
Network Working Group V. Jacobson
Request for Comments: 1323 LBL
Obsoletes: RFC 1072, RFC 1185 R. Braden
 ISI
 D. Borman
 Cray Research
 May 1992

 TCP Extensions for High Performance

Status of This Memo

 This RFC specifies an IAB standards track protocol for the Internet
 community, and requests discussion and suggestions for improvements.
 Please refer to the current edition of the "IAB Official Protocol
 Standards" for the standardization state and status of this protocol.
 Distribution of this memo is unlimited.

Abstract

 This memo presents a set of TCP extensions to improve performance
 over large bandwidth*delay product paths and to provide reliable
 operation over very high-speed paths. It defines new TCP options for
 scaled windows and timestamps, which are designed to provide
 compatible interworking with TCP’s that do not implement the
 extensions. The timestamps are used for two distinct mechanisms:
 RTTM (Round Trip Time Measurement) and PAWS (Protect Against Wrapped
 Sequences). Selective acknowledgments are not included in this memo.

 This memo combines and supersedes RFC-1072 and RFC-1185, adding
 additional clarification and more detailed specification. Appendix C
 summarizes the changes from the earlier RFCs.

TABLE OF CONTENTS

 1. Introduction ... 2
 2. TCP Window Scale Option 8
 3. RTTM -- Round-Trip Time Measurement 11
 4. PAWS -- Protect Against Wrapped Sequence Numbers 17
 5. Conclusions and Acknowledgments 25
 6. References ... 25
 APPENDIX A: Implementation Suggestions 27
 APPENDIX B: Duplicates from Earlier Connection Incarnations 27
 APPENDIX C: Changes from RFC-1072, RFC-1185 30
 APPENDIX D: Summary of Notation 31
 APPENDIX E: Event Processing 32
 Security Considerations .. 37

Jacobson, Braden, & Borman [Page 1]

RFC 1323 TCP Extensions for High Performance May 1992

 Authors’ Addresses ... 37

1. INTRODUCTION

 The TCP protocol [Postel81] was designed to operate reliably over
 almost any transmission medium regardless of transmission rate,
 delay, corruption, duplication, or reordering of segments.
 Production TCP implementations currently adapt to transfer rates in
 the range of 100 bps to 10**7 bps and round-trip delays in the range
 1 ms to 100 seconds. Recent work on TCP performance has shown that
 TCP can work well over a variety of Internet paths, ranging from 800
 Mbit/sec I/O channels to 300 bit/sec dial-up modems [Jacobson88a].

 The introduction of fiber optics is resulting in ever-higher
 transmission speeds, and the fastest paths are moving out of the
 domain for which TCP was originally engineered. This memo defines a
 set of modest extensions to TCP to extend the domain of its
 application to match this increasing network capability. It is based
 upon and obsoletes RFC-1072 [Jacobson88b] and RFC-1185 [Jacobson90b].

 There is no one-line answer to the question: "How fast can TCP go?".
 There are two separate kinds of issues, performance and reliability,
 and each depends upon different parameters. We discuss each in turn.

 1.1 TCP Performance

 TCP performance depends not upon the transfer rate itself, but
 rather upon the product of the transfer rate and the round-trip
 delay. This "bandwidth*delay product" measures the amount of data
 that would "fill the pipe"; it is the buffer space required at
 sender and receiver to obtain maximum throughput on the TCP
 connection over the path, i.e., the amount of unacknowledged data
 that TCP must handle in order to keep the pipeline full. TCP
 performance problems arise when the bandwidth*delay product is
 large. We refer to an Internet path operating in this region as a
 "long, fat pipe", and a network containing this path as an "LFN"
 (pronounced "elephan(t)").

 High-capacity packet satellite channels (e.g., DARPA’s Wideband
 Net) are LFN’s. For example, a DS1-speed satellite channel has a
 bandwidth*delay product of 10**6 bits or more; this corresponds to
 100 outstanding TCP segments of 1200 bytes each. Terrestrial
 fiber-optical paths will also fall into the LFN class; for
 example, a cross-country delay of 30 ms at a DS3 bandwidth
 (45Mbps) also exceeds 10**6 bits.

 There are three fundamental performance problems with the current
 TCP over LFN paths:

Jacobson, Braden, & Borman [Page 2]

RFC 1323 TCP Extensions for High Performance May 1992

 (1) Window Size Limit

 The TCP header uses a 16 bit field to report the receive
 window size to the sender. Therefore, the largest window
 that can be used is 2**16 = 65K bytes.

 To circumvent this problem, Section 2 of this memo defines a
 new TCP option, "Window Scale", to allow windows larger than
 2**16. This option defines an implicit scale factor, which
 is used to multiply the window size value found in a TCP
 header to obtain the true window size.

 (2) Recovery from Losses

 Packet losses in an LFN can have a catastrophic effect on
 throughput. Until recently, properly-operating TCP
 implementations would cause the data pipeline to drain with
 every packet loss, and require a slow-start action to
 recover. Recently, the Fast Retransmit and Fast Recovery
 algorithms [Jacobson90c] have been introduced. Their
 combined effect is to recover from one packet loss per
 window, without draining the pipeline. However, more than
 one packet loss per window typically results in a
 retransmission timeout and the resulting pipeline drain and
 slow start.

 Expanding the window size to match the capacity of an LFN
 results in a corresponding increase of the probability of
 more than one packet per window being dropped. This could
 have a devastating effect upon the throughput of TCP over an
 LFN. In addition, if a congestion control mechanism based
 upon some form of random dropping were introduced into
 gateways, randomly spaced packet drops would become common,
 possible increasing the probability of dropping more than one
 packet per window.

 To generalize the Fast Retransmit/Fast Recovery mechanism to
 handle multiple packets dropped per window, selective
 acknowledgments are required. Unlike the normal cumulative
 acknowledgments of TCP, selective acknowledgments give the
 sender a complete picture of which segments are queued at the
 receiver and which have not yet arrived. Some evidence in
 favor of selective acknowledgments has been published
 [NBS85], and selective acknowledgments have been included in
 a number of experimental Internet protocols -- VMTP
 [Cheriton88], NETBLT [Clark87], and RDP [Velten84], and
 proposed for OSI TP4 [NBS85]. However, in the non-LFN
 regime, selective acknowledgments reduce the number of

Jacobson, Braden, & Borman [Page 3]

RFC 1323 TCP Extensions for High Performance May 1992

 packets retransmitted but do not otherwise improve
 performance, making their complexity of questionable value.
 However, selective acknowledgments are expected to become
 much more important in the LFN regime.

 RFC-1072 defined a new TCP "SACK" option to send a selective
 acknowledgment. However, there are important technical
 issues to be worked out concerning both the format and
 semantics of the SACK option. Therefore, SACK has been
 omitted from this package of extensions. It is hoped that
 SACK can "catch up" during the standardization process.

 (3) Round-Trip Measurement

 TCP implements reliable data delivery by retransmitting
 segments that are not acknowledged within some retransmission
 timeout (RTO) interval. Accurate dynamic determination of an
 appropriate RTO is essential to TCP performance. RTO is
 determined by estimating the mean and variance of the
 measured round-trip time (RTT), i.e., the time interval
 between sending a segment and receiving an acknowledgment for
 it [Jacobson88a].

 Section 4 introduces a new TCP option, "Timestamps", and then
 defines a mechanism using this option that allows nearly
 every segment, including retransmissions, to be timed at
 negligible computational cost. We use the mnemonic RTTM
 (Round Trip Time Measurement) for this mechanism, to
 distinguish it from other uses of the Timestamps option.

 1.2 TCP Reliability

 Now we turn from performance to reliability. High transfer rate
 enters TCP performance through the bandwidth*delay product.
 However, high transfer rate alone can threaten TCP reliability by
 violating the assumptions behind the TCP mechanism for duplicate
 detection and sequencing.

 An especially serious kind of error may result from an accidental
 reuse of TCP sequence numbers in data segments. Suppose that an
 "old duplicate segment", e.g., a duplicate data segment that was
 delayed in Internet queues, is delivered to the receiver at the
 wrong moment, so that its sequence numbers falls somewhere within
 the current window. There would be no checksum failure to warn of
 the error, and the result could be an undetected corruption of the
 data. Reception of an old duplicate ACK segment at the
 transmitter could be only slightly less serious: it is likely to

Jacobson, Braden, & Borman [Page 4]

RFC 1323 TCP Extensions for High Performance May 1992

 lock up the connection so that no further progress can be made,
 forcing an RST on the connection.

