The Uniqueness of Unique Identifiers
Status of this Memo
This memo provides information for the Internet community. It does not specify an Internet standard. Distribution of this memo is unlimited.

Abstract
This RFC provides information that may be useful when selecting a method to use for assigning unique identifiers to people.

1. The Issue

Computer systems require a way to identify the people associated with them. These identifiers have been called "user names" or "account names." The identifers are typically short, alphanumeric strings. In general, these identifiers must be unique.

The uniqueness is usually achieved in one of three ways:

1) The identifiers are assigned in a unique manner without using information associated with the individual. Example identifiers are:

$$
\begin{aligned}
& \operatorname{ax} 54 t v \\
& \operatorname{cs} 00034
\end{aligned}
$$

This method was often used by large timesharing systems. While it achieved the uniqueness property, there was no way of guessing the identifier without knowing it through other means.
2) The identifiers are assigned in a unique manner where the bulk of the identifier is algorithmically derived from the individual's name. Example identifers are:

Craig.A.Finseth-1
Finseth1
caf-1
fins0001
3) The identifiers are in general not assigned in a unique manner: the identifier is algorithmically derived from the individual's name
and duplicates are handled in an ad-hoc manner. Example identifiers are:

```
Craig.Finseth
caf
```

Now that we have widespread electronic mail, an important feature of an identifier system is the ability to predict the identifier based on other information associated with the individual. This other information is typically the person's name.

Methods two and three make such predictions possible, especially if you have one example mapping from a person's name to the identifier. Method two relies on using some or all of the name and algorithmically varying it to ensure uniqueness (for example, by appending an integer). Method three relies on using some or all of the name and selects an alternate identifier in the case of a duplication.

For both methods, it is important to minimize the need for making the adjustments required to ensure uniqueness (i.e., an integer that is not 1 or an alternate identifier). The probability that an adjustment will be required depends on the format of the identifer and the size of the organization.
2. Identifier Formats

There are a number of popular identifier formats. This section will list some of them and supply both typical and maximum values for the number of possible identifiers. A "typical" value is the number that you are likely to run into in real life. A "maximum" value is the largest number of possible (without getting extreme about it) values. All ranges are expressed as a number of bits.

2.1 Initials

There are three popular formats based on initials: those with one, two, or three letters. (The number of people with more than three initials is assumed to be small.) Values:

format	typical	maximum
I	4	5
II	8	10
III	12	15

You can also think of these as first, middle, and last initials:

I		4	5
F L	8	10	
F M L	12	15	

2.2 Names

Again, there are three popular formats based on using names: those with the first name, last name, and both first and last names. Values:

format	typical	maximum
First	8	14
Last	9	13
First Last	17	27

2.3 Combinations

I have seen these combinations in use ("F" is first initial, "M" is middle initial, and "L" is last initial):

format	typical	maximum
F Last	13	18
F M Last	17	23
First L	12	19
First M Last	21	32

2.4 Complete List

Here are all possible combinations of nothing, initial, and full name for first, middle, and last. The number of Middle names is assumed to be the same as the number of First names. Values:

format	typical	maximum
- -	0	0
_ _ L	4	5
_ _ Last	9	13
_ M	4	5
_ M L	5	10
_ M Last	13	18
_ Middle _	8	14
Middle L	12	19

- Middle Last	17	27
F - -	4	5
F - L	5	10
F - Last	13	18
F M -	5	10
F M L	12	15
F M Last	17	23
F Middle -	12	19
F Middle L	16	24
F Middle Last	21	32
First - -	12	14
First - Last	17	27
First - Last	12	19
First M -	16	24
First M L	21	32
First M Last	16	28
First Middle -	20	33
First Middle L	26	40

3. Probabilities of Duplicates

As can be seen, the information content in these identifiers in no case exceeds 40 bits and the typical information content never exceeds 26 bits. The content of most of them is in the 8 to 20 bit range. Duplicates are thus not only possible but likely.

The method used to compute the probability of duplicates is the same as that of the well-known "birthday" problem. For a universe of N items, the probability of duplicates in X members is expressed by:

A program to compute this function for selected values of N is given in the appendix, as is its complete output.

