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Chapter 1

Introduction

cvode is part of a software family called sundials: SUite of Nonlinear and DIfferential/ALgebraic
equation Solvers [19]. This suite consists of cvode, arkode, kinsol, and ida, and variants of these
with sensitivity analysis capabilities.

1.1 Historical Background

Fortran solvers for ODE initial value problems are widespread and heavily used. Two solvers that
have been written at LLNL in the past are vode [3] and vodpk [5]. vode is a general purpose solver
that includes methods for both stiff and nonstiff systems, and in the stiff case uses direct methods
(full or banded) for the solution of the linear systems that arise at each implicit step. Externally,
vode is very similar to the well known solver lsode [25]. vodpk is a variant of vode that uses
a preconditioned Krylov (iterative) method, namely GMRES, for the solution of the linear systems.
vodpk is a powerful tool for large stiff systems because it combines established methods for stiff
integration, nonlinear iteration, and Krylov (linear) iteration with a problem-specific treatment of
the dominant source of stiffness, in the form of the user-supplied preconditioner matrix [4]. The
capabilities of both vode and vodpk have been combined in the C-language package cvode [10].

At present, cvode may utilize a variety of Krylov methods provided in sundials that can be used
in conjuction with Newton iteration: these include the GMRES (Generalized Minimal RESidual) [28],
FGMRES (Flexible Generalized Minimum RESidual) [27], Bi-CGStab (Bi-Conjugate Gradient Stabi-
lized) [29], TFQMR (Transpose-Free Quasi-Minimal Residual) [13], and PCG (Preconditioned Con-
jugate Gradient) [14] linear iterative methods. As Krylov methods, these require almost no matrix
storage for solving the Newton equations as compared to direct methods. However, the algorithms
allow for a user-supplied preconditioner matrix, and for most problems preconditioning is essential for
an efficient solution. For very large stiff ODE systems, the Krylov methods are preferable over direct
linear solver methods, and are often the only feasible choice. Among the Krylov methods in sundials,
we recommend GMRES as the best overall choice. However, users are encouraged to compare all op-
tions, especially if encountering convergence failures with GMRES. Bi-CGStab and TFQMR have an
advantage in storage requirements, in that the number of workspace vectors they require is fixed, while
that number for GMRES depends on the desired Krylov subspace size. FGMRES has an advantage
in that it is designed to support preconditioners that vary between iterations (e.g. iterative methods).
PCG exhibits rapid convergence and minimal workspace vectors, but only works for symmetric linear
systems.

In the process of translating the vode and vodpk algorithms into C, the overall cvode organi-
zation has been changed considerably. One key feature of the cvode organization is that the linear
system solvers comprise a layer of code modules that is separated from the integration algorithm,
allowing for easy modification and expansion of the linear solver array. A second key feature is a
separate module devoted to vector operations; this facilitated the extension to multiprosessor envi-
ronments with minimal impacts on the rest of the solver, resulting in pvode [8], the parallel variant
of cvode.
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Around 2002, the functionality of cvode and pvode were combined into one single code, simply
called cvode. Development of this version of cvode was concurrent with a redesign of the vector
operations module across the sundials suite. The key feature of the nvector module is that it is
written in terms of abstract vector operations with the actual vector kernels attached by a particular
implementation (such as serial or parallel) of nvector. This allows writing the sundials solvers in a
manner independent of the actual nvector implementation (which can be user-supplied), as well as
allowing more than one nvector module linked into an executable file. sundials (and thus cvode)
is supplied with six different nvector implementations: serial, MPI-parallel, and both openMP and
Pthreads thread-parallel nvector implementations, a Hypre parallel implementation, and a PetSC
implementation.

There are several motivations for choosing the C language for cvode. First, a general movement
away from Fortran and toward C in scientific computing was apparent. Second, the pointer, struc-
ture, and dynamic memory allocation features in C are extremely useful in software of this complexity,
with the great variety of method options offered. Finally, we prefer C over C++ for cvode because of
the wider availability of C compilers, the potentially greater efficiency of C, and the greater ease of
interfacing the solver to applications written in extended Fortran.

1.2 Changes from previous versions

Changes in v3.1.2

The changes in this minor release include the following:

• Updated the minimum required version of CMake to 2.8.12 and enabled using rpath by default
to locate shared libraries on OSX.

• Fixed Windows specific problem where sunindextype was not correctly defined when using
64-bit integers for the sundials index type. On Windows sunindextype is now defined as the
MSVC basic type int64.

• Added sparse SUNMatrix “Reallocate” routine to allow specification of the nonzero storage.

• Updated the KLU SUNLinearSolver module to set constants for the two reinitialization types,
and fixed a bug in the full reinitialization approach where the sparse SUNMatrix pointer would
go out of scope on some architectures.

• Updated the “ScaleAdd” and “ScaleAddI” implementations in the sparse SUNMatrix module
to more optimally handle the case where the target matrix contained sufficient storage for the
sum, but had the wrong sparsity pattern. The sum now occurs in-place, by performing the sum
backwards in the existing storage. However, it is still more efficient if the user-supplied Jacobian
routine allocates storage for the sum I + γJ manually (with zero entries if needed).

• Added the following examples from the usage notes page of the SUNDIALS website, and updated
them to work with SUNDIALS 3.x:

– cvDisc dns.c, which demonstrates using CVODE with discontinuous solutions or RHS.

– cvRoberts dns negsol.c, which illustrates the use of the RHS function return value to
control unphysical negative concentrations.

• Changed the LICENSE install path to instdir/include/sundials.

Changes in v3.1.1

The changes in this minor release include the following:

• Fixed a minor bug in the cvSLdet routine, where a return was missing in the error check for
three inconsistent roots.
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• Fixed a potential memory leak in the spgmr and spfgmr linear solvers: if “Initialize” was
called multiple times then the solver memory was reallocated (without being freed).

• Updated KLU SUNLinearSolver module to use a typedef for the precision-specific solve function
to be used (to avoid compiler warnings).

• Added missing typecasts for some (void*) pointers (again, to avoid compiler warnings).

• Bugfix in sunmatrix sparse.c where we had used int instead of sunindextype in one location.

• Added missing #include <stdio.h> in nvector and sunmatrix header files.

• Fixed an indexing bug in the cuda nvector implementation of N VWrmsNormMask and revised
the raja nvector implementation of N VWrmsNormMask to work with mask arrays using values
other than zero or one. Replaced double with realtype in the RAJA vector test functions.

• Fixed compilation issue with GCC 7.3.0 and Fortran programs that do not require a sunmatrix
or sunlinsol module (e.g., iterative linear solvers or functional iteration).

In addition to the changes above, minor corrections were also made to the example programs, build
system, and user documentation.

Changes in v3.1.0

Added nvector print functions that write vector data to a specified file (e.g., N VPrintFile Serial).
Added make test and make test install options to the build system for testing sundials after

building with make and installing with make install respectively.

Changes in v3.0.0

All interfaces to matrix structures and linear solvers have been reworked, and all example programs
have been updated. The goal of the redesign of these interfaces was to provide more encapsulation
and ease in interfacing custom linear solvers and interoperability with linear solver libraries. Specific
changes include:

• Added generic SUNMATRIX module with three provided implementations: dense, banded and
sparse. These replicate previous SUNDIALS Dls and Sls matrix structures in a single object-
oriented API.

• Added example problems demonstrating use of generic SUNMATRIX modules.

• Added generic SUNLINEARSOLVER module with eleven provided implementations: dense,
banded, LAPACK dense, LAPACK band, KLU, SuperLU MT, SPGMR, SPBCGS, SPTFQMR,
SPFGMR, PCG. These replicate previous SUNDIALS generic linear solvers in a single object-
oriented API.

• Added example problems demonstrating use of generic SUNLINEARSOLVER modules.

• Expanded package-provided direct linear solver (Dls) interfaces and scaled, preconditioned, iter-
ative linear solver (Spils) interfaces to utilize generic SUNMATRIX and SUNLINEARSOLVER
objects.

• Removed package-specific, linear solver-specific, solver modules (e.g. CVDENSE, KINBAND,
IDAKLU, ARKSPGMR) since their functionality is entirely replicated by the generic Dls/Spils
interfaces and SUNLINEARSOLVER/SUNMATRIX modules. The exception is CVDIAG, a
diagonal approximate Jacobian solver available to CVODE and CVODES.

• Converted all SUNDIALS example problems to utilize new generic SUNMATRIX and SUNLIN-
EARSOLVER objects, along with updated Dls and Spils linear solver interfaces.
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• Added Spils interface routines to ARKode, CVODE, CVODES, IDA and IDAS to allow spec-
ification of a user-provided ”JTSetup” routine. This change supports users who wish to set
up data structures for the user-provided Jacobian-times-vector (”JTimes”) routine, and where
the cost of one JTSetup setup per Newton iteration can be amortized between multiple JTimes
calls.

Two additional nvector implementations were added – one for CUDA and one for RAJA vectors.
These vectors are supplied to provide very basic support for running on GPU architectures. Users
are advised that these vectors both move all data to the GPU device upon construction, and speedup
will only be realized if the user also conducts the right-hand-side function evaluation on the device.
In addition, these vectors assume the problem fits on one GPU. Further information about RAJA,
users are referred to th web site, https://software.llnl.gov/RAJA/. These additions are accompanied
by additions to various interface functions and to user documentation.

All indices for data structures were updated to a new sunindextype that can be configured to
be a 32- or 64-bit integer data index type. sunindextype is defined to be int32 t or int64 t when
portable types are supported, otherwise it is defined as int or long int. The Fortran interfaces
continue to use long int for indices, except for their sparse matrix interface that now uses the new
sunindextype. This new flexible capability for index types includes interfaces to PETSc, hypre,
SuperLU MT, and KLU with either 32-bit or 64-bit capabilities depending how the user configures
sundials.

To avoid potential namespace conflicts, the macros defining booleantype values TRUE and FALSE
have been changed to SUNTRUE and SUNFALSE respectively.

Temporary vectors were removed from preconditioner setup and solve routines for all packages. It
is assumed that all necessary data for user-provided preconditioner operations will be allocated and
stored in user-provided data structures.

The file include/sundials fconfig.h was added. This file contains sundials type information
for use in Fortran programs.

Added functions SUNDIALSGetVersion and SUNDIALSGetVersionNumber to get sundials release
version information at runtime.

The build system was expanded to support many of the xSDK-compliant keys. The xSDK is
a movement in scientific software to provide a foundation for the rapid and efficient production of
high-quality, sustainable extreme-scale scientific applications. More information can be found at,
https://xsdk.info.

In addition, numerous changes were made to the build system. These include the addition of
separate BLAS ENABLE and BLAS LIBRARIES CMake variables, additional error checking during CMake
configuration, minor bug fixes, and renaming CMake options to enable/disable examples for greater
clarity and an added option to enable/disable Fortran 77 examples. These changes included changing
EXAMPLES ENABLE to EXAMPLES ENABLE C, changing CXX ENABLE to EXAMPLES ENABLE CXX, changing
F90 ENABLE to EXAMPLES ENABLE F90, and adding an EXAMPLES ENABLE F77 option.

A bug fix was made in CVodeFree to call lfree unconditionally (if non-NULL).
Corrections and additions were made to the examples, to installation-related files, and to the user

documentation.

Changes in v2.9.0

Two additional nvector implementations were added – one for Hypre (parallel) ParVector vectors,
and one for petsc vectors. These additions are accompanied by additions to various interface functions
and to user documentation.

Each nvector module now includes a function, N VGetVectorID, that returns the nvector
module name.

For each linear solver, the various solver performance counters are now initialized to 0 in both the
solver specification function and in solver linit function. This ensures that these solver counters are
initialized upon linear solver instantiation as well as at the beginning of the problem solution.
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In fcvode, corrections were made to three Fortran interface functions. Missing Fortran interface
routines were added so that users can supply the sparse Jacobian routine when using sparse direct
solvers.

A memory leak was fixed in the banded preconditioner interface. In addition, updates were done
to return integers from linear solver and preconditioner ’free’ functions.

The Krylov linear solver Bi-CGstab was enhanced by removing a redundant dot product. Various
additions and corrections were made to the interfaces to the sparse solvers KLU and SuperLU MT,
including support for CSR format when using KLU.

New examples were added for use of the openMP vector and for use of sparse direct solvers from
Fortran.

Minor corrections and additions were made to the cvode solver, to the Fortran interfaces, to the
examples, to installation-related files, and to the user documentation.

Changes in v2.8.0

Two major additions were made to the linear system solvers that are available for use with the cvode
solver. First, in the serial case, an interface to the sparse direct solver KLU was added. Second,
an interface to SuperLU MT, the multi-threaded version of SuperLU, was added as a thread-parallel
sparse direct solver option, to be used with the serial version of the NVECTOR module. As part of
these additions, a sparse matrix (CSC format) structure was added to cvode.

Otherwise, only relatively minor modifications were made to the cvode solver:
In cvRootfind, a minor bug was corrected, where the input array rootdir was ignored, and a line

was added to break out of root-search loop if the initial interval size is below the tolerance ttol.
In CVLapackBand, the line smu = MIN(N-1,mu+ml) was changed to smu = mu + ml to correct an

illegal input error for DGBTRF/DGBTRS.
In order to eliminate or minimize the differences between the sources for private functions in cvode

and cvodes, the names of 48 private functions were changed from CV** to cv**, and a few other
names were also changed.

Two minor bugs were fixed regarding the testing of input on the first call to CVode – one involving
tstop and one involving the initialization of *tret.

In order to avoid possible name conflicts, the mathematical macro and function names MIN, MAX,
SQR, RAbs, RSqrt, RExp, RPowerI, and RPowerR were changed to SUNMIN, SUNMAX, SUNSQR, SUNRabs,
SUNRsqrt, SUNRexp, SRpowerI, and SUNRpowerR, respectively. These names occur in both the solver
and in various example programs.

The example program cvAdvDiff diag p was added to illustrate the use of CVDiag in parallel.
In the FCVODE optional input routines FCVSETIIN and FCVSETRIN, the optional fourth argument

key length was removed, with hardcoded key string lengths passed to all strncmp tests.
In all FCVODE examples, integer declarations were revised so that those which must match a C

type long int are declared INTEGER*8, and a comment was added about the type match. All other
integer declarations are just INTEGER. Corresponding minor corrections were made to the user guide.

Two new nvector modules have been added for thread-parallel computing environments — one
for openMP, denoted NVECTOR OPENMP, and one for Pthreads, denoted NVECTOR PTHREADS.

With this version of sundials, support and documentation of the Autotools mode of installation
is being dropped, in favor of the CMake mode, which is considered more widely portable.

Changes in v2.7.0

One significant design change was made with this release: The problem size and its relatives, band-
width parameters, related internal indices, pivot arrays, and the optional output lsflag have all
been changed from type int to type long int, except for the problem size and bandwidths in user
calls to routines specifying BLAS/LAPACK routines for the dense/band linear solvers. The func-
tion NewIntArray is replaced by a pair NewIntArray/NewLintArray, for int and long int arrays,
respectively.
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A large number of minor errors have been fixed. Among these are the following: In CVSetTqBDF,
the logic was changed to avoid a divide by zero. After the solver memory is created, it is set to zero
before being filled. In each linear solver interface function, the linear solver memory is freed on an error
return, and the **Free function now includes a line setting to NULL the main memory pointer to the
linear solver memory. In the rootfinding functions CVRcheck1/CVRcheck2, when an exact zero is found,
the array glo of g values at the left endpoint is adjusted, instead of shifting the t location tlo slightly.
In the installation files, we modified the treatment of the macro SUNDIALS USE GENERIC MATH,
so that the parameter GENERIC MATH LIB is either defined (with no value) or not defined.

Changes in v2.6.0

Two new features were added in this release: (a) a new linear solver module, based on Blas and Lapack
for both dense and banded matrices, and (b) an option to specify which direction of zero-crossing is
to be monitored while performing rootfinding.

The user interface has been further refined. Some of the API changes involve: (a) a reorganization
of all linear solver modules into two families (besides the existing family of scaled preconditioned
iterative linear solvers, the direct solvers, including the new Lapack-based ones, were also organized
into a direct family); (b) maintaining a single pointer to user data, optionally specified through a
Set-type function; and (c) a general streamlining of the preconditioner modules distributed with the
solver.

Changes in v2.5.0

The main changes in this release involve a rearrangement of the entire sundials source tree (see §3.1).
At the user interface level, the main impact is in the mechanism of including sundials header files
which must now include the relative path (e.g. #include <cvode/cvode.h>). Additional changes
were made to the build system: all exported header files are now installed in separate subdirectories
of the instaltion include directory.

The functions in the generic dense linear solver (sundials dense and sundials smalldense) were
modified to work for rectangular m×n matrices (m ≤ n), while the factorization and solution functions
were renamed to DenseGETRF/denGETRF and DenseGETRS/denGETRS, respectively. The factorization
and solution functions in the generic band linear solver were renamed BandGBTRF and BandGBTRS,
respectively.

Changes in v2.4.0

cvspbcg and cvsptfqmr modules have been added to interface with the Scaled Preconditioned
Bi-CGstab (spbcgs) and Scaled Preconditioned Transpose-Free Quasi-Minimal Residual (sptfqmr)
linear solver modules, respectively (for details see Chapter 4). Corresponding additions were made to
the Fortran interface module fcvode. At the same time, function type names for Scaled Precondi-
tioned Iterative Linear Solvers were added for the user-supplied Jacobian-times-vector and precondi-
tioner setup and solve functions.

The deallocation functions now take as arguments the address of the respective memory block
pointer.

To reduce the possibility of conflicts, the names of all header files have been changed by adding
unique prefixes (cvode and sundials ). When using the default installation procedure, the header
files are exported under various subdirectories of the target include directory. For more details see
Appendix A.

Changes in v2.3.0

The user interface has been further refined. Several functions used for setting optional inputs were
combined into a single one. An optional user-supplied routine for setting the error weight vector was
added. Additionally, to resolve potential variable scope issues, all SUNDIALS solvers release user
data right after its use. The build systems has been further improved to make it more robust.



1.3 Reading this User Guide 7

Changes in v2.2.1

The changes in this minor sundials release affect only the build system.

Changes in v2.2.0

The major changes from the previous version involve a redesign of the user interface across the entire
sundials suite. We have eliminated the mechanism of providing optional inputs and extracting
optional statistics from the solver through the iopt and ropt arrays. Instead, cvode now provides a
set of routines (with prefix CVodeSet) to change the default values for various quantities controlling
the solver and a set of extraction routines (with prefix CVodeGet) to extract statistics after return
from the main solver routine. Similarly, each linear solver module provides its own set of Set- and
Get-type routines. For more details see §4.5.6 and §4.5.8.

Additionally, the interfaces to several user-supplied routines (such as those providing Jacobians
and preconditioner information) were simplified by reducing the number of arguments. The same
information that was previously accessible through such arguments can now be obtained through
Get-type functions.

The rootfinding feature was added, whereby the roots of a set of given functions may be computed
during the integration of the ODE system.

Installation of cvode (and all of sundials) has been completely redesigned and is now based on
configure scripts.

1.3 Reading this User Guide

This user guide is a combination of general usage instructions. Specific example programs are provided
as a separate document. We expect that some readers will want to concentrate on the general instruc-
tions, while others will refer mostly to the examples, and the organization is intended to accommodate
both styles.

There are different possible levels of usage of cvode. The most casual user, with a small IVP
problem only, can get by with reading §2.1, then Chapter 4 through §4.5.5 only, and looking at
examples in [21].

In a different direction, a more expert user with an IVP problem may want to (a) use a package
preconditioner (§4.7), (b) supply his/her own Jacobian or preconditioner routines (§4.6), (c) do mul-
tiple runs of problems of the same size (§4.5.9), (d) supply a new nvector module (Chapter 6), or
even (e) supply new sunlinsol and/or sunmatrix modules (Chapters 7 and 8).

The structure of this document is as follows:

• In Chapter 2, we give short descriptions of the numerical methods implemented by cvode for
the solution of initial value problems for systems of ODEs, and continue with short descriptions
of preconditioning (§2.2), stability limit detection (§2.3), and rootfinding (§2.4).

• The following chapter describes the structure of the sundials suite of solvers (§3.1) and the
software organization of the cvode solver (§3.2).

• Chapter 4 is the main usage document for cvode for C applications. It includes a complete
description of the user interface for the integration of ODE initial value problems.

• In Chapter 5, we describe fcvode, an interface module for the use of cvode with Fortran
applications.

• Chapter 6 gives a brief overview of the generic nvector module shared among the various
components of sundials, and details on the nvector implementations provided with sundials.

• Chapter 7 gives a brief overview of the generic sunmatrix module shared among the vari-
ous components of sundials, and details on the sunmatrix implementations provided with
sundials: a dense implementation (§7.1), a banded implementation (§7.2) and a sparse imple-
mentation (§7.3).
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• Chapter 8 gives a brief overview of the generic sunlinsol module shared among the various
components of sundials. This chapter contains details on the sunlinsol implementations
provided with sundials. The chapter also contains details on the sunlinsol implementations
provided with sundials that interface with external linear solver libraries.

• Finally, in the appendices, we provide detailed instructions for the installation of cvode, within
the structure of sundials (Appendix A), as well as a list of all the constants used for input to
and output from cvode functions (Appendix B).

Finally, the reader should be aware of the following notational conventions in this user guide:
program listings and identifiers (such as CVodeInit) within textual explanations appear in typewriter
type style; fields in C structures (such as content) appear in italics; and packages or modules, such
as cvdls, are written in all capitals. Usage and installation instructions that constitute important
warnings are marked with a triangular symbol in the margin.

Acknowledgments. We wish to acknowledge the contributions to previous versions of the cvode
and pvode codes and their user guides by Scott D. Cohen [9] and George D. Byrne [7].

1.4 SUNDIALS Release License

The SUNDIALS packages are released open source, under a BSD license. The only requirements of
the BSD license are preservation of copyright and a standard disclaimer of liability. Our Copyright
notice is below along with the license.

**PLEASE NOTE** If you are using SUNDIALS with any third party libraries linked in (e.g.,
LaPACK, KLU, SuperLU MT, petsc, or hypre), be sure to review the respective license of the package
as that license may have more restrictive terms than the SUNDIALS license. For example, if someone
builds SUNDIALS with a statically linked KLU, the build is subject to terms of the LGPL license
(which is what KLU is released with) and *not* the SUNDIALS BSD license anymore.

1.4.1 Copyright Notices

All SUNDIALS packages except ARKode are subject to the following Copyright notice.

1.4.1.1 SUNDIALS Copyright

Copyright (c) 2002-2016, Lawrence Livermore National Security. Produced at the Lawrence Livermore
National Laboratory. Written by A.C. Hindmarsh, D.R. Reynolds, R. Serban, C.S. Woodward, S.D.
Cohen, A.G. Taylor, S. Peles, L.E. Banks, and D. Shumaker.
UCRL-CODE-155951 (CVODE)
UCRL-CODE-155950 (CVODES)
UCRL-CODE-155952 (IDA)
UCRL-CODE-237203 (IDAS)
LLNL-CODE-665877 (KINSOL)
All rights reserved.

1.4.1.2 ARKode Copyright

ARKode is subject to the following joint Copyright notice. Copyright (c) 2015-2016, Southern
Methodist University and Lawrence Livermore National Security Written by D.R. Reynolds, D.J.
Gardner, A.C. Hindmarsh, C.S. Woodward, and J.M. Sexton.
LLNL-CODE-667205 (ARKODE)
All rights reserved.
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1.4.2 BSD License

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions
and the disclaimer below.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the disclaimer (as noted below) in the documentation and/or other materials provided with the
distribution.

3. Neither the name of the LLNS/LLNL nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
“AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTIC-
ULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LAWRENCE LIVERMORE NA-
TIONAL SECURITY, LLC, THE U.S. DEPARTMENT OF ENERGY OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CON-
SEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUB-
STITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS IN-
TERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Additional BSD Notice

1. This notice is required to be provided under our contract with the U.S. Department of Energy
(DOE). This work was produced at Lawrence Livermore National Laboratory under Contract
No. DE-AC52-07NA27344 with the DOE.

2. Neither the United States Government nor Lawrence Livermore National Security, LLC nor any
of their employees, makes any warranty, express or implied, or assumes any liability or respon-
sibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately-owned rights.

3. Also, reference herein to any specific commercial products, process, or services by trade name,
trademark, manufacturer or otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or Lawrence Livermore National
Security, LLC. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or Lawrence Livermore National Security, LLC,
and shall not be used for advertising or product endorsement purposes.





Chapter 2

Mathematical Considerations

cvode solves ODE initial value problems (IVPs) in real N -space, which we write in the abstract form

ẏ = f(t, y) , y(t0) = y0 , (2.1)

where y ∈ RN . Here we use ẏ to denote dy/dt. While we use t to denote the independent variable, and
usually this is time, it certainly need not be. cvode solves both stiff and nonstiff systems. Roughly
speaking, stiffness is characterized by the presence of at least one rapidly damped mode, whose time
constant is small compared to the time scale of the solution itself.

2.1 IVP solution

The methods used in cvode are variable-order, variable-step multistep methods, based on formulas
of the form

K1∑
i=0

αn,iy
n−i + hn

K2∑
i=0

βn,iẏ
n−i = 0 . (2.2)

Here the yn are computed approximations to y(tn), and hn = tn − tn−1 is the step size. The user
of cvode must choose appropriately one of two multistep methods. For nonstiff problems, cvode
includes the Adams-Moulton formulas, characterized by K1 = 1 and K2 = q above, where the order q
varies between 1 and 12. For stiff problems, cvode includes the Backward Differentiation Formulas
(BDF) in so-called fixed-leading coefficient (FLC) form, given by K1 = q and K2 = 0, with order q
varying between 1 and 5. The coefficients are uniquely determined by the method type, its order, the
recent history of the step sizes, and the normalization αn,0 = −1. See [6] and [23].

For either choice of formula, the nonlinear system

G(yn) ≡ yn − hnβn,0f(tn, yn)− an = 0 , (2.3)

where an ≡
∑

i>0(αn,iy
n−i + hnβn,iẏ

n−i), must be solved (approximately) at each integration step.
For this, cvode offers the choice of either functional iteration, suitable only for nonstiff systems, and
various versions of Newton iteration. Functional iteration, given by

yn(m+1) = hnβn,0f(tn, yn(m)) + an ,

involves evaluations of f only. In contrast, Newton iteration requires the solution of linear systems

M [yn(m+1) − yn(m)] = −G(yn(m)) , (2.4)

in which
M ≈ I − γJ , J = ∂f/∂y , and γ = hnβn,0 . (2.5)

The initial guess for the iteration is a predicted value yn(0) computed explicitly from the available
history data.
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For the solution of the linear systems within the Newton corrections, cvode provides several
choices, including the option of an user-supplied linear solver module. The linear solver modules
distributed with sundials are organized in two families, a direct family comprising direct linear
solvers for dense, banded or sparse matrices, and a spils family comprising scaled preconditioned
iterative (Krylov) linear solvers. The methods offered through these modules are as follows:

• dense direct solvers, using either an internal implementation or a Blas/Lapack implementation
(serial or threaded vector modules only),

• band direct solvers, using either an internal implementation or a Blas/Lapack implementation
(serial or threaded vector modules only),

• sparse direct solver interfaces, using either the KLU sparse solver library [11, 1], or the thread-
enabled SuperLU MT sparse solver library [24, 12, 2] (serial or threaded vector modules only)
[Note that users will need to download and install the klu or superlumt packages independent
of cvode],

• spgmr, a scaled preconditioned GMRES (Generalized Minimal Residual method) solver,

• spfgmr, a scaled preconditioned FGMRES (Flexible Generalized Minimal Residual method)
solver,

• spbcgs, a scaled preconditioned Bi-CGStab (Bi-Conjugate Gradient Stable method) solver,

• sptfqmr, a scaled preconditioned TFQMR (Transpose-Free Quasi-Minimal Residual method)
solver, or

• pcg, a scaled preconditioned CG (Conjugate Gradient method) solver.

For large stiff systems, where direct methods are not feasible, the combination of a BDF integrator and
a preconditioned Krylov method yields a powerful tool because it combines established methods for
stiff integration, nonlinear iteration, and Krylov (linear) iteration with a problem-specific treatment
of the dominant source of stiffness, in the form of the user-supplied preconditioner matrix [4].

In addition, cvode also provides a linear solver module which only uses a diagonal approximation
of the Jacobian matrix.

Note that the dense, band and sparse direct linear solvers can only be used with the serial and
threaded vector representations. The diagonal solver can be used with any vector representation.

In the process of controlling errors at various levels, cvode uses a weighted root-mean-square
norm, denoted ‖ · ‖WRMS, for all error-like quantities. The multiplicative weights used are based on
the current solution and on the relative and absolute tolerances input by the user, namely

Wi = 1/[rtol · |yi|+ atoli] . (2.6)

Because 1/Wi represents a tolerance in the component yi, a vector whose norm is 1 is regarded as
“small.” For brevity, we will usually drop the subscript WRMS on norms in what follows.

In the cases of a direct solver (dense, band, sparse, or diagonal), the iteration is a Modified Newton
iteration, in that the iteration matrix M is fixed throughout the nonlinear iterations. However, for
any of the Krylov methods, it is an Inexact Newton iteration, in which M is applied in a matrix-free
manner, with matrix-vector products Jv obtained by either difference quotients or a user-supplied
routine. The matrix M (direct cases) or preconditioner matrix P (Krylov cases) is updated as infre-
quently as possible to balance the high costs of matrix operations against other costs. Specifically,
this matrix update occurs when:

• starting the problem,

• more than 20 steps have been taken since the last update,

• the value γ̄ of γ at the last update satisfies |γ/γ̄ − 1| > 0.3,
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• a non-fatal convergence failure just occurred, or

• an error test failure just occurred.

When forced by a convergence failure, an update of M or P may or may not involve a reevaluation
of J (in M) or of Jacobian data (in P ), depending on whether Jacobian error was the likely cause of
the failure. More generally, the decision is made to reevaluate J (or instruct the user to reevaluate
Jacobian data in P ) when:

• starting the problem,

• more than 50 steps have been taken since the last evaluation,

• a convergence failure occurred with an outdated matrix, and the value γ̄ of γ at the last update
satisfies |γ/γ̄ − 1| < 0.2, or

• a convergence failure occurred that forced a step size reduction.

The stopping test for the Newton iteration is related to the subsequent local error test, with the
goal of keeping the nonlinear iteration errors from interfering with local error control. As described
below, the final computed value yn(m) will have to satisfy a local error test ‖yn(m)−yn(0)‖ ≤ ε. Letting
yn denote the exact solution of (2.3), we want to ensure that the iteration error yn − yn(m) is small
relative to ε, specifically that it is less than 0.1ε. (The safety factor 0.1 can be changed by the user.)
For this, we also estimate the linear convergence rate constant R as follows. We initialize R to 1, and
reset R = 1 when M or P is updated. After computing a correction δm = yn(m)−yn(m−1), we update
R if m > 1 as

R← max{0.3R, ‖δm‖/‖δm−1‖} .

Now we use the estimate

‖yn − yn(m)‖ ≈ ‖yn(m+1) − yn(m)‖ ≈ R‖yn(m) − yn(m−1)‖ = R‖δm‖ .

Therefore the convergence (stopping) test is

R‖δm‖ < 0.1ε .

We allow at most 3 iterations (but this limit can be changed by the user). We also declare the iteration
diverged if any ‖δm‖/‖δm−1‖ > 2 with m > 1. If convergence fails with J or P current, we are forced
to reduce the step size, and we replace hn by hn/4. The integration is halted after a preset number
of convergence failures; the default value of this limit is 10, but this can be changed by the user.

When a Krylov method is used to solve the linear system, its errors must also be controlled, and
this also involves the local error test constant. The linear iteration error in the solution vector δm is
approximated by the preconditioned residual vector. Thus to ensure (or attempt to ensure) that the
linear iteration errors do not interfere with the nonlinear error and local integration error controls, we
require that the norm of the preconditioned residual be less than 0.05 · (0.1ε).

With the direct dense and band methods, the Jacobian may be supplied by a user routine, or
approximated by difference quotients, at the user’s option. In the latter case, we use the usual
approximation

Jij = [fi(t, y + σjej)− fi(t, y)]/σj .

The increments σj are given by

σj = max
{√

U |yj |, σ0/Wj

}
,

where U is the unit roundoff, σ0 is a dimensionless value, and Wj is the error weight defined in (2.6).
In the dense case, this scheme requires N evaluations of f , one for each column of J . In the band case,
the columns of J are computed in groups, by the Curtis-Powell-Reid algorithm, with the number of
f evaluations equal to the bandwidth.
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We note that with the sparse direct solvers, the Jacobian must be supplied by a user routine.
In the case of a Krylov method, preconditioning may be used on the left, on the right, or both,

with user-supplied routines for the preconditioning setup and solve operations, and optionally also
for the required matrix-vector products Jv. If a routine for Jv is not supplied, these products are
computed as

Jv = [f(t, y + σv)− f(t, y)]/σ . (2.7)

The increment σ is 1/‖v‖, so that σv has norm 1.
A critical part of cvode — making it an ODE “solver” rather than just an ODE method, is its

control of local error. At every step, the local error is estimated and required to satisfy tolerance
conditions, and the step is redone with reduced step size whenever that error test fails. As with
any linear multistep method, the local truncation error LTE, at order q and step size h, satisfies an
asymptotic relation

LTE = Chq+1y(q+1) +O(hq+2)

for some constant C, under mild assumptions on the step sizes. A similar relation holds for the error
in the predictor yn(0). These are combined to get a relation

LTE = C ′[yn − yn(0)] +O(hq+2) .

The local error test is simply ‖LTE‖ ≤ 1. Using the above, it is performed on the predictor-corrector
difference ∆n ≡ yn(m) − yn(0) (with yn(m) the final iterate computed), and takes the form

‖∆n‖ ≤ ε ≡ 1/|C ′| .

If this test passes, the step is considered successful. If it fails, the step is rejected and a new step size
h′ is computed based on the asymptotic behavior of the local error, namely by the equation

(h′/h)q+1‖∆n‖ = ε/6 .

Here 1/6 is a safety factor. A new attempt at the step is made, and the error test repeated. If it fails
three times, the order q is reset to 1 (if q > 1), or the step is restarted from scratch (if q = 1). The
ratio h′/h is limited above to 0.2 after two error test failures, and limited below to 0.1 after three.
After seven failures, cvode returns to the user with a give-up message.

In addition to adjusting the step size to meet the local error test, cvode periodically adjusts the
order, with the goal of maximizing the step size. The integration starts out at order 1 and varies the
order dynamically after that. The basic idea is to pick the order q for which a polynomial of order q
best fits the discrete data involved in the multistep method. However, if either a convergence failure
or an error test failure occurred on the step just completed, no change in step size or order is done.
At the current order q, selecting a new step size is done exactly as when the error test fails, giving a
tentative step size ratio

h′/h = (ε/6‖∆n‖)1/(q+1) ≡ ηq .

We consider changing order only after taking q+ 1 steps at order q, and then we consider only orders
q′ = q − 1 (if q > 1) or q′ = q + 1 (if q < 5). The local truncation error at order q′ is estimated using
the history data. Then a tentative step size ratio is computed on the basis that this error, LTE(q′),
behaves asymptotically as hq′+1. With safety factors of 1/6 and 1/10 respectively, these ratios are:

h′/h = [1/6‖LTE(q − 1)‖]1/q ≡ ηq−1

and
h′/h = [1/10‖LTE(q + 1)‖]1/(q+2) ≡ ηq+1 .

The new order and step size are then set according to

η = max{ηq−1, ηq, ηq+1} , h′ = ηh ,

with q′ set to the index achieving the above maximum. However, if we find that η < 1.5, we do not
bother with the change. Also, h′/h is always limited to 10, except on the first step, when it is limited
to 104.
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The various algorithmic features of cvode described above, as inherited from vode and vodpk,
are documented in [3, 5, 18]. They are also summarized in [19].

Normally, cvode takes steps until a user-defined output value t = tout is overtaken, and then it
computes y(tout) by interpolation. However, a “one step” mode option is available, where control
returns to the calling program after each step. There are also options to force cvode not to integrate
past a given stopping point t = tstop.

2.2 Preconditioning

When using a Newton method to solve the nonlinear system (2.3), cvode makes repeated use of
a linear solver to solve linear systems of the form Mx = −r, where x is a correction vector and
r is a residual vector. If this linear system solve is done with one of the scaled preconditioned
iterative linear solvers, these solvers are rarely successful if used without preconditioning; it is generally
necessary to precondition the system in order to obtain acceptable efficiency. A system Ax = b can be
preconditioned on the left, as (P−1A)x = P−1b; on the right, as (AP−1)Px = b; or on both sides, as
(P−1

L AP−1
R )PRx = P−1

L b. The Krylov method is then applied to a system with the matrix P−1A, or
AP−1, or P−1

L AP−1
R , instead of A. In order to improve the convergence of the Krylov iteration, the

preconditioner matrix P , or the product PLPR in the last case, should in some sense approximate the
system matrix A. Yet at the same time, in order to be cost-effective, the matrix P , or matrices PL and
PR, should be reasonably efficient to evaluate and solve. Finding a good point in this tradeoff between
rapid convergence and low cost can be very difficult. Good choices are often problem-dependent (for
example, see [4] for an extensive study of preconditioners for reaction-transport systems).

Most of the iterative linear solvers supplied with sundials allow for preconditioning either side,
or on both sides, although we know of no situation where preconditioning on both sides is clearly
superior to preconditioning on one side only (with the product PLPR). Moreover, for a given precon-
ditioner matrix, the merits of left vs. right preconditioning are unclear in general, and the user should
experiment with both choices. Performance will differ because the inverse of the left preconditioner is
included in the linear system residual whose norm is being tested in the Krylov algorithm. As a rule,
however, if the preconditioner is the product of two matrices, we recommend that preconditioning be
done either on the left only or the right only, rather than using one factor on each side.

Typical preconditioners used with cvode are based on approximations to the system Jacobian,
J = ∂f/∂y. Since the Newton iteration matrix involved is M = I − γJ , any approximation J̄ to
J yields a matrix that is of potential use as a preconditioner, namely P = I − γJ̄ . Because the
Krylov iteration occurs within a Newton iteration and further also within a time integration, and
since each of these iterations has its own test for convergence, the preconditioner may use a very
crude approximation, as long as it captures the dominant numerical feature(s) of the system. We
have found that the combination of a preconditioner with the Newton-Krylov iteration, using even
a fairly poor approximation to the Jacobian, can be surprisingly superior to using the same matrix
without Krylov acceleration (i.e., a modified Newton iteration), as well as to using the Newton-Krylov
method with no preconditioning.

2.3 BDF stability limit detection

cvode includes an algorithm, stald (STAbility Limit Detection), which provides protection against
potentially unstable behavior of the BDF multistep integration methods in certain situations, as
described below.

When the BDF option is selected, cvodes uses Backward Differentiation Formula methods of
orders 1 to 5. At order 1 or 2, the BDF method is A-stable, meaning that for any complex constant
λ in the open left half-plane, the method is unconditionally stable (for any step size) for the standard
scalar model problem ẏ = λy. For an ODE system, this means that, roughly speaking, as long as all
modes in the system are stable, the method is also stable for any choice of step size, at least in the
sense of a local linear stability analysis.
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At orders 3 to 5, the BDF methods are not A-stable, although they are stiffly stable. In each case,
in order for the method to be stable at step size h on the scalar model problem, the product hλ must
lie within a region of absolute stability. That region excludes a portion of the left half-plane that is
concentrated near the imaginary axis. The size of that region of instability grows as the order increases
from 3 to 5. What this means is that, when running BDF at any of these orders, if an eigenvalue λ of
the system lies close enough to the imaginary axis, the step sizes h for which the method is stable are
limited (at least according to the linear stability theory) to a set that prevents hλ from leaving the
stability region. The meaning of close enough depends on the order. At order 3, the unstable region
is much narrower than at order 5, so the potential for unstable behavior grows with order.