 TCP reliability depends upon the existence of a bound on the
 lifetime of a segment: the "Maximum Segment Lifetime" or MSL. An
 MSL is generally required by any reliable transport protocol,
 since every sequence number field must be finite, and therefore
 any sequence number may eventually be reused. In the Internet
 protocol suite, the MSL bound is enforced by an IP-layer
 mechanism, the "Time-to-Live" or TTL field.

 Duplication of sequence numbers might happen in either of two
 ways:

 (1) Sequence number wrap-around on the current connection

 A TCP sequence number contains 32 bits. At a high enough
 transfer rate, the 32-bit sequence space may be "wrapped"
 (cycled) within the time that a segment is delayed in queues.

 (2) Earlier incarnation of the connection

 Suppose that a connection terminates, either by a proper
 close sequence or due to a host crash, and the same
 connection (i.e., using the same pair of sockets) is
 immediately reopened. A delayed segment from the terminated
 connection could fall within the current window for the new
 incarnation and be accepted as valid.

 Duplicates from earlier incarnations, Case (2), are avoided by
 enforcing the current fixed MSL of the TCP spec, as explained in
 Section 5.3 and Appendix B. However, case (1), avoiding the
 reuse of sequence numbers within the same connection, requires an
 MSL bound that depends upon the transfer rate, and at high enough
 rates, a new mechanism is required.

 More specifically, if the maximum effective bandwidth at which TCP
 is able to transmit over a particular path is B bytes per second,
 then the following constraint must be satisfied for error-free
 operation:

 2**31 / B > MSL (secs) [1]

 The following table shows the value for Twrap = 2**31/B in
 seconds, for some important values of the bandwidth B:

Jacobson, Braden, & Borman [Page 5]

RFC 1323 TCP Extensions for High Performance May 1992

 Network B*8 B Twrap
 bits/sec bytes/sec secs
 _______ _______ ______ ______

 ARPANET 56kbps 7KBps 3*10**5 (˜3.6 days)

 DS1 1.5Mbps 190KBps 10**4 (˜3 hours)

 Ethernet 10Mbps 1.25MBps 1700 (˜30 mins)

 DS3 45Mbps 5.6MBps 380

 FDDI 100Mbps 12.5MBps 170

 Gigabit 1Gbps 125MBps 17

 It is clear that wrap-around of the sequence space is not a
 problem for 56kbps packet switching or even 10Mbps Ethernets. On
 the other hand, at DS3 and FDDI speeds, Twrap is comparable to the
 2 minute MSL assumed by the TCP specification [Postel81]. Moving
 towards gigabit speeds, Twrap becomes too small for reliable
 enforcement by the Internet TTL mechanism.

 The 16-bit window field of TCP limits the effective bandwidth B to
 2**16/RTT, where RTT is the round-trip time in seconds
 [McKenzie89]. If the RTT is large enough, this limits B to a
 value that meets the constraint [1] for a large MSL value. For
 example, consider a transcontinental backbone with an RTT of 60ms
 (set by the laws of physics). With the bandwidth*delay product
 limited to 64KB by the TCP window size, B is then limited to
 1.1MBps, no matter how high the theoretical transfer rate of the
 path. This corresponds to cycling the sequence number space in
 Twrap= 2000 secs, which is safe in today’s Internet.

 It is important to understand that the culprit is not the larger
 window but rather the high bandwidth. For example, consider a
 (very large) FDDI LAN with a diameter of 10km. Using the speed of
 light, we can compute the RTT across the ring as
 (2*10**4)/(3*10**8) = 67 microseconds, and the delay*bandwidth
 product is then 833 bytes. A TCP connection across this LAN using
 a window of only 833 bytes will run at the full 100mbps and can
 wrap the sequence space in about 3 minutes, very close to the MSL
 of TCP. Thus, high speed alone can cause a reliability problem
 with sequence number wrap-around, even without extended windows.

 Watson’s Delta-T protocol [Watson81] includes network-layer
 mechanisms for precise enforcement of an MSL. In contrast, the IP

Jacobson, Braden, & Borman [Page 6]

RFC 1323 TCP Extensions for High Performance May 1992

 mechanism for MSL enforcement is loosely defined and even more
 loosely implemented in the Internet. Therefore, it is unwise to
 depend upon active enforcement of MSL for TCP connections, and it
 is unrealistic to imagine setting MSL’s smaller than the current
 values (e.g., 120 seconds specified for TCP).

 A possible fix for the problem of cycling the sequence space would
 be to increase the size of the TCP sequence number field. For
 example, the sequence number field (and also the acknowledgment
 field) could be expanded to 64 bits. This could be done either by
 changing the TCP header or by means of an additional option.

 Section 5 presents a different mechanism, which we call PAWS
 (Protect Against Wrapped Sequence numbers), to extend TCP
 reliability to transfer rates well beyond the foreseeable upper
 limit of network bandwidths. PAWS uses the TCP Timestamps option
 defined in Section 4 to protect against old duplicates from the
 same connection.

 1.3 Using TCP options

 The extensions defined in this memo all use new TCP options. We
 must address two possible issues concerning the use of TCP
 options: (1) compatibility and (2) overhead.

 We must pay careful attention to compatibility, i.e., to
 interoperation with existing implementations. The only TCP option
 defined previously, MSS, may appear only on a SYN segment. Every
 implementation should (and we expect that most will) ignore
 unknown options on SYN segments. However, some buggy TCP
 implementation might be crashed by the first appearance of an
 option on a non-SYN segment. Therefore, for each of the
 extensions defined below, TCP options will be sent on non-SYN
 segments only when an exchange of options on the SYN segments has
 indicated that both sides understand the extension. Furthermore,
 an extension option will be sent in a <SYN,ACK> segment only if
 the corresponding option was received in the initial <SYN>
 segment.

 A question may be raised about the bandwidth and processing
 overhead for TCP options. Those options that occur on SYN
 segments are not likely to cause a performance concern. Opening a
 TCP connection requires execution of significant special-case
 code, and the processing of options is unlikely to increase that
 cost significantly.

 On the other hand, a Timestamps option may appear in any data or
 ACK segment, adding 12 bytes to the 20-byte TCP header. We

Jacobson, Braden, & Borman [Page 7]

RFC 1323 TCP Extensions for High Performance May 1992

 believe that the bandwidth saved by reducing unnecessary
 retransmissions will more than pay for the extra header bandwidth.

 There is also an issue about the processing overhead for parsing
 the variable byte-aligned format of options, particularly with a
 RISC-architecture CPU. To meet this concern, Appendix A contains
 a recommended layout of the options in TCP headers to achieve
 reasonable data field alignment. In the spirit of Header
 Prediction, a TCP can quickly test for this layout and if it is
 verified then use a fast path. Hosts that use this canonical
 layout will effectively use the options as a set of fixed-format
 fields appended to the TCP header. However, to retain the
 philosophical and protocol framework of TCP options, a TCP must be
 prepared to parse an arbitrary options field, albeit with less
 efficiency.

 Finally, we observe that most of the mechanisms defined in this
 memo are important for LFN’s and/or very high-speed networks. For
 low-speed networks, it might be a performance optimization to NOT
 use these mechanisms. A TCP vendor concerned about optimal
 performance over low-speed paths might consider turning these
 extensions off for low-speed paths, or allow a user or
 installation manager to disable them.

2. TCP WINDOW SCALE OPTION

 2.1 Introduction

 The window scale extension expands the definition of the TCP
 window to 32 bits and then uses a scale factor to carry this 32-
 bit value in the 16-bit Window field of the TCP header (SEG.WND in
 RFC-793). The scale factor is carried in a new TCP option, Window
 Scale. This option is sent only in a SYN segment (a segment with
 the SYN bit on), hence the window scale is fixed in each direction
 when a connection is opened. (Another design choice would be to
 specify the window scale in every TCP segment. It would be
 incorrect to send a window scale option only when the scale factor
 changed, since a TCP option in an acknowledgement segment will not
 be delivered reliably (unless the ACK happens to be piggy-backed
 on data in the other direction). Fixing the scale when the
 connection is opened has the advantage of lower overhead but the
 disadvantage that the scale factor cannot be changed during the
 connection.)

 The maximum receive window, and therefore the scale factor, is
 determined by the maximum receive buffer space. In a typical
 modern implementation, this maximum buffer space is set by default

Jacobson, Braden, & Borman [Page 8]

RFC 1323 TCP Extensions for High Performance May 1992

 but can be overridden by a user program before a TCP connection is
 opened. This determines the scale factor, and therefore no new
 user interface is needed for window scaling.

 2.2 Window Scale Option

 The three-byte Window Scale option may be sent in a SYN segment by
 a TCP. It has two purposes: (1) indicate that the TCP is prepared
 to do both send and receive window scaling, and (2) communicate a
 scale factor to be applied to its receive window. Thus, a TCP
 that is prepared to scale windows should send the option, even if
 its own scale factor is 1. The scale factor is limited to a power
 of two and encoded logarithmically, so it may be implemented by
 binary shift operations.

