
Network Working Group M. Boesgaard
Request for Comments: 4503 M. Vesterager
Category: Informational E. Zenner
 Cryptico A/S
 May 2006

 A Description of the Rabbit Stream Cipher Algorithm

Status of This Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 This document describes the encryption algorithm Rabbit. It is a
 stream cipher algorithm with a 128-bit key and 64-bit initialization
 vector (IV). The method was published in 2003 and has been subject
 to public security and performance revision. Its high performance
 makes it particularly suited for the use with Internet protocols
 where large amounts of data have to be processed.

Table of Contents

 1. Introduction ..2
 2. Algorithm Description ...2
 2.1. Notation ...2
 2.2. Inner State ..3
 2.3. Key Setup Scheme ...3
 2.4. IV Setup Scheme ..3
 2.5. Counter System ...4
 2.6. Next-State Function ..4
 2.7. Extraction Scheme ..5
 2.8. Encryption/Decryption Scheme5
 3. Security Considerations ...6
 3.1. Message Length ...6
 3.2. Initialization Vector6
 4. Informative References ..7
 Appendix A: Test Vectors ...8
 A.1. Testing without IV Setup8
 A.2. Testing with IV Setup8
 Appendix B: Debugging Vectors9

Boesgaard, et al. Informational [Page 1]

RFC 4503 Rabbit Encryption May 2006

 B.1. Testing Round Function and Key Setup9
 B.2. Testing the IV setup10

1. Introduction

 Rabbit is a stream cipher algorithm that has been designed for high
 performance in software implementations. Both key setup and
 encryption are very fast, making the algorithm particularly suited
 for all applications where large amounts of data or large numbers of
 data packages have to be encrypted. Examples include, but are not
 limited to, server-side encryption, multimedia encryption, hard-disk
 encryption, and encryption on limited-resource devices.

 The cipher is based on ideas derived from the behavior of certain
 chaotic maps. These maps have been carefully discretized, resulting
 in a compact stream cipher. Rabbit has been openly published in 2003
 [1] and has not displayed any weaknesses as of the time of this
 writing. To ensure ongoing security evaluation, it was also
 submitted to the ECRYPT eSTREAM project[2].

 Technically, Rabbit consists of a pseudorandom bitstream generator
 that takes a 128-bit key and a 64-bit initialization vector (IV) as
 input and generates a stream of 128-bit blocks. Encryption is
 performed by combining this output with the message, using the
 exclusive-OR operation. Decryption is performed in exactly the same
 way as encryption.

 Further information about Rabbit, including reference implementation,
 test vectors, performance figures, and security white papers, is
 available from http://www.cryptico.com/.

2. Algorithm Description

2.1. Notation

 This document uses the following elementary operators:

 + integer addition.
 * integer multiplication.
 div integer division.
 mod integer modulus.
 ^ bitwise exclusive-OR operation.
 <<< left rotation operator.
 || concatenation operator.

 When labeling bits of a variable, A, the least significant bit is
 denoted by A[0]. The notation A[h..g] represents bits h through g of
 variable A, where h is more significant than g. Similar variables

Boesgaard, et al. Informational [Page 2]

RFC 4503 Rabbit Encryption May 2006

 are labeled by A0,A1,... with the notation A(0),A(1),... being used
 to denote those same variables if this improves readability.

 Given a 64-bit word, the function MSW extracts the most significant
 32 bits, whereas the function LSW extracts the least significant 32
 bits.

 Constants prefixed with 0x are in hexadecimal notation. In
 particular, the constant WORDSIZE is defined to be 0x100000000.

2.2. Inner State

 The internal state of the stream cipher consists of 513 bits. 512
 bits are divided between eight 32-bit state variables, X0,...,X7 and
 eight 32-bit counter variables, C0,...,C7. In addition, there is one
 counter carry bit, b.

2.3. Key Setup Scheme

 The counter carry bit b is initialized to zero. The state and
 counter words are derived from the key K[127..0].