System eigenvalues that are likely to run into this instability are ones that correspond to weakly
damped oscillations. A pure undamped oscillation corresponds to an eigenvalue on the imaginary axis.
Problems with modes of that kind call for different considerations, since the oscillation generally must
be followed by the solver, and this requires step sizes (h ∼ 1/ν, where ν is the frequency) that are
stable for BDF anyway. But for a weakly damped oscillatory mode, the oscillation in the solution is
eventually damped to the noise level, and at that time it is important that the solver not be restricted
to step sizes on the order of 1/ν. It is in this situation that the new option may be of great value.

In terms of partial differential equations, the typical problems for which the stability limit detection
option is appropriate are ODE systems resulting from semi-discretized PDEs (i.e., PDEs discretized
in space) with advection and diffusion, but with advection dominating over diffusion. Diffusion alone
produces pure decay modes, while advection tends to produce undamped oscillatory modes. A mix of
the two with advection dominant will have weakly damped oscillatory modes.

The stald algorithm attempts to detect, in a direct manner, the presence of a stability region
boundary that is limiting the step sizes in the presence of a weakly damped oscillation [16]. The
algorithm supplements (but differs greatly from) the existing algorithms in cvodes for choosing step
size and order based on estimated local truncation errors. The stald algorithm works directly with
history data that is readily available in cvode. If it concludes that the step size is in fact stability-
limited, it dictates a reduction in the method order, regardless of the outcome of the error-based
algorithm. The stald algorithm has been tested in combination with the vode solver on linear
advection-dominated advection-diffusion problems [17], where it works well. The implementation
in cvode has been successfully tested on linear and nonlinear advection-diffusion problems, among
others.

This stability limit detection option adds some computational overhead to the cvodes solution.
(In timing tests, these overhead costs have ranged from 2% to 7% of the total, depending on the size
and complexity of the problem, with lower relative costs for larger problems.) Therefore, it should
be activated only when there is reasonable expectation of modes in the user’s system for which it
is appropriate. In particular, if a cvode solution with this option turned off appears to take an
inordinately large number of steps at orders 3-5 for no apparent reason in terms of the solution time
scale, then there is a good chance that step sizes are being limited by stability, and that turning on
the option will improve the efficiency of the solution.

2.4 Rootfinding

The cvode solver has been augmented to include a rootfinding feature. This means that, while
integrating the Initial Value Problem (2.1), cvode can also find the roots of a set of user-defined
functions gi(t, y) that depend both on t and on the solution vector y = y(t). The number of these root
functions is arbitrary, and if more than one gi is found to have a root in any given interval, the various
root locations are found and reported in the order that they occur on the t axis, in the direction of
integration.

Generally, this rootfinding feature finds only roots of odd multiplicity, corresponding to changes
in sign of gi(t, y(t)), denoted gi(t) for short. If a user root function has a root of even multiplicity
(no sign change), it will probably be missed by cvode. If such a root is desired, the user should
reformulate the root function so that it changes sign at the desired root.

The basic scheme used is to check for sign changes of any gi(t) over each time step taken, and
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then (when a sign change is found) to hone in on the root(s) with a modified secant method [15]. In
addition, each time g is computed, cvode checks to see if gi(t) = 0 exactly, and if so it reports this
as a root. However, if an exact zero of any gi is found at a point t, cvode computes g at t+ δ for a
small increment δ, slightly further in the direction of integration, and if any gi(t+ δ) = 0 also, cvode
stops and reports an error. This way, each time cvode takes a time step, it is guaranteed that the
values of all gi are nonzero at some past value of t, beyond which a search for roots is to be done.

At any given time in the course of the time-stepping, after suitable checking and adjusting has
been done, cvode has an interval (tlo, thi] in which roots of the gi(t) are to be sought, such that thi

is further ahead in the direction of integration, and all gi(tlo) 6= 0. The endpoint thi is either tn, the
end of the time step last taken, or the next requested output time tout if this comes sooner. The
endpoint tlo is either tn−1, the last output time tout (if this occurred within the last step), or the last
root location (if a root was just located within this step), possibly adjusted slightly toward tn if an
exact zero was found. The algorithm checks gi at thi for zeros and for sign changes in (tlo, thi). If
no sign changes were found, then either a root is reported (if some gi(thi) = 0) or we proceed to the
next time interval (starting at thi). If one or more sign changes were found, then a loop is entered to
locate the root to within a rather tight tolerance, given by

τ = 100 ∗ U ∗ (|tn|+ |h|) (U = unit roundoff) .

Whenever sign changes are seen in two or more root functions, the one deemed most likely to have
its root occur first is the one with the largest value of |gi(thi)|/|gi(thi)− gi(tlo)|, corresponding to the
closest to tlo of the secant method values. At each pass through the loop, a new value tmid is set,
strictly within the search interval, and the values of gi(tmid) are checked. Then either tlo or thi is
reset to tmid according to which subinterval is found to include the sign change. If there is none in
(tlo, tmid) but some gi(tmid) = 0, then that root is reported. The loop continues until |thi − tlo| < τ ,
and then the reported root location is thi.

In the loop to locate the root of gi(t), the formula for tmid is

tmid = thi − (thi − tlo)gi(thi)/[gi(thi)− αgi(tlo)] ,

where α is a weight parameter. On the first two passes through the loop, α is set to 1, making tmid

the secant method value. Thereafter, α is reset according to the side of the subinterval (low vs. high,
i.e., toward tlo vs. toward thi) in which the sign change was found in the previous two passes. If
the two sides were opposite, α is set to 1. If the two sides were the same, α is halved (if on the low
side) or doubled (if on the high side). The value of tmid is closer to tlo when α < 1 and closer to thi

when α > 1. If the above value of tmid is within τ/2 of tlo or thi, it is adjusted inward, such that its
fractional distance from the endpoint (relative to the interval size) is between .1 and .5 (.5 being the
midpoint), and the actual distance from the endpoint is at least τ/2.





Chapter 3

Code Organization

3.1 SUNDIALS organization

The family of solvers referred to as sundials consists of the solvers cvode and arkode (for ODE
systems), kinsol (for nonlinear algebraic systems), and ida (for differential-algebraic systems). In
addition, sundials also includes variants of cvode and ida with sensitivity analysis capabilities
(using either forward or adjoint methods), called cvodes and idas, respectively.

The various solvers of this family share many subordinate modules. For this reason, it is organized
as a family, with a directory structure that exploits that sharing (see Figs. 3.1 and 3.2). The following
is a list of the solver packages presently available, and the basic functionality of each:

• cvode, a solver for stiff and nonstiff ODE systems dy/dt = f(t, y) based on Adams and BDF
methods;

• cvodes, a solver for stiff and nonstiff ODE systems with sensitivity analysis capabilities;

• arkode, a solver for ODE systems Mdy/dt = fE(t, y)+fI(t, y) based on additive Runge-Kutta
methods;

• ida, a solver for differential-algebraic systems F (t, y, ẏ) = 0 based on BDF methods;

• idas, a solver for differential-algebraic systems with sensitivity analysis capabilities;

• kinsol, a solver for nonlinear algebraic systems F (u) = 0.

3.2 CVODE organization

The cvode package is written in ANSI C. The following summarizes the basic structure of the package,
although knowledge of this structure is not necessary for its use.

The overall organization of the cvode package is shown in Figure 3.3. The central integration
module, implemented in the files cvode.h, cvode impl.h, and cvode.c, deals with the evaluation of
integration coefficients, the functional or Newton iteration process, estimation of local error, selection
of stepsize and order, and interpolation to user output points, among other issues. Although this
module contains logic for the basic Newton iteration algorithm, it has no knowledge of the method
being used to solve the linear systems that arise. For any given user problem, one of the linear system
solver interfaces is specified, and is then invoked as needed during the integration.

At present, the package includes two linear solver interfaces. The direct linear solver interface,
cvdls, supports sunlinsol implementations with type SUNLINSOL DIRECT (see Chapter 8). These
linear solvers utilize direct methods for the solution of linear systems stored using one of the sundials
generic sunmatrix implementations (dense, banded or sparse; see Chapter 7). It is assumed that
the dominant cost for such solvers occurs in factorization of the linear system matrix M , so cvode
utilizes these solvers within its modified Newton nonlinear solve. The spils linear solver interface,
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Figure 3.1: High-level diagram of the sundials suite

cvspils, supports sunlinsol implementations with type SUNLINSOL ITERATIVE (see Chapter 8).
These linear solvers utilize scaled preconditioned iterative methods. It is assumed that these methods
are implemented in a “matrix-free” manner, wherein only the action of the matrix-vector product Mv
is required. Since cvode can operate on any valid sunlinsol implementation of SUNLINSOL DIRECT
or SUNLINSOL ITERATIVE types, the set of linear solver modules available to cvode will expand as
new sunlinsol modules are developed.

Additionally, cvode includes the diagonal linear solver interface, cvdiag, that creates an internally
generated diagonal approximation to the Jacobian.

Within the cvdls interface, the package includes algorithms for the approximation of dense or
banded Jacobians through difference quotients, but the user also has the option of supplying the
Jacobian (or an approximation to it) directly. This user-supplied routine is required when using sparse
Jacobian matrices, since standard difference quotient approximations do not leverage the inherent
sparsity of the problem.

Within the cvspils interface, the package includes an algorithm for the approximation by difference
quotients of the product Mv. Again, the user has the option of providing routines for this operation,
in two phases: setup (preprocessing of Jacobian data) and multiplication. For preconditioned iterative
methods, the preconditioning must be supplied by the user, again in two phases: setup and solve.
While there is no default choice of preconditioner analogous to the difference-quotient approximation in
the direct case, the references [4, 5], together with the example and demonstration programs included
with cvode, offer considerable assistance in building preconditioners.

Each cvode linear solver interface consists of four primary phases, devoted to (1) memory allo-
cation and initialization, (2) setup of the matrix data involved, (3) solution of the system, and (4)
freeing of memory. The setup and solution phases are separate because the evaluation of Jacobians
and preconditioners is done only periodically during the integration, and only as required to achieve
convergence.

cvode also provides two preconditioner modules, for use with any of the Krylov iterative linear
solvers. The first one, cvbandpre, is intended to be used with nvector serial, nvector openmp
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(a) Directory structure of the sundials source tree

(b) Directory structure of the sundials examples

Figure 3.2: Organization of the sundials suite
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Figure 3.3: Overall structure diagram of the cvode package. Modules specific to cvode begin with
“CV” (cvdls, cvdiag, cvspils, cvbbdpre and cvbandpre), all other items correspond to generic
solver and auxiliary modules. Note also that the LAPACK, klu and superlumt support is through
interfaces to external packages. Users will need to download and compile those packages independently.

or nvector pthreads and provides a banded difference-quotient Jacobian-based preconditioner,
with corresponding setup and solve routines. The second preconditioner module, cvbbdpre, works
in conjunction with nvector parallel and generates a preconditioner that is a block-diagonal
matrix with each block being a banded matrix.

All state information used by cvode to solve a given problem is saved in a structure, and a pointer
to that structure is returned to the user. There is no global data in the cvode package, and so, in this
respect, it is reentrant. State information specific to the linear solver is saved in a separate structure,
a pointer to which resides in the cvode memory structure. The reentrancy of cvode was motivated
by the anticipated multicomputer extension, but is also essential in a uniprocessor setting where two
or more problems are solved by intermixed calls to the package from within a single user program.



Chapter 4

Using CVODE for C Applications

This chapter is concerned with the use of cvode for the solution of initial value problems (IVPs) in
a C language setting. The following sections treat the header files and the layout of the user’s main
program, and provide descriptions of the cvode user-callable functions and user-supplied functions.

The sample programs described in the companion document [21] may also be helpful. Those codes
may be used as templates (with the removal of some lines used in testing) and are included in the
cvode package.

Users with applications written in Fortran should see Chapter 5, which describes the For-
tran/C interface module.

The user should be aware that not all sunlinsol and sunmatrix modules are compatible with
all nvector implementations. Details on compatability are given in the documentation for each
sunmatrix module (Chapter 7) and each sunlinsol module (Chapter 8). For example, nvec-
tor parallel is not compatible with the dense, banded, or sparse sunmatrix types, or with the
corresponding dense, banded, or sparse sunlinsol modules. Please check Chapters 7 and 8 to verify
compatability between these modules. In addition to that documentation, we note that the cvband-
pre preconditioning module is only compatible with the nvector serial, nvector openmp, and
nvector pthreads vector implementations, and the preconditioner module cvbbdpre can only
be used with nvector parallel. It is not recommended to use a threaded vector module with
SuperLU MT unless it is the nvector openmp module, and SuperLU MT is also compiled with
openMP.

cvode uses various constants for both input and output. These are defined as needed in this
chapter, but for convenience are also listed separately in Appendix B.

4.1 Access to library and header files

At this point, it is assumed that the installation of cvode, following the procedure described in
Appendix A, has been completed successfully.

Regardless of where the user’s application program resides, its associated compilation and load
commands must make reference to the appropriate locations for the library and header files required
by cvode. The relevant library files are

• libdir/libsundials cvode.lib,

• libdir/libsundials nvec*.lib (one to four files),

where the file extension .lib is typically .so for shared libraries and .a for static libraries. The relevant
header files are located in the subdirectories

• incdir/include/cvode

• incdir/include/sundials
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• incdir/include/nvector

• incdir/include/sunmatrix

• incdir/include/sunlinsol

The directories libdir and incdir are the install library and include directories, respectively. For
a default installation, these are instdir/lib and instdir/include, respectively, where instdir is the
directory where sundials was installed (see Appendix A).

4.2 Data Types

The sundials types.h file contains the definition of the type realtype, which is used by the sundials
solvers for all floating-point data, the definition of the integer type sunindextype, which is used
for vector and matrix indices, and booleantype, which is used for certain logic operations within
sundials.

4.2.1 Floating point types

The type realtype can be float, double, or long double, with the default being double. The user
can change the precision of the sundials solvers arithmetic at the configuration stage (see §A.1.2).

Additionally, based on the current precision, sundials types.h defines BIG REAL to be the largest
value representable as a realtype, SMALL REAL to be the smallest value representable as a realtype,
and UNIT ROUNDOFF to be the difference between 1.0 and the minimum realtype greater than 1.0.

Within sundials, real constants are set by way of a macro called RCONST. It is this macro that
needs the ability to branch on the definition realtype. In ANSI C, a floating-point constant with no
suffix is stored as a double. Placing the suffix “F” at the end of a floating point constant makes it a
float, whereas using the suffix “L” makes it a long double. For example,

#define A 1.0
#define B 1.0F
#define C 1.0L

defines A to be a double constant equal to 1.0, B to be a float constant equal to 1.0, and C to be
a long double constant equal to 1.0. The macro call RCONST(1.0) automatically expands to 1.0 if
realtype is double, to 1.0F if realtype is float, or to 1.0L if realtype is long double. sundials
uses the RCONST macro internally to declare all of its floating-point constants.

A user program which uses the type realtype and the RCONST macro to handle floating-point
constants is precision-independent except for any calls to precision-specific standard math library
functions. (Our example programs use both realtype and RCONST.) Users can, however, use the type
double, float, or long double in their code (assuming that this usage is consistent with the typedef
for realtype). Thus, a previously existing piece of ANSI C code can use sundials without modifying
the code to use realtype, so long as the sundials libraries use the correct precision (for details see
§A.1.2).

4.2.2 Integer types used for vector and matrix indices

The type sunindextype can be either a 32- or 64-bit signed integer. The default is the portable
int64 t type, and the user can change it to int32 t at the configuration stage. The configuration
system will detect if the compiler does not support portable types, and will replace int32 t and
int64 t with int and long int, respectively, to ensure use of the desired sizes on Linux, Mac OS X,
and Windows platforms. sundials currently does not support unsigned integer types for vector and
matrix indices, although these could be added in the future if there is sufficient demand.

A user program which uses sunindextype to handle vector and matrix indices will work with both
index storage types except for any calls to index storage-specific external libraries. (Our C and C++
example programs use sunindextype.) Users can, however, use any one of int, long int, int32 t,
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int64 t or long long int in their code, assuming that this usage is consistent with the typedef
for sunindextype on their architecture). Thus, a previously existing piece of ANSI C code can use
sundials without modifying the code to use sunindextype, so long as the sundials libraries use the
appropriate index storage type (for details see §A.1.2).

4.3 Header files

The calling program must include several header files so that various macros and data types can be
used. The header file that is always required is:

• cvode/cvode.h, the main header file for cvode, which defines the several types and various
constants, and includes function prototypes.

Note that cvode.h includes sundials types.h, which defines the types realtype, sunindextype,
and booleantype and the constants SUNFALSE and SUNTRUE.

The calling program must also include an nvector implementation header file, of the form
nvector/nvector ***.h. See Chapter 6 for the appropriate name. This file in turn includes the
header file sundials nvector.h which defines the abstract N Vector data type.

If the user chooses Newton iteration for the solution of the nonlinear systems, then a linear solver
module header file will be required. The header files corresponding to the various linear solver inter-
faces and linear solver modules available for use with cvode are:

• cvode/cvode direct.h, which is used with the cvdls direct linear solver interface to access
direct solvers with the following header files:

– sunlinsol/sunlinsol dense.h, which is used with the dense linear solver module, sun-
linsol dense;

– sunlinsol/sunlinsol band.h, which is used with the banded linear solver module, sun-
linsol band;

– sunlinsol/sunlinsol lapackdense.h, which is used with the LAPACK dense linear solver
interface module, sunlinsol lapackdense;

– sunlinsol/sunlinsol lapackband.h, which is used with the LAPACK banded linear
solver interface module, sunlinsol lapackband;

– sunlinsol/sunlinsol klu.h, which is used with the klu sparse linear solver interface
module, sunlinsol klu;

– sunlinsol/sunlinsol superlumt.h, which is used with the superlumt sparse linear
solver interface module, sunlinsol superlumt;

• cvode/cvode spils.h, which is used with the cvspils iterative linear solver interface to access
iterative solvers with the following header files:

– sunlinsol/sunlinsol spgmr.h, which is used with the scaled, preconditioned GMRES
Krylov linear solver module, sunlinsol spgmr;

– sunlinsol/sunlinsol spfgmr.h, which is used with the scaled, preconditioned FGMRES
Krylov linear solver module, sunlinsol spfgmr;

– sunlinsol/sunlinsol spbcgs.h, which is used with the scaled, preconditioned Bi-CGStab
Krylov linear solver module, sunlinsol spbcgs;

– sunlinsol/sunlinsol sptfqmr.h, which is used with the scaled, preconditioned TFQMR
Krylov linear solver module, sunlinsol sptfqmr;

– sunlinsol/sunlinsol pcg.h, which is used with the scaled, preconditioned CG Krylov
linear solver module, sunlinsol pcg;

• cvode/cvode diag.h, which is used with the cvdiag diagonal linear solver interface.
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The header files for the sunlinsol dense and sunlinsol lapackdense linear solver modules
include the file sunmatrix/sunmatrix dense.h, which defines the sunmatrix dense matrix module,
as as well as various functions and macros acting on such matrices.

The header files for the sunlinsol band and sunlinsol lapackband linear solver modules in-
clude the file sunmatrix/sunmatrix band.h, which defines the sunmatrix band matrix module, as
as well as various functions and macros acting on such matrices.

The header files for the sunlinsol klu and sunlinsol superlumt sparse linear solvers include
the file sunmatrix/sunmatrix sparse.h, which defines the sunmatrix sparse matrix module, as
well as various functions and macros acting on such matrices.

The header files for the Krylov iterative solvers include the file sundials/sundials iterative.h,
which enumerates the kind of preconditioning, and (for the spgmr and spfgmr solvers) the choices
for the Gram-Schmidt process.

Other headers may be needed, according to the choice of preconditioner, etc. For example, in the
cvDiurnal kry p example (see [21]), preconditioning is done with a block-diagonal matrix. For this,
even though the sunlinsol spgmr linear solver is used, the header sundials/sundials dense.h is
included for access to the underlying generic dense matrix arithmetic routines.

4.4 A skeleton of the user’s main program

The following is a skeleton of the user’s main program (or calling program) for the integration of an
ODE IVP. Most of the steps are independent of the nvector, sunmatrix, and sunlinsol imple-
mentations used. For the steps that are not, refer to Chapters 6, 7, and 8 for the specific name of the
function to be called or macro to be referenced.

1. Initialize parallel or multi-threaded environment, if appropriate

For example, call MPI Init to initialize MPI if used, or set num threads, the number of threads
to use within the threaded vector functions, if used.

2. Set problem dimensions etc.

This generally includes the problem size N, and may include the local vector length Nlocal.

Note: The variables N and Nlocal should be of type sunindextype.

3. Set vector of initial values

To set the vector y0 of initial values, use the appropriate functions defined by the particular
nvector implementation.

For native sundials vector implementations (except the cuda and raja-based ones), use a call
of the form y0 = N VMake ***(..., ydata) if the realtype array ydata containing the initial
values of y already exists. Otherwise, create a new vector by making a call of the form y0 =
N VNew ***(...), and then set its elements by accessing the underlying data with a call of the
form ydata = N VGetArrayPointer(y0). See §6.1-6.4 for details.

For the hypre and petsc vector wrappers, first create and initialize the underlying vector, and
then create an nvector wrapper with a call of the form y0 = N VMake ***(yvec), where yvec
is a hypre or petsc vector. Note that calls like N VNew ***(...) and N VGetArrayPointer(...)
are not available for these vector wrappers. See §6.5 and §6.6 for details.

If using either the cuda- or raja-based vector implementations use a call of the form y0 =
N VMake ***(..., c) where c is a pointer to a suncudavec or sunrajavec vector class if this class
already exists. Otherwise, create a new vector by making a call of the form y0 = N VNew ***(...),
and then set its elements by accessing the underlying data where it is located with a call of the
form N VGetDeviceArrayPointer *** or N VGetHostArrayPointer ***. Note that the vector
class will allocate memory on both the host and device when instantiated. See §6.7-6.8 for details.

4. Create cvode object
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Call cvode mem = CVodeCreate(lmm, iter) to create the cvode memory block and to specify
the solution method (linear multistep method and nonlinear solver iteration type). CVodeCreate
returns a pointer to the cvode memory structure. See §4.5.1 for details.

5. Initialize cvode solver

Call CVodeInit(...) to provide required problem specifications, allocate internal memory for
cvode, and initialize cvode. CVodeInit returns a flag, the value of which indicates either
success or an illegal argument value. See §4.5.1 for details.

6. Specify integration tolerances

Call CVodeSStolerances(...) or CVodeSVtolerances(...) to specify either a scalar relative
tolerance and scalar absolute tolerance, or a scalar relative tolerance and a vector of absolute
tolerances, respectively. Alternatively, call CVodeWFtolerances to specify a function which sets
directly the weights used in evaluating WRMS vector norms. See §4.5.2 for details.

7. Set optional inputs

Call CVodeSet* functions to change any optional inputs that control the behavior of cvode from
their default values. See §4.5.6.1 for details.

8. Create matrix object

If a direct linear solver is to be used within a Newton iteration then a template Jacobian ma-
trix must be created by using the appropriate functions defined by the particular sunmatrix
implementation.

NOTE: The dense, banded, and sparse matrix objects are usable only in a serial or threaded
environment.

9. Create linear solver object

If a Newton iteration is chosen, then the desired linear solver object must be created by using the
appropriate functions defined by the particular sunlinsol implementation.

10. Set linear solver optional inputs

Call *Set* functions from the selected linear solver module to change optional inputs specific to
that linear solver. See the documentation for each sunlinsol module in Chapter 8 for details.

11. Attach linear solver module

If a Newton iteration is chosen, initialize the cvdls or cvspils linear solver interface by attaching
the linear solver object (and matrix object, if applicable) with one of the following calls (for details
see §4.5.3):

ier = CVDlsSetLinearSolver(...);

ier = CVSpilsSetLinearSolver(...);

Alternately, if the cvode-specific diagonal linear solver module, cvdiag, is desired, initialize the
linear solver module and attach it to cvode with the call

ier = CVDiag(...);

12. Set linear solver interface optional inputs

Call CVDlsSet* or CVSpilsSet* functions to change optional inputs specific to that linear solver
interface. See §4.5.6 for details.

13. Specify rootfinding problem

Optionally, call CVodeRootInit to initialize a rootfinding problem to be solved during the inte-
gration of the ODE system. See §4.5.4, and see §4.5.6.4 for relevant optional input calls.
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14. Advance solution in time

For each point at which output is desired, call ier = CVode(cvode mem, tout, yout, &tret,
itask). Here itask specifies the return mode. The vector yout (which can be the same as the
vector y0 above) will contain y(t). See §4.5.5 for details.

15. Get optional outputs

Call CV*Get* functions to obtain optional output. See §4.5.8 for details.

16. Deallocate memory for solution vector

Upon completion of the integration, deallocate memory for the vector y (or yout) by calling the
appropriate destructor function defined by the nvector implementation:

N VDestroy(y);

17. Free solver memory

Call CVodeFree(&cvode mem) to free the memory allocated by cvode.

18. Free linear solver and matrix memory

Call SUNLinSolFree and SUNMatDestroy to free any memory allocated for the linear solver and
matrix objects created above.

19. Finalize MPI, if used

Call MPI Finalize() to terminate MPI.

sundials provides some linear solvers only as a means for users to get problems running and not as
highly efficient solvers. For example, if solving a dense system, we suggest using the Lapack solvers if
the size of the linear system is > 50, 000. (Thanks to A. Nicolai for his testing and recommendation.)
Table 4.1 shows the linear solver interfaces available as sunlinsol modules and the vector imple-
mentations required for use. As an example, one cannot use the dense direct solver interfaces with
the MPI-based vector implementation. However, as discussed in Chapter 8 the sundials packages
operate on generic sunlinsol objects, allowing a user to develop their own solvers should they so
desire.

Table 4.1: sundials linear solver interfaces and vector implementations that can be used for each.
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Dense X X X X
Band X X X X

LapackDense X X X X
LapackBand X X X X

klu X X X X
superlumt X X X X

spgmr X X X X X X X X X
spfgmr X X X X X X X X X
spbcgs X X X X X X X X X

sptfqmr X X X X X X X X X
pcg X X X X X X X X X

User Supp. X X X X X X X X X
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4.5 User-callable functions

This section describes the cvode functions that are called by the user to setup and then solve an
IVP. Some of these are required. However, starting with §4.5.6, the functions listed involve optional
inputs/outputs or restarting, and those paragraphs may be skipped for a casual use of cvode. In any
case, refer to §4.4 for the correct order of these calls.

On an error, each user-callable function returns a negative value and sends an error message to
the error handler routine, which prints the message on stderr by default. However, the user can set
a file as error output or can provide his own error handler function (see §4.5.6.1).

4.5.1 CVODE initialization and deallocation functions

The following three functions must be called in the order listed. The last one is to be called only after
the IVP solution is complete, as it frees the cvode memory block created and allocated by the first
two calls.

CVodeCreate

Call cvode mem = CVodeCreate(lmm, iter);

Description The function CVodeCreate instantiates a cvode solver object and specifies the solution
method.

Arguments lmm (int) specifies the linear multistep method and may be one of two possible values:
CV ADAMS or CV BDF.

iter (int) specifies the type of nonlinear solver iteration and may be either CV NEWTON
or CV FUNCTIONAL.

The recommended choices for (lmm, iter) are (CV ADAMS, CV FUNCTIONAL) for nonstiff
problems and (CV BDF, CV NEWTON) for stiff problems.

Return value If successful, CVodeCreate returns a pointer to the newly created cvode memory block
(of type void *). Otherwise, it returns NULL.

CVodeInit

Call flag = CVodeInit(cvode mem, f, t0, y0);

Description The function CVodeInit provides required problem and solution specifications, allocates
internal memory, and initializes cvode.

Arguments cvode mem (void *) pointer to the cvode memory block returned by CVodeCreate.
f (CVRhsFn) is the C function which computes the right-hand side function

f in the ODE. This function has the form f(t, y, ydot, user data) (for
full details see §4.6.1).

t0 (realtype) is the initial value of t.
y0 (N Vector) is the initial value of y.

Return value The return value flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeInit was successful.
CV MEM NULL The cvode memory block was not initialized through a previous call to

CVodeCreate.
CV MEM FAIL A memory allocation request has failed.
CV ILL INPUT An input argument to CVodeInit has an illegal value.

Notes If an error occurred, CVodeInit also sends an error message to the error handler func-
tion.
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CVodeFree

Call CVodeFree(&cvode mem);

Description The function CVodeFree frees the memory allocated by a previous call to CVodeCreate.

Arguments The argument is the pointer to the cvode memory block (of type void *).

Return value The function CVodeFree has no return value.

4.5.2 CVODE tolerance specification functions

One of the following three functions must be called to specify the integration tolerances (or directly
specify the weights used in evaluating WRMS vector norms). Note that this call must be made after
the call to CVodeInit.

CVodeSStolerances

Call flag = CVodeSStolerances(cvode mem, reltol, abstol);

Description The function CVodeSStolerances specifies scalar relative and absolute tolerances.

Arguments cvode mem (void *) pointer to the cvode memory block returned by CVodeCreate.
reltol (realtype) is the scalar relative error tolerance.
abstol (realtype) is the scalar absolute error tolerance.

Return value The return value flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeSStolerances was successful.
CV MEM NULL The cvode memory block was not initialized through a previous call to

CVodeCreate.
CV NO MALLOC The allocation function CVodeInit has not been called.
CV ILL INPUT One of the input tolerances was negative.

CVodeSVtolerances

Call flag = CVodeSVtolerances(cvode mem, reltol, abstol);

Description The function CVodeSVtolerances specifies scalar relative tolerance and vector absolute
tolerances.

Arguments cvode mem (void *) pointer to the cvode memory block returned by CVodeCreate.
reltol (realtype) is the scalar relative error tolerance.
abstol (N Vector) is the vector of absolute error tolerances.

Return value The return value flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeSVtolerances was successful.
CV MEM NULL The cvode memory block was not initialized through a previous call to

CVodeCreate.
CV NO MALLOC The allocation function CVodeInit has not been called.
CV ILL INPUT The relative error tolerance was negative or the absolute tolerance had

a negative component.

Notes This choice of tolerances is important when the absolute error tolerance needs to be
different for each component of the state vector y.
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CVodeWFtolerances

Call flag = CVodeWFtolerances(cvode mem, efun);

Description The function CVodeWFtolerances specifies a user-supplied function efun that sets the
multiplicative error weights Wi for use in the weighted RMS norm, which are normally
defined by Eq. (2.6).

Arguments cvode mem (void *) pointer to the cvode memory block returned by CVodeCreate.
efun (CVEwtFn) is the C function which defines the ewt vector (see §4.6.3).

Return value The return value flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeWFtolerances was successful.
CV MEM NULL The cvode memory block was not initialized through a previous call to

CVodeCreate.
CV NO MALLOC The allocation function CVodeInit has not been called.

General advice on choice of tolerances. For many users, the appropriate choices for tolerance
values in reltol and abstol are a concern. The following pieces of advice are relevant.

(1) The scalar relative tolerance reltol is to be set to control relative errors. So reltol = 10−4

means that errors are controlled to .01%. We do not recommend using reltol larger than 10−3.
On the other hand, reltol should not be so small that it is comparable to the unit roundoff of the
machine arithmetic (generally around 1.0E-15).

(2) The absolute tolerances abstol (whether scalar or vector) need to be set to control absolute
errors when any components of the solution vector y may be so small that pure relative error control
is meaningless. For example, if y[i] starts at some nonzero value, but in time decays to zero, then
pure relative error control on y[i] makes no sense (and is overly costly) after y[i] is below some
noise level. Then abstol (if scalar) or abstol[i] (if a vector) needs to be set to that noise level. If
the different components have different noise levels, then abstol should be a vector. See the example
cvRoberts dns in the cvode package, and the discussion of it in the cvode Examples document [21].
In that problem, the three components vary betwen 0 and 1, and have different noise levels; hence the
abstol vector. It is impossible to give any general advice on abstol values, because the appropriate
noise levels are completely problem-dependent. The user or modeler hopefully has some idea as to
what those noise levels are.

(3) Finally, it is important to pick all the tolerance values conservatively, because they control the
error committed on each individual time step. The final (global) errors are some sort of accumulation
of those per-step errors. A good rule of thumb is to reduce the tolerances by a factor of .01 from
the actual desired limits on errors. So if you want .01% accuracy (globally), a good choice is reltol
= 10−6. But in any case, it is a good idea to do a few experiments with the tolerances to see how the
computed solution values vary as tolerances are reduced.

Advice on controlling unphysical negative values. In many applications, some components
in the true solution are always positive or non-negative, though at times very small. In the numerical
solution, however, small negative (hence unphysical) values can then occur. In most cases, these values
are harmless, and simply need to be controlled, not eliminated. The following pieces of advice are
relevant.

(1) The way to control the size of unwanted negative computed values is with tighter absolute
tolerances. Again this requires some knowledge of the noise level of these components, which may or
may not be different for different components. Some experimentation may be needed.

(2) If output plots or tables are being generated, and it is important to avoid having negative
numbers appear there (for the sake of avoiding a long explanation of them, if nothing else), then
eliminate them, but only in the context of the output medium. Then the internal values carried
by the solver are unaffected. Remember that a small negative value in y returned by cvode, with
magnitude comparable to abstol or less, is equivalent to zero as far as the computation is concerned.

(3) The user’s right-hand side routine f should never change a negative value in the solution vector
y to a non-negative value, as a ”solution” to this problem. This can cause instability. If the f routine
cannot tolerate a zero or negative value (e.g. because there is a square root or log of it), then the
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offending value should be changed to zero or a tiny positive number in a temporary variable (not in
the input y vector) for the purposes of computing f(t, y).

(4) Positivity and non-negativity constraints on components can be enforced by use of the recover-
able error return feature in the user-supplied right-hand side function. However, because this option
involves some extra overhead cost, it should only be exercised if the use of absolute tolerances to
control the computed values is unsuccessful.

4.5.3 Linear solver interface functions

As previously explained, a Newton iteration requires the solution of linear systems of the form (2.4).
There are three cvode linear solver interfaces currently available for this task: cvdls, cvdiag and
cvspils.

The first corresponds to the use of Direct Linear Solvers, and utilizes sunmatrix objects to store
the Jacobian J = ∂f/∂y, the Newton matrix M = I − γJ , and factorizations used throughout the
solution process.

The cvdiag linear solver is also a direct linear solver, but it only uses a diagonal approximation
to J .

The third corresponds to the use of Scaled, Preconditioned, Iterative Linear Solvers, utilizing
matrix-free Krylov methods to solve the Newton linear systems of equations. With most of these
methods, preconditioning can be done on the left only, on the right only, on both the left and the
right, or not at all. The exceptions to this rule are spfgmr that supports right preconditioning only
and pcg that performs symmetric preconditioning. For the specification of a preconditioner, see the
iterative linear solver sections in §4.5.6 and §4.6.

If preconditioning is done, user-supplied functions define left and right preconditioner matrices P1

and P2 (either of which could be the identity matrix), such that the product P1P2 approximates the
Newton matrix M = I − γJ of (2.5).

To specify a generic linear solver to cvode, after the call to CVodeCreate but before any calls
to CVode, the user’s program must create the appropriate sunlinsol object and call either of the
functions CVDlsSetLinearSolver or CVSpilsSetLinearSolver, as documented below. The first
argument passed to these functions is the cvode memory pointer returned by CVodeCreate; the
second argument passed to these functions is the desired sunlinsol object to use for solving Newton
systems. A call to one of these functions initializes the appropriate cvode linear solver interface,
linking this to the main cvode integrator, and allows the user to specify parameters which are specific
to a particular solver interface. The use of each of the generic linear solvers involves certain constants
and possibly some macros, that are likely to be needed in the user code. These are available in the
corresponding header file associated with the specific sunmatrix or sunlinsol module in question,
as described in Chapters 7 and 8.

To instead specify the cvode-specific diagonal linear solver interface, the user’s program must
call CVDiag, as documented below. The first argument passed to this function is the cvode memory
pointer returned by CVodeCreate.

CVDlsSetLinearSolver

Call flag = CVDlsSetLinearSolver(cvode mem, LS, J);

Description The function CVDlsSetLinearSolver attaches a direct sunlinsol object LS and cor-
responding template Jacobian sunmatrix object J to cvode, initializing the cvdls
direct linear solver interface.

The user’s main program must include the cvode direct.h header file.

Arguments cvode mem (void *) pointer to the cvode memory block.
LS (SUNLinearSolver) sunlinsol object to use for solving Newton linear sys-

tems.
J (SUNMatrix) sunmatrix object for used as a template for the Jacobian

(must have a type compatible with the linear solver object).
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Return value The return value flag (of type int) is one of

CVDLS SUCCESS The cvdls initialization was successful.
CVDLS MEM NULL The cvode mem pointer is NULL.
CVDLS ILL INPUT The cvdls solver is not compatible with the LS or J input objects

or is incompatible with the current nvector module.
CVDLS MEM FAIL A memory allocation request failed.

Notes The cvdls linear solver interface is not compatible with all implementations of the sun-
linsol and nvector modules. Specifically, cvdls requires use of a direct sunlinsol
object and a serial or theaded nvector module. Additional compatibility limitations
for each sunlinsol object (i.e. sunmatrix and nvector object compatibility) are
described in Chapter 8.

CVSpilsSetLinearSolver

Call flag = CVSpilsSetLinearSolver(cvode mem, LS);

Description The function CVSpilsSetLinearSolver attaches an iterative sunlinsol object LS to
cvode, initializing the cvspils scaled, preconditioned, iterative linear solver interface.

The user’s main program must include the cvode spils.h header file.

Arguments cvode mem (void *) pointer to the cvode memory block.
LS (SUNLinearSolver) sunlinsol object to use for solving Newton linear sys-

tems.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The cvspils initialization was successful.
CVSPILS MEM NULL The cvode mem pointer is NULL.
CVSPILS ILL INPUT The cvspils solver is not compatible with the LS object or is in-

compatible with the current nvector module.
CVSPILS MEM FAIL A memory allocation request failed.
CVSPILS SUNLS FAIL A call to the LS object failed.

Notes The cvspils linear solver interface is not compatible with all implementations of the
sunlinsol and nvector modules. Specifically, cvspils requires use of an iterative
sunlinsol object. Additional compatibility limitations for each sunlinsol object
(i.e. required nvector routines) are described in Chapter 8.

CVDiag

Call flag = CVDiag(cvode mem);

Description The function CVDiag selects the cvdiag linear solver.

The user’s main program must include the cvode diag.h header file.

Arguments cvode mem (void *) pointer to the cvode memory block.

Return value The return value flag (of type int) is one of:

CVDIAG SUCCESS The cvdiag initialization was successful.
CVDIAG MEM NULL The cvode mem pointer is NULL.
CVDIAG ILL INPUT The cvdiag solver is not compatible with the current nvector

module.
CVDIAG MEM FAIL A memory allocation request failed.

Notes The cvdiag solver is the simplest of all of the current cvode linear solver interfaces.
The cvdiag solver uses an approximate diagonal Jacobian formed by way of a difference
quotient. The user does not have the option of supplying a function to compute an
approximate diagonal Jacobian.
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4.5.4 Rootfinding initialization function

While solving the IVP, cvode has the capability to find the roots of a set of user-defined functions.
To activate the root finding algorithm, call the following function. This is normally called only once,
prior to the first call to CVode, but if the rootfinding problem is to be changed during the solution,
CVodeRootInit can also be called prior to a continuation call to CVode.

CVodeRootInit

Call flag = CVodeRootInit(cvode mem, nrtfn, g);

Description The function CVodeRootInit specifies that the roots of a set of functions gi(t, y) are to
be found while the IVP is being solved.