 TCP Window Scale Option (WSopt):

 Kind: 3 Length: 3 bytes

 +---------+---------+---------+
 | Kind=3 |Length=3 |shift.cnt|
 +---------+---------+---------+

 This option is an offer, not a promise; both sides must send
 Window Scale options in their SYN segments to enable window
 scaling in either direction. If window scaling is enabled,
 then the TCP that sent this option will right-shift its true
 receive-window values by ’shift.cnt’ bits for transmission in
 SEG.WND. The value ’shift.cnt’ may be zero (offering to scale,
 while applying a scale factor of 1 to the receive window).

 This option may be sent in an initial <SYN> segment (i.e., a
 segment with the SYN bit on and the ACK bit off). It may also
 be sent in a <SYN,ACK> segment, but only if a Window Scale op-
 tion was received in the initial <SYN> segment. A Window Scale
 option in a segment without a SYN bit should be ignored.

 The Window field in a SYN (i.e., a <SYN> or <SYN,ACK>) segment
 itself is never scaled.

 2.3 Using the Window Scale Option

 A model implementation of window scaling is as follows, using the
 notation of RFC-793 [Postel81]:

 * All windows are treated as 32-bit quantities for storage in

Jacobson, Braden, & Borman [Page 9]

RFC 1323 TCP Extensions for High Performance May 1992

 the connection control block and for local calculations.
 This includes the send-window (SND.WND) and the receive-
 window (RCV.WND) values, as well as the congestion window.

 * The connection state is augmented by two window shift counts,
 Snd.Wind.Scale and Rcv.Wind.Scale, to be applied to the
 incoming and outgoing window fields, respectively.

 * If a TCP receives a <SYN> segment containing a Window Scale
 option, it sends its own Window Scale option in the <SYN,ACK>
 segment.

 * The Window Scale option is sent with shift.cnt = R, where R
 is the value that the TCP would like to use for its receive
 window.

 * Upon receiving a SYN segment with a Window Scale option
 containing shift.cnt = S, a TCP sets Snd.Wind.Scale to S and
 sets Rcv.Wind.Scale to R; otherwise, it sets both
 Snd.Wind.Scale and Rcv.Wind.Scale to zero.

 * The window field (SEG.WND) in the header of every incoming
 segment, with the exception of SYN segments, is left-shifted
 by Snd.Wind.Scale bits before updating SND.WND:

 SND.WND = SEG.WND << Snd.Wind.Scale

 (assuming the other conditions of RFC793 are met, and using
 the "C" notation "<<" for left-shift).

 * The window field (SEG.WND) of every outgoing segment, with
 the exception of SYN segments, is right-shifted by
 Rcv.Wind.Scale bits:

 SEG.WND = RCV.WND >> Rcv.Wind.Scale.

 TCP determines if a data segment is "old" or "new" by testing
 whether its sequence number is within 2**31 bytes of the left edge
 of the window, and if it is not, discarding the data as "old". To
 insure that new data is never mistakenly considered old and vice-
 versa, the left edge of the sender’s window has to be at most
 2**31 away from the right edge of the receiver’s window.
 Similarly with the sender’s right edge and receiver’s left edge.
 Since the right and left edges of either the sender’s or
 receiver’s window differ by the window size, and since the sender
 and receiver windows can be out of phase by at most the window
 size, the above constraints imply that 2 * the max window size

Jacobson, Braden, & Borman [Page 10]

RFC 1323 TCP Extensions for High Performance May 1992

 must be less than 2**31, or

 max window < 2**30

 Since the max window is 2**S (where S is the scaling shift count)
 times at most 2**16 - 1 (the maximum unscaled window), the maximum
 window is guaranteed to be < 2*30 if S <= 14. Thus, the shift
 count must be limited to 14 (which allows windows of 2**30 = 1
 Gbyte). If a Window Scale option is received with a shift.cnt
 value exceeding 14, the TCP should log the error but use 14
 instead of the specified value.

 The scale factor applies only to the Window field as transmitted
 in the TCP header; each TCP using extended windows will maintain
 the window values locally as 32-bit numbers. For example, the
 "congestion window" computed by Slow Start and Congestion
 Avoidance is not affected by the scale factor, so window scaling
 will not introduce quantization into the congestion window.

3. RTTM: ROUND-TRIP TIME MEASUREMENT

 3.1 Introduction

 Accurate and current RTT estimates are necessary to adapt to
 changing traffic conditions and to avoid an instability known as
 "congestion collapse" [Nagle84] in a busy network. However,
 accurate measurement of RTT may be difficult both in theory and in
 implementation.

 Many TCP implementations base their RTT measurements upon a sample
 of only one packet per window. While this yields an adequate
 approximation to the RTT for small windows, it results in an
 unacceptably poor RTT estimate for an LFN. If we look at RTT
 estimation as a signal processing problem (which it is), a data
 signal at some frequency, the packet rate, is being sampled at a
 lower frequency, the window rate. This lower sampling frequency
 violates Nyquist’s criteria and may therefore introduce "aliasing"
 artifacts into the estimated RTT [Hamming77].

 A good RTT estimator with a conservative retransmission timeout
 calculation can tolerate aliasing when the sampling frequency is
 "close" to the data frequency. For example, with a window of 8
 packets, the sample rate is 1/8 the data frequency -- less than an
 order of magnitude different. However, when the window is tens or
 hundreds of packets, the RTT estimator may be seriously in error,
 resulting in spurious retransmissions.

 If there are dropped packets, the problem becomes worse. Zhang

Jacobson, Braden, & Borman [Page 11]

RFC 1323 TCP Extensions for High Performance May 1992

 [Zhang86], Jain [Jain86] and Karn [Karn87] have shown that it is
 not possible to accumulate reliable RTT estimates if retransmitted
 segments are included in the estimate. Since a full window of
 data will have been transmitted prior to a retransmission, all of
 the segments in that window will have to be ACKed before the next
 RTT sample can be taken. This means at least an additional
 window’s worth of time between RTT measurements and, as the error
 rate approaches one per window of data (e.g., 10**-6 errors per
 bit for the Wideband satellite network), it becomes effectively
 impossible to obtain a valid RTT measurement.

 A solution to these problems, which actually simplifies the sender
 substantially, is as follows: using TCP options, the sender places
 a timestamp in each data segment, and the receiver reflects these
 timestamps back in ACK segments. Then a single subtract gives the
 sender an accurate RTT measurement for every ACK segment (which
 will correspond to every other data segment, with a sensible
 receiver). We call this the RTTM (Round-Trip Time Measurement)
 mechanism.

 It is vitally important to use the RTTM mechanism with big
 windows; otherwise, the door is opened to some dangerous
 instabilities due to aliasing. Furthermore, the option is
 probably useful for all TCP’s, since it simplifies the sender.

 3.2 TCP Timestamps Option

 TCP is a symmetric protocol, allowing data to be sent at any time
 in either direction, and therefore timestamp echoing may occur in
 either direction. For simplicity and symmetry, we specify that
 timestamps always be sent and echoed in both directions. For
 efficiency, we combine the timestamp and timestamp reply fields
 into a single TCP Timestamps Option.

Jacobson, Braden, & Borman [Page 12]

RFC 1323 TCP Extensions for High Performance May 1992

 TCP Timestamps Option (TSopt):

 Kind: 8

 Length: 10 bytes

 +-------+-------+---------------------+---------------------+
 |Kind=8 | 10 | TS Value (TSval) |TS Echo Reply (TSecr)|
 +-------+-------+---------------------+---------------------+
 1 1 4 4

 The Timestamps option carries two four-byte timestamp fields.
 The Timestamp Value field (TSval) contains the current value of
 the timestamp clock of the TCP sending the option.

 The Timestamp Echo Reply field (TSecr) is only valid if the ACK
 bit is set in the TCP header; if it is valid, it echos a times-
 tamp value that was sent by the remote TCP in the TSval field
 of a Timestamps option. When TSecr is not valid, its value
 must be zero. The TSecr value will generally be from the most
 recent Timestamp option that was received; however, there are
 exceptions that are explained below.

 A TCP may send the Timestamps option (TSopt) in an initial
 <SYN> segment (i.e., segment containing a SYN bit and no ACK
 bit), and may send a TSopt in other segments only if it re-
 ceived a TSopt in the initial <SYN> segment for the connection.

 3.3 The RTTM Mechanism

 The timestamp value to be sent in TSval is to be obtained from a
 (virtual) clock that we call the "timestamp clock". Its values
 must be at least approximately proportional to real time, in order
 to measure actual RTT.

