
Network Working Group J. Mogul
Request for Comments: 3229 Compaq WRL
Category: Standards Track B. Krishnamurthy
 F. Douglis
 AT&T
 A. Feldmann
 Univ. of Saarbruecken
 Y. Goland
 A. van Hoff
 Marimba
 D. Hellerstein
 ERS/USDA
 January 2002

 Delta encoding in HTTP

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2002). All Rights Reserved.

Abstract

 This document describes how delta encoding can be supported as a
 compatible extension to HTTP/1.1.

 Many HTTP (Hypertext Transport Protocol) requests cause the retrieval
 of slightly modified instances of resources for which the client
 already has a cache entry. Research has shown that such modifying
 updates are frequent, and that the modifications are typically much
 smaller than the actual entity. In such cases, HTTP would make more
 efficient use of network bandwidth if it could transfer a minimal
 description of the changes, rather than the entire new instance of
 the resource. This is called "delta encoding."

Mogul, et al. Standards Track [Page 1]

RFC 3229 Delta encoding in HTTP January 2002

Table of Contents

 1 Introduction.. 3
 1.1 Related research and proposals........................... 4
 2 Goals... 5
 3 Terminology... 6
 4 The HTTP message-generation sequence............................ 8
 4.1 Relationship between deltas and ranges................... 11
 5 Basic mechanisms.. 13
 5.1 Background: an overview of HTTP cache validation......... 13
 5.2 Requesting the transmission of deltas.................... 14
 5.3 Choice of delta algorithm and format..................... 16
 5.4 Identification of delta-encoded responses................ 16
 5.5 Guaranteeing cache safety................................ 17
 5.6 Transmission of delta-encoded responses.................. 18
 5.7 Examples of requests combining Range and delta encoding.. 19
 6 Encoding algorithms and formats................................. 22
 7 Management of base instances.................................... 23
 7.1 Multiple entity tags in the If-None-Match header......... 24
 7.2 Hints for managing the client cache...................... 25
 8 Deltas and intermediate caches.................................. 27
 9 Digests for data integrity...................................... 28
 10 Specification.. 28
 10.1 Protocol parameter specifications....................... 28
 10.2 IANA Considerations..................................... 30
 10.3 Basic requirements for delta-encoded responses.......... 30
 10.4 Status code specifications.............................. 30
 10.4.1 226 IM Used...................................... 31
 10.5 Header specifications................................... 31
 10.5.1 Delta-Base....................................... 31
 10.5.2 IM... 32
 10.5.3 A-IM... 33
 10.6 Caching rules for 226 responses......................... 35
 10.7 Rules for deltas in the presence of content-codings..... 36
 10.7.1 Rules for generating deltas in the presence of
 content-codings.................................. 37
 10.7.2 Rules for applying deltas in the presence of
 content-codings.................................. 37
 10.7.3 Examples for using A-IM, IM, and content-codings. 38
 10.8 New Cache-Control directives............................ 40
 10.8.1 Retain directive................................. 40
 10.8.2 IM directive..................................... 40
 10.9 Use of compression with delta encoding.................. 41
 10.10 Delta encoding and multipart/byteranges................ 42
 11 Quantifying the protocol overhead.............................. 42
 12 Security Considerations.. 44
 13 Acknowledgements... 44
 14 Intellectual Property Rights................................... 44

Mogul, et al. Standards Track [Page 2]

RFC 3229 Delta encoding in HTTP January 2002

 15 References... 44
 16 Authors’ addresses... 47
 17 Full Copyright Statement....................................... 49

1 Introduction

 The World Wide Web is a distributed system, and so often benefits
 from caching to reduce retrieval delays. Retrieval of a Web resource
 (such as a document, image, icon, or applet) over the Internet or
 other wide-area networks usually takes enough time that the delay is
 over the human threshold of perception. Often, that delay is
 measured in seconds. Caching can often eliminate or significantly
 reduce retrieval delays.

 Many Web resources change over time, so a practical caching approach
 must include a coherency mechanism, to avoid presenting stale
 information to the user. Originally, the Hypertext Transfer Protocol
 (HTTP) provided little support for caching, but under operational
 pressures, it quickly evolved to support a simple mechanism for
 maintaining cache coherency.

 In HTTP/1.0 [2], the server may supply a "last-modified" timestamp
 with a response. If a client stores this response in a cache entry,
 and then later wishes to re-use the response, it may transmit a
 request message with an "If-modified-since" field containing that
 timestamp; this is known as a conditional retrieval. Upon receiving
 a conditional request, the server may either reply with a full
 response, or, if the resource has not changed, it may send an
 abbreviated reply, indicating that the client’s cache entry is still
 valid. HTTP/1.0 also includes a means for the server to indicate,
 via an "Expires" timestamp, that a response will be valid until that
 time; if so, a client may use a cached copy of the response until
 that time, without first validating it using a conditional retrieval.

 HTTP/1.1 [10] adds many new features to improve cache coherency and
 performance. However, it preserves the all-or-none model for
 responses to conditional retrievals: either the server indicates that
 the resource value has not changed at all, or it must transmit the
 entire current value.

 Common sense suggests (and traces confirm), however, that even when a
 Web resource does change, the new instance is often substantially
 similar to the old one. If the difference, or "delta", between the
 two instances could be sent to the client instead of the entire new
 instance, a client holding a cached copy of the old instance could
 apply the delta to construct the new version. In a world of finite
 bandwidth, the reduction in response size and delay could be
 significant.

Mogul, et al. Standards Track [Page 3]

RFC 3229 Delta encoding in HTTP January 2002

 One can think of deltas as a way to squeeze as much benefit as
 possible from client and proxy caches. Rather than treating an
 entire response as the "cache line", with deltas we can treat
 arbitrary pieces of a cached response as the replaceable unit, and
 avoid transferring pieces that have not changed.

 This document proposes a set of compatible extensions to HTTP/1.1
 that allow clients and servers to use delta encoding with minimal
 overhead.

 We assume that the reader is familiar with the HTTP/1.1
 specification.

1.1 Related research and proposals

 The idea of delta encoding to reduce communication or storage costs
 is not new. For example, the MPEG-1 video compression standard
 transmits occasional still-image frames, but most of the frames sent
 are encoded (to oversimplify) as changes from an adjacent frame. The
 SCCS and RCS [27] systems for software version control represent
 intermediate versions as deltas; SCCS starts with an original version
 and encodes subsequent ones with forward deltas, whereas RCS encodes
 previous versions as reverse deltas from their successors.
 Jacobson’s technique for compressing IP and TCP headers over slow
 links [17] uses a clever, highly specialized form of delta encoding.

 In spite of this history, it appears to have taken several years
 before anyone thought of applying delta encoding to HTTP, perhaps
 because the development of HTTP caching has been somewhat haphazard.
 The first published suggestion for delta encoding appears to have
 been by Williams et al. in a paper about HTTP cache removal policies
 [30], but these authors did not elaborate on their design until later
 [29].

 The WebExpress project [15] appears to be the first published
 description of an implementation of delta encoding for HTTP (which
 they call "differencing"). WebExpress is aimed specifically at
 wireless environments, and includes a number of orthogonal
 optimizations. Also, the WebExpress design does not propose changing
 the HTTP protocol itself, but rather uses a pair of interposed
 proxies to convert the HTTP message stream into an optimized form.
 The results reported for WebExpress differencing are impressive, but
 are limited to a few selected benchmarks.

 Banga et al. [1] describe the use of optimistic deltas, in which a
 layer of interposed proxies on either end of a slow link collaborate
 to reduce latency. If the client-side proxy has a cached copy of a
 resource, the server-side proxy can simply send a delta (or a 304

Mogul, et al. Standards Track [Page 4]

RFC 3229 Delta encoding in HTTP January 2002

 [Not Modified] response). If only the server-side proxy has a cached
 copy, it may optimistically send its (possibly stale) copy to the
 client-side proxy, followed (if necessary) by a delta once the
 server-side proxy has validated its own cache entry with the origin
 server. The use of optimistic deltas, unlike delta encoding,
 actually increases the number of bytes sent over the network, in an
 attempt to improve latency by anticipating a "Not Modified" response
 from the origin server. The optimistic delta paper, like the
 WebExpress paper, did not propose a change to the HTTP protocol
 itself, and reported results only for a small set of selected URLs.

 Mogul et al. [23] collected lengthy traces, at two different sites,
 of the full contents of HTTP messages, to quantify the potential
 benefits of delta-encoded responses. They showed that delta encoding
 can provide remarkable improvements in response-size and response-
 delay for an important subset of HTTP content types. They proposed a
 set of HTTP extensions, but without the level of detail required for
 a specification. Douglis et al. [8] used the same sets of full-
 content traces to quantify the rate at which resources change in the
 Web.

 The HTTP Distribution and Replication Protocol (DRP), proposed to W3C
 by Marimba, Netscape, Sun, Novell, and At Home, aims to provide a
 collection of new features for HTTP, to support "the efficient
 replication of data over HTTP" [13]. One aspect of the DRP proposal
 is the use of "differential downloading," which is essentially a form
 of delta encoding. The original DRP proposal uses a different
 approach than is described here, but a forthcoming revision of DRP
 will be revised to conform to the proposal in this document.

 Tridgell and Mackerras [28] describe the "rsync" algorithm, which
 accomplishes something similar to delta encoding. In rsync, the
 client breaks a cache entry into a series of fixed-sized blocks,
 computes a digest value for each block, and sends the series of
 digest values to the server as part of its request. The origin
 server does the same block-based computation, and returns only those
 blocks whose digest values differ. We believe that it might be
 possible to support rsync using the "instance manipulation" framework
 described later in this document, but this has not been worked out in
 any detail.

2 Goals

 The goals of this proposal are:

 1. Reduce the mean size of HTTP responses, thereby improving
 latency and network utilization.

Mogul, et al. Standards Track [Page 5]

RFC 3229 Delta encoding in HTTP January 2002

 2. Avoid any extra network round trips.

 3. Minimize the amount of per-request and per-response overheads.

 4. Support a variety of encoding algorithms and formats.

 5. Interoperate with HTTP/1.0 and HTTP/1.1.

 6. Be fully optional for clients, proxies, and servers.

 7. Allow moderately simple implementations.

 The goals do not include:

 - Reducing the number of HTTP requests sent to an origin server.

 - Reducing the size of every HTTP message.

 - Increasing the cache-hit ratio of HTTP caches.

 - Allowing excessively simplistic implementations of delta
 encoding.

 - Delta encoding of request messages, or of responses to methods
 other than GET.