Arguments cvode mem (void *) pointer to the cvode memory block returned by CVodeCreate.
nrtfn (int) is the number of root functions gi.
g (CVRootFn) is the C function which defines the nrtfn functions gi(t, y)

whose roots are sought. See §4.6.4 for details.

Return value The return value flag (of type int) is one of

CV SUCCESS The call to CVodeRootInit was successful.
CV MEM NULL The cvode mem argument was NULL.
CV MEM FAIL A memory allocation failed.
CV ILL INPUT The function g is NULL, but nrtfn > 0.

Notes If a new IVP is to be solved with a call to CVodeReInit, where the new IVP has no
rootfinding problem but the prior one did, then call CVodeRootInit with nrtfn= 0.

4.5.5 CVODE solver function

This is the central step in the solution process — the call to perform the integration of the IVP. One
of the input arguments (itask) specifies one of two modes as to where cvode is to return a solution.
But these modes are modified if the user has set a stop time (with CVodeSetStopTime) or requested
rootfinding.

CVode

Call flag = CVode(cvode mem, tout, yout, &tret, itask);

Description The function CVode integrates the ODE over an interval in t.

Arguments cvode mem (void *) pointer to the cvode memory block.
tout (realtype) the next time at which a computed solution is desired.
yout (N Vector) the computed solution vector.
tret (realtype) the time reached by the solver (output).
itask (int) a flag indicating the job of the solver for the next user step. The

CV NORMAL option causes the solver to take internal steps until it has reached
or just passed the user-specified tout parameter. The solver then interpo-
lates in order to return an approximate value of y(tout). The CV ONE STEP
option tells the solver to take just one internal step and then return the
solution at the point reached by that step.

Return value CVode returns a vector yout and a corresponding independent variable value t = tret,
such that yout is the computed value of y(t).

In CV NORMAL mode (with no errors), tret will be equal to tout and yout = y(tout).

The return value flag (of type int) will be one of the following:

CV SUCCESS CVode succeeded and no roots were found.
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CV TSTOP RETURN CVode succeeded by reaching the stopping point specified through
the optional input function CVodeSetStopTime (see §4.5.6.1).

CV ROOT RETURN CVode succeeded and found one or more roots. In this case, tret is
the location of the root. If nrtfn > 1, call CVodeGetRootInfo to
see which gi were found to have a root.

CV MEM NULL The cvode mem argument was NULL.
CV NO MALLOC The cvode memory was not allocated by a call to CVodeInit.
CV ILL INPUT One of the inputs to CVode was illegal, or some other input to the

solver was either illegal or missing. The latter category includes the
following situations: (a) The tolerances have not been set. (b) A
component of the error weight vector became zero during internal
time-stepping. (c) The linear solver initialization function (called by
the user after calling CVodeCreate) failed to set the linear solver-
specific lsolve field in cvode mem. (d) A root of one of the root
functions was found both at a point t and also very near t. In any
case, the user should see the error message for details.

CV TOO CLOSE The initial time t0 and the final time tout are too close to each other
and the user did not specify an initial step size.

CV TOO MUCH WORK The solver took mxstep internal steps but still could not reach tout.
The default value for mxstep is MXSTEP DEFAULT = 500.

CV TOO MUCH ACC The solver could not satisfy the accuracy demanded by the user for
some internal step.

CV ERR FAILURE Either error test failures occurred too many times (MXNEF = 7) dur-
ing one internal time step, or with |h| = hmin.

CV CONV FAILURE Either convergence test failures occurred too many times (MXNCF =
10) during one internal time step, or with |h| = hmin.

CV LINIT FAIL The linear solver’s initialization function failed.
CV LSETUP FAIL The linear solver’s setup function failed in an unrecoverable manner.
CV LSOLVE FAIL The linear solver’s solve function failed in an unrecoverable manner.
CV RHSFUNC FAIL The right-hand side function failed in an unrecoverable manner.
CV FIRST RHSFUNC FAIL The right-hand side function had a recoverable error at the

first call.
CV REPTD RHSFUNC ERR Convergence test failures occurred too many times due to re-

peated recoverable errors in the right-hand side function. This flag
will also be returned if the right-hand side function had repeated
recoverable errors during the estimation of an initial step size.

CV UNREC RHSFUNC ERR The right-hand function had a recoverable error, but no recov-
ery was possible. This failure mode is rare, as it can occur only if the
right-hand side function fails recoverably after an error test failed
while at order one.

CV RTFUNC FAIL The rootfinding function failed.

Notes The vector yout can occupy the same space as the vector y0 of initial conditions that
was passed to CVodeInit.

In the CV ONE STEP mode, tout is used only on the first call, and only to get the direction
and a rough scale of the independent variable.

All failure return values are negative and so the test flag < 0 will trap all CVode
failures.

On any error return in which one or more internal steps were taken by CVode, the
returned values of tret and yout correspond to the farthest point reached in the inte-
gration. On all other error returns, tret and yout are left unchanged from the previous
CVode return.
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Table 4.2: Optional inputs for cvode, cvdls, and cvspils

Optional input Function name Default
CVODE main solver

Pointer to an error file CVodeSetErrFile stderr
Error handler function CVodeSetErrHandlerFn internal fn.
User data CVodeSetUserData NULL
Maximum order for BDF method CVodeSetMaxOrd 5
Maximum order for Adams method CVodeSetMaxOrd 12
Maximum no. of internal steps before tout CVodeSetMaxNumSteps 500
Maximum no. of warnings for tn + h = tn CVodeSetMaxHnilWarns 10
Flag to activate stability limit detection CVodeSetStabLimDet SUNFALSE
Initial step size CVodeSetInitStep estimated
Minimum absolute step size CVodeSetMinStep 0.0
Maximum absolute step size CVodeSetMaxStep ∞
Value of tstop CVodeSetStopTime undefined
Maximum no. of error test failures CVodeSetMaxErrTestFails 7
Maximum no. of nonlinear iterations CVodeSetMaxNonlinIters 3
Maximum no. of convergence failures CVodeSetMaxConvFails 10
Coefficient in the nonlinear convergence test CVodeSetNonlinConvCoef 0.1
Nonlinear iteration type CVodeSetIterType none
Direction of zero-crossing CVodeSetRootDirection both
Disable rootfinding warnings CVodeSetNoInactiveRootWarn none

CVDLS linear solver interface
Jacobian function CVDlsSetJacFn DQ

CVSPILS linear solver interface
Preconditioner functions CVSpilsSetPreconditioner NULL, NULL
Jacobian-times-vector functions CVSpilsSetJacTimes NULL, DQ
Ratio between linear and nonlinear tolerances CVSpilsSetEpsLin 0.05

4.5.6 Optional input functions

There are numerous optional input parameters that control the behavior of the cvode solver. cvode
provides functions that can be used to change these optional input parameters from their default
values. Table 4.2 lists all optional input functions in cvode which are then described in detail in the
remainder of this section, begining with those for the main cvode solver and continuing with those
for the linear solver interfaces. Note that the diagonal linear solver module has no optional inputs.
For the most casual use of cvode, the reader can skip to §4.6.

We note that, on an error return, all of the optional input functions send an error message to the
error handler function. We also note that all error return values are negative, so the test flag < 0
will catch all errors.

4.5.6.1 Main solver optional input functions

The calls listed here can be executed in any order. However, if either of the functions CVodeSetErrFile
or CVodeSetErrHandlerFn is to be called, that call should be first, in order to take effect for any later
error message.

CVodeSetErrFile

Call flag = CVodeSetErrFile(cvode mem, errfp);

Description The function CVodeSetErrFile specifies a pointer to the file where all cvode messages
should be directed when the default cvode error handler function is used.

Arguments cvode mem (void *) pointer to the cvode memory block.
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errfp (FILE *) pointer to output file.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.
CV MEM NULL The cvode mem pointer is NULL.

Notes The default value for errfp is stderr.

Passing a value of NULL disables all future error message output (except for the case in
which the cvode memory pointer is NULL). This use of CVodeSetErrFile is strongly
discouraged.

If CVodeSetErrFile is to be called, it should be called before any other optional input
functions, in order to take effect for any later error message.

CVodeSetErrHandlerFn

Call flag = CVodeSetErrHandlerFn(cvode mem, ehfun, eh data);

Description The function CVodeSetErrHandlerFn specifies the optional user-defined function to be
used in handling error messages.

Arguments cvode mem (void *) pointer to the cvode memory block.
ehfun (CVErrHandlerFn) is the C error handler function (see §4.6.2).
eh data (void *) pointer to user data passed to ehfun every time it is called.

Return value The return value flag (of type int) is one of

CV SUCCESS The function ehfun and data pointer eh data have been successfully set.
CV MEM NULL The cvode mem pointer is NULL.

Notes Error messages indicating that the cvode solver memory is NULL will always be directed
to stderr.

CVodeSetUserData

Call flag = CVodeSetUserData(cvode mem, user data);

Description The function CVodeSetUserData specifies the user data block user data and attaches
it to the main cvode memory block.

Arguments cvode mem (void *) pointer to the cvode memory block.
user data (void *) pointer to the user data.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.
CV MEM NULL The cvode mem pointer is NULL.

Notes If specified, the pointer to user data is passed to all user-supplied functions that have
it as an argument. Otherwise, a NULL pointer is passed.

If user data is needed in user linear solver or preconditioner functions, the call to
CVodeSetUserData must be made before the call to specify the linear solver.

CVodeSetMaxOrd

Call flag = CVodeSetMaxOrder(cvode mem, maxord);

Description The function CVodeSetMaxOrder specifies the maximum order of the linear multistep
method.

Arguments cvode mem (void *) pointer to the cvode memory block.
maxord (int) value of the maximum method order. This must be positive.
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Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.
CV MEM NULL The cvode mem pointer is NULL.
CV ILL INPUT The specified value maxord is ≤ 0, or larger than its previous value.

Notes The default value is ADAMS Q MAX = 12 for the Adams-Moulton method and BDF Q MAX
= 5 for the BDF method. Since maxord affects the memory requirements for the internal
cvode memory block, its value cannot be increased past its previous value.

An input value greater than the default will result in the default value.

CVodeSetMaxNumSteps

Call flag = CVodeSetMaxNumSteps(cvode mem, mxsteps);

Description The function CVodeSetMaxNumSteps specifies the maximum number of steps to be taken
by the solver in its attempt to reach the next output time.

Arguments cvode mem (void *) pointer to the cvode memory block.
mxsteps (long int) maximum allowed number of steps.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.
CV MEM NULL The cvode mem pointer is NULL.

Notes Passing mxsteps = 0 results in cvode using the default value (500).

Passing mxsteps < 0 disables the test (not recommended).

CVodeSetMaxHnilWarns

Call flag = CVodeSetMaxHnilWarns(cvode mem, mxhnil);

Description The function CVodeSetMaxHnilWarns specifies the maximum number of messages issued
by the solver warning that t+ h = t on the next internal step.

Arguments cvode mem (void *) pointer to the cvode memory block.
mxhnil (int) maximum number of warning messages (> 0).

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.
CV MEM NULL The cvode mem pointer is NULL.

Notes The default value is 10. A negative value for mxhnil indicates that no warning messages
should be issued.

CVodeSetStabLimDet

Call flag = CVodeSetstabLimDet(cvode mem, stldet);

Description The function CVodeSetStabLimDet indicates if the BDF stability limit detection algo-
rithm should be used. See §2.3 for further details.

Arguments cvode mem (void *) pointer to the cvode memory block.
stldet (booleantype) flag controlling stability limit detection (SUNTRUE = on;

SUNFALSE = off).

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.
CV MEM NULL The cvode mem pointer is NULL.
CV ILL INPUT The linear multistep method is not set to CV BDF.
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Notes The default value is SUNFALSE. If stldet = SUNTRUE when BDF is used and the method
order is greater than or equal to 3, then an internal function, CVsldet, is called to detect
a possible stability limit. If such a limit is detected, then the order is reduced.

CVodeSetInitStep

Call flag = CVodeSetInitStep(cvode mem, hin);

Description The function CVodeSetInitStep specifies the initial step size.

Arguments cvode mem (void *) pointer to the cvode memory block.
hin (realtype) value of the initial step size to be attempted. Pass 0.0 to use

the default value.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.
CV MEM NULL The cvode mem pointer is NULL.

Notes By default, cvode estimates the initial step size to be the solution h of the equation
‖0.5h2ÿ‖WRMS = 1, where ÿ is an estimated second derivative of the solution at t0.

CVodeSetMinStep

Call flag = CVodeSetMinStep(cvode mem, hmin);

Description The function CVodeSetMinStep specifies a lower bound on the magnitude of the step
size.

Arguments cvode mem (void *) pointer to the cvode memory block.
hmin (realtype) minimum absolute value of the step size (≥ 0.0).

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.
CV MEM NULL The cvode mem pointer is NULL.
CV ILL INPUT Either hmin is nonpositive or it exceeds the maximum allowable step size.

Notes The default value is 0.0.

CVodeSetMaxStep

Call flag = CVodeSetMaxStep(cvode mem, hmax);

Description The function CVodeSetMaxStep specifies an upper bound on the magnitude of the step
size.

Arguments cvode mem (void *) pointer to the cvode memory block.
hmax (realtype) maximum absolute value of the step size (≥ 0.0).

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.
CV MEM NULL The cvode mem pointer is NULL.
CV ILL INPUT Either hmax is nonpositive or it is smaller than the minimum allowable

step size.

Notes Pass hmax = 0.0 to obtain the default value ∞.
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CVodeSetStopTime

Call flag = CVodeSetStopTime(cvode mem, tstop);

Description The function CVodeSetStopTime specifies the value of the independent variable t past
which the solution is not to proceed.

Arguments cvode mem (void *) pointer to the cvode memory block.
tstop (realtype) value of the independent variable past which the solution should

not proceed.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.
CV MEM NULL The cvode mem pointer is NULL.
CV ILL INPUT The value of tstop is not beyond the current t value, tn.

Notes The default, if this routine is not called, is that no stop time is imposed.

CVodeSetMaxErrTestFails

Call flag = CVodeSetMaxErrTestFails(cvode mem, maxnef);

Description The function CVodeSetMaxErrTestFails specifies the maximum number of error test
failures permitted in attempting one step.

Arguments cvode mem (void *) pointer to the cvode memory block.
maxnef (int) maximum number of error test failures allowed on one step (> 0).

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.
CV MEM NULL The cvode mem pointer is NULL.

Notes The default value is 7.

CVodeSetMaxNonlinIters

Call flag = CVodeSetMaxNonlinIters(cvode mem, maxcor);

Description The function CVodeSetMaxNonlinIters specifies the maximum number of nonlinear
solver iterations permitted per step.

Arguments cvode mem (void *) pointer to the cvode memory block.
maxcor (int) maximum number of nonlinear solver iterations allowed per step (> 0).

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.
CV MEM NULL The cvode mem pointer is NULL.

Notes The default value is 3.

CVodeSetMaxConvFails

Call flag = CVodeSetMaxConvFails(cvode mem, maxncf);

Description The function CVodeSetMaxConvFails specifies the maximum number of nonlinear solver
convergence failures permitted during one step.

Arguments cvode mem (void *) pointer to the cvode memory block.
maxncf (int) maximum number of allowable nonlinear solver convergence failures

per step (> 0).

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.
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CV MEM NULL The cvode mem pointer is NULL.

Notes The default value is 10.

CVodeSetNonlinConvCoef

Call flag = CVodeSetNonlinConvCoef(cvode mem, nlscoef);

Description The function CVodeSetNonlinConvCoef specifies the safety factor used in the nonlinear
convergence test (see §2.1).

Arguments cvode mem (void *) pointer to the cvode memory block.
nlscoef (realtype) coefficient in nonlinear convergence test (> 0.0).

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.
CV MEM NULL The cvode mem pointer is NULL.

Notes The default value is 0.1.

CVodeSetIterType

Call flag = CVodeSetIterType(cvode mem, iter);

Description The function CVodeSetIterType resets the nonlinear solver iteration type to iter.

Arguments cvode mem (void *) pointer to the cvode memory block.
iter (int) specifies the type of nonlinear solver iteration and may be either

CV NEWTON or CV FUNCTIONAL.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.
CV MEM NULL The cvode mem pointer is NULL.
CV ILL INPUT The iter value passed is neither CV NEWTON nor CV FUNCTIONAL.

Notes The nonlinear solver iteration type is initially specified in the call to CVodeCreate (see
§4.5.1). This function call is needed only if iter is being changed from its value in the
prior call to CVodeCreate.

4.5.6.2 Direct linear solver interface optional input functions

The cvdls solver interface needs a function to compute an approximation to the Jacobian matrix
J(t, y). This function must be of type CVDlsJacFn. The user can supply a Jacobian function, or if
using a dense or banded matrix J can use the default internal difference quotient approximation that
comes with the cvdls solver. To specify a user-supplied Jacobian function jac, cvdls provides the
function CVDlsSetJacFn. The cvdls interface passes the pointer user data to the Jacobian function.
This allows the user to create an arbitrary structure with relevant problem data and access it during
the execution of the user-supplied Jacobian function, without using global data in the program. The
pointer user data may be specified through CVodeSetUserData.

CVDlsSetJacFn

Call flag = CVDlsSetJacFn(cvode mem, jac);

Description The function CVDlsSetJacFn specifies the Jacobian approximation function to be used.

Arguments cvode mem (void *) pointer to the cvode memory block.
jac (CVDlsJacFn) user-defined Jacobian approximation function.

Return value The return value flag (of type int) is one of

CVDLS SUCCESS The optional value has been successfully set.
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CVDLS MEM NULL The cvode mem pointer is NULL.
CVDLS LMEM NULL The cvdls linear solver interface has not been initialized.

Notes By default, cvdls uses an internal difference quotient function for dense and band
matrices. If NULL is passed to jac, this default function is used. An error will occur if
no jac is supplied when using a sparse matrix.

The function type CVDlsJacFn is described in §4.6.5.

4.5.6.3 Iterative linear solver interface optional input functions

If preconditioning is utilized with the cvspils linear solver interface, then the user must supply a
preconditioner solve function psolve and specify its name in a call to CVSpilsSetPreconditioner.
The evaluation and preprocessing of any Jacobian-related data needed by the user’s preconditioner
solve function is done in the optional user-supplied function psetup. Both of these functions are fully
specified in §4.6. If used, the psetup function should also be specified in the call to
CVSpilsSetPreconditioner.

The pointer user data received through CVodeSetUserData (or a pointer to NULL if user data
was not specified) is passed to the preconditioner psetup and psolve functions. This allows the user
to create an arbitrary structure with relevant problem data and access it during the execution of the
user-supplied preconditioner functions without using global data in the program.

The cvspils solver interface requires a function to compute an approximation to the product
between the Jacobian matrix J(t, y) and a vector v. The user can supply a Jacobian-times-vector
approximation function or use the default internal difference quotient function that comes with the
cvspils interface. A user-defined Jacobian-vector function must be of type CVSpilsJacTimesVecFn
and can be specified through a call to CVSpilsSetJacTimes (see §4.6.6 for specification details).
As with the user-supplied preconditioner functions, the evaluation and processing of any Jacobian-
related data needed by the user’s Jacobian-times-vector function is done in the optional user-supplied
function jtsetup (see §4.6.7 for specification details). As with the preconditioner functions, a pointer
to the user-defined data structure, user data, specified through CVodeSetUserData (or a NULL pointer
otherwise) is passed to the Jacobian-times-vector setup and product functions, jtsetup and jtimes,
each time they are called.

Finally, as described in Section 2.1, the cvspils interface requires that iterative linear solvers stop
when the norm of the preconditioned residual is less than 0.05 · (0.1ε), where ε is the nonlinear solver
tolerance. The user may adjust this linear solver tolerance by calling the function CVSpilsSetEpsLin.

CVSpilsSetPreconditioner

Call flag = CVSpilsSetPreconditioner(cvode mem, psetup, psolve);

Description The function CVSpilsSetPreconditioner specifies the preconditioner setup and solve
functions.

Arguments cvode mem (void *) pointer to the cvode memory block.
psetup (CVSpilsPrecSetupFn) user-defined preconditioner setup function. Pass

NULL if no setup is necessary.
psolve (CVSpilsPrecSolveFn) user-defined preconditioner solve function.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The optional values have been successfully set.
CVSPILS MEM NULL The cvode mem pointer is NULL.
CVSPILS LMEM NULL The cvspils linear solver has not been initialized.
CVSPILS SUNLS FAIL An error occurred when setting up preconditioning in the sun-

linsol object used by the cvspils interface.

Notes The function type CVSpilsPrecSolveFn is described in §4.6.8. The function type
CVSpilsPrecSetupFn is described in §4.6.9.
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CVSpilsSetJacTimes

Call flag = CVSpilsSetJacTimes(cvode mem, jtsetup, jtimes);

Description The function CVSpilsSetJacTimes specifies the Jacobian-vector setup and product
functions.

Arguments cvode mem (void *) pointer to the cvode memory block.
jtsetup (CVSpilsJacTimesSetupFn) user-defined Jacobian-vector setup function. Pass

NULL if no setup is necessary.
jtimes (CVSpilsJacTimesVecFn) user-defined Jacobian-vector product function.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The optional value has been successfully set.
CVSPILS MEM NULL The cvode mem pointer is NULL.
CVSPILS LMEM NULL The cvspils linear solver has not been initialized.
CVSPILS SUNLS FAIL An error occurred when setting up the system matrix-times-vector

routines in the sunlinsol object used by the cvspils interface.

Notes By default, the cvspils linear solvers use an internal difference quotient function. If
NULL is passed to jtimes, this default function is used.

The function type CVSpilsJacTimesSetupFn is described in §4.6.7.

The function type CVSpilsJacTimesVecFn is described in §4.6.6.

CVSpilsSetEpsLin

Call flag = CVSpilsSetEpsLin(cvode mem, eplifac);

Description The function CVSpilsSetEpsLin specifies the factor by which the Krylov linear solver’s
convergence test constant is reduced from the Newton iteration test constant.

Arguments cvode mem (void *) pointer to the cvode memory block.
eplifac (realtype) linear convergence safety factor (≥ 0.0).

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The optional value has been successfully set.
CVSPILS MEM NULL The cvode mem pointer is NULL.
CVSPILS LMEM NULL The cvspils linear solver has not been initialized.
CVSPILS ILL INPUT The factor eplifac is negative.

Notes The default value is 0.05.

If eplifac= 0.0 is passed, the default value is used.

4.5.6.4 Rootfinding optional input functions

The following functions can be called to set optional inputs to control the rootfinding algorithm.

CVodeSetRootDirection

Call flag = CVodeSetRootDirection(cvode mem, rootdir);

Description The function CVodeSetRootDirection specifies the direction of zero-crossings to be
located and returned.

Arguments cvode mem (void *) pointer to the cvode memory block.
rootdir (int *) state array of length nrtfn, the number of root functions gi, as spec-

ified in the call to the function CVodeRootInit. A value of 0 for rootdir[i]
indicates that crossing in either direction for gi should be reported. A value
of +1 or −1 indicates that the solver should report only zero-crossings where
gi is increasing or decreasing, respectively.
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Return value The return value flag (of type int) is one of
CV SUCCESS The optional value has been successfully set.
CV MEM NULL The cvode mem pointer is NULL.
CV ILL INPUT rootfinding has not been activated through a call to CVodeRootInit.

Notes The default behavior is to monitor for both zero-crossing directions.

CVodeSetNoInactiveRootWarn

Call flag = CVodeSetNoInactiveRootWarn(cvode mem);

Description The function CVodeSetNoInactiveRootWarn disables issuing a warning if some root
function appears to be identically zero at the beginning of the integration.

Arguments cvode mem (void *) pointer to the cvode memory block.
Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.
CV MEM NULL The cvode mem pointer is NULL.

Notes cvode will not report the initial conditions as a possible zero-crossing (assuming that
one or more components gi are zero at the initial time). However, if it appears that
some gi is identically zero at the initial time (i.e., gi is zero at the initial time and after
the first step), cvode will issue a warning which can be disabled with this optional
input function.

4.5.7 Interpolated output function

An optional function CVodeGetDky is available to obtain additional output values. This function
should only be called after a successful return from CVode as it provides interpolated values either of
y or of its derivatives (up to the current order of the integration method) interpolated to any value of
t in the last internal step taken by cvode.

The call to the CVodeGetDky function has the following form:

CVodeGetDky

Call flag = CVodeGetDky(cvode mem, t, k, dky);

Description The function CVodeGetDky computes the k-th derivative of the function y at time t, i.e.
d(k)y/dt(k)(t), where tn−hu ≤ t ≤ tn, tn denotes the current internal time reached, and
hu is the last internal step size successfully used by the solver. The user may request k
= 0, 1, . . . , qu, where qu is the current order (optional output qlast).

Arguments cvode mem (void *) pointer to the cvode memory block.
t (realtype) the value of the independent variable at which the derivative is

to be evaluated.
k (int) the derivative order requested.
dky (N Vector) vector containing the derivative. This vector must be allocated

by the user.
Return value The return value flag (of type int) is one of

CV SUCCESS CVodeGetDky succeeded.
CV BAD K k is not in the range 0, 1, . . . , qu.
CV BAD T t is not in the interval [tn − hu, tn].
CV BAD DKY The dky argument was NULL.
CV MEM NULL The cvode mem argument was NULL.

Notes It is only legal to call the function CVodeGetDky after a successful return from CVode.
See CVodeGetCurrentTime, CVodeGetLastOrder, and CVodeGetLastStep in the next
section for access to tn, qu, and hu, respectively.
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4.5.8 Optional output functions

cvode provides an extensive set of functions that can be used to obtain solver performance informa-
tion. Table 4.3 lists all optional output functions in cvode, which are then described in detail in the
remainder of this section.

Some of the optional outputs, especially the various counters, can be very useful in determining
how successful the cvode solver is in doing its job. For example, the counters nsteps and nfevals
provide a rough measure of the overall cost of a given run, and can be compared among runs with
differing input options to suggest which set of options is most efficient. The ratio nniters/nsteps
measures the performance of the Newton iteration in solving the nonlinear systems at each time step;
typical values for this range from 1.1 to 1.8. The ratio njevals/nniters (in the case of a direct
linear solver), and the ratio npevals/nniters (in the case of an iterative linear solver) measure the
overall degree of nonlinearity in these systems, and also the quality of the approximate Jacobian
or preconditioner being used. Thus, for example, njevals/nniters can indicate if a user-supplied
Jacobian is inaccurate, if this ratio is larger than for the case of the corresponding internal Jacobian.
The ratio nliters/nniters measures the performance of the Krylov iterative linear solver, and thus
(indirectly) the quality of the preconditioner.

4.5.8.1 SUNDIALS version information

The following functions provide a way to get sundials version information at runtime.

SUNDIALSGetVersion

Call flag = SUNDIALSGetVersion(version, len);

Description The function SUNDIALSGetVersion fills a character array with sundials version infor-
mation.

Arguments version (char *) character array to hold the sundials version information.
len (int) allocated length of the version character array.

Return value If successful, SUNDIALSGetVersion returns 0 and version contains the sundials ver-
sion information. Otherwise, it returns −1 and version is not set (the input character
array is too short).

Notes A string of 25 characters should be sufficient to hold the version information. Any
trailing characters in the version array are removed.

SUNDIALSGetVersionNumber

Call flag = SUNDIALSGetVersionNumber(&major, &minor, &patch, label, len);

Description The function SUNDIALSGetVersionNumber set integers for the sundials major, minor,
and patch release numbers and fills a character array with the release label if applicable.

Arguments major (int) sundials release major version number.
minor (int) sundials release minor version number.
patch (int) sundials release patch version number.
label (char *) character array to hold the sundials release label.
len (int) allocated length of the label character array.

Return value If successful, SUNDIALSGetVersionNumber returns 0 and the major, minor, patch, and
label values are set. Otherwise, it returns −1 and the values are not set (the input
character array is too short).

Notes A string of 10 characters should be sufficient to hold the label information. If a label
is not used in the release version, no information is copied to label. Any trailing
characters in the label array are removed.
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Table 4.3: Optional outputs from cvode, cvdls, cvdiag, and cvspils

Optional output Function name
CVODE main solver

Size of cvode real and integer workspaces CVodeGetWorkSpace
Cumulative number of internal steps CVodeGetNumSteps
No. of calls to r.h.s. function CVodeGetNumRhsEvals
No. of calls to linear solver setup function CVodeGetNumLinSolvSetups
No. of local error test failures that have occurred CVodeGetNumErrTestFails
Order used during the last step CVodeGetLastOrder
Order to be attempted on the next step CVodeGetCurrentOrder
No. of order reductions due to stability limit detection CVodeGetNumStabLimOrderReds
Actual initial step size used CVodeGetActualInitStep
Step size used for the last step CVodeGetLastStep
Step size to be attempted on the next step CVodeGetCurrentStep
Current internal time reached by the solver CVodeGetCurrentTime
Suggested factor for tolerance scaling CVodeGetTolScaleFactor
Error weight vector for state variables CVodeGetErrWeights
Estimated local error vector CVodeGetEstLocalErrors
No. of nonlinear solver iterations CVodeGetNumNonlinSolvIters
No. of nonlinear convergence failures CVodeGetNumNonlinSolvConvFails
All cvode integrator statistics CVodeGetIntegratorStats
cvode nonlinear solver statistics CVodeGetNonlinSolvStats
Array showing roots found CvodeGetRootInfo
No. of calls to user root function CVodeGetNumGEvals
Name of constant associated with a return flag CVodeGetReturnFlagName

CVDLS linear solver interface
Size of real and integer workspaces CVDlsGetWorkSpace
No. of Jacobian evaluations CVDlsGetNumJacEvals
No. of r.h.s. calls for finite diff. Jacobian evals. CVDlsGetNumRhsEvals
Last return from a linear solver function CVDlsGetLastFlag
Name of constant associated with a return flag CVDlsGetReturnFlagName

CVDIAG linear solver interface
Size of cvdiag real and integer workspaces CVDiagGetWorkSpace
No. of r.h.s. calls for finite diff. Jacobian evals. CVDiagGetNumRhsEvals
Last return from a cvdiag function CVDiagGetLastFlag
Name of constant associated with a return flag CVDiagGetReturnFlagName

CVSPILS linear solver interface
Size of real and integer workspaces CVSpilsGetWorkSpace
No. of linear iterations CVSpilsGetNumLinIters
No. of linear convergence failures CVSpilsGetNumConvFails
No. of preconditioner evaluations CVSpilsGetNumPrecEvals
No. of preconditioner solves CVSpilsGetNumPrecSolves
No. of Jacobian-vector setup evaluations CVSpilsGetNumJTSetupEvals
No. of Jacobian-vector product evaluations CVSpilsGetNumJtimesEvals
No. of r.h.s. calls for finite diff. Jacobian-vector evals. CVSpilsGetNumRhsEvals
Last return from a linear solver function CVSpilsGetLastFlag
Name of constant associated with a return flag CVSpilsGetReturnFlagName
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4.5.8.2 Main solver optional output functions

cvode provides several user-callable functions that can be used to obtain different quantities that
may be of interest to the user, such as solver workspace requirements, solver performance statistics,
as well as additional data from the cvode memory block (a suggested tolerance scaling factor, the
error weight vector, and the vector of estimated local errors). Functions are also provided to extract
statistics related to the performance of the cvode nonlinear solver used. As a convenience, addi-
tional information extraction functions provide the optional outputs in groups. These optional output
functions are described next.

CVodeGetWorkSpace

Call flag = CVodeGetWorkSpace(cvode mem, &lenrw, &leniw);

Description The function CVodeGetWorkSpace returns the cvode real and integer workspace sizes.

Arguments cvode mem (void *) pointer to the cvode memory block.
lenrw (long int) the number of realtype values in the cvode workspace.
leniw (long int) the number of integer values in the cvode workspace.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output values have been successfully set.
CV MEM NULL The cvode mem pointer is NULL.

Notes In terms of the problem size N , the maximum method order maxord, and the number
nrtfn of root functions (see §4.5.4), the actual size of the real workspace, in realtype
words, is given by the following:

• base value: lenrw = 96 + (maxord+5) ∗Nr + 3∗nrtfn;
• using CVodeSVtolerances: lenrw = lenrw +Nr;

where Nr is the number of real words in one N Vector (≈ N).

The size of the integer workspace (without distinction between int and long int words)
is given by:

• base value: leniw = 40 + (maxord+5) ∗Ni + nrtfn;
• using CVodeSVtolerances: leniw = leniw +Ni;

where Ni is the number of integer words in one N Vector (= 1 for nvector serial
and 2*npes for nvector parallel and npes processors).

For the default value of maxord, no rootfinding, and without using CVodeSVtolerances,
these lengths are given roughly by:

• For the Adams method: lenrw = 96 + 17N and leniw = 57
• For the BDF method: lenrw = 96 + 10N and leniw = 50

CVodeGetNumSteps

Call flag = CVodeGetNumSteps(cvode mem, &nsteps);

Description The function CVodeGetNumSteps returns the cumulative number of internal steps taken
by the solver (total so far).

Arguments cvode mem (void *) pointer to the cvode memory block.
nsteps (long int) number of steps taken by cvode.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.
CV MEM NULL The cvode mem pointer is NULL.
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CVodeGetNumRhsEvals

Call flag = CVodeGetNumRhsEvals(cvode mem, &nfevals);

Description The function CVodeGetNumRhsEvals returns the number of calls to the user’s right-hand
side function.

Arguments cvode mem (void *) pointer to the cvode memory block.
nfevals (long int) number of calls to the user’s f function.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.
CV MEM NULL The cvode mem pointer is NULL.

Notes The nfevals value returned by CVodeGetNumRhsEvals does not account for calls made
to f by a linear solver or preconditioner module.

CVodeGetNumLinSolvSetups

Call flag = CVodeGetNumLinSolvSetups(cvode mem, &nlinsetups);

Description The function CVodeGetNumLinSolvSetups returns the number of calls made to the
linear solver’s setup function.

Arguments cvode mem (void *) pointer to the cvode memory block.
nlinsetups (long int) number of calls made to the linear solver setup function.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.
CV MEM NULL The cvode mem pointer is NULL.

CVodeGetNumErrTestFails

Call flag = CVodeGetNumErrTestFails(cvode mem, &netfails);

Description The function CVodeGetNumErrTestFails returns the number of local error test failures
that have occurred.

Arguments cvode mem (void *) pointer to the cvode memory block.
netfails (long int) number of error test failures.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.
CV MEM NULL The cvode mem pointer is NULL.

CVodeGetLastOrder

Call flag = CVodeGetLastOrder(cvode mem, &qlast);

Description The function CVodeGetLastOrder returns the integration method order used during the
last internal step.

Arguments cvode mem (void *) pointer to the cvode memory block.
qlast (int) method order used on the last internal step.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.
CV MEM NULL The cvode mem pointer is NULL.
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CVodeGetCurrentOrder

Call flag = CVodeGetCurrentOrder(cvode mem, &qcur);

Description The function CVodeGetCurrentOrder returns the integration method order to be used
on the next internal step.

Arguments cvode mem (void *) pointer to the cvode memory block.
qcur (int) method order to be used on the next internal step.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.
CV MEM NULL The cvode mem pointer is NULL.

CVodeGetLastStep

Call flag = CVodeGetLastStep(cvode mem, &hlast);

Description The function CVodeGetLastStep returns the integration step size taken on the last
internal step.

Arguments cvode mem (void *) pointer to the cvode memory block.
hlast (realtype) step size taken on the last internal step.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.
CV MEM NULL The cvode mem pointer is NULL.

CVodeGetCurrentStep

Call flag = CVodeGetCurrentStep(cvode mem, &hcur);

Description The function CVodeGetCurrentStep returns the integration step size to be attempted
on the next internal step.

Arguments cvode mem (void *) pointer to the cvode memory block.
hcur (realtype) step size to be attempted on the next internal step.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.
CV MEM NULL The cvode mem pointer is NULL.

CVodeGetActualInitStep

Call flag = CVodeGetActualInitStep(cvode mem, &hinused);

Description The function CVodeGetActualInitStep returns the value of the integration step size
used on the first step.

Arguments cvode mem (void *) pointer to the cvode memory block.
hinused (realtype) actual value of initial step size.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.
CV MEM NULL The cvode mem pointer is NULL.

Notes Even if the value of the initial integration step size was specified by the user through
a call to CVodeSetInitStep, this value might have been changed by cvode to ensure
that the step size is within the prescribed bounds (hmin ≤ h0 ≤ hmax), or to satisfy the
local error test condition.
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CVodeGetCurrentTime

Call flag = CVodeGetCurrentTime(cvode mem, &tcur);

Description The function CVodeGetCurrentTime returns the current internal time reached by the
solver.

Arguments cvode mem (void *) pointer to the cvode memory block.
tcur (realtype) current internal time reached.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.
CV MEM NULL The cvode mem pointer is NULL.

CVodeGetNumStabLimOrderReds

Call flag = CVodeGetNumStabLimOrderReds(cvode mem, &nslred);

Description The function CVodeGetNumStabLimOrderReds returns the number of order reductions
dictated by the BDF stability limit detection algorithm (see §2.3).

Arguments cvode mem (void *) pointer to the cvode memory block.
nslred (long int) number of order reductions due to stability limit detection.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.
CV MEM NULL The cvode mem pointer is NULL.

Notes If the stability limit detection algorithm was not initialized (CVodeSetStabLimDet was
not called), then nslred = 0.

CVodeGetTolScaleFactor

Call flag = CVodeGetTolScaleFactor(cvode mem, &tolsfac);

Description The function CVodeGetTolScaleFactor returns a suggested factor by which the user’s
tolerances should be scaled when too much accuracy has been requested for some internal
step.

Arguments cvode mem (void *) pointer to the cvode memory block.
tolsfac (realtype) suggested scaling factor for user-supplied tolerances.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.
CV MEM NULL The cvode mem pointer is NULL.

CVodeGetErrWeights

Call flag = CVodeGetErrWeights(cvode mem, eweight);

Description The function CVodeGetErrWeights returns the solution error weights at the current
time. These are the reciprocals of the Wi given by (2.6).

Arguments cvode mem (void *) pointer to the cvode memory block.
eweight (N Vector) solution error weights at the current time.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.
CV MEM NULL The cvode mem pointer is NULL.

Notes The user must allocate memory for eweight.
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CVodeGetEstLocalErrors

Call flag = CVodeGetEstLocalErrors(cvode mem, ele);

Description The function CVodeGetEstLocalErrors returns the vector of estimated local errors.

Arguments cvode mem (void *) pointer to the cvode memory block.
ele (N Vector) estimated local errors.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.
CV MEM NULL The cvode mem pointer is NULL.

Notes The user must allocate memory for ele.

The values returned in ele are valid only if CVode returned a non-negative value.

The ele vector, togther with the eweight vector from CVodeGetErrWeights, can be
used to determine how the various components of the system contributed to the es-
timated local error test. Specifically, that error test uses the RMS norm of a vector
whose components are the products of the components of these two vectors. Thus, for
example, if there were recent error test failures, the components causing the failures are
those with largest values for the products, denoted loosely as eweight[i]*ele[i].

CVodeGetIntegratorStats

Call flag = CVodeGetIntegratorStats(cvode mem, &nsteps, &nfevals,
&nlinsetups, &netfails, &qlast, &qcur,
&hinused, &hlast, &hcur, &tcur);

Description The function CVodeGetIntegratorStats returns the cvode integrator statistics as a
group.

Arguments cvode mem (void *) pointer to the cvode memory block.
nsteps (long int) number of steps taken by cvode.
nfevals (long int) number of calls to the user’s f function.
nlinsetups (long int) number of calls made to the linear solver setup function.
netfails (long int) number of error test failures.
qlast (int) method order used on the last internal step.
qcur (int) method order to be used on the next internal step.
hinused (realtype) actual value of initial step size.
hlast (realtype) step size taken on the last internal step.
hcur (realtype) step size to be attempted on the next internal step.
tcur (realtype) current internal time reached.