 The following example illustrates a one-way data flow with
 segments arriving in sequence without loss. Here A, B, C...
 represent data blocks occupying successive blocks of sequence
 numbers, and ACK(A),... represent the corresponding cumulative
 acknowledgments. The two timestamp fields of the Timestamps
 option are shown symbolically as <TSval= x,TSecr=y>. Each TSecr
 field contains the value most recently received in a TSval field.

Jacobson, Braden, & Borman [Page 13]

RFC 1323 TCP Extensions for High Performance May 1992

 TCP A TCP B

 <A,TSval=1,TSecr=120> ------>

 <---- <ACK(A),TSval=127,TSecr=1>

 <B,TSval=5,TSecr=127> ------>

 <---- <ACK(B),TSval=131,TSecr=5>

 .

 <C,TSval=65,TSecr=131> ------>

 <---- <ACK(C),TSval=191,TSecr=65>

 (etc)

 The dotted line marks a pause (60 time units long) in which A had
 nothing to send. Note that this pause inflates the RTT which B
 could infer from receiving TSecr=131 in data segment C. Thus, in
 one-way data flows, RTTM in the reverse direction measures a value
 that is inflated by gaps in sending data. However, the following
 rule prevents a resulting inflation of the measured RTT:

 A TSecr value received in a segment is used to update the
 averaged RTT measurement only if the segment acknowledges
 some new data, i.e., only if it advances the left edge of the
 send window.

 Since TCP B is not sending data, the data segment C does not
 acknowledge any new data when it arrives at B. Thus, the inflated
 RTTM measurement is not used to update B’s RTTM measurement.

 3.4 Which Timestamp to Echo

 If more than one Timestamps option is received before a reply
 segment is sent, the TCP must choose only one of the TSvals to
 echo, ignoring the others. To minimize the state kept in the
 receiver (i.e., the number of unprocessed TSvals), the receiver
 should be required to retain at most one timestamp in the
 connection control block.

Jacobson, Braden, & Borman [Page 14]

RFC 1323 TCP Extensions for High Performance May 1992

 There are three situations to consider:

 (A) Delayed ACKs.

 Many TCP’s acknowledge only every Kth segment out of a group
 of segments arriving within a short time interval; this
 policy is known generally as "delayed ACKs". The data-sender
 TCP must measure the effective RTT, including the additional
 time due to delayed ACKs, or else it will retransmit
 unnecessarily. Thus, when delayed ACKs are in use, the
 receiver should reply with the TSval field from the earliest
 unacknowledged segment.

 (B) A hole in the sequence space (segment(s) have been lost).

 The sender will continue sending until the window is filled,
 and the receiver may be generating ACKs as these out-of-order
 segments arrive (e.g., to aid "fast retransmit").

 The lost segment is probably a sign of congestion, and in
 that situation the sender should be conservative about
 retransmission. Furthermore, it is better to overestimate
 than underestimate the RTT. An ACK for an out-of-order
 segment should therefore contain the timestamp from the most
 recent segment that advanced the window.

 The same situation occurs if segments are re-ordered by the
 network.

 (C) A filled hole in the sequence space.

 The segment that fills the hole represents the most recent
 measurement of the network characteristics. On the other
 hand, an RTT computed from an earlier segment would probably
 include the sender’s retransmit time-out, badly biasing the
 sender’s average RTT estimate. Thus, the timestamp from the
 latest segment (which filled the hole) must be echoed.

 An algorithm that covers all three cases is described in the
 following rules for Timestamps option processing on a synchronized
 connection:

 (1) The connection state is augmented with two 32-bit slots:
 TS.Recent holds a timestamp to be echoed in TSecr whenever a
 segment is sent, and Last.ACK.sent holds the ACK field from
 the last segment sent. Last.ACK.sent will equal RCV.NXT
 except when ACKs have been delayed.

Jacobson, Braden, & Borman [Page 15]

RFC 1323 TCP Extensions for High Performance May 1992

 (2) If Last.ACK.sent falls within the range of sequence numbers
 of an incoming segment:

 SEG.SEQ <= Last.ACK.sent < SEG.SEQ + SEG.LEN

 then the TSval from the segment is copied to TS.Recent;
 otherwise, the TSval is ignored.

 (3) When a TSopt is sent, its TSecr field is set to the current
 TS.Recent value.

 The following examples illustrate these rules. Here A, B, C...
 represent data segments occupying successive blocks of sequence
 numbers, and ACK(A),... represent the corresponding
 acknowledgment segments. Note that ACK(A) has the same sequence
 number as B. We show only one direction of timestamp echoing, for
 clarity.

 o Packets arrive in sequence, and some of the ACKs are delayed.

 By Case (A), the timestamp from the oldest unacknowledged
 segment is echoed.

 TS.Recent
 <A, TSval=1> ------------------->
 1
 <B, TSval=2> ------------------->
 1
 <C, TSval=3> ------------------->
 1
 <---- <ACK(C), TSecr=1>
 (etc)

 o Packets arrive out of order, and every packet is
 acknowledged.

 By Case (B), the timestamp from the last segment that
 advanced the left window edge is echoed, until the missing
 segment arrives; it is echoed according to Case (C). The
 same sequence would occur if segments B and D were lost and
 retransmitted..

Jacobson, Braden, & Borman [Page 16]

RFC 1323 TCP Extensions for High Performance May 1992

 TS.Recent
 <A, TSval=1> ------------------->
 1
 <---- <ACK(A), TSecr=1>
 1
 <C, TSval=3> ------------------->
 1
 <---- <ACK(A), TSecr=1>
 1
 <B, TSval=2> ------------------->
 2
 <---- <ACK(C), TSecr=2>
 2
 <E, TSval=5> ------------------->
 2
 <---- <ACK(C), TSecr=2>
 2
 <D, TSval=4> ------------------->
 4
 <---- <ACK(E), TSecr=4>
 (etc)

4. PAWS: PROTECT AGAINST WRAPPED SEQUENCE NUMBERS

 4.1 Introduction

 Section 4.2 describes a simple mechanism to reject old duplicate
 segments that might corrupt an open TCP connection; we call this
 mechanism PAWS (Protect Against Wrapped Sequence numbers). PAWS
 operates within a single TCP connection, using state that is saved
 in the connection control block. Section 4.3 and Appendix C
 discuss the implications of the PAWS mechanism for avoiding old
 duplicates from previous incarnations of the same connection.

 4.2 The PAWS Mechanism

 PAWS uses the same TCP Timestamps option as the RTTM mechanism
 described earlier, and assumes that every received TCP segment
 (including data and ACK segments) contains a timestamp SEG.TSval
 whose values are monotone non-decreasing in time. The basic idea
 is that a segment can be discarded as an old duplicate if it is
 received with a timestamp SEG.TSval less than some timestamp
 recently received on this connection.

 In both the PAWS and the RTTM mechanism, the "timestamps" are 32-

Jacobson, Braden, & Borman [Page 17]

RFC 1323 TCP Extensions for High Performance May 1992

 bit unsigned integers in a modular 32-bit space. Thus, "less
 than" is defined the same way it is for TCP sequence numbers, and
 the same implementation techniques apply. If s and t are
 timestamp values, s < t if 0 < (t - s) < 2**31, computed in
 unsigned 32-bit arithmetic.

 The choice of incoming timestamps to be saved for this comparison
 must guarantee a value that is monotone increasing. For example,
 we might save the timestamp from the segment that last advanced
 the left edge of the receive window, i.e., the most recent in-
 sequence segment. Instead, we choose the value TS.Recent
 introduced in Section 3.4 for the RTTM mechanism, since using a
 common value for both PAWS and RTTM simplifies the implementation
 of both. As Section 3.4 explained, TS.Recent differs from the
 timestamp from the last in-sequence segment only in the case of
 delayed ACKs, and therefore by less than one window. Either
 choice will therefore protect against sequence number wrap-around.

 RTTM was specified in a symmetrical manner, so that TSval
 timestamps are carried in both data and ACK segments and are
 echoed in TSecr fields carried in returning ACK or data segments.
 PAWS submits all incoming segments to the same test, and therefore
 protects against duplicate ACK segments as well as data segments.
 (An alternative un-symmetric algorithm would protect against old
 duplicate ACKs: the sender of data would reject incoming ACK
 segments whose TSecr values were less than the TSecr saved from
 the last segment whose ACK field advanced the left edge of the
 send window. This algorithm was deemed to lack economy of
 mechanism and symmetry.)