 Nothing in this specification specifically precludes the use of
 a delta encoding for the body of a PUT request. However, no
 mechanism currently exists for the client to discover if the
 server can interpret such messages, and so we do not attempt to
 specify how they might be used.

3 Terminology

 HTTP/1.1 [10] defines the following terms:

 resource A network data object or service that can be
 identified by a URI, as defined in section 3.2.
 Resources may be available in multiple
 representations (e.g. multiple languages, data
 formats, size, resolutions) or vary in other ways.

 entity The information transferred as the payload of a
 request or response. An entity consists of
 metainformation in the form of entity-header fields
 and content in the form of an entity-body, as
 described in section 7.

Mogul, et al. Standards Track [Page 6]

RFC 3229 Delta encoding in HTTP January 2002

 variant A resource may have one, or more than one,
 representation(s) associated with it at any given
 instant. Each of these representations is termed a
 ‘variant.’ Use of the term ‘variant’ does not
 necessarily imply that the resource is subject to
 content negotiation.

 The dictionary definition for "entity" is "something that has
 separate and distinct existence and objective or conceptual reality"
 [21]. Unfortunately, the definition for "entity" in HTTP/1.1 is
 similar to that used in MIME [12], based on a false analogy between
 MIME and HTTP.

 In MIME, electronic mail messages do have distinct and separate
 existences. MIME defines "entity" as something that "refers
 specifically to the MIME-defined header fields and contents of either
 a message or one of the parts in the body of a multipart entity."

 In HTTP, however, a response message to a GET does not have a
 distinct and separate existence. Rather, it reflects the current
 state of a resource (or a variant, subject to a set of constraints).
 The HTTP/1.1 specification has no term to describe "the value that
 would be returned in response to a GET request at the current time
 for the selected variant of the specified resource." This leads to
 awkward wordings in the HTTP/1.1 specification in places where this
 concept is necessary.

 To express this concept, we define a new term, for use in this
 document:

 instance The entity that would be returned in a status-200
 response to a GET request, at the current time, for
 the selected variant of the specified resource, with
 the application of zero or more content-codings, but
 without the application of any instance manipulations
 (see below) or transfer-codings.

 It is convenient to think of an entity tag, in HTTP/1.1, as being
 associated with an instance, rather than an entity. That is, for a
 given resource, two different response messages might include the
 same entity tag, but two different instances of the resource should
 never be associated with the same (strong) entity tag.

 We will informally use the term "delta," in this document, to mean an
 HTTP response encoded as the difference between two instances.

Mogul, et al. Standards Track [Page 7]

RFC 3229 Delta encoding in HTTP January 2002

 More formally, delta encodings are members of a potentially larger
 class of transformations on instances, leading to this new term:

 instance manipulation
 An operation on one or more instances which may
 result in an instance being conveyed from server to
 client in parts, or in more than one response
 message. For example, a range selection or a delta
 encoding. Instance manipulations are end-to-end, and
 often involve the use of a cache at the client.

 For reasons that will become clear later on, it is convenient to
 think about subrange selection as a form of instance manipulation.
 In some contexts, compression might also be treated as an instance
 manipulation, rather than as a content-coding or transfer-coding.

4 The HTTP message-generation sequence

 HTTP/1.1 supports a number of different transformations on the body
 of a value:

 Content-coding According to the specification, "Content coding
 values indicate an encoding transformation that has
 been or can be applied to an entity. Content codings
 are primarily used to allow a document to be
 compressed or otherwise usefully transformed without
 losing the identity of its underlying media type and
 without loss of information. Frequently, the entity
 is stored in coded form, transmitted directly, and
 only decoded by the recipient." Content-codings are
 normally end-to-end transformations; i.e., once
 applied at the sender, they are not removed except at
 the ultimate recipient. An intermediate server may
 apply a content-coding, in appropriate circumstances.

 Transfer-coding According to the specification, "Transfer coding
 values are used to indicate an encoding
 transformation that has been, can be, or may need to
 be applied to an entity-body in order to ensure "safe
 transport" through the network. This differs from a
 content coding in that the transfer coding is a
 property of the message, not of the original entity."
 Transfer-codings are explicitly hop-by-hop
 transformations (although, as an optimization, an
 intermediate proxy may store the transfer-coded
 version of a message if this behavior is not
 inconsistent with its externally visible function.)

Mogul, et al. Standards Track [Page 8]

RFC 3229 Delta encoding in HTTP January 2002

 Ranges An HTTP client, using the Range header, may request
 that the server return one or more subranges of the
 instance, rather than the entire instance value.
 HTTP/1.1 only supports byte-ranges, although there is
 some possibility that future extensions will allow
 for other kinds of range-specifiers (such as chapters
 of a document).

 A client signals its willingness to receive a content-coding by
 sending an "Accept-Encoding" header, listing the set of content-
 codings that it understands. It may optionally include information
 about which content-codings it prefers. If a server uses any non-
 identity content-coding(s), it includes a "Content-Encoding" header
 field in the response, listing these content-codings in their order
 of application.

 RFC 2068 [9] did not include an analogous mechanism for negotiating
 the use of transfer-codings, although it does include an analogous
 "Transfer-Encoding" header for marking the response. A new "TE"
 header has since been added to HTTP/1.1 [10], analogous to the
 "Accept-Encoding" header.

 In this document, we add new, optional message headers to support the
 use of instance manipulations. A client signals its willingness to
 receive an instance-manipulation by sending an "A-IM" header (short
 for "Accept-Instance-Manipulation", which is far too long to spell
 out), analogous to the "Accept-Encoding" header. Similarly, a server
 lists the set of instance-manipulations it has applied using an "IM"
 header.

 One must understand the relationship between these transformations in
 order to see how delta encoding applies to HTTP responses.

 Conceptually, the various transformations are applied in the
 following sequence:

 1. Upon receiving a GET request, the server uses the URI in the
 request to identify the requested resource.

 2. Optionally, it uses information from the request (and perhaps
 additional information) to select a variant of that resource.

 3. At this point, the server may apply a non-identity content-
 coding to the instance, or one might have been inherent in its
 generation. This also results in a Content-Encoding header.

Mogul, et al. Standards Track [Page 9]

RFC 3229 Delta encoding in HTTP January 2002

 4. The result of the first three steps, at the time when the
 request is processed, is an instance. The instance includes a
 body (possibly empty) and possibly some instance headers. The
 entity tag, if any, is assigned at this point. That is, an
 entity tag is associated with an instance, NOT an entity.

 5. The server may then apply an instance-manipulation. For
 example, if the request included a Range header, the server may
 optionally produce a range response, consisting of the original
 set of headers, a Content-Range header, and the appropriate
 range(s) from the (possibly encoded) body. Delta encodings are
 instance-manipulations, and are computed at this stage.

 6. The result of the fifth step becomes the entity, consisting of
 entity headers and an entity body.

 7. The server may then apply a non-identity transfer-coding; on-
 the-fly compression could be done in this step. If so, a
 Transfer-Encoding header is added to the message.

 8. The results of the seventh step is the message, consisting of a
 message body (the transfer-coded version of the entity body),
 the entity headers, and additional response and general
 headers.

 Note: Section 14.13 of the HTTP/1.1 specification [10] says "The
 Content-Length entity-header field indicates the size of the
 entity-body." In other words, Content-Length measures the length
 of an entity, not of an instance or of a variant. For example, if
 the message is a delta encoding, Content-Length gives the length
 of the delta encoding, not the length of the current instance.

Mogul, et al. Standards Track [Page 10]

RFC 3229 Delta encoding in HTTP January 2002

 Diagrammatically, the sequence is:

 datatype operation leading to next datatype
 ======== ==================================
 resource
 | choose acceptable variant, if needed
 v
 variant
 | apply content-coding, if any
 v

 | compute/assign entity tag
 v
 instance
 | apply instance manipulation, if any
 v (delta encoding, range selection, etc.)
 entity-body
 | apply transfer-coding, if any
 v
 message-body

 This formalization of the HTTP message generation sequence has not
 previously been described. However, it is clear that Range selection
 needs to be done after the entity tag has been assigned and after any
 content-coding has been applied, and before any transfer-coding is
 applied. Therefore, this formalization is fully consistent with
 previous practice and specification.

4.1 Relationship between deltas and ranges

 If both Ranges and delta encodings are forms of instance
 manipulation, which should be applied first? This depends on how the
 Range is being used.

 Ranges are used for two main purposes, at the discretion of the
 requesting client:

 1. to complete a partial response after a premature termination of
 a message transmission.

 2. to obtain just selected sections of an instance.

 In the first use of Range, it would have to be applied after any
 delta encoding, since the intended use is to recover an intact copy
 of the delta-encoded instance. In the second use of Range, it would
 have to be applied before any delta encoding, because otherwise the

Mogul, et al. Standards Track [Page 11]

RFC 3229 Delta encoding in HTTP January 2002

 offsets specified in the Range request would be meaningless (the
 client generally cannot know how a server’s delta encoding maps
 instance byte offsets to entity byte offsets).

 Therefore, we need a mechanism to allow the client to specify the
 order in which two or more instance-manipulations should be applied.
 This is easily provided as part of the specification of the "A-IM"
 header (see section 10.5.3), where we require that the server apply
 instance-manipulations in the order that they are listed in the "A-
 IM" header. We also include a "range" literal in the set of
 registered instance-manipulations, to allow the client to specify (by
 its ordering with respect to other instance-manipulations) whether
 range selection is done before or after delta encoding.

 We also need a mechanism for the server to indicate in which order
 two or more instance-manipulations have been applied; this is part of
 the specification of the "IM" header (see section 10.5.2), where we
 follow the same practice used for the "Content-Encoding" header: the
 "IM" header lists the instance-manipulations in the order that were
 applied (including, perhaps, the special "range" literal).

 A similar issue arises when Ranges are combined with compression. If
 the client is using a Range to complete a partial response after a
 premature termination of a compressed message, then the Range would
 have to be applied after the compression. This is feasible in
 unmodified HTTP/1.1, because the compression can be done as a
 content-coding. However, if the client is using a Range to obtain
 selected sections of an instance, it would normally be able to
 specify offsets only in terms of the uncompressed variant. If the
 selected portion was large enough to warrant compression, the client
 could request a compressed transfer-coding, but this is a hop-by-hop
 transformation and is not the most efficient approach (especially if
 an HTTP/1.0 proxy is in the path).

 We can resolve this issue by supporting the use of compression as an
 instance-manipulation (as well as as a content-coding or transfer-
 coding), and by using the new mechanism that allows the client to
 specify that the compression instance-manipulation is done after the
 Range instance-manipulation.

