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Status of This Memo

   This RFC specifies an IAB standards track protocol for the Internet
   community, and requests discussion and suggestions for improvements.
   Please refer to the current edition of the "IAB Official Protocol
   Standards" for the standardization state and status of this protocol.
   Distribution of this memo is unlimited.

Abstract

   This memo presents a set of TCP extensions to improve performance
   over large bandwidth*delay product paths and to provide reliable
   operation over very high-speed paths.  It defines new TCP options for
   scaled windows and timestamps, which are designed to provide
   compatible interworking with TCP’s that do not implement the
   extensions.  The timestamps are used for two distinct mechanisms:
   RTTM (Round Trip Time Measurement) and PAWS (Protect Against Wrapped
   Sequences).  Selective acknowledgments are not included in this memo.

   This memo combines and supersedes RFC-1072 and RFC-1185, adding
   additional clarification and more detailed specification.  Appendix C
   summarizes the changes from the earlier RFCs.
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1. INTRODUCTION

   The TCP protocol [Postel81] was designed to operate reliably over
   almost any transmission medium regardless of transmission rate,
   delay, corruption, duplication, or reordering of segments.
   Production TCP implementations currently adapt to transfer rates in
   the range of 100 bps to 10**7 bps and round-trip delays in the range
   1 ms to 100 seconds.  Recent work on TCP performance has shown that
   TCP can work well over a variety of Internet paths, ranging from 800
   Mbit/sec I/O channels to 300 bit/sec dial-up modems [Jacobson88a].

   The introduction of fiber optics is resulting in ever-higher
   transmission speeds, and the fastest paths are moving out of the
   domain for which TCP was originally engineered.  This memo defines a
   set of modest extensions to TCP to extend the domain of its
   application to match this increasing network capability.  It is based
   upon and obsoletes RFC-1072 [Jacobson88b] and RFC-1185 [Jacobson90b].

   There is no one-line answer to the question: "How fast can TCP go?".
   There are two separate kinds of issues, performance and reliability,
   and each depends upon different parameters.  We discuss each in turn.

   1.1  TCP Performance

      TCP performance depends not upon the transfer rate itself, but
      rather upon the product of the transfer rate and the round-trip
      delay.  This "bandwidth*delay product" measures the amount of data
      that would "fill the pipe"; it is the buffer space required at
      sender and receiver to obtain maximum throughput on the TCP
      connection over the path, i.e., the amount of unacknowledged data
      that TCP must handle in order to keep the pipeline full.  TCP
      performance problems arise when the bandwidth*delay product is
      large.  We refer to an Internet path operating in this region as a
      "long, fat pipe", and a network containing this path as an "LFN"
      (pronounced "elephan(t)").

      High-capacity packet satellite channels (e.g., DARPA’s Wideband
      Net) are LFN’s.  For example, a DS1-speed satellite channel has a
      bandwidth*delay product of 10**6 bits or more; this corresponds to
      100 outstanding TCP segments of 1200 bytes each.  Terrestrial
      fiber-optical paths will also fall into the LFN class; for
      example, a cross-country delay of 30 ms at a DS3 bandwidth
      (45Mbps) also exceeds 10**6 bits.

      There are three fundamental performance problems with the current
      TCP over LFN paths:
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      (1)  Window Size Limit

           The TCP header uses a 16 bit field to report the receive
           window size to the sender.  Therefore, the largest window
           that can be used is 2**16 = 65K bytes.

           To circumvent this problem, Section 2 of this memo defines a
           new TCP option, "Window Scale", to allow windows larger than
           2**16.  This option defines an implicit scale factor, which
           is used to multiply the window size value found in a TCP
           header to obtain the true window size.

      (2)  Recovery from Losses

           Packet losses in an LFN can have a catastrophic effect on
           throughput.  Until recently, properly-operating TCP
           implementations would cause the data pipeline to drain with
           every packet loss, and require a slow-start action to
           recover.  Recently, the Fast Retransmit and Fast Recovery
           algorithms [Jacobson90c] have been introduced.  Their
           combined effect is to recover from one packet loss per
           window, without draining the pipeline.  However, more than
           one packet loss per window typically results in a
           retransmission timeout and the resulting pipeline drain and
           slow start.

           Expanding the window size to match the capacity of an LFN
           results in a corresponding increase of the probability of
           more than one packet per window being dropped.  This could
           have a devastating effect upon the throughput of TCP over an
           LFN.  In addition, if a congestion control mechanism based
           upon some form of random dropping were introduced into
           gateways, randomly spaced packet drops would become common,
           possible increasing the probability of dropping more than one
           packet per window.

           To generalize the Fast Retransmit/Fast Recovery mechanism to
           handle multiple packets dropped per window, selective
           acknowledgments are required.  Unlike the normal cumulative
           acknowledgments of TCP, selective acknowledgments give the
           sender a complete picture of which segments are queued at the
           receiver and which have not yet arrived.  Some evidence in
           favor of selective acknowledgments has been published
           [NBS85], and selective acknowledgments have been included in
           a number of experimental Internet protocols -- VMTP
           [Cheriton88], NETBLT [Clark87], and RDP [Velten84], and
           proposed for OSI TP4 [NBS85].  However, in the non-LFN
           regime, selective acknowledgments reduce the number of
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           packets retransmitted but do not otherwise improve
           performance, making their complexity of questionable value.
           However, selective acknowledgments are expected to become
           much more important in the LFN regime.

           RFC-1072 defined a new TCP "SACK" option to send a selective
           acknowledgment.  However, there are important technical
           issues to be worked out concerning both the format and
           semantics of the SACK option.  Therefore, SACK has been
           omitted from this package of extensions.  It is hoped that
           SACK can "catch up" during the standardization process.

      (3)  Round-Trip Measurement

           TCP implements reliable data delivery by retransmitting
           segments that are not acknowledged within some retransmission
           timeout (RTO) interval.  Accurate dynamic determination of an
           appropriate RTO is essential to TCP performance.  RTO is
           determined by estimating the mean and variance of the
           measured round-trip time (RTT), i.e., the time interval
           between sending a segment and receiving an acknowledgment for
           it [Jacobson88a].

           Section 4 introduces a new TCP option, "Timestamps", and then
           defines a mechanism using this option that allows nearly
           every segment, including retransmissions, to be timed at
           negligible computational cost.  We use the mnemonic RTTM
           (Round Trip Time Measurement) for this mechanism, to
           distinguish it from other uses of the Timestamps option.

   1.2 TCP Reliability

      Now we turn from performance to reliability.  High transfer rate
      enters TCP performance through the bandwidth*delay product.
      However, high transfer rate alone can threaten TCP reliability by
      violating the assumptions behind the TCP mechanism for duplicate
      detection and sequencing.

      An especially serious kind of error may result from an accidental
      reuse of TCP sequence numbers in data segments.  Suppose that an
      "old duplicate segment", e.g., a duplicate data segment that was
      delayed in Internet queues, is delivered to the receiver at the
      wrong moment, so that its sequence numbers falls somewhere within
      the current window.  There would be no checksum failure to warn of
      the error, and the result could be an undetected corruption of the
      data.  Reception of an old duplicate ACK segment at the
      transmitter could be only slightly less serious: it is likely to
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      lock up the connection so that no further progress can be made,
      forcing an RST on the connection.

      TCP reliability depends upon the existence of a bound on the
      lifetime of a segment: the "Maximum Segment Lifetime" or MSL.  An
      MSL is generally required by any reliable transport protocol,
      since every sequence number field must be finite, and therefore
      any sequence number may eventually be reused.  In the Internet
      protocol suite, the MSL bound is enforced by an IP-layer
      mechanism, the "Time-to-Live" or TTL field.