Return value The return value flag (of type int) is one of

CV SUCCESS the optional output values have been successfully set.
CV MEM NULL the cvode mem pointer is NULL.

CVodeGetNumNonlinSolvIters

Call flag = CVodeGetNumNonlinSolvIters(cvode mem, &nniters);

Description The function CVodeGetNumNonlinSolvIters returns the number of nonlinear (func-
tional or Newton) iterations performed.

Arguments cvode mem (void *) pointer to the cvode memory block.
nniters (long int) number of nonlinear iterations performed.

Return value The return value flag (of type int) is one of
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CV SUCCESS The optional output values have been successfully set.
CV MEM NULL The cvode mem pointer is NULL.

CVodeGetNumNonlinSolvConvFails

Call flag = CVodeGetNumNonlinSolvConvFails(cvode mem, &nncfails);

Description The function CVodeGetNumNonlinSolvConvFails returns the number of nonlinear con-
vergence failures that have occurred.

Arguments cvode mem (void *) pointer to the cvode memory block.
nncfails (long int) number of nonlinear convergence failures.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.
CV MEM NULL The cvode mem pointer is NULL.

CVodeGetNonlinSolvStats

Call flag = CVodeGetNonlinSolvStats(cvode mem, &nniters, &nncfails);

Description The function CVodeGetNonlinSolvStats returns the cvode nonlinear solver statistics
as a group.

Arguments cvode mem (void *) pointer to the cvode memory block.
nniters (long int) number of nonlinear iterations performed.
nncfails (long int) number of nonlinear convergence failures.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.
CV MEM NULL The cvode mem pointer is NULL.

CVodeGetReturnFlagName

Call name = CVodeGetReturnFlagName(flag);

Description The function CVodeGetReturnFlagName returns the name of the cvode constant cor-
responding to flag.

Arguments The only argument, of type int, is a return flag from a cvode function.

Return value The return value is a string containing the name of the corresponding constant.

4.5.8.3 Rootfinding optional output functions

There are two optional output functions associated with rootfinding.

CVodeGetRootInfo

Call flag = CVodeGetRootInfo(cvode mem, rootsfound);

Description The function CVodeGetRootInfo returns an array showing which functions were found
to have a root.

Arguments cvode mem (void *) pointer to the cvode memory block.
rootsfound (int *) array of length nrtfn with the indices of the user functions gi

found to have a root. For i = 0, . . . ,nrtfn−1, rootsfound[i] 6= 0 if gi has a
root, and = 0 if not.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional output values have been successfully set.



4.5 User-callable functions 53

CV MEM NULL The cvode mem pointer is NULL.

Notes Note that, for the components gi for which a root was found, the sign of rootsfound[i]
indicates the direction of zero-crossing. A value of +1 indicates that gi is increasing,
while a value of −1 indicates a decreasing gi.

The user must allocate memory for the vector rootsfound.

CVodeGetNumGEvals

Call flag = CVodeGetNumGEvals(cvode mem, &ngevals);

Description The function CVodeGetNumGEvals returns the cumulative number of calls made to the
user-supplied root function g.

Arguments cvode mem (void *) pointer to the cvode memory block.
ngevals (long int) number of calls made to the user’s function g thus far.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional output value has been successfully set.
CV MEM NULL The cvode mem pointer is NULL.

4.5.8.4 Direct linear solver interface optional output functions

The following optional outputs are available from the cvdls modules: workspace requirements, num-
ber of calls to the Jacobian routine, number of calls to the right-hand side routine for finite-difference
Jacobian approximation, and last return value from a cvdls function. Note that, where the name of
an output would otherwise conflict with the name of an optional output from the main solver, a suffix
LS (for Linear Solver) has been added (e.g. lenrwLS).

CVDlsGetWorkSpace

Call flag = CVDlsGetWorkSpace(cvode mem, &lenrwLS, &leniwLS);

Description The function CVDlsGetWorkSpace returns the sizes of the real and integer workspaces
used by the cvdls linear solver interface.

Arguments cvode mem (void *) pointer to the cvode memory block.
lenrwLS (long int) the number of realtype values in the cvdls workspace.
leniwLS (long int) the number of integer values in the cvdls workspace.

Return value The return value flag (of type int) is one of

CVDLS SUCCESS The optional output values have been successfully set.
CVDLS MEM NULL The cvode mem pointer is NULL.
CVDLS LMEM NULL The cvdls linear solver has not been initialized.

Notes The workspace requirements reported by this routine correspond only to memory allo-
cated within this interface and to memory allocated by the sunlinsol object attached
to it. The template Jacobian matrix allocated by the user outside of cvdls is not
included in this report.

CVDlsGetNumJacEvals

Call flag = CVDlsGetNumJacEvals(cvode mem, &njevals);

Description The function CVDlsGetNumJacEvals returns the number of calls made to the cvdls
Jacobian approximation function.

Arguments cvode mem (void *) pointer to the cvode memory block.
njevals (long int) the number of calls to the Jacobian function.

Return value The return value flag (of type int) is one of
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CVDLS SUCCESS The optional output value has been successfully set.

CVDLS MEM NULL The cvode mem pointer is NULL.

CVDLS LMEM NULL The cvdls linear solver has not been initialized.

CVDlsGetNumRhsEvals

Call flag = CVDlsGetNumRhsEvals(cvode mem, &nfevalsLS);

Description The function CVDlsGetNumRhsEvals returns the number of calls made to the user-
supplied right-hand side function due to the finite difference Jacobian approximation.

Arguments cvode mem (void *) pointer to the cvode memory block.

nfevalsLS (long int) the number of calls made to the user-supplied right-hand side
function.

Return value The return value flag (of type int) is one of

CVDLS SUCCESS The optional output value has been successfully set.

CVDLS MEM NULL The cvode mem pointer is NULL.

CVDLS LMEM NULL The cvdls linear solver has not been initialized.

Notes The value nfevalsLS is incremented only if one of the default internal difference quotient
functions (dense or banded) is used.

CVDlsGetLastFlag

Call flag = CVDlsGetLastFlag(cvode mem, &lsflag);

Description The function CVDlsGetLastFlag returns the last return value from a cvdls routine.

Arguments cvode mem (void *) pointer to the cvode memory block.

lsflag (long int) the value of the last return flag from a cvdls function.

Return value The return value flag (of type int) is one of

CVDLS SUCCESS The optional output value has been successfully set.

CVDLS MEM NULL The cvode mem pointer is NULL.

CVDLS LMEM NULL The cvdls linear solver has not been initialized.

Notes If the sunlinsol dense or sunlinsol band setup function failed (CVode returned
CV LSETUP FAIL), then the value of lsflag is equal to the column index (numbered
from one) at which a zero diagonal element was encountered during the LU factorization
of the (dense or banded) Jacobian matrix.

CVDlsGetReturnFlagName

Call name = CVDlsGetReturnFlagName(lsflag);

Description The function CVDlsGetReturnFlagName returns the name of the cvdls constant corre-
sponding to lsflag.

Arguments The only argument, of type long int, is a return flag from a cvdls function.

Return value The return value is a string containing the name of the corresponding constant.

If 1 ≤ lsflag ≤ N (LU factorization failed), this routine returns “NONE”.



4.5 User-callable functions 55

4.5.8.5 Iterative linear solver interface optional output functions

The following optional outputs are available from the cvspils modules: workspace requirements,
number of linear iterations, number of linear convergence failures, number of calls to the preconditioner
setup and solve routines, number of calls to the Jacobian-vector setup and product routines, number
of calls to the right-hand side routine for finite-difference Jacobian-vector product approximation,
and last return value from a linear solver function. Note that, where the name of an output would
otherwise conflict with the name of an optional output from the main solver, a suffix LS (for Linear
Solver) has been added (e.g. lenrwLS).

CVSpilsGetWorkSpace

Call flag = CVSpilsGetWorkSpace(cvode mem, &lenrwLS, &leniwLS);

Description The function CVSpilsGetWorkSpace returns the global sizes of the cvspils real and
integer workspaces.

Arguments cvode mem (void *) pointer to the cvode memory block.
lenrwLS (long int) the number of realtype values in the cvspils workspace.
leniwLS (long int) the number of integer values in the cvspils workspace.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The optional output value has been successfully set.
CVSPILS MEM NULL The cvode mem pointer is NULL.
CVSPILS LMEM NULL The cvspils linear solver has not been initialized.

Notes The workspace requirements reported by this routine correspond only to memory allo-
cated within this interface and to memory allocated by the sunlinsol object attached
to it.

In a parallel setting, the above values are global (i.e., summed over all processors).

CVSpilsGetNumLinIters

Call flag = CVSpilsGetNumLinIters(cvode mem, &nliters);

Description The function CVSpilsGetNumLinIters returns the cumulative number of linear itera-
tions.

Arguments cvode mem (void *) pointer to the cvode memory block.
nliters (long int) the current number of linear iterations.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The optional output value has been successfully set.
CVSPILS MEM NULL The cvode mem pointer is NULL.
CVSPILS LMEM NULL The cvspils linear solver has not been initialized.

CVSpilsGetNumConvFails

Call flag = CVSpilsGetNumConvFails(cvode mem, &nlcfails);

Description The function CVSpilsGetNumConvFails returns the cumulative number of linear con-
vergence failures.

Arguments cvode mem (void *) pointer to the cvode memory block.
nlcfails (long int) the current number of linear convergence failures.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The optional output value has been successfully set.
CVSPILS MEM NULL The cvode mem pointer is NULL.
CVSPILS LMEM NULL The cvspils linear solver has not been initialized.



56 Using CVODE for C Applications

CVSpilsGetNumPrecEvals

Call flag = CVSpilsGetNumPrecEvals(cvode mem, &npevals);

Description The function CVSpilsGetNumPrecEvals returns the number of preconditioner evalua-
tions, i.e., the number of calls made to psetup with jok = SUNFALSE.

Arguments cvode mem (void *) pointer to the cvode memory block.
npevals (long int) the current number of calls to psetup.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The optional output value has been successfully set.
CVSPILS MEM NULL The cvode mem pointer is NULL.
CVSPILS LMEM NULL The cvspils linear solver has not been initialized.

CVSpilsGetNumPrecSolves

Call flag = CVSpilsGetNumPrecSolves(cvode mem, &npsolves);

Description The function CVSpilsGetNumPrecSolves returns the cumulative number of calls made
to the preconditioner solve function, psolve.

Arguments cvode mem (void *) pointer to the cvode memory block.
npsolves (long int) the current number of calls to psolve.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The optional output value has been successfully set.
CVSPILS MEM NULL The cvode mem pointer is NULL.
CVSPILS LMEM NULL The cvspils linear solver has not been initialized.

CVSpilsGetNumJTSetupEvals

Call flag = CVSpilsGetNumJTSetupEvals(cvode mem, &njtsetup);

Description The function CVSpilsGetNumJTSetupEvals returns the cumulative number of calls
made to the Jacobian-vector setup function jtsetup.

Arguments cvode mem (void *) pointer to the cvode memory block.
njtsetup (long int) the current number of calls to jtsetup.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The optional output value has been successfully set.
CVSPILS MEM NULL The cvode mem pointer is NULL.
CVSPILS LMEM NULL The cvspils linear solver has not been initialized.

CVSpilsGetNumJtimesEvals

Call flag = CVSpilsGetNumJtimesEvals(cvode mem, &njvevals);

Description The function CVSpilsGetNumJtimesEvals returns the cumulative number of calls made
to the Jacobian-vector function jtimes.

Arguments cvode mem (void *) pointer to the cvode memory block.
njvevals (long int) the current number of calls to jtimes.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The optional output value has been successfully set.
CVSPILS MEM NULL The cvode mem pointer is NULL.
CVSPILS LMEM NULL The cvspils linear solver has not been initialized.
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CVSpilsGetNumRhsEvals

Call flag = CVSpilsGetNumRhsEvals(cvode mem, &nfevalsLS);

Description The function CVSpilsGetNumRhsEvals returns the number of calls to the user right-
hand side function for finite difference Jacobian-vector product approximation.

Arguments cvode mem (void *) pointer to the cvode memory block.
nfevalsLS (long int) the number of calls to the user right-hand side function.

Return value The return value flag (of type int) is one of
CVSPILS SUCCESS The optional output value has been successfully set.
CVSPILS MEM NULL The cvode mem pointer is NULL.
CVSPILS LMEM NULL The cvspils linear solver has not been initialized.

Notes The value nfevalsLS is incremented only if the default CVSpilsDQJtimes difference
quotient function is used.

CVSpilsGetLastFlag

Call flag = CVSpilsGetLastFlag(cvode mem, &lsflag);

Description The function CVSpilsGetLastFlag returns the last return value from a cvspils routine.
Arguments cvode mem (void *) pointer to the cvode memory block.

lsflag (long int) the value of the last return flag from a cvspils function.
Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The optional output value has been successfully set.
CVSPILS MEM NULL The cvode mem pointer is NULL.
CVSPILS LMEM NULL The cvspils linear solver has not been initialized.

Notes If the cvspils setup function failed (CVode returned CV LSETUP FAIL), lsflag will be
SUNLS PSET FAIL UNREC, SUNLS ASET FAIL UNREC, or SUNLS PACKAGE FAIL UNREC.
If the cvspils solve function failed (CVode returned CV LSOLVE FAIL), lsflag contains
the error return flag from the sunlinsol object, which will be one of: SUNLS MEM NULL,
indicating that the sunlinsol memory is NULL; SUNLS ATIMES FAIL UNREC, indicating
an unrecoverable failure in the J∗v function; SUNLS PSOLVE FAIL UNREC, indicating that
the preconditioner solve function psolve failed unrecoverably; SUNLS GS FAIL, indicat-
ing a failure in the Gram-Schmidt procedure (spgmr and spfgmr only); SUNLS QRSOL FAIL,
indicating that the matrix R was found to be singular during the QR solve phase (spgmr
and spfgmr only); or SUNLS PACKAGE FAIL UNREC, indicating an unrecoverable failure
in an external iterative linear solver package.

CVSpilsGetReturnFlagName

Call name = CVSpilsGetReturnFlagName(lsflag);

Description The function CVSpilsGetReturnFlagName returns the name of the cvspils constant
corresponding to lsflag.

Arguments The only argument, of type long int, is a return flag from a cvspils function.
Return value The return value is a string containing the name of the corresponding constant.

4.5.8.6 Diagonal linear solver interface optional output functions

The following optional outputs are available from the cvdiag module: workspace requirements, num-
ber of calls to the right-hand side routine for finite-difference Jacobian approximation, and last return
value from a cvdiag function. Note that, where the name of an output would otherwise conflict with
the name of an optional output from the main solver, a suffix LS (for Linear Solver) has been added
here (e.g. lenrwLS).
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CVDiagGetWorkSpace

Call flag = CVDiagGetWorkSpace(cvode mem, &lenrwLS, &leniwLS);

Description The function CVDiagGetWorkSpace returns the cvdiag real and integer workspace sizes.

Arguments cvode mem (void *) pointer to the cvode memory block.
lenrwLS (long int) the number of realtype values in the cvdiag workspace.
leniwLS (long int) the number of integer values in the cvdiag workspace.

Return value The return value flag (of type int) is one of

CVDIAG SUCCESS The optional output valus have been successfully set.
CVDIAG MEM NULL The cvode mem pointer is NULL.
CVDIAG LMEM NULL The cvdiag linear solver has not been initialized.

Notes In terms of the problem size N , the actual size of the real workspace is roughly 3N
realtype words.

CVDiagGetNumRhsEvals

Call flag = CVDiagGetNumRhsEvals(cvode mem, &nfevalsLS);

Description The function CVDiagGetNumRhsEvals returns the number of calls made to the user-
supplied right-hand side function due to the finite difference Jacobian approximation.

Arguments cvode mem (void *) pointer to the cvode memory block.
nfevalsLS (long int) the number of calls made to the user-supplied right-hand side

function.

Return value The return value flag (of type int) is one of

CVDIAG SUCCESS The optional output value has been successfully set.
CVDIAG MEM NULL The cvode mem pointer is NULL.
CVDIAG LMEM NULL The cvdiag linear solver has not been initialized.

Notes The number of diagonal approximate Jacobians formed is equal to the number of calls
made to the linear solver setup function (see CVodeGetNumLinSolvSetups).

CVDiagGetLastFlag

Call flag = CVDiagGetLastFlag(cvode mem, &lsflag);

Description The function CVDiagGetLastFlag returns the last return value from a cvdiag routine.

Arguments cvode mem (void *) pointer to the cvode memory block.
lsflag (long int) the value of the last return flag from a cvdiag function.

Return value The return value flag (of type int) is one of

CVDIAG SUCCESS The optional output value has been successfully set.
CVDIAG MEM NULL The cvode mem pointer is NULL.
CVDIAG LMEM NULL The cvdiag linear solver has not been initialized.

Notes If the cvdiag setup function failed (CVode returned CV LSETUP FAIL), the value of
lsflag is equal to CVDIAG INV FAIL, indicating that a diagonal element with value zero
was encountered. The same value is also returned if the cvdiag solve function failed
(CVode returned CV LSOLVE FAIL).
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CVDiagGetReturnFlagName

Call name = CVDiagGetReturnFlagName(lsflag);

Description The function CVDiagGetReturnFlagName returns the name of the cvdiag constant
corresponding to lsflag.

Arguments The only argument, of type long int, is a return flag from a cvdiag function.
Return value The return value is a string containing the name of the corresponding constant.

4.5.9 CVODE reinitialization function

The function CVodeReInit reinitializes the main cvode solver for the solution of a new problem, where
a prior call to CVodeInit been made. The new problem must have the same size as the previous one.
CVodeReInit performs the same input checking and initializations that CVodeInit does, but does no
memory allocation, as it assumes that the existing internal memory is sufficient for the new problem.
A call to CVodeReInit deletes the solution history that was stored internally during the previous
integration. Following a successful call to CVodeReInit, call CVode again for the solution of the new
problem.

The use of CVodeReInit requires that the maximum method order, denoted by maxord, be no
larger for the new problem than for the previous problem. This condition is automatically fulfilled
if the multistep method parameter lmm is unchanged (or changed from CV ADAMS to CV BDF) and the
default value for maxord is specified.

If there are changes to the linear solver specifications, make the appropriate calls to either the
linear solver objects themselves, or to the cvdls or cvspils interface routines, as described in §4.5.3.
Otherwise, all solver inputs set previously remain in effect.

One important use of the CVodeReInit function is in the treating of jump discontinuities in the
RHS function. Except in cases of fairly small jumps, it is usually more efficient to stop at each point
of discontinuity and restart the integrator with a readjusted ODE model, using a call to CVodeReInit.
To stop when the location of the discontinuity is known, simply make that location a value of tout. To
stop when the location of the discontinuity is determined by the solution, use the rootfinding feature.
In either case, it is critical that the RHS function not incorporate the discontinuity, but rather have
a smooth extention over the discontinuity, so that the step across it (and subsequent rootfinding, if
used) can be done efficiently. Then use a switch within the RHS function (communicated through
user data) that can be flipped between the stopping of the integration and the restart, so that the
restarted problem uses the new values (which have jumped). Similar comments apply if there is to be
a jump in the dependent variable vector.

CVodeReInit

Call flag = CVodeReInit(cvode mem, t0, y0);

Description The function CVodeReInit provides required problem specifications and reinitializes
cvode.

Arguments cvode mem (void *) pointer to the cvode memory block.
t0 (realtype) is the initial value of t.
y0 (N Vector) is the initial value of y.

Return value The return value flag (of type int) will be one of the following:
CV SUCCESS The call to CVodeReInit was successful.
CV MEM NULL The cvode memory block was not initialized through a previous call to

CVodeCreate.
CV NO MALLOC Memory space for the cvode memory block was not allocated through

a previous call to CVodeInit.
CV ILL INPUT An input argument to CVodeReInit has an illegal value.

Notes If an error occurred, CVodeReInit also sends an error message to the error handler
function.
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4.6 User-supplied functions

The user-supplied functions consist of one function defining the ODE, (optionally) a function that
handles error and warning messages, (optionally) a function that provides the error weight vector,
(optionally) one or two functions that provide Jacobian-related information for the linear solver (if
Newton iteration is chosen), and (optionally) one or two functions that define the preconditioner for
use in any of the Krylov iterative algorithms.

4.6.1 ODE right-hand side

The user must provide a function of type CVRhsFn defined as follows:

CVRhsFn

Definition typedef int (*CVRhsFn)(realtype t, N Vector y, N Vector ydot,
void *user data);

Purpose This function computes the ODE right-hand side for a given value of the independent
variable t and state vector y.

Arguments t is the current value of the independent variable.

y is the current value of the dependent variable vector, y(t).

ydot is the output vector f(t, y).

user data is the user data pointer passed to CVodeSetUserData.

Return value A CVRhsFn should return 0 if successful, a positive value if a recoverable error occurred
(in which case cvode will attempt to correct), or a negative value if it failed unrecov-
erably (in which case the integration is halted and CV RHSFUNC FAIL is returned).

Notes Allocation of memory for ydot is handled within cvode.

A recoverable failure error return from the CVRhsFn is typically used to flag a value of
the dependent variable y that is “illegal” in some way (e.g., negative where only a non-
negative value is physically meaningful). If such a return is made, cvode will attempt
to recover (possibly repeating the Newton iteration, or reducing the step size) in order
to avoid this recoverable error return.

For efficiency reasons, the right-hand side function is not evaluated at the converged
solution of the nonlinear solver. Therefore, in general, a recoverable error in that con-
verged value cannot be corrected. (It may be detected when the right-hand side function
is called the first time during the following integration step, but a successful step cannot
be undone.)

There are two other situations in which recovery is not possible even if the right-hand
side function returns a recoverable error flag. One is when this occurs at the very
first call to the CVRhsFn (in which case cvode returns CV FIRST RHSFUNC ERR). The
other is when a recoverable error is reported by CVRhsFn after an error test failure,
while the linear multistep method order is equal to 1 (in which case cvode returns
CV UNREC RHSFUNC ERR).

4.6.2 Error message handler function

As an alternative to the default behavior of directing error and warning messages to the file pointed
to by errfp (see CVodeSetErrFile), the user may provide a function of type CVErrHandlerFn to
process any such messages. The function type CVErrHandlerFn is defined as follows:
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CVErrHandlerFn

Definition typedef void (*CVErrHandlerFn)(int error code, const char *module,
const char *function, char *msg,
void *eh data);

Purpose This function processes error and warning messages from cvode and its sub-modules.

Arguments error code is the error code.
module is the name of the cvode module reporting the error.
function is the name of the function in which the error occurred.
msg is the error message.
eh data is a pointer to user data, the same as the eh data parameter passed to

CVodeSetErrHandlerFn.

Return value A CVErrHandlerFn function has no return value.

Notes error code is negative for errors and positive (CV WARNING) for warnings. If a function
that returns a pointer to memory encounters an error, it sets error code to 0.

4.6.3 Error weight function

As an alternative to providing the relative and absolute tolerances, the user may provide a function
of type CVEwtFn to compute a vector ewt containing the weights in the WRMS norm ‖ v‖WRMS =√

(1/N)
∑N

1 (Wi · vi)2. These weights will be used in place of those defined by Eq. (2.6). The function
type CVEwtFn is defined as follows:

CVEwtFn

Definition typedef int (*CVEwtFn)(N Vector y, N Vector ewt, void *user data);

Purpose This function computes the WRMS error weights for the vector y.

Arguments y is the value of the dependent variable vector at which the weight vector is
to be computed.

ewt is the output vector containing the error weights.
user data is a pointer to user data, the same as the user data parameter passed to

CVodeSetUserData.

Return value A CVEwtFn function type must return 0 if it successfully set the error weights and −1
otherwise.

Notes Allocation of memory for ewt is handled within cvode.

The error weight vector must have all components positive. It is the user’s responsiblity
to perform this test and return −1 if it is not satisfied.

4.6.4 Rootfinding function

If a rootfinding problem is to be solved during the integration of the ODE system, the user must
supply a C function of type CVRootFn, defined as follows:

CVRootFn

Definition typedef int (*CVRootFn)(realtype t, N Vector y, realtype *gout,
void *user data);

Purpose This function implements a vector-valued function g(t, y) such that the roots of the
nrtfn components gi(t, y) are sought.

Arguments t is the current value of the independent variable.
y is the current value of the dependent variable vector, y(t).
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gout is the output array, of length nrtfn, with components gi(t, y).
user data is a pointer to user data, the same as the user data parameter passed to

CVodeSetUserData.

Return value A CVRootFn should return 0 if successful or a non-zero value if an error occurred (in
which case the integration is halted and CVode returns CV RTFUNC FAIL).

Notes Allocation of memory for gout is automatically handled within cvode.

4.6.5 Jacobian information (direct method Jacobian)

If the direct linear solver interface is used (i.e., CVDlsSetLinearSolver is called in the steps described
in §4.4), the user may provide a function of type CVDlsJacFn defined as follows:

CVDlsJacFn

Definition typedef (*CVDlsJacFn)(realtype t, N Vector y, N Vector fy,
SUNMatrix Jac, void *user data,
N Vector tmp1, N Vector tmp2, N Vector tmp3);

Purpose This function computes the Jacobian matrix J = ∂f/∂y (or an approximation to it).

Arguments t is the current value of the independent variable.
y is the current value of the dependent variable vector, namely the predicted

value of y(t).
fy is the current value of the vector f(t, y).
Jac is the output Jacobian matrix (of type SUNMatrix).
user data is a pointer to user data, the same as the user data parameter passed to

CVodeSetUserData.
tmp1

tmp2

tmp3 are pointers to memory allocated for variables of type N Vector which can
be used by a CVDlsJacFn function as temporary storage or work space.

Return value A CVDlsJacFn should return 0 if successful, a positive value if a recoverable error oc-
curred (in which case cvode will attempt to correct, while cvdls sets last flag to
CVDLS JACFUNC RECVR), or a negative value if it failed unrecoverably (in which case
the integration is halted, CVode returns CV LSETUP FAIL and cvdls sets last flag to
CVDLS JACFUNC UNRECVR).

Notes Information regarding the structure of the specific sunmatrix structure (e.g. number
of rows, upper/lower bandwidth, sparsity type) may be obtained through using the
implementation-specific sunmatrix interface functions (see Chapter 7 for details).

Prior to calling the user-supplied Jacobian function, the Jacobian matrix J(t, y) is zeroed
out, so only nonzero elements need to be loaded into Jac.

If the user’s CVDlsJacFn function uses difference quotient approximations, then it may
need to access quantities not in the argument list. These include the current step size,
the error weights, etc. To obtain these, the user will need to add a pointer to cv mem
to user data and then use the CVodeGet* functions described in §4.5.8.2. The unit
roundoff can be accessed as UNIT ROUNDOFF defined in sundials types.h.

dense:
A user-supplied dense Jacobian function must load the N by N dense matrix Jac with
an approximation to the Jacobian matrix J(t, y) at the point (t, y). The accessor
macros SM ELEMENT D and SM COLUMN D allow the user to read and write dense matrix
elements without making explicit references to the underlying representation of the sun-
matrix dense type. SM ELEMENT D(J, i, j) references the (i, j)-th element of the
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dense matrix Jac (with i, j = 0 . . . N − 1). This macro is meant for small problems
for which efficiency of access is not a major concern. Thus, in terms of the indices
m and n ranging from 1 to N , the Jacobian element Jm,n can be set using the state-
ment SM ELEMENT D(J, m-1, n-1) = Jm,n. Alternatively, SM COLUMN D(J, j) returns
a pointer to the first element of the j-th column of Jac (with j = 0 . . . N− 1), and the
elements of the j-th column can then be accessed using ordinary array indexing. Con-
sequently, Jm,n can be loaded using the statements col n = SM COLUMN D(J, n-1);
col n[m-1] = Jm,n. For large problems, it is more efficient to use SM COLUMN D than to
use SM ELEMENT D. Note that both of these macros number rows and columns starting
from 0. The sunmatrix dense type and accessor macros are documented in §7.1.

banded:
A user-supplied banded Jacobian function must load the N by N banded matrix Jac
with the elements of the Jacobian J(t, y) at the point (t,y). The accessor macros
SM ELEMENT B, SM COLUMN B, and SM COLUMN ELEMENT B allow the user to read and write
band matrix elements without making specific references to the underlying representa-
tion of the sunmatrix band type. SM ELEMENT B(J, i, j) references the (i, j)-th
element of the band matrix Jac, counting from 0. This macro is meant for use in small
problems for which efficiency of access is not a major concern. Thus, in terms of the
indices m and n ranging from 1 to N with (m,n) within the band defined by mupper and
mlower, the Jacobian element Jm,n can be loaded using the statement SM ELEMENT B(J,
m-1, n-1) = Jm,n. The elements within the band are those with -mupper ≤ m-n ≤
mlower. Alternatively, SM COLUMN B(J, j) returns a pointer to the diagonal element
of the j-th column of Jac, and if we assign this address to realtype *col j, then
the i-th element of the j-th column is given by SM COLUMN ELEMENT B(col j, i, j),
counting from 0. Thus, for (m,n) within the band, Jm,n can be loaded by setting col n
= SM COLUMN B(J, n-1); SM COLUMN ELEMENT B(col n, m-1, n-1) = Jm,n. The ele-
ments of the j-th column can also be accessed via ordinary array indexing, but this
approach requires knowledge of the underlying storage for a band matrix of type sun-
matrix band. The array col n can be indexed from −mupper to mlower. For large
problems, it is more efficient to use SM COLUMN B and SM COLUMN ELEMENT B than to
use the SM ELEMENT B macro. As in the dense case, these macros all number rows and
columns starting from 0. The sunmatrix band type and accessor macros are docu-
mented in §7.2.

sparse:
A user-supplied sparse Jacobian function must load the N by N compressed-sparse-
column or compressed-sparse-row matrix Jac with an approximation to the Jacobian
matrix J(t, y) at the point (t, y). Storage for Jac already exists on entry to this func-
tion, although the user should ensure that sufficient space is allocated in Jac to hold the
nonzero values to be set; if the existing space is insufficient the user may reallocate the
data and index arrays as needed. The amount of allocated space in a sunmatrix sparse
object may be accessed using the macro SM NNZ S or the routine SUNSparseMatrix NNZ.
The sunmatrix sparse type and accessor macros are documented in §7.3.

4.6.6 Jacobian information (matrix-vector product)

If the cvspils solver interface is selected (i.e., CVSpilsSetLinearSolver is called in the steps de-
scribed in §4.4), the user may provide a function of type CVSpilsJacTimesVecFn in the following form,
to compute matrix-vector products Jv. If such a function is not supplied, the default is a difference
quotient approximation to these products.

CVSpilsJacTimesVecFn
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Definition typedef int (*CVSpilsJacTimesVecFn)(N Vector v, N Vector Jv,
realtype t, N Vector y, N Vector fy,
void *user data, N Vector tmp);

Purpose This function computes the product Jv = (∂f/∂y)v (or an approximation to it).

Arguments v is the vector by which the Jacobian must be multiplied.
Jv is the output vector computed.
t is the current value of the independent variable.
y is the current value of the dependent variable vector.
fy is the current value of the vector f(t, y).
user data is a pointer to user data, the same as the user data parameter passed to

CVodeSetUserData.
tmp is a pointer to memory allocated for a variable of type N Vector which can

be used for work space.

Return value The value returned by the Jacobian-vector product function should be 0 if successful.
Any other return value will result in an unrecoverable error of the generic Krylov solver,
in which case the integration is halted.

Notes This function must return a value of J ∗ v that uses the current value of J , i.e. as
evaluated at the current (t, y).
If the user’s CVSpilsJacTimesVecFn function uses difference quotient approximations,
it may need to access quantities not in the argument list. These include the current
step size, the error weights, etc. To obtain these, the user will need to add a pointer to
cv mem to user data and then use the CVodeGet* functions described in §4.5.8.2. The
unit roundoff can be accessed as UNIT ROUNDOFF defined in sundials types.h.

4.6.7 Jacobian information (matrix-vector setup)

If the user’s Jacobian-times-vector requires that any Jacobian-related data be preprocessed or evalu-
ated, then this needs to be done in a user-supplied function of type CVSpilsJacTimesSetupFn, defined
as follows:

CVSpilsJacTimesSetupFn

Definition typedef int (*CVSpilsJacTimesSetupFn)(realtype t, N Vector y,
N Vector fy, void *user data);

Purpose This function preprocesses and/or evaluates Jacobian-related data needed by the Jacobian-
times-vector routine.

Arguments t is the current value of the independent variable.
y is the current value of the dependent variable vector.
fy is the current value of the vector f(t, y).
user data is a pointer to user data, the same as the user data parameter passed to

CVodeSetUserData.

Return value The value returned by the Jacobian-vector setup function should be 0 if successful,
positive for a recoverable error (in which case the step will be retried), or negative for
an unrecoverable error (in which case the integration is halted).

Notes Each call to the Jacobian-vector setup function is preceded by a call to the CVRhsFn
user function with the same (t,y) arguments. Thus, the setup function can use any
auxiliary data that is computed and saved during the evaluation of the ODE right-hand
side.

If the user’s CVSpilsJacTimesSetupFn function uses difference quotient approxima-
tions, it may need to access quantities not in the argument list. These include the cur-
rent step size, the error weights, etc. To obtain these, the user will need to add a pointer
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to cv mem to user data and then use the CVodeGet* functions described in §4.5.8.2. The
unit roundoff can be accessed as UNIT ROUNDOFF defined in sundials types.h.

4.6.8 Preconditioning (linear system solution)

If preconditioning is used, then the user must provide a function to solve the linear system Pz = r,
where P may be either a left or right preconditioner matrix. Here P should approximate (at least
crudely) the Newton matrix M = I − γJ , where J = ∂f/∂y. If preconditioning is done on both sides,
the product of the two preconditioner matrices should approximate M . This function must be of type
CVSpilsPrecSolveFn, defined as follows:

CVSpilsPrecSolveFn

Definition typedef int (*CVSpilsPrecSolveFn)(realtype t, N Vector y, N Vector fy,
N Vector r, N Vector z, realtype gamma,
realtype delta, int lr, void *user data);

Purpose This function solves the preconditioned system Pz = r.

Arguments t is the current value of the independent variable.
y is the current value of the dependent variable vector.
fy is the current value of the vector f(t, y).
r is the right-hand side vector of the linear system.
z is the computed output vector.
gamma is the scalar γ appearing in the Newton matrix given by M = I − γJ .
delta is an input tolerance to be used if an iterative method is employed in the

solution. In that case, the residual vector Res = r−Pz of the system should
be made less than delta in the weighted l2 norm, i.e.,

√∑
i(Resi · ewti)2 <

delta. To obtain the N Vector ewt, call CVodeGetErrWeights (see §4.5.8.2).
lr is an input flag indicating whether the preconditioner solve function is to

use the left preconditioner (lr = 1) or the right preconditioner (lr = 2);
user data is a pointer to user data, the same as the user data parameter passed to

the function CVodeSetUserData.

Return value The value returned by the preconditioner solve function is a flag indicating whether it
was successful. This value should be 0 if successful, positive for a recoverable error (in
which case the step will be retried), or negative for an unrecoverable error (in which
case the integration is halted).

4.6.9 Preconditioning (Jacobian data)

If the user’s preconditioner requires that any Jacobian-related data be preprocessed or evaluated, then
this needs to be done in a user-supplied function of type CVSpilsPrecSetupFn, defined as follows:

CVSpilsPrecSetupFn

Definition typedef int (*CVSpilsPrecSetupFn)(realtype t, N Vector y, N Vector fy,
booleantype jok, booleantype *jcurPtr,
realtype gamma, void *user data);

Purpose This function preprocesses and/or evaluates Jacobian-related data needed by the pre-
conditioner.

Arguments t is the current value of the independent variable.
y is the current value of the dependent variable vector, namely the predicted

value of y(t).
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fy is the current value of the vector f(t, y).
jok is an input flag indicating whether the Jacobian-related data needs to be

updated. The jok argument provides for the reuse of Jacobian data in the
preconditioner solve function. jok = SUNFALSE means that the Jacobian-
related data must be recomputed from scratch. jok = SUNTRUE means that
the Jacobian data, if saved from the previous call to this function, can be
reused (with the current value of gamma). A call with jok = SUNTRUE can
only occur after a call with jok = SUNFALSE.

jcurPtr is a pointer to a flag which should be set to SUNTRUE if Jacobian data was
recomputed, or set to SUNFALSE if Jacobian data was not recomputed, but
saved data was still reused.

gamma is the scalar γ appearing in the Newton matrix M = I − γJ .
user data is a pointer to user data, the same as the user data parameter passed to

the function CVodeSetUserData.

Return value The value returned by the preconditioner setup function is a flag indicating whether it
was successful. This value should be 0 if successful, positive for a recoverable error (in
which case the step will be retried), or negative for an unrecoverable error (in which
case the integration is halted).

Notes The operations performed by this function might include forming a crude approximate
Jacobian and performing an LU factorization of the resulting approximation to M =
I − γJ .

Each call to the preconditioner setup function is preceded by a call to the CVRhsFn user
function with the same (t,y) arguments. Thus, the preconditioner setup function can
use any auxiliary data that is computed and saved during the evaluation of the ODE
right-hand side.

This function is not called in advance of every call to the preconditioner solve function,
but rather is called only as often as needed to achieve convergence in the Newton
iteration.

If the user’s CVSpilsPrecSetupFn function uses difference quotient approximations, it
may need to access quantities not in the call list. These include the current step size,
the error weights, etc. To obtain these, the user will need to add a pointer to cv mem
to user data and then use the CVodeGet* functions described in §4.5.8.2. The unit
roundoff can be accessed as UNIT ROUNDOFF defined in sundials types.h.

4.7 Preconditioner modules

The efficiency of Krylov iterative methods for the solution of linear systems can be greatly enhanced
through preconditioning. For problems in which the user cannot define a more effective, problem-
specific preconditioner, cvode provides a banded preconditioner in the module cvbandpre and a
band-block-diagonal preconditioner module cvbbdpre.

4.7.1 A serial banded preconditioner module

This preconditioner provides a band matrix preconditioner for use with the cvspils iterative linear
solver interface, in a serial setting. It uses difference quotients of the ODE right-hand side function f
to generate a band matrix of bandwidth ml +mu + 1, where the number of super-diagonals (mu, the
upper half-bandwidth) and sub-diagonals (ml, the lower half-bandwidth) are specified by the user,
and uses this to form a preconditioner for use with the Krylov linear solver. Although this matrix
is intended to approximate the Jacobian ∂f/∂y, it may be a very crude approximation. The true
Jacobian need not be banded, or its true bandwidth may be larger than ml +mu + 1, as long as the
banded approximation generated here is sufficiently accurate to speed convergence as a preconditioner.
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In order to use the cvbandpre module, the user need not define any additional functions. Aside
from the header files required for the integration of the ODE problem (see §4.3), to use the cvbandpre
module, the main program must include the header file cvode bandpre.h which declares the needed
function prototypes. The following is a summary of the usage of this module. Steps that are unchanged
from the skeleton program presented in §4.4 are grayed out.

1. Initialize multi-threaded environment, if appropriate

2. Set problem dimensions

3. Set vector of initial values

4. Create cvode object

5. Initialize cvode solver

6. Specify integration tolerances

7. Set optional inputs

8. Create linear solver object

When creating the iterative linear solver object, specify the type of preconditioning (PREC LEFT
or PREC RIGHT) to use.

9. Set linear solver optional inputs

10. Attach linear solver module

11. Initialize the cvbandpre preconditioner module

Specify the upper and lower half-bandwidths (mu and ml, respectively) and call

flag = CVBandPrecInit(cvode mem, N, mu, ml);

to allocate memory and initialize the internal preconditioner data.

12. Set linear solver interface optional inputs

Note that the user should not overwrite the preconditioner setup function or solve function through
calls to the CVSpilsSetPreconditioner optional input function.