 The key is divided into subkeys K0 = K[15..0], K1 = K[31..16], ... K7
 = K[127..112]. The initial state is initialized as follows:

 for j=0 to 7:
 if j is even:
 Xj = K(j+1 mod 8) || Kj
 Cj = K(j+4 mod 8) || K(j+5 mod 8)
 else:
 Xj = K(j+5 mod 8) || K(j+4 mod 8)
 Cj = Kj || K(j+1 mod 8)

 The system is then iterated four times, each iteration consisting of
 counter update (Section 2.5) and next-state function (Section 2.6).
 After that, the counter variables are reinitialized to

 for j=0 to 7:
 Cj = Cj ^ X(j+4 mod 8)

2.4. IV Setup Scheme

 If an IV is used for encryption, the counter variables are modified
 after the key setup. Denoting the IV bits by IV[63..0], the setup
 proceeds as follows:

 C0 = C0 ^ IV[31..0] C1 = C1 ^ (IV[63..48] || IV[31..16])
 C2 = C2 ^ IV[63..32] C3 = C3 ^ (IV[47..32] || IV[15..0])

Boesgaard, et al. Informational [Page 3]

RFC 4503 Rabbit Encryption May 2006

 C4 = C4 ^ IV[31..0] C5 = C5 ^ (IV[63..48] || IV[31..16])
 C6 = C6 ^ IV[63..32] C7 = C7 ^ (IV[47..32] || IV[15..0])

 The system is then iterated another 4 times, each iteration
 consisting of counter update (Section 2.5) and next-state function
 (Section 2.6).

 The relationship between key and IV setup is as follows:

 - After the key setup, the resulting inner state is saved as a master
 state. Then the IV setup is run to obtain the first encryption
 starting state.

 - Whenever re-initialization under a new IV is necessary, the IV
 setup is run on the master state again to derive the next
 encryption starting state.

2.5. Counter System

 Before each execution of the next-state function (Section 2.6), the
 counter system has to be updated. This system uses constants
 A1,...,A7, as follows:

 A0 = 0x4D34D34D A1 = 0xD34D34D3
 A2 = 0x34D34D34 A3 = 0x4D34D34D
 A4 = 0xD34D34D3 A5 = 0x34D34D34
 A6 = 0x4D34D34D A7 = 0xD34D34D3

 It also uses the counter carry bit b to update the counter system, as
 follows:

 for j=0 to 7:
 temp = Cj + Aj + b
 b = temp div WORDSIZE
 Cj = temp mod WORDSIZE

 Note that on exiting this loop, the variable b has to be preserved
 for the next iteration of the system.

2.6. Next-State Function

 The core of the Rabbit algorithm is the next-state function. It is
 based on the function g, which transforms two 32-bit inputs into one
 32-bit output, as follows:

 g(u,v) = LSW(square(u+v)) ^ MSW(square(u+v))

 where square(u+v) = ((u+v mod WORDSIZE) * (u+v mod WORDSIZE)).

Boesgaard, et al. Informational [Page 4]

RFC 4503 Rabbit Encryption May 2006

 Using this function, the algorithm updates the inner state as
 follows:

 for j=0 to 7:
 Gj = g(Xj,Cj)

 X0 = G0 + (G7 <<< 16) + (G6 <<< 16) mod WORDSIZE
 X1 = G1 + (G0 <<< 8) + G7 mod WORDSIZE
 X2 = G2 + (G1 <<< 16) + (G0 <<< 16) mod WORDSIZE
 X3 = G3 + (G2 <<< 8) + G1 mod WORDSIZE
 X4 = G4 + (G3 <<< 16) + (G2 <<< 16) mod WORDSIZE
 X5 = G5 + (G4 <<< 8) + G3 mod WORDSIZE
 X6 = G6 + (G5 <<< 16) + (G4 <<< 16) mod WORDSIZE
 X7 = G7 + (G6 <<< 8) + G5 mod WORDSIZE

2.7. Extraction Scheme

 After the key and IV setup are concluded, the algorithm is iterated
 in order to produce one 128-bit output block, S, per round. Each
 round consists of executing steps 2.5 and 2.6 and then extracting an
 output S[127..0] as follows:

 S[15..0] = X0[15..0] ^ X5[31..16]
 S[31..16] = X0[31..16] ^ X3[15..0]
 S[47..32] = X2[15..0] ^ X7[31..16]
 S[63..48] = X2[31..16] ^ X5[15..0]
 S[79..64] = X4[15..0] ^ X1[31..16]
 S[95..80] = X4[31..16] ^ X7[15..0]
 S[111..96] = X6[15..0] ^ X3[31..16]
 S[127..112] = X6[31..16] ^ X1[15..0]

2.8. Encryption/Decryption Scheme

 Given a 128-bit message block, M, encryption E and decryption M’ are
 computed via

 E = M ^ S and
 M’ = E ^ S.

 If S is the same in both operations (as it should be if the same key
 and IV are used), then M = M’.

