
Network Working Group R. Braden
Request for Comments: 1337 ISI
 May 1992

 TIME-WAIT Assassination Hazards in TCP

Status of This Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard. Distribution of this memo is
 unlimited.

Abstract

 This note describes some theoretically-possible failure modes for TCP
 connections and discusses possible remedies. In particular, one very
 simple fix is identified.

1. INTRODUCTION

 Experiments to validate the recently-proposed TCP extensions [RFC-
 1323] have led to the discovery of a new class of TCP failures, which
 have been dubbed the "TIME-WAIT Assassination hazards". This note
 describes these hazards, gives examples, and discusses possible
 prevention measures.

 The failures in question all result from old duplicate segments. In
 brief, the TCP mechanisms to protect against old duplicate segments
 are [RFC-793]:

 (1) The 3-way handshake rejects old duplicate initial <SYN>
 segments, avoiding the hazard of replaying a connection.

 (2) Sequence numbers are used to reject old duplicate data and ACK
 segments from the current incarnation of a given connection
 (defined by a particular host and port pair). Sequence numbers
 are also used to reject old duplicate <SYN,ACK> segments.

 For very high-speed connections, Jacobson’s PAWS ("Protect
 Against Wrapped Sequences") mechanism [RFC-1323] effectively
 extends the sequence numbers so wrap-around will not introduce a
 hazard within the same incarnation.

 (3) There are two mechanisms to avoid hazards due to old duplicate
 segments from an earlier instance of the same connection; see
 the Appendix to [RFC-1185] for details.

Braden [Page 1]

RFC 1337 TCP TIME-WAIT Hazards May 1992

 For "short and slow" connections [RFC-1185], the clock-driven
 ISN (initial sequence number) selection prevents the overlap of
 the sequence spaces of the old and new incarnations [RFC-793].
 (The algorithm used by Berkeley BSD TCP for stepping ISN
 complicates the analysis slightly but does not change the
 conclusions.)

 (4) TIME-WAIT state removes the hazard of old duplicates for "fast"
 or "long" connections, in which clock-driven ISN selection is
 unable to prevent overlap of the old and new sequence spaces.
 The TIME-WAIT delay allows all old duplicate segments time
 enough to die in the Internet before the connection is reopened.

 (5) After a system crash, the Quiet Time at system startup allows
 old duplicates to disappear before any connections are opened.

 Our new observation is that (4) is unreliable: TIME-WAIT state can be
 prematurely terminated ("assassinated") by an old duplicate data or
 ACK segment from the current or an earlier incarnation of the same
 connection. We refer to this as "TIME-WAIT Assassination" (TWA).

 Figure 1 shows an example of TIME-WAIT assassination. Segments 1-5
 are copied exactly from Figure 13 of RFC-793, showing a normal close
 handshake. Packets 5.1, 5.2, and 5.3 are an extension to this
 sequence, illustrating TWA. Here 5.1 is *any* old segment that is
 unacceptable to TCP A. It might be unacceptable because of its
 sequence number or because of an old PAWS timestamp. In either case,
 TCP A sends an ACK segment 5.2 for its current SND.NXT and RCV.NXT.
 Since it has no state for this connection, TCP B reflects this as RST
 segment 5.3, which assassinates the TIME-WAIT state at A!

Braden [Page 2]