13. Specify rootfinding problem

14. Advance solution in time

15. Get optional outputs

Additional optional outputs associated with cvbandpre are available by way of two routines
described below, CVBandPrecGetWorkSpace and CVBandPrecGetNumRhsEvals.

16. Deallocate memory for solution vector

17. Free solver memory

18. Free linear solver memory

The cvbandpre preconditioner module is initialized and attached by calling the following function:

CVBandPrecInit

Call flag = CVBandPrecInit(cvode mem, N, mu, ml);
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Description The function CVBandPrecInit initializes the cvbandpre preconditioner and allocates
required (internal) memory for it.

Arguments cvode mem (void *) pointer to the cvode memory block.
N (sunindextype) problem dimension.
mu (sunindextype) upper half-bandwidth of the Jacobian approximation.
ml (sunindextype) lower half-bandwidth of the Jacobian approximation.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The call to CVBandPrecInit was successful.
CVSPILS MEM NULL The cvode mem pointer was NULL.
CVSPILS MEM FAIL A memory allocation request has failed.
CVSPILS LMEM NULL A cvspils linear solver memory was not attached.
CVSPILS ILL INPUT The supplied vector implementation was not compatible with block

band preconditioner.

Notes The banded approximate Jacobian will have nonzero elements only in locations (i, j)
with −ml ≤ j − i ≤ mu.

The following three optional output functions are available for use with the cvbandpre module:

CVBandPrecGetWorkSpace

Call flag = CVBandPrecGetWorkSpace(cvode mem, &lenrwBP, &leniwBP);

Description The function CVBandPrecGetWorkSpace returns the sizes of the cvbandpre real and
integer workspaces.

Arguments cvode mem (void *) pointer to the cvode memory block.
lenrwBP (long int) the number of realtype values in the cvbandpre workspace.
leniwBP (long int) the number of integer values in the cvbandpre workspace.

Return value The return value flag (of type int) is one of:

CVSPILS SUCCESS The optional output values have been successfully set.
CVSPILS PMEM NULL The cvbandpre preconditioner has not been initialized.

Notes The workspace requirements reported by this routine correspond only to memory al-
located within the cvbandpre module (the banded matrix approximation, banded
sunlinsol object, and temporary vectors).

The workspaces referred to here exist in addition to those given by the corresponding
function CVSpilsGetWorkSpace.

CVBandPrecGetNumRhsEvals

Call flag = CVBandPrecGetNumRhsEvals(cvode mem, &nfevalsBP);

Description The function CVBandPrecGetNumRhsEvals returns the number of calls made to the
user-supplied right-hand side function for the finite difference banded Jacobian approx-
imation used within the preconditioner setup function.

Arguments cvode mem (void *) pointer to the cvode memory block.
nfevalsBP (long int) the number of calls to the user right-hand side function.

Return value The return value flag (of type int) is one of:

CVSPILS SUCCESS The optional output value has been successfully set.
CVSPILS PMEM NULL The cvbandpre preconditioner has not been initialized.

Notes The counter nfevalsBP is distinct from the counter nfevalsLS returned by the corre-
sponding function CVSpilsGetNumRhsEvals and nfevals returned by CVodeGetNumRhsEvals.
The total number of right-hand side function evaluations is the sum of all three of these
counters.
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4.7.2 A parallel band-block-diagonal preconditioner module

A principal reason for using a parallel ODE solver such as cvode lies in the solution of partial
differential equations (PDEs). Moreover, the use of a Krylov iterative method for the solution of many
such problems is motivated by the nature of the underlying linear system of equations (2.4) that must
be solved at each time step. The linear algebraic system is large, sparse, and structured. However, if
a Krylov iterative method is to be effective in this setting, then a nontrivial preconditioner needs to
be used. Otherwise, the rate of convergence of the Krylov iterative method is usually unacceptably
slow. Unfortunately, an effective preconditioner tends to be problem-specific.

However, we have developed one type of preconditioner that treats a rather broad class of PDE-
based problems. It has been successfully used for several realistic, large-scale problems [22] and is
included in a software module within the cvode package. This module works with the parallel vector
module nvector parallel and is usable with any of the Krylov iterative linear solvers through the
cvspils interface. It generates a preconditioner that is a block-diagonal matrix with each block being
a band matrix. The blocks need not have the same number of super- and sub-diagonals and these
numbers may vary from block to block. This Band-Block-Diagonal Preconditioner module is called
cvbbdpre.

One way to envision these preconditioners is to think of the domain of the computational PDE
problem as being subdivided into M non-overlapping subdomains. Each of these subdomains is then
assigned to one of the M processes to be used to solve the ODE system. The basic idea is to isolate the
preconditioning so that it is local to each process, and also to use a (possibly cheaper) approximate
right-hand side function. This requires the definition of a new function g(t, y) which approximates
the function f(t, y) in the definition of the ODE system (2.1). However, the user may set g = f .
Corresponding to the domain decomposition, there is a decomposition of the solution vector y into
M disjoint blocks ym, and a decomposition of g into blocks gm. The block gm depends both on ym

and on components of blocks ym′ associated with neighboring subdomains (so-called ghost-cell data).
Let ȳm denote ym augmented with those other components on which gm depends. Then we have

g(t, y) = [g1(t, ȳ1), g2(t, ȳ2), . . . , gM (t, ȳM )]T (4.1)

and each of the blocks gm(t, ȳm) is uncoupled from the others.
The preconditioner associated with this decomposition has the form

P = diag[P1, P2, . . . , PM ] (4.2)

where
Pm ≈ I − γJm (4.3)

and Jm is a difference quotient approximation to ∂gm/∂ym. This matrix is taken to be banded, with
upper and lower half-bandwidths mudq and mldq defined as the number of non-zero diagonals above
and below the main diagonal, respectively. The difference quotient approximation is computed using
mudq + mldq +2 evaluations of gm, but only a matrix of bandwidth mukeep + mlkeep +1 is retained.
Neither pair of parameters need be the true half-bandwidths of the Jacobian of the local block of g,
if smaller values provide a more efficient preconditioner. The solution of the complete linear system

Px = b (4.4)

reduces to solving each of the equations
Pmxm = bm (4.5)

and this is done by banded LU factorization of Pm followed by a banded backsolve.
Similar block-diagonal preconditioners could be considered with different treatments of the blocks

Pm. For example, incomplete LU factorization or an iterative method could be used instead of banded
LU factorization.

The cvbbdpre module calls two user-provided functions to construct P : a required function gloc
(of type CVLocalFn) which approximates the right-hand side function g(t, y) ≈ f(t, y) and which is
computed locally, and an optional function cfn (of type CVCommFn) which performs all interprocess
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communication necessary to evaluate the approximate right-hand side g. These are in addition to the
user-supplied right-hand side function f. Both functions take as input the same pointer user data
that is passed by the user to CVodeSetUserData and that was passed to the user’s function f. The
user is responsible for providing space (presumably within user data) for components of y that are
communicated between processes by cfn, and that are then used by gloc, which should not do any
communication.

CVLocalFn

Definition typedef int (*CVLocalFn)(sunindextype Nlocal, realtype t, N Vector y,
N Vector glocal, void *user data);

Purpose This gloc function computes g(t, y). It loads the vector glocal as a function of t and
y.

Arguments Nlocal is the local vector length.
t is the value of the independent variable.
y is the dependent variable.
glocal is the output vector.
user data is a pointer to user data, the same as the user data parameter passed to

CVodeSetUserData.

Return value A CVLocalFn should return 0 if successful, a positive value if a recoverable error occurred
(in which case cvode will attempt to correct), or a negative value if it failed unrecov-
erably (in which case the integration is halted and CVode returns CV LSETUP FAIL).

Notes This function must assume that all interprocess communication of data needed to cal-
culate glocal has already been done, and that this data is accessible within user data.

The case where g is mathematically identical to f is allowed.

CVCommFn

Definition typedef int (*CVCommFn)(sunindextype Nlocal, realtype t,
N Vector y, void *user data);

Purpose This cfn function performs all interprocess communication necessary for the execution
of the gloc function above, using the input vector y.

Arguments Nlocal is the local vector length.
t is the value of the independent variable.
y is the dependent variable.
user data is a pointer to user data, the same as the user data parameter passed to

CVodeSetUserData.

Return value A CVCommFn should return 0 if successful, a positive value if a recoverable error occurred
(in which case cvode will attempt to correct), or a negative value if it failed unrecov-
erably (in which case the integration is halted and CVode returns CV LSETUP FAIL).

Notes The cfn function is expected to save communicated data in space defined within the
data structure user data.

Each call to the cfn function is preceded by a call to the right-hand side function f
with the same (t, y) arguments. Thus, cfn can omit any communication done by f
if relevant to the evaluation of glocal. If all necessary communication was done in f,
then cfn = NULL can be passed in the call to CVBBDPrecInit (see below).

Besides the header files required for the integration of the ODE problem (see §4.3), to use the
cvbbdpre module, the main program must include the header file cvode bbdpre.h which declares
the needed function prototypes.

The following is a summary of the proper usage of this module. Steps that are unchanged from
the skeleton program presented in §4.4 are grayed out.
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1. Initialize MPI environment

2. Set problem dimensions

3. Set vector of initial values

4. Create cvode object

5. Initialize cvode solver

6. Specify integration tolerances

7. Set optional inputs

8. Create linear solver object

When creating the iterative linear solver object, specify the type of preconditioning (PREC LEFT
or PREC RIGHT) to use.

9. Set linear solver optional inputs

10. Attach linear solver module

11. Initialize the cvbbdpre preconditioner module

Specify the upper and lower half-bandwidths mudq and mldq, and mukeep and mlkeep, and call

flag = CVBBDPrecInit(cvode mem, local N, mudq, mldq,
mukeep, mlkeep, dqrely, gloc, cfn);

to allocate memory and initialize the internal preconditioner data. The last two arguments of
CVBBDPrecInit are the two user-supplied functions described above.

12. Set linear solver interface optional inputs

Note that the user should not overwrite the preconditioner setup function or solve function through
calls to the CVSpilsSetPreconditioner optional input function.

13. Advance solution in time

14. Get optional outputs

Additional optional outputs associated with cvbbdpre are available by way of two routines de-
scribed below, CVBBDPrecGetWorkSpace and CVBBDPrecGetNumGfnEvals.

15. Deallocate memory for solution vector

16. Free solver memory

17. Free linear solver memory

18. Finalize MPI

The user-callable functions that initialize (step 11 above) or re-initialize the cvbbdpre preconditioner
module are described next.

CVBBDPrecInit

Call flag = CVBBDPrecInit(cvode mem, local N, mudq, mldq,
mukeep, mlkeep, dqrely, gloc, cfn);

Description The function CVBBDPrecInit initializes and allocates (internal) memory for the cvbb-
dpre preconditioner.
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Arguments cvode mem (void *) pointer to the cvode memory block.
local N (sunindextype) local vector length.
mudq (sunindextype) upper half-bandwidth to be used in the difference quotient

Jacobian approximation.
mldq (sunindextype) lower half-bandwidth to be used in the difference quotient

Jacobian approximation.
mukeep (sunindextype) upper half-bandwidth of the retained banded approximate

Jacobian block.
mlkeep (sunindextype) lower half-bandwidth of the retained banded approximate

Jacobian block.
dqrely (realtype) the relative increment in components of y used in the difference

quotient approximations. The default is dqrely=
√

unit roundoff, which
can be specified by passing dqrely = 0.0.

gloc (CVLocalFn) the C function which computes the approximation g(t, y) ≈
f(t, y).

cfn (CVCommFn) the optional C function which performs all interprocess commu-
nication required for the computation of g(t, y).

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The call to CVBBDPrecInit was successful.
CVSPILS MEM NULL The cvode mem pointer was NULL.
CVSPILS MEM FAIL A memory allocation request has failed.
CVSPILS LMEM NULL A cvspils linear solver was not attached.
CVSPILS ILL INPUT The supplied vector implementation was not compatible with block

band preconditioner.

Notes If one of the half-bandwidths mudq or mldq to be used in the difference quotient cal-
culation of the approximate Jacobian is negative or exceeds the value local N−1, it is
replaced by 0 or local N−1 accordingly.

The half-bandwidths mudq and mldq need not be the true half-bandwidths of the Jaco-
bian of the local block of g when smaller values may provide a greater efficiency.

Also, the half-bandwidths mukeep and mlkeep of the retained banded approximate
Jacobian block may be even smaller, to reduce storage and computational costs further.

For all four half-bandwidths, the values need not be the same on every processor.

The cvbbdpre module also provides a reinitialization function to allow solving a sequence of
problems of the same size, with the same linear solver choice, provided there is no change in local N,
mukeep, or mlkeep. After solving one problem, and after calling CVodeReInit to re-initialize cvode
for a subsequent problem, a call to CVBBDPrecReInit can be made to change any of the following: the
half-bandwidths mudq and mldq used in the difference-quotient Jacobian approximations, the relative
increment dqrely, or one of the user-supplied functions gloc and cfn. If there is a change in any of
the linear solver inputs, an additional call to the “Set” routines provided by the sunlinsol module,
and/or one or more of the corresponding CVSpilsSet*** functions, must also be made (in the proper
order).

CVBBDPrecReInit

Call flag = CVBBDPrecReInit(cvode mem, mudq, mldq, dqrely);

Description The function CVBBDPrecReInit re-initializes the cvbbdpre preconditioner.

Arguments cvode mem (void *) pointer to the cvode memory block.
mudq (sunindextype) upper half-bandwidth to be used in the difference quotient

Jacobian approximation.
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mldq (sunindextype) lower half-bandwidth to be used in the difference quotient
Jacobian approximation.

dqrely (realtype) the relative increment in components of y used in the difference
quotient approximations. The default is dqrely =

√
unit roundoff, which

can be specified by passing dqrely = 0.0.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The call to CVBBDPrecReInit was successful.
CVSPILS MEM NULL The cvode mem pointer was NULL.
CVSPILS LMEM NULL A cvspils linear solver memory was not attached.
CVSPILS PMEM NULL The function CVBBDPrecInit was not previously called.

Notes If one of the half-bandwidths mudq or mldq is negative or exceeds the value local N−1,
it is replaced by 0 or local N−1 accordingly.

The following two optional output functions are available for use with the cvbbdpre module:

CVBBDPrecGetWorkSpace

Call flag = CVBBDPrecGetWorkSpace(cvode mem, &lenrwBBDP, &leniwBBDP);

Description The function CVBBDPrecGetWorkSpace returns the local cvbbdpre real and integer
workspace sizes.

Arguments cvode mem (void *) pointer to the cvode memory block.
lenrwBBDP (long int) local number of realtype values in the cvbbdpre workspace.
leniwBBDP (long int) local number of integer values in the cvbbdpre workspace.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The optional output value has been successfully set.
CVSPILS MEM NULL The cvode mem pointer was NULL.
CVSPILS PMEM NULL The cvbbdpre preconditioner has not been initialized.

Notes The workspace requirements reported by this routine correspond only to memory allo-
cated within the cvbbdpre module (the banded matrix approximation, banded sun-
linsol object, temporary vectors). These values are local to each process.

The workspaces referred to here exist in addition to those given by the corresponding
function CVSpilsGetWorkSpace.

CVBBDPrecGetNumGfnEvals

Call flag = CVBBDPrecGetNumGfnEvals(cvode mem, &ngevalsBBDP);

Description The function CVBBDPrecGetNumGfnEvals returns the number of calls made to the user-
supplied gloc function due to the finite difference approximation of the Jacobian blocks
used within the preconditioner setup function.

Arguments cvode mem (void *) pointer to the cvode memory block.
ngevalsBBDP (long int) the number of calls made to the user-supplied gloc function.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The optional output value has been successfully set.
CVSPILS MEM NULL The cvode mem pointer was NULL.
CVSPILS PMEM NULL The cvbbdpre preconditioner has not been initialized.

In addition to the ngevalsBBDP gloc evaluations, the costs associated with cvbbdpre also in-
clude nlinsetups LU factorizations, nlinsetups calls to cfn, npsolves banded backsolve calls, and
nfevalsLS right-hand side function evaluations, where nlinsetups is an optional cvode output and
npsolves and nfevalsLS are linear solver optional outputs (see §4.5.8).





Chapter 5

FCVODE, an Interface Module for
FORTRAN Applications

The fcvode interface module is a package of C functions which support the use of the cvode solver,
for the solution of ODE systems dy/dt = f(t, y), in a mixed Fortran/C setting. While cvode is
written in C, it is assumed here that the user’s calling program and user-supplied problem-defining
routines are written in Fortran. This package provides the necessary interface to cvode for all
supplied serial and parallel nvector implementations.

5.1 Important note on portability

In this package, the names of the interface functions, and the names of the Fortran user routines
called by them, appear as dummy names which are mapped to actual values by a series of definitions
in the header files. By default, those mapping definitions depend in turn on the C macro F77 FUNC
defined in the header file sundials config.h. The mapping defined by F77 FUNC in turn transforms
the C interface names to match the name-mangling approach used by the supplied Fortran compiler.

By “name-mangling”, we mean that due to the case-independent nature of the Fortran language,
Fortran compilers convert all subroutine and object names to use either all lower-case or all upper-
case characters, and append either zero, one or two underscores as a prefix or suffix to the name. For
example, the Fortran subroutine MyFunction() will be changed to one of myfunction, MYFUNCTION,
myfunction , MYFUNCTION , and so on, depending on the Fortran compiler used.

sundials determines this name-mangling scheme at configuration time (see Appendix A).

5.2 Fortran Data Types

Throughout this documentation, we will refer to data types according to their usage in C. The equiv-
alent types to these may vary, depending on your computer architecture and on how SUNDIALS was
compiled (see Appendix A). A Fortran user should first determine the equivalent types for their
architecture and compiler, and then take care that all arguments passed through this Fortran/C
interface are declared of the appropriate type.

Integers: While sundials uses the configurable sunindextype type as the integer type for vector
and matrix indices for its C code, the Fortran interfaces are more restricted. The sunindextype
is only used for index values and pointers when filling sparse matrices. As for C, the sunindextype
can be configured to be a 32- or 64-bit signed integer by setting the variable SUNDIALS INDEX TYPE
at compile time (See Appendix A). The default value is int64 t. A Fortran user should set this
variable based on the integer type used for vector and matrix indices in their Fortran code. The
corresponding Fortran types are:

• int32 t – equivalent to an INTEGER or INTEGER*4 in Fortran
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• int64 t – equivalent to an INTEGER*8 in Fortran

In general, for the Fortran interfaces in sundials, flags of type int, vector and matrix lengths,
counters, and arguments to *SETIN() functions all have long int type, and sunindextype is only
used for index values and pointers when filling sparse matrices. Note that if an F90 (or higher) user
wants to find out the value of sunindextype, they can include sundials fconfig.h.

Real numbers: As discussed in Appendix A, at compilation sundials allows the configura-
tion option SUNDIALS PRECISION, that accepts values of single, double or extended (the default is
double). This choice dictates the size of a realtype variable. The corresponding Fortran types for
these realtype sizes are:

• single – equivalent to a REAL or REAL*4 in Fortran

• double – equivalent to a DOUBLE PRECISION or REAL*8 in Fortran

• extended – equivalent to a REAL*16 in Fortran

5.3 FCVODE routines

The user-callable functions, with the corresponding cvode functions, are as follows:

• Interface to the nvector modules

– FNVINITS (defined by nvector serial) interfaces to N VNewEmpty Serial.

– FNVINITP (defined by nvector parallel) interfaces to N VNewEmpty Parallel.

– FNVINITOMP (defined by nvector openmp) interfaces to N VNewEmpty OpenMP.

– FNVINITPTS (defined by nvector pthreads) interfaces to N VNewEmpty Pthreads.

• Interface to the sunmatrix modules

– FSUNBANDMATINIT (defined by sunmatrix band) interfaces to SUNBandMatrix.

– FSUNDENSEMATINIT (defined by sunmatrix dense) interfaces to SUNDenseMatrix.

– FSUNSPARSEMATINIT (defined by sunmatrix sparse) interfaces to SUNSparseMatrix.

• Interface to the sunlinsol modules

– FSUNBANDLINSOLINIT (defined by sunlinsol band) interfaces to SUNBandLinearSolver.

– FSUNDENSELINSOLINIT (defined by sunlinsol dense) interfaces to SUNDenseLinearSolver.

– FSUNKLUINIT (defined by sunlinsol klu) interfaces to SUNKLU.

– FSUNKLUREINIT (defined by sunlinsol klu) interfaces to SUNKLUReinit.

– FSUNLAPACKBANDINIT (defined by sunlinsol lapackband) interfaces to SUNLapackBand.

– FSUNLAPACKDENSEINIT (defined by sunlinsol lapackdense) interfaces to SUNLapackDense.

– FSUNPCGINIT (defined by sunlinsol pcg) interfaces to SUNPCG.

– FSUNSPBCGSINIT (defined by sunlinsol spbcgs) interfaces to SUNSPBCGS.

– FSUNSPFGMRINIT (defined by sunlinsol spfgmr) interfaces to SUNSPFGMR.

– FSUNSPGMRINIT (defined by sunlinsol spgmr) interfaces to SUNSPGMR.

– FSUNSPTFQMRINIT (defined by sunlinsol sptfqmr) interfaces to SUNSPTFQMR.

– FSUNSUPERLUMTINIT (defined by sunlinsol superlumt) interfaces to SUNSuperLUMT.

• Interface to the main cvode module

– FCVMALLOC interfaces to CVodeCreate, CVodeSetUserData, and CVodeInit, as well as one
of CVodeSStolerances or CVodeSVtolerances.
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– FCVREINIT interfaces to CVodeReInit.

– FCVSETIIN and FCVSETRIN interface to CVodeSet* functions.

– FCVEWTSET interfaces to CVodeWFtolerances.

– FCVODE interfaces to CVode, CVodeGet* functions, and to the optional output functions for
the selected linear solver module.

– FCVDKY interfaces to the interpolated output function CVodeGetDky.

– FCVGETERRWEIGHTS interfaces to CVodeGetErrWeights.

– FCVGETESTLOCALERR interfaces to CVodeGetEstLocalErrors.

– FCVFREE interfaces to CVodeFree.

• Interface to the linear solver interfaces

– FCVDLSINIT interfaces to CVDlsSetLinearSolver.

– FCVDENSESETJAC interfaces to CVDlsSetJacFn.

– FCVBANDSETJAC interfaces to CVDlsSetJacFn.

– FCVSPARSESETJAC interfaces to CVDlsSetJacFn.

– FCVSPILSINIT interfaces to CVSpilsSetLinearSolver.

– FCVSPILSSETEPSLIN interfaces to CVSpilsSetEpsLin.

– FCVSPILSSETJAC interfaces to CVSpilsSetJacTimes.

– FCVSPILSSETPREC interfaces to CVSpilsSetPreconditioner.

– FCVDIAG interfaces to CVDiag.

The user-supplied functions, each listed with the corresponding internal interface function which
calls it (and its type within cvode), are as follows:

fcvode routine cvode function cvode type of
(Fortran, user-supplied) (C, interface) interface function
FCVFUN FCVf CVRhsFn
FCVEWT FCVEwtSet CVEwtFn
FCVDJAC FCVDenseJac CVDlsJacFn
FCVBJAC FCVBandJac CVDlsJacFn
FCVSPJAC FCVSparseJac CVDlsJacFn
FCVPSOL FCVPSol CVSpilsPrecSolveFn
FCVPSET FCVPSet CVSpilsPrecSetupFn
FCVJTIMES FCVJtimes CVSpilsJacTimesVecFn
FCVJTSETUP FCVJTSetup CVSpilsJacTimesSetupFn

In contrast to the case of direct use of cvode, and of most Fortran ODE solvers, the names of all
user-supplied routines here are fixed, in order to maximize portability for the resulting mixed-language
program.

5.4 Usage of the FCVODE interface module

The usage of fcvode requires calls to a variety of interface functions, depending on the method
options selected, and one or more user-supplied routines which define the problem to be solved. These
function calls and user routines are summarized separately below. Some details are omitted, and
the user is referred to the description of the corresponding cvode functions for information on the
arguments of any given user-callable interface routine, or of a given user-supplied function called by an
interface function. The usage of fcvode for rootfinding and with preconditioner modules is described
in later subsections.



78 FCVODE, an Interface Module for FORTRAN Applications

1. Right-hand side specification

The user must, in all cases, supply the following Fortran routine

SUBROUTINE FCVFUN(T, Y, YDOT, IPAR, RPAR, IER)
DIMENSION Y(*), YDOT(*), IPAR(*), RPAR(*)

It must set the YDOT array to f(t, y), the right-hand side of the ODE system, as function of T= t
and the array Y= y. The arrays IPAR (of integers) and RPAR (of reals) contain user data and are
the same as those passed to FCVMALLOC. IER is an error return flag which should be set to 0 if
successful, a positive value if a recoverable error occurred (in which case cvode will attempt to
correct), or a negative value if it failed unrecoverably (in which case the integration is halted).

2. nvector module initialization

If using one of the nvector modules supplied with sundials, the user must make a call of the
form

CALL FNVINIT***(...)

in which the name and call sequence are as described in the appropriate section of Chapter 6.

3. sunmatrix module initialization

In the case of a stiff system, the implicit BDF method involves the solution of linear systems related
to the Jacobian J = ∂f/∂y of the ODE system. If using a Newton iteration with direct sunlinsol
linear solver module and one of the sunmatrix modules supplied with sundials, the user must
make a call of the form

CALL FSUN***MATINIT(...)

in which the name and call sequence are as described in the appropriate section of Chapter 7.
Note that the dense, band or sparse matrix options are usable only in a serial or multi-threaded
environment.

4. sunlinsol module initialization

If using a Newton iteration with one of the sunlinsol linear solver modules supplied with sun-
dials, the user must make a call of the form

CALL FSUNBANDLINSOLINIT(...)
CALL FSUNDENSELINSOLINIT(...)
CALL FSUNKLUINIT(...)
CALL FSUNLAPACKBANDINIT(...)
CALL FSUNLAPACKDENSEINIT(...)
CALL FSUNPCGINIT(...)
CALL FSUNSPBCGSINIT(...)
CALL FSUNSPFGMRINIT(...)
CALL FSUNSPGMRINIT(...)
CALL FSUNSPTFQMRINIT(...)
CALL FSUNSUPERLUMTINIT(...)

in which the call sequence is as described in the appropriate section of Chapter 8. Note that the
dense, band or sparse solvers are usable only in a serial or multi-threaded environment.

Once one of these has been initialized, its solver parameters may be modified using a call to the
functions
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CALL FSUNKLUSETORDERING(...)
CALL FSUNSUPERLUMTSETORDERING(...)
CALL FSUNPCGSETPRECTYPE(...)
CALL FSUNPCGSETMAXL(...)
CALL FSUNSPBCGSSETPRECTYPE(...)
CALL FSUNSPBCGSSETMAXL(...)
CALL FSUNSPFGMRSETGSTYPE(...)
CALL FSUNSPFGMRSETPRECTYPE(...)
CALL FSUNSPGMRSETGSTYPE(...)
CALL FSUNSPGMRSETPRECTYPE(...)
CALL FSUNSPTFQMRSETPRECTYPE(...)
CALL FSUNSPTFQMRSETMAXL(...)

where again the call sequences are described in the appropriate sections of Chapter 8.

5. Problem specification

To set various problem and solution parameters and allocate internal memory, make the following
call:

FCVMALLOC

Call CALL FCVMALLOC(T0, Y0, METH, ITMETH, IATOL, RTOL, ATOL,
& IOUT, ROUT, IPAR, RPAR, IER)

Description This function provides required problem and solution specifications, specifies op-
tional inputs, allocates internal memory, and initializes cvode.

Arguments T0 is the initial value of t.
Y0 is an array of initial conditions.
METH specifies the basic integration method: 1 for Adams (nonstiff) or 2 for BDF

(stiff).
ITMETH specifies the nonlinear iteration method: 1 for functional iteration or 2 for

Newton iteration.
IATOL specifies the type for absolute tolerance ATOL: 1 for scalar or 2 for array.

If IATOL= 3, the arguments RTOL and ATOL are ignored and the user is
expected to subsequently call FCVEWTSET and provide the function FCVEWT.

RTOL is the relative tolerance (scalar).
ATOL is the absolute tolerance (scalar or array).
IOUT is an integer array of length 21 for integer optional outputs.
ROUT is a real array of length 6 for real optional outputs.
IPAR is an integer array of user data which will be passed unmodified to all

user-provided routines.
RPAR is a real array of user data which will be passed unmodified to all user-

provided routines.
Return value IER is a return completion flag. Values are 0 for successful return and −1 otherwise.

See printed message for details in case of failure.
Notes The user integer data arrays IOUT and IPAR must be declared as INTEGER*4 or

INTEGER*8 according to the C type long int.
Modifications to the user data arrays IPAR and RPAR inside a user-provided routine
will be propagated to all subsequent calls to such routines.
The optional outputs associated with the main cvode integrator are listed in Ta-
ble 5.2.

As an alternative to providing tolerances in the call to FCVMALLOC, the user may provide a routine
to compute the error weights used in the WRMS norm evaluations. If supplied, it must have the
following form:
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SUBROUTINE FCVEWT (Y, EWT, IPAR, RPAR, IER)
DIMENSION Y(*), EWT(*), IPAR(*), RPAR(*)

It must set the positive components of the error weight vector EWT for the calculation of the
WRMS norm of Y. On return, set IER = 0 if FCVEWT was successful, and nonzero otherwise. The
arrays IPAR (of integers) and RPAR (of reals) contain user data and are the same as those passed
to FCVMALLOC.

If the FCVEWT routine is provided, then, following the call to FCVMALOC, the user must make the
call:

CALL FCVEWTSET (FLAG, IER)

with FLAG 6= 0 to specify use of the user-supplied error weight routine. The argument IER is an
error return flag which is 0 for success or non-zero if an error occurred.

6. Set optional inputs

Call FCVINSETIIN and/or FCVINSETRIN to set desired optional inputs, if any. See §5.5 for details.

7. Linear solver interface specification

To attach the linear solver (and optionally the matrix) objects initialized in steps 3 and 4 above,
the user of fcvode must initialize the cvdls or cvspils linear solver interface.

cvdls direct linear solver interface

To attach a direct sunlinsol object and corresponding sunmatrix object to the cvdls interface,
then following calls to initialize the sunlinsol and sunmatrix objects in steps 3 and 4 above,
the user must make the call:

CALL FCVDLSINIT(IER)

IER is an error return flag set on 0 on success or −1 if a memory failure occurred.

Optional outputs specific to the cvdls case are listed in Table 5.2.

cvdls with dense Jacobian matrix As an option when using the cvdls interface with sun-
linsol dense or sunlinsol lapackdense linear solvers, the user may supply a routine that
computes a dense approximation of the system Jacobian J = ∂f/∂y. If supplied, it must have
the following form:

SUBROUTINE FCVDJAC (NEQ, T, Y, FY, DJAC, H, IPAR, RPAR,
& WK1, WK2, WK3, IER)
DIMENSION Y(*), FY(*), DJAC(NEQ,*), IPAR(*), RPAR(*),

& WK1(*), WK2(*), WK3(*)

Typically this routine will use only NEQ, T, Y, and DJAC. It must compute the Jacobian and store
it columnwise in DJAC. The input arguments T, Y, and FY contain the current values of t, y, and
f(t, y), respectively. The arrays IPAR (of integers) and RPAR (of reals) contain user data and are
the same as those passed to FCVMALLOC. The vectors WK1, WK2, and WK3 of length NEQ are provided
as work space for use in FCVDJAC. IER is an error return flag which should be set to 0 if successful,
a positive value if a recoverable error occurred (in which case cvode will attempt to correct), or
a negative value if FCVDJAC failed unrecoverably (in which case the integration is halted). NOTE:
The argument NEQ has a type consistent with C type long int even in the case when the Lapack
dense solver is to be used.

If the user’s FCVDJAC uses difference quotient approximations, it may need to use the error weight
array EWT and current stepsize H in the calculation of suitable increments. The array EWT can be



5.4 Usage of the FCVODE interface module 81

obtained by calling FCVGETERRWEIGHTS using one of the work arrays as temporary storage for EWT.
It may also need the unit roundoff, which can be obtained as the optional output ROUT(6), passed
from the calling program to this routine using either RPAR or a common block.

If the FCVDJAC routine is provided, then, following the call to FCVDLSINIT, the user must make
the call:

CALL FCVDENSESETJAC (FLAG, IER)

with FLAG 6= 0 to specify use of the user-supplied Jacobian approximation. The argument IER is
an error return flag which is 0 for success or non-zero if an error occurred.

cvdls with band Jacobian matrix As an option when using the cvdls interface with sunlin-
sol band or sunlinsol lapackband linear solvers, the user may supply a routine that computes
a band approximation of the system Jacobian J = ∂f/∂y. If supplied, it must have the following
form:

SUBROUTINE FCVBJAC(NEQ, MU, ML, MDIM, T, Y, FY, BJAC, H, IPAR, RPAR,
& WK1, WK2, WK3, IER)
DIMENSION Y(*), FY(*), BJAC(MDIM,*), IPAR(*), RPAR(*),

& WK1(*), WK2(*), WK3(*)

Typically this routine will use only NEQ, MU, ML, T, Y, and BJAC. It must load the MDIM by N
array BJAC with the Jacobian matrix at the current (t,y) in band form. Store in BJAC(k, j) the
Jacobian element Ji,j with k = i − j+ MU +1 (k = 1 · · · ML + MU + 1) and j = 1 · · ·N . The
input arguments T, Y, and FY contain the current values of t, y, and f(t, y), respectively. The
arrays IPAR (of integers) and RPAR (of reals) contain user data and are the same as those passed
to FCVMALLOC. The vectors WK1, WK2, and WK3 of length NEQ are provided as work space for use
in FCVBJAC. IER is an error return flag which should be set to 0 if successful, a positive value if
a recoverable error occurred (in which case cvode will attempt to correct), or a negative value
if FCVBJAC failed unrecoverably (in which case the integration is halted). NOTE: The arguments
NEQ, MU, ML, and MDIM have a type consistent with C type long int even in the case when the
Lapack band solver is to be used.

If the user’s FCVBJAC uses difference quotient approximations, it may need to use the error weight
array EWT and current stepsize H in the calculation of suitable increments. The array EWT can be
obtained by calling FCVGETERRWEIGHTS using one of the work arrays as temporary storage for EWT.
It may also need the unit roundoff, which can be obtained as the optional output ROUT(6), passed
from the calling program to this routine using either RPAR or a common block.

If the FCVBJAC routine is provided, then, following the call to FCVDLSINIT, the user must make
the call:

CALL FCVBANDSETJAC(FLAG, IER)

with FLAG 6= 0 to specify use of the user-supplied Jacobian approximation. The argument IER is
an error return flag which is 0 for success or non-zero if an error occurred.

cvdls with sparse Jacobian matrix When using the cvdls interface with sunlinsol klu or
sunlinsol superlumt linear solvers, the user must supply the FCVSPJAC routine that computes
a compressed-sparse-column or compressed-sparse-row if using KLU approximation of the system
Jacobian J = ∂f/∂y. If supplied, it must have the following form:

SUBROUTINE FCVSPJAC(T, Y, FY, N, NNZ, JDATA, JINDEXVALS,
& JINDEXPTRS, H, IPAR, RPAR, WK1, WK2, WK3, IER)

It must load the N by N compressed sparse column [or compressed sparse row] matrix with storage
for NNZ nonzeros, stored in the arrays JDATA, JINDEXVALS and JINDEXPTRS, with the Jacobian
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matrix at the current (t, y) in CSC [or CSR] form (see sunmatrix sparse.h for more information).
The arguments are T, the current time; Y, an array containing state variables; FY, an array
containing state derivatives; N, the number of matrix rows/columns in the Jacobian; NNZ, allocated
length of nonzero storage; JDATA, nonzero values in the Jacobian (of length NNZ); JINDEXVALS,
row [or column] indices for each nonzero in Jacobian (of length NNZ); JINDEXPTRS, pointers to
each Jacobian column [or row] in the two preceding arrays (of length N+1); H, the current step
size; IPAR, an array containing integer user data that was passed to FCVMALLOC; RPAR, an array
containing real user data that was passed to FCVMALLOC; WK*, work arrays containing temporary
workspace of same size as Y; and IER, error return code (0 if successful, > 0 if a recoverable error
occurred, or < 0 if an unrecoverable error occurred.)

To indicate that the FCVSPJAC routine has been provided, then following the call to FCVDLSINIT,
the following call must be made

CALL FCVSPARSESETJAC (IER)

The int return flag IER is an error return flag which is 0 for success or nonzero for an error.

cvspils iterative linear solver interface

To attach an iterative sunlinsol object to the cvspils interface, then following the call to
initialize the sunlinsol object in step 4 above, the user must make the call:

CALL FCVSPILSINIT(IER)

IER is an error return flag set on 0 on success or −1 if a memory failure occurred.

Optional outputs specific to the cvspils case are listed in Table 5.2.

Functions used by cvspils

Optional user-supplied routines FCVJTIMES and FCVJTSETUP (see below), can be provided for
Jacobian-vector products. If they are, then, following the call to FCVSPILSINIT, the user must
make the call:

CALL FCVSPILSSETJAC(FLAG, IER)

with FLAG 6= 0 to specify use of the user-supplied Jacobian-times-vector setup and product routines.
The argument IER is an error return flag which is 0 for success or non-zero if an error occurred.

If preconditioning is to be done, then the user must call

CALL FCVSPILSSETPREC(FLAG, IER)

with FLAG 6= 0. The return flag IER is 0 if successful, or negative if a memory error occurred.
In addition, the user program must include preconditioner routines FCVPSOL and FCVPSET (see
below).

User-supplied routines for cvspils

With treatment of the linear systems by any of the Krylov iterative solvers, there are four optional
user-supplied routines — FCVJTIMES, FCVJTSETUP, FCVPSOL, and FCVPSET. The specifications for
these routines are given below.

As an option when using the cvspils linear solver interface, the user may supply a routine that
computes the product of the system Jacobian J = ∂f/∂y and a given vector v. If supplied, it
must have the following form:

SUBROUTINE FCVJTIMES (V, FJV, T, Y, FY, H, IPAR, RPAR, WORK, IER)
DIMENSION V(*), FJV(*), Y(*), FY(*), IPAR(*), RPAR(*), WORK(*)
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Typically this routine will use only T, Y, V, and FJV. It must compute the product vector Jv,
where the vector v is stored in V, and store the product in FJV. The input arguments T, Y, and FY
contain the current values of t, y, and f(t, y), respectively. On return, set IER = 0 if FCVJTIMES
was successful, and nonzero otherwise. The arrays IPAR (of integers) and RPAR (of reals) contain
user data and are the same as those passed to FCVMALLOC. The vector WORK, of length commensurate
with the input Y0 to FCVMALLOC, is provided as work space for use in FCVJTIMES.

If the user’s Jacobian-times-vector product routine requires that any Jacobian related data be eval-
uated or preprocessed, then the following routine can be used for the evaluation and preprocessing
of this data:

SUBROUTINE FCVJTSETUP (T, Y, FY, H, IPAR, RPAR, IER)
DIMENSION Y(*), FY(*), IPAR(*), RPAR(*)

Typically this routine will use only T and Y. It should compute any necessary data for subsequent
calls to FCVJTIMES. On return, set IER = 0 if FCVJTSETUP was successful, and nonzero otherwise.
The arrays IPAR (of integers) and RPAR (of reals) contain user data and are the same as those
passed to FCVMALLOC.

If the user calls FCVSPILSSETJAC, the routine FCVJTSETUP must be provided, even if it is not
needed, and it must return IER=0.

