONF over SOAP ..3
 1.2. Motivation ...3
 2. NETCONF Development on Web Services Framework4
 2.1. WSDL as an Interface Description Language5
 2.2. Generation of APIs ...5
 3. Architecture of the NETCONF over SOAP Implementation5
 3.1. SOAP Implementation in NMS6
 3.1.1. SOAP Parser in NMS7
 3.1.2. Session Maintenance in NMS7
 3.2. SOAP Implementation in the Network Equipment8
 3.2.1. SOAP Parser in the Network Equipment8
 3.2.2. Session Maintenance in the Network Equipment8
 4. Guidelines for Developing NETCONF Clients and Servers8
 4.1. Procedures of Development of NETCONF Clients9
 4.1.1. Developing NETCONF Clients without Eclipse10
 4.1.2. Developing NETCONF Clients Using Eclipse11
 4.2. Procedures of Development of NETCONF Servers13
 4.2.1. Developing NETCONF Servers without Eclipse14
 4.2.2. Developing NETCONF Servers Using Eclipse15
 4.2.3. Developing NETCONF Servers with C
 Programming Language18
 5. Security Considerations ..18
 6. Acknowledgements ...18
 7. References ...19
 7.1. Normative References19
 7.2. Informative References19

Iijima, et al. Informational [Page 2]

RFC 5381 Experience of Implementing NETCONF/SOAP October 2008

1. Introduction

1.1. NETCONF over SOAP

 This document is not a product from the NETCONF WG but a report on
 the experience acquired by individual developers.

 SOAP (Simple Object Access Protocol) was specified in [RFC4743] as
 one of the transport protocols for NETCONF. It is designed to use
 XML (eXtensible Markup Language) as its description language, which
 is a fundamental messaging technology for Web Services. For this
 reason, SOAP is well suited to the NETCONF protocol and can be
 deployed widely.

 To develop a SOAP-based NETCONF client and server, several
 development tools are available as open-source software. The authors
 developed a SOAP-based NETCONF client and server by using available
 development tools. The SOAP-based NETCONF client was developed by
 utilizing Java APIs (Application Programming Interfaces) that are
 automatically generated from the XSD (XML Schema Definition) file and
 WSDL (Web Services Description Language) file obtained from [RFC4741]
 and [RFC4743], respectively. The SOAP-based NETCONF client that the
 authors developed acts as an NMS (Network Management System). The
 SOAP-based NETCONF server that the authors developed runs on network
 equipment and accepts NETCONF messages sent from the NETCONF client.

1.2. Motivation

 The aim of this document is to describe why the authors believe SOAP
 is practical as a transport protocol for NETCONF when an NMS is
 developed. When developing an NMS that uses SOAP as its transport
 protocol, development tools and procedures can be used according to
 the Web Services framework. This document also describes the
 experience of implementing NETCONF over SOAP so that even those who
 have little knowledge of SOAP can start developing a SOAP-based
 NETCONF client and server.

 This document describes an alternative SOAP binding for NETCONF that
 does not interoperate with an RFC 4743 conformant implementation as
 it relies on cookies used on top of the persistent transport
 connections of HTTP. This is provided for information purposes only
 based on the implementation experience of the authors.

Iijima, et al. Informational [Page 3]

RFC 5381 Experience of Implementing NETCONF/SOAP October 2008

2. NETCONF Development on Web Services Framework

 SOAP is a fundamental messaging technology for Web Services.
 Therefore, if SOAP is used as a transport protocol for NETCONF, a
 network configuration performed by NETCONF is achieved on the Web
 Services framework. In this section, the overall architecture of Web
 Services is described.

 +----------------+ +----------------------------+
 | Format | | Register / Search |
 | | | |
 | XML | | UDDI |
 | | | (Universal Description, |
 | | | Discovery and Integration) |
 | | +----------------------------+
 | | +----------------------------+ +----------------+
 | | | Service Description | | API |
 | | | | | |
 | | | WSDL | | JAXM |
 | | +----------------------------+ | (Java API for |
 | | +----------------------------+ | XML Messaging) |
 | | | Fundamental Messaging | | JAX-RPC |
 | | | | | (Java API for |
 | | | SOAP | | XML / RPC) |
 +----------------+ +----------------------------+ +----------------+
 +----------------------------+
 | Transport |
 | |
 | HTTP, HTTPS... |
 +----------------------------+

 Figure 1: Overall Architecture of Web Services

 As depicted in Figure 1, peripheral technologies around SOAP/HTTP are
 well developed. Therefore, if SOAP/HTTP is chosen as a transport
 layer for the NETCONF protocol, the NMS development based on the Web
 Services framework can choose from different optional services and
 might be less expensive based on the use of already available
 services.