      Duplication of sequence numbers might happen in either of two
      ways:

      (1)  Sequence number wrap-around on the current connection

           A TCP sequence number contains 32 bits.  At a high enough
           transfer rate, the 32-bit sequence space may be "wrapped"
           (cycled) within the time that a segment is delayed in queues.

      (2)  Earlier incarnation of the connection

           Suppose that a connection terminates, either by a proper
           close sequence or due to a host crash, and the same
           connection (i.e., using the same pair of sockets) is
           immediately reopened.  A delayed segment from the terminated
           connection could fall within the current window for the new
           incarnation and be accepted as valid.

      Duplicates from earlier incarnations, Case (2), are avoided by
      enforcing the current fixed MSL of the TCP spec, as explained in
      Section 5.3 and Appendix B.   However, case (1), avoiding the
      reuse of sequence numbers within the same connection, requires an
      MSL bound that depends upon the transfer rate, and at high enough
      rates, a new mechanism is required.

      More specifically, if the maximum effective bandwidth at which TCP
      is able to transmit over a particular path is B bytes per second,
      then the following constraint must be satisfied for error-free
      operation:

          2**31 / B  > MSL (secs)                     [1]

      The following table shows the value for Twrap = 2**31/B in
      seconds, for some important values of the bandwidth B:

Jacobson, Braden, & Borman                                      [Page 5]



RFC 1323          TCP Extensions for High Performance           May 1992

           Network       B*8          B         Twrap
                      bits/sec   bytes/sec      secs
           _______    _______      ______       ______

           ARPANET       56kbps       7KBps    3*10**5 (˜3.6 days)

           DS1          1.5Mbps     190KBps    10**4 (˜3 hours)

           Ethernet      10Mbps    1.25MBps    1700 (˜30 mins)

           DS3           45Mbps     5.6MBps    380

           FDDI         100Mbps    12.5MBps    170

           Gigabit        1Gbps     125MBps    17

      It is clear that wrap-around of the sequence space is not a
      problem for 56kbps packet switching or even 10Mbps Ethernets.  On
      the other hand, at DS3 and FDDI speeds, Twrap is comparable to the
      2 minute MSL assumed by the TCP specification [Postel81].  Moving
      towards gigabit speeds, Twrap becomes too small for reliable
      enforcement by the Internet TTL mechanism.

      The 16-bit window field of TCP limits the effective bandwidth B to
      2**16/RTT, where RTT is the round-trip time in seconds
      [McKenzie89].  If the RTT is large enough, this limits B to a
      value that meets the constraint [1] for a large MSL value.  For
      example, consider a transcontinental backbone with an RTT of 60ms
      (set by the laws of physics).  With the bandwidth*delay product
      limited to 64KB by the TCP window size, B is then limited to
      1.1MBps, no matter how high the theoretical transfer rate of the
      path.  This corresponds to cycling the sequence number space in
      Twrap= 2000 secs, which is safe in today’s Internet.

      It is important to understand that the culprit is not the larger
      window but rather the high bandwidth.  For example, consider a
      (very large) FDDI LAN with a diameter of 10km.  Using the speed of
      light, we can compute the RTT across the ring as
      (2*10**4)/(3*10**8) = 67 microseconds, and the delay*bandwidth
      product is then 833 bytes.  A TCP connection across this LAN using
      a window of only 833 bytes will run at the full 100mbps and can
      wrap the sequence space in about 3 minutes, very close to the MSL
      of TCP.  Thus, high speed alone can cause a reliability problem
      with sequence number wrap-around, even without extended windows.

      Watson’s Delta-T protocol [Watson81] includes network-layer
      mechanisms for precise enforcement of an MSL.  In contrast, the IP
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      mechanism for MSL enforcement is loosely defined and even more
      loosely implemented in the Internet.  Therefore, it is unwise to
      depend upon active enforcement of MSL for TCP connections, and it
      is unrealistic to imagine setting MSL’s smaller than the current
      values (e.g., 120 seconds specified for TCP).

      A possible fix for the problem of cycling the sequence space would
      be to increase the size of the TCP sequence number field.  For
      example, the sequence number field (and also the acknowledgment
      field) could be expanded to 64 bits.  This could be done either by
      changing the TCP header or by means of an additional option.

      Section 5 presents a different mechanism, which we call PAWS
      (Protect Against Wrapped Sequence numbers), to extend TCP
      reliability to transfer rates well beyond the foreseeable upper
      limit of network bandwidths.  PAWS uses the TCP Timestamps option
      defined in Section 4 to protect against old duplicates from the
      same connection.

   1.3 Using TCP options

      The extensions defined in this memo all use new TCP options.  We
      must address two possible issues concerning the use of TCP
      options: (1) compatibility and (2) overhead.

      We must pay careful attention to compatibility, i.e., to
      interoperation with existing implementations.  The only TCP option
      defined previously, MSS, may appear only on a SYN segment.  Every
      implementation should (and we expect that most will) ignore
      unknown options on SYN segments.  However, some buggy TCP
      implementation might be crashed by the first appearance of an
      option on a non-SYN segment.  Therefore, for each of the
      extensions defined below, TCP options will be sent on non-SYN
      segments only when an exchange of options on the SYN segments has
      indicated that both sides understand the extension.  Furthermore,
      an extension option will be sent in a <SYN,ACK> segment only if
      the corresponding option was received in the initial <SYN>
      segment.

      A question may be raised about the bandwidth and processing
      overhead for TCP options.  Those options that occur on SYN
      segments are not likely to cause a performance concern.  Opening a
      TCP connection requires execution of significant special-case
      code, and the processing of options is unlikely to increase that
      cost significantly.

      On the other hand, a Timestamps option may appear in any data or
      ACK segment, adding 12 bytes to the 20-byte TCP header.  We
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      believe that the bandwidth saved by reducing unnecessary
      retransmissions will more than pay for the extra header bandwidth.

      There is also an issue about the processing overhead for parsing
      the variable byte-aligned format of options, particularly with a
      RISC-architecture CPU.  To meet this concern, Appendix A contains
      a recommended layout of the options in TCP headers to achieve
      reasonable data field alignment.  In the spirit of Header
      Prediction, a TCP can quickly test for this layout and if it is
      verified then use a fast path.  Hosts that use this canonical
      layout will effectively use the options as a set of fixed-format
      fields appended to the TCP header.  However, to retain the
      philosophical and protocol framework of TCP options, a TCP must be
      prepared to parse an arbitrary options field, albeit with less
      efficiency.

      Finally, we observe that most of the mechanisms defined in this
      memo are important for LFN’s and/or very high-speed networks.  For
      low-speed networks, it might be a performance optimization to NOT
      use these mechanisms.  A TCP vendor concerned about optimal
      performance over low-speed paths might consider turning these
      extensions off for low-speed paths, or allow a user or
      installation manager to disable them.

2. TCP WINDOW SCALE OPTION

   2.1  Introduction

      The window scale extension expands the definition of the TCP
      window to 32 bits and then uses a scale factor to carry this 32-
      bit value in the 16-bit Window field of the TCP header (SEG.WND in
      RFC-793).  The scale factor is carried in a new TCP option, Window
      Scale.  This option is sent only in a SYN segment (a segment with
      the SYN bit on), hence the window scale is fixed in each direction
      when a connection is opened.  (Another design choice would be to
      specify the window scale in every TCP segment.  It would be
      incorrect to send a window scale option only when the scale factor
      changed, since a TCP option in an acknowledgement segment will not
      be delivered reliably (unless the ACK happens to be piggy-backed
      on data in the other direction).  Fixing the scale when the
      connection is opened has the advantage of lower overhead but the
      disadvantage that the scale factor cannot be changed during the
      connection.)

