
Network Working Group M. Bagnulo
Request for Comments: 4982 UC3M
Updates: 3972 J. Arkko
Category: Standards Track Ericsson
 July 2007

 Support for Multiple Hash Algorithms in
 Cryptographically Generated Addresses (CGAs)

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The IETF Trust (2007).

Abstract

 This document analyzes the implications of recent attacks on commonly
 used hash functions on Cryptographically Generated Addresses (CGAs)
 and updates the CGA specification to support multiple hash
 algorithms.

Table of Contents

 1. Introduction . 2
 2. Terminology . 2
 3. Impact of Collision Attacks in CGAs 2
 4. Options for Multiple Hash Algorithm Support in CGAs 3
 4.1. Where to Encode the Hash Function? 4
 5. CGA Generation Procedure 6
 6. IANA Considerations . 6
 7. Security Considerations . 7
 8. Acknowledgements . 7
 9. References . 7
 9.1. Normative References 7
 9.2. Informative References 7

Bagnulo & Arkko Standards Track [Page 1]

RFC 4982 Multiple Hash Support in CGAs July 2007

1. Introduction

 Recent attacks to currently used hash functions have motivated a
 considerable amount of concern in the Internet community. The
 recommended approach [6] [10] to deal with this issue is first to
 analyze the impact of these attacks on the different Internet
 protocols that use hash functions and second to make sure that the
 different Internet protocols that use hash functions are capable of
 migrating to an alternative (more secure) hash function without a
 major disruption in the Internet operation.

 This document performs such analysis for the Cryptographically
 Generated Addresses (CGAs) defined in [2]. The first conclusion of
 the analysis is that the security of the protocols using CGAs is not
 affected by the recently available attacks against hash functions.
 The second conclusion of the analysis is that the hash function used
 is hard coded in the CGA specification. This document updates the
 CGA specification [2] to enable the support of alternative hash
 functions. In order to do so, this document creates a new registry
 managed by IANA to register the different hash algorithms used in
 CGAs.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [1].

3. Impact of Collision Attacks in CGAs

 Recent advances in cryptography have resulted in simplified attacks
 against the collision-free property of certain commonly used hash
 functions [6] [10], including SHA-1 that is the hash function used by
 CGAs [2]. The result is that it is possible to obtain two messages,
 M1 and M2, that have the same hash value with much less than 2^(L/2)
 attempts. We will next analyze the impact of such attacks in the
 currently proposed usages of CGAs.

 As we understand it, the attacks against the collision-free property
 of a hash function mostly challenge the application of such hash
 functions, for the provision of non-repudiation capabilities. This
 is because an attacker would be capable to create two different
 messages that result in the same hash value and it can then present
 any of the messages interchangeably (for example after one of them
 has been signed by the other party involved in the transaction).
 However, it must be noted that both messages must be generated by the
 same party.

Bagnulo & Arkko Standards Track [Page 2]

RFC 4982 Multiple Hash Support in CGAs July 2007

 As far as we understand, current usages of CGAs does not include the
 provision of non-repudiation capabilities, so attacks against the
 collision-free property of the hash function do not enable any useful
 attack against CGA-based protocols.

 Current usages of the CGAs are basically oriented to prove the
 ownership of a CGA and then bind it to alternative addresses that can
 be used to reach the original CGA. This type of application of the
 CGA include:

 o The application of CGAs to protect the shim6 protocol [7]. In
 this case, CGAs are used as identifiers for the established
 communications. CGA features are used to prove that the owner of
 the identifier is the one that is providing the alternative
 addresses that can be used to reach the initial identifier. This
 is achieved by signing the list of alternative addresses available
 in the multihomed host with the private key of the CGA.

 o The application of CGAs to secure the IPv6 mobility support
 protocol [8] as proposed in [9]. In this case, the CGAs are used
 as Home Addresses and they are used to prove that the owner of the
 Home Address is the one creating the binding with the new Care-off
 Address. Similarly to the previous case, this is achieved by
 signing the Binding Update message carrying the Care-off Address
 with the private key of the CGA.

 o The application of CGA to Secure Neighbour Discovery [4]. In this
 case, the CGA features are used to prove the address ownership, so
 that it is possible to verify that the owner of the IP address is
 the one that is providing the layer 2 address information. This
 is achieved by signing the layer 2 address information with the
 private key of the CGA.

 Essentially, all the current applications of CGAs rely on CGAs to
 protect a communication between two peers from third party attacks
 and not to provide protection from the peer itself. Attacks against
 the collision-free property of the hash functions suppose that one of
 the parties is generating two messages with the same hash value in
 order to launch an attack against its communicating peer. Since CGAs
 are not currently used to providing this type of protection, it is
 then natural that no additional attacks are enabled by a weaker
 collision resistance of the hash function.

4. Options for Multiple Hash Algorithm Support in CGAs

 CGAs, as currently defined in [2], are intrinsically bound to the
 SHA-1 hash algorithm and no other hash function is supported.