RFC 1337 TCP TIME-WAIT Hazards May 1992

 TCP A TCP B

 1. ESTABLISHED ESTABLISHED

 (Close)
 2. FIN-WAIT-1 --> <SEQ=100><ACK=300><CTL=FIN,ACK> --> CLOSE-WAIT

 3. FIN-WAIT-2 <-- <SEQ=300><ACK=101><CTL=ACK> <-- CLOSE-WAIT

 (Close)
 4. TIME-WAIT <-- <SEQ=300><ACK=101><CTL=FIN,ACK> <-- LAST-ACK

 5. TIME-WAIT --> <SEQ=101><ACK=301><CTL=ACK> --> CLOSED

 -

 5.1. TIME-WAIT <-- <SEQ=255><ACK=33> ... old duplicate

 5.2 TIME-WAIT --> <SEQ=101><ACK=301><CTL=ACK> --> ????

 5.3 CLOSED <-- <SEQ=301><CTL=RST> <-- ????
 (prematurely)

 Figure 1. TWA Example

 Note that TWA is not at all an unlikely event if there are any
 duplicate segments that may be delayed in the network. Furthermore,
 TWA cannot be prevented by PAWS timestamps; the event may happen
 within the same tick of the timestamp clock. TWA is a consequence of
 TCP’s half-open connection discovery mechanism (see pp 33-34 of
 [RFC-793]), which is designed to clean up after a system crash.

2. The TWA Hazards

 2.1 Introduction

 If the connection is immediately reopened after a TWA event, the
 new incarnation will be exposed to old duplicate segments (except
 for the initial <SYN> segment, which is handled by the 3-way
 handshake). There are three possible hazards that result:

 H1. Old duplicate data may be accepted erroneously.

 H2. The new connection may be de-synchronized, with the two ends
 in permanent disagreement on the state. Following the spec
 of RFC-793, this desynchronization results in an infinite ACK

Braden [Page 3]

RFC 1337 TCP TIME-WAIT Hazards May 1992

 loop. (It might be reasonable to change this aspect of RFC-
 793 and kill the connection instead.)

 This hazard results from acknowledging something that was not
 sent. This may result from an old duplicate ACK or as a
 side-effect of hazard H1.

 H3. The new connection may die.

 A duplicate segment (data or ACK) arriving in SYN-SENT state
 may kill the new connection after it has apparently opened
 successfully.

 Each of these hazards requires that the seqence space of the new
 connection overlap to some extent with the sequence space of the
 previous incarnation. As noted above, this is only possible for
 "fast" or "long" connections. Since these hazards all require the
 coincidence of an old duplicate falling into a particular range of
 new sequence numbers, they are much less probable than TWA itself.

 TWA and the three hazards H1, H2, and H3 have been demonstrated on
 a stock Sun OS 4.1.1 TCP running in an simulated environment that
 massively duplicates segments. This environment is far more
 hazardous than most real TCP’s must cope with, and the conditions
 were carefully tuned to create the necessary conditions for the
 failures. However, these demonstrations are in effect an
 existence proof for the hazards.

 We now present example scenarios for each of these hazards. Each
 scenario is assumed to follow immediately after a TWA event
 terminated the previous incarnation of the same connection.

 2.2 HAZARD H1: Acceptance of erroneous old duplicate data.

 Without the protection of the TIME-WAIT delay, it is possible for
 erroneous old duplicate data from the earlier incarnation to be
 accepted. Figure 2 shows precisely how this might happen.

Braden [Page 4]

RFC 1337 TCP TIME-WAIT Hazards May 1992

 TCP A TCP B

 1. ESTABL. --> <SEQ=400><ACK=101><DATA=100><CTL=ACK> --> ESTABL.

 2. ESTABL. <-- <SEQ=101><ACK=500><CTL=ACK> <-- ESTABL.

 3. (old dupl)...<SEQ=560><ACK=101><DATA=80><CTL=ACK> --> ESTABL.

 4. ESTABL. <-- <SEQ=101><ACK=500><CTL=ACK> <-- ESTABL.

 5. ESTABL. --> <SEQ=500><ACK=101><DATA=100><CTL=ACK> --> ESTABL.

 6. ... <SEQ=101><ACK=640><CTL=ACK> <-- ESTABL.

 -

 7a. ESTABL. --> <SEQ=600><ACK=101><DATA=100><CTL=ACK> --> ESTABL.

 8a. ESTABL. <-- <SEQ=101><ACK=640><CTL=ACK> ...

 9a. ESTABL. --> <SEQ=700><ACK=101><DATA=100><CTL=ACK> --> ESTABL.