      The maximum receive window, and therefore the scale factor, is
      determined by the maximum receive buffer space.  In a typical
      modern implementation, this maximum buffer space is set by default
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      but can be overridden by a user program before a TCP connection is
      opened.  This determines the scale factor, and therefore no new
      user interface is needed for window scaling.

   2.2  Window Scale Option

      The three-byte Window Scale option may be sent in a SYN segment by
      a TCP.  It has two purposes: (1) indicate that the TCP is prepared
      to do both send and receive window scaling, and (2) communicate a
      scale factor to be applied to its receive window.  Thus, a TCP
      that is prepared to scale windows should send the option, even if
      its own scale factor is 1.  The scale factor is limited to a power
      of two and encoded logarithmically, so it may be implemented by
      binary shift operations.

      TCP Window Scale Option (WSopt):

         Kind: 3 Length: 3 bytes

                +---------+---------+---------+
                | Kind=3  |Length=3 |shift.cnt|
                +---------+---------+---------+

         This option is an offer, not a promise; both sides must send
         Window Scale options in their SYN segments to enable window
         scaling in either direction.  If window scaling is enabled,
         then the TCP that sent this option will right-shift its true
         receive-window values by ’shift.cnt’ bits for transmission in
         SEG.WND.  The value ’shift.cnt’ may be zero (offering to scale,
         while applying a scale factor of 1 to the receive window).

         This option may be sent in an initial <SYN> segment (i.e., a
         segment with the SYN bit on and the ACK bit off).  It may also
         be sent in a <SYN,ACK> segment, but only if a Window Scale op-
         tion was received in the initial <SYN> segment.  A Window Scale
         option in a segment without a SYN bit should be ignored.

         The Window field in a SYN (i.e., a <SYN> or <SYN,ACK>) segment
         itself is never scaled.

   2.3  Using the Window Scale Option

      A model implementation of window scaling is as follows, using the
      notation of RFC-793 [Postel81]:

      *    All windows are treated as 32-bit quantities for storage in
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           the connection control block and for local calculations.
           This includes the send-window (SND.WND) and the receive-
           window (RCV.WND) values, as well as the congestion window.

      *    The connection state is augmented by two window shift counts,
           Snd.Wind.Scale and Rcv.Wind.Scale, to be applied to the
           incoming and outgoing window fields, respectively.

      *    If a TCP receives a <SYN> segment containing a Window Scale
           option, it sends its own Window Scale option in the <SYN,ACK>
           segment.

      *    The Window Scale option is sent with shift.cnt = R, where R
           is the value that the TCP would like to use for its receive
           window.

      *    Upon receiving a SYN segment with a Window Scale option
           containing shift.cnt = S, a TCP sets Snd.Wind.Scale to S and
           sets Rcv.Wind.Scale to R; otherwise, it sets both
           Snd.Wind.Scale and Rcv.Wind.Scale to zero.

      *    The window field (SEG.WND) in the header of every incoming
           segment, with the exception of SYN segments, is left-shifted
           by Snd.Wind.Scale bits before updating SND.WND:

              SND.WND = SEG.WND << Snd.Wind.Scale

           (assuming the other conditions of RFC793 are met, and using
           the "C" notation "<<" for left-shift).

      *    The window field (SEG.WND) of every outgoing segment, with
           the exception of SYN segments, is right-shifted by
           Rcv.Wind.Scale bits:

              SEG.WND = RCV.WND >> Rcv.Wind.Scale.

      TCP determines if a data segment is "old" or "new" by testing
      whether its sequence number is within 2**31 bytes of the left edge
      of the window, and if it is not, discarding the data as "old".  To
      insure that new data is never mistakenly considered old and vice-
      versa, the left edge of the sender’s window has to be at most
      2**31 away from the right edge of the receiver’s window.
      Similarly with the sender’s right edge and receiver’s left edge.
      Since the right and left edges of either the sender’s or
      receiver’s window differ by the window size, and since the sender
      and receiver windows can be out of phase by at most the window
      size, the above constraints imply that 2 * the max window size
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      must be less than 2**31, or

           max window < 2**30

      Since the max window is 2**S (where S is the scaling shift count)
      times at most 2**16 - 1 (the maximum unscaled window), the maximum
      window is guaranteed to be < 2*30 if S <= 14.  Thus, the shift
      count must be limited to 14 (which allows windows of 2**30 = 1
      Gbyte).  If a Window Scale option is received with a shift.cnt
      value exceeding 14, the TCP should log the error but use 14
      instead of the specified value.

      The scale factor applies only to the Window field as transmitted
      in the TCP header; each TCP using extended windows will maintain
      the window values locally as 32-bit numbers.  For example, the
      "congestion window" computed by Slow Start and Congestion
      Avoidance is not affected by the scale factor, so window scaling
      will not introduce quantization into the congestion window.

3.  RTTM: ROUND-TRIP TIME MEASUREMENT

   3.1  Introduction

      Accurate and current RTT estimates are necessary to adapt to
      changing traffic conditions and to avoid an instability known as
      "congestion collapse" [Nagle84] in a busy network.  However,
      accurate measurement of RTT may be difficult both in theory and in
      implementation.

      Many TCP implementations base their RTT measurements upon a sample
      of only one packet per window.  While this yields an adequate
      approximation to the RTT for small windows, it results in an
      unacceptably poor RTT estimate for an LFN.  If we look at RTT
      estimation as a signal processing problem (which it is), a data
      signal at some frequency, the packet rate, is being sampled at a
      lower frequency, the window rate.  This lower sampling frequency
      violates Nyquist’s criteria and may therefore introduce "aliasing"
      artifacts into the estimated RTT [Hamming77].

      A good RTT estimator with a conservative retransmission timeout
      calculation can tolerate aliasing when the sampling frequency is
      "close" to the data frequency.   For example, with a window of 8
      packets, the sample rate is 1/8 the data frequency -- less than an
      order of magnitude different.  However, when the window is tens or
      hundreds of packets, the RTT estimator may be seriously in error,
      resulting in spurious retransmissions.

      If there are dropped packets, the problem becomes worse.  Zhang
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      [Zhang86], Jain [Jain86] and Karn [Karn87] have shown that it is
      not possible to accumulate reliable RTT estimates if retransmitted
      segments are included in the estimate.  Since a full window of
      data will have been transmitted prior to a retransmission, all of
      the segments in that window will have to be ACKed before the next
      RTT sample can be taken.  This means at least an additional
      window’s worth of time between RTT measurements and, as the error
      rate approaches one per window of data (e.g., 10**-6 errors per
      bit for the Wideband satellite network), it becomes effectively
      impossible to obtain a valid RTT measurement.

      A solution to these problems, which actually simplifies the sender
      substantially, is as follows: using TCP options, the sender places
      a timestamp in each data segment, and the receiver reflects these
      timestamps back in ACK segments.  Then a single subtract gives the
      sender an accurate RTT measurement for every ACK segment (which
      will correspond to every other data segment, with a sensible
      receiver).  We call this the RTTM (Round-Trip Time Measurement)
      mechanism.

      It is vitally important to use the RTTM mechanism with big
      windows; otherwise, the door is opened to some dangerous
      instabilities due to aliasing.  Furthermore, the option is
      probably useful for all TCP’s, since it simplifies the sender.

   3.2  TCP Timestamps Option

      TCP is a symmetric protocol, allowing data to be sent at any time
      in either direction, and therefore timestamp echoing may occur in
      either direction.  For simplicity and symmetry, we specify that
      timestamps always be sent and echoed in both directions.  For
      efficiency, we combine the timestamp and timestamp reply fields
      into a single TCP Timestamps Option.
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      TCP Timestamps Option (TSopt):

         Kind: 8

         Length: 10 bytes

          +-------+-------+---------------------+---------------------+
          |Kind=8 |  10   |   TS Value (TSval)  |TS Echo Reply (TSecr)|
          +-------+-------+---------------------+---------------------+
              1       1              4                     4

         The Timestamps option carries two four-byte timestamp fields.
         The Timestamp Value field (TSval) contains the current value of
         the timestamp clock of the TCP sending the option.