Iijima, et al. Informational [Page 4]

RFC 5381 Experience of Implementing NETCONF/SOAP October 2008

2.1. WSDL as an Interface Description Language

 WSDL [WSDL] defines how SOAP messages are exchanged between Web
 Services entities. Interfaces of Web Services entities are
 automatically generated by development tools when importing a WSDL
 file. Interfaces generated in this manner act as APIs. For the
 development of an NMS, only these APIs are necessary; there is no
 need to use SOAP directly.

 Useful tools that can import a WSDL file are available with SOAP.
 For instance, Apache Axis [Axis] generates an interface from a WSDL
 file and is a widely used SOAP implementation middleware.

2.2. Generation of APIs

 As described in the previous section, APIs are generated from a WSDL
 file by development tools such as Apache Axis. Such APIs are in the
 form of a Java library and act as programming interfaces for an NMS.
 By using these APIs, an NMS can send SOAP messages to Web Services
 entities.

3. Architecture of the NETCONF over SOAP Implementation

 The architecture of the NETCONF over SOAP implementation is shown in
 Figure 2. A NETCONF implementation residing in an NMS works as a
 NETCONF client while network equipment acts as a NETCONF server. In
 this document, we call NETCONF-client and NETCONF-server
 implementations a NETCONF application and a NETCONF service provider,
 respectively. A SOAP implementation may be installed on both the NMS
 and the network equipment. Each instance of the SOAP implementations
 exchanges SOAP messages based on WSDL, as described in [RFC4743]. If
 Java libraries generated from the WSDL are provided in the NMS,
 engineers can develop a NETCONF application, which configures network
 equipment via the NETCONF protocol, by utilizing the Java library.
 There is no need for engineers to use XML or SOAP directly.

Iijima, et al. Informational [Page 5]

RFC 5381 Experience of Implementing NETCONF/SOAP October 2008

 +---------------------------+ +---------------------------+
 | NETCONF Client | | NETCONF Server | | | | |
 | (NMS) | | (Network Equipment) |
 | +---------------------+ | | +---------------------+ |
 | | NETCONF application | | | | NETCONF service | |
 | | | | | | provider | |
 | +---------------------+ | | +---------------------+ |
 | +---------------------+ | | |
 | | Java library | | | |
 | +---------------------+ | | |
 | +---------------------+ | | +---------------------+ |
 | | SOAP Implementation | | | | SOAP Implementation | |
 | | (Apache Axis) | | | | | |
 | +---------------------+ | | +---------------------+ |
 +-------^----------|--------+ +-------^----------|--------+
 | | rpc-request | |
 | +----- /SOAP ----+ |
 | / HTTP(S) |
 | |
 | rpc-reply |
 +---------------- /SOAP ---------------+
 / HTTP(S)
 Figure 2: Architecture of NETCONF Implementation Using SOAP

 The SOAP implementation in both the NMS and network equipment is
 explained in detail in the following sections.

3.1. SOAP Implementation in NMS

 Several SOAP implementations appropriate for use in an NMS are
 available today. Apache Axis is one such widely used implementation.

 Axis works as a SOAP implementation and an NMS-development tool. For
 instance, WSDL2Java, one of Axis’ tools, generates Java-class files
 from a WSDL file. Another tool called Java2WSDL does the opposite:
 it generates a WSDL file from Java-class files. Consequently,
 various benefits can be obtained if Axis is introduced as a SOAP
 implementation.

 To develop a NETCONF application that is capable of various functions
 such as releasing log messages, Java-class files generated by the
 Axis tool may be extended by adding more functions. By utilizing
 these Java libraries, engineers can easily develop NETCONF
 applications.

Iijima, et al. Informational [Page 6]

RFC 5381 Experience of Implementing NETCONF/SOAP October 2008

3.1.1. SOAP Parser in NMS

 The SOAP Parser function is performed entirely by a SOAP
 implementation such as Apache Axis.

3.1.2. Session Maintenance in NMS

 When exchanging NETCONF messages between an NMS and network
 equipment, a NETCONF session has to be maintained on both sides, as
 described in [RFC4741].

 In [RFC4743], HTTP is specified as an option of an underlying
 protocol for NETCONF over SOAP. When HTTP is used for that purpose,
 it is also specified that a NETCONF session state is tied to the
 state of the underlying transport (TCP) connection (just like in
 NETCONF over SSH [RFC4742] and NETCONF over BEEP [RFC4744]).
 However, HTTP itself is a stateless protocol, and many server
 implementations process user requests independently of previous
 requests received over the same transport connection. To simplify
 implementation of the NETCONF service provider, we used the cookie
 field inside the HTTP header to map incoming requests to NETCONF
 sessions. Note that this means our implementation actually uses an
 alternative SOAP binding for NETCONF, which does not interoperate
 with RFC 4743 compliant implementations.