 The encryption/decryption scheme is repeated until all blocks in the
 message have been encrypted/decrypted. If the message size is not a
 multiple of 128 bits, only the needed amount of least significant
 bits from the last output block S is used for the last message block
 M.

Boesgaard, et al. Informational [Page 5]

RFC 4503 Rabbit Encryption May 2006

 If the application requires the encryption of smaller blocks (or even
 individual bits), a 128-bit buffer is used. The buffer is
 initialized by generating a new value, S, and copying it into the
 buffer. After that, all data blocks are encrypted using the least
 significant bits in this buffer. Whenever the buffer is empty, a new
 value S is generated and copied into the buffer.

3. Security Considerations

 For an encryption algorithm, the security provided is, of course, the
 most important issue. No security weaknesses have been found to
 date, neither by the designers nor by independent cryptographers
 scrutinizing the algorithms after its publication in [1]. Note that
 a full discussion of Rabbit’s security against known cryptanalytic
 techniques is provided in [3].

 In the following, we restrict ourselves to some rules on how to use
 the Rabbit algorithm properly.

3.1. Message Length

 Rabbit was designed to encrypt up to 2 to the power of 64 128-bit
 message blocks under the same the key. Should this amount of data
 ever be exceeded, the key has to be replaced. It is recommended to
 follow this rule even when the IV is changed on a regular basis.

3.2. Initialization Vector

 It is possible to run Rabbit without the IV setup. However, in this
 case, the generator must never be reset under the same key, since
 this would destroy its security (for a recent example, see [4]).
 However, in order to guarantee synchronization between sender and
 receiver, ciphers are frequently reset in practice. This means that
 both sender and receiver set the inner state of the cipher back to a
 known value and then derive the new encryption state using an IV. If
 this is done, it is important to make sure that no IV is ever reused
 under the same key.

Boesgaard, et al. Informational [Page 6]

RFC 4503 Rabbit Encryption May 2006

4. Informative References

 [1] M. Boesgaard, M. Vesterager, T. Pedersen, J. Christiansen, O.
 Scavenius. "Rabbit: A New High-Performance Stream Cipher".
 Proc. Fast Software Encryption 2003, Lecture Notes in Computer
 Science 2887, p. 307-329. Springer, 2003.

 [2] ECRYPT eSTREAM project, available from
 http://www.ecrypt.eu.org/stream/

 [3] M. Boesgaard, T. Pedersen, M. Vesterager, E. Zenner. "The
 Rabbit Stream Cipher - Design and Security Analysis". Proc.
 SASC Workshop 2004, available from
 http://www.isg.rhul.ac.uk/research/
 projects/ecrypt/stvl/sasc.html.

 [4] H. Wu. "The Misuse of RC4 in Microsoft Word and Excel". IACR
 eprint archive 2005/007, available from
 http://eprint.iacr.org/2005/007.pdf.

 [5] Jonsson, J. and B. Kaliski, "Public-Key Cryptography Standards
 (PKCS) #1: RSA Cryptography Specifications Version 2.1", RFC
 3447, February 2003.

Boesgaard, et al. Informational [Page 7]

RFC 4503 Rabbit Encryption May 2006

Appendix A: Test Vectors

 This is a set of test vectors for conformance testing, given in octet
 form. For use with Rabbit, they have to be transformed into integers
 by the conversion primitives OS2IP and I2OSP, as described in [5].

A.1. Testing without IV Setup

 key = [00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00]
 S[0] = [B1 57 54 F0 36 A5 D6 EC F5 6B 45 26 1C 4A F7 02]
 S[1] = [88 E8 D8 15 C5 9C 0C 39 7B 69 6C 47 89 C6 8A A7]
 S[2] = [F4 16 A1 C3 70 0C D4 51 DA 68 D1 88 16 73 D6 96]

 key = [91 28 13 29 2E 3D 36 FE 3B FC 62 F1 DC 51 C3 AC]
 S[0] = [3D 2D F3 C8 3E F6 27 A1 E9 7F C3 84 87 E2 51 9C]
 S[1] = [F5 76 CD 61 F4 40 5B 88 96 BF 53 AA 85 54 FC 19]
 S[2] = [E5 54 74 73 FB DB 43 50 8A E5 3B 20 20 4D 4C 5E]

 key = [83 95 74 15 87 E0 C7 33 E9 E9 AB 01 C0 9B 00 43]
 S[0] = [0C B1 0D CD A0 41 CD AC 32 EB 5C FD 02 D0 60 9B]
 S[1] = [95 FC 9F CA 0F 17 01 5A 7B 70 92 11 4C FF 3E AD]
 S[2] = [96 49 E5 DE 8B FC 7F 3F 92 41 47 AD 3A 94 74 28]