         The Timestamp Echo Reply field (TSecr) is only valid if the ACK
         bit is set in the TCP header; if it is valid, it echos a times-
         tamp value that was sent by the remote TCP in the TSval field
         of a Timestamps option.  When TSecr is not valid, its value
         must be zero.  The TSecr value will generally be from the most
         recent Timestamp option that was received; however, there are
         exceptions that are explained below.

         A TCP may send the Timestamps option (TSopt) in an initial
         <SYN> segment (i.e., segment containing a SYN bit and no ACK
         bit), and may send a TSopt in other segments only if it re-
         ceived a TSopt in the initial <SYN> segment for the connection.

   3.3 The RTTM Mechanism

      The timestamp value to be sent in TSval is to be obtained from a
      (virtual) clock that we call the "timestamp clock".  Its values
      must be at least approximately proportional to real time, in order
      to measure actual RTT.

      The following example illustrates a one-way data flow with
      segments arriving in sequence without loss.  Here A, B, C...
      represent data blocks occupying successive blocks of sequence
      numbers, and ACK(A),...  represent the corresponding cumulative
      acknowledgments.  The two timestamp fields of the Timestamps
      option are shown symbolically as <TSval= x,TSecr=y>.  Each TSecr
      field contains the value most recently received in a TSval field.
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         TCP  A                                          TCP B

                        <A,TSval=1,TSecr=120> ------>

             <---- <ACK(A),TSval=127,TSecr=1>

                        <B,TSval=5,TSecr=127> ------>

             <---- <ACK(B),TSval=131,TSecr=5>

             . . . . . . . . . . . . . . . . . . . . . .

                        <C,TSval=65,TSecr=131> ------>

             <---- <ACK(C),TSval=191,TSecr=65>

                        (etc)

      The dotted line marks a pause (60 time units long) in which A had
      nothing to send.  Note that this pause inflates the RTT which B
      could infer from receiving TSecr=131 in data segment C.  Thus, in
      one-way data flows, RTTM in the reverse direction measures a value
      that is inflated by gaps in sending data.  However, the following
      rule prevents a resulting inflation of the measured RTT:

           A TSecr value received in a segment is used to update the
           averaged RTT measurement only if the segment acknowledges
           some new data, i.e., only if it advances the left edge of the
           send window.

      Since TCP B is not sending data, the data segment C does not
      acknowledge any new data when it arrives at B.  Thus, the inflated
      RTTM measurement is not used to update B’s RTTM measurement.

   3.4  Which Timestamp to Echo

      If more than one Timestamps option is received before a reply
      segment is sent, the TCP must choose only one of the TSvals to
      echo, ignoring the others.  To minimize the state kept in the
      receiver (i.e., the number of unprocessed TSvals), the receiver
      should be required to retain at most one timestamp in the
      connection control block.
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      There are three situations to consider:

      (A)  Delayed ACKs.

           Many TCP’s acknowledge only every Kth segment out of a group
           of segments arriving within a short time interval; this
           policy is known generally as "delayed ACKs".  The data-sender
           TCP must measure the effective RTT, including the additional
           time due to delayed ACKs, or else it will retransmit
           unnecessarily.  Thus, when delayed ACKs are in use, the
           receiver should reply with the TSval field from the earliest
           unacknowledged segment.

      (B)  A hole in the sequence space (segment(s) have been lost).

           The sender will continue sending until the window is filled,
           and the receiver may be generating ACKs as these out-of-order
           segments arrive (e.g., to aid "fast retransmit").

           The lost segment is probably a sign of congestion, and in
           that situation the sender should be conservative about
           retransmission.  Furthermore, it is better to overestimate
           than underestimate the RTT.  An ACK for an out-of-order
           segment should therefore contain the timestamp from the most
           recent segment that advanced the window.

           The same situation occurs if segments are re-ordered by the
           network.

      (C)  A filled hole in the sequence space.

           The segment that fills the hole represents the most recent
           measurement of the network characteristics.  On the other
           hand, an RTT computed from an earlier segment would probably
           include the sender’s retransmit time-out, badly biasing the
           sender’s average RTT estimate.  Thus, the timestamp from the
           latest segment (which filled the hole) must be echoed.

      An algorithm that covers all three cases is described in the
      following rules for Timestamps option processing on a synchronized
      connection:

      (1)  The connection state is augmented with two 32-bit slots:
           TS.Recent holds a timestamp to be echoed in TSecr whenever a
           segment is sent, and Last.ACK.sent holds the ACK field from
           the last segment sent.  Last.ACK.sent will equal RCV.NXT
           except when ACKs have been delayed.
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      (2)  If Last.ACK.sent falls within the range of sequence numbers
           of an incoming segment:

              SEG.SEQ <= Last.ACK.sent < SEG.SEQ + SEG.LEN

           then the TSval from the segment is copied to TS.Recent;
           otherwise, the TSval is ignored.

      (3)  When a TSopt is sent, its TSecr field is set to the current
           TS.Recent value.

      The following examples illustrate these rules.  Here A, B, C...
      represent data segments occupying successive blocks of sequence
      numbers, and ACK(A),...  represent the corresponding
      acknowledgment segments.  Note that ACK(A) has the same sequence
      number as B.  We show only one direction of timestamp echoing, for
      clarity.

      o    Packets arrive in sequence, and some of the ACKs are delayed.

           By Case (A), the timestamp from the oldest unacknowledged
           segment is echoed.

                                                      TS.Recent
                    <A, TSval=1> ------------------->
                                                          1
                    <B, TSval=2> ------------------->
                                                          1
                    <C, TSval=3> ------------------->
                                                          1
                             <---- <ACK(C), TSecr=1>
                    (etc)

      o    Packets arrive out of order, and every packet is
           acknowledged.

           By Case (B), the timestamp from the last segment that
           advanced the left window edge is echoed, until the missing
           segment arrives; it is echoed according to Case (C).  The
           same sequence would occur if segments B and D were lost and
           retransmitted..
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                                                      TS.Recent
                    <A, TSval=1> ------------------->
                                                          1
                             <---- <ACK(A), TSecr=1>
                                                          1
                    <C, TSval=3> ------------------->
                                                          1
                             <---- <ACK(A), TSecr=1>
                                                          1
                    <B, TSval=2> ------------------->
                                                          2
                             <---- <ACK(C), TSecr=2>
                                                          2
                    <E, TSval=5> ------------------->
                                                          2
                             <---- <ACK(C), TSecr=2>
                                                          2
                    <D, TSval=4> ------------------->
                                                          4
                             <---- <ACK(E), TSecr=4>
                    (etc)

4.  PAWS: PROTECT AGAINST WRAPPED SEQUENCE NUMBERS

   4.1  Introduction

      Section 4.2 describes a simple mechanism to reject old duplicate
      segments that might corrupt an open TCP connection; we call this
      mechanism PAWS (Protect Against Wrapped Sequence numbers).  PAWS
      operates within a single TCP connection, using state that is saved
      in the connection control block.  Section 4.3 and Appendix C
      discuss the implications of the PAWS mechanism for avoiding old
      duplicates from previous incarnations of the same connection.

   4.2  The PAWS Mechanism

      PAWS uses the same TCP Timestamps option as the RTTM mechanism
      described earlier, and assumes that every received TCP segment
      (including data and ACK segments) contains a timestamp SEG.TSval
      whose values are monotone non-decreasing in time.  The basic idea
      is that a segment can be discarded as an old duplicate if it is
      received with a timestamp SEG.TSval less than some timestamp
      recently received on this connection.