If preconditioning is to be included, the following routine must be supplied, for solution of the
preconditioner linear system:

SUBROUTINE FCVPSOL(T, Y, FY, R, Z, GAMMA, DELTA, LR, IPAR, RPAR, IER)
DIMENSION Y(*), FY(*), R(*), Z(*), IPAR(*), RPAR(*)

It must solve the preconditioner linear system Pz = r, where r = R is input, and store the
solution z in Z. Here P is the left preconditioner if LR=1 and the right preconditioner if LR=2.
The preconditioner (or the product of the left and right preconditioners if both are nontrivial)
should be an approximation to the matrix I − γJ , where I is the identity matrix, J is the system
Jacobian, and γ = GAMMA. The input arguments T, Y, and FY contain the current values of t, y,
and f(t, y), respectively. On return, set IER = 0 if FCVPSOL was successful, set IER positive if a
recoverable error occurred, and set IER negative if a non-recoverable error occurred.

The arrays IPAR (of integers) and RPAR (of reals) contain user data and are the same as those
passed to FCVMALLOC.

If the user’s preconditioner requires that any Jacobian related data be evaluated or preprocessed,
then the following routine can be used for the evaluation and preprocessing of the preconditioner:

SUBROUTINE FCVPSET(T, Y, FY, JOK, JCUR, GAMMA, H, IPAR, RPAR, IER)
DIMENSION Y(*), FY(*), EWT(*), IPAR(*), RPAR(*)

It must perform any evaluation of Jacobian-related data and preprocessing needed for the solution
of the preconditioner linear systems by FCVPSOL. The input argument JOK allows for Jacobian data
to be saved and reused: If JOK = 0, this data should be recomputed from scratch. If JOK = 1, a
saved copy of it may be reused, and the preconditioner constructed from it. The input arguments
T, Y, and FY contain the current values of t, y, and f(t, y), respectively. On return, set JCUR =
1 if Jacobian data was computed, and set JCUR = 0 otherwise. Also on return, set IER = 0 if
FCVPSET was successful, set IER positive if a recoverable error occurred, and set IER negative if a
non-recoverable error occurred.

The arrays IPAR (of integers) and RPAR (of reals) contain user data and are the same as those
passed to FCVMALLOC.
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If the user calls FCVSPILSSETPREC, the routine FCVPSET must be provided, even if it is not needed,
and it must return IER=0.

Notes

(a) If the user’s FCVJTIMES or FCVPSET routine uses difference quotient approximations, it may
need to use the error weight array EWT, the current stepsize H, and/or the unit roundoff, in the
calculation of suitable increments. Also, If FCVPSOL uses an iterative method in its solution,
the residual vector ρ = r− Pz of the system should be made less than DELTA in weighted `2
norm, i.e.

√∑
(ρi ∗ EWT[i])2 < DELTA.

(b) If needed in FCVJTIMES, FCVJTSETUP, FCVPSOL, or FCVPSET, the error weight array EWT can
be obtained by calling FCVGETERRWEIGHTS using a user-allocated array as temporary storage
for EWT.

(c) If needed in FCVJTIMES, FCVJTSETUP, FCVPSOL, or FCVPSET, the unit roundoff can be obtained
as the optional output ROUT(6) (available after the call to FCVMALLOC) and can be passed
using either the RPAR user data array, a common block or a module.

cvdiag diagonal linear solver interface

cvode is also packaged with a cvode-specific diagonal approximate Jacobian and linear solver
interface. This choice is appropriate when the Jacobian can be well approximated by a diagonal
matrix. The user must make the call:

CALL FCVDIAG(IER)

IER is an error return flag set on 0 on success or −1 if a memory failure occurred.

There are no additional user-supplied routines for the cvdiag interface.

Optional outputs specific to the cvdiag case are listed in Table 5.2.

8. Problem solution

Carrying out the integration is accomplished by making calls as follows:

CALL FCVODE(TOUT, T, Y, ITASK, IER)

The arguments are as follows. TOUT specifies the next value of t at which a solution is desired
(input). T is the value of t reached by the solver on output. Y is an array containing the computed
solution on output. ITASK is a task indicator and should be set to 1 for normal mode (overshoot
TOUT and interpolate), or to 2 for one-step mode (return after each internal step taken). IER is a
completion flag and will be set to a positive value upon successful return or to a negative value
if an error occurred. These values correspond to the CVode returns (see §4.5.5 and §B.2). The
current values of the optional outputs are available in IOUT and ROUT (see Table 5.2).

9. Additional solution output

After a successful return from FCVODE, the routine FCVDKY may be used to obtain a derivative of
the solution, of order up to the current method order, at any t within the last step taken. For
this, make the following call:

CALL FCVDKY(T, K, DKY, IER)

where T is the value of t at which solution derivative is desired, and K is the derivative order (0 ≤
K ≤ QU). On return, DKY is an array containing the computed K-th derivative of y. The value T
must lie between TCUR - HU and TCUR. The return flag IER is set to 0 upon successful return or
to a negative value to indicate an illegal input.
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10. Problem reinitialization

To re-initialize the cvode solver for the solution of a new problem of the same size as one already
solved, make the following call:

CALL FCVREINIT(T0, Y0, IATOL, RTOL, ATOL, IER)

The arguments have the same names and meanings as those of FCVMALLOC. FCVREINIT performs
the same initializations as FCVMALLOC, but does no memory allocation, using instead the existing
internal memory created by the previous FCVMALLOC call. The call to specify the linear system
solution method may or may not be needed.

Following this call, if the choice of linear solver is being changed then a user must make a call to
create the alternate sunlinsol module and then attach it to the cvdls or cvspils interface, as
shown above. If only linear solver parameters are being modified, then these calls may be made
without re-attaching to the cvdls or cvspils interface.

11. Memory deallocation

To free the internal memory created by the call to FCVMALLOC, FCVDLSINIT/FCVSPILSINIT, FNVINIT*
and FSUN***MATINIT, make the call

CALL FCVFREE

5.5 FCVODE optional input and output

In order to keep the number of user-callable fcvode interface routines to a minimum, optional inputs
to the cvode solver are passed through only two routines: FCVSETIIN for integer optional inputs and
FCVSETRIN for real optional inputs. These functions should be called as follows:

CALL FCVSETIIN(KEY, IVAL, IER)
CALL FCVSETRIN(KEY, RVAL, IER)

where KEY is a quoted string indicating which optional input is set (see Table 5.1), IVAL is the integer
input value to be used, RVAL is the real input value to be used, and IER is an integer return flag which
is set to 0 on success and a negative value if a failure occurred. The integer IVAL should be declared
in a manner consistent with C type long int.

The optional outputs from the cvode solver are accessed not through individual functions, but
rather through a pair of arrays, IOUT (integer type) of dimension at least 21, and ROUT (real type) of
dimension at least 6. These arrays are owned (and allocated) by the user and are passed as arguments
to FCVMALLOC. Table 5.2 lists the entries in these two arrays and specifies the optional variable as well
as the cvode function which is actually called to extract the optional output.

For more details on the optional inputs and outputs, see §4.5.6 and §4.5.8.
In addition to the optional inputs communicated through FCVSET* calls and the optional outputs

extracted from IOUT and ROUT, the following user-callable routines are available:
To obtain the error weight array EWT, containing the multiplicative error weights used the WRMS

norms, make the following call:

CALL FCVGETERRWEIGHTS (EWT, IER)

This computes the EWT array normally defined by Eq. (2.6). The array EWT, of length NEQ or NLOCAL,
must already have been declared by the user. The error return flag IER is zero if successful, and
negative if there was a memory error.

To obtain the estimated local errors, following a successful call to FCVSOLVE, make the following
call:

CALL FCVGETESTLOCALERR (ELE, IER)
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Table 5.1: Keys for setting fcvode optional inputs

Integer optional inputs (FCVSETIIN)
Key Optional input Default value

MAX ORD Maximum LMM method order 5 (BDF), 12 (Adams)
MAX NSTEPS Maximum no. of internal steps before tout 500
MAX ERRFAIL Maximum no. of error test failures 7
MAX NITERS Maximum no. of nonlinear iterations 3

MAX CONVFAIL Maximum no. of convergence failures 10
HNIL WARNS Maximum no. of warnings for tn + h = tn 10
STAB LIM Flag to activate stability limit detection 0

Real optional inputs (FCVSETRIN)
Key Optional input Default value

INIT STEP Initial step size estimated
MAX STEP Maximum absolute step size ∞
MIN STEP Minimum absolute step size 0.0
STOP TIME Value of tstop undefined

NLCONV COEF Coefficient in the nonlinear convergence test 0.1

This computes the ELE array of estimated local errors as of the last step taken. The array ELE must
already have been declared by the user. The error return flag IER is zero if successful, and negative
if there was a memory error.

5.6 Usage of the FCVROOT interface to rootfinding

The fcvroot interface package allows programs written in Fortran to use the rootfinding feature
of the cvode solver module. The user-callable functions in fcvroot, with the corresponding cvode
functions, are as follows:

• FCVROOTINIT interfaces to CVodeRootInit.

• FCVROOTINFO interfaces to CVodeGetRootInfo.

• FCVROOTFREE interfaces to CVodeRootFree.

Note that at this time, fcvroot does not provide support to specify the direction of zero-crossing that
is to be monitored. Instead, all roots are considered. However, the actual direction of zero-crossing is
reported (through the sign of the non-zero elements in the array INFO returned by FCVROTINFO).

In order to use the rootfinding feature of cvode, the following call must be made, after calling
FCVMALLOC but prior to calling FCVODE, to allocate and initialize memory for the FCVROOT module:

CALL FCVROOTINIT (NRTFN, IER)

The arguments are as follows: NRTFN is the number of root functions. IER is a return completion flag;
its values are 0 for success, −1 if the CVODE memory was NULL, and −11 if a memory allocation failed.

To specifiy the functions whose roots are to be found, the user must define the following routine:

SUBROUTINE FCVROOTFN (T, Y, G, IPAR, RPAR, IER)
DIMENSION Y(*), G(*), IPAR(*), RPAR(*)

It must set the G array, of length NRTFN, with components gi(t, y), as a function of T = t and the array
Y = y. The arrays IPAR (of integers) and RPAR (of reals) contain user data and are the same as those
passed to FCVMALLOC. Set IER on 0 if successful, or on a non-zero value if an error occurred.

When making calls to FCVODE to solve the ODE system, the occurrence of a root is flagged by the
return value IER = 2. In that case, if NRTFN > 1, the functions gi which were found to have a root
can be identified by making the following call:
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Table 5.2: Description of the fcvode optional output arrays IOUT and ROUT

Integer output array IOUT
Index Optional output cvode function

cvode main solver
1 LENRW CVodeGetWorkSpace
2 LENIW CVodeGetWorkSpace
3 NST CVodeGetNumSteps
4 NFE CVodeGetNumRhsEvals
5 NETF CVodeGetNumErrTestFails
6 NCFN CVodeGetNumNonlinSolvConvFails
7 NNI CVodeGetNumNonlinSolvIters
8 NSETUPS CVodeGetNumLinSolvSetups
9 QU CVodeGetLastOrder

10 QCUR CVodeGetCurrentOrder
11 NOR CVodeGetNumStabLimOrderReds
12 NGE CVodeGetNumGEvals

cvdls linear solver interface
13 LENRWLS CVDlsGetWorkSpace
14 LENIWLS CVDlsGetWorkSpace
15 LS FLAG CVDlsGetLastFlag
16 NFELS CVDlsGetNumRhsEvals
17 NJE CVDlsGetNumJacEvals

cvspils linear solver interface
13 LENRWLS CVSpilsGetWorkSpace
14 LENIWLS CVSpilsGetWorkSpace
15 LS FLAG CVSpilsGetLastFlag
16 NFELS CVSpilsGetNumRhsEvals
17 NJTV CVSpilsGetNumJacEvals
18 NPE CVSpilsGetNumPrecEvals
19 NPS CVSpilsGetNumPrecSolves
20 NLI CVSpilsGetNumLinIters
21 NCFL CVSpilsGetNumConvFails

cvdiag linear solver interface
13 LENRWLS CVDiagGetWorkSpace
14 LENIWLS CVDiagGetWorkSpace
15 LS FLAG CVDiagGetLastFlag
16 NFELS CVDiagGetNumRhsEvals

Real output array ROUT
Index Optional output cvode function

1 H0U CVodeGetActualInitStep
2 HU CVodeGetLastStep
3 HCUR CVodeGetCurrentStep
4 TCUR CVodeGetCurrentTime
5 TOLSF CVodeGetTolScaleFactor
6 UROUND unit roundoff



88 FCVODE, an Interface Module for FORTRAN Applications

CALL FCVROOTINFO (NRTFN, INFO, IER)

The arguments are as follows: NRTFN is the number of root functions. INFO is an integer array of
length NRTFN with root information. IER is a return completion flag; its values are 0 for success,
negative if there was a memory failure. The returned values of INFO(i) (i= 1, . . . , NRTFN) are 0 or
±1, such that INFO(i) = +1 if gi was found to have a root and gi is increasing, INFO(i) = −1 if gi
was found to have a root and gi is dereasing, and INFO(i) = 0 otherwise.

The total number of calls made to the root function FCVROOTFN, denoted NGE, can be obtained
from IOUT(12). If the fcvode/cvode memory block is reinitialized to solve a different problem via
a call to FCVREINIT, then the counter NGE is reset to zero.

To free the memory resources allocated by a prior call to FCVROOTINIT, make the following call:

CALL FCVROOTFREE

5.7 Usage of the FCVBP interface to CVBANDPRE

The fcvbp interface sub-module is a package of C functions which, as part of the fcvode interface
module, support the use of the cvode solver with the serial nvector serial module or multi-
threaded nvector openmp or nvector pthreads, and the combination of the cvbandpre pre-
conditioner module (see §4.7.1) with the cvspils interface and any of the Krylov iterative linear
solvers.

The two user-callable functions in this package, with the corresponding cvode function around
which they wrap, are:

• FCVBPINIT interfaces to CVBandPrecInit.

• FCVBPOPT interfaces to cvbandpre optional output functions.

As with the rest of the fcvode routines, the names of the user-supplied routines are mapped to
actual values through a series of definitions in the header file fcvbp.h.

The following is a summary of the usage of this module. Steps that are unchanged from the main
program described in §5.4 are grayed-out.

1. Right-hand side specification

2. nvector module initialization

3. sunlinsol module initialization

Initialize one of the iterative sunlinsol modules, by calling one of FSUNPCGINIT, FSUNSPBCGSINIT,
FSUNSPFGMRINIT, FSUNSPGMRINIT or FSUNSPTFQMRINIT.

4. Problem specification

5. Set optional inputs

6. Linear solver interface specification

First, initialize the cvspils iterative linear solver interface by calling FCVSPILSINIT.

Then, to initialize the cvbandpre preconditioner, make the following call:

CALL FCVBPINIT(NEQ, MU, ML, IER)

The arguments are as follows. NEQ is the problem size. MU and ML are the upper and lower half-
bandwidths of the band matrix that is retained as an approximation of the Jacobian. IER is a
return completion flag. A value of 0 indicates success, while a value of −1 indicates that a memory
failure occurred.

Optionally, to specify that cvspils should use the supplied FCVJTIMES and FCVJTSETUP, make
the call
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CALL FCVSPILSSETJAC(FLAG, IER)

with FLAG 6= 0 (see step 7 in §5.4 for details).

7. Problem solution

8. Additional solution output

9. cvbandpre Optional outputs

Optional outputs specific to the cvspils solver interface are listed in Table 5.2. To obtain the
optional outputs associated with the cvbandpre module, make the following call:

CALL FCVBPOPT(LENRWBP, LENIWBP, NFEBP)

The arguments should be consistent with C type long int. Their returned values are as follows:
LENRWBP is the length of real preconditioner work space, in realtype words. LENIWBP is the length
of integer preconditioner work space, in integer words. NFEBP is the number of f(t, y) evaluations
(calls to FCVFUN) for difference-quotient banded Jacobian approximations.

10. Memory deallocation

(The memory allocated for the fcvbp module is deallocated automatically by FCVFREE.)

5.8 Usage of the FCVBBD interface to CVBBDPRE

The fcvbbd interface sub-module is a package of C functions which, as part of the fcvode interface
module, support the use of the cvode solver with the parallel nvector parallel module, and the
combination of the cvbbdpre preconditioner module (see §4.7.2) with any of the Krylov iterative
linear solvers.

The user-callable functions in this package, with the corresponding cvode and cvbbdpre func-
tions, are as follows:

• FCVBBDINIT interfaces to CVBBDPrecInit.

• FCVBBDREINIT interfaces to CVBBDPrecReInit.

• FCVBBDOPT interfaces to cvbbdpre optional output functions.

In addition to the Fortran right-hand side function FCVFUN, the user-supplied functions used by
this package, are listed below, each with the corresponding interface function which calls it (and its
type within cvbbdpre or cvode):

fcvbbd routine cvode function cvode type of
(Fortran, user-supplied) (C, interface) interface function
FCVLOCFN FCVgloc CVLocalFn
FCVCOMMF FCVcfn CVCommFn
FCVJTIMES FCVJtimes CVSpilsJacTimesVecFn
FCVJTSETUP FCVJTSetup CVSpilsJacTimesSetupFn

As with the rest of the fcvode routines, the names of all user-supplied routines here are fixed, in
order to maximize portability for the resulting mixed-language program. Additionally, based on flags
discussed above in §5.3, the names of the user-supplied routines are mapped to actual values through
a series of definitions in the header file fcvbbd.h.

The following is a summary of the usage of this module. Steps that are unchanged from the main
program described in §5.4 are grayed-out.
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1. Right-hand side specification

2. nvector module initialization

3. sunlinsol module initialization

Initialize one of the iterative sunlinsol modules, by calling one of FSUNPCGINIT, FSUNSPBCGSINIT,
FSUNSPFGMRINIT, FSUNSPGMRINIT or FSUNSPTFQMRINIT.

4. Problem specification

5. Set optional inputs

6. Linear solver interface specification

First, initialize the cvspils iterative linear solver interface by calling FCVSPILSINIT.

Then, to initialize the cvbbdpre preconditioner, make the following call:

CALL FCVBBDINIT(NLOCAL, MUDQ, MLDQ, MU, ML, DQRELY, IER)

The arguments are as follows. NLOCAL is the local size of vectors on this processor. MUDQ and MLDQ
are the upper and lower half-bandwidths to be used in the computation of the local Jacobian blocks
by difference quotients. These may be smaller than the true half-bandwidths of the Jacobian of
the local block of g, when smaller values may provide greater efficiency. MU and ML are the upper
and lower half-bandwidths of the band matrix that is retained as an approximation of the local
Jacobian block. These may be smaller than MUDQ and MLDQ. DQRELY is the relative increment factor
in y for difference quotients (optional). A value of 0.0 indicates the default,

√
unit roundoff. IER

is a return completion flag. A value of 0 indicates success, while a value of −1 indicates that a
memory failure occurred or that an input had an illegal value.

Optionally, to specify that spgmr, spbcgs, or sptfqmr should use the supplied FCVJTIMES, make
the call

CALL FCVSPILSSETJAC(FLAG, IER)

with FLAG 6= 0 (see step 7 in §5.4 for details).

7. Problem solution

8. Additional solution output

9. cvbbdpre Optional outputs

Optional outputs specific to the cvspils solver interface are listed in Table 5.2. To obtain the
optional outputs associated with the cvbbdpre module, make the following call:

CALL FCVBBDOPT(LENRWBBD, LENIWBBD, NGEBBD)

The arguments should be consistent with C type long int. Their returned values are as follows:
LENRWBBD is the length of real preconditioner work space, in realtype words. LENIWBBD is the
length of integer preconditioner work space, in integer words. These sizes are local to the current
processor. NGEBBD is the number of g(t, y) evaluations (calls to FCVLOCFN) so far.

10. Problem reinitialization

If a sequence of problems of the same size is being solved using the same linear solver in combi-
nation with the cvbbdpre preconditioner, then the cvode package can be re-initialized for the
second and subsequent problems by calling FCVREINIT, following which a call to FCVBBDINIT may
or may not be needed. If the input arguments are the same, no FCVBBDINIT call is needed. If
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there is a change in input arguments other than MU or ML, then the user program should make the
call

CALL FCVBBDREINIT(NLOCAL, MUDQ, MLDQ, DQRELY, IER)

This reinitializes the cvbbdpre preconditioner, but without reallocating its memory. The argu-
ments of the FCVBBDREINIT routine have the same names and meanings as those of FCVBBDINIT. If
the value of MU or ML is being changed, then a call to FCVBBDINIT must be made. Finally, if there
is a change in any of the linear solver inputs, then a call to one of FSUNPCGINIT, FSUNSPBCGSINIT,
FSUNSPFGMRINIT, FSUNSPGMRINIT or FSUNSPTFQMRINIT, followed by a call to FCVSPILSINIT must
also be made; in this case the linear solver memory is reallocated.

11. Memory deallocation

(The memory allocated for the fcvbbd module is deallocated automatically by FCVFREE.)

12. User-supplied routines

The following two routines must be supplied for use with the cvbbdpre module:

SUBROUTINE FCVGLOCFN (NLOC, T, YLOC, GLOC, IPAR, RPAR, IER)
DIMENSION YLOC(*), GLOC(*), IPAR(*), RPAR(*)

This routine is to evaluate the function g(t, y) approximating f (possibly identical to f), in terms
of T = t, and the array YLOC (of length NLOC), which is the sub-vector of y local to this processor.
The resulting (local) sub-vector is to be stored in the array GLOC. The arrays IPAR (of integers)
and RPAR (of reals) contain user data and are the same as those passed to FCVMALLOC. IER is
an error return flag which should be set to 0 if successful, a positive value if a recoverable error
occurred (in which case cvode will attempt to correct), or a negative value if FCVGLOCFN failed
unrecoverably (in which case the integration is halted).

SUBROUTINE FCVCOMMFN (NLOC, T, YLOC, IPAR, RPAR, IER)
DIMENSION YLOC(*), IPAR(*), RPAR(*)

This routine is to perform the inter-processor communication necessary for the FCVGLOCFN routine.
Each call to FCVCOMMFN is preceded by a call to the right-hand side routine FCVFUN with the same
arguments T and YLOC. The arrays IPAR (of integers) and RPAR (of reals) contain user data and are
the same as those passed to FCVMALLOC. IER is an error return flag (currently not used; set IER=0).
Thus FCVCOMMFN can omit any communications done by FCVFUN if relevant to the evaluation of
GLOC. IER is an error return flag which should be set to 0 if successful, a positive value if a
recoverable error occurred (in which case cvode will attempt to correct), or a negative value if
FCVCOMMFN failed unrecoverably (in which case the integration is halted).

The subroutine FCVCOMMFN must be supplied even if it is not needed and must return IER=0.

Optionally, the user can supply routines FCVJTIMES and FCVJTSETUP for the evaluation of Jacobian-
vector products, as described above in step 7 in §5.4.





Chapter 6

Description of the NVECTOR
module

The sundials solvers are written in a data-independent manner. They all operate on generic vec-
tors (of type N Vector) through a set of operations defined by the particular nvector implemen-
tation. Users can provide their own specific implementation of the nvector module, or use one of
the implementations provided with sundials. The generic operations are described below and the
implementations provided with sundials are described in the following sections.

The generic N Vector type is a pointer to a structure that has an implementation-dependent
content field containing the description and actual data of the vector, and an ops field pointing to a
structure with generic vector operations. The type N Vector is defined as

typedef struct _generic_N_Vector *N_Vector;

struct _generic_N_Vector {
void *content;
struct _generic_N_Vector_Ops *ops;

};

The generic N Vector Ops structure is essentially a list of pointers to the various actual vector
operations, and is defined as

struct _generic_N_Vector_Ops {
N_Vector_ID (*nvgetvectorid)(N_Vector);
N_Vector (*nvclone)(N_Vector);
N_Vector (*nvcloneempty)(N_Vector);
void (*nvdestroy)(N_Vector);
void (*nvspace)(N_Vector, sunindextype *, sunindextype *);
realtype* (*nvgetarraypointer)(N_Vector);
void (*nvsetarraypointer)(realtype *, N_Vector);
void (*nvlinearsum)(realtype, N_Vector, realtype, N_Vector, N_Vector);
void (*nvconst)(realtype, N_Vector);
void (*nvprod)(N_Vector, N_Vector, N_Vector);
void (*nvdiv)(N_Vector, N_Vector, N_Vector);
void (*nvscale)(realtype, N_Vector, N_Vector);
void (*nvabs)(N_Vector, N_Vector);
void (*nvinv)(N_Vector, N_Vector);
void (*nvaddconst)(N_Vector, realtype, N_Vector);
realtype (*nvdotprod)(N_Vector, N_Vector);
realtype (*nvmaxnorm)(N_Vector);
realtype (*nvwrmsnorm)(N_Vector, N_Vector);
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realtype (*nvwrmsnormmask)(N_Vector, N_Vector, N_Vector);
realtype (*nvmin)(N_Vector);
realtype (*nvwl2norm)(N_Vector, N_Vector);
realtype (*nvl1norm)(N_Vector);
void (*nvcompare)(realtype, N_Vector, N_Vector);
booleantype (*nvinvtest)(N_Vector, N_Vector);
booleantype (*nvconstrmask)(N_Vector, N_Vector, N_Vector);
realtype (*nvminquotient)(N_Vector, N_Vector);

};

The generic nvector module defines and implements the vector operations acting on N Vector.
These routines are nothing but wrappers for the vector operations defined by a particular nvector
implementation, which are accessed through the ops field of the N Vector structure. To illustrate
this point we show below the implementation of a typical vector operation from the generic nvector
module, namely N VScale, which performs the scaling of a vector x by a scalar c:

void N_VScale(realtype c, N_Vector x, N_Vector z)
{

z->ops->nvscale(c, x, z);
}

Table 6.2 contains a complete list of all vector operations defined by the generic nvector module.
Finally, note that the generic nvector module defines the functions N VCloneVectorArray and

N VCloneVectorArrayEmpty. Both functions create (by cloning) an array of count variables of type
N Vector, each of the same type as an existing N Vector. Their prototypes are

N_Vector *N_VCloneVectorArray(int count, N_Vector w);
N_Vector *N_VCloneVectorArrayEmpty(int count, N_Vector w);

and their definitions are based on the implementation-specific N VClone and N VCloneEmpty opera-
tions, respectively.

An array of variables of type N Vector can be destroyed by calling N VDestroyVectorArray, whose
prototype is

void N_VDestroyVectorArray(N_Vector *vs, int count);

and whose definition is based on the implementation-specific N VDestroy operation.
A particular implementation of the nvector module must:

• Specify the content field of N Vector.

• Define and implement the vector operations. Note that the names of these routines should be
unique to that implementation in order to permit using more than one nvector module (each
with different N Vector internal data representations) in the same code.

• Define and implement user-callable constructor and destructor routines to create and free an
N Vector with the new content field and with ops pointing to the new vector operations.

• Optionally, define and implement additional user-callable routines acting on the newly defined
N Vector (e.g., a routine to print the content for debugging purposes).

• Optionally, provide accessor macros as needed for that particular implementation to be used to
access different parts in the content field of the newly defined N Vector.

Each nvector implementation included in sundials has a unique identifier specified in enumer-
ation and shown in Table 6.1. It is recommended that a user-supplied nvector implementation use
the SUNDIALS NVEC CUSTOM identifier.
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Table 6.1: Vector Identifications associated with vector kernels supplied with sundials.

Vector ID Vector type ID Value
SUNDIALS NVEC SERIAL Serial 0
SUNDIALS NVEC PARALLEL Distributed memory parallel (MPI) 1
SUNDIALS NVEC OPENMP OpenMP shared memory parallel 2
SUNDIALS NVEC PTHREADS PThreads shared memory parallel 3
SUNDIALS NVEC PARHYP hypre ParHyp parallel vector 4
SUNDIALS NVEC PETSC petsc parallel vector 5
SUNDIALS NVEC CUSTOM User-provided custom vector 6

Table 6.2: Description of the NVECTOR operations

Name Usage and Description

N VGetVectorID id = N VGetVectorID(w);
Returns the vector type identifier for the vector w. It is used to deter-
mine the vector implementation type (e.g. serial, parallel,. . . ) from the
abstract N Vector interface. Returned values are given in Table 6.1.

N VClone v = N VClone(w);
Creates a new N Vector of the same type as an existing vector w and sets
the ops field. It does not copy the vector, but rather allocates storage
for the new vector.

N VCloneEmpty v = N VCloneEmpty(w);
Creates a new N Vector of the same type as an existing vector w and
sets the ops field. It does not allocate storage for data.

N VDestroy N VDestroy(v);
Destroys the N Vector v and frees memory allocated for its internal
data.

N VSpace N VSpace(nvSpec, &lrw, &liw);
Returns storage requirements for one N Vector. lrw contains the num-
ber of realtype words and liw contains the number of integer words.
This function is advisory only, for use in determining a user’s total space
requirements; it could be a dummy function in a user-supplied nvector
module if that information is not of interest.

continued on next page
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continued from last page

Name Usage and Description

N VGetArrayPointer vdata = N VGetArrayPointer(v);
Returns a pointer to a realtype array from the N Vector v. Note
that this assumes that the internal data in N Vector is a contiguous
array of realtype. This routine is only used in the solver-specific in-
terfaces to the dense and banded (serial) linear solvers, the sparse lin-
ear solvers (serial and threaded), and in the interfaces to the banded
(serial) and band-block-diagonal (parallel) preconditioner modules pro-
vided with sundials.

N VSetArrayPointer N VSetArrayPointer(vdata, v);
Overwrites the data in an N Vector with a given array of realtype.
Note that this assumes that the internal data in N Vector is a contigu-
ous array of realtype. This routine is only used in the interfaces to
the dense (serial) linear solver, hence need not exist in a user-supplied
nvector module for a parallel environment.

N VLinearSum N VLinearSum(a, x, b, y, z);
Performs the operation z = ax+ by, where a and b are realtype scalars
and x and y are of type N Vector: zi = axi + byi, i = 0, . . . , n− 1.

N VConst N VConst(c, z);
Sets all components of the N Vector z to realtype c: zi = c, i =
0, . . . , n− 1.

N VProd N VProd(x, y, z);
Sets the N Vector z to be the component-wise product of the N Vector
inputs x and y: zi = xiyi, i = 0, . . . , n− 1.

N VDiv N VDiv(x, y, z);
Sets the N Vector z to be the component-wise ratio of the N Vector
inputs x and y: zi = xi/yi, i = 0, . . . , n − 1. The yi may not be tested
for 0 values. It should only be called with a y that is guaranteed to have
all nonzero components.

N VScale N VScale(c, x, z);
Scales the N Vector x by the realtype scalar c and returns the result
in z: zi = cxi, i = 0, . . . , n− 1.

N VAbs N VAbs(x, z);
Sets the components of the N Vector z to be the absolute values of the
components of the N Vector x: yi = |xi|, i = 0, . . . , n− 1.

continued on next page
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continued from last page

Name Usage and Description

N VInv N VInv(x, z);
Sets the components of the N Vector z to be the inverses of the compo-
nents of the N Vector x: zi = 1.0/xi, i = 0, . . . , n− 1. This routine may
not check for division by 0. It should be called only with an x which is
guaranteed to have all nonzero components.

N VAddConst N VAddConst(x, b, z);
Adds the realtype scalar b to all components of x and returns the result
in the N Vector z: zi = xi + b, i = 0, . . . , n− 1.

N VDotProd d = N VDotProd(x, y);

Returns the value of the ordinary dot product of x and y: d =
∑n−1

i=0 xiyi.

N VMaxNorm m = N VMaxNorm(x);
Returns the maximum norm of the N Vector x: m = maxi |xi|.

N VWrmsNorm m = N VWrmsNorm(x, w)
Returns the weighted root-mean-square norm of the N Vector x with

realtype weight vector w: m =
√(∑n−1

i=0 (xiwi)2
)
/n.

N VWrmsNormMask m = N VWrmsNormMask(x, w, id);
Returns the weighted root mean square norm of the N Vector x with
realtype weight vector w built using only the elements of x correspond-
ing to positive elements of the N Vector id:

m =
√(∑n−1

i=0 (xiwimski)2
)
/n, where mski is 1 if idi > 0 or 0 if idi ≤ 0.

N VMin m = N VMin(x);
Returns the smallest element of the N Vector x: m = mini xi.

N VWL2Norm m = N VWL2Norm(x, w);
Returns the weighted Euclidean `2 norm of the N Vector x with

realtype weight vector w: m =
√∑n−1

i=0 (xiwi)2.

N VL1Norm m = N VL1Norm(x);

Returns the `1 norm of the N Vector x: m =
∑n−1

i=0 |xi|.

N VCompare N VCompare(c, x, z);
Compares the components of the N Vector x to the realtype scalar c
and returns an N Vector z such that: zi = 1.0 if |xi| ≥ c and zi = 0.0
otherwise.

continued on next page
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continued from last page

Name Usage and Description

N VInvTest t = N VInvTest(x, z);
Sets the components of the N Vector z to be the inverses of the com-
ponents of the N Vector x, with prior testing for zero values: zi =
1.0/xi, i = 0, . . . , n − 1. This routine returns a boolean assigned to
SUNTRUE if all components of x are nonzero (successful inversion) and
returns SUNFALSE otherwise.

N VConstrMask t = N VConstrMask(c, x, m);
Performs the following constraint tests: xi > 0 if ci = 2, xi ≥ 0 if
ci = 1, xi ≤ 0 if ci = −1, xi < 0 if ci = −2. There is no constraint
on xi if ci = 0. This routine returns a boolean assigned to SUNFALSE
if any element failed the constraint test and assigned to SUNTRUE if all
passed. It also sets a mask vector m, with elements equal to 1.0 where
the constraint test failed, and 0.0 where the test passed. This routine is
used only for constraint checking.

N VMinQuotient minq = N VMinQuotient(num, denom);
This routine returns the minimum of the quotients obtained by term-
wise dividing numi by denomi. A zero element in denom will be skipped.
If no such quotients are found, then the large value BIG REAL (defined
in the header file sundials types.h) is returned.

6.1 The NVECTOR SERIAL implementation

The serial implementation of the nvector module provided with sundials, nvector serial, defines
the content field of N Vector to be a structure containing the length of the vector, a pointer to the
beginning of a contiguous data array, and a boolean flag own data which specifies the ownership of
data.

struct _N_VectorContent_Serial {
sunindextype length;
booleantype own_data;
realtype *data;

};

The header file to include when using this module is nvector serial.h. The installed module
library to link to is libsundials nvecserial.lib where .lib is typically .so for shared libraries
and .a for static libraries.

The following macros are provided to access the content of an nvector serial vector. The suffix
S in the names denotes the serial version.

• NV CONTENT S

This routine gives access to the contents of the serial vector N Vector.

The assignment v cont = NV CONTENT S(v) sets v cont to be a pointer to the serial N Vector
content structure.

Implementation:

#define NV_CONTENT_S(v) ( (N_VectorContent_Serial)(v->content) )

• NV OWN DATA S, NV DATA S, NV LENGTH S

These macros give individual access to the parts of the content of a serial N Vector.
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The assignment v data = NV DATA S(v) sets v data to be a pointer to the first component of
the data for the N Vector v. The assignment NV DATA S(v) = v data sets the component array
of v to be v data by storing the pointer v data.

The assignment v len = NV LENGTH S(v) sets v len to be the length of v. On the other hand,
the call NV LENGTH S(v) = len v sets the length of v to be len v.

Implementation:

#define NV_OWN_DATA_S(v) ( NV_CONTENT_S(v)->own_data )

#define NV_DATA_S(v) ( NV_CONTENT_S(v)->data )

#define NV_LENGTH_S(v) ( NV_CONTENT_S(v)->length )

• NV Ith S

This macro gives access to the individual components of the data array of an N Vector.

The assignment r = NV Ith S(v,i) sets r to be the value of the i-th component of v. The
assignment NV Ith S(v,i) = r sets the value of the i-th component of v to be r.

Here i ranges from 0 to n− 1 for a vector of length n.

Implementation:

#define NV_Ith_S(v,i) ( NV_DATA_S(v)[i] )

The nvector serial module defines serial implementations of all vector operations listed in Ta-
ble 6.2. Their names are obtained from those in Table 6.2 by appending the suffix Serial (e.g.
N VDestroy Serial). The module nvector serial provides the following additional user-callable
routines:

• N VNew Serial

This function creates and allocates memory for a serial N Vector. Its only argument is the
vector length.

N_Vector N_VNew_Serial(sunindextype vec_length);

• N VNewEmpty Serial

This function creates a new serial N Vector with an empty (NULL) data array.

N_Vector N_VNewEmpty_Serial(sunindextype vec_length);

• N VMake Serial

This function creates and allocates memory for a serial vector with user-provided data array.

(This function does not allocate memory for v data itself.)

N_Vector N_VMake_Serial(sunindextype vec_length, realtype *v_data);

• N VCloneVectorArray Serial

This function creates (by cloning) an array of count serial vectors.

N_Vector *N_VCloneVectorArray_Serial(int count, N_Vector w);

• N VCloneVectorArrayEmpty Serial

This function creates (by cloning) an array of count serial vectors, each with an empty (NULL)
data array.

N_Vector *N_VCloneVectorArrayEmpty_Serial(int count, N_Vector w);

• N VDestroyVectorArray Serial

This function frees memory allocated for the array of count variables of type N Vector created
with N VCloneVectorArray Serial or with N VCloneVectorArrayEmpty Serial.

void N_VDestroyVectorArray_Serial(N_Vector *vs, int count);
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• N VGetLength Serial

This function returns the number of vector elements.

sunindextype N_VGetLength_Serial(N_Vector v);

• N VPrint Serial

This function prints the content of a serial vector to stdout.

void N_VPrint_Serial(N_Vector v);

• N VPrintFile Serial

This function prints the content of a serial vector to outfile.

void N_VPrintFile_Serial(N_Vector v, FILE *outfile);

Notes

• When looping over the components of an N Vector v, it is more efficient to first obtain the
component array via v data = NV DATA S(v) and then access v data[i] within the loop than
it is to use NV Ith S(v,i) within the loop.

• N VNewEmpty Serial, N VMake Serial, and N VCloneVectorArrayEmpty Serial set the field
own data = SUNFALSE. N VDestroy Serial and N VDestroyVectorArray Serial will not at-
tempt to free the pointer data for any N Vector with own data set to SUNFALSE. In such a case,
it is the user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the nvector serial implementation that have
more than one N Vector argument do not check for consistent internal representation of these
vectors. It is the user’s responsibility to ensure that such routines are called with N Vector
arguments that were all created with the same internal representations.

For solvers that include a Fortran interface module, the nvector serial module also includes
a Fortran-callable function FNVINITS(code, NEQ, IER), to initialize this nvector serial module.
Here code is an input solver id (1 for cvode, 2 for ida, 3 for kinsol, 4 for arkode); NEQ is the
problem size (declared so as to match C type long int); and IER is an error return flag equal 0 for
success and -1 for failure.

6.2 The NVECTOR PARALLEL implementation

The nvector parallel implementation of the nvector module provided with sundials is based on
MPI. It defines the content field of N Vector to be a structure containing the global and local lengths
of the vector, a pointer to the beginning of a contiguous local data array, an MPI communicator, and
a boolean flag own data indicating ownership of the data array data.

struct _N_VectorContent_Parallel {
sunindextype local_length;
sunindextype global_length;
booleantype own_data;
realtype *data;
MPI_Comm comm;

};

The header file to include when using this module is nvector parallel.h. The installed module
library to link to is libsundials nvecparallel.lib where .lib is typically .so for shared libraries
and .a for static libraries.

The following macros are provided to access the content of a nvector parallel vector. The
suffix P in the names denotes the distributed memory parallel version.
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• NV CONTENT P

This macro gives access to the contents of the parallel vector N Vector.

The assignment v cont = NV CONTENT P(v) sets v cont to be a pointer to the N Vector content
structure of type struct N VectorContent Parallel.