 TSval timestamps sent on {SYN} and {SYN,ACK} segments are used to
 initialize PAWS. PAWS protects against old duplicate non-SYN
 segments, and duplicate SYN segments received while there is a
 synchronized connection. Duplicate {SYN} and {SYN,ACK} segments
 received when there is no connection will be discarded by the
 normal 3-way handshake and sequence number checks of TCP.

 It is recommended that RST segments NOT carry timestamps, and that
 RST segments be acceptable regardless of their timestamp. Old
 duplicate RST segments should be exceedingly unlikely, and their
 cleanup function should take precedence over timestamps.

 4.2.1 Basic PAWS Algorithm

 The PAWS algorithm requires the following processing to be
 performed on all incoming segments for a synchronized
 connection:

Jacobson, Braden, & Borman [Page 18]

RFC 1323 TCP Extensions for High Performance May 1992

 R1) If there is a Timestamps option in the arriving segment
 and SEG.TSval < TS.Recent and if TS.Recent is valid (see
 later discussion), then treat the arriving segment as not
 acceptable:

 Send an acknowledgement in reply as specified in
 RFC-793 page 69 and drop the segment.

 Note: it is necessary to send an ACK segment in order
 to retain TCP’s mechanisms for detecting and
 recovering from half-open connections. For example,
 see Figure 10 of RFC-793.

 R2) If the segment is outside the window, reject it (normal
 TCP processing)

 R3) If an arriving segment satisfies: SEG.SEQ <= Last.ACK.sent
 (see Section 3.4), then record its timestamp in TS.Recent.

 R4) If an arriving segment is in-sequence (i.e., at the left
 window edge), then accept it normally.

 R5) Otherwise, treat the segment as a normal in-window, out-
 of-sequence TCP segment (e.g., queue it for later delivery
 to the user).

 Steps R2, R4, and R5 are the normal TCP processing steps
 specified by RFC-793.

 It is important to note that the timestamp is checked only when
 a segment first arrives at the receiver, regardless of whether
 it is in-sequence or it must be queued for later delivery.
 Consider the following example.

 Suppose the segment sequence: A.1, B.1, C.1, ..., Z.1 has
 been sent, where the letter indicates the sequence number
 and the digit represents the timestamp. Suppose also that
 segment B.1 has been lost. The timestamp in TS.TStamp is
 1 (from A.1), so C.1, ..., Z.1 are considered acceptable
 and are queued. When B is retransmitted as segment B.2
 (using the latest timestamp), it fills the hole and causes
 all the segments through Z to be acknowledged and passed
 to the user. The timestamps of the queued segments are
 not inspected again at this time, since they have
 already been accepted. When B.2 is accepted, TS.Stamp is
 set to 2.

 This rule allows reasonable performance under loss. A full

Jacobson, Braden, & Borman [Page 19]

RFC 1323 TCP Extensions for High Performance May 1992

 window of data is in transit at all times, and after a loss a
 full window less one packet will show up out-of-sequence to be
 queued at the receiver (e.g., up to ˜2**30 bytes of data); the
 timestamp option must not result in discarding this data.

 In certain unlikely circumstances, the algorithm of rules R1-R4
 could lead to discarding some segments unnecessarily, as shown
 in the following example:

 Suppose again that segments: A.1, B.1, C.1, ..., Z.1 have
 been sent in sequence and that segment B.1 has been lost.
 Furthermore, suppose delivery of some of C.1, ... Z.1 is
 delayed until AFTER the retransmission B.2 arrives at the
 receiver. These delayed segments will be discarded
 unnecessarily when they do arrive, since their timestamps
 are now out of date.

 This case is very unlikely to occur. If the retransmission was
 triggered by a timeout, some of the segments C.1, ... Z.1 must
 have been delayed longer than the RTO time. This is presumably
 an unlikely event, or there would be many spurious timeouts and
 retransmissions. If B’s retransmission was triggered by the
 "fast retransmit" algorithm, i.e., by duplicate ACKs, then the
 queued segments that caused these ACKs must have been received
 already.

 Even if a segment were delayed past the RTO, the Fast
 Retransmit mechanism [Jacobson90c] will cause the delayed
 packets to be retransmitted at the same time as B.2, avoiding
 an extra RTT and therefore causing a very small performance
 penalty.

 We know of no case with a significant probability of occurrence
 in which timestamps will cause performance degradation by
 unnecessarily discarding segments.

 4.2.2 Timestamp Clock

 It is important to understand that the PAWS algorithm does not
 require clock synchronization between sender and receiver. The
 sender’s timestamp clock is used to stamp the segments, and the
 sender uses the echoed timestamp to measure RTT’s. However,
 the receiver treats the timestamp as simply a monotone-
 increasing serial number, without any necessary connection to
 its clock. From the receiver’s viewpoint, the timestamp is
 acting as a logical extension of the high-order bits of the
 sequence number.

Jacobson, Braden, & Borman [Page 20]

RFC 1323 TCP Extensions for High Performance May 1992

 The receiver algorithm does place some requirements on the
 frequency of the timestamp clock.

 (a) The timestamp clock must not be "too slow".

 It must tick at least once for each 2**31 bytes sent. In
 fact, in order to be useful to the sender for round trip
 timing, the clock should tick at least once per window’s
 worth of data, and even with the RFC-1072 window
 extension, 2**31 bytes must be at least two windows.

 To make this more quantitative, any clock faster than 1
 tick/sec will reject old duplicate segments for link
 speeds of ˜8 Gbps. A 1ms timestamp clock will work at
 link speeds up to 8 Tbps (8*10**12) bps!

 (b) The timestamp clock must not be "too fast".

 Its recycling time must be greater than MSL seconds.
 Since the clock (timestamp) is 32 bits and the worst-case
 MSL is 255 seconds, the maximum acceptable clock frequency
 is one tick every 59 ns.

 However, it is desirable to establish a much longer
 recycle period, in order to handle outdated timestamps on
 idle connections (see Section 4.2.3), and to relax the MSL
 requirement for preventing sequence number wrap-around.
 With a 1 ms timestamp clock, the 32-bit timestamp will
 wrap its sign bit in 24.8 days. Thus, it will reject old
 duplicates on the same connection if MSL is 24.8 days or
 less. This appears to be a very safe figure; an MSL of
 24.8 days or longer can probably be assumed by the gateway
 system without requiring precise MSL enforcement by the
 TTL value in the IP layer.

 Based upon these considerations, we choose a timestamp clock
 frequency in the range 1 ms to 1 sec per tick. This range also
 matches the requirements of the RTTM mechanism, which does not
 need much more resolution than the granularity of the
 retransmit timer, e.g., tens or hundreds of milliseconds.

 The PAWS mechanism also puts a strong monotonicity requirement
 on the sender’s timestamp clock. The method of implementation
 of the timestamp clock to meet this requirement depends upon
 the system hardware and software.

 * Some hosts have a hardware clock that is guaranteed to be
 monotonic between hardware resets.

Jacobson, Braden, & Borman [Page 21]

RFC 1323 TCP Extensions for High Performance May 1992

 * A clock interrupt may be used to simply increment a binary
 integer by 1 periodically.

 * The timestamp clock may be derived from a system clock
 that is subject to being abruptly changed, by adding a
 variable offset value. This offset is initialized to
 zero. When a new timestamp clock value is needed, the
 offset can be adjusted as necessary to make the new value
 equal to or larger than the previous value (which was
 saved for this purpose).

 4.2.3 Outdated Timestamps

 If a connection remains idle long enough for the timestamp
 clock of the other TCP to wrap its sign bit, then the value
 saved in TS.Recent will become too old; as a result, the PAWS
 mechanism will cause all subsequent segments to be rejected,
 freezing the connection (until the timestamp clock wraps its
 sign bit again).

 With the chosen range of timestamp clock frequencies (1 sec to
 1 ms), the time to wrap the sign bit will be between 24.8 days
 and 24800 days. A TCP connection that is idle for more than 24
 days and then comes to life is exceedingly unusual. However,
 it is undesirable in principle to place any limitation on TCP
 connection lifetimes.

 We therefore require that an implementation of PAWS include a
 mechanism to "invalidate" the TS.Recent value when a connection
 is idle for more than 24 days. (An alternative solution to the
 problem of outdated timestamps would be to send keepalive
 segments at a very low rate, but still more often than the
 wrap-around time for timestamps, e.g., once a day. This would
 impose negligible overhead. However, the TCP specification has
 never included keepalives, so the solution based upon
 invalidation was chosen.)

 Note that a TCP does not know the frequency, and therefore, the
 wraparound time, of the other TCP, so it must assume the worst.
 The validity of TS.Recent needs to be checked only if the basic
 PAWS timestamp check fails, i.e., only if SEG.TSval <
 TS.Recent. If TS.Recent is found to be invalid, then the
 segment is accepted, regardless of the failure of the timestamp
 check, and rule R3 updates TS.Recent with the TSval from the
 new segment.