      In both the PAWS and the RTTM mechanism, the "timestamps" are 32-
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      bit unsigned integers in a modular 32-bit space.  Thus, "less
      than" is defined the same way it is for TCP sequence numbers, and
      the same implementation techniques apply.  If s and t are
      timestamp values, s < t if 0 < (t - s) < 2**31, computed in
      unsigned 32-bit arithmetic.

      The choice of incoming timestamps to be saved for this comparison
      must guarantee a value that is monotone increasing.  For example,
      we might save the timestamp from the segment that last advanced
      the left edge of the receive window, i.e., the most recent in-
      sequence segment.  Instead, we choose the value TS.Recent
      introduced in Section 3.4 for the RTTM mechanism, since using a
      common value for both PAWS and RTTM simplifies the implementation
      of both.  As Section 3.4 explained, TS.Recent differs from the
      timestamp from the last in-sequence segment only in the case of
      delayed ACKs, and therefore by less than one window.  Either
      choice will therefore protect against sequence number wrap-around.

      RTTM was specified in a symmetrical manner, so that TSval
      timestamps are carried in both data and ACK segments and are
      echoed in TSecr fields carried in returning ACK or data segments.
      PAWS submits all incoming segments to the same test, and therefore
      protects against duplicate ACK segments as well as data segments.
      (An alternative un-symmetric algorithm would protect against old
      duplicate ACKs: the sender of data would reject incoming ACK
      segments whose TSecr values were less than the TSecr saved from
      the last segment whose ACK field advanced the left edge of the
      send window.  This algorithm was deemed to lack economy of
      mechanism and symmetry.)

      TSval timestamps sent on {SYN} and {SYN,ACK} segments are used to
      initialize PAWS.  PAWS protects against old duplicate non-SYN
      segments, and duplicate SYN segments received while there is a
      synchronized connection.  Duplicate {SYN} and {SYN,ACK} segments
      received when there is no connection will be discarded by the
      normal 3-way handshake and sequence number checks of TCP.

      It is recommended that RST segments NOT carry timestamps, and that
      RST segments be acceptable regardless of their timestamp.  Old
      duplicate RST segments should be exceedingly unlikely, and their
      cleanup function should take precedence over timestamps.

      4.2.1  Basic PAWS Algorithm

         The PAWS algorithm requires the following processing to be
         performed on all incoming segments for a synchronized
         connection:
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         R1)  If there is a Timestamps option in the arriving segment
              and SEG.TSval < TS.Recent and if TS.Recent is valid (see
              later discussion), then treat the arriving segment as not
              acceptable:

                   Send an acknowledgement in reply as specified in
                   RFC-793 page 69 and drop the segment.

                   Note: it is necessary to send an ACK segment in order
                   to retain TCP’s mechanisms for detecting and
                   recovering from half-open connections.  For example,
                   see Figure 10 of RFC-793.

         R2)  If the segment is outside the window, reject it (normal
              TCP processing)

         R3)  If an arriving segment satisfies: SEG.SEQ <= Last.ACK.sent
              (see Section 3.4), then record its timestamp in TS.Recent.

         R4)  If an arriving segment is in-sequence (i.e., at the left
              window edge), then accept it normally.

         R5)  Otherwise, treat the segment as a normal in-window, out-
              of-sequence TCP segment (e.g., queue it for later delivery
              to the user).

         Steps R2, R4, and R5 are the normal TCP processing steps
         specified by RFC-793.

         It is important to note that the timestamp is checked only when
         a segment first arrives at the receiver, regardless of whether
         it is in-sequence or it must be queued for later delivery.
         Consider the following example.

              Suppose the segment sequence: A.1, B.1, C.1, ..., Z.1 has
              been sent, where the letter indicates the sequence number
              and the digit represents the timestamp.  Suppose also that
              segment B.1 has been lost.  The timestamp in TS.TStamp is
              1 (from A.1), so C.1, ..., Z.1 are considered acceptable
              and are queued.  When B is retransmitted as segment B.2
              (using the latest timestamp), it fills the hole and causes
              all the segments through Z to be acknowledged and passed
              to the user.  The timestamps of the queued segments are
              *not* inspected again at this time, since they have
              already been accepted.  When B.2 is accepted, TS.Stamp is
              set to 2.

         This rule allows reasonable performance under loss.  A full
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         window of data is in transit at all times, and after a loss a
         full window less one packet will show up out-of-sequence to be
         queued at the receiver (e.g., up to ˜2**30 bytes of data); the
         timestamp option must not result in discarding this data.

         In certain unlikely circumstances, the algorithm of rules R1-R4
         could lead to discarding some segments unnecessarily, as shown
         in the following example:

              Suppose again that segments: A.1, B.1, C.1, ..., Z.1 have
              been sent in sequence and that segment B.1 has been lost.
              Furthermore, suppose delivery of some of C.1, ... Z.1 is
              delayed until AFTER the retransmission B.2 arrives at the
              receiver.  These delayed segments will be discarded
              unnecessarily when they do arrive, since their timestamps
              are now out of date.

         This case is very unlikely to occur.  If the retransmission was
         triggered by a timeout, some of the segments C.1, ... Z.1 must
         have been delayed longer than the RTO time.  This is presumably
         an unlikely event, or there would be many spurious timeouts and
         retransmissions.  If B’s retransmission was triggered by the
         "fast retransmit" algorithm, i.e., by duplicate ACKs, then the
         queued segments that caused these ACKs must have been received
         already.

         Even if a segment were delayed past the RTO, the Fast
         Retransmit mechanism [Jacobson90c] will cause the delayed
         packets to be retransmitted at the same time as B.2, avoiding
         an extra RTT and therefore causing a very small performance
         penalty.

         We know of no case with a significant probability of occurrence
         in which timestamps will cause performance degradation by
         unnecessarily discarding segments.

      4.2.2  Timestamp Clock

         It is important to understand that the PAWS algorithm does not
         require clock synchronization between sender and receiver.  The
         sender’s timestamp clock is used to stamp the segments, and the
         sender uses the echoed timestamp to measure RTT’s.  However,
         the receiver treats the timestamp as simply a monotone-
         increasing serial number, without any necessary connection to
         its clock.  From the receiver’s viewpoint, the timestamp is
         acting as a logical extension of the high-order bits of the
         sequence number.
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         The receiver algorithm does place some requirements on the
         frequency of the timestamp clock.

         (a)  The timestamp clock must not be "too slow".

              It must tick at least once for each 2**31 bytes sent.  In
              fact, in order to be useful to the sender for round trip
              timing, the clock should tick at least once per window’s
              worth of data, and even with the RFC-1072 window
              extension, 2**31 bytes must be at least two windows.

              To make this more quantitative, any clock faster than 1
              tick/sec will reject old duplicate segments for link
              speeds of ˜8 Gbps.  A 1ms timestamp clock will work at
              link speeds up to 8 Tbps (8*10**12) bps!

         (b)  The timestamp clock must not be "too fast".

              Its recycling time must be greater than MSL seconds.
              Since the clock (timestamp) is 32 bits and the worst-case
              MSL is 255 seconds, the maximum acceptable clock frequency
              is one tick every 59 ns.

              However, it is desirable to establish a much longer
              recycle period, in order to handle outdated timestamps on
              idle connections (see Section 4.2.3), and to relax the MSL
              requirement for preventing sequence number wrap-around.
              With a 1 ms timestamp clock, the 32-bit timestamp will
              wrap its sign bit in 24.8 days.  Thus, it will reject old
              duplicates on the same connection if MSL is 24.8 days or
              less.  This appears to be a very safe figure; an MSL of
              24.8 days or longer can probably be assumed by the gateway
              system without requiring precise MSL enforcement by the
              TTL value in the IP layer.