 For example, the implemented NETCONF-session maintenance in the NMS
 works as follows. After the NMS sends a NETCONF hello message to the
 network equipment, the NETCONF service provider in the network
 equipment allocates a session identifier for the NETCONF application
 in the NMS and writes it inside the <session> element of a replying
 NETCONF hello message, as described in [RFC4741]. At the same time,
 the network equipment writes the same value in the cookie field
 inside an HTTP header. After that, a SOAP message encompassing the
 replying NETCONF hello message is added. When the NMS receives the
 newly allocated session identifier from the replying NETCONF hello
 message, the NETCONF application stores it and writes it inside a
 <session> element for subsequent NETCONF request messages and in a
 cookie field for subsequent HTTP headers. By recognizing the session
 identifier in NETCONF request messages and the cookie field in HTTP
 headers, the network equipment can maintain both a NETCONF session
 and the state of an HTTP connection. The NETCONF session is
 maintained over the maintained state of the HTTP connection. The
 stored session identifier is erased when the NMS sends a NETCONF
 close-session message and receives a NETCONF response message from
 the network equipment.

Iijima, et al. Informational [Page 7]

RFC 5381 Experience of Implementing NETCONF/SOAP October 2008

3.2. SOAP Implementation in the Network Equipment

 To accept SOAP messages sent from the NMS, it is also necessary to
 provide SOAP in the network equipment. As in the case of NMS, some
 free SOAP implementations are available today for installation on
 network equipment. However, the memory capacity of the network
 equipment might be limited. Therefore, the SOAP implementation may
 be chosen taking memory capacity into consideration. In some cases,
 a memory-saving method will be required when implementing SOAP in the
 network equipment.

3.2.1. SOAP Parser in the Network Equipment

 A SOAP header inside the SOAP envelope is defined as optional.
 Therefore, the module that processes the SOAP header can be omitted
 if the memory capacity in the network equipment is insufficient. In
 this case, a SOAP parser in the network equipment is allowed to parse
 only mandatory parts of a SOAP envelope.

3.2.2. Session Maintenance in the Network Equipment

 To maintain NETCONF sessions with the NMS, the NETCONF service
 provider in the network equipment has to provide a session identifier
 to the NMS, as described in [RFC4741].

 For example, the implemented NETCONF-session maintenance in the
 network equipment works as follows. When the network equipment
 receives a NETCONF hello message from the NMS, the NETCONF service
 provider in the network equipment sets a session identifier inside
 the <session> element of a replying NETCONF hello message, as
 described in [RFC4741]. At the same time, the network equipment also
 sets the same value in the cookie field inside an HTTP header. After
 that, a SOAP message encompassing the replying NETCONF hello message
 is added. The cookie field inside the HTTP header is used for
 maintaining the state of the HTTP connection over which the NETCONF-
 session maintenance is ensured. The network equipment then sends an
 HTTP response message to the NMS. When the network equipment
 receives a NETCONF close-session message from the NMS, it erases the
 stored session identifier.

4. Guidelines for Developing NETCONF Clients and Servers

 In the case of SOAP transport mapping, sharing information on the
 kinds of development tools that are available would help developers
 start developing SOAP-based NETCONF clients and servers. That would
 contribute to the rapid deployment of SOAP-based NETCONF clients and
 servers.

Iijima, et al. Informational [Page 8]

RFC 5381 Experience of Implementing NETCONF/SOAP October 2008

4.1. Procedures of Development of NETCONF Clients

 To develop a SOAP-based NETCONF client, a stub code may be generated.
 A stub is a library that is generated automatically from WSDL by a
 Web Services tool and that acts as a group of APIs. When using
 Apache Axis as a Web Services tool, a generated stub is in the form
 of Java APIs. These Java APIs display interfaces of a Web Service as
 if they are methods capable of configuring a local machine.

 The WSDL file named "netconf-soap_1.0.wsdl", which is selected from
 [RFC4743], specifies NETCONF messages to be exchanged between the
 NETCONF client and server. These NETCONF messages are the "hello"
 message and "rpc" message. Therefore, stub codes for creating the
 "hello" message and "rpc" message are generated from "netconf-
 soap_1.0.wsdl". However, the file "netconf-soap_1.0.wsdl" is not
 sufficient because no service element is specified.

 In "myNetconfService.wsdl", which is also selected from [RFC4743], a
 service element is specified and "netconf-soap_1.0.wsdl" is imported.
 Stub codes generated from those WSDL files are found in files such as
 "Netconf.java", "NetconfLocator.java", and "NetconfBindingStub.java".