 Figure 2: Accepting Erroneous Data

 The connection has already been successfully reopened after the
 assumed TWA event. Segment 1 is a normal data segment and segment
 2 is the corresponding ACK segment. Old duplicate data segment 3
 from the earlier incarnation happens to fall within the current
 receive window, resulting in a duplicate ACK segment #4. The
 erroneous data is queued and "lurks" in the TCP reassembly queue
 until data segment 5 overlaps it. At that point, either 80 or 40
 bytes of erroneous data is delivered to the user B; the choice
 depends upon the particulars of the reassembly algorithm, which
 may accept the first or the last duplicate data.

 As a result, B sends segment 6, an ACK for sequence = 640, which
 is 40 beyond any data sent by A. Assume for the present that this
 ACK arrives at A *after* A has sent segment 7a, the next full data
 segment. In that case, the ACK segment 8a acknowledges data that
 has been sent, and the error goes undetected. Another possible
 continuation after segment 6 leads to hazard H3, shown below.

 2.3 HAZARD H2: De-synchronized Connection

 This hazard may result either as a side effect of H1 or directly
 from an old duplicate ACK that happens to be acceptable but
 acknowledges something that has not been sent.

Braden [Page 5]

RFC 1337 TCP TIME-WAIT Hazards May 1992

 Referring to Figure 2 above, suppose that the ACK generated by the
 old duplicate data segment arrived before the next data segment
 had been sent. The result is an infinite ACK loop, as shown by
 the following alternate continuation of Figure 2.

 -
 7b. ESTABL. <-- <SEQ=101><ACK=640><CTL=ACK> ...
 (ACK something not yet
 sent => send ACK)

 8b. ESTABL. --> <SEQ=600><ACK101><CTL=ACK> --> ESTABL.
 (Below window =>
 send ACK)

 9b. ESTABL. <-- <SEQ=101><ACK=640><CTL=ACK> <-- ESTABL.

 (etc.!)

 Figure 3: Infinite ACK loop

 2.4 HAZARD H3: Connection Failure

 An old duplicate ACK segment may lead to an apparent refusal of
 TCP A’s next connection attempt, as illustrated in Figure 4. Here
 <W=...> indicates the TCP window field SEG.WIND.*

 TCP A TCP B

 1. CLOSED LISTEN

 2. SYN-SENT --> <SEQ=100><CTL=SYN> --> SYN-RCVD

 3. ... <SEQ=400><ACK=101><CTL=SYN,ACK><W=800> <-- SYN-RCVD

 4. SYN-SENT <-- <SEQ=300><ACK=123><CTL=ACK> ... (old duplicate)

 5. SYN-SENT --> <SEQ=123><CTL=RST> --> LISTEN

 6. ESTABLISHED <-- <SEQ=400><ACK=101><CTL=SYN,ACK><W=900> ...

 7. ESTABLISHED --> <SEQ=101><ACK=401><CTL=ACK> --> LISTEN

 8. CLOSED <-- <SEQ=401><CTL=RST> <-- LISTEN

 Figure 4: Connection Failure from Old Duplicate

Braden [Page 6]

RFC 1337 TCP TIME-WAIT Hazards May 1992

 The key to the failure in Figure 4 is that the RST segment 5 is
 acceptable to TCP B in SYN-RECEIVED state, because the sequence
 space of the earlier connection that produced this old duplicate
 overlaps the new connection space. Thus, <SEQ=123> in segment #5
 falls within TCP B’s receive window [101,900). In experiments,
 this failure mode was very easy to demonstrate. (Kurt Matthys has
 pointed out that this scenario is time-dependent: if TCP A should
 timeout and retransmit the initial SYN after segment 5 arrives and
 before segment 6, then the open will complete successfully.)

3. Fixes for TWA Hazards

 We discuss three possible fixes to TCP to avoid these hazards.

 (F1) Ignore RST segments in TIME-WAIT state.

 If the 2 minute MSL is enforced, this fix avoids all three
 hazards.

 This is the simplest fix. One could also argue that it is
 formally the correct thing to do; since allowing time for old
 duplicate segments to die is one of TIME-WAIT state’s functions,
 the state should not be truncated by a RST segment.

 (F2) Use PAWS to avoid the hazards.