Bagnulo & Arkko Standards Track [Page 3]

RFC 4982 Multiple Hash Support in CGAs July 2007

 Even though the attacks against the collision-free property of the
 hash functions do not result in new vulnerabilities in the current
 applications of CGAs, it seems wise to enable multiple hash function
 support in CGAs. This is mainly for two reasons: first, potential
 future applications of the CGA technology may be susceptible to
 attacks against the collision-free property of SHA-1. Supporting
 alternative hash functions would allow applications that have
 stricter requirements on the collision-free property to use CGAs.
 Second, one lesson learned from the recent attacks against hash
 functions is that it is possible that one day we need to start using
 alternative hash functions because of successful attacks against
 other properties of the commonly used hash functions. Therefore, it
 seems wise to modify protocols in general and the CGAs in particular
 to support this transition to alternative hash functions as easy as
 possible.

4.1. Where to Encode the Hash Function?

 The next question we need to answer is where to encode the hash
 function that is being used. There are several options that can be
 considered:

 One option would be to include the hash function used as an input to
 the hash function. This basically means to create an extension to
 the CGA Parameter Data Structure, as defined in [3], that codifies
 the hash function used. The problem is that this approach is
 vulnerable to bidding down attacks or downgrading attacks as defined
 in [10]. This means that even if a strong hash function is used, an
 attacker could find a CGA Parameter Data Structure that uses a weaker
 function but results in an equal hash value. This happens when the
 original hash function H1 and CGA Parameters Data Structure
 indicating H1 result in value X, and another hash function H2 and CGA
 Parameters Data Structure indicating H2 also result in the same value
 X.

 In other words, the downgrading attack would work as follows: suppose
 that Alice generates a CGA CGA_A using the strong hash function
 HashStrong and using a CGA Parameter Data Structure CGA_PDS_A. The
 selected hash function HashStrong is encoded as an extension field in
 the CGA_PDS_A. Suppose that by using a brute force attack, an
 attacker X finds an alternative CGA Parameter Data Structure
 CGA_PDS_X whose hash value, by using a weaker hash function, is
 CGA_A. At this point, the attacker can pretend to be the owner of
 CGA_A and the stronger hash function has not provided additional
 protection.

 The conclusion from the previous analysis is that the hash function
 used in the CGA generation must be encoded in the address itself.

Bagnulo & Arkko Standards Track [Page 4]

RFC 4982 Multiple Hash Support in CGAs July 2007

 Since we want to support several hash functions, we will likely need
 at least 2 or 3 bits for this.

 One option would be to use more bits from the hash bits of the
 interface identifier. However, the problem with this approach is
 that the resulting CGA is weaker because less hash information is
 encoded in the address. In addition, since those bits are currently
 used as hash bits, it is impossible to make this approach backward
 compatible with existent implementations.

 Another option would be to use the "u" and the "g" bits to encode
 this information, but this is probably not such a good idea since
 those bits have been honoured so far in all interface identifier
 generation mechanisms, which allow them to be used for the original
 purpose (for instance we can still create a global registry for
 unique interface identifiers). Finally, another option is to encode
 the hash value used in the Sec bits. The Sec bits are used to
 artificially introduce additional difficulty in the CGA generation
 process in order to provide additional protection against brute force
 attacks. The Sec bits have been designed in a way that the lifetime
 of CGAs are extended, when it is feasible to attack 59-bits long hash
 values. However, this is not the case today, so in general CGA will
 have a Sec value of 000. The proposal is to encode in the Sec bits,
 not only information about brute force attack protection but also to
 encode the hash function used to generate the hash. So for instance,
 the Sec value 000 would mean that the hash function used is SHA-1 and
 the 0 bits of hash2 (as defined in RFC 3972) must be 0. Sec value of
 001 could be that the hash function used is SHA-1 and the 16 bits of
 hash2 (as defined in RFC 3972) must be zero. However, the other
 values of Sec could mean that an alternative hash function needs to
 be used and that a certain amount of bits of hash2 must be zero. The
 proposal is not to define any concrete hash function to be used for
 other Sec values, since it is not yet clear that we need to do so nor
 is it clear which hash function should be selected.

 Note that since there are only 8 Sec values, it may be necessary to
 reuse Sec values when we run out of unused Sec values. The scenario
 where such an approach makes sense is where there are some Sec values
 that are no longer being used because the resulting security has
 become weak. In this case, where the usage of the Sec value has long
 been abandoned, it would be possible to reassign the Sec values.
 However, this must be a last resource option, since it may affect
 interoperability. This is because two implementations using
 different meanings of a given Sec value would not be able to
 interoperate properly (i.e., if an old implementation receives a CGA
 generated with the new meaning of the Sec value, it will fail and the
 same for a new implementation receiving a CGA generated with the old
 meaning of the Sec value). In case the approach of reassigning a Sec

Bagnulo & Arkko Standards Track [Page 5]

RFC 4982 Multiple Hash Support in CGAs July 2007

 value is followed, a long time is required between the deprecation of
 the old value and the reassignment in order to prevent
 misinterpretation of the value by old implementations.