         Based upon these considerations, we choose a timestamp clock
         frequency in the range 1 ms to 1 sec per tick.  This range also
         matches the requirements of the RTTM mechanism, which does not
         need much more resolution than the granularity of the
         retransmit timer, e.g., tens or hundreds of milliseconds.

         The PAWS mechanism also puts a strong monotonicity requirement
         on the sender’s timestamp clock.  The method of implementation
         of the timestamp clock to meet this requirement depends upon
         the system hardware and software.

         *    Some hosts have a hardware clock that is guaranteed to be
              monotonic between hardware resets.
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         *    A clock interrupt may be used to simply increment a binary
              integer by 1 periodically.

         *    The timestamp clock may be derived from a system clock
              that is subject to being abruptly changed, by adding a
              variable offset value.  This offset is initialized to
              zero.  When a new timestamp clock value is needed, the
              offset can be adjusted as necessary to make the new value
              equal to or larger than the previous value (which was
              saved for this purpose).

      4.2.3  Outdated Timestamps

         If a connection remains idle long enough for the timestamp
         clock of the other TCP to wrap its sign bit, then the value
         saved in TS.Recent will become too old; as a result, the PAWS
         mechanism will cause all subsequent segments to be rejected,
         freezing the connection (until the timestamp clock wraps its
         sign bit again).

         With the chosen range of timestamp clock frequencies (1 sec to
         1 ms), the time to wrap the sign bit will be between 24.8 days
         and 24800 days.  A TCP connection that is idle for more than 24
         days and then comes to life is exceedingly unusual.  However,
         it is undesirable in principle to place any limitation on TCP
         connection lifetimes.

         We therefore require that an implementation of PAWS include a
         mechanism to "invalidate" the TS.Recent value when a connection
         is idle for more than 24 days.  (An alternative solution to the
         problem of outdated timestamps would be to send keepalive
         segments at a very low rate, but still more often than the
         wrap-around time for timestamps, e.g., once a day.  This would
         impose negligible overhead.  However, the TCP specification has
         never included keepalives, so the solution based upon
         invalidation was chosen.)

         Note that a TCP does not know the frequency, and therefore, the
         wraparound time, of the other TCP, so it must assume the worst.
         The validity of TS.Recent needs to be checked only if the basic
         PAWS timestamp check fails, i.e., only if SEG.TSval <
         TS.Recent.  If TS.Recent is found to be invalid, then the
         segment is accepted, regardless of the failure of the timestamp
         check, and rule R3 updates TS.Recent with the TSval from the
         new segment.

         To detect how long the connection has been idle, the TCP may
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         update a clock or timestamp value associated with the
         connection whenever TS.Recent is updated, for example.  The
         details will be implementation-dependent.

      4.2.4  Header Prediction

         "Header prediction" [Jacobson90a] is a high-performance
         transport protocol implementation technique that is most
         important for high-speed links.  This technique optimizes the
         code for the most common case, receiving a segment correctly
         and in order.  Using header prediction, the receiver asks the
         question, "Is this segment the next in sequence?"  This
         question can be answered in fewer machine instructions than the
         question, "Is this segment within the window?"

         Adding header prediction to our timestamp procedure leads to
         the following recommended sequence for processing an arriving
         TCP segment:

         H1)  Check timestamp (same as step R1 above)

         H2)  Do header prediction: if segment is next in sequence and
              if there are no special conditions requiring additional
              processing, accept the segment, record its timestamp, and
              skip H3.

         H3)  Process the segment normally, as specified in RFC-793.
              This includes dropping segments that are outside the win-
              dow and possibly sending acknowledgments, and queueing
              in-window, out-of-sequence segments.

         Another possibility would be to interchange steps H1 and H2,
         i.e., to perform the header prediction step H2 FIRST, and
         perform H1 and H3 only when header prediction fails.  This
         could be a performance improvement, since the timestamp check
         in step H1 is very unlikely to fail, and it requires interval
         arithmetic on a finite field, a relatively expensive operation.
         To perform this check on every single segment is contrary to
         the philosophy of header prediction.  We believe that this
         change might reduce CPU time for TCP protocol processing by up
         to 5-10% on high-speed networks.

         However, putting H2 first would create a hazard: a segment from
         2**32 bytes in the past might arrive at exactly the wrong time
         and be accepted mistakenly by the header-prediction step.  The
         following reasoning has been introduced [Jacobson90b] to show
         that the probability of this failure is negligible.
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              If all segments are equally likely to show up as old
              duplicates, then the probability of an old duplicate
              exactly matching the left window edge is the maximum
              segment size (MSS) divided by the size of the sequence
              space.  This ratio must be less than 2**-16, since MSS
              must be < 2**16; for example, it will be (2**12)/(2**32) =
              2**-20 for an FDDI link.  However, the older a segment is,
              the less likely it is to be retained in the Internet, and
              under any reasonable model of segment lifetime the
              probability of an old duplicate exactly at the left window
              edge must be much smaller than 2**-16.

              The 16 bit TCP checksum also allows a basic unreliability
              of one part in 2**16.  A protocol mechanism whose
              reliability exceeds the reliability of the TCP checksum
              should be considered "good enough", i.e., it won’t
              contribute significantly to the overall error rate.  We
              therefore believe we can ignore the problem of an old
              duplicate being accepted by doing header prediction before
              checking the timestamp.

         However, this probabilistic argument is not universally
         accepted, and the consensus at present is that the performance
         gain does not justify the hazard in the general case.  It is
         therefore recommended that H2 follow H1.

   4.3.  Duplicates from Earlier Incarnations of Connection

      The PAWS mechanism protects against errors due to sequence number
      wrap-around on high-speed connection.  Segments from an earlier
      incarnation of the same connection are also a potential cause of
      old duplicate errors.  In both cases, the TCP mechanisms to
      prevent such errors depend upon the enforcement of a maximum
      segment lifetime (MSL) by the Internet (IP) layer (see Appendix of
      RFC-1185 for a detailed discussion).  Unlike the case of sequence
      space wrap-around, the MSL required to prevent old duplicate
      errors from earlier incarnations does not depend upon the transfer
      rate.  If the IP layer enforces the recommended 2 minute MSL of
      TCP, and if the TCP rules are followed, TCP connections will be
      safe from earlier incarnations, no matter how high the network
      speed.  Thus, the PAWS mechanism is not required for this case.

      We may still ask whether the PAWS mechanism can provide additional
      security against old duplicates from earlier connections, allowing
      us to relax the enforcement of MSL by the IP layer.  Appendix B
      explores this question, showing that further assumptions and/or
      mechanisms are required, beyond those of PAWS.  This is not part
      of the current extension.
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5.  CONCLUSIONS AND ACKNOWLEDGMENTS

   This memo presented a set of extensions to TCP to provide efficient
   operation over large-bandwidth*delay-product paths and reliable
   operation over very high-speed paths.  These extensions are designed
   to provide compatible interworking with TCP’s that do not implement
   the extensions.

   These mechanisms are implemented using new TCP options for scaled
   windows and timestamps.  The timestamps are used for two distinct
   mechanisms: RTTM (Round Trip Time Measurement) and PAWS (Protect
   Against Wrapped Sequences).

   The Window Scale option was originally suggested by Mike St. Johns of
   USAF/DCA.  The present form of the option was suggested by Mike
   Karels of UC Berkeley in response to a more cumbersome scheme defined
   by Van Jacobson.  Lixia Zhang helped formulate the PAWS mechanism
   description in RFC-1185.

   Finally, much of this work originated as the result of discussions
   within the End-to-End Task Force on the theoretical limitations of
   transport protocols in general and TCP in particular.  More recently,
   task force members and other on the end2end-interest list have made
   valuable contributions by pointing out flaws in the algorithms and
   the documentation.  The authors are grateful for all these
   contributions.
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APPENDIX A:  IMPLEMENTATION SUGGESTIONS

   The following layouts are recommended for sending options on non-SYN
   segments, to achieve maximum feasible alignment of 32-bit and 64-bit
   machines.