Implementation:

#define NV_CONTENT_P(v) ( (N_VectorContent_Parallel)(v->content) )

• NV OWN DATA P, NV DATA P, NV LOCLENGTH P, NV GLOBLENGTH P

These macros give individual access to the parts of the content of a parallel N Vector.

The assignment v data = NV DATA P(v) sets v data to be a pointer to the first component of
the local data for the N Vector v. The assignment NV DATA P(v) = v data sets the component
array of v to be v data by storing the pointer v data.

The assignment v llen = NV LOCLENGTH P(v) sets v llen to be the length of the local part of
v. The call NV LENGTH P(v) = llen v sets the local length of v to be llen v.

The assignment v glen = NV GLOBLENGTH P(v) sets v glen to be the global length of the vector
v. The call NV GLOBLENGTH P(v) = glen v sets the global length of v to be glen v.

Implementation:

#define NV_OWN_DATA_P(v) ( NV_CONTENT_P(v)->own_data )

#define NV_DATA_P(v) ( NV_CONTENT_P(v)->data )

#define NV_LOCLENGTH_P(v) ( NV_CONTENT_P(v)->local_length )

#define NV_GLOBLENGTH_P(v) ( NV_CONTENT_P(v)->global_length )

• NV COMM P

This macro provides access to the MPI communicator used by the nvector parallel vectors.

Implementation:

#define NV_COMM_P(v) ( NV_CONTENT_P(v)->comm )

• NV Ith P

This macro gives access to the individual components of the local data array of an N Vector.

The assignment r = NV Ith P(v,i) sets r to be the value of the i-th component of the local
part of v. The assignment NV Ith P(v,i) = r sets the value of the i-th component of the local
part of v to be r.

Here i ranges from 0 to n− 1, where n is the local length.

Implementation:

#define NV_Ith_P(v,i) ( NV_DATA_P(v)[i] )

The nvector parallel module defines parallel implementations of all vector operations listed in
Table 6.2 Their names are obtained from those in Table 6.2 by appending the suffix Parallel
(e.g. N VDestroy Parallel). The module nvector parallel provides the following additional
user-callable routines:

• N VNew Parallel

This function creates and allocates memory for a parallel vector.

N_Vector N_VNew_Parallel(MPI_Comm comm,
sunindextype local_length,
sunindextype global_length);



102 Description of the NVECTOR module

• N VNewEmpty Parallel

This function creates a new parallel N Vector with an empty (NULL) data array.

N_Vector N_VNewEmpty_Parallel(MPI_Comm comm,
sunindextype local_length,
sunindextype global_length);

• N VMake Parallel

This function creates and allocates memory for a parallel vector with user-provided data array.

(This function does not allocate memory for v data itself.)

N_Vector N_VMake_Parallel(MPI_Comm comm,
sunindextype local_length,
sunindextype global_length,
realtype *v_data);

• N VCloneVectorArray Parallel

This function creates (by cloning) an array of count parallel vectors.

N_Vector *N_VCloneVectorArray_Parallel(int count, N_Vector w);

• N VCloneVectorArrayEmpty Parallel

This function creates (by cloning) an array of count parallel vectors, each with an empty (NULL)
data array.

N_Vector *N_VCloneVectorArrayEmpty_Parallel(int count, N_Vector w);

• N VDestroyVectorArray Parallel

This function frees memory allocated for the array of count variables of type N Vector created
with N VCloneVectorArray Parallel or with N VCloneVectorArrayEmpty Parallel.

void N_VDestroyVectorArray_Parallel(N_Vector *vs, int count);

• N VGetLength Parallel

This function returns the number of vector elements (global vector length).

sunindextype N_VGetLength_Parallel(N_Vector v);

• N VGetLocalLength Parallel

This function returns the local vector length.

sunindextype N_VGetLocalLength_Parallel(N_Vector v);

• N VPrint Parallel

This function prints the local content of a parallel vector to stdout.

void N_VPrint_Parallel(N_Vector v);

• N VPrintFile Parallel

This function prints the local content of a parallel vector to outfile.

void N_VPrintFile_Parallel(N_Vector v, FILE *outfile);
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Notes

• When looping over the components of an N Vector v, it is more efficient to first obtain the local
component array via v data = NV DATA P(v) and then access v data[i] within the loop than
it is to use NV Ith P(v,i) within the loop.

• N VNewEmpty Parallel, N VMake Parallel, and N VCloneVectorArrayEmpty Parallel set the
field own data = SUNFALSE. N VDestroy Parallel and N VDestroyVectorArray Parallel will
not attempt to free the pointer data for any N Vector with own data set to SUNFALSE. In such
a case, it is the user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the nvector parallel implementation that have
more than one N Vector argument do not check for consistent internal representation of these
vectors. It is the user’s responsibility to ensure that such routines are called with N Vector
arguments that were all created with the same internal representations.

For solvers that include a Fortran interface module, the nvector parallel module also includes
a Fortran-callable function FNVINITP(COMM, code, NLOCAL, NGLOBAL, IER), to initialize this nvec-
tor parallel module. Here COMM is the MPI communicator, code is an input solver id (1 for cvode,
2 for ida, 3 for kinsol, 4 for arkode); NLOCAL and NGLOBAL are the local and global vector sizes,
respectively (declared so as to match C type long int); and IER is an error return flag equal 0 for suc-
cess and -1 for failure. NOTE: If the header file sundials config.h defines SUNDIALS MPI COMM F2C
to be 1 (meaning the MPI implementation used to build sundials includes the MPI Comm f2c func-
tion), then COMM can be any valid MPI communicator. Otherwise, MPI COMM WORLD will be used, so
just pass an integer value as a placeholder.

6.3 The NVECTOR OPENMP implementation

In situations where a user has a multi-core processing unit capable of running multiple parallel threads
with shared memory, sundials provides an implementation of nvector using OpenMP, called nvec-
tor openmp, and an implementation using Pthreads, called nvector pthreads. Testing has shown
that vectors should be of length at least 100, 000 before the overhead associated with creating and
using the threads is made up by the parallelism in the vector calculations.

The OpenMP nvector implementation provided with sundials, nvector openmp, defines the
content field of N Vector to be a structure containing the length of the vector, a pointer to the
beginning of a contiguous data array, a boolean flag own data which specifies the ownership of data,
and the number of threads. Operations on the vector are threaded using OpenMP.

struct _N_VectorContent_OpenMP {
sunindextype length;
booleantype own_data;
realtype *data;
int num_threads;

};

The header file to include when using this module is nvector openmp.h. The installed module
library to link to is libsundials nvecopenmp.lib where .lib is typically .so for shared libraries
and .a for static libraries.

The following macros are provided to access the content of an nvector openmp vector. The
suffix OMP in the names denotes the OpenMP version.

• NV CONTENT OMP

This routine gives access to the contents of the OpenMP vector N Vector.

The assignment v cont = NV CONTENT OMP(v) sets v cont to be a pointer to the OpenMP
N Vector content structure.
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Implementation:

#define NV_CONTENT_OMP(v) ( (N_VectorContent_OpenMP)(v->content) )

• NV OWN DATA OMP, NV DATA OMP, NV LENGTH OMP, NV NUM THREADS OMP

These macros give individual access to the parts of the content of a OpenMP N Vector.

The assignment v data = NV DATA OMP(v) sets v data to be a pointer to the first component
of the data for the N Vector v. The assignment NV DATA OMP(v) = v data sets the component
array of v to be v data by storing the pointer v data.

The assignment v len = NV LENGTH OMP(v) sets v len to be the length of v. On the other
hand, the call NV LENGTH OMP(v) = len v sets the length of v to be len v.

The assignment v num threads = NV NUM THREADS OMP(v) sets v num threads to be the num-
ber of threads from v. On the other hand, the call NV NUM THREADS OMP(v) = num threads v
sets the number of threads for v to be num threads v.

Implementation:

#define NV_OWN_DATA_OMP(v) ( NV_CONTENT_OMP(v)->own_data )

#define NV_DATA_OMP(v) ( NV_CONTENT_OMP(v)->data )

#define NV_LENGTH_OMP(v) ( NV_CONTENT_OMP(v)->length )

#define NV_NUM_THREADS_OMP(v) ( NV_CONTENT_OMP(v)->num_threads )

• NV Ith OMP

This macro gives access to the individual components of the data array of an N Vector.

The assignment r = NV Ith OMP(v,i) sets r to be the value of the i-th component of v. The
assignment NV Ith OMP(v,i) = r sets the value of the i-th component of v to be r.

Here i ranges from 0 to n− 1 for a vector of length n.

Implementation:

#define NV_Ith_OMP(v,i) ( NV_DATA_OMP(v)[i] )

The nvector openmp module defines OpenMP implementations of all vector operations listed in
Table 6.2. Their names are obtained from those in Table 6.2 by appending the suffix OpenMP (e.g.
N VDestroy OpenMP). The module nvector openmp provides the following additional user-callable
routines:

• N VNew OpenMP

This function creates and allocates memory for a OpenMP N Vector. Arguments are the vector
length and number of threads.

N_Vector N_VNew_OpenMP(sunindextype vec_length, int num_threads);

• N VNewEmpty OpenMP

This function creates a new OpenMP N Vector with an empty (NULL) data array.

N_Vector N_VNewEmpty_OpenMP(sunindextype vec_length, int num_threads);

• N VMake OpenMP

This function creates and allocates memory for a OpenMP vector with user-provided data array.

(This function does not allocate memory for v data itself.)

N_Vector N_VMake_OpenMP(sunindextype vec_length, realtype *v_data, int num_threads);

• N VCloneVectorArray OpenMP

This function creates (by cloning) an array of count OpenMP vectors.

N_Vector *N_VCloneVectorArray_OpenMP(int count, N_Vector w);
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• N VCloneVectorArrayEmpty OpenMP

This function creates (by cloning) an array of count OpenMP vectors, each with an empty
(NULL) data array.

N_Vector *N_VCloneVectorArrayEmpty_OpenMP(int count, N_Vector w);

• N VDestroyVectorArray OpenMP

This function frees memory allocated for the array of count variables of type N Vector created
with N VCloneVectorArray OpenMP or with N VCloneVectorArrayEmpty OpenMP.

void N_VDestroyVectorArray_OpenMP(N_Vector *vs, int count);

• N VGetLength OpenMP

This function returns number of vector elements.

sunindextype N_VGetLength_OpenMP(N_Vector v);

• N VPrint OpenMP

This function prints the content of an OpenMP vector to stdout.

void N_VPrint_OpenMP(N_Vector v);

• N VPrintFile OpenMP

This function prints the content of an OpenMP vector to outfile.

void N_VPrintFile_OpenMP(N_Vector v, FILE *outfile);

Notes

• When looping over the components of an N Vector v, it is more efficient to first obtain the
component array via v data = NV DATA OMP(v) and then access v data[i] within the loop
than it is to use NV Ith OMP(v,i) within the loop.

• N VNewEmpty OpenMP, N VMake OpenMP, and N VCloneVectorArrayEmpty OpenMP set the field
own data = SUNFALSE. N VDestroy OpenMP and N VDestroyVectorArray OpenMP will not at-
tempt to free the pointer data for any N Vector with own data set to SUNFALSE. In such a case,
it is the user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the nvector openmp implementation that have
more than one N Vector argument do not check for consistent internal representation of these
vectors. It is the user’s responsibility to ensure that such routines are called with N Vector
arguments that were all created with the same internal representations.

For solvers that include a Fortran interface module, the nvector openmp module also includes
a Fortran-callable function FNVINITOMP(code, NEQ, NUMTHREADS, IER), to initialize this module.
Here code is an input solver id (1 for cvode, 2 for ida, 3 for kinsol, 4 for arkode); NEQ is the
problem size (declared so as to match C type long int); NUMTHREADS is the number of threads;
and IER is an error return flag equal 0 for success and -1 for failure.

6.4 The NVECTOR PTHREADS implementation

In situations where a user has a multi-core processing unit capable of running multiple parallel threads
with shared memory, sundials provides an implementation of nvector using OpenMP, called nvec-
tor openmp, and an implementation using Pthreads, called nvector pthreads. Testing has shown
that vectors should be of length at least 100, 000 before the overhead associated with creating and
using the threads is made up by the parallelism in the vector calculations.

The Pthreads nvector implementation provided with sundials, denoted nvector pthreads,
defines the content field of N Vector to be a structure containing the length of the vector, a pointer
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to the beginning of a contiguous data array, a boolean flag own data which specifies the ownership
of data, and the number of threads. Operations on the vector are threaded using POSIX threads
(Pthreads).

struct _N_VectorContent_Pthreads {
sunindextype length;
booleantype own_data;
realtype *data;
int num_threads;

};

The header file to include when using this module is nvector pthreads.h. The installed module
library to link to is libsundials nvecpthreads.lib where .lib is typically .so for shared libraries
and .a for static libraries.

The following macros are provided to access the content of an nvector pthreads vector. The
suffix PT in the names denotes the Pthreads version.

• NV CONTENT PT

This routine gives access to the contents of the Pthreads vector N Vector.

The assignment v cont = NV CONTENT PT(v) sets v cont to be a pointer to the Pthreads
N Vector content structure.

Implementation:

#define NV_CONTENT_PT(v) ( (N_VectorContent_Pthreads)(v->content) )

• NV OWN DATA PT, NV DATA PT, NV LENGTH PT, NV NUM THREADS PT

These macros give individual access to the parts of the content of a Pthreads N Vector.

The assignment v data = NV DATA PT(v) sets v data to be a pointer to the first component
of the data for the N Vector v. The assignment NV DATA PT(v) = v data sets the component
array of v to be v data by storing the pointer v data.

The assignment v len = NV LENGTH PT(v) sets v len to be the length of v. On the other hand,
the call NV LENGTH PT(v) = len v sets the length of v to be len v.

The assignment v num threads = NV NUM THREADS PT(v) sets v num threads to be the number
of threads from v. On the other hand, the call NV NUM THREADS PT(v) = num threads v sets
the number of threads for v to be num threads v.

Implementation:

#define NV_OWN_DATA_PT(v) ( NV_CONTENT_PT(v)->own_data )

#define NV_DATA_PT(v) ( NV_CONTENT_PT(v)->data )

#define NV_LENGTH_PT(v) ( NV_CONTENT_PT(v)->length )

#define NV_NUM_THREADS_PT(v) ( NV_CONTENT_PT(v)->num_threads )

• NV Ith PT

This macro gives access to the individual components of the data array of an N Vector.

The assignment r = NV Ith PT(v,i) sets r to be the value of the i-th component of v. The
assignment NV Ith PT(v,i) = r sets the value of the i-th component of v to be r.

Here i ranges from 0 to n− 1 for a vector of length n.

Implementation:

#define NV_Ith_PT(v,i) ( NV_DATA_PT(v)[i] )

The nvector pthreads module defines Pthreads implementations of all vector operations listed
in Table 6.2. Their names are obtained from those in Table 6.2 by appending the suffix Pthreads
(e.g. N VDestroy Pthreads). The module nvector pthreads provides the following additional
user-callable routines:
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• N VNew Pthreads

This function creates and allocates memory for a Pthreads N Vector. Arguments are the vector
length and number of threads.

N_Vector N_VNew_Pthreads(sunindextype vec_length, int num_threads);

• N VNewEmpty Pthreads

This function creates a new Pthreads N Vector with an empty (NULL) data array.

N_Vector N_VNewEmpty_Pthreads(sunindextype vec_length, int num_threads);

• N VMake Pthreads

This function creates and allocates memory for a Pthreads vector with user-provided data array.

(This function does not allocate memory for v data itself.)

N_Vector N_VMake_Pthreads(sunindextype vec_length, realtype *v_data, int num_threads);

• N VCloneVectorArray Pthreads

This function creates (by cloning) an array of count Pthreads vectors.

N_Vector *N_VCloneVectorArray_Pthreads(int count, N_Vector w);

• N VCloneVectorArrayEmpty Pthreads

This function creates (by cloning) an array of count Pthreads vectors, each with an empty
(NULL) data array.

N_Vector *N_VCloneVectorArrayEmpty_Pthreads(int count, N_Vector w);

• N VDestroyVectorArray Pthreads

This function frees memory allocated for the array of count variables of type N Vector created
with N VCloneVectorArray Pthreads or with N VCloneVectorArrayEmpty Pthreads.

void N_VDestroyVectorArray_Pthreads(N_Vector *vs, int count);

• N VGetLength Pthreads

This function returns the number of vector elements.

sunindextype N_VGetLength_Pthreads(N_Vector v);

• N VPrint Pthreads

This function prints the content of a Pthreads vector to stdout.

void N_VPrint_Pthreads(N_Vector v);

• N VPrintFile Pthreads

This function prints the content of a Pthreads vector to outfile.

void N_VPrintFile_Pthreads(N_Vector v, FILE *outfile);

Notes

• When looping over the components of an N Vector v, it is more efficient to first obtain the
component array via v data = NV DATA PT(v) and then access v data[i] within the loop than
it is to use NV Ith PT(v,i) within the loop.

• N VNewEmpty Pthreads, N VMake Pthreads, and N VCloneVectorArrayEmpty Pthreads set the
field own data = SUNFALSE. N VDestroy Pthreads and N VDestroyVectorArray Pthreads will
not attempt to free the pointer data for any N Vector with own data set to SUNFALSE. In such
a case, it is the user’s responsibility to deallocate the data pointer.
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• To maximize efficiency, vector operations in the nvector pthreads implementation that have
more than one N Vector argument do not check for consistent internal representation of these
vectors. It is the user’s responsibility to ensure that such routines are called with N Vector
arguments that were all created with the same internal representations.

For solvers that include a Fortran interface module, the nvector pthreads module also includes
a Fortran-callable function FNVINITPTS(code, NEQ, NUMTHREADS, IER), to initialize this module.
Here code is an input solver id (1 for cvode, 2 for ida, 3 for kinsol, 4 for arkode); NEQ is the
problem size (declared so as to match C type long int); NUMTHREADS is the number of threads;
and IER is an error return flag equal 0 for success and -1 for failure.

6.5 The NVECTOR PARHYP implementation

The nvector parhyp implementation of the nvector module provided with sundials is a wrapper
around hypre’s ParVector class. Most of the vector kernels simply call hypre vector operations. The
implementation defines the content field of N Vector to be a structure containing the global and local
lengths of the vector, a pointer to an object of type hypre ParVector, an MPI communicator, and a
boolean flag own parvector indicating ownership of the hypre parallel vector object x.

struct _N_VectorContent_ParHyp {
sunindextype local_length;
sunindextype global_length;
booleantype own_parvector;
MPI_Comm comm;
hypre_ParVector *x;

};

The header file to include when using this module is nvector parhyp.h. The installed module library
to link to is libsundials nvecparhyp.lib where .lib is typically .so for shared libraries and .a
for static libraries.

Unlike native sundials vector types, nvector parhyp does not provide macros to access its
member variables. Note that nvector parhyp requires sundials to be built with MPI support.

The nvector parhyp module defines implementations of all vector operations listed in Table
6.2, except for N VSetArrayPointer and N VGetArrayPointer, because accessing raw vector data
is handled by low-level hypre functions. As such, this vector is not available for use with sundials
Fortran interfaces. When access to raw vector data is needed, one should extract the hypre vector first,
and then use hypre methods to access the data. Usage examples of nvector parhyp are provided in
the cvAdvDiff non ph.c example program for cvode [21] and the ark diurnal kry ph.c example
program for arkode [26].

The names of parhyp methods are obtained from those in Table 6.2 by appending the suffix
ParHyp (e.g. N VDestroy ParHyp). The module nvector parhyp provides the following additional

user-callable routines:

• N VNewEmpty ParHyp

This function creates a new parhyp N Vector with the pointer to the hypre vector set to NULL.

N_Vector N_VNewEmpty_ParHyp(MPI_Comm comm,
sunindextype local_length,
sunindextype global_length);

• N VMake ParHyp

This function creates an N_Vector wrapper around an existing hypre parallel vector. It does
not allocate memory for x itself.

N_Vector N_VMake_ParHyp(hypre_ParVector *x);
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• N VGetVector ParHyp

This function returns a pointer to the underlying hypre vector.

hypre_ParVector *N_VGetVector_ParHyp(N_Vector v);

• N VCloneVectorArray ParHyp

This function creates (by cloning) an array of count parallel vectors.

N_Vector *N_VCloneVectorArray_ParHyp(int count, N_Vector w);

• N VCloneVectorArrayEmpty ParHyp

This function creates (by cloning) an array of count parallel vectors, each with an empty (NULL)
data array.

N_Vector *N_VCloneVectorArrayEmpty_ParHyp(int count, N_Vector w);

• N VDestroyVectorArray ParHyp

This function frees memory allocated for the array of count variables of type N Vector created
with N VCloneVectorArray ParHyp or with N VCloneVectorArrayEmpty ParHyp.

void N_VDestroyVectorArray_ParHyp(N_Vector *vs, int count);

• N VPrint ParHyp

This function prints the local content of a parhyp vector to stdout.

void N_VPrint_ParHyp(N_Vector v);

• N VPrintFile ParHyp

This function prints the local content of a parhyp vector to outfile.

void N_VPrintFile_ParHyp(N_Vector v, FILE *outfile);

Notes

• When there is a need to access components of an N Vector ParHyp, v, it is recommended to
extract the hypre vector via x vec = N VGetVector ParHyp(v) and then access components
using appropriate hypre functions.

• N VNewEmpty ParHyp, N VMake ParHyp, and N VCloneVectorArrayEmpty ParHyp set the field
own parvector to SUNFALSE. N VDestroy ParHyp and N VDestroyVectorArray ParHyp will not
attempt to delete an underlying hypre vector for any N Vector with own parvector set to
SUNFALSE. In such a case, it is the user’s responsibility to delete the underlying vector.

• To maximize efficiency, vector operations in the nvector parhyp implementation that have
more than one N Vector argument do not check for consistent internal representations of these
vectors. It is the user’s responsibility to ensure that such routines are called with N Vector
arguments that were all created with the same internal representations.

6.6 The NVECTOR PETSC implementation

The nvector petsc module is an nvector wrapper around the petsc vector. It defines the content
field of a N Vector to be a structure containing the global and local lengths of the vector, a pointer
to the petsc vector, an MPI communicator, and a boolean flag own data indicating ownership of the
wrapped petsc vector.
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struct _N_VectorContent_Petsc {
sunindextype local_length;
sunindextype global_length;
booleantype own_data;
Vec *pvec;
MPI_Comm comm;

};

The header file to include when using this module is nvector petsc.h. The installed module
library to link to is libsundials nvecpetsc.lib where .lib is typically .so for shared libraries and
.a for static libraries.

Unlike native sundials vector types, nvector petsc does not provide macros to access its mem-
ber variables. Note that nvector petsc requires sundials to be built with MPI support.

The nvector petsc module defines implementations of all vector operations listed in Table 6.2,
except for N_VGetArrayPointer and N_VSetArrayPointer. As such, this vector cannot be used
with sundials Fortran interfaces. When access to raw vector data is needed, it is recommended to
extract the petsc vector first, and then use petsc methods to access the data. Usage examples of
nvector petsc are provided in example programs for ida [20].

The names of vector operations are obtained from those in Table 6.2 by appending the suffix
Petsc (e.g. N VDestroy Petsc). The module nvector petsc provides the following additional

user-callable routines:

• N VNewEmpty Petsc

This function creates a new nvector wrapper with the pointer to the wrapped petsc vector
set to (NULL). It is used by the N VMake Petsc and N VClone Petsc implementations.

N_Vector N_VNewEmpty_Petsc(MPI_Comm comm,
sunindextype local_length,
sunindextype global_length);

• N VMake Petsc

This function creates and allocates memory for an nvector petsc wrapper around a user-
provided petsc vector. It does not allocate memory for the vector pvec itself.

N_Vector N_VMake_Petsc(Vec *pvec);

• N VGetVector Petsc

This function returns a pointer to the underlying petsc vector.

Vec *N_VGetVector_Petsc(N_Vector v);

• N VCloneVectorArray Petsc

This function creates (by cloning) an array of count nvector petsc vectors.

N_Vector *N_VCloneVectorArray_Petsc(int count, N_Vector w);

• N VCloneVectorArrayEmpty Petsc

This function creates (by cloning) an array of count nvector petsc vectors, each with pointers
to petsc vectors set to (NULL).

N_Vector *N_VCloneVectorArrayEmpty_Petsc(int count, N_Vector w);
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• N VDestroyVectorArray Petsc

This function frees memory allocated for the array of count variables of type N Vector created
with N VCloneVectorArray Petsc or with N VCloneVectorArrayEmpty Petsc.

void N_VDestroyVectorArray_Petsc(N_Vector *vs, int count);

• N VPrint Petsc

This function prints the global content of a wrapped petsc vector to stdout.

void N_VPrint_Petsc(N_Vector v);

• N VPrintFile Petsc

This function prints the global content of a wrapped petsc vector to fname.

void N_VPrintFile_Petsc(N_Vector v, const char fname[]);

Notes

• When there is a need to access components of an N Vector Petsc, v, it is recommeded to
extract the petsc vector via x vec = N VGetVector Petsc(v) and then access components
using appropriate petsc functions.

• The functions N VNewEmpty Petsc, N VMake Petsc, and N VCloneVectorArrayEmpty Petsc set
the field own data to SUNFALSE. N VDestroy Petsc and N VDestroyVectorArray Petsc will not
attempt to free the pointer pvec for any N Vector with own data set to SUNFALSE. In such a
case, it is the user’s responsibility to deallocate the pvec pointer.

• To maximize efficiency, vector operations in the nvector petsc implementation that have
more than one N Vector argument do not check for consistent internal representations of these
vectors. It is the user’s responsibility to ensure that such routines are called with N Vector
arguments that were all created with the same internal representations.

6.7 The NVECTOR CUDA implementation

The nvector cuda module is an experimental nvector implementation in the cuda language. The
module allows for sundials vector kernels to run on GPU devices. It is intended for users who are
already familiar with cuda and GPU programming. Building this vector module requires a CUDA
compiler and, by extension, a C++ compiler. The class Vector in namespace suncudavec manages
vector data layout:

template <class T, class I>
class Vector {
I size_;
I mem_size_;
T* h_vec_;
T* d_vec_;
StreamPartitioning<T, I>* partStream_;
ReducePartitioning<T, I>* partReduce_;
bool ownPartitioning_;

...
};

The class members are vector size (length), size of the vector data memory block, pointers to vector
data on the host and the device, pointers to classes StreamPartitioning and ReducePartitioning,
which handle thread partitioning for streaming and reduction vector kernels, respectively, and a
boolean flag that signals if the vector owns the thread partitioning. The class Vector inherits from
the empty structure
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struct _N_VectorContent_Cuda {
};

to interface the C++ class with the nvector C code. When instantiated, the class Vector will
allocate memory on both the host and the device. Due to the rapid progress of cuda development, we
expect that the suncudavec::Vector class will change frequently in future sundials releases. The
code is structured so that it can tolerate significant changes in the suncudavec::Vector class without
requiring changes to the user API.

The header file to include when using this module is nvector cuda.h. The installed module library
to link to is libsundials nveccuda.lib where .lib is typically .so for shared libraries and .a for
static libraries.

Unlike other native sundials vector types, nvector cuda does not provide macros to access its
member variables.

The nvector cuda module defines implementations of all vector operations listed in Table 6.2,
except for N_VGetArrayPointer and N_VSetArrayPointer. As such, this vector cannot be used with
sundials Fortran interfaces, nor with sundials direct solvers and preconditioners. This support will
be added in subsequent sundials releases. The nvector cuda module provides separate functions
to access data on the host and on the device. It also provides methods for copying from the host to
the device and vice versa. Usage examples of nvector cuda are provided in some example programs
for cvode [21].

The names of vector operations are obtained from those in Table 6.2 by appending the suffix Cuda
(e.g. N VDestroy Cuda). The module nvector cuda provides the following additional user-callable
routines:

• N VNew Cuda

This function creates and allocates memory for a cuda N Vector. The memory is allocated on
both host and device. Its only argument is the vector length.

N_Vector N_VNew_Cuda(sunindextype vec_length);

• N VNewEmpty Cuda

This function creates a new nvector wrapper with the pointer to the wrapped cuda vector set
to (NULL). It is used by the N VNew Cuda, N VMake Cuda, and N VClone Cuda implementations.

N_Vector N_VNewEmpty_Cuda(sunindextype vec_length);

• N VMake Cuda

This function creates and allocates memory for an nvector cuda wrapper around a user-
provided suncudavec::Vector class. Its only argument is of type N VectorContent Cuda, which
is the pointer to the class.

N_Vector N_VMake_Cuda(N_VectorContent_Cuda c);

• N VCloneVectorArray Cuda

This function creates (by cloning) an array of count nvector cuda vectors.

N_Vector *N_VCloneVectorArray_Cuda(int count, N_Vector w);

• N VCloneVectorArrayEmpty Cuda

This function creates (by cloning) an array of count nvector cuda vectors, each with pointers
to cuda vectors set to (NULL).

N_Vector *N_VCloneVectorArrayEmpty_Cuda(int count, N_Vector w);
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• N VDestroyVectorArray Cuda

This function frees memory allocated for the array of count variables of type N Vector created
with N VCloneVectorArray Cuda or with N VCloneVectorArrayEmpty Cuda.

void N_VDestroyVectorArray_Cuda(N_Vector *vs, int count);

• N VGetLength Cuda

This function returns the length of the vector.

sunindextype N_VGetLength_Cuda(N_Vector v);

• N VGetHostArrayPointer Cuda

This function returns a pointer to the vector data on the host.

realtype *N_VGetHostArrayPointer_Cuda(N_Vector v);

• N VGetDeviceArrayPointer Cuda

This function returns a pointer to the vector data on the device.

realtype *N_VGetDeviceArrayPointer_Cuda(N_Vector v);

• N VCopyToDevice Cuda

This function copies host vector data to the device.

realtype *N_VCopyToDevice_Cuda(N_Vector v);

• N VCopyFromDevice Cuda

This function copies vector data from the device to the host.

realtype *N_VCopyFromDevice_Cuda(N_Vector v);

• N VPrint Cuda

This function prints the content of a cuda vector to stdout.

void N_VPrint_Cuda(N_Vector v);

• N VPrintFile Cuda

This function prints the content of a cuda vector to outfile.

void N_VPrintFile_Cuda(N_Vector v, FILE *outfile);

Notes

• When there is a need to access components of an N Vector Cuda, v, it is recommeded to use
functions N VGetDeviceArrayPointer Cuda or N VGetHostArrayPointer Cuda.

• To maximize efficiency, vector operations in the nvector cuda implementation that have more
than one N Vector argument do not check for consistent internal representations of these vectors.
It is the user’s responsibility to ensure that such routines are called with N Vector arguments
that were all created with the same internal representations.

6.8 The NVECTOR RAJA implementation

The nvector raja module is an experimental nvector implementation using the raja hardware
abstraction layer, https://software.llnl.gov/RAJA/. In this implementation, raja allows for sundials
vector kernels to run on GPU devices. The module is intended for users who are already familiar with
raja and GPU programming. Building this vector module requires a C++11 compliant compiler and
a CUDA software development toolkit. Besides the cuda backend, raja has other backends such as
serial, OpenMP, and OpenAC. These backends are not used in this sundials release. Class Vector
in namespace sunrajavec manages the vector data layout:
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template <class T, class I>
class Vector {
I size_;
I mem_size_;
T* h_vec_;
T* d_vec_;

...
};

The class members are: vector size (length), size of the vector data memory block, and pointers to
vector data on the host and on the device. The class Vector inherits from an empty structure

struct _N_VectorContent_Raja {
};

to interface the C++ class with the nvector C code. When instantiated, the class Vector will
allocate memory on both the host and the device. Due to the rapid progress of raja development, we
expect that the sunrajavec::Vector class will change frequently in future sundials releases. The
code is structured so that it can tolerate significant changes in the sunrajavec::Vector class without
requiring changes to the user API.

The header file to include when using this module is nvector raja.h. The installed module library
to link to is libsundials nvecraja.lib where .lib is typically .so for shared libraries and .a for
static libraries.

Unlike other native sundials vector types, nvector raja does not provide macros to access its
member variables.

The nvector raja module defines the implementations of all vector operations listed in Table
6.2, except for N_VGetArrayPointer and N_VSetArrayPointer. As such, this vector cannot be used
with sundials Fortran interfaces, nor with sundials direct solvers and preconditioners. The nvec-
tor raja module provides separate functions to access data on the host and on the device. It also
provides methods for copying data from the host to the device and vice versa. Usage examples of
nvector raja are provided in some example programs for cvode [21].

The names of vector operations are obtained from those in Table 6.2 by appending the suffix Raja
(e.g. N VDestroy Raja). The module nvector raja provides the following additional user-callable
routines:

• N VNew Raja

This function creates and allocates memory for a raja N Vector. The memory is allocated on
both the host and the device. Its only argument is the vector length.

N_Vector N_VNew_Raja(sunindextype vec_length);

• N VNewEmpty Raja

This function creates a new nvector wrapper with the pointer to the wrapped raja vector set
to (NULL). It is used by the N VNew Raja, N VMake Raja, and N VClone Raja implementations.

N_Vector N_VNewEmpty_Raja(sunindextype vec_length);

• N VMake Raja

This function creates and allocates memory for an nvector raja wrapper around a user-
provided sunrajavec::Vector class. Its only argument is of type N VectorContent Raja, which
is the pointer to the class.

N_Vector N_VMake_Raja(N_VectorContent_Raja c);
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• N VCloneVectorArray Raja

This function creates (by cloning) an array of count nvector raja vectors.

N_Vector *N_VCloneVectorArray_Raja(int count, N_Vector w);

• N VCloneVectorArrayEmpty Raja

This function creates (by cloning) an array of count nvector raja vectors, each with pointers
to raja vectors set to (NULL).

N_Vector *N_VCloneVectorArrayEmpty_Raja(int count, N_Vector w);

• N VDestroyVectorArray Raja

This function frees memory allocated for the array of count variables of type N Vector created
with N VCloneVectorArray Raja or with N VCloneVectorArrayEmpty Raja.

void N_VDestroyVectorArray_Raja(N_Vector *vs, int count);

• N VGetLength Raja

This function returns the length of the vector.

sunindextype N_VGetLength_Raja(N_Vector v);

• N VGetHostArrayPointer Raja

This function returns a pointer to the vector data on the host.

realtype *N_VGetHostArrayPointer_Raja(N_Vector v);

• N VGetDeviceArrayPointer Raja

This function returns a pointer to the vector data on the device.

realtype *N_VGetDeviceArrayPointer_Raja(N_Vector v);

• N VCopyToDevice Raja

This function copies host vector data to the device.

realtype *N_VCopyToDevice_Raja(N_Vector v);

• N VCopyFromDevice Raja

This function copies vector data from the device to the host.

realtype *N_VCopyFromDevice_Raja(N_Vector v);

• N VPrint Raja

This function prints the content of a raja vector to stdout.

void N_VPrint_Raja(N_Vector v);

• N VPrintFile Raja

This function prints the content of a raja vector to outfile.

void N_VPrintFile_Raja(N_Vector v, FILE *outfile);

Notes

• When there is a need to access components of an N Vector Raja, v, it is recommeded to use
functions N VGetDeviceArrayPointer Raja or N VGetHostArrayPointer Raja.

• To maximize efficiency, vector operations in the nvector raja implementation that have more
than one N Vector argument do not check for consistent internal representations of these vectors.
It is the user’s responsibility to ensure that such routines are called with N Vector arguments
that were all created with the same internal representations.



116 Description of the NVECTOR module

6.9 NVECTOR Examples

There are NVector examples that may be installed for the implementations provided with sundials.
Each implementation makes use of the functions in test nvector.c. These example functions show
simple usage of the NVector family of functions. The input to the examples are the vector length,
number of threads (if threaded implementation), and a print timing flag.
The following is a list of the example functions in test nvector.c:

• Test N VClone: Creates clone of vector and checks validity of clone.

• Test N VCloneEmpty: Creates clone of empty vector and checks validity of clone.

• Test N VCloneVectorArray: Creates clone of vector array and checks validity of cloned array.

• Test N VCloneVectorArray: Creates clone of empty vector array and checks validity of cloned
array.

• Test N VGetArrayPointer: Get array pointer.

• Test N VSetArrayPointer: Allocate new vector, set pointer to new vector array, and check
values.

• Test N VLinearSum Case 1a: Test y = x + y

• Test N VLinearSum Case 1b: Test y = -x + y

• Test N VLinearSum Case 1c: Test y = ax + y

• Test N VLinearSum Case 2a: Test x = x + y

• Test N VLinearSum Case 2b: Test x = x - y

• Test N VLinearSum Case 2c: Test x = x + by

• Test N VLinearSum Case 3: Test z = x + y

• Test N VLinearSum Case 4a: Test z = x - y

• Test N VLinearSum Case 4b: Test z = -x + y

• Test N VLinearSum Case 5a: Test z = x + by

• Test N VLinearSum Case 5b: Test z = ax + y

• Test N VLinearSum Case 6a: Test z = -x + by

• Test N VLinearSum Case 6b: Test z = ax - y

• Test N VLinearSum Case 7: Test z = a(x + y)

• Test N VLinearSum Case 8: Test z = a(x - y)

• Test N VLinearSum Case 9: Test z = ax + by

• Test N VConst: Fill vector with constant and check result.

• Test N VProd: Test vector multiply: z = x * y

• Test N VDiv: Test vector division: z = x / y

• Test N VScale: Case 1: scale: x = cx

• Test N VScale: Case 2: copy: z = x
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• Test N VScale: Case 3: negate: z = -x

• Test N VScale: Case 4: combination: z = cx

• Test N VAbs: Create absolute value of vector.

• Test N VAddConst: add constant vector: z = c + x

• Test N VDotProd: Calculate dot product of two vectors.

• Test N VMaxNorm: Create vector with known values, find and validate max norm.

• Test N VWrmsNorm: Create vector of known values, find and validate weighted root mean square.

• Test N VWrmsNormMask: Case 1: Create vector of known values, find and validate weighted root
mean square using all elements.

• Test N VWrmsNormMask: Case 2: Create vector of known values, find and validate weighted root
mean square using no elements.

• Test N VMin: Create vector, find and validate the min.

• Test N VWL2Norm: Create vector, find and validate the weighted Euclidean L2 norm.

• Test N VL1Norm: Create vector, find and validate the L1 norm.

• Test N VCompare: Compare vector with constant returning and validating comparison vector.

• Test N VInvTest: Test z[i] = 1 / x[i]

• Test N VConstrMask: Test mask of vector x with vector c.

• Test N VMinQuotient: Fill two vectors with known values. Calculate and validate minimum
quotient.

6.10 NVECTOR functions used by CVODE

In Table 6.3 below, we list the vector functions in the nvector module used within the cvode
package. The table also shows, for each function, which of the code modules uses the function. The
cvode column shows function usage within the main integrator module, while the remaining columns
show function usage within each of the cvode linear solver interfaces, the cvbandpre and cvbbdpre
preconditioner modules, and the fcvode module. Here cvdls stands for the direct linear solver
interface in cvode; cvspils stands for the scaled, preconditioned, iterative linear solver interface in
cvode.

At this point, we should emphasize that the cvode user does not need to know anything about
the usage of vector functions by the cvode code modules in order to use cvode. The information is
presented as an implementation detail for the interested reader.