 This also allows the client to control whether compression is done
 before or after delta encoding, since some simple differencing
 algorithms (such as the UNIX "diff" command) require post-compression
 of their output to yield the best results.

Mogul, et al. Standards Track [Page 12]

RFC 3229 Delta encoding in HTTP January 2002

5 Basic mechanisms

 In this section, we explain the concepts behind delta encoding. This
 is not meant as a formal specification of the proposed extensions;
 see section 10 for that.

5.1 Background: an overview of HTTP cache validation

 When a client has a response in its cache, and wishes to ensure that
 this cache entry is current, HTTP/1.1 allows the client to do a
 "conditional GET", using one of two forms of "cache validators." In
 the traditional form, available in both HTTP/1.0 and in HTTP/1.1, the
 client may use the "If-Modified-Since" request-header to present to
 the server the "Last-Modified" timestamp (if any) that the server
 provided with the response. If the server’s timestamp for the
 resource has not changed, it may send a response with a status code
 of 304 (Not Modified), which does not transmit the body of the
 resource. If the timestamp has changed, the server would normally
 send a response with a status code of 200 (OK), which carries a
 complete copy of the resource, and a new Last-Modified timestamp.

 This timestamp-based approach is prone to error because of the lack
 of timestamp resolution: if a resource changes twice during one
 second, the change might not be detectable. Therefore, HTTP/1.1 also
 allows the server to provide an entity tag with a response. An
 entity tag is an opaque string, constructed by the server according
 to its own needs; the protocol specification imposes a bare minimum
 of requirements on entity tags. (In particular, a "strong" entity
 tag must change if the value of the resource changes.) In this case,
 the client may validate its cache entry by sending its conditional
 request using the "If-None-Match" request-header, presenting the
 entity tag associated with the cached response. (The protocol
 defines several other ways to transmit entity tags, such as the "If-
 Range" header, used for short-circuiting an otherwise necessary round
 trip.) If the presented entity tag matches the server’s current tag
 for the resource, the server should send a 304 (Not Modified)
 response. Otherwise, the server should send a 200 (OK) response,
 along with a complete copy of the resource.

 In the existing HTTP protocol (HTTP/1.0 or HTTP/1.1), a client
 sending a conditional request can expect either of two responses:

 - status = 200 (OK), with a full copy of the resource, because
 the server’s copy of the resource is presumably different from
 the client’s cached copy.

Mogul, et al. Standards Track [Page 13]

RFC 3229 Delta encoding in HTTP January 2002

 - status = 304 (Not Modified), with no body, because the server’s
 copy of the resource is presumably the same as the client’s
 cached copy.

 Informally, one could think of these as "deltas" of 100% and 0% of
 the resource, respectively. Note that these deltas are relative to a
 specific cached response. That is, a client cannot request a delta
 without specifying, somehow, which two instances of a resource are
 being differenced. The "new" instance is implicitly the current
 instance that the server would return for an unconditional request,
 and the "old" instance is the one that is currently in the client’s
 cache. The cache validator (last-modified time or entity tag) is
 what is used to communicate to the server the identity of the old
 instance.

5.2 Requesting the transmission of deltas

 In order to support the transmission of actual deltas, an extension
 to HTTP/1.1 needs to provide these features:

 1. A way to mark a request as conditional.

 2. A way to specify the old instance, to which the delta will be
 applied by the client.

 3. A way to indicate that the client is able to apply one or more
 specific forms of delta encoding.

 4. A way to mark a response as being delta-encoded in a particular
 format.

 The first two features are already provided by HTTP/1.1: the presence
 of a conditional request-header (such as "If-Modified-Since" or "If-
 None-Match") marks a request as conditional, and the value of that
 header uniquely specifies the old instance (ignoring the problem of
 last-modified timestamp granularity).

 We defer discussion of the fourth feature, until section 5.6.

 The third feature, a way for the client to indicate that it is able
 to apply deltas (aside from the trivial 0% and 100% deltas), can be
 accomplished by transmitting a list of acceptable delta-encoding
 formats in a request-header field; specifically, the "A-IM" header.
 The presence of this list in a conditional request indicates that the
 client is able to apply delta-encoded cache updates.

Mogul, et al. Standards Track [Page 14]

RFC 3229 Delta encoding in HTTP January 2002

 For example, a client might send this request:

 GET /foo.html HTTP/1.1
 Host: bar.example.net
 If-None-Match: "123xyz"
 A-IM: vcdiff, diffe, gzip

 The meaning of this request is that:

 - The client wants to obtain the current value of /foo.html.

 - It already has a cached response (instance) for that resource,
 whose entity tag is "123xyz".

 - It is willing to accept delta-encoded updates using either of
 two formats, "diffe" (i.e., output from the UNIX "diff -e"
 command), and "vcdiff". (Encoding algorithms and formats, such
 as "vcdiff", are described in section 6.)

 - It is willing to accept responses that have been compressed
 using "gzip," whether or not these are delta-encoded. (It
 might be useful to compress the output of "diff -e".) However,
 based on the mandatory ordering constraint specified in section
 10.5.3, if both delta encoding and compression are applied,
 then this "A-IM" request header specifies that compression
 should be done last.

 If, in this example, the server’s current entity tag for the resource
 is still "123xyz", then it should simply return a 304 (Not Modified)
 response, as would a traditional server.

 If the entity tag has changed, presumably but not necessarily because
 of a modification of the resource, the server could instead compute
 the delta between the instance whose entity tag was "123xyz" and the
 current instance.

 We defer discussion of what the server needs to store, in order to
 compute deltas, until section 7.

 We note that if a client indicates it is willing to accept deltas,
 but the server does not support this form of instance-manipulation,
 the server will simply ignore this aspect of the request. (HTTP
 always allows an implementation to ignore a header that is not
 required by a specification that the implementation complies with,
 and the specification of "A-IM" allows the server to ignore an
 instance-manipulation it does not understand.) So if a server either
 does not implement the A-IM header at all, or does not implement any

Mogul, et al. Standards Track [Page 15]

RFC 3229 Delta encoding in HTTP January 2002

 of the instance manipulations listed in the A-IM header, it acts as
 if the client had not requested a delta-encoded response: the server
 generates a status-200 response.

5.3 Choice of delta algorithm and format

 The server is not required to transmit a delta-encoded response. For
 example, the result might be larger than the current size of the
 resource. The server might not be able to compute a delta for this
 type of resource (e.g., a compressed binary format); the server might
 not have sufficient CPU cycles for the delta computation; the server
 might not support any of the delta formats supported by the client;
 or, the network bandwidth might be high enough that the delay
 involved in computing the delta is not worth the delay avoided by
 sending a smaller response.

 However, if the server does want to compute a delta, and the set of
 encodings it supports has more than one encoding in common with the
 set offered by the client, which encoding should it use? This is
 mostly at the option of the server, although the client can express
 preferences using "Quality Values" (or "qvalues") in the "A-IM"
 header. The HTTP/1.1 specification [10] describes qvalues in more
 detail. (Clients may prefer one delta encoding format over another
 that generates a smaller encoding, if the decoding costs for the
 first format are lower and the client is resource-constrained.)

 Server implementations have a number of possible approaches. For
 example, if CPU cycles are plentiful and network bandwidth is scarce,
 the server might compute each of the possible encodings and then send
 the smallest result. Or the server might use heuristics to choose an
 encoding format, based on things such as the content-type of the
 resource, the current size of the resource, and the expected amount
 of change between instances of the resource.

 Note that it might pay to cache the deltas internally to the server,
 if a resource is typically requested by several different delta-
 capable clients between modifications. In this case, the cost of
 computing a delta may be amortized over many responses, and so the
 server might use a more expensive computation.

5.4 Identification of delta-encoded responses

 A response using delta encoding must be identified as such. This is
 done using the "IM" response-header, specified in section 10.5.2.

 However, a simplistic application of this approach would cause
 serious problems if a delta-encoded response flows through an
 intermediate (proxy) cache that is not cognizant of the delta

Mogul, et al. Standards Track [Page 16]

RFC 3229 Delta encoding in HTTP January 2002

 mechanism. Because the Internet still includes a significant number
 of HTTP/1.0 caches, which might never be entirely replaced, and
 because the HTTP specifications insist that message recipients ignore
 any header field that they do not understand, a non-delta-capable
 proxy cache that receives a delta-encoded response might store that
 response, and might later return it to a non-delta-capable client
 that has made a request for the same resource. This naive client
 would believe that it has received a valid copy of the entire
 resource, with predictably unpleasant results.

 To solve this problem, we propose that delta-encoded responses
 (actually, all instance-manipulated responses) be identified as such
 using a new HTTP status code. For specificity in the discussion that
 follows, we will use the (currently unassigned) code of 226, with a
 reason phrase of "IM Used". (We see no benefit in spelling out the
 words "Instance Manipulation Used," since this requires the
 transmission of unnecessary bytes, and this Reason-phrase should not
 normally be seen by human users.) There is some precedent for this
 approach: the HTTP/1.1 specification introduces the 206 (Partial
 Content) status code, for the transmission of sub-ranges of a
 resource. Existing proxies apparently forward responses with unknown
 status codes, and do not attempt to cache them.

 An alternative to using a new status code would be to use the
 "Expires" header to prevent HTTP/1.0 caches from storing the
 response, then use "Cache-Control: max-age" (defined in HTTP/1.1) to
 allow more modern caches to store delta-encoded responses. This adds
 many bytes to the response headers, and so would reduce the
 effectiveness of delta encoding. It is also not entirely clear that
 this approach suppresses all caching by all HTTP/1.0 proxies.

 We were reluctant to define an additional status code as part of
 the support for delta encoding. However, we see no other
 efficient way to remain compatible with the deployed base of
 HTTP/1.0 cache implementations.

5.5 Guaranteeing cache safety

 Although we are not aware of any HTTP/1.1 proxy implementations that
 would attempt to cache a response with an unknown 2xx status code,
 the HTTP/1.1 specification does allow this behavior if the response
 carries an Expires or Cache-Control header field that explicitly
 allows caching. This would present a problem when a 226 (IM Used)
 response carries such headers.

Mogul, et al. Standards Track [Page 17]

RFC 3229 Delta encoding in HTTP January 2002

 The solution in that case is to exploit the Cache Control Extensions
 mechanism from the HTTP/1.1 specification. We define a new cache-
 directive, "im", which indicates that the "no-store" cache-directive
 may be ignored by implementations that conform to the specification
 for the IM and A-IM headers.

 For example, this response:

 HTTP/1.1 226 IM Used
 ETag: "489uhw"
 IM: vcdiff
 Date: Tue, 25 Nov 1997 18:30:05 GMT
 Cache-Control: no-store, im, max-age=30

 ...