 To detect how long the connection has been idle, the TCP may

Jacobson, Braden, & Borman [Page 22]

RFC 1323 TCP Extensions for High Performance May 1992

 update a clock or timestamp value associated with the
 connection whenever TS.Recent is updated, for example. The
 details will be implementation-dependent.

 4.2.4 Header Prediction

 "Header prediction" [Jacobson90a] is a high-performance
 transport protocol implementation technique that is most
 important for high-speed links. This technique optimizes the
 code for the most common case, receiving a segment correctly
 and in order. Using header prediction, the receiver asks the
 question, "Is this segment the next in sequence?" This
 question can be answered in fewer machine instructions than the
 question, "Is this segment within the window?"

 Adding header prediction to our timestamp procedure leads to
 the following recommended sequence for processing an arriving
 TCP segment:

 H1) Check timestamp (same as step R1 above)

 H2) Do header prediction: if segment is next in sequence and
 if there are no special conditions requiring additional
 processing, accept the segment, record its timestamp, and
 skip H3.

 H3) Process the segment normally, as specified in RFC-793.
 This includes dropping segments that are outside the win-
 dow and possibly sending acknowledgments, and queueing
 in-window, out-of-sequence segments.

 Another possibility would be to interchange steps H1 and H2,
 i.e., to perform the header prediction step H2 FIRST, and
 perform H1 and H3 only when header prediction fails. This
 could be a performance improvement, since the timestamp check
 in step H1 is very unlikely to fail, and it requires interval
 arithmetic on a finite field, a relatively expensive operation.
 To perform this check on every single segment is contrary to
 the philosophy of header prediction. We believe that this
 change might reduce CPU time for TCP protocol processing by up
 to 5-10% on high-speed networks.

 However, putting H2 first would create a hazard: a segment from
 2**32 bytes in the past might arrive at exactly the wrong time
 and be accepted mistakenly by the header-prediction step. The
 following reasoning has been introduced [Jacobson90b] to show
 that the probability of this failure is negligible.

Jacobson, Braden, & Borman [Page 23]

RFC 1323 TCP Extensions for High Performance May 1992

 If all segments are equally likely to show up as old
 duplicates, then the probability of an old duplicate
 exactly matching the left window edge is the maximum
 segment size (MSS) divided by the size of the sequence
 space. This ratio must be less than 2**-16, since MSS
 must be < 2**16; for example, it will be (2**12)/(2**32) =
 2**-20 for an FDDI link. However, the older a segment is,
 the less likely it is to be retained in the Internet, and
 under any reasonable model of segment lifetime the
 probability of an old duplicate exactly at the left window
 edge must be much smaller than 2**-16.

 The 16 bit TCP checksum also allows a basic unreliability
 of one part in 2**16. A protocol mechanism whose
 reliability exceeds the reliability of the TCP checksum
 should be considered "good enough", i.e., it won’t
 contribute significantly to the overall error rate. We
 therefore believe we can ignore the problem of an old
 duplicate being accepted by doing header prediction before
 checking the timestamp.

 However, this probabilistic argument is not universally
 accepted, and the consensus at present is that the performance
 gain does not justify the hazard in the general case. It is
 therefore recommended that H2 follow H1.

 4.3. Duplicates from Earlier Incarnations of Connection

 The PAWS mechanism protects against errors due to sequence number
 wrap-around on high-speed connection. Segments from an earlier
 incarnation of the same connection are also a potential cause of
 old duplicate errors. In both cases, the TCP mechanisms to
 prevent such errors depend upon the enforcement of a maximum
 segment lifetime (MSL) by the Internet (IP) layer (see Appendix of
 RFC-1185 for a detailed discussion). Unlike the case of sequence
 space wrap-around, the MSL required to prevent old duplicate
 errors from earlier incarnations does not depend upon the transfer
 rate. If the IP layer enforces the recommended 2 minute MSL of
 TCP, and if the TCP rules are followed, TCP connections will be
 safe from earlier incarnations, no matter how high the network
 speed. Thus, the PAWS mechanism is not required for this case.

 We may still ask whether the PAWS mechanism can provide additional
 security against old duplicates from earlier connections, allowing
 us to relax the enforcement of MSL by the IP layer. Appendix B
 explores this question, showing that further assumptions and/or
 mechanisms are required, beyond those of PAWS. This is not part
 of the current extension.

Jacobson, Braden, & Borman [Page 24]

RFC 1323 TCP Extensions for High Performance May 1992

5. CONCLUSIONS AND ACKNOWLEDGMENTS

 This memo presented a set of extensions to TCP to provide efficient
 operation over large-bandwidth*delay-product paths and reliable
 operation over very high-speed paths. These extensions are designed
 to provide compatible interworking with TCP’s that do not implement
 the extensions.

 These mechanisms are implemented using new TCP options for scaled
 windows and timestamps. The timestamps are used for two distinct
 mechanisms: RTTM (Round Trip Time Measurement) and PAWS (Protect
 Against Wrapped Sequences).

 The Window Scale option was originally suggested by Mike St. Johns of
 USAF/DCA. The present form of the option was suggested by Mike
 Karels of UC Berkeley in response to a more cumbersome scheme defined
 by Van Jacobson. Lixia Zhang helped formulate the PAWS mechanism
 description in RFC-1185.

 Finally, much of this work originated as the result of discussions
 within the End-to-End Task Force on the theoretical limitations of
 transport protocols in general and TCP in particular. More recently,
 task force members and other on the end2end-interest list have made
 valuable contributions by pointing out flaws in the algorithms and
 the documentation. The authors are grateful for all these
 contributions.

6. REFERENCES

 [Clark87] Clark, D., Lambert, M., and L. Zhang, "NETBLT: A Bulk
 Data Transfer Protocol", RFC 998, MIT, March 1987.

 [Garlick77] Garlick, L., R. Rom, and J. Postel, "Issues in
 Reliable Host-to-Host Protocols", Proc. Second Berkeley Workshop
 on Distributed Data Management and Computer Networks, May 1977.

 [Hamming77] Hamming, R., "Digital Filters", ISBN 0-13-212571-4,
 Prentice Hall, Englewood Cliffs, N.J., 1977.

 [Cheriton88] Cheriton, D., "VMTP: Versatile Message Transaction
 Protocol", RFC 1045, Stanford University, February 1988.

 [Jacobson88a] Jacobson, V., "Congestion Avoidance and Control",
 SIGCOMM ’88, Stanford, CA., August 1988.

 [Jacobson88b] Jacobson, V., and R. Braden, "TCP Extensions for
 Long-Delay Paths", RFC-1072, LBL and USC/Information Sciences
 Institute, October 1988.

Jacobson, Braden, & Borman [Page 25]

RFC 1323 TCP Extensions for High Performance May 1992

 [Jacobson90a] Jacobson, V., "4BSD Header Prediction", ACM
 Computer Communication Review, April 1990.

 [Jacobson90b] Jacobson, V., Braden, R., and Zhang, L., "TCP
 Extension for High-Speed Paths", RFC-1185, LBL and USC/Information
 Sciences Institute, October 1990.

 [Jacobson90c] Jacobson, V., "Modified TCP congestion avoidance
 algorithm", Message to end2end-interest mailing list, April 1990.

 [Jain86] Jain, R., "Divergence of Timeout Algorithms for Packet
 Retransmissions", Proc. Fifth Phoenix Conf. on Comp. and Comm.,
 Scottsdale, Arizona, March 1986.

 [Karn87] Karn, P. and C. Partridge, "Estimating Round-Trip Times
 in Reliable Transport Protocols", Proc. SIGCOMM ’87, Stowe, VT,
 August 1987.

 [McKenzie89] McKenzie, A., "A Problem with the TCP Big Window
 Option", RFC 1110, BBN STC, August 1989.

 [Nagle84] Nagle, J., "Congestion Control in IP/TCP
 Internetworks", RFC 896, FACC, January 1984.

 [NBS85] Colella, R., Aronoff, R., and K. Mills, "Performance
 Improvements for ISO Transport", Ninth Data Comm Symposium,
 published in ACM SIGCOMM Comp Comm Review, vol. 15, no. 5,
 September 1985.

 [Postel81] Postel, J., "Transmission Control Protocol - DARPA
 Internet Program Protocol Specification", RFC 793, DARPA,
 September 1981.

 [Velten84] Velten, D., Hinden, R., and J. Sax, "Reliable Data
 Protocol", RFC 908, BBN, July 1984.