       +--------+--------+--------+--------+
       |   NOP  |  NOP   |  TSopt |   10   |
       +--------+--------+--------+--------+
       |          TSval   timestamp        |
       +--------+--------+--------+--------+
       |          TSecr   timestamp        |
       +--------+--------+--------+--------+

APPENDIX B: DUPLICATES FROM EARLIER CONNECTION INCARNATIONS

   There are two cases to be considered:  (1) a system crashing (and
   losing connection state) and restarting, and (2) the same connection
   being closed and reopened without a loss of host state.  These will
   be described in the following two sections.

   B.1  System Crash with Loss of State

      TCP’s quiet time of one MSL upon system startup handles the loss
      of connection state in a system crash/restart.  For an
      explanation, see for example "When to Keep Quiet" in the TCP
      protocol specification [Postel81].  The MSL that is required here
      does not depend upon the transfer speed.  The current TCP MSL of 2
      minutes seems acceptable as an operational compromise, as many
      host systems take this long to boot after a crash.

      However, the timestamp option may be used to ease the MSL
      requirements (or to provide additional security against data
      corruption).  If timestamps are being used and if the timestamp
      clock can be guaranteed to be monotonic over a system
      crash/restart, i.e., if the first value of the sender’s timestamp
      clock after a crash/restart can be guaranteed to be greater than
      the last value before the restart, then a quiet time will be
      unnecessary.

      To dispense totally with the quiet time would require that the
      host clock be synchronized to a time source that is stable over
      the crash/restart period, with an accuracy of one timestamp clock
      tick or better.  We can back off from this strict requirement to
      take advantage of approximate clock synchronization.  Suppose that
      the clock is always re-synchronized to within N timestamp clock
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      ticks and that booting (extended with a quiet time, if necessary)
      takes more than N ticks.  This will guarantee monotonicity of the
      timestamps, which can then be used to reject old duplicates even
      without an enforced MSL.

   B.2  Closing and Reopening a Connection

      When a TCP connection is closed, a delay of 2*MSL in TIME-WAIT
      state ties up the socket pair for 4 minutes (see Section 3.5 of
      [Postel81].  Applications built upon TCP that close one connection
      and open a new one (e.g., an FTP data transfer connection using
      Stream mode) must choose a new socket pair each time.  The TIME-
      WAIT delay serves two different purposes:

      (a)  Implement the full-duplex reliable close handshake of TCP.

           The proper time to delay the final close step is not really
           related to the MSL; it depends instead upon the RTO for the
           FIN segments and therefore upon the RTT of the path.  (It
           could be argued that the side that is sending a FIN knows
           what degree of reliability it needs, and therefore it should
           be able to determine the length of the TIME-WAIT delay for
           the FIN’s recipient.  This could be accomplished with an
           appropriate TCP option in FIN segments.)

           Although there is no formal upper-bound on RTT, common
           network engineering practice makes an RTT greater than 1
           minute very unlikely.  Thus, the 4 minute delay in TIME-WAIT
           state works satisfactorily to provide a reliable full-duplex
           TCP close.  Note again that this is independent of MSL
           enforcement and network speed.

           The TIME-WAIT state could cause an indirect performance
           problem if an application needed to repeatedly close one
           connection and open another at a very high frequency, since
           the number of available TCP ports on a host is less than
           2**16.  However, high network speeds are not the major
           contributor to this problem; the RTT is the limiting factor
           in how quickly connections can be opened and closed.
           Therefore, this problem will be no worse at high transfer
           speeds.

      (b)  Allow old duplicate segments to expire.

           To replace this function of TIME-WAIT state, a mechanism
           would have to operate across connections.  PAWS is defined
           strictly within a single connection; the last timestamp is
           TS.Recent is kept in the connection control block, and
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           discarded when a connection is closed.

           An additional mechanism could be added to the TCP, a per-host
           cache of the last timestamp received from any connection.
           This value could then be used in the PAWS mechanism to reject
           old duplicate segments from earlier incarnations of the
           connection, if the timestamp clock can be guaranteed to have
           ticked at least once since the old connection was open.  This
           would require that the TIME-WAIT delay plus the RTT together
           must be at least one tick of the sender’s timestamp clock.
           Such an extension is not part of the proposal of this RFC.

           Note that this is a variant on the mechanism proposed by
           Garlick, Rom, and Postel [Garlick77], which required each
           host to maintain connection records containing the highest
           sequence numbers on every connection.  Using timestamps
           instead, it is only necessary to keep one quantity per remote
           host, regardless of the number of simultaneous connections to
           that host.
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APPENDIX C: CHANGES FROM RFC-1072, RFC-1185

   The protocol extensions defined in this document differ in several
   important ways from those defined in RFC-1072 and RFC-1185.

   (a)  SACK has been deferred to a later memo.

   (b)  The detailed rules for sending timestamp replies (see Section
        3.4) differ in important ways.  The earlier rules could result
        in an under-estimate of the RTT in certain cases (packets
        dropped or out of order).

   (c)  The same value TS.Recent is now shared by the two distinct
        mechanisms RTTM and PAWS.  This simplification became possible
        because of change (b).

   (d)  An ambiguity in RFC-1185 was resolved in favor of putting
        timestamps on ACK as well as data segments.  This supports the
        symmetry of the underlying TCP protocol.

   (e)  The echo and echo reply options of RFC-1072 were combined into a
        single Timestamps option, to reflect the symmetry and to
        simplify processing.

   (f)  The problem of outdated timestamps on long-idle connections,
        discussed in Section 4.2.2, was realized and resolved.

   (g)  RFC-1185 recommended that header prediction take precedence over
        the timestamp check.  Based upon some scepticism about the
        probabilistic arguments given in Section 4.2.4, it was decided
        to recommend that the timestamp check be performed first.

   (h)  The spec was modified so that the extended options will be sent
        on <SYN,ACK> segments only when they are received in the
        corresponding <SYN> segments.  This provides the most
        conservative possible conditions for interoperation with
        implementations without the extensions.

   In addition to these substantive changes, the present RFC attempts to
   specify the algorithms unambiguously by presenting modifications to
   the Event Processing rules of RFC-793; see Appendix E.
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APPENDIX D: SUMMARY OF NOTATION

   The following notation has been used in this document.

   Options

       WSopt:       TCP Window Scale Option
       TSopt:       TCP Timestamps Option

   Option Fields

       shift.cnt:   Window scale byte in WSopt.
       TSval:       32-bit Timestamp Value field in TSopt.
       TSecr:       32-bit Timestamp Reply field in TSopt.

   Option Fields in Current Segment

       SEG.TSval:   TSval field from TSopt in current segment.
       SEG.TSecr:   TSecr field from TSopt in current segment.
       SEG.WSopt:   8-bit value in WSopt

   Clock Values

       my.TSclock:      Local source of 32-bit timestamp values
       my.TSclock.rate: Period of my.TSclock (1 ms to 1 sec).

   Per-Connection State Variables

       TS.Recent:       Latest received Timestamp
       Last.ACK.sent:   Last ACK field sent

       Snd.TS.OK:       1-bit flag
       Snd.WS.OK:       1-bit flag

       Rcv.Wind.Scale:  Receive window scale power
       Snd.Wind.Scale:  Send window scale power
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APPENDIX E: EVENT PROCESSING

Event Processing

  OPEN Call

     ...
    An initial send sequence number (ISS) is selected.  Send a SYN
    segment of the form:

        <SEQ=ISS><CTL=SYN><TSval=my.TSclock><WSopt=Rcv.Wind.Scale>

      ...