A.2. Testing with IV Setup

 mkey = [00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00]
 iv = [00 00 00 00 00 00 00 00]
 S[0] = [C6 A7 27 5E F8 54 95 D8 7C CD 5D 37 67 05 B7 ED]
 S[1] = [5F 29 A6 AC 04 F5 EF D4 7B 8F 29 32 70 DC 4A 8D]
 S[2] = [2A DE 82 2B 29 DE 6C 1E E5 2B DB 8A 47 BF 8F 66]

 iv = [C3 73 F5 75 C1 26 7E 59]
 S[0] = [1F CD 4E B9 58 00 12 E2 E0 DC CC 92 22 01 7D 6D]
 S[1] = [A7 5F 4E 10 D1 21 25 01 7B 24 99 FF ED 93 6F 2E]
 S[2] = [EB C1 12 C3 93 E7 38 39 23 56 BD D0 12 02 9B A7]

 iv = [A6 EB 56 1A D2 F4 17 27]
 S[0] = [44 5A D8 C8 05 85 8D BF 70 B6 AF 23 A1 51 10 4D]
 S[1] = [96 C8 F2 79 47 F4 2C 5B AE AE 67 C6 AC C3 5B 03]
 S[2] = [9F CB FC 89 5F A7 1C 17 31 3D F0 34 F0 15 51 CB]

Boesgaard, et al. Informational [Page 8]

RFC 4503 Rabbit Encryption May 2006

Appendix B: Debugging Vectors

 The following set of vectors describes the inner state of Rabbit
 during key and iv setup. It is meant mainly for debugging purposes.
 Octet strings are written according to I2OSP conventions.

B.1. Testing Round Function and Key Setup

 key = [91 28 13 29 2E ED 36 FE 3B FC 62 F1 DC 51 C3 AC]

 Inner state after key expansion:
 b = 0
 X0 = 0xDC51C3AC, X1 = 0x13292E3D, X2 = 0x3BFC62F1, X3 = 0xC3AC9128,
 X4 = 0x2E3D36FE, X5 = 0x62F1DC51, X6 = 0x91281329, X7 = 0x36FE3BFC,
 C0 = 0x36FE2E3D, C1 = 0xDC5162F1, C2 = 0x13299128, C3 = 0x3BFC36FE,
 C4 = 0xC3ACDC51, C5 = 0x2E3D1329, C6 = 0x62F13BFC, C7 = 0x9128C3AC

 Inner state after first key setup iteration:
 b = 1
 X0 = 0xF2E8C8B1, X1 = 0x38E06FA7, X2 = 0x9A0D72C0, X3 = 0xF21F5334,
 X4 = 0xCACDCCC3, X5 = 0x4B239CBE, X6 = 0x0565DCCC, X7 = 0xB1587C8D,
 C0 = 0x8433018A, C1 = 0xAF9E97C4, C2 = 0x47FCDE5D, C3 = 0x89310A4B,
 C4 = 0x96FA1124, C5 = 0x6310605E, C6 = 0xB0260F49, C7 = 0x6475F87F

 Inner state after fourth key setup iteration:
 b = 0
 X0 = 0x1D059312, X1 = 0xBDDC3E45, X2 = 0xF440927D, X3 = 0x50CBB553,
 X4 = 0x36709423, X5 = 0x0B6F0711, X6 = 0x3ADA3A7B, X7 = 0xEB9800C8,
 C0 = 0x6BD17B74, C1 = 0x2986363E, C2 = 0xE676C5FC, C3 = 0x70CF8432,
 C4 = 0x10E1AF9E, C5 = 0x018A47FD, C6 = 0x97C48931, C7 = 0xDE5D96F9

 Inner state after final key setup xor:
 b = 0
 X0 = 0x1D059312, X1 = 0xBDDC3E45, X2 = 0xF440927D, X3 = 0x50CBB553,
 X4 = 0x36709423, X5 = 0x0B6F0711, X6 = 0x3ADA3A7B, X7 = 0xEB9800C8,
 C0 = 0x5DA1EF57, C1 = 0x22E9312F, C2 = 0xDCACFF87, C3 = 0x9B5784FA,
 C4 = 0x0DE43C8C, C5 = 0xBC5679B8, C6 = 0x63841B4C, C7 = 0x8E9623AA