 When interfaces are used to operate the NETCONF protocol in the
 manner of "get-config" and "edit-config", for example, an XML schema
 file named "netconf.xsd", which is selected from [RFC4741], is used
 by being imported into "netconf-soap_1.0.wsdl". Using the XML
 schema, methods of operating the NETCONF protocol are generated in
 files such as "GetConfigType.java" and "EditConfigType.java".

 When interfaces are used to configure network functions at the
 network equipment, a data model of each network function has to be
 defined in the style of an XML schema. The XML schema may be
 imported into "netconf-soap_1.0.wsdl" in the same manner as that of
 the XML schema in [RFC4741].

 The connection between the NETCONF schema and a data model should be
 made by inserting the following attribute into elements of each data
 model. This attribute is defined in the XML schema in [RFC4741].

 <xs:attribute name="operation" type="editOperationType"
 default="merge"/>

 Consequently, using "myNetconfService.wsdl" to import "netconf-
 soap_1.0.wsdl", NETCONF schema, and the data model makes it possible
 to generate stub files containing interfaces to configure network
 equipment.

Iijima, et al. Informational [Page 9]

RFC 5381 Experience of Implementing NETCONF/SOAP October 2008

 When stub codes are generated, the development environment may be
 arranged as well. The development of a Java-based NETCONF client may
 use JDK (Java Development Kit) [JDK] and Apache Axis. In addition,
 using some IDE (Integrated Development Environment) such as Eclipse
 [Eclipse] with Apache Ant [Ant] and NetBeans [NetBeans] would reduce
 the developer workload significantly. When Eclipse is used as an
 IDE, first, the library (*.jar files) of Axis has to be added to the
 development project’s build path as an external library. The library
 of Axis acts as a SOAP library, so there is no need to be concerned
 about SOAP messaging when programming a NETCONF client using the
 library of Axis.

4.1.1. Developing NETCONF Clients without Eclipse

 Given that development of a NETCONF client is carried out in the
 environment of a Windows computer without Eclipse, and that
 "myNetconfService.wsdl" is placed in the "C:\NetconfClient"
 directory, a stub is generated by executing the following command in
 the command prompt.

 C:\NetconfClient>java -classpath .;%AXIS_HOME%\lib\axis.jar;%
 AXIS_HOME%\lib\jaxrpc.jar;%AXIS_HOME%\lib\saaj.jar;%AXIS_HOME%
 \lib\commons-logging-1.0.4.jar;%AXIS_HOME%\lib\commons-discovery-
 0.2.jar;%AXIS_HOME%\lib\wsdl4j-1.5.1.jar
 org.apache.axis.wsdl.WSDL2Java -p stub myNetconfService.wsdl

 In the directory where the WSDL file is located, the WSDL2Java
 command is executed. Locations of each Axis library have to be
 specified. The environment variable of "AXIS_HOME" is the directory
 where Axis is installed. By executing the above command, files with
 an extension of "*.java" are generated in the "stub" directory, which
 is specified by the above command. Inside the stub directory, we can
 find files such as "NetconfBindingStub.java", "Hello.java", and
 "GetConfigType.java".

 Next, it is necessary to compile these files by executing the
 following command in the command prompt.

 C:\NetconfClient>javac -classpath .;%AXIS_HOME%\lib\axis.jar;%
 AXIS_HOME%\lib\jaxrpc.jar stub/*.java

 After the compilation of those java files, "*.class" files are
 generated. After the compiling is done, the source code of the
 NETCONF client has to be written. Sample source code of the NETCONF
 client is shown in Figure 3. This NETCONF client is written by
 utilizing stub classes and interfaces, which are imported into the
 local package and referenced.

Iijima, et al. Informational [Page 10]

RFC 5381 Experience of Implementing NETCONF/SOAP October 2008

 import org.apache.axis.types.UnsignedInt;
 import org.apache.axis.types.*;

 public class NetconfClient {
 /**
 * @param args
 */
 public static void main(String[] args) {
 // TODO Auto-generated method stub
 try{
 NetconfClient client = new NetconfClient();
 java.net.URL url = new java.net.URL(args[0]);
 stub.Netconf netconf =
 new stub.NetconfLocator();
 stub.NetconfPortType stubNetconf =
 netconf.getnetconfPort(url);

 URI[] uri = new URI[1];
 stub.holders.HelloCapabilitiesHolder
 capability = new
 stub.holders.HelloCapabilitiesHolder(uri);

 UnsignedInt id = new UnsignedInt();
 id.setValue(1);
 org.apache.axis.holders.UnsignedIntHolder
 holder = new
 org.apache.axis.holders.UnsignedIntHolder(id)
 ;
 stubNetconf.hello(capability, holder);
 }catch(Exception e){
 e.printStackTrace();
 }
 }
 }

 Figure 3: Sample Source Code of NETCONF Clients

 To add functions such as the release of log messages, these functions
 have to be incorporated at this stage. Again, the NETCONF client is
 developed by compiling its source codes.