 An erroneous interpretation of a reused Sec value, both on the CGA
 owner’s side and the CGA verifier’s side, would have the following
 result, CGA verification would fail in the worst case and both nodes
 would have to revert to unprotected IPv6 addresses. This can happen
 only with obsolete CGA parameter sets, which would be considered
 insecure anyway. In any case, an implementation must not
 simultaneously support two different meanings of a Sec value.

5. CGA Generation Procedure

 The SEC registry defined in the IANA considerations section of this
 document contains entries for the different Sec values. Each of
 these entries points to an RFC that defines the CGA generation
 procedure that MUST be used when generating CGAs with the associated
 Sec value.

 It should be noted that the CGA generation procedure may be changed
 by the new procedure not only in terms of the hash function used but
 also in other aspects, e.g., longer Modifier values may be required
 if the number of 0s required in hash2 exceed the currently defined
 bound of 112 bits. The new procedure (which potentially involves a
 longer Modifier value) would be described in the RFC pointed to by
 the corresponding Sec registry entry.

 In addition, the RFC that defines the CGA generation procedure for a
 Sec value MUST explicitly define the minimum key length acceptable
 for CGAs with that Sec value. This is to provide a coherent
 protection both in the hash and the public key techniques.

6. IANA Considerations

 This document defines a new registry entitled "CGA SEC" for the Sec
 field defined in RFC 3972 [2] that has been created and is maintained
 by IANA. The values in this name space are 3-bit unsigned integers.

 Initial values for the CGA Extension Type field are given below;
 future assignments are to be made through Standards Action [5].
 Assignments consist of a name, the value, and the RFC number where
 the CGA generation procedure is defined.

Bagnulo & Arkko Standards Track [Page 6]

RFC 4982 Multiple Hash Support in CGAs July 2007

 The following initial values are assigned in this document:

 Name | Value | RFCs
 -------------------+-------+------------
 SHA-1_0hash2bits | 000 | 3972, 4982
 SHA-1_16hash2bits | 001 | 3972, 4982
 SHA-1_32hash2bits | 010 | 3972, 4982

7. Security Considerations

 This document is about security issues and, in particular, about
 protection against potential attacks against hash functions.

8. Acknowledgements

 Russ Housley, James Kempf, Christian Vogt, Pekka Nikander, and Henrik
 Levkowetz reviewed and provided comments about this document.

 Marcelo Bagnulo worked on this document while visiting Ericsson
 Research Laboratory Nomadiclab.

9. References

9.1. Normative References

 [1] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [2] Aura, T., "Cryptographically Generated Addresses (CGA)",
 RFC 3972, March 2005.

 [3] Bagnulo, M. and J. Arkko, "Cryptographically Generated
 Addresses (CGA) Extension Field Format", RFC 4581,
 October 2006.

 [4] Arkko, J., Kempf, J., Zill, B., and P. Nikander, "SEcure
 Neighbor Discovery (SEND)", RFC 3971, March 2005.

9.2. Informative References

 [5] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA
 Considerations Section in RFCs", BCP 26, RFC 2434,
 October 1998.

 [6] Hoffman, P. and B. Schneier, "Attacks on Cryptographic Hashes
 in Internet Protocols", RFC 4270, November 2005.

Bagnulo & Arkko Standards Track [Page 7]

RFC 4982 Multiple Hash Support in CGAs July 2007

 [7] Nordmark, E. and M. Bagnulo, "Multihoming L3 Shim Approach",
 Work in Progress, July 2005.

 [8] Johnson, D., Perkins, C., and J. Arkko, "Mobility Support in
 IPv6", RFC 3775, June 2004.

 [9] Arkko, J., "Applying Cryptographically Generated Addresses and
 Credit-Based Authorization to Mobile IPv6", Work in Progress,
 June 2006.

 [10] Bellovin, S. and E. Rescorla, "Deploying a New Hash Algorithm",
 NDSS ’06, February 2006.

Authors’ Addresses

 Marcelo Bagnulo
 Universidad Carlos III de Madrid
 Av. Universidad 30
 Leganes, Madrid 28911
 SPAIN

 Phone: 34 91 6249500
 EMail: marcelo@it.uc3m.es
 URI: http://www.it.uc3m.es

 Jari Arkko
 Ericsson
 Jorvas 02420
 Finland

 EMail: jari.arkko@ericsson.com

Bagnulo & Arkko Standards Track [Page 8]

RFC 4982 Multiple Hash Support in CGAs July 2007

Full Copyright Statement

 Copyright (C) The IETF Trust (2007).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Bagnulo & Arkko Standards Track [Page 9]