 [Watson81] Watson, R., "Timer-based Mechanisms in Reliable
 Transport Protocol Connection Management", Computer Networks, Vol.
 5, 1981.

 [Zhang86] Zhang, L., "Why TCP Timers Don’t Work Well", Proc.
 SIGCOMM ’86, Stowe, Vt., August 1986.

Jacobson, Braden, & Borman [Page 26]

RFC 1323 TCP Extensions for High Performance May 1992

APPENDIX A: IMPLEMENTATION SUGGESTIONS

 The following layouts are recommended for sending options on non-SYN
 segments, to achieve maximum feasible alignment of 32-bit and 64-bit
 machines.

 +--------+--------+--------+--------+
 | NOP | NOP | TSopt | 10 |
 +--------+--------+--------+--------+
 | TSval timestamp |
 +--------+--------+--------+--------+
 | TSecr timestamp |
 +--------+--------+--------+--------+

APPENDIX B: DUPLICATES FROM EARLIER CONNECTION INCARNATIONS

 There are two cases to be considered: (1) a system crashing (and
 losing connection state) and restarting, and (2) the same connection
 being closed and reopened without a loss of host state. These will
 be described in the following two sections.

 B.1 System Crash with Loss of State

 TCP’s quiet time of one MSL upon system startup handles the loss
 of connection state in a system crash/restart. For an
 explanation, see for example "When to Keep Quiet" in the TCP
 protocol specification [Postel81]. The MSL that is required here
 does not depend upon the transfer speed. The current TCP MSL of 2
 minutes seems acceptable as an operational compromise, as many
 host systems take this long to boot after a crash.

 However, the timestamp option may be used to ease the MSL
 requirements (or to provide additional security against data
 corruption). If timestamps are being used and if the timestamp
 clock can be guaranteed to be monotonic over a system
 crash/restart, i.e., if the first value of the sender’s timestamp
 clock after a crash/restart can be guaranteed to be greater than
 the last value before the restart, then a quiet time will be
 unnecessary.

 To dispense totally with the quiet time would require that the
 host clock be synchronized to a time source that is stable over
 the crash/restart period, with an accuracy of one timestamp clock
 tick or better. We can back off from this strict requirement to
 take advantage of approximate clock synchronization. Suppose that
 the clock is always re-synchronized to within N timestamp clock

Jacobson, Braden, & Borman [Page 27]

RFC 1323 TCP Extensions for High Performance May 1992

 ticks and that booting (extended with a quiet time, if necessary)
 takes more than N ticks. This will guarantee monotonicity of the
 timestamps, which can then be used to reject old duplicates even
 without an enforced MSL.

 B.2 Closing and Reopening a Connection

 When a TCP connection is closed, a delay of 2*MSL in TIME-WAIT
 state ties up the socket pair for 4 minutes (see Section 3.5 of
 [Postel81]. Applications built upon TCP that close one connection
 and open a new one (e.g., an FTP data transfer connection using
 Stream mode) must choose a new socket pair each time. The TIME-
 WAIT delay serves two different purposes:

 (a) Implement the full-duplex reliable close handshake of TCP.

 The proper time to delay the final close step is not really
 related to the MSL; it depends instead upon the RTO for the
 FIN segments and therefore upon the RTT of the path. (It
 could be argued that the side that is sending a FIN knows
 what degree of reliability it needs, and therefore it should
 be able to determine the length of the TIME-WAIT delay for
 the FIN’s recipient. This could be accomplished with an
 appropriate TCP option in FIN segments.)

 Although there is no formal upper-bound on RTT, common
 network engineering practice makes an RTT greater than 1
 minute very unlikely. Thus, the 4 minute delay in TIME-WAIT
 state works satisfactorily to provide a reliable full-duplex
 TCP close. Note again that this is independent of MSL
 enforcement and network speed.

 The TIME-WAIT state could cause an indirect performance
 problem if an application needed to repeatedly close one
 connection and open another at a very high frequency, since
 the number of available TCP ports on a host is less than
 2**16. However, high network speeds are not the major
 contributor to this problem; the RTT is the limiting factor
 in how quickly connections can be opened and closed.
 Therefore, this problem will be no worse at high transfer
 speeds.

 (b) Allow old duplicate segments to expire.

 To replace this function of TIME-WAIT state, a mechanism
 would have to operate across connections. PAWS is defined
 strictly within a single connection; the last timestamp is
 TS.Recent is kept in the connection control block, and

Jacobson, Braden, & Borman [Page 28]

RFC 1323 TCP Extensions for High Performance May 1992

 discarded when a connection is closed.

 An additional mechanism could be added to the TCP, a per-host
 cache of the last timestamp received from any connection.
 This value could then be used in the PAWS mechanism to reject
 old duplicate segments from earlier incarnations of the
 connection, if the timestamp clock can be guaranteed to have
 ticked at least once since the old connection was open. This
 would require that the TIME-WAIT delay plus the RTT together
 must be at least one tick of the sender’s timestamp clock.
 Such an extension is not part of the proposal of this RFC.

 Note that this is a variant on the mechanism proposed by
 Garlick, Rom, and Postel [Garlick77], which required each
 host to maintain connection records containing the highest
 sequence numbers on every connection. Using timestamps
 instead, it is only necessary to keep one quantity per remote
 host, regardless of the number of simultaneous connections to
 that host.

Jacobson, Braden, & Borman [Page 29]

RFC 1323 TCP Extensions for High Performance May 1992

APPENDIX C: CHANGES FROM RFC-1072, RFC-1185

 The protocol extensions defined in this document differ in several
 important ways from those defined in RFC-1072 and RFC-1185.

 (a) SACK has been deferred to a later memo.

 (b) The detailed rules for sending timestamp replies (see Section
 3.4) differ in important ways. The earlier rules could result
 in an under-estimate of the RTT in certain cases (packets
 dropped or out of order).

 (c) The same value TS.Recent is now shared by the two distinct
 mechanisms RTTM and PAWS. This simplification became possible
 because of change (b).

 (d) An ambiguity in RFC-1185 was resolved in favor of putting
 timestamps on ACK as well as data segments. This supports the
 symmetry of the underlying TCP protocol.

 (e) The echo and echo reply options of RFC-1072 were combined into a
 single Timestamps option, to reflect the symmetry and to
 simplify processing.

 (f) The problem of outdated timestamps on long-idle connections,
 discussed in Section 4.2.2, was realized and resolved.

 (g) RFC-1185 recommended that header prediction take precedence over
 the timestamp check. Based upon some scepticism about the
 probabilistic arguments given in Section 4.2.4, it was decided
 to recommend that the timestamp check be performed first.

 (h) The spec was modified so that the extended options will be sent
 on <SYN,ACK> segments only when they are received in the
 corresponding <SYN> segments. This provides the most
 conservative possible conditions for interoperation with
 implementations without the extensions.

 In addition to these substantive changes, the present RFC attempts to
 specify the algorithms unambiguously by presenting modifications to
 the Event Processing rules of RFC-793; see Appendix E.

Jacobson, Braden, & Borman [Page 30]

RFC 1323 TCP Extensions for High Performance May 1992

APPENDIX D: SUMMARY OF NOTATION

 The following notation has been used in this document.

 Options

 WSopt: TCP Window Scale Option
 TSopt: TCP Timestamps Option

 Option Fields

 shift.cnt: Window scale byte in WSopt.
 TSval: 32-bit Timestamp Value field in TSopt.
 TSecr: 32-bit Timestamp Reply field in TSopt.

 Option Fields in Current Segment

 SEG.TSval: TSval field from TSopt in current segment.
 SEG.TSecr: TSecr field from TSopt in current segment.
 SEG.WSopt: 8-bit value in WSopt

 Clock Values

 my.TSclock: Local source of 32-bit timestamp values
 my.TSclock.rate: Period of my.TSclock (1 ms to 1 sec).

 Per-Connection State Variables

 TS.Recent: Latest received Timestamp
 Last.ACK.sent: Last ACK field sent

 Snd.TS.OK: 1-bit flag
 Snd.WS.OK: 1-bit flag

 Rcv.Wind.Scale: Receive window scale power
 Snd.Wind.Scale: Send window scale power

Jacobson, Braden, & Borman [Page 31]

RFC 1323 TCP Extensions for High Performance May 1992

APPENDIX E: EVENT PROCESSING

Event Processing

 OPEN Call

 ...
 An initial send sequence number (ISS) is selected. Send a SYN
 segment of the form:

 <SEQ=ISS><CTL=SYN><TSval=my.TSclock><WSopt=Rcv.Wind.Scale>

 ...

 SEND Call

 CLOSED STATE (i.e., TCB does not exist)

 ...