 Suppose that the TCP ignores RST segments in TIME-WAIT state,
 but only long enough to guarantee that the timestamp clocks on
 both ends have ticked. Then the PAWS mechanism [RFC-1323] will
 prevent old duplicate data segments from interfering with the
 new incarnation, eliminating hazard H1. For reasons explained
 below, however, it may not eliminate all old duplicate ACK
 segments, so hazards H2 and H3 will still exist.

 In the language of the TCP Extensions RFC [RFC-1323]:

 When processing a RST bit in TIME-WAIT state:

 If (Snd.TS.OK is off) or (Time.in.TW.state() >= W)
 then enter the CLOSED state, delete the TCB,
 drop the RST segment, and return.

 else simply drop the RST segment and return.

 Here "Time.in.TW.state()" is a function returning the elapsed
 time since TIME-WAIT state was entered, and W is a constant that
 is at least twice the longest possible period for timestamp
 clocks, i.e., W = 2 secs [RFC-1323].

Braden [Page 7]

RFC 1337 TCP TIME-WAIT Hazards May 1992

 This assumes that the timestamp clock at each end continues to
 advance at a constant rate whether or not there are any open
 connections. We do not have to consider what happens across a
 system crash (e.g., the timestamp clock may jump randomly),
 because of the assumed Quiet Time at system startup.

 Once this change is in place, the initial timestamps that occur
 on the SYN and {SYN,ACK} segments reopening the connection will
 be larger than any timestamp on a segment from earlier
 incarnations. As a result, the PAWS mechanism operating in the
 new connection incarnation will avoid the H1 hazard, ie.
 acceptance of old duplicate data.

 The effectiveness of fix (F2) in preventing acceptance of old
 duplicate data segments, i.e., hazard H1, has been demonstrated
 in the Sun OS TCP mentioned earlier. Unfortunately, these tests
 revealed a somewhat surprising fact: old duplicate ACKs from
 the earlier incarnation can still slip past PAWS, so that (F2)
 will not prevent failures H2 or H3. What happens is that TIME-
 WAIT state effectively regenerates the timestamp of an old
 duplicate ACK. That is, when an old duplicate arrives in TIME-
 WAIT state, an extended TCP will send out its own ACK with a
 timestamp option containing its CURRENT timestamp clock value.
 If this happens immediately before the TWA mechanism kills
 TIME-WAIT state, the result will be a "new old duplicate"
 segment with a current timestamp that may pass the PAWS test on
 the reopened connection.

 Whether H2 and H3 are critical depends upon how often they
 happen and what assumptions the applications make about TCP
 semantics. In the case of the H3 hazard, merely trying the open
 again is likely to succeed. Furthermore, many production TCPs
 have (despite the advice of the researchers who developed TCP)
 incorporated a "keep-alive" mechanism, which may kill
 connections unnecessarily. The frequency of occurrence of H2
 and H3 may well be much lower than keep-alive failures or
 transient internet routing failures.

 (F3) Use 64-bit Sequence Numbers

 O’Malley and Peterson [RFC-1264] have suggested expansion of the
 TCP sequence space to 64 bits as an alternative to PAWS for
 avoiding the hazard of wrapped sequence numbers within the same
 incarnation. It is worthwhile to inquire whether 64-bit
 sequence numbers could be used to avoid the TWA hazards as well.

 Using 64 bit sequence numbers would not prevent TWA - the early
 termination of TIME-WAIT state. However, it appears that a

Braden [Page 8]

RFC 1337 TCP TIME-WAIT Hazards May 1992

 combination of 64-bit sequence numbers with an appropriate
 modification of the TCP parameters could defeat all of the TWA
 hazards H1, H2, and H3. The basis for this is explained in an
 appendix to this memo. In summary, it could be arranged that
 the same sequence space would be reused only after a very long
 period of time, so every connection would be "slow" and "short".

4. Conclusions

 Of the three fixes described in the previous section, fix (F1),
 ignoring RST segments in TIME-WAIT state, seems like the best short-
 term solution. It is certainly the simplest. It would be very
 desirable to do an extended test of this change in a production
 environment, to ensure there is no unexpected bad effect of ignoring
 RSTs in TIME-WAIT state.