4.1.2. Developing NETCONF Clients Using Eclipse

 When we use Eclipse and Apache Ant, the procedures described in the
 previous section are significantly simplified and executed at one
 time. In this case, files named "build.xml" and "build.properties"
 are required for Apache Ant.

Iijima, et al. Informational [Page 11]

RFC 5381 Experience of Implementing NETCONF/SOAP October 2008

 The file named "build.xml" is written in XML and seen by Apache Ant
 when Apache Ant is running on Eclipse. The file specifies how Apache
 Ant behaves. According to the descriptions of the file, Apache Ant
 compiles source codes, generates JAR (Java ARchive) file, and so on.
 On the other hand, the file named "build.properties" specifies
 properties of the development environment where Apache Ant runs.
 This file is referred to by the "build.xml" file.

 Examples of "build.xml" and "build.properties" are shown in Figure 4
 and Figure 5, respectively.

 <?xml version="1.0"?>
 <project name="NetconfClient" default="all" basedir=".">
 <property file="build.properties"/>
 <path id="axis-classpath">
 <fileset dir="${axis.libdir}">
 <include name="*.jar"/>
 </fileset>
 </path>
 <target name="prepare">
 <mkdir dir="${destdir}"/>
 </target>
 <target name="stub" depends="prepare">
 <java classname="org.apache.axis.wsdl.WSDL2Java" fork
 ="Yes">
 <arg value="-o"/>
 <arg value="${srcdir}"/>
 <arg value="-p"/>
 <arg value="${stub.stubdir}"/>
 <arg value="${stub.wsdlpath}"/>
 <classpath refid="axis-classpath"/>
 </java>
 </target>
 <target name="compile" depends="stub">
 <javac srcdir="${srcdir}" destdir="${destdir}"
 encoding="UTF-8">
 <classpath refid="axis-classpath"/>
 </javac>
 </target>
 <target name="stub-jar" depends="compile">
 <jar jarfile="${stub.jar}" basedir="${destdir}"/>
 </target>
 <target name="all" depends="stub-jar"/>
 </project>

 Figure 4: build.xml of NETCONF Clients

Iijima, et al. Informational [Page 12]

RFC 5381 Experience of Implementing NETCONF/SOAP October 2008

 axis.libdir=C:/axis-1_4/lib
 srcdir=src
 destdir=classes
 stub.stubdir=stub
 stub.wsdlpath=myNetconfService.wsdl
 stub.jar=NETCONF.jar

 Figure 5: build.properties of NETCONF Clients

 The location of the WSDL file should be specified in the
 "build.properties" file. In the case shown in Figure 5, the location
 of the WSDL file is specified as being under the current directory.

 By running Apache Ant on Eclipse, the steps specified in Figure 4 are
 taken. First, stub codes are generated. Then, compiling of those
 stub codes is executed. We were careful about the encoding style
 used for the compiling. After the compilation, Apache Ant will
 generate a JAR file, which is the output that compresses all stub
 files (*.class) and acts as a library. In this example, the name
 "NETCONF.jar" is specified in Figure 5. The "NETCONF.jar" file also
 has to be added to the build path of the development project as an
 external library.

 After the "NETCONF.jar" file is added to the build path of the
 development project, source codes of the NETCONF client can be
 written by utilizing stub classes and interfaces. Source codes like
 the one shown in Figure 3 can be written. By running Apache Ant
 again, the source code of the NETCONF client is compiled. The
 NETCONF client is developed in this manner.

4.2. Procedures of Development of NETCONF Servers

 In the Web Services framework, there are two approaches for
 developing a Web Services provider, namely a NETCONF server. One is
 called the top-down approach, and the other is called the bottom-up
 approach. The top-down approach is carried out by first designing a
 WSDL file. A skeleton source code from the WSDL file is then
 generated by using a Web Services tool such as Apache Axis. The
 generated skeleton code is just a template of the Web Services
 provider’s source code. Therefore, even though the Web Services
 provider’s skeleton code works on its own, if additional functions
 were necessary, the generated skeleton code would require additional
 source codes. This approach is superior to the bottom-up approach in
 terms of interoperability because the specification is already
 defined in the WSDL file. All vendors have to be in compliance with
 the WSDL file.