 "MUST NOT" be stored by a cache that complies with the HTTP/1.1
 specification (which states that the max-age cache-directive "implies
 that the response is cacheable [...] unless some other, more
 restrictive cache directive is also present."). However, a cache
 that does comply with the specification for the im cache-directive
 (i.e., a cache that complies with the specification for the A-IM and
 IM header fields, and the 226 status code) ignores the no-store
 directive, and therefore sees the max-age directive as allowing
 caching.

 We are not entirely sure that all HTTP/1.1 caches obey the rule
 that the max-age directive is overridden by the no-store
 directive. If operational testing reveals this to be a problem,
 more elaborate solutions are possible.

 Warning to origin server implementors: it does not suffice to send

 Vary: If-None-Match, A-IM

 in status-226 responses. We have discovered at least one scenario
 where this does not prevent a proxy cache that does not implement IM
 and A-IM from incorrectly "validating" a cached 226 response.

5.6 Transmission of delta-encoded responses

 A delta-encoded response differs from a standard response in four
 ways:

 1. It carries a status code of 226 (IM Used).

 2. It carries an "IM" response-header field, indicating which
 delta encoding is used in this response.

Mogul, et al. Standards Track [Page 18]

RFC 3229 Delta encoding in HTTP January 2002

 3. Its message-body is a delta encoding of the current instance,
 rather than a full copy of the instance.

 4. It might carry several other new headers, as described later in
 this document.

 For example, a response to the request given in section 5.2 might
 look like:

 HTTP/1.1 226 IM Used
 ETag: "489uhw"
 IM: vcdiff
 Date: Tue, 25 Nov 1997 18:30:05 GMT

 ...

 (We do not show the actual contents of the response body, since this
 is a binary format.)

 Note: the Etag header in a 226 response with a delta encoding
 provides the entity tag of the current instance of the resource
 variant. It is not meaningful to associate an entity tag with the
 delta value, which is not an instance.

5.7 Examples of requests combining Range and delta encoding

 In the example used in section 5.2, the client sends:

 GET /foo.html HTTP/1.1
 Host: bar.example.net
 If-None-Match: "123xyz"
 A-IM: vcdiff, diffe, gzip

 and the server either responds with a 304 (Not Modified) response, or
 with the appropriate delta encoding.

 Here are a few more examples, to clarify how the client request
 should be interpreted.

 If the client sends

 GET /foo.html HTTP/1.1
 Host: bar.example.net
 If-None-Match: "123xyz"
 A-IM: vcdiff, diffe, gzip, range
 Range: bytes=0-99

Mogul, et al. Standards Track [Page 19]

RFC 3229 Delta encoding in HTTP January 2002

 then the meaning is the same as in the example above, except that
 after the delta encoding (and compression, if any) is computed, the
 server then returns only the first 100 bytes of the output of the
 delta encoding. (If it is shorter than 100 bytes, the entire delta
 encoding is returned.) Because the "range" token appears last in the
 "A-IM" header, this tells the origin server to apply any range
 selection after the other instance-manipulations.

 The interaction between the If-Range mechanism and delta encoding is
 somewhat complex. (If-Range means, informally, "if the entity is
 unchanged, send me the part(s) that I am missing; otherwise, send me
 the entire new entity.") Here is an example that should clarify the
 use of this combination.

 Suppose that the client wants to have the complete current instance
 of http://bar.example.net/foo.html. It already has a (complete)
 cache entry for this URI, with entity tag "A", so it issues this
 request:

 GET /foo.html HTTP/1.1
 host: bar.example.net
 If-None-Match: "A"
 A-IM: vcdiff

 Suppose that the server’s current instance has entity tag "B", and
 that the server also has retained a copy of the instance with entity
 tag "A". Then, the server could compute the difference between "B"
 and "A", and respond with:

 HTTP/1.1 226 IM Used
 Etag: "B"
 IM: vcdiff
 Date: Tue, 25 Nov 1997 18:30:05 GMT
 Content-Length: 1000

 ...

 but the network connection is terminated after the client has
 received exactly 900 bytes of the message body for the delta-encoded
 content.

 The client wants to retrieve the remaining 100 bytes of the delta
 encoding that was being sent in the interrupted response. It
 therefore should send:

Mogul, et al. Standards Track [Page 20]

RFC 3229 Delta encoding in HTTP January 2002

 GET /foo.html HTTP/1.1
 host: bar.example.net
 If-None-Match: "A"
 If-Range: "B"
 A-IM: vcdiff,range
 Range: bytes=900-

 This rather elaborate request has a well-defined meaning, which
 depends on the current entity tag Tcur of the instance when the
 server receives the request:

 Tcur = "A" (i.e., for some reason, the instance has reverted to
 the value already in the client’s cache). The server
 should return a 304 (Not Modified) response, as
 required by the HTTP/1.1 specification for "If-None-
 Match".

 Tcur = "B" (i.e., the instance has not changed again). The
 HTTP/1.1 specification for "If-None-Match", in this
 case, is that the header field is ignored (by a
 server that does not understand delta encoding).
 Therefore, this is equivalent to the client’s
 previous request, except that the Range selection is
 applied after the vcdiff instance manipulation (if
 both are to be applied). So the (delta-aware) server
 again computes the delta between the "A" instance and
 the "B" instance (or uses a cached computation of the
 delta), then applies the Range selection, and returns
 a 226 (IM Used) response, with an message-body
 containing bytes 900 to 999 of the result of the
 vcdiff encoding, with an "IM:vcdiff,range" response
 header.

 Tcur = "C" (i.e., the instance has changed again). In this
 case, the HTTP/1.1 specification for "If-None-Match"
 again means that this is equivalent to an
 unconditional request for the current instance. The
 specification for "If-Range" requires the server to
 return the entire current instance. However, a
 delta-aware server can construct the delta between
 the "A" instance described by the "If-None-Match"
 field and the current ("C") instance, and return a
 226 (IM Used) response, with an "IM:vcdiff" response
 header.

 If the client’s request had not included the "If-None-Match: "A""
 header field, the server could not have computed a delta, since it
 would not have known which entire instance was already available to

Mogul, et al. Standards Track [Page 21]

RFC 3229 Delta encoding in HTTP January 2002

 the client. If the request had not included the "If-Range: "B""
 header field, the server could not have distinguished between the
 latter two cases (Tcur = "B" or Tcur = "C") and would not have been
 able to apply the Range selection to the result of delta encoding.

 On the other hand, suppose that the client has a cache entry for the
 "A" instance of http://bar.example.net/foo.html, and it has already
 received the first 900 bytes of a new instance "B" (perhaps as the
 result of an aborted transfer). Now the client wants to receive the
 entire current instance, so it could send this request:

 GET /foo.html HTTP/1.1
 host: bar.example.net
 If-None-Match: "A"
 If-Range: "B"
 A-IM: range,vcdiff
 Range: bytes=900-

 In this example, as in the previous example, if Tcur = "A" then the
 server should send 304 (Not Modified), and if Tcur = "C", then the
 server should send the entire new instance, either as a 200 response
 or as a delta encoding against instance "A".

 However, if Tcur = "B", in this case the server should first select
 the specified range (bytes 900 through the end) from both instances
 "A" and "B", then compute the delta encoding between these ranges
 (using vcdiff), and then transmit the result using a 226 (IM Used)
 response with an "IM:range,vcdiff" response header.

6 Encoding algorithms and formats

 A number of delta encoding algorithms and formats have been described
 in the literature:

 diff -e The UNIX "diff" program is ubiquitously available,
 and is relatively fast for both encoding and decoding
 (decoding is actually done using the "ed" program).
 However, the size of the resulting deltas is
 relatively large. This algorithm can only be used on
 text-format files.

 diff -e | gzip Running the output of "diff" through a compression
 algorithm such as "gzip" [5] (or, perhaps better,
 "deflate" [7, 6]) yields a more compact encoding, but
 the costs of encoding and decoding are much higher
 than for "diff" by itself. This algorithm can only
 be used on text-format files.

Mogul, et al. Standards Track [Page 22]

RFC 3229 Delta encoding in HTTP January 2002

 vcdiff (vdelta) The algorithm that generates the "vcdiff" format [19,
 20] inherently compresses its output, and generally
 produces smaller results than the combination of
 "diff" and "gzip". The algorithm also runs much
 faster, and can be applied to binary-format input.
 The "vcdiff" format is based on previous work on an
 algorithm named "vdelta." (Note that the "vcdiff"
 format can be used either for delta encoding or as a
 compressed format, so two different instance-
 manipulation values would have to be registered in
 order to distinguish these two uses, should its use
 as a compressed format be adopted.) The most recent
 published study suggests that "vdelta" is the best
 overall delta algorithm [16].

 gdiff The gdiff format [14] was specified as a generic,
 algorithm-independent format for expressing deltas.
 Because it is more generic it is easy to implement,
 but it may not be the most compact encoding format.

 Our proposal does not recommend any specific algorithm or format, but
 rather encourages client and server implementors to choose the most
 appropriate one(s). However, to avoid the possibility of excessively
 long "A-IM" headers, we suggest that, after some period of
 experimentation, it might be reasonable to specify a "recommended"
 set of delta formats for general-purpose HTTP implementations.

 We suspect that it should be possible to devise a delta encoding
 algorithm appropriate for use on typical image encodings, such as GIF
 and JPEG. Although experiments with vdelta have not shown much
 potential [23], this may simply be because these experiments used
 vdelta directly on the already-compressed forms of these encodings.
 However, it might be necessary to devise a delta encoding algorithm
 that is aware of the two-dimensional nature of images. We have some
 expectation that this is possible, since MPEG compression relies on
 computing deltas between successive frames of a video stream.

7 Management of base instances

 If the time between modifications of a resource is less than the
 typical eviction time for responses in client caches, this means that
 the "old instance" indicated in a client’s conditional request might
 not refer to the most recent prior instance. This raises the
 question of how many old instances of a resource should be maintained
 by the server, if any. We call these old instances "base instances."

Mogul, et al. Standards Track [Page 23]

RFC 3229 Delta encoding in HTTP January 2002

 There are many possible options for server implementors. For
 example:

 - The server might not store any old instances, and so would
 never respond with a delta.

 - The server might only store the most recent prior instance;
 requests attempting to validate this instance could be answered
 with a delta, but requests attempting to validate older
 instances would be answered with a full copy of the resource.

 - The server might store all prior instances, allowing it to
 provide a delta response for any client request.

 - The server might store only a subset of the prior instances.
 The use of a Least Recently Used (LRU) algorithm to determine
 this kind of subset has proved effective in some similar
 circumstances, such as cache replacement.