 LISTEN STATE

 If the foreign socket is specified, then change the connection
 from passive to active, select an ISS. Send a SYN segment
 containing the options: <TSval=my.TSclock> and
 <WSopt=Rcv.Wind.Scale>. Set SND.UNA to ISS, SND.NXT to ISS+1.
 Enter SYN-SENT state. ...

 SYN-SENT STATE
 SYN-RECEIVED STATE

 ...

 ESTABLISHED STATE
 CLOSE-WAIT STATE

 Segmentize the buffer and send it with a piggybacked
 acknowledgment (acknowledgment value = RCV.NXT). ...

 If the urgent flag is set ...

 If the Snd.TS.OK flag is set, then include the TCP Timestamps
 option <TSval=my.TSclock,TSecr=TS.Recent> in each data segment.

 Scale the receive window for transmission in the segment header:

 SEG.WND = (SND.WND >> Rcv.Wind.Scale).

Jacobson, Braden, & Borman [Page 32]

RFC 1323 TCP Extensions for High Performance May 1992

 SEGMENT ARRIVES

 ...

 If the state is LISTEN then

 first check for an RST

 ...

 second check for an ACK

 ...

 third check for a SYN

 if the SYN bit is set, check the security. If the ...

 ...

 If the SEG.PRC is less than the TCB.PRC then continue.

 Check for a Window Scale option (WSopt); if one is found, save
 SEG.WSopt in Snd.Wind.Scale and set Snd.WS.OK flag on.
 Otherwise, set both Snd.Wind.Scale and Rcv.Wind.Scale to zero
 and clear Snd.WS.OK flag.

 Check for a TSopt option; if one is found, save SEG.TSval in the
 variable TS.Recent and turn on the Snd.TS.OK bit.

 Set RCV.NXT to SEG.SEQ+1, IRS is set to SEG.SEQ and any other
 control or text should be queued for processing later. ISS
 should be selected and a SYN segment sent of the form:

 <SEQ=ISS><ACK=RCV.NXT><CTL=SYN,ACK>

 If the Snd.WS.OK bit is on, include a WSopt option
 <WSopt=Rcv.Wind.Scale> in this segment. If the Snd.TS.OK bit is
 on, include a TSopt <TSval=my.TSclock,TSecr=TS.Recent> in this
 segment. Last.ACK.sent is set to RCV.NXT.

 SND.NXT is set to ISS+1 and SND.UNA to ISS. The connection
 state should be changed to SYN-RECEIVED. Note that any other
 incoming control or data (combined with SYN) will be processed
 in the SYN-RECEIVED state, but processing of SYN and ACK should
 not be repeated. If the listen was not fully specified (i.e.,
 the foreign socket was not fully specified), then the
 unspecified fields should be filled in now.

Jacobson, Braden, & Borman [Page 33]

RFC 1323 TCP Extensions for High Performance May 1992

 fourth other text or control

 ...

 If the state is SYN-SENT then

 first check the ACK bit

 ...

 fourth check the SYN bit

 ...

 If the SYN bit is on and the security/compartment and precedence
 are acceptable then, RCV.NXT is set to SEG.SEQ+1, IRS is set to
 SEG.SEQ, and any acknowledgements on the retransmission queue
 which are thereby acknowledged should be removed.

 Check for a Window Scale option (WSopt); if is found, save
 SEG.WSopt in Snd.Wind.Scale; otherwise, set both Snd.Wind.Scale
 and Rcv.Wind.Scale to zero.

 Check for a TSopt option; if one is found, save SEG.TSval in
 variable TS.Recent and turn on the Snd.TS.OK bit in the
 connection control block. If the ACK bit is set, use my.TSclock
 - SEG.TSecr as the initial RTT estimate.

 If SND.UNA > ISS (our SYN has been ACKed), change the connection
 state to ESTABLISHED, form an ACK segment:

 <SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK>

 and send it. If the Snd.Echo.OK bit is on, include a TSopt
 option <TSval=my.TSclock,TSecr=TS.Recent> in this ACK segment.
 Last.ACK.sent is set to RCV.NXT.

 Data or controls which were queued for transmission may be
 included. If there are other controls or text in the segment
 then continue processing at the sixth step below where the URG
 bit is checked, otherwise return.

 Otherwise enter SYN-RECEIVED, form a SYN,ACK segment:

 <SEQ=ISS><ACK=RCV.NXT><CTL=SYN,ACK>

 and send it. If the Snd.Echo.OK bit is on, include a TSopt
 option <TSval=my.TSclock,TSecr=TS.Recent> in this segment. If

Jacobson, Braden, & Borman [Page 34]

RFC 1323 TCP Extensions for High Performance May 1992

 the Snd.WS.OK bit is on, include a WSopt option
 <WSopt=Rcv.Wind.Scale> in this segment. Last.ACK.sent is set to
 RCV.NXT.

 If there are other controls or text in the segment, queue them
 for processing after the ESTABLISHED state has been reached,
 return.

 fifth, if neither of the SYN or RST bits is set then drop the
 segment and return.

 Otherwise,

 First, check sequence number

 SYN-RECEIVED STATE
 ESTABLISHED STATE
 FIN-WAIT-1 STATE
 FIN-WAIT-2 STATE
 CLOSE-WAIT STATE
 CLOSING STATE
 LAST-ACK STATE
 TIME-WAIT STATE

 Segments are processed in sequence. Initial tests on arrival
 are used to discard old duplicates, but further processing is
 done in SEG.SEQ order. If a segment’s contents straddle the
 boundary between old and new, only the new parts should be
 processed.

 Rescale the received window field:

 TrueWindow = SEG.WND << Snd.Wind.Scale,

 and use "TrueWindow" in place of SEG.WND in the following steps.

 Check whether the segment contains a Timestamps option and bit
 Snd.TS.OK is on. If so:

 If SEG.TSval < TS.Recent, then test whether connection has
 been idle less than 24 days; if both are true, then the
 segment is not acceptable; follow steps below for an
 unacceptable segment.

 If SEG.SEQ is equal to Last.ACK.sent, then save SEG.ECopt in
 variable TS.Recent.

Jacobson, Braden, & Borman [Page 35]

RFC 1323 TCP Extensions for High Performance May 1992

 There are four cases for the acceptability test for an incoming
 segment:

 ...

 If an incoming segment is not acceptable, an acknowledgment
 should be sent in reply (unless the RST bit is set, if so drop
 the segment and return):

 <SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK>

 Last.ACK.sent is set to SEG.ACK of the acknowledgment. If the
 Snd.Echo.OK bit is on, include the Timestamps option
 <TSval=my.TSclock,TSecr=TS.Recent> in this ACK segment. Set
 Last.ACK.sent to SEG.ACK and send the ACK segment. After
 sending the acknowledgment, drop the unacceptable segment and
 return.

 ...

 fifth check the ACK field.

 if the ACK bit is off drop the segment and return.

 if the ACK bit is on

 ...

 ESTABLISHED STATE

 If SND.UNA < SEG.ACK =< SND.NXT then, set SND.UNA <- SEG.ACK.
 Also compute a new estimate of round-trip time. If Snd.TS.OK
 bit is on, use my.TSclock - SEG.TSecr; otherwise use the
 elapsed time since the first segment in the retransmission
 queue was sent. Any segments on the retransmission queue
 which are thereby entirely acknowledged...

 ...

 Seventh, process the segment text.

 ESTABLISHED STATE
 FIN-WAIT-1 STATE
 FIN-WAIT-2 STATE

 ...

 Send an acknowledgment of the form:

Jacobson, Braden, & Borman [Page 36]

RFC 1323 TCP Extensions for High Performance May 1992

 <SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK>

 If the Snd.TS.OK bit is on, include Timestamps option
 <TSval=my.TSclock,TSecr=TS.Recent> in this ACK segment. Set
 Last.ACK.sent to SEG.ACK of the acknowledgment, and send it.
 This acknowledgment should be piggy-backed on a segment being
 transmitted if possible without incurring undue delay.

 ...

Security Considerations

 Security issues are not discussed in this memo.

Authors’ Addresses

 Van Jacobson
 University of California
 Lawrence Berkeley Laboratory
 Mail Stop 46A
 Berkeley, CA 94720

 Phone: (415) 486-6411
 EMail: van@CSAM.LBL.GOV

 Bob Braden
 University of Southern California
 Information Sciences Institute
 4676 Admiralty Way
 Marina del Rey, CA 90292

 Phone: (310) 822-1511
 EMail: Braden@ISI.EDU

 Dave Borman
 Cray Research
 655-E Lone Oak Drive
 Eagan, MN 55121

 Phone: (612) 683-5571
 Email: dab@cray.com

Jacobson, Braden, & Borman [Page 37]