The "1\%" column is the number of items (people) before an organization of that (universe) size has a 1\% chance of a duplicate. Similarly for 2\%, 5\%, 10\%, and 20\%.

bits	universe	1%	2%	5%	10%	20%
6	64	2	3	4	5	6
7	128	3	3	5	6	8
8	256	3	4	6	8	12
9	512	4	6	8	11	16
10	1,024	6	7	11	16	22
11	2,048	7	10	15	22	31
12	4,096	10	14	21	30	44
13	8,192	14	19	30	43	61
14	16,384	19	27	42	60	86
15	32,768	27	37	59	84	122
16	65,536	37	52	83	118	172
17	131,072	52	74	117	167	243
18	262,144	74	104	165	236	343
19	524,288	104	147	233	333	485
20	$1,048,576$	146	207	329	471	685
21	$2,097,152$	206	292	465	666	968
22	$4,194,304$	291	413	657	941	1369
23	$8,388,608$	412	583	929	1330	1936
24	$16,777,216$	582	824	1313	1881	2737
25	$33,554,432$	822	1165	1856	2660	3871
26	$67,108,864$	1162	1648	2625	3761	5474
27	$134,217,728$	1644	2330	3712	5319	7740
28	$268,435,456$	2324	3294	5249	7522	10946
29	$536,870,912$	3286	4659	7422	10637	15480
30	$1,073,741,824$	4647	6588	10496	15043	21891
31	$2,147,483,648$	6571	9316	14844	21273	30959

For example, assume an organization were to select the "First Last" form. This form has 17 bits (typical) and 27 bits (maximum) of information. The relevant line is:
$\begin{array}{lllllll}17 & 131,072 & 52 & 74 & 117 & 167 & 243\end{array}$
For an organization with 100 people, the probability of a duplicate would be between 2% and 5% (probably around 4%). If the organization had 1,000 people, the probability of a duplicate would be much greater than 20\%.

Appendix: Reuse of Identifiers and Privacy Issues

```
Let's say that an organization were to select the format:
```

First.M.Last-\#
as my own organization has. Is the -\# required, or can one simply do:

```
    Craig.A.Finseth
    for the first one and
    Craig.A.Finseth-2
    (or -1) for the second? The answer is "no," although for non-obvious
reasons.
    Assume that the organization has made this selection and a third
    party wants to send e-mail to Craig.A.Finseth. Because of the
    Electronic Communications Privacy Act of 1987, an organization must
    treat electronic mail with care. In this case, there is no way for
    the third party user to reliably know that sending to Craig.A.Finseth
    is (may be) the wrong party. On the other hand, if the -# suffix is
    always present and attempts to send mail to the non-suffix form are
    rejected, the third party user will realize that they must have the
    suffix in order to have a unique identifier.
    For similar reasons, identifiers in this form should not be re-used
    in the life of the mail system.
Appendix: Perl Program to Compute Probabilities
#!/usr/local/bin/perl
for $bits (6..31) {
            &Compute($bits);
    }
exit(0);
# ---------------------------------------------------------------------
sub Compute {
    $bits = $_[0];
    $num = 1 << $bits;
    $cnt = $num;
    print "bits $bitsnumber $num:0;
    for ($prob = 1; $prob > 0.99; ) {
                $prob *= $cnt / $num;
                    $cnt--;
                    }
        print "", $num - $cnt, "$prob0;
        for (; $prob > 0.98; ) {
```

```
        $prob *= $cnt / $num;
            $cnt--;
            }
    print "", $num - $cnt, "$prob0;
    for (; $prob > 0.95; ) {
        $prob *= $cnt / $num;
        $cnt--;
        }
    print "", $num - $cnt, "$prob0;
    for (; $prob > 0.90; ) {
        $prob *= $cnt / $num;
        $cnt--;
        }
    print "", $num - $cnt, "$prob0;
    for (; $prob > 0.80; ) {
        $prob *= $cnt / $num;
        $cnt--;
        }
    print "", $num - $cnt, "$prob0;
    print "0;
    }
Appendix: Perl Program Output
    bits 6 number 64:
    2 0.984375
    3 0.95361328125
    4 0.90891265869140625
    5 0.85210561752319335938
    6 0.78553486615419387817
bits 7 number 128:
    3 0.9766845703125
    3 0.9766845703125
    5 0.92398747801780700684
    6 0.88789421715773642063
    8 0.79999355674331695809
bits 8 number 256:
    3 0.988311767578125
    4 0.97672998905181884766
    6 0.94268989971169503406
    8 0.89542306910786462204
    12 0.76969425214152431547
```