The vector functions listed in Table 6.2 that are not used by cvode are: N VWL2Norm, N VL1Norm,
N VWrmsNormMask, N VConstrMask, and N VMinQuotient. Therefore, a user-supplied nvector mod-
ule for cvode could omit these five functions.
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Table 6.3: List of vector functions usage by cvode code modules
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N VGetVectorID
N VClone X X X

N VCloneEmpty X
N VDestroy X X X
N VSpace X

N VGetArrayPointer X X X X
N VSetArrayPointer X X

N VLinearSum X X X X
N VConst X X
N VProd X X X
N VDiv X X X

N VScale X X X X X X
N VAbs X
N VInv X X

N VAddConst X X
N VDotProd X
N VMaxNorm X
N VWrmsNorm X X X X X

N VMin X
N VCompare X
N VInvTest X



Chapter 7

Description of the SUNMatrix
module

For problems that involve direct methods for solving linear systems, the sundials solvers not only op-
erate on generic vectors, but also on generic matrices (of type SUNMatrix), through a set of operations
defined by the particular sunmatrix implementation. Users can provide their own specific imple-
mentation of the sunmatrix module, particularly in cases where they provide their own nvector
and/or linear solver modules, and require matrices that are compatible with those implementations.
Alternately, we provide three sunmatrix implementations: dense, banded, and sparse. The generic
operations are described below, and descriptions of the implementations provided with sundials
follow.

The generic SUNMatrix type has been modeled after the object-oriented style of the generic
N Vector type. Specifically, a generic SUNMatrix is a pointer to a structure that has an implementation-
dependent content field containing the description and actual data of the matrix, and an ops field
pointing to a structure with generic matrix operations. The type SUNMatrix is defined as

typedef struct _generic_SUNMatrix *SUNMatrix;

struct _generic_SUNMatrix {
void *content;
struct _generic_SUNMatrix_Ops *ops;

};

The generic SUNMatrix Ops structure is essentially a list of pointers to the various actual matrix
operations, and is defined as

struct _generic_SUNMatrix_Ops {
SUNMatrix_ID (*getid)(SUNMatrix);
SUNMatrix (*clone)(SUNMatrix);
void (*destroy)(SUNMatrix);
int (*zero)(SUNMatrix);
int (*copy)(SUNMatrix, SUNMatrix);
int (*scaleadd)(realtype, SUNMatrix, SUNMatrix);
int (*scaleaddi)(realtype, SUNMatrix);
int (*matvec)(SUNMatrix, N_Vector, N_Vector);
int (*space)(SUNMatrix, long int*, long int*);

};

The generic sunmatrix module defines and implements the matrix operations acting on SUNMatrix
objects. These routines are nothing but wrappers for the matrix operations defined by a particular
sunmatrix implementation, which are accessed through the ops field of the SUNMatrix structure. To
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Table 7.1: Identifiers associated with matrix kernels supplied with sundials.

Matrix ID Matrix type ID Value
SUNMATRIX DENSE Dense M× N matrix 0
SUNMATRIX BAND Band M× M matrix 1
SUNMATRIX SPARSE Sparse (CSR or CSC) M× N matrix 2
SUNMATRIX CUSTOM User-provided custom matrix 3

illustrate this point we show below the implementation of a typical matrix operation from the generic
sunmatrix module, namely SUNMatZero, which sets all values of a matrix A to zero, returning a flag
denoting a successful/failed operation:

int SUNMatZero(SUNMatrix A)
{
return((int) A->ops->zero(A));

}

Table 7.2 contains a complete list of all matrix operations defined by the generic sunmatrix module.
A particular implementation of the sunmatrix module must:

• Specify the content field of the SUNMatrix object.

• Define and implement a minimal subset of the matrix operations. See the documentation for
each sundials solver to determine which sunmatrix operations they require.

Note that the names of these routines should be unique to that implementation in order to
permit using more than one sunmatrix module (each with different SUNMatrix internal data
representations) in the same code.

• Define and implement user-callable constructor and destructor routines to create and free a
SUNMatrix with the new content field and with ops pointing to the new matrix operations.

• Optionally, define and implement additional user-callable routines acting on the newly defined
SUNMatrix (e.g., a routine to print the content for debugging purposes).

• Optionally, provide accessor macros or functions as needed for that particular implementation
to access different parts of the content field of the newly defined SUNMatrix.

Each sunmatrix implementation included in sundials has a unique identifier specified in enu-
meration and shown in Table 7.1. It is recommended that a user-supplied sunmatrix implementation
use the SUNMATRIX CUSTOM identifier.

Table 7.2: Description of the SUNMatrix operations

Name Usage and Description

SUNMatGetID id = SUNMatGetID(A);
Returns the type identifier for the matrix A. It is used to determine the ma-
trix implementation type (e.g. dense, banded, sparse,. . . ) from the abstract
SUNMatrix interface. This is used to assess compatibility with sundials-
provided linear solver implementations. Returned values are given in the
Table 7.1.

continued on next page
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Name Usage and Description

SUNMatClone B = SUNMatClone(A);
Creates a new SUNMatrix of the same type as an existing matrix A and sets
the ops field. It does not copy the matrix, but rather allocates storage for
the new matrix.

SUNMatDestroy SUNMatDestroy(A);
Destroys the SUNMatrix A and frees memory allocated for its internal data.

SUNMatSpace ier = SUNMatSpace(A, &lrw, &liw);
Returns the storage requirements for the matrix A. lrw is a long int con-
taining the number of realtype words and liw is a long int containing
the number of integer words. The return value is an integer flag denoting
success/failure of the operation.
This function is advisory only, for use in determining a user’s total space
requirements; it could be a dummy function in a user-supplied sunmatrix
module if that information is not of interest.

SUNMatZero ier = SUNMatZero(A);
Performs the operation Aij = 0 for all entries of the matrix A. The return
value is an integer flag denoting success/failure of the operation.

SUNMatCopy ier = SUNMatCopy(A,B);
Performs the operation Bij = Ai,j for all entries of the matrices A and B.
The return value is an integer flag denoting success/failure of the operation.

SUNMatScaleAdd ier = SUNMatScaleAdd(c, A, B);
Performs the operation A = cA + B. The return value is an integer flag
denoting success/failure of the operation.

SUNMatScaleAddI ier = SUNMatScaleAddI(c, A);
Performs the operation A = cA + I. The return value is an integer flag
denoting success/failure of the operation.

SUNMatMatvec ier = SUNMatMatvec(A, x, y);
Performs the matrix-vector product operation, y = Ax. It should only be
called with vectors x and y that are compatible with the matrix A – both in
storage type and dimensions. The return value is an integer flag denoting
success/failure of the operation.

We note that not all sunmatrix types are compatible with all nvector types provided with
sundials. This is primarily due to the need for compatibility within the SUNMatMatvec routine;
however, compatibility between sunmatrix and nvector implementations is more crucial when
considering their interaction within sunlinsol objects, as will be described in more detail in Chapter
8. More specifically, in Table 7.3 we show the matrix interfaces available as sunmatrix modules, and
the compatible vector implementations.

Table 7.3: sundials matrix interfaces and vector implementations that can be used for each.
Matrix
Interface

Serial Parallel
(MPI)

OpenMP pThreads hypre
Vec.

petsc
Vec.

cuda raja User
Suppl.

Dense X X X X

continued on next page
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Matrix
Interface

Serial Parallel
(MPI)

OpenMP pThreads hypre
Vec.

petsc
Vec.

cuda raja User
Suppl.

Band X X X X

Sparse X X X X

User supplied X X X X X X X X X

7.1 The SUNMatrix Dense implementation

The dense implementation of the sunmatrix module provided with sundials, sunmatrix dense,
defines the content field of SUNMatrix to be the following structure:

struct _SUNMatrixContent_Dense {
sunindextype M;
sunindextype N;
realtype *data;
sunindextype ldata;
realtype **cols;

};

These entries of the content field contain the following information:

M - number of rows

N - number of columns

data - pointer to a contiguous block of realtype variables. The elements of the dense matrix are
stored columnwise, i.e. the (i,j)-th element of a dense sunmatrix A (with 0 ≤ i < M and 0 ≤
j < N) may be accessed via data[j*M+i].

ldata - length of the data array (= M·N).

cols - array of pointers. cols[j] points to the first element of the j-th column of the matrix in the
array data. The (i,j)-th element of a dense sunmatrix A (with 0 ≤ i < M and 0 ≤ j < N) may
be accessed via cols[j][i].

The header file to include when using this module is sunmatrix/sunmatrix dense.h. The sunma-
trix dense module is accessible from all sundials solvers without linking to the
libsundials sunmatrixdense module library.

The following macros are provided to access the content of a sunmatrix dense matrix. The prefix
SM in the names denotes that these macros are for SUNMatrix implementations, and the suffix D
denotes that these are specific to the dense version.

• SM CONTENT D

This macro gives access to the contents of the dense SUNMatrix.

The assignment A cont = SM CONTENT D(A) sets A cont to be a pointer to the dense SUNMatrix
content structure.

Implementation:

#define SM_CONTENT_D(A) ( (SUNMatrixContent_Dense)(A->content) )

• SM ROWS D, SM COLUMNS D, and SM LDATA D

These macros give individual access to various lengths relevant to the content of a dense
SUNMatrix.
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These may be used either to retrieve or to set these values. For example, the assignment A rows
= SM ROWS D(A) sets A rows to be the number of rows in the matrix A. Similarly, the assignment
SM COLUMNS D(A) = A cols sets the number of columns in A to equal A cols.

Implementation:

#define SM_ROWS_D(A) ( SM_CONTENT_D(A)->M )

#define SM_COLUMNS_D(A) ( SM_CONTENT_D(A)->N )

#define SM_LDATA_D(A) ( SM_CONTENT_D(A)->ldata )

• SM DATA D and SM COLS D

These macros give access to the data and cols pointers for the matrix entries.

The assignment A data = SM DATA D(A) sets A data to be a pointer to the first component of
the data array for the dense SUNMatrix A. The assignment SM DATA D(A) = A data sets the data
array of A to be A data by storing the pointer A data.

Similarly, the assignment A cols = SM COLS D(A) sets A cols to be a pointer to the array of
column pointers for the dense SUNMatrix A. The assignment SM COLS D(A) = A cols sets the
column pointer array of A to be A cols by storing the pointer A cols.

Implementation:

#define SM_DATA_D(A) ( SM_CONTENT_D(A)->data )

#define SM_COLS_D(A) ( SM_CONTENT_D(A)->cols )

• SM COLUMN D and SM ELEMENT D

These macros give access to the individual columns and entries of the data array of a dense
SUNMatrix.

The assignment col j = SM COLUMN D(A,j) sets col j to be a pointer to the first entry of
the j-th column of the M × N dense matrix A (with 0 ≤ j < N). The type of the expression
SM COLUMN D(A,j) is realtype *. The pointer returned by the call SM COLUMN D(A,j) can be
treated as an array which is indexed from 0 to M− 1.

The assignments SM ELEMENT D(A,i,j) = a ij and a ij = SM ELEMENT D(A,i,j) reference the
(i,j)-th element of the M× N dense matrix A (with 0 ≤ i < M and 0 ≤ j < N).

Implementation:

#define SM_COLUMN_D(A,j) ( (SM_CONTENT_D(A)->cols)[j] )

#define SM_ELEMENT_D(A,i,j) ( (SM_CONTENT_D(A)->cols)[j][i] )

The sunmatrix dense module defines dense implementations of all matrix operations listed in Ta-
ble 7.2. Their names are obtained from those in Table 7.2 by appending the suffix Dense (e.g.
SUNMatCopy Dense). The module sunmatrix dense provides the following additional user-callable
routines:

• SUNDenseMatrix

This constructor function creates and allocates memory for a dense SUNMatrix. Its arguments
are the number of rows, M, and columns, N, for the dense matrix.

SUNMatrix SUNDenseMatrix(sunindextype M, sunindextype N);

• SUNDenseMatrix Print

This function prints the content of a dense SUNMatrix to the output stream specified by outfile.
Note: stdout or stderr may be used as arguments for outfile to print directly to standard
output or standard error, respectively.

void SUNDenseMatrix_Print(SUNMatrix A, FILE* outfile);
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• SUNDenseMatrix Rows

This function returns the number of rows in the dense SUNMatrix.

sunindextype SUNDenseMatrix_Rows(SUNMatrix A);

• SUNDenseMatrix Columns

This function returns the number of columns in the dense SUNMatrix.

sunindextype SUNDenseMatrix_Columns(SUNMatrix A);

• SUNDenseMatrix LData

This function returns the length of the data array for the dense SUNMatrix.

sunindextype SUNDenseMatrix_LData(SUNMatrix A);

• SUNDenseMatrix Data

This function returns a pointer to the data array for the dense SUNMatrix.

realtype* SUNDenseMatrix_Data(SUNMatrix A);

• SUNDenseMatrix Cols

This function returns a pointer to the cols array for the dense SUNMatrix.

realtype** SUNDenseMatrix_Cols(SUNMatrix A);

• SUNDenseMatrix Column

This function returns a pointer to the first entry of the jth column of the dense SUNMatrix. The
resulting pointer should be indexed over the range 0 to M− 1.

realtype* SUNDenseMatrix_Column(SUNMatrix A, sunindextype j);

Notes

• When looping over the components of a dense SUNMatrix A, the most efficient approaches are
to:

– First obtain the component array via A data = SM DATA D(A) or
A data = SUNDenseMatrix Data(A) and then access A data[i] within the loop.

– First obtain the array of column pointers via A cols = SM COLS D(A) or
A cols = SUNDenseMatrix Cols(A), and then access A cols[j][i] within the loop.

– Within a loop over the columns, access the column pointer via
A colj = SUNDenseMatrix Column(A,j) and then to access the entries within that column
using A colj[i] within the loop.

All three of these are more efficient than using SM ELEMENT D(A,i,j) within a double loop.

• Within the SUNMatMatvec Dense routine, internal consistency checks are performed to ensure
that the matrix is called with consistent nvector implementations. These are currently limited
to: nvector serial, nvector openmp, and nvector pthreads. As additional compatible
vector implementations are added to sundials, these will be included within this compatibility
check.

For solvers that include a Fortran interface module, the sunmatrix dense module also in-
cludes the Fortran-callable function FSUNDenseMatInit(code, M, N, ier) to initialize this sunma-
trix dense module for a given sundials solver. Here code is an integer input solver id (1 for cvode,
2 for ida, 3 for kinsol, 4 for arkode); M and N are the corresponding dense matrix construction ar-
guments (declared to match C type long int); and ier is an error return flag equal to 0 for success
and -1 for failure. Both code and ier are declared to match C type int. Additionally, when using
arkode with a non-identity mass matrix, the Fortran-callable function FSUNDenseMassMatInit(M,
N, ier) initializes this sunmatrix dense module for storing the mass matrix.
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7.2 The SUNMatrix Band implementation

The banded implementation of the sunmatrix module provided with sundials, sunmatrix band,
defines the content field of SUNMatrix to be the following structure:

struct _SUNMatrixContent_Band {
sunindextype M;
sunindextype N;
sunindextype mu;
sunindextype ml;
sunindextype s_mu;
sunindextype ldim;
realtype *data;
sunindextype ldata;
realtype **cols;

};

A diagram of the underlying data representation in a banded matrix is shown in Figure 7.1. A more
complete description of the parts of this content field is given below:

M - number of rows

N - number of columns (N = M)

mu - upper half-bandwidth, 0 ≤ mu < N

ml - lower half-bandwidth, 0 ≤ ml < N

s mu - storage upper bandwidth, mu ≤ s mu < N. The LU decomposition routines in the associated
sunlinsol band and sunlinsol lapackband modules write the LU factors into the storage
for A. The upper triangular factor U, however, may have an upper bandwidth as big as min(N-
1,mu+ml) because of partial pivoting. The s mu field holds the upper half-bandwidth allocated
for A.

ldim - leading dimension (ldim ≥ s mu+ml+1)

data - pointer to a contiguous block of realtype variables. The elements of the banded matrix are
stored columnwise (i.e. columns are stored one on top of the other in memory). Only elements
within the specified half-bandwidths are stored. data is a pointer to ldata contiguous locations
which hold the elements within the band of A.

ldata - length of the data array (= ldim·N)

cols - array of pointers. cols[j] is a pointer to the uppermost element within the band in the j-th
column. This pointer may be treated as an array indexed from s mu−mu (to access the uppermost
element within the band in the j-th column) to s mu+ml (to access the lowest element within the
band in the j-th column). Indices from 0 to s mu−mu−1 give access to extra storage elements
required by the LU decomposition function. Finally, cols[j][i-j+s mu] is the (i, j)-th element
with j−mu ≤ i ≤ j+ml.

The header file to include when using this module is sunmatrix/sunmatrix band.h. The sunma-
trix band module is accessible from all sundials solvers without linking to the
libsundials sunmatrixband module library.

The following macros are provided to access the content of a sunmatrix band matrix. The prefix
SM in the names denotes that these macros are for SUNMatrix implementations, and the suffix B
denotes that these are specific to the banded version.



126 Description of the SUNMatrix module

Figure 7.1: Diagram of the storage for the sunmatrix band module. Here A is an N × N band
matrix with upper and lower half-bandwidths mu and ml, respectively. The rows and columns of A are
numbered from 0 to N − 1 and the (i, j)-th element of A is denoted A(i,j). The greyed out areas of
the underlying component storage are used by the associated sunlinsol band linear solver.
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• SM CONTENT B

This routine gives access to the contents of the banded SUNMatrix.

The assignment A cont = SM CONTENT B(A) sets A cont to be a pointer to the banded SUNMatrix
content structure.

Implementation:

#define SM_CONTENT_B(A) ( (SUNMatrixContent_Band)(A->content) )

• SM ROWS B, SM COLUMNS B, SM UBAND B, SM LBAND B, SM SUBAND B, SM LDIM B, and SM LDATA B

These macros give individual access to various lengths relevant to the content of a banded
SUNMatrix.

These may be used either to retrieve or to set these values. For example, the assignment A rows
= SM ROWS B(A) sets A rows to be the number of rows in the matrix A. Similarly, the assignment
SM COLUMNS B(A) = A cols sets the number of columns in A to equal A cols.

Implementation:

#define SM_ROWS_B(A) ( SM_CONTENT_B(A)->M )

#define SM_COLUMNS_B(A) ( SM_CONTENT_B(A)->N )

#define SM_UBAND_B(A) ( SM_CONTENT_B(A)->mu )

#define SM_LBAND_B(A) ( SM_CONTENT_B(A)->ml )

#define SM_SUBAND_B(A) ( SM_CONTENT_B(A)->s_mu )

#define SM_LDIM_B(A) ( SM_CONTENT_B(A)->ldim )

#define SM_LDATA_B(A) ( SM_CONTENT_B(A)->ldata )

• SM DATA B and SM COLS B

These macros give access to the data and cols pointers for the matrix entries.

The assignment A data = SM DATA B(A) sets A data to be a pointer to the first component of
the data array for the banded SUNMatrix A. The assignment SM DATA B(A) = A data sets the
data array of A to be A data by storing the pointer A data.

Similarly, the assignment A cols = SM COLS B(A) sets A cols to be a pointer to the array of
column pointers for the banded SUNMatrix A. The assignment SM COLS B(A) = A cols sets the
column pointer array of A to be A cols by storing the pointer A cols.

Implementation:

#define SM_DATA_B(A) ( SM_CONTENT_B(A)->data )

#define SM_COLS_B(A) ( SM_CONTENT_B(A)->cols )

• SM COLUMN B, SM COLUMN ELEMENT B, and SM ELEMENT B

These macros give access to the individual columns and entries of the data array of a banded
SUNMatrix.

The assignments SM ELEMENT B(A,i,j) = a ij and a ij = SM ELEMENT B(A,i,j) reference the
(i,j)-th element of the N× N band matrix A, where 0 ≤ i, j ≤ N− 1. The location (i,j) should
further satisfy j−mu ≤ i ≤ j+ml.

The assignment col j = SM COLUMN B(A,j) sets col j to be a pointer to the diagonal element
of the j-th column of the N × N band matrix A, 0 ≤ j ≤ N − 1. The type of the expression
SM COLUMN B(A,j) is realtype *. The pointer returned by the call SM COLUMN B(A,j) can be
treated as an array which is indexed from −mu to ml.

The assignments SM COLUMN ELEMENT B(col j,i,j) = a ij and
a ij = SM COLUMN ELEMENT B(col j,i,j) reference the (i,j)-th entry of the band matrix A
when used in conjunction with SM COLUMN B to reference the j-th column through col j. The
index (i,j) should satisfy j−mu ≤ i ≤ j+ml.
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Implementation:

#define SM_COLUMN_B(A,j) ( ((SM_CONTENT_B(A)->cols)[j])+SM_SUBAND_B(A) )

#define SM_COLUMN_ELEMENT_B(col_j,i,j) (col_j[(i)-(j)])

#define SM_ELEMENT_B(A,i,j)

( (SM_CONTENT_B(A)->cols)[j][(i)-(j)+SM_SUBAND_B(A)] )

The sunmatrix band module defines banded implementations of all matrix operations listed in
Table 7.2. Their names are obtained from those in Table 7.2 by appending the suffix Band (e.g.
SUNMatCopy Band). The module sunmatrix band provides the following additional user-callable
routines:

• SUNBandMatrix

This constructor function creates and allocates memory for a banded SUNMatrix. Its arguments
are the matrix size, N, the upper and lower half-bandwidths of the matrix, mu and ml, and the
stored upper bandwidth, smu. When creating a band SUNMatrix, this value should be

– at least min(N-1,mu+ml) if the matrix will be used by the sunlinsol band module;

– exactly equal to mu+ml if the matrix will be used by the sunlinsol lapackband module;

– at least mu if used in some other manner.

SUNMatrix SUNBandMatrix(sunindextype N, sunindextype mu,
sunindextype ml, sunindextype smu);

• SUNBandMatrix Print

This function prints the content of a banded SUNMatrix to the output stream specified by
outfile. Note: stdout or stderr may be used as arguments for outfile to print directly to
standard output or standard error, respectively.

void SUNBandMatrix_Print(SUNMatrix A, FILE* outfile);

• SUNBandMatrix Rows

This function returns the number of rows in the banded SUNMatrix.

sunindextype SUNBandMatrix_Rows(SUNMatrix A);

• SUNBandMatrix Columns

This function returns the number of columns in the banded SUNMatrix.

sunindextype SUNBandMatrix_Columns(SUNMatrix A);

• SUNBandMatrix LowerBandwidth

This function returns the lower half-bandwidth of the banded SUNMatrix.

sunindextype SUNBandMatrix_LowerBandwidth(SUNMatrix A);

• SUNBandMatrix UpperBandwidth

This function returns the upper half-bandwidth of the banded SUNMatrix.

sunindextype SUNBandMatrix_UpperBandwidth(SUNMatrix A);

• SUNBandMatrix StoredUpperBandwidth

This function returns the stored upper half-bandwidth of the banded SUNMatrix.

sunindextype SUNBandMatrix_StoredUpperBandwidth(SUNMatrix A);
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• SUNBandMatrix LDim

This function returns the length of the leading dimension of the banded SUNMatrix.

sunindextype SUNBandMatrix_LDim(SUNMatrix A);

• SUNBandMatrix Data

This function returns a pointer to the data array for the banded SUNMatrix.

realtype* SUNBandMatrix_Data(SUNMatrix A);

• SUNBandMatrix Cols

This function returns a pointer to the cols array for the banded SUNMatrix.

realtype** SUNBandMatrix_Cols(SUNMatrix A);

• SUNBandMatrix Column

This function returns a pointer to the diagonal entry of the j-th column of the banded SUNMatrix.
The resulting pointer should be indexed over the range −mu to ml.

realtype* SUNBandMatrix_Column(SUNMatrix A, sunindextype j);

Notes

• When looping over the components of a banded SUNMatrix A, the most efficient approaches are
to:

– First obtain the component array via A data = SM DATA B(A) or
A data = SUNBandMatrix Data(A) and then access A data[i] within the loop.

– First obtain the array of column pointers via A cols = SM COLS B(A) or
A cols = SUNBandMatrix Cols(A), and then access A cols[j][i] within the loop.

– Within a loop over the columns, access the column pointer via
A colj = SUNBandMatrix Column(A,j) and then to access the entries within that column
using SM COLUMN ELEMENT B(A colj,i,j).

All three of these are more efficient than using SM ELEMENT B(A,i,j) within a double loop.

• Within the SUNMatMatvec Band routine, internal consistency checks are performed to ensure
that the matrix is called with consistent nvector implementations. These are currently limited
to: nvector serial, nvector openmp, and nvector pthreads. As additional compatible
vector implementations are added to sundials, these will be included within this compatibility
check.

For solvers that include a Fortran interface module, the sunmatrix band module also includes the
Fortran-callable function FSUNBandMatInit(code, N, mu, ml, smu, ier) to initialize this sunma-
trix band module for a given sundials solver. Here code is an integer input solver id (1 for cvode, 2
for ida, 3 for kinsol, 4 for arkode); N, mu, ml and smu are the corresponding band matrix construction
arguments (declared to match C type long int); and ier is an error return flag equal to 0 for success
and -1 for failure. Both code and ier are declared to match C type int. Additionally, when using
arkode with a non-identity mass matrix, the Fortran-callable function FSUNBandMassMatInit(N,
mu, ml, smu, ier) initializes this sunmatrix band module for storing the mass matrix.

7.3 The SUNMatrix Sparse implementation

The sparse implementation of the sunmatrix module provided with sundials, sunmatrix sparse,
is designed to work with either compressed-sparse-column (CSC) or compressed-sparse-row (CSR)
sparse matrix formats. To this end, it defines the content field of SUNMatrix to be the following
structure:
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struct _SUNMatrixContent_Sparse {
sunindextype M;
sunindextype N;
sunindextype NNZ;
sunindextype NP;
realtype *data;
int sparsetype;
sunindextype *indexvals;
sunindextype *indexptrs;
/* CSC indices */
sunindextype **rowvals;
sunindextype **colptrs;
/* CSR indices */
sunindextype **colvals;
sunindextype **rowptrs;

};

A diagram of the underlying data representation for a CSC matrix is shown in Figure 7.2 (the CSR
format is similar). A more complete description of the parts of this content field is given below:

M - number of rows

N - number of columns

NNZ - maximum number of nonzero entries in the matrix (allocated length of data and indexvals
arrays)

NP - number of index pointers (e.g. number of column pointers for CSC matrix). For CSC matrices
NP = N, and for CSR matrices NP = M. This value is set automatically based the input for
sparsetype.

data - pointer to a contiguous block of realtype variables (of length NNZ), containing the values of
the nonzero entries in the matrix

sparsetype - type of the sparse matrix (CSC MAT or CSR MAT)

indexvals - pointer to a contiguous block of int variables (of length NNZ), containing the row indices
(if CSC) or column indices (if CSR) of each nonzero matrix entry held in data

indexptrs - pointer to a contiguous block of int variables (of length NP+1). For CSC matrices each
entry provides the index of the first column entry into the data and indexvals arrays, e.g. if
indexptr[3]=7, then the first nonzero entry in the fourth column of the matrix is located in
data[7], and is located in row indexvals[7] of the matrix. The last entry contains the total
number of nonzero values in the matrix and hence points one past the end of the active data in
the data and indexvals arrays. For CSR matrices, each entry provides the index of the first
row entry into the data and indexvals arrays.

The following pointers are added to the SlsMat type for user convenience, to provide a more intuitive
interface to the CSC and CSR sparse matrix data structures. They are set automatically when creating
a sparse sunmatrix, based on the sparse matrix storage type.

rowvals - pointer to indexvals when sparsetype is CSC MAT, otherwise set to NULL.

colptrs - pointer to indexptrs when sparsetype is CSC MAT, otherwise set to NULL.

colvals - pointer to indexvals when sparsetype is CSR MAT, otherwise set to NULL.

rowptrs - pointer to indexptrs when sparsetype is CSR MAT, otherwise set to NULL.
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For example, the 5× 4 CSC matrix 
0 3 1 0
3 0 0 2
0 7 0 0
1 0 0 9
0 0 0 5


could be stored in this structure as either

M = 5;
N = 4;
NNZ = 8;
NP = N;
data = {3.0, 1.0, 3.0, 7.0, 1.0, 2.0, 9.0, 5.0};
sparsetype = CSC_MAT;
indexvals = {1, 3, 0, 2, 0, 1, 3, 4};
indexptrs = {0, 2, 4, 5, 8};

or

M = 5;
N = 4;
NNZ = 10;
NP = N;
data = {3.0, 1.0, 3.0, 7.0, 1.0, 2.0, 9.0, 5.0, *, *};
sparsetype = CSC_MAT;
indexvals = {1, 3, 0, 2, 0, 1, 3, 4, *, *};
indexptrs = {0, 2, 4, 5, 8};

where the first has no unused space, and the second has additional storage (the entries marked with
* may contain any values). Note in both cases that the final value in indexptrs is 8, indicating the
total number of nonzero entries in the matrix.

Similarly, in CSR format, the same matrix could be stored as

M = 5;
N = 4;
NNZ = 8;
NP = N;
data = {3.0, 1.0, 3.0, 2.0, 7.0, 1.0, 9.0, 5.0};
sparsetype = CSR_MAT;
indexvals = {1, 2, 0, 3, 1, 0, 3, 3};
indexptrs = {0, 2, 4, 5, 7, 8};

The header file to include when using this module is sunmatrix/sunmatrix sparse.h. The sunma-
trix sparse module is accessible from all sundials solvers without linking to the
libsundials sunmatrixsparse module library.

The following macros are provided to access the content of a sunmatrix sparse matrix. The prefix
SM in the names denotes that these macros are for SUNMatrix implementations, and the suffix S
denotes that these are specific to the sparse version.

• SM CONTENT S

This routine gives access to the contents of the sparse SUNMatrix.

The assignment A cont = SM CONTENT S(A) sets A cont to be a pointer to the sparse SUNMatrix
content structure.

Implementation:

#define SM_CONTENT_S(A) ( (SUNMatrixContent_Sparse)(A->content) )
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Figure 7.2: Diagram of the storage for a compressed-sparse-column matrix. Here A is an M× N sparse
matrix with storage for up to NNZ nonzero entries (the allocated length of both data and indexvals).
The entries in indexvals may assume values from 0 to M− 1, corresponding to the row index (zero-
based) of each nonzero value. The entries in data contain the values of the nonzero entries, with the
row i, column j entry of A (again, zero-based) denoted as A(i,j). The indexptrs array contains N+1
entries; the first N denote the starting index of each column within the indexvals and data arrays,
while the final entry points one past the final nonzero entry. Here, although NNZ values are allocated,
only nz are actually filled in; the greyed-out portions of data and indexvals indicate extra allocated
space.
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• SM ROWS S, SM COLUMNS S, SM NNZ S, SM NP S, and SM SPARSETYPE S

These macros give individual access to various lengths relevant to the content of a sparse
SUNMatrix.

These may be used either to retrieve or to set these values. For example, the assignment A rows
= SM ROWS S(A) sets A rows to be the number of rows in the matrix A. Similarly, the assignment
SM COLUMNS S(A) = A cols sets the number of columns in A to equal A cols.

Implementation:

#define SM_ROWS_S(A) ( SM_CONTENT_S(A)->M )

#define SM_COLUMNS_S(A) ( SM_CONTENT_S(A)->N )

#define SM_NNZ_S(A) ( SM_CONTENT_S(A)->NNZ )

#define SM_NP_S(A) ( SM_CONTENT_S(A)->NP )

#define SM_SPARSETYPE_S(A) ( SM_CONTENT_S(A)->sparsetype )

• SM DATA S, SM INDEXVALS S, and SM INDEXPTRS S

These macros give access to the data and index arrays for the matrix entries.

The assignment A data = SM DATA S(A) sets A data to be a pointer to the first component of
the data array for the sparse SUNMatrix A. The assignment SM DATA S(A) = A data sets the
data array of A to be A data by storing the pointer A data.

Similarly, the assignment A indexvals = SM INDEXVALS S(A) sets A indexvals to be a pointer
to the array of index values (i.e. row indices for a CSC matrix, or column indices for a CSR
matrix) for the sparse SUNMatrix A. The assignment A indexptrs = SM INDEXPTRS S(A) sets
A indexptrs to be a pointer to the array of index pointers (i.e. the starting indices in the
data/indexvals arrays for each row or column in CSR or CSC formats, respectively).

Implementation:

#define SM_DATA_S(A) ( SM_CONTENT_S(A)->data )

#define SM_INDEXVALS_S(A) ( SM_CONTENT_S(A)->indexvals )

#define SM_INDEXPTRS_S(A) ( SM_CONTENT_S(A)->indexptrs )

The sunmatrix sparse module defines sparse implementations of all matrix operations listed in
Table 7.2. Their names are obtained from those in Table 7.2 by appending the suffix Sparse (e.g.
SUNMatCopy Sparse). The module sunmatrix sparse provides the following additional user-callable
routines:

• SUNSparseMatrix

This function creates and allocates memory for a sparse SUNMatrix. Its arguments are the
number of rows and columns of the matrix, M and N, the maximum number of nonzeros to be
stored in the matrix, NNZ, and a flag sparsetype indicating whether to use CSR or CSC format
(valid arguments are CSR MAT or CSC MAT).

SUNMatrix SUNSparseMatrix(sunindextype M, sunindextype N,
sunindextype NNZ, int sparsetype);

• SUNSparseFromDenseMatrix

This function creates a new sparse matrix from an existing dense matrix by copying all values
with magnitude larger than droptol into the sparse matrix structure.

Requirements:

– A must have type SUNMATRIX DENSE;
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– droptol must be non-negative;

– sparsetype must be either CSC MAT or CSR MAT.

The function returns NULL if any requirements are violated, or if the matrix storage request
cannot be satisfied.

SUNMatrix SUNSparseFromDenseMatrix(SUNMatrix A, realtype droptol,
int sparsetype);

• SUNSparseFromBandMatrix

This function creates a new sparse matrix from an existing band matrix by copying all values
with magnitude larger than droptol into the sparse matrix structure.

Requirements:

– A must have type SUNMATRIX BAND;

– droptol must be non-negative;

– sparsetype must be either CSC MAT or CSR MAT.

The function returns NULL if any requirements are violated, or if the matrix storage request
cannot be satisfied.

SUNMatrix SUNSparseFromBandMatrix(SUNMatrix A, realtype droptol,
int sparsetype);

• SUNSparseMatrix Realloc

This function reallocates internal storage arrays in a sparse matrix so that the resulting sparse
matrix has no wasted space (i.e. the space allocated for nonzero entries equals the actual number
of nonzeros, indexptrs[NP]). Returns 0 on success and 1 on failure (e.g. if the input matrix is
not sparse).

int SUNSparseMatrix_Realloc(SUNMatrix A);

• SUNSparseMatrix Reallocate

This function reallocates internal storage arrays in a sparse matrix so that the resulting sparse
matrix has storage for a specified number of nonzeros. Returns 0 on success and 1 on failure
(e.g. if the input matrix is not sparse or if NNZ is negative).

int SUNSparseMatrix_Reallocate(SUNMatrix A, sunindextype NNZ);

• SUNSparseMatrix Print

This function prints the content of a sparse SUNMatrix to the output stream specified by
outfile. Note: stdout or stderr may be used as arguments for outfile to print directly
to standard output or standard error, respectively.

void SUNSparseMatrix_Print(SUNMatrix A, FILE* outfile);

• SUNSparseMatrix Rows

This function returns the number of rows in the sparse SUNMatrix.

sunindextype SUNSparseMatrix_Rows(SUNMatrix A);

• SUNSparseMatrix Columns

This function returns the number of columns in the sparse SUNMatrix.

sunindextype SUNSparseMatrix_Columns(SUNMatrix A);
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• SUNSparseMatrix NNZ

This function returns the number of entries allocated for nonzero storage for the sparse matrix
SUNMatrix.

sunindextype SUNSparseMatrix_NNZ(SUNMatrix A);

• SUNSparseMatrix NP

This function returns the number of columns/rows for the sparse SUNMatrix, depending on
whether the matrix uses CSC/CSR format, respectively. The indexptrs array has NP+1 entries.

sunindextype SUNSparseMatrix_NP(SUNMatrix A);

• SUNSparseMatrix SparseType

This function returns the storage type (CSR MAT or CSC MAT) for the sparse SUNMatrix.

int SUNSparseMatrix_SparseType(SUNMatrix A);

• SUNSparseMatrix Data

This function returns a pointer to the data array for the sparse SUNMatrix.

realtype* SUNSparseMatrix_Data(SUNMatrix A);

• SUNSparseMatrix IndexValues

This function returns a pointer to index value array for the sparse SUNMatrix: for CSR format
this is the column index for each nonzero entry, for CSC format this is the row index for each
nonzero entry.

sunindextype* SUNSparseMatrix_IndexValues(SUNMatrix A);

• SUNSparseMatrix IndexPointers

This function returns a pointer to the index pointer array for the sparse SUNMatrix: for CSR
format this is the location of the first entry of each row in the data and indexvalues arrays,
for CSC format this is the location of the first entry of each column.

sunindextype* SUNSparseMatrix_IndexPointers(SUNMatrix A);

Within the SUNMatMatvec Sparse routine, internal consistency checks are performed to ensure that
the matrix is called with consistent nvector implementations. These are currently limited to: nvec-
tor serial, nvector openmp, and nvector pthreads. As additional compatible vector imple-
mentations are added to sundials, these will be included within this compatibility check.

For solvers that include a Fortran interface module, the sunmatrix sparse module also includes
the Fortran-callable function FSUNSparseMatInit(code, M, N, NNZ, sparsetype, ier) to initial-
ize this sunmatrix sparse module for a given sundials solver. Here code is an integer input for the
solver id (1 for cvode, 2 for ida, 3 for kinsol, 4 for arkode); M, N and NNZ are the corresponding
sparse matrix construction arguments (declared to match C type long int); sparsetype is an integer
flag indicating the sparse storage type (0 for CSC, 1 for CSR); and ier is an error return flag equal to
0 for success and -1 for failure. Each of code, sparsetype and ier are declared so as to match C type
int. Additionally, when using arkode with a non-identity mass matrix, the Fortran-callable function
FSUNSparseMassMatInit(M, N, NNZ, sparsetype, ier) initializes this sunmatrix sparse mod-
ule for storing the mass matrix.

7.4 SUNMatrix Examples

There are SUNMatrix examples that may be installed for each implementation: dense, banded, and
sparse. Each implementation makes use of the functions in test sunmatrix.c. These example func-
tions show simple usage of the SUNMatrix family of functions. The inputs to the examples depend on
the matrix type, and are output to stdout if the example is run without the appropriate number of
command-line arguments.
The following is a list of the example functions in test sunmatrix.c:
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• Test SUNMatGetID: Verifies the returned matrix ID against the value that should be returned.

• Test SUNMatClone: Creates clone of an existing matrix, copies the data, and checks that their
values match.

• Test SUNMatZero: Zeros out an existing matrix and checks that each entry equals 0.0.

• Test SUNMatCopy: Clones an input matrix, copies its data to a clone, and verifies that all values
match.

• Test SUNMatScaleAdd: Given an input matrix A and an input identity matrix I, this test clones
and copies A to a new matrix B, computes B = −B +B, and verifies that the resulting matrix
entries equal 0.0. Additionally, if the matrix is square, this test clones and copies A to a new
matrix D, clones and copies I to a new matrix C, computes D = D + I and C = C + A using
SUNMatScaleAdd, and then verifies that C == D.

• Test SUNMatScaleAddI: Given an input matrix A and an input identity matrix I, this clones
and copies I to a new matrix B, computes B = −B + I using SUNMatScaleAddI, and verifies
that the resulting matrix entries equal 0.0.

• Test SUNMatMatvec Given an input matrix A and input vectors x and y such that y = Ax, this
test has different behavior depending on whether A is square. If it is square, it clones and copies
A to a new matrix B, computes B = 3B+ I using SUNMatScaleAddI, clones y to new vectors w
and z, computes z = Bx using SUNMatMatvec, computes w = 3y + x using N VLinearSum, and
verifies that w == z. If A is not square, it just clones y to a new vector z, computes z = Ax
using SUNMatMatvec, and verifies that y == z.

• Test SUNMatSpace verifies that SUNMatSpace can be called, and outputs the results to stdout.

7.5 SUNMatrix functions used by CVODE

In Table 7.4, we list the matrix functions