 The server might not have to store prior instances explicitly. It
 might, instead, store just the deltas between specific base instances
 and subsequent instances (or the inverse deltas between base
 instances and prior instances). This approach might be integrated
 with a cache of computed deltas.

 None of these approaches necessarily requires additional protocol
 support. However, if a server administrator wants to store only a
 subset of the prior instances, but would like the server to be able
 to respond using deltas as often as possible, then the client needs
 some additional information. Otherwise, the client’s "If-None-Match"
 header might specify a base instance not stored at the server, even
 though an appropriate base instance is held in the client’s cache.

 We identify two additional protocol changes to help solve this
 problem.

7.1 Multiple entity tags in the If-None-Match header

 Although the examples we have given so far show only one entity tag
 in an "If-None-Match" header, the HTTP/1.1 specification allows the
 header to carry more than one entity-tag. This feature was included
 in HTTP/1.1 to support efficient caching of multiple variants of a
 resource, but it is not restricted to that use.

 Suppose that a client has kept more than one instance of a resource
 in its cache. That is, not only does it keep the most recent
 instance, but it also holds onto copies of one or more prior, invalid
 instances. (Alternatively, it might retain sufficient delta or

Mogul, et al. Standards Track [Page 24]

RFC 3229 Delta encoding in HTTP January 2002

 inverse-delta information to reconstruct older instances.) In this
 case, it could use its conditional request to tell the server about
 all of the instances it could apply a delta to. For example, the
 client might send:

 GET /foo.html HTTP/1.1
 host: bar.example.net
 If-None-Match: "123xyz", "337pey", "489uhw"
 A-IM: vcdiff

 to indicate that it has three instances of this resource in its
 cache. If the server is able to generate a delta from any of these
 prior instances, it can select the appropriate base instance, compute
 the delta, and return the result to the client.

 In this case, however, the server must also tell the client which
 base instance to use, and so we need to define a response header,
 named "Delta-Base", for this purpose. For example, the server might
 reply:

 HTTP/1.1 226 IM Used
 ETag: "1acl059"
 IM: vcdiff
 Delta-Base: "337pey"
 Date: Tue, 25 Nov 1997 18:30:05 GMT

 This response tells the client to apply the delta to the cached
 response with entity tag "337pey", and to associate the entity tag
 "1acl059" with the result.

 Of course, if the server has retained more than one of the prior
 instances identified by the client, this could complicate the problem
 of choosing the optimal delta to return, since now the server has a
 choice not only of the delta format, but also of the base instance to
 use.

7.2 Hints for managing the client cache

 Support for multiple entity tags in choosing the base instance
 implies that a client might benefit from storing multiple old
 instances of a resource in its cache. A client with finite space
 would not want to keep all old instances, so it must manage its cache
 for maximal effectiveness by saving those instances most likely to be
 useful for future deltas. Although this could be accomplished using
 information purely local to the client (e.g., an LRU algorithm),
 certain "hint" information from the server could improve the client’s
 ability to manage its cache. The use of hints for improving Web
 cache performance has been described previously [4, 22].

Mogul, et al. Standards Track [Page 25]

RFC 3229 Delta encoding in HTTP January 2002

 If the server intends to retain certain instances and not others, it
 can label the responses that transmit the retained instances. This
 would help the client manage its cache, since it would not have to
 retain all prior instances on the possibility that only some of them
 might be useful later. The label is a hint to the client, not a
 promise that the server will indefinitely retain an instance.

 We propose adding a new directive to the existing "Cache-Control"
 header for this purpose, named "retain". For example, in response to
 an unconditional request, the server might send:

 HTTP/1.1 200 OK
 ETag: "337pey"
 Date: Tue, 25 Nov 1997 18:30:05 GMT
 Cache-Control: retain

 to suggest that a delta-capable client should retain this instance.
 The "retain" directive could also appear in a delta response,
 referring to the current instance:

 HTTP/1.1 226 IM Used
 ETag: "1acl059"
 Date: Tue, 25 Nov 1997 18:30:05 GMT
 Cache-Control: retain
 IM: vcdiff
 Delta-Base: "337pey"

 The "retain" directive includes an optional timeout parameter, which
 the server can use if it expects to delete an old base instance at a
 particular time. For example,

 HTTP/1.1 200 OK
 ETag: "337pey"
 Date: Tue, 25 Nov 1997 18:30:05 GMT
 Cache-Control: retain=3600

 means that the server intends to retain this base instance for one
 hour.

 Another situation where a server can provide a hint to a client is
 where the server supports the delta mechanism in general, but does
 not intend to provide delta-encoded responses for a particular
 resource. By sending a "retain=0" directive, it indicates that the
 client should not waste request-header bytes attempting to obtain a
 delta-encoded response using this base instance (and, by implication,
 for this resource). It also indicates that the client ought not
 waste cache space on this instance after it has become stale. To

Mogul, et al. Standards Track [Page 26]

RFC 3229 Delta encoding in HTTP January 2002

 avoid wasting response-header bytes, a server ought not send
 "retain=0", except in reply to a request that attempts to obtain a
 delta-encoded response.

 Note that the "retain" directive is orthogonal to the "max-age"
 directive. The "max-age" directive indicates how long a cache
 entry remains fresh (i.e.,can be used without contacting the
 origin server for revalidation); the "retain" directive is of
 interest to a client AFTER the cache entry has become stale.

 In practice, the "Cache-Control" response-header field might already
 be present, so the cost (in bytes) of sending this directive might be
 smaller than these examples implies.

8 Deltas and intermediate caches

 Although we have designed the delta-encoded responses so that they
 will not be stored by naive proxy caches, if a proxy does understand
 the delta mechanism, it might be beneficial for it to participate in
 sending and receiving deltas.

 A proxy could participate in several independent ways:

 - In addition to forwarding a delta-encoded response, the proxy
 might store it, and then use it to reply to a subsequent
 request with a compatible "If-None-Match" field (i.e., one that
 is either a superset of the corresponding field of the request
 that first elicited the response, or one that includes the
 "Delta-Base" value in the cached response), and with a
 compatible "IM" response-header field (one that includes the
 actual delta-encoding format used in the response.) Of course,
 such uses are subject to all of the other HTTP rules concerning
 the validity of cache entries.

 - In addition to forwarding a delta-encoded response, the proxy
 might apply the delta to the appropriate entry in its own
 cache, which could then be used for later responses (even from
 non-delta-capable clients).

 - When the proxy receives a conditional request from a delta-
 capable client, and the proxy has a complete copy of an up-to-
 date ("fresh," in HTTP/1.1 terminology) response in its cache,
 it could generate a delta locally and return it to the
 requesting client.

 - When the proxy receives a request from a non-delta-capable
 client, it might convert this into a delta request before
 forwarding it to the server, and then (after applying a

Mogul, et al. Standards Track [Page 27]

RFC 3229 Delta encoding in HTTP January 2002

 resulting delta response to one of its own cache entries) it
 would return a full-body response to the client (or a response
 with status code 206 or 304, as appropriate).

 All of these optional techniques increase proxy software complexity,
 and might increase proxy storage or CPU requirements. However, if
 applied carefully, they should help to reduce the latencies seen by
 end users, and load on the network. Generally, CPU speed and disk
 costs are improving faster than network latencies, so we expect to
 see increasing value available from complex proxy implementations.

9 Digests for data integrity

 When a recipient reassembles a complete HTTP response from several
 individual messages, it might be necessary to check the integrity of
 the complete response. For example, the client’s cache might be
 corrupt, or the implementation of delta encoding (either at client or
 server) might have a bug.

 HTTP/1.1 includes mechanisms for ensuring the integrity of individual
 messages. A message may include a "Content-MD5" response header,
 which provides an MD5 message digest of the body of the message (but
 not the headers). The Digest Authentication mechanism [11] provides
 a similar message-digest function, except that it includes certain
 header fields. Neither of these mechanisms makes any provision for
 covering a set of data transmitted over several messages, as would be
 the case for the result of applying a delta-encoded response (or, for
 that matter, a Range response).

 Data integrity for reassembled messages requires the introduction of
 a new message header. Such a mechanism is proposed in a separate
 document [24]. One might still want to use the Digest Authentication
 mechanism, or something stronger, to protect delta messages against
 tampering.

10 Specification

 In this specification, the key words "MUST", "MUST NOT", "SHOULD",
 "SHOULD NOT", and "MAY" are to be interpreted as described in RFC
 2119 [3].

10.1 Protocol parameter specifications

 This specification defines a new HTTP parameter type, an instance-
 manipulation:

Mogul, et al. Standards Track [Page 28]

RFC 3229 Delta encoding in HTTP January 2002

 instance-manipulation = token [imparams]

 imparams = ";" imparam-name ["=" (token | quoted-string)]
 imparam-name = token

 Note that the imparam-name MUST NOT be "q", to avoid ambiguity with
 the use of qvalues (see [10]).

 The set of instance-manipulation values is initially:

 - vcdiff
 A delta using the "vcdiff" encoding format [19, 20].

 - diffe
 The output of the UNIX "diff -e" command [26].

 - gdiff
 The GDIFF encoding format [14].

 - gzip
 Same definition as the HTTP "gzip" content-coding.

 - deflate
 Same definition as the HTTP "deflate" content-coding.

 - range
 A token indicating that the result is partial content, as the
 result of a range selection.

 - identity
 A token used only in the A-IM header (not in the IM header), to
 indicate whether or not the identity instance-manipulation is
 acceptable.

 For convenience in the rest of this specification, we define a subset
 of instance-manipulation values as delta-coding values:

 delta-coding = "vcdiff" | "diffe" | "gdiff" | token

 Future instance-manipulation values might also be included in this
 list.

Mogul, et al. Standards Track [Page 29]

RFC 3229 Delta encoding in HTTP January 2002

10.2 IANA Considerations

 The Internet Assigned Numbers Authority (IANA) administers the name
 space for instance-manipulation values. Values and their meaning
 must be documented in an RFC or other peer-reviewed, permanent, and
 readily available reference, in sufficient detail so that
 interoperability between independent implementations is possible.
 Subject to these constraints, name assignments are First Come, First
 Served (see RFC 2434 [25]).

 This specification also inserts a new value in the IANA HTTP Status
 Code Registry (see RFC 2817 [18]). See section 10.4.1 for the
 specification of this code.

10.3 Basic requirements for delta-encoded responses

 A server MAY send a delta-encoded response if all of these conditions
 are true:

 1. The server would be able to send a 200 (OK) response for the
 request.

 2. The client’s request includes an A-IM header field listing at
 least one delta-coding.

 3. The client’s request includes an If-None-Match header field
 listing at least one valid entity tag for an instance of the
 Request-URI (a "base instance").