Iijima, et al. Informational [Page 13]

RFC 5381 Experience of Implementing NETCONF/SOAP October 2008

 In contrast, the bottom-up approach is carried out by first creating
 Web Services from source code (e.g., Java bean) and then generating a
 WSDL file from the source code by using a Web Services tool such as
 Axis. This approach is faster and easier than the top-down approach.
 However, in the bottom-up approach, it is difficult to ensure
 interoperability since implementation of a Web Services becomes
 vendor-specific.

 When developing a NETCONF server, the WSDL file is already defined in
 [RFC4743], so there is no choice but to develop the NETCONF server
 using the top-down approach. The remainder of this section describes
 the top-down approach for developing a NETCONF server.

 To develop a SOAP-based NETCONF server using the top-down approach, a
 skeleton code is necessary. A skeleton is a library, which is also
 generated automatically from WSDL by a Web Services tool. When using
 Axis as a Web Services tool, the generated skeleton is in the form of
 a Java library. From the same WSDL file as that used for generating
 the stub code, skeleton codes are generated in files such as
 "NetconfBindingSkeleton.java", "Hello.java", and
 "GetConfigType.java".

 When skeleton codes are being generated, the development environment
 may be arranged as well. Moreover, when a Java-based NETCONF server
 is being developed, in addition to JDK and Axis, a servlet container
 such as Apache Tomcat [Tomcat] is necessary. The "webapps\axis"
 directory under the Axis directory has to be copied to the "webapps"
 directory under the Tomcat directory.

4.2.1. Developing NETCONF Servers without Eclipse

 Given that the development environment of a NETCONF server is created
 in the environment of a Windows computer without Eclipse and
 "myNetconfService.wsdl" is placed in the "C:\NetconfServer"
 directory, a skeleton is generated by executing the following command
 in the command prompt.

 C:\NetconfServer>java -classpath .;%AXIS_HOME%\lib\axis.jar;%
 AXIS_HOME%\lib\jaxrpc.jar;%AXIS_HOME%\lib\saaj.jar;%AXIS_HOME%
 \lib\commons-logging-1.0.4.jar;%AXIS_HOME%\lib\commons-discovery-
 0.2.jar;%AXIS_HOME%\lib\wsdl4j-1.5.1.jar
 org.apache.axis.wsdl.WSDL2Java -p skeleton -s -S true -d Session
 myNetconfService.wsdl

 In the directory where the WSDL file is located, a WSDL2Java command
 is executed. Locations of each Axis library should be specified.
 The environment variable of "AXIS_HOME" is a directory where Axis is
 installed. By executing the above command, files with an extension

Iijima, et al. Informational [Page 14]

RFC 5381 Experience of Implementing NETCONF/SOAP October 2008

 of "*.java" are generated in the "skeleton" directory, which is
 specified in the above command. Inside the skeleton directory, files
 such as "NetconfBindingSkeleton.java", "Hello.java", and
 "GetConfigType.java" exist. Furthermore, files named "deploy.wsdd"
 and "undeploy.wsdd" are found. "Deploy.wsdd" and "undeploy.wsdd" are
 used when deploying a NETCONF server in a servlet container and when
 undeploying a NETCONF server from a servlet container, respectively.

 Adding source codes of NETCONF server functions to skeleton codes
 such as "NetconfBindingImpl.java" is required as the need arises.
 Functions such as the release of log messages have to be added at
 this stage. After that, by executing the following command in the
 command prompt, compilation of java files is carried out. Doing so
 will generate "*.class" files.

 C:\NetconfServer>javac -classpath .;%AXIS_HOME%\lib\axis.jar;%
 AXIS_HOME%\lib\jaxrpc.jar skeleton/*.java

 A NETCONF server can be developed by following the above-described
 procedures. These class files should be copied into the directory
 "webapps\axis\WEB-INFO\classes" of the Apache Tomcat directory.
 Finally, the NETCONF server is deployed by executing the following
 command.

 C:\NetconfServer>java -classpath .;%AXIS_HOME%\lib\axis.jar;%
 AXIS_HOME%\lib\jaxrpc.jar;%AXIS_HOME%\lib\saaj.jar;%AXIS_HOME%
 \lib\commons-logging-1.0.4.jar;%AXIS_HOME%\lib\commons-discovery-
 0.2.jar org.apache.axis.client.AdminClient -p 832 depoy.wsdd

 The command is executed in the directory where "deploy.wsdd" is
 located. The file "deploy.wsdd" is generated at the same time the
 skeleton code is generated. After deployment, the NETCONF server
 receives NETCONF messages sent from the NETCONF client.

4.2.2. Developing NETCONF Servers Using Eclipse

 When Eclipse and Apache Ant are used, the procedures described in the
 previous section are significantly simplified and executed at one
 time. Files named "build.xml" and "build.properties" are required
 for Apache Ant. Examples of "build.xml" and "build.properties" are
 shown in Figure 6 and Figure 7, respectively.