 Fix (F2) is more complex and is at best a partial fix. (F3), using
 64-bit sequence numbers, would be a significant change in the
 protocol, and its implications need to be thoroughly understood.
 (F3) may turn out to be a long-term fix for the hazards discussed in
 this note.

APPENDIX: Using 64-bit Sequence Numbers

 This appendix provides a justification of our statement that 64-bit
 sequence numbers could prevent the TWA hazards.

 The theoretical ISN calculation used by TCP is:

 ISN = (R*T) mod 2**n.

 where T is the real time in seconds (from an arbitrary origin, fixed
 when the system is started), R is a constant, currently 250 KBps, and
 n = 32 is the size of the sequence number field.

 The limitations of current TCP are established by n, R, and the
 maximum segment lifetime MSL = 4 minutes. The shortest time Twrap to
 wrap the sequence space is:

 Twrap = (2**n)/r

 where r is the maximum transfer rate. To avoid old duplicate
 segments in the same connection, we require that Twrap > MSL (in
 practice, we need Twrap >> MSL).

Braden [Page 9]

RFC 1337 TCP TIME-WAIT Hazards May 1992

 The clock-driven ISN numbers wrap in time TwrapISN:

 TwrapISN = (2**n)/R

 For current TCP, TwrapISN = 4.55 hours.

 The cases for old duplicates from previous connections can be divided
 into four regions along two dimensions:

 * Slow vs. fast connections, corresponding to r < R or r >= R.

 * Short vs. long connections, corresponding to duration E <
 TwrapISN or E >= TwrapISN.

 On short slow connections, the clock-driven ISN selection rejects old
 duplicates. For all other cases, the TIME-WAIT delay of 2*MSL is
 required so old duplicates can expire before they infect a new
 incarnation. This is discussed in detail in the Appendix to [RFC-
 1185].

 With this background, we can consider the effect of increasing n to
 64. We would like to increase both R and TwrapISN far enough that
 all connections will be short and slow, i.e., so that the clock-
 driven ISN selection will reject all old duplicates. Put another
 way, we want to every connection to have a unique chunk of the
 seqence space. For this purpose, we need R larger than the maximum
 foreseeable rate r, and TwrapISN greater than the longest foreseeable
 connection duration E.

 In fact, this appears feasible with n = 64 bits. Suppose that we use
 R = 2**33 Bps; this is approximately 8 gigabytes per second, a
 reasonable upper limit on throughput of a single TCP connection.
 Then TwrapISN = 68 years, a reasonable upper limit on TCP connection
 duration. Note that this particular choice of R corresponds to
 incrementing the ISN by 2**32 every 0.5 seconds, as would happen with
 the Berkeley BSD implementation of TCP. Then the low-order 32 bits
 of a 64-bit ISN would always be exactly zero.

 REFERENCES

 [RFC-793] Postel, J., "Transmission Control Protocol", RFC-793,
 USC/Information Sciences Institute, September 1981.

 [RFC-1185] Jacobson, V., Braden, R., and Zhang, L., "TCP
 Extension for High-Speed Paths", RFC-1185, Lawrence Berkeley Labs,
 USC/Information Sciences Institute, and Xerox Palo Alto Research
 Center, October 1990.

Braden [Page 10]

RFC 1337 TCP TIME-WAIT Hazards May 1992

 [RFC-1263] O’Malley, S. and L. Peterson, "TCP Extensions
 Considered Harmful", RFC-1263, University of Arizona, October
 1991.

 [RFC-1323] Jacobson, V., Braden, R. and D. Borman "TCP Extensions
 for High Performance", RFC-1323, Lawrence Berkeley Labs,
 USC/Information Sciences Institute, and Cray Research, May 1992.

Security Considerations

 Security issues are not discussed in this memo.

Author’s Address:

 Bob Braden
 University of Southern California
 Information Sciences Institute
 4676 Admiralty Way
 Marina del Rey, CA 90292

 Phone: (213) 822-1511
 EMail: Braden@ISI.EDU

Braden [Page 11]