 A delta-encoded response:

 - MUST carry a status code of 226 (IM Used).

 - MUST include an IM header field listing, at least, the delta-
 coding employed.

 - MAY include a Delta-Base header field listing the entity tag of
 the base-instance.

10.4 Status code specifications

 The following new status code is defined for HTTP.

Mogul, et al. Standards Track [Page 30]

RFC 3229 Delta encoding in HTTP January 2002

10.4.1 226 IM Used

 The server has fulfilled a GET request for the resource, and the
 response is a representation of the result of one or more instance-
 manipulations applied to the current instance. The actual current
 instance might not be available except by combining this response
 with other previous or future responses, as appropriate for the
 specific instance-manipulation(s). If so, the headers of the
 resulting instance are the result of combining the headers from the
 status-226 response and the other instances, following the rules in
 section 13.5.3 of the HTTP/1.1 specification [10].

 The request MUST have included an A-IM header field listing at least
 one instance-manipulation. The response MUST include an Etag header
 field giving the entity tag of the current instance.

 A response received with a status code of 226 MAY be stored by a
 cache and used in reply to a subsequent request, subject to the HTTP
 expiration mechanism and any Cache-Control headers, and to the
 requirements in section 10.6.

 A response received with a status code of 226 MAY be used by a cache,
 in conjunction with a cache entry for the base instance, to create a
 cache entry for the current instance.

10.5 Header specifications

 The following headers are defined, for use as entity-headers. (Due
 to the terminological confusion discussed in section 3, some entity-
 headers are more properly associated with instances than with
 entities.)

10.5.1 Delta-Base

 The Delta-Base entity-header field is used in a delta-encoded
 response to specify the entity tag of the base instance.

 Delta-Base = "Delta-Base" ":" entity-tag

 A Delta-Base header field MUST be included in a response with an IM
 header that includes a delta-coding, if the request included more
 than one entity tag in its If-None-Match header field.

 Any response with an IM header that includes a delta-coding MAY
 include a Delta-Base header.

Mogul, et al. Standards Track [Page 31]

RFC 3229 Delta encoding in HTTP January 2002

 We are not aware of other cases where a delta-encoded response
 MUST or SHOULD include a Delta-Base header, but we have not done
 an exhaustive or formal analysis. Implementors might be wise to
 include a Delta-Base header in every delta-encoded response.

 A cache or proxy that receives a delta-encoded response that lacks a
 Delta-base header MAY add a Delta-Base header whose value is the
 entity tag given in the If-None-Match field of the request (but only
 if that field lists exactly one entity tag).

10.5.2 IM

 The IM response-header field is used to indicate the instance-
 manipulations, if any, that have been applied to the instance
 represented by the response. Typical instance manipulations include
 delta encoding and compression.

 IM = "IM" ":" #(instance-manipulation)

 Instance-manipulations are defined in section 10.1.

 As a special case, if the instance-manipulations include both range
 selection and at least one other non-identity instance-manipulation,
 the IM header field MUST be used to indicate the order in which all
 of these instance-manipulations, including range selection, were
 applied. If the IM header lists the "range" instance-manipulation,
 the response MUST include either a Content-Range header or a
 multipart/byteranges Content-Type in which each part contains a
 Content-Range header. (See section 10.10 for specific discussion of
 combining delta encoding and multipart/byteranges.)

 Responses that include an IM header MUST carry a response status code
 of 226 (IM Used), as specified in section 10.4.1.

 The server SHOULD omit the IM header if it would list only the
 "range" instance-manipulation. Such responses would normally be sent
 with response status code 206 (Partial Content), as specified by
 HTTP/1.1 [10].

 Examples of the use of the IM header include:

 IM: vcdiff

 This example indicates that the entity-body is a delta encoding of
 the instance, using the vcdiff encoding.

 IM: diffe, deflate, range

Mogul, et al. Standards Track [Page 32]

RFC 3229 Delta encoding in HTTP January 2002

 This example indicates that the instance has first been delta-encoded
 using the diffe encoding, then the result of that has been compressed
 using deflate, and finally one or more ranges of that compressed
 encoding have been selected.

 IM: range, vcdiff

 This example indicates that one or more ranges of the instance have
 been selected, and the result has then been delta encoded against
 identical ranges of a previous base instance.

 A cache using a response received in reply to one request to reply to
 a subsequent request MUST follow the rules in section 10.6 if the
 cached response includes an IM header field.

10.5.3 A-IM

 The A-IM request-header field is similar to Accept, but restricts the
 instance-manipulations (section 10.1) that are acceptable in the
 response. As specified in section 10.5.2, a response may be the
 result of applying multiple instance-manipulations.

 A-IM = "A-IM" ":" #(instance-manipulation
 [";" "q" "=" qvalue])

 When an A-IM request-header field includes one or more delta-coding
 values, the request MUST contain an If-None-Match header field,
 listing one or more entity tags from prior responses for the
 request-URI.

 A server tests whether an instance-manipulation (among the ones it is
 capable of employing) is acceptable, according to a given A-IM header
 field, using these rules:

 1. If the instance-manipulation is listed in the A-IM field, then
 it is acceptable, unless it is accompanied by a qvalue of 0.
 (As defined in section 3.9 of the HTTP/1.1 specification [10],
 a qvalue of 0 means "not acceptable.") A server MUST NOT use a
 non-identity instance-manipulation for a response unless the
 instance-manipulation is listed in an A-IM header in the
 request.

 2. If multiple but incompatible instance-manipulations are
 acceptable, then the acceptable instance-manipulation with the
 highest non-zero qvalue is preferred.

Mogul, et al. Standards Track [Page 33]

RFC 3229 Delta encoding in HTTP January 2002

 3. The "identity" instance-manipulation is always acceptable,
 unless specifically refused because the A-IM field includes
 "identity;q=0".

 If an A-IM field is present in a request, and if the server cannot
 send a response which is acceptable according to the A-IM header,
 then the server SHOULD send an error response with the 406 (Not
 Acceptable) status code.

 If a response uses more than one instance-manipulation, the
 instance-manipulations MUST be applied in the order in which they
 appear in the A-IM request-header field.

 The server’s choice about whether to apply an instance-manipulation
 SHOULD be independent of its choice to apply any subsequent two-input
 instance-manipulations to the response. (Two-input instance-
 manipulations include delta-codings, because they take two different
 values as input. Compression and "range" instance-manipulations take
 only one input. Other instance-manipulations may be defined in the
 future.)

 Note: the intent of this requirement is to prevent the server from
 generating a delta-encoded response that the client can only
 decode by first applying an instance-manipulation encoding to its
 cached base instance. A server implementor might wish to consider
 what the client would logically have in its cache, when deciding
 which instance-manipulations to apply prior to a delta-coding.

 Examples:

 A-IM: vcdiff, gdiff

 This example means that the client will accept a delta encoding in
 either vcdiff or gdiff format.

 A-IM: vcdiff, gdiff;q=0.3

 This example means that the client will accept a delta encoding in
 either vcdiff or gdiff format, but prefers the vcdiff format.

 A-IM: vcdiff, diffe, gzip

 This example means that the client will accept a delta encoding in
 either vcdiff or diffe format, and will accept the output of the
 delta encoding compressed with gzip. It also means that the client
 will accept a gzip compression of the instance, without any delta
 encoding, because A-IM provides no way to insist that gzip be used
 only if diffe is used.

Mogul, et al. Standards Track [Page 34]

RFC 3229 Delta encoding in HTTP January 2002

 It is left to the server implementor to choose useful combinations of
 acceptable instance-manipulations (for example, following diffe by
 gzip is useful, but following vcdiff by gzip probably is not useful).

10.6 Caching rules for 226 responses

 When a client or proxy receives a 226 (IM Used) response, it MAY use
 this response to create a cache entry in three ways:

 1. It MAY decode all of the instance-manipulations to recover the
 original instance, and store that instance in the cache. In
 this case, the recovered instance is stored as a status-200
 response, and MUST be used in accordance with the normal HTTP
 caching rules.

 2. It MAY decode all of the instance-manipulations except for
 range selection(s), and store the result in the cache. In this
 case, the result is stored as a status-206 response, and MUST
 be used in accordance with the normal HTTP caching rules for
 Partial Content.

 3. It MAY store the status-226 (IM Used) response as a cache
 entry.

 A status-226 cache entry MUST NOT be used in response to a subsequent
 request under any of these conditions (a cache that never stores
 status-226 responses may ignore these tests):

 1. If any of the instance-manipulation values from the IM header
 field in the cached response do not appear in the subsequent
 request’s A-IM header field. The comparison between the
 headers is done using an exact match on each instance-
 manipulation value including any associated imparams values
 (see section 10.1).

 2. If the order of instance-manipulation values appearing in the
 cached IM header field differs from the order of that set of
 instance-manipulations in the A-IM header field of the
 subsequent request.

 3. If the cache implementation is not aware of, or is not at least
 conditionally compliant with, the specification of any of the
 instance-manipulation values in the cached IM header field.

Mogul, et al. Standards Track [Page 35]

RFC 3229 Delta encoding in HTTP January 2002

 Note: This rule allows for extending the set of instance-
 manipulations without causing deployed cache implementations to
 commit errors. The specification of new instance-manipulations
 may include additional caching rules to improve cache-hit rates
 in cognizant implementations.

 4. If any of the instance-manipulation values in the cached IM
 header field is a delta-coding, and the cache entry includes a
 Delta-Base header field, and that Delta-Base entity tag is not
 one of the entity tags listed in an If-None-Match header field
 of the subsequent request.

 5. If any of the instance-manipulation values in the cached IM
 header field is a delta-coding, the cache entry does not
 include a Delta-Base header field, and the If-None-Match header
 field of the request that led to that cache entry does not
 match the If-None-Match header field of the subsequent request.

 If the IM header field of the cached response includes the "range"
 instance-manipulation, then a status-226 cache entry MUST NOT be used
 in response to a subsequent request if the cached response is
 inconsistent with the Range header field value(s) in the request, as
 would be the case for a cached 206 (Partial Content) response.

 Note: we know of no existing, published formal specification for
 deciding if a cached status-206 response is consistent with a
 subsequent request. We believe that either of these conditions is
 sufficient:

 1. The ranges specified in the headers of the request that led
 to the cached response are the same as specified in the
 headers of the subsequent request.

 2. The ranges specified in the cached response are the same as
 specified in the headers of the subsequent request.

 Further analysis might be necessary.