 Inner state after generation of 48 bytes of output:
 b = 1
 X0 = 0xB5428566, X1 = 0xA2593617, X2 = 0xFF5578DE, X3 = 0x7293950F,
 X4 = 0x145CE109, X5 = 0xC93875B0, X6 = 0xD34306E0, X7 = 0x43FEEF87,
 C0 = 0x45406940, C1 = 0x9CD0CFA9, C2 = 0x7B26E725, C3 = 0x82F5FEE2,
 C4 = 0x87CBDB06, C5 = 0x5AD06156, C6 = 0x4B229534, C7 = 0x087DC224

Boesgaard, et al. Informational [Page 9]

RFC 4503 Rabbit Encryption May 2006

 The 48 output bytes:
 S[0] = [3D 2D F3 C8 3E F6 27 A1 E9 7F C3 84 87 E2 51 9C]
 S[1] = [F5 76 CD 61 F4 40 5B 88 96 BF 53 AA 85 54 FC 19]
 S[2] = [E5 54 74 73 FB DB 43 50 8A E5 3B 20 20 4D 4C 5E]

B.2. Testing the IV Setup

 key = [91 28 13 29 2E ED 36 FE 3B FC 62 F1 DC 51 C3 AC]
 iv = [C3 73 F5 75 C1 26 7E 59]

 Inner state during key setup:
 as above

 Inner state after IV expansion:
 b = 0
 X0 = 0x1D059312, X1 = 0xBDDC3E45, X2 = 0xF440927D, X3 = 0x50CBB553,
 X4 = 0x36709423, X5 = 0x0B6F0711, X6 = 0x3ADA3A7B, X7 = 0xEB9800C8,
 C0 = 0x9C87910E, C1 = 0xE19AF009, C2 = 0x1FDF0AF2, C3 = 0x6E22FAA3,
 C4 = 0xCCC242D5, C5 = 0x7F25B89E, C6 = 0xA0F7EE39, C7 = 0x7BE35DF3

 Inner state after first IV setup iteration:
 b = 1
 X0 = 0xC4FF831A, X1 = 0xEF5CD094, X2 = 0xC5933855, X3 = 0xC05A5C03,
 X4 = 0x4A50522F, X5 = 0xDF487BE4, X6 = 0xA45FA013, X7 = 0x05531179,
 C0 = 0xE9BC645B, C1 = 0xB4E824DC, C2 = 0x54B25827, C3 = 0xBB57CDF0,
 C4 = 0xA00F77A8, C5 = 0xB3F905D3, C6 = 0xEE2CC186, C7 = 0x4F3092C6

 Inner state after fourth IV setup iteration:
 b = 1
 X0 = 0x6274E424, X1 = 0xE14CE120, X2 = 0xDA8739D9, X3 = 0x65E0402D,
 X4 = 0xD1281D10, X5 = 0xBD435BAA, X6 = 0x4E9E7A02, X7 = 0x9B467ABD,
 C0 = 0xD15ADE44, C1 = 0x2ECFC356, C2 = 0xF32C3FC6, C3 = 0xA2F647D7,
 C4 = 0x19F71622, C5 = 0x5272ED72, C6 = 0xD5CB3B6E, C7 = 0xC9183140

Boesgaard, et al. Informational [Page 10]

RFC 4503 Rabbit Encryption May 2006

Authors’ Addresses

 Martin Boesgaard
 Cryptico A/S
 Fruebjergvej 3
 2100 Copenhagen
 Denmark

 Phone: +45 39 17 96 06
 EMail: mab@cryptico.com
 URL: http://www.cryptico.com

 Mette Vesterager
 Cryptico A/S
 Fruebjergvej 3
 2100 Copenhagen
 Denmark

 Phone: +45 39 17 96 06
 EMail: mvp@cryptico.com
 URL: http://www.cryptico.com

 Erik Zenner
 Cryptico A/S
 Fruebjergvej 3
 2100 Copenhagen
 Denmark

 Phone: +45 39 17 96 06
 EMail: ez@cryptico.com
 URL: http://www.cryptico.com

Boesgaard, et al. Informational [Page 11]

RFC 4503 Rabbit Encryption May 2006

Full Copyright Statement

 Copyright (C) The Internet Society (2006).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

Boesgaard, et al. Informational [Page 12]