9	9 number	512:
	4	0.98832316696643829346
	6	0.97102570187075798458
	8	0.94652632751096643648
	11	0.89748056780293572476
	16	0.78916761796439427457
bits	10 number	1024:
	6	0.98543241551841020964
	7	0.97965839745873206645
	11	0.94753115178840541244
	16	0.88888866335604777014
	22	0.79677613655632184564
bits	11 number	2048:
	7	0.98978773152834598203
	10	0.97823367137821537476
	15	0.94990722378677450166
	22	0.89298119682681720288
	31	0.79597589885472519455
bits	12 number	4096:
	10	0.98906539062491305447
	14	0.97800426773009718762
	21	0.94994111694430838355
	30	0.89901365764115603874
	44	0.79312138620093930452
bits	13 number	8192:
	14	0.98894703242829806733
	19	0.97932692503837115439
	30	0.94822407309193512681
	43	0.89545741661906652631
	61	0.7993625840767998314
bits	14 number	16384:
	19	0.98961337517641645434
	27	0.97879319536756481668
	42	0.94876352395820107155
	60	0.89748107890372830209
	86	0.79973683158771624591
bits	15 number	32768:
	27	0.98934263776790121181
	37	0.97987304880641035165
	59	0.94909471808051404373
	84	0.89899774209805793923
	122	0.79809378598190949816

ts 16 number 655		
	37	0.98988724065590050216
	52	0.97996496661944154649
	83	0.94937874420413270737
	118	0.89996948010355670711
	172	0.79884228150816105618
bits 1	17 number	131072:
	52	0.98993311138884398925
	74	0.97960010416289267088
	117	0.94952974978505377823
	167	0.89960828942716541956
	243	0.79894309171178368167
bits	18 number	262144:
	74	0.98974844864797828503
	104	0.97977315557223210174
	165	0.94968621078621640041
	236	0.8995926348279144058
	343	0.7994422793765953994
bits	19 number	524288:
	104	0.98983557888923057178
	147	0.97973841652874515962
	233	0.94974719445364064185
	333	0.89991342619657743729
	485	0.79936749144148444568
bits	20 number	1048576:
	146	0.98995567500195758015
	207	0.97987072919607220989
	329	0.94983990872655321702
	471	0.89980857451706741656
	685	0.79974215234216872172
bits	21 number	2097152:
	206	0.98998177463778547214
	292	0.97994400939715686771
	465	0.94985589918092261374
	666	0.89978055267663470396
	968	0.79994886751736571373
bits	22 number	4194304:
	291	0.98999013137747737812
	413	0.97991951242142538714
	657	0.94991674892578203959
	941	0.89991652739633254399
	1369	0.79989205747440361716

bits 23 number 8388608:		
	412	0.98995762604049764022
	583	0.97997846530691334888
	929	0.94991024716640248826
	1330	0.89999961063320443877
	1936	0.79987028265451087794
bits 2	24 number	16777216:
	582	0.98997307486745211857
	824	0.97999203469417239809
	1313	0.94995516684099989835
	1881	0.89997049960675035152
	2737	0.79996700222056416063
bits	25 number	33554432 :
	822	0.98999408609360783906
	1165	0.9799956928177964155
	1856	0.9499899669674316538
	2660	0.8999664414095410736
	3871	0.79992328289672998132
bits	26 number	67108864:
	1162	0.98999884535478044345
	1648	0.9799801637652703068
	2625	0.94997437525354821997
	3761	0.89999748465616635773
	5474	0.79993922903192515861
bits	27 number	134217728:
	1644	0.9899880636014986024
	2330	0.97998730103356856969
	3712	0.94997727934463771504
	5319	0.89998552434244594167
	7740	0.79999591580103557309
bits	28 number	268435456 :
	2324	0.98999458855588851058
	3294	0.97999828329325222587
	5249	0.94998397932368705554
	7522	0.89998576049206902017
	10946	0.79999058777500076101
bits	29 number	536870912:
	3286	0.98999717306002099626
	4659	0.97999160965267329004
	7422	0.94999720388831232487
	10637	0.89999506567702891591
	15480	0.7999860979665908145

```
    bits 30 number 1073741824:
        4647 0.98999674474047760775
        6588 0.97999531736215383937
        10496 0.94999806770951356061
        15043 0.89999250738244507275
        21891 0.79999995570982085358
    bits 31 number 2147483648:
        6571 0.98999869761078929109
        9316 0.97999801528523688976
        14844 0.94999403283519279206
        21273 0.89999983631135749285
        30959 0.79999272222201334159
References
    Bruce Lansky (1984). The Best Baby Name Book. Deephaven, MN:
    Meadowbrook. ISBN 0-671-54463-2.
    Lareina Rule (1988). Name Your Baby. Bantam. ISBN 0-553-27145-8.
Security Considerations
    Security issues are not discussed in this memo.
Author's Address
    Craig A. Finseth
    Networking Services
    Computer and Information Services
    University of Minnesota
    130 Lind Hall
    207 Church St. SE
    Minneapolis, MN 55455-0134
    EMail: Craig.A.Finseth-1@umn.edu or
        fin@unet.umn.edu
    Phone: +1 612 624 3375
    Fax: +1 612 626 1002
```