10.7 Rules for deltas in the presence of content-codings

 The use of delta encoding with content-encoded instances adds some
 slight complexity. When a client (perhaps a proxy) has received a
 delta encoded response, either or both of that new response and a
 cached previous response may have non-identity content-codings. We
 specify rules for the server and client, to prevent situations where
 the client is unable to make sense of the server’s response.

Mogul, et al. Standards Track [Page 36]

RFC 3229 Delta encoding in HTTP January 2002

10.7.1 Rules for generating deltas in the presence of content-codings

 When a server generates a delta-encoded response, the list of
 content-codings the server uses (i.e., the value of the response’s
 Content-Encoding header field) SHOULD be a prefix of the list of
 content-codings the server would have used had it not generated a
 delta encoding.

 This requirement allows a client receiving a delta-encoded response
 to apply the delta to a cached base instance without having to apply
 any content-codings during the process (although the client might, of
 course, be required to decode some content-codings).

10.7.2 Rules for applying deltas in the presence of content-codings

 When a client receives a delta response with one or more non-identity
 content codings:

 1. If both the new (delta) response and the cached response
 (instance) have exactly the same set of content-codings, the
 client applies the delta response to the cached response
 without removing the content-codings from either response.

 2. If the new (delta) response and the cached response have a
 different set of content-codings, before applying the delta the
 client decodes one or more content-codings from the cached
 response, until the result has the same set of content-codings
 as the delta response.

 3. If a proxy or cache is forwarding the result of applying the
 delta response to a cached base instance response, or later
 forwards this result from a cache entry, the forwarded response
 MUST carry the same Content-Encoding header field as the new
 (delta) response (and so it must be content-encoded as
 indicated by that header field).

 The intent of these rules (and in particular, rule #3) is that the
 results are always consistent with the rule that the entity tag is
 associated with the result of the content-coding, and that any
 recipient after the application of the delta-coding receives exactly
 the same response it would have received as a status-200 response
 from the origin server (without any delta-coding).

Mogul, et al. Standards Track [Page 37]

RFC 3229 Delta encoding in HTTP January 2002

10.7.3 Examples for using A-IM, IM, and content-codings

 Suppose a client, with an empty cache, sends this request:

 GET /foo.html HTTP/1.1
 Host: example.com
 Accept-encoding: gzip

 and the origin server responds with:

 HTTP/1.1 200 OK
 Date: Wed, 24 Dec 1997 14:00:00 GMT
 Etag: "abc"
 Content-encoding: gzip

 We will use the notation URI;entity-tag to denote specific instances,
 so this response would cause the client to store in its cache the
 entity GZIP(foo.html;"abc").

 Then suppose that the client, a minute later, issues this conditional
 request:

 GET /foo.html HTTP/1.1
 Host: example.com
 If-none-match: "abc"
 Accept-encoding: gzip
 A-IM: vcdiff

 If the server is able to generate a delta-encoded response, it might
 choose one of two alternatives. The first is to compute the delta
 from the compressed instances (although this might not yield the most
 efficient coding):

 HTTP/1.1 226 IM Used
 Date: Wed, 24 Dec 1997 14:01:00 GMT
 Etag: "def"
 Delta-base: "abc"
 Content-encoding: gzip
 IM: vcdiff

 The body of this response would be the result of
 VCDIFF_DELTA(GZIP(foo.html;"abc"), GZIP(foo.html;"def")). The client
 would store as a new cache entry the entity GZIP(foo.html;"def"),
 after recovering that entity by applying the delta to its previous
 cache entry.

 The server’s other alternative would be to compute the delta from the
 uncompressed values, returning:

Mogul, et al. Standards Track [Page 38]

RFC 3229 Delta encoding in HTTP January 2002

 HTTP/1.1 226 IM Used
 Date: Wed, 24 Dec 1997 14:01:00 GMT
 Delta-base: "abc"
 Etag: "ghi"
 IM: vcdiff

 The body of this response would be the result of
 VCDIFF_DELTA(GUNZIP(GZIP(foo.html;"abc")), foo.html;"ghi"), or more
 simply VCDIFF_DELTA(foo.html;"abc", foo.html;"ghi"). The client
 would store as a new cache entry the entity foo.html;"ghi" (i.e.,
 without any content-coding), after recovering that entity by applying
 the delta to its previous cache entry.

 Note that the new value of foo.html (at 14:01:00 GMT) without the
 gzip content-coding must have a different entity tag from the
 compressed instance of the same underlying file.

 The client’s second request might have been:

 GET /foo.html HTTP/1.1
 Host: example.com
 If-none-match: "abc"
 Accept-encoding: gzip
 A-IM: diffe, gzip

 The client lists gzip in both the Accept-Encoding and A-IM headers,
 because if the server does not support delta encoding, the client
 would at least like to achieve the benefits of compression (as a
 content-coding). However, if the server does support the diffe
 delta-coding, the client would like the result to be compressed, and
 this must be done as an instance-manipulation.

 A server that does support diffe might reply:

 HTTP/1.1 226 IM Used
 Date: Wed, 24 Dec 1997 14:01:00 GMT
 Delta-base: "abc"
 Etag: "ghi"
 IM: diffe, gzip

 The body of this response would be the result of
 GZIP(DIFFE_DELTA(GUNZIP(GZIP(foo.html;"abc")), foo.html;"ghi")), or
 more simply GZIP(DIFFE_DELTA(foo.html;"abc", foo.html;"ghi")).
 Because the gzip compression is, in this case, an instance-
 manipulation and not a content-coding, it is not retained when the
 reassembled response is stored or forwarded, so the client would
 store as a new cache entry the entity foo.html;"ghi" (without any
 content-coding or compression).

Mogul, et al. Standards Track [Page 39]

RFC 3229 Delta encoding in HTTP January 2002

10.8 New Cache-Control directives

 We define two new cache-directives (see section 14.9 of RFC 2616 [10]
 for the specification of cache-directive).

10.8.1 Retain directive

 The set of cache-response-directive values is augmented to include
 the retain directive.

 cache-response-directive = ...
 | "retain" ["=" delta-seconds]

 A retain directive is always a "hint" from a server to a client; it
 never specifies a mandatory action for the recipient.

 The presence of a retain directive indicates that a delta-capable
 client ought to retain the instance in the response in its cache,
 space permitting, and ought to use the corresponding entity tag in a
 future request for a delta-encoded response. I.e., the server is
 likely to provide delta-encoded responses using the corresponding
 instance as a base instance. By implication, if a client has
 retrieved and cached several instances of a resource, some of which
 are marked with "retain" and some not, then there is no point in
 caching the instances not marked with "retain".

 If the retain directive includes a delta-seconds value, then the
 server is likely to stop using the corresponding instance as a base
 instance after the specified number of seconds. A client ought not
 use the corresponding entity tag in a future request for a delta-
 encoded response after that interval ends. The interval is measured
 from the time that the response is generated, so a client ought to
 include the response’s Age in its calculations.

 If the retain directive includes a delta-seconds value of zero, a
 client SHOULD NOT use the corresponding entity tag in a future
 request for a delta-encoded response.

 Note: We recommend that server implementors consider the bandwidth
 implications of sending the "retain=0" directive to clients or
 proxies that might not have the ability to make use of it.

10.8.2 IM directive

 The set of cache-response-directive values is augmented to include
 the im directive.

Mogul, et al. Standards Track [Page 40]

RFC 3229 Delta encoding in HTTP January 2002

 cache-response-directive = ...
 | "im"

 A cache that complies with the specification for the IM header, the
 A-IM header, and the 226 response-status code SHOULD ignore a no-
 store cache-directive if an im directive is present in the same
 response. All other implementations MUST ignore the im directive
 (i.e., MUST observe a no-store directive, if present).

10.9 Use of compression with delta encoding

 The application of data compression to the diffe and gdiff delta
 codings has been shown to greatly reduce the size of the resulting
 message bodies, in many cases. (The vcdiff coding, on the other
 hand, is inherently compressed and does not benefit from further
 compression.) Therefore, it is strongly recommended that
 implementations that support the diffe and/or gdiff delta codings
 also support the gzip and/or deflate compression codings. (The
 deflate coding provides a more compact result.) However, this is not
 a requirement for the use of delta encoding, primarily because the
 CPU-time costs associated with compression and decompression may be
 excessive in some environments.

 A client that supports both delta encoding and compression as
 instance-manipulations signals this by, for example

 A-IM: diffe, deflate

 The ordering rule stated in section 10.5.3 requires, if the server
 uses both instance-manipulations in the response, that compression be
 applied to the result of the delta encoding, rather than vice versa.
 I.e., the response in this case would include

 IM: diffe, deflate

 Note that a client might accept compression either as a content-
 coding or as an instance-manipulation. For example:

 Accept-Encoding: gzip
 A-IM: gzip, gdiff

 In this example, the server may apply the gzip compression, either as
 a content-coding or as an instance-manipulation, before delta
 encoding. Remember that the entity tag is assigned after content-
 coding but before instance-manipulation, so this choice does affect
 the semantics of delta encoding.

Mogul, et al. Standards Track [Page 41]

RFC 3229 Delta encoding in HTTP January 2002

10.10 Delta encoding and multipart/byteranges

 A client may request multiple, non-contiguous byte ranges in a single
 request. The server’s response uses the "multipart/byteranges" media
 type (section 19.2 of [10]) to convey multiple ranges in a response.
 If a multipart/byteranges response is delta encoded (i.e, uses a
 delta-coding as an instance-manipulation), the delta-related headers
 are associated with the entire response, not with the individual
 parts. (This is because there is only one base instance and one
 current instance involved.) A delta-encoded response with multiple
 ranges MUST use the same delta-coding for all of the ranges.

 If a server chooses to use a delta encoding for a
 multipart/byteranges response, it MUST generate a response in
 accordance with the following rules.

 When a multipart/byteranges response uses a delta-coding prior to a
 range selection, the A-IM and IM header fields list the delta-coding
 before the "range" literal. (Recall that this is the approach taken
 to obtain a partial response after a premature termination of a
 message transmission.) The server firsts generates a sequence of
 bytes representing the difference (delta) between the base instance
 and the current instance, then selects the specified ranges of bytes,
 and transmits each such range in a part of the multipart/byteranges
 media type.

 When a multipart/byteranges response uses a delta-coding after a
 range selection, the A-IM and IM header fields list the delta-coding
 after the "range" literal. (Recall that this is the approach taken
 to obtain an updated version just of selected sections of an
 instance.) The server first selects the specified ranges from the
 current instance, and also selects the same specified ranges from the
 base instance. (Some of these selected ranges might be the empty
 sequence, if the instance is not long enough.) The server then
 generates the individual differences (deltas) between the pairs of
 ranges, and transmits each such difference in a part of the
 multipart/byteranges media type.