Iijima, et al. Informational [Page 15]

RFC 5381 Experience of Implementing NETCONF/SOAP October 2008

 <?xml version="1.0"?>
 <project name="NetconfService" default="all" basedir=".">
 <property file="build.properties"/>
 <path id="axis-classpath">
 <fileset dir="${axis.libdir}">
 <include name="*.jar"/>
 </fileset>
 </path>
 <target name="prepare">
 <mkdir dir="${srcdir}"/>
 <mkdir dir="${destdir}"/>
 </target>
 <target name="skeleton" depends="prepare">
 <java classname="org.apache.axis.wsdl.WSDL2Java" fork
 ="Yes">
 <arg value="-p"/>
 <arg value="${skeletondir}"/>
 <arg value="-o"/>
 <arg value="${srcdir}"/>
 <arg value="-s"/>
 <arg value="-S"/>
 <arg value="true"/>
 <arg value="-d"/>
 <arg value="Session"/>
 <arg value="${wsdlpath}"/>
 <classpath refid="axis-classpath"/>
 </java>
 </target>
 <target name="compile" depends="skeleton">
 <javac srcdir="${srcdir}" destdir="${destdir}"
 encoding="UTF-8">
 <classpath refid="axis-classpath"/>
 </javac>
 </target>
 <target name="copy2axis" depends="compile">
 <copy todir="${tomcat.axis.classesdir}" overwrite=
 "true">
 <fileset dir="${destdir}">
 <include name="*.class"/>
 <include name="*/*.class"/>
 <include name="*/*/*.class"/>
 </fileset>
 </copy>
 </target>
 <target name="deploy" depends="copy2axis">
 <java classname="org.apache.axis.client.AdminClient"
 fork="Yes">
 <arg value="-p"/>

Iijima, et al. Informational [Page 16]

RFC 5381 Experience of Implementing NETCONF/SOAP October 2008

 <arg value="${deploy.port}"/>
 <arg value="${deploy.ddname}"/>
 <classpath refid="axis-classpath"/>
 </java>
 </target>
 <target name="all" depends="deploy"/>
 </project>

 Figure 6: build.xml of NETCONF Servers

 axis.libdir=C:/axis-1_4/lib
 tomcat.axis.classesdir=
 C:/Program Files/Apache Software Foundation/Tomcat 6.0/
 webapps/axis/WEB-INF/classes
 srcdir=src
 destdir=classes
 skeletondir=skeleton
 wsdlpath=myNetconfService.wsdl
 deploy.port=832
 deploy.ddname=src/skeleton/deploy.wsdd

 Figure 7: build.properties of NETCONF Servers

 The locations of the WSDL file and "deploy.wsdd" file have to be
 specified in the "build.properties" file. In Figure 7, the location
 of the WSDL file and "deploy.wsdd" file are specified as being under
 the current directory.

 By running Apache Ant on Eclipse, the steps shown in Figure 6 are
 followed. First, skeleton codes have to be generated. After the
 skeleton codes are generated, source codes of the NETCONF server
 functions may be added to the skeleton codes according to the
 functions that developers intend to add.

 Then, by running Apache Ant again, compiling of the skeleton codes is
 executed. As a result, class files of the NETCONF server are
 generated. Apache Ant copies these class files to the directory of
 Tomcat and deploys the NETCONF server. After that, the NETCONF
 server becomes accessible by the NETCONF client.

Iijima, et al. Informational [Page 17]

RFC 5381 Experience of Implementing NETCONF/SOAP October 2008

4.2.3. Developing NETCONF Servers with C Programming Language

 When the NETCONF server for network equipment is being implemented,
 memory capacity might be limited, so it might not be possible to
 install a Java environment on the network equipment. The network-
 equipment platform might not support a Web Services tool. In that
 case, it may be necessary to implement SOAP as well as the NETCONF
 server by using C programming language on the network equipment.

 To develop a NETCONF server capable of receiving NETCONF messages
 sent over SOAP/HTTP, the network equipment may have an HTTP daemon
 and a NETCONF service provider. A commonly used HTTP daemon can be
 used. A SOAP module may be added to the HTTP daemon as a connector
 between the HTTP daemon and the NETCONF service provider. The
 NETCONF service provider for parsing NETCONF messages sent from the
 NETCONF client and sending reply NETCONF messages toward the NETCONF
 client may be developed.

 When an HTTP daemon receives a SOAP message that is sent over HTTP,
 the message is handed over to the SOAP module incorporated in the
 HTTP daemon. Then, the SOAP module removes the SOAP header and
 passes NETCONF messages to the NETCONF service provider. After that,
 the NETCONF service provider parses the NETCONF messages and
 configures the network equipment accordingly.