  SEND Call

    CLOSED STATE (i.e., TCB does not exist)

      ...

    LISTEN STATE

      If the foreign socket is specified, then change the connection
      from passive to active, select an ISS.  Send a SYN segment
      containing the options: <TSval=my.TSclock> and
      <WSopt=Rcv.Wind.Scale>.  Set SND.UNA to ISS, SND.NXT to ISS+1.
      Enter SYN-SENT state. ...

    SYN-SENT STATE
    SYN-RECEIVED STATE

      ...

    ESTABLISHED STATE
    CLOSE-WAIT STATE

      Segmentize the buffer and send it with a piggybacked
      acknowledgment (acknowledgment value = RCV.NXT).  ...

      If the urgent flag is set ...

      If the Snd.TS.OK flag is set, then include the TCP Timestamps
      option <TSval=my.TSclock,TSecr=TS.Recent> in each data segment.

      Scale the receive window for transmission in the segment header:

            SEG.WND = (SND.WND >> Rcv.Wind.Scale).
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  SEGMENT ARRIVES

     ...

    If the state is LISTEN then

      first check for an RST

        ...

      second check for an ACK

        ...

      third check for a SYN

        if the SYN bit is set, check the security.  If the ...

         ...

        If the SEG.PRC is less than the TCB.PRC then continue.

        Check for a Window Scale option (WSopt); if one is found, save
        SEG.WSopt in Snd.Wind.Scale and set Snd.WS.OK flag on.
        Otherwise, set both Snd.Wind.Scale and Rcv.Wind.Scale to zero
        and clear Snd.WS.OK flag.

        Check for a TSopt option; if one is found, save SEG.TSval in the
        variable TS.Recent and turn on the Snd.TS.OK bit.

        Set RCV.NXT to SEG.SEQ+1, IRS is set to SEG.SEQ and any other
        control or text should be queued for processing later.  ISS
        should be selected and a SYN segment sent of the form:

          <SEQ=ISS><ACK=RCV.NXT><CTL=SYN,ACK>

        If the Snd.WS.OK bit is on, include a WSopt option
        <WSopt=Rcv.Wind.Scale> in this segment.  If the Snd.TS.OK bit is
        on, include a TSopt <TSval=my.TSclock,TSecr=TS.Recent> in this
        segment.  Last.ACK.sent is set to RCV.NXT.

        SND.NXT is set to ISS+1 and SND.UNA to ISS.  The connection
        state should be changed to SYN-RECEIVED.  Note that any other
        incoming control or data (combined with SYN) will be processed
        in the SYN-RECEIVED state, but processing of SYN and ACK should
        not be repeated.  If the listen was not fully specified (i.e.,
        the foreign socket was not fully specified), then the
        unspecified fields should be filled in now.

Jacobson, Braden, & Borman                                     [Page 33]



RFC 1323          TCP Extensions for High Performance           May 1992

      fourth other text or control

       ...

    If the state is SYN-SENT then

      first check the ACK bit

        ...

      fourth check the SYN bit

         ...

        If the SYN bit is on and the security/compartment and precedence
        are acceptable then, RCV.NXT is set to SEG.SEQ+1, IRS is set to
        SEG.SEQ, and any acknowledgements on the retransmission queue
        which are thereby acknowledged should be removed.

        Check for a Window Scale option (WSopt); if is found, save
        SEG.WSopt in Snd.Wind.Scale; otherwise, set both Snd.Wind.Scale
        and Rcv.Wind.Scale to zero.

        Check for a TSopt option; if one is found, save SEG.TSval in
        variable TS.Recent and turn on the Snd.TS.OK bit in the
        connection control block.  If the ACK bit is set, use my.TSclock
        - SEG.TSecr as the initial RTT estimate.

        If SND.UNA > ISS (our SYN has been ACKed), change the connection
        state to ESTABLISHED, form an ACK segment:

            <SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK>

        and send it.  If the Snd.Echo.OK bit is on, include a TSopt
        option <TSval=my.TSclock,TSecr=TS.Recent> in this ACK segment.
        Last.ACK.sent is set to RCV.NXT.

        Data or controls which were queued for transmission may be
        included.  If there are other controls or text in the segment
        then continue processing at the sixth step below where the URG
        bit is checked, otherwise return.

        Otherwise enter SYN-RECEIVED, form a SYN,ACK segment:

            <SEQ=ISS><ACK=RCV.NXT><CTL=SYN,ACK>

        and send it.  If the Snd.Echo.OK bit is on, include a TSopt
        option <TSval=my.TSclock,TSecr=TS.Recent> in this segment.  If
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        the Snd.WS.OK bit is on, include a WSopt option
        <WSopt=Rcv.Wind.Scale> in this segment.  Last.ACK.sent is set to
        RCV.NXT.

        If there are other controls or text in the segment, queue them
        for processing after the ESTABLISHED state has been reached,
        return.

      fifth, if neither of the SYN or RST bits is set then drop the
      segment and return.

    Otherwise,

    First, check sequence number

      SYN-RECEIVED STATE
      ESTABLISHED STATE
      FIN-WAIT-1 STATE
      FIN-WAIT-2 STATE
      CLOSE-WAIT STATE
      CLOSING STATE
      LAST-ACK STATE
      TIME-WAIT STATE

        Segments are processed in sequence.  Initial tests on arrival
        are used to discard old duplicates, but further processing is
        done in SEG.SEQ order.  If a segment’s contents straddle the
        boundary between old and new, only the new parts should be
        processed.

        Rescale the received window field:

            TrueWindow = SEG.WND << Snd.Wind.Scale,

        and use "TrueWindow" in place of SEG.WND in the following steps.

        Check whether the segment contains a Timestamps option and bit
        Snd.TS.OK is on.  If so:

          If SEG.TSval < TS.Recent, then test whether connection has
          been idle less than 24 days; if both are true, then the
          segment is not acceptable; follow steps below for an
          unacceptable segment.

          If SEG.SEQ is equal to Last.ACK.sent, then save SEG.ECopt in
          variable TS.Recent.
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        There are four cases for the acceptability test for an incoming
        segment:

          ...

        If an incoming segment is not acceptable, an acknowledgment
        should be sent in reply (unless the RST bit is set, if so drop
        the segment and return):

          <SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK>

        Last.ACK.sent is set to SEG.ACK of the acknowledgment.  If the
        Snd.Echo.OK bit is on, include the Timestamps option
        <TSval=my.TSclock,TSecr=TS.Recent> in this ACK segment.  Set
        Last.ACK.sent to SEG.ACK and send the ACK segment.  After
        sending the acknowledgment, drop the unacceptable segment and
        return.

          ...

    fifth check the ACK field.

      if the ACK bit is off drop the segment and return.

      if the ACK bit is on

        ...

        ESTABLISHED STATE

          If SND.UNA < SEG.ACK =< SND.NXT then, set SND.UNA <- SEG.ACK.
          Also compute a new estimate of round-trip time.  If Snd.TS.OK
          bit is on, use my.TSclock - SEG.TSecr; otherwise use the
          elapsed time since the first segment in the retransmission
          queue was sent.  Any segments on the retransmission queue
          which are thereby entirely acknowledged...

            ...

    Seventh, process the segment text.

      ESTABLISHED STATE
      FIN-WAIT-1 STATE
      FIN-WAIT-2 STATE

          ...

        Send an acknowledgment of the form:
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          <SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK>

        If the Snd.TS.OK bit is on, include Timestamps option
        <TSval=my.TSclock,TSecr=TS.Recent> in this ACK segment.  Set
        Last.ACK.sent to SEG.ACK of the acknowledgment, and send it.
        This acknowledgment should be piggy-backed on a segment being
        transmitted if possible without incurring undue delay.

         ...

Security Considerations

   Security issues are not discussed in this memo.
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