11 Quantifying the protocol overhead

 The proposed protocol changes increase the size of the HTTP message
 headers slightly. In the simplest case, a conditional request (i.e.,
 one for a URI for which the client already has a cache entry) would
 include one more header, e.g.:

 A-IM:vcdiff

Mogul, et al. Standards Track [Page 42]

RFC 3229 Delta encoding in HTTP January 2002

 This is about 13 extra bytes. A recent study [23] reports mean
 request sizes from two different traces of 281 and 306 bytes, so the
 net increase in request size would be between 4% and 5%.

 Because a client must have an existing cache entry to use as a base
 for a delta-encoded response, it would never send "A-IM: vcdiff" (or
 listing other delta encoding formats) for its unconditional requests.
 The same study showed that at least 46% of the requests in lengthy
 traces were for URLs not seen previously in the trace; this means
 that no more than about half of typical client requests could be
 conditional (and the actual fraction is likely to be smaller, given
 the finite size of real caches).

 The study also showed that 64% of the responses in a lengthy trace
 were for image content-types (GIF and JPEG). As noted in section 6,
 we do not currently know of a delta-encoding format suitable for such
 image types. Unless a client did support such a delta-encoding
 format, it would presumably not ask for a delta when making a
 conditional request for image content-types.

 Taken together, these factors suggest that the mean increase in
 request header size would be much less than 5%, and probably below
 1%.

 Delta-encoded responses carry slightly longer headers. In the
 simplest case, a response carries one more header, e.g.:

 IM:vcdiff

 This is about 11 bytes. Other headers (such as "Delta-Base") might
 also be included. However, none of these extra headers would be
 included except in cases where a delta encoding is actually employed,
 and the sender of the response can avoid sending a delta encoding if
 this results in a net increase in response size. Thus, a delta-
 encoded response should never be larger than a regular response for
 the same request.

 Simulations suggest that, when delta encoding pays off at all, it
 saves several thousand bytes [23]. Thus, adding a few dozen bytes to
 the response headers should almost never obviate the savings in the
 message-body size.

 Finally, the use of the "retain" Cache-Control directive might cause
 some additional overhead. Some server heuristics might be successful
 in limiting the use of these headers to situations where they would
 probably optimize future responses. Neither of these headers is
 necessary for the simpler uses of delta encoding.

Mogul, et al. Standards Track [Page 43]

RFC 3229 Delta encoding in HTTP January 2002

12 Security Considerations

 We are not aware of any aspects of the basic delta encoding mechanism
 that affect the existing security considerations for the HTTP/1.1
 protocol.

13 Acknowledgements

 Phong Vo has provided a great deal of guidance in the choice of delta
 encoding algorithms and formats. Issac Goldstand and Mike Dahlin
 provided a number of useful comments on the specification. Dave
 Kristol suggested many textual corrections.

14 Intellectual Property Rights

 The IETF has been notified of intellectual property rights claimed in
 regard to some or all of the specification contained in this
 document. For more information consult the online list of claimed
 rights, at <http://www.ietf.org/ipr.html>.

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF’s procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP 11. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat.

15 References

 1. Gaurav Banga, Fred Douglis, and Michael Rabinovich. Optimistic
 Deltas for WWW Latency Reduction. Proc. 1997 USENIX Technical
 Conference, Anaheim, CA, January, 1997, pp. 289-303.

 2. Berners-Lee, T., Fielding, R. and H. Frystyk, "Hypertext Transfer
 Protocol -- HTTP/1.0", RFC 1945, May 1996.

 3. Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

Mogul, et al. Standards Track [Page 44]

RFC 3229 Delta encoding in HTTP January 2002

 4. Edith Cohen, Balachander Krishnamurthy, and Jennifer Rexford.
 Improving End-to-End Performance of the Web Using Server Volumes
 and Proxy Filters. Proc. SIGCOMM ’98, September, 1998, pp. 241-
 253.

 5. Deutsch, P., "GZIP file format specification version 4.3", RFC
 1952, May 1996.

 6. Deutsch, P., "DEFLATE Compressed Data Format Specification
 version 1.3", RFC 1951, May 1996.

 7. Deutsch, P. and J-L. Gailly, "ZLIB Compressed Data Format
 Specification version 3.3", RFC 1950, May 1996.

 8. Fred Douglis, Anja Feldmann, Balachander Krishnamurthy, and
 Jeffrey Mogul. Rate of Change and Other Metrics: a Live Study
 of the World Wide Web. Proc. Symposium on Internet Technologies
 and Systems, USENIX, Monterey, CA, December, 1997, pp. 147-158.

 9. Fielding, R., Gettys, J., Mogul, J., Nielsen, H. and T. Berners-
 Lee, "Hypertext Transfer Protocol -- HTTP/1.1", RFC 2068, January
 1997.

 10. Fielding, R., Gettys, J., Mogul, J., Nielsen, H., Masinter, L.,
 Leach, P. and T. Berners-Lee, "Hypertext Transfer Protocol --
 HTTP/1.1", RFC 2616, June 1999.

 11. Franks, J., Hallam-Baker, P., Hostetler, J., Leach, P., Luotonen,
 A., Luotonen, L. and L. Stewart, "HTTP Authentication: Basic and
 Digest Access Authnetication", RFC 2617, June 1999.

 12. Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message Bodies",
 RFC 2045, November 1996.

 13. Arthur van Hoff, John Giannandrea, Mark Hapner, Steve Carter, and
 Milo Medin. The HTTP Distribution and Replication Protocol.
 Technical Report NOTE-DRP, World Wide Web Consortium, August,
 1997.

 14. Arthur van Hoff and Jonathan Payne. Generic Diff Format
 Specification. Technical Report NOTE-GDIFF, World Wide Web
 Consortium, August, 1997.

Mogul, et al. Standards Track [Page 45]

RFC 3229 Delta encoding in HTTP January 2002

 15. Barron C. Housel and David B. Lindquist. WebExpress: A System
 for Optimizing Web Browsing in a Wireless Environment. Proc. 2nd
 Annual Intl. Conf. on Mobile Computing and Networking, ACM, Rye,
 New York, November, 1996, pp. 108-116.

 16. James J. Hunt, Kiem-Phong Vo, and Walter F. Tichy. An Empirical
 Study of Delta Algorithms. IEEE Soft. Config. and Maint.
 Workshop, 1996.

 17. Jacobson, V., "Compressing TCP/IP Headers for Low-Speed Serial
 Links", RFC 1144, February 1990.

 18. Khare, R. and S. Lawrence, "Upgrading to TLS Within HTTP/1.1",
 RFC 2817, May 2000.

 19. David G. Korn and Kiem-Phong Vo. A Generic Differencing and
 Compression Data Format. Technical Report HA1630000-021899-02TM,
 AT&T Labs - Research, February, 1999.

 20. Korn, D. and K. Vo, "The VCDIFF Generic Differencing and
 Compression Data Format", Work in Progress.

 21. Merriam-Webster. Webster’s Seventh New Collegiate Dictionary.
 G. & C. Merriam Co., Springfield, MA, 1963.

 22. Jeffrey C. Mogul. Hinted caching in the Web. Proc. Seventh ACM
 SIGOPS European Workshop, Connemara, Ireland, September, 1996,
 pp. 103-108.

 23. Jeffrey C. Mogul, Fred Douglis, Anja Feldmann, and Balachander
 Krishnamurthy. Potential benefits of delta encoding and data
 compression for HTTP. Research Report 97/4, DECWRL, July, 1997.

 24. Mogul, J. and A. Van Hoff, "Instance Digests in HTTP", RFC 3230,
 January 2002.

 25. Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA
 Considerations Section in RFCs", BCP 26, RFC 2434, October 1998.

 26. The Open Group. The Single UNIX Specification, Version 2 - 6 Vol
 Set for UNIX 98. Document number T912, The Open Group, February,
 1997.

Mogul, et al. Standards Track [Page 46]

RFC 3229 Delta encoding in HTTP January 2002

 27. W. Tichy. "RCS - A System For Version Control". Software -
 Practice and Experience 15, 7 (July 1985), 637-654.

 28. Andrew Tridgell and Paul Mackerras. The rsync algorithm.
 Technical Report TR-CS-96-05, Department of Computer Science,
 Australian National University, June, 1996.

 29. Stephen Williams. Personal communication.
 http://ei.cs.vt.edu/˜williams/DIFF/prelim.html.

 30. Stephen Williams, Marc Abrams, Charles R. Standridge, Ghaleb
 Abdulla, and Edward A. Fox. Removal Policies in Network Caches
 for World-Wide Web Documents. Proc. SIGCOMM ’96, Stanford, CA,
 August, 1996, pp. 293-305.

16 Authors’ addresses

 Jeffrey C. Mogul
 Western Research Laboratory
 Compaq Computer Corporation
 250 University Avenue
 Palo Alto, California, 94305, U.S.A.

 Phone: 1 650 617 3304 (email preferred)
 EMail: JeffMogul@acm.org

 Balachander Krishnamurthy
 AT&T Labs - Research
 180 Park Ave, Room D-229
 Florham Park, NJ 07932-0971, U.S.A.

 EMail: bala@research.att.com

 Fred Douglis
 AT&T Labs - Research
 180 Park Ave, Room B-137
 Florham Park, NJ 07932-0971, U.S.A.

 Phone: 1 973 360-8775
 EMail: douglis@research.att.com

 Anja Feldmann
 University of Saarbruecken, Germany,
 Computer Science Department
 Im Stadtwald, Geb. 36.1, Zimmer 310
 D-66123 Saarbruecken, Germany

 EMail: anja@cs.uni-sb.de

Mogul, et al. Standards Track [Page 47]

RFC 3229 Delta encoding in HTTP January 2002

 Yaron Y. Goland

 Email: yaron@goland.org

 Arthur van Hoff
 Marimba, Inc.
 440 Clyde Avenue
 Mountain View, CA 94043, U.S.A.

 Phone: 1 650 930 5283
 EMail: avh@marimba.com

 Daniel M. Hellerstein
 Economic Research Service, USDA
 1909 Franwall Ave, Wheaton MD 20902

 Phone: 1 202 694-5613 or 1 301 649-4728
 EMail: danielh@crosslink.net or webmaster@srehttp.org

Mogul, et al. Standards Track [Page 48]

RFC 3229 Delta encoding in HTTP January 2002

17 Full Copyright Statement

 Copyright (C) The Internet Society (2002). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Mogul, et al. Standards Track [Page 49]