5. Security Considerations

 The security considerations of [RFC4741] and [RFC4743] are applicable
 in this document. Implementers or users of SOAP-based NETCONF
 clients and servers should take these considerations into account.

 As specified in the security considerations section of [RFC4743],
 transport-level security, such as authentication of users and
 encryption of transport protocol, has to be ensured by TLS (Transport
 Layer Security) in the case of NETCONF SOAP binding. That is,
 security has to be provided in the form of NETCONF/SOAP/HTTPS.

6. Acknowledgements

 Extensive input was received from the members of the NETCONF design
 team, including: Andy Bierman, Simon Leinen, Bert Wijnen, Mehmet
 Ersue, Ted Goddard, Ray Atarashi, Ron Bonica, and Dan Romascanu. The
 following people have also reviewed this document and provided
 valuable input: Jari Arkko, Pasi Eronen, Chris Newman, Tim Polk,
 David Ward, Magnus Westerlund, and Christian Vogt.

Iijima, et al. Informational [Page 18]

RFC 5381 Experience of Implementing NETCONF/SOAP October 2008

7. References

7.1. Normative References

 [RFC4741] Enns, R., "NETCONF Configuration Protocol", RFC 4741,
 December 2006.

 [RFC4743] Goddard, T., "Using NETCONF over the Simple Object Access
 Protocol (SOAP)", RFC 4743, December 2006.

7.2. Informative References

 [Ant] "Apache Ant".
 <http://ant.apache.org/>

 [Axis] "Web Services - Axis".
 <http://ws.apache.org/axis/>

 [Eclipse] "Eclipse".
 <http://www.eclipse.org/>

 [JDK] "Java SE".
 <http://java.sun.com/javase/index.jsp>

 [NetBeans] "NetBeans".
 <http://www.netbeans.org/index.html>

 [RFC4742] Wasserman, M. and T. Goddard, "Using the NETCONF
 Configuration Protocol over Secure SHell (SSH)",
 RFC 4742, December 2006.

 [RFC4744] Lear, E. and K. Crozier, "Using the NETCONF Protocol over
 the Blocks Extensible Exchange Protocol (BEEP)",
 RFC 4744, December 2006.

 [Tomcat] "Apache Tomcat".
 <http://tomcat.apache.org/>

 [WSDL] "Web Service Description Language (WSDL) 1.1".
 <http://www.w3.org/TR/wsdl>

Iijima, et al. Informational [Page 19]

RFC 5381 Experience of Implementing NETCONF/SOAP October 2008

Authors’ Addresses

 Iijima Tomoyuki
 Alaxala Networks Corp.
 Shin-Kawasaki Mitsui Bldg.
 890 Saiwai-ku Kashimada
 Kawasaki, Kanagawa 212-0058
 Japan

 Phone: +81-44-549-1735
 Fax: +81-44-549-1272
 EMail: tomoyuki.iijima@alaxala.com

 Yoshifumi Atarashi
 Alaxala Networks Corp.
 Shin-Kawasaki Mitsui Bldg.
 890 Saiwai-ku Kashimada
 Kawasaki, Kanagawa 212-0058
 Japan

 Phone: +81-44-549-1735
 Fax: +81-44-549-1272
 EMail: atarashi@alaxala.net

 Hiroyasu Kimura
 Alaxala Networks Corp.
 Shin-Kawasaki Mitsui Bldg.
 890 Saiwai-ku Kashimada
 Kawasaki, Kanagawa 212-0058
 Japan

 Phone: +81-44-549-1735
 Fax: +81-44-549-1272
 EMail: h-kimura@alaxala.net

Iijima, et al. Informational [Page 20]

RFC 5381 Experience of Implementing NETCONF/SOAP October 2008

 Makoto Kitani
 Alaxala Networks Corp.
 Shin-Kawasaki Mitsui Bldg.
 890 Saiwai-ku Kashimada
 Kawasaki, Kanagawa 212-0058
 Japan

 Phone: +81-44-549-1735
 Fax: +81-44-549-1272
 EMail: makoto.kitani@alaxala.com

 Hideki Okita
 Hitachi, Ltd.
 1-280 Higashi-Koigakubo
 Kokubunji, Tokyo 185-8601
 Japan

 Phone: +81-42-323-1111
 Fax: +81-42-327-7868
 EMail: hideki.okita.pf@hitachi.com

Iijima, et al. Informational [Page 21]

RFC 5381 Experience of Implementing NETCONF/SOAP October 2008

Full Copyright Statement

 Copyright (C) The IETF Trust (2008).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Iijima, et al. Informational [Page 22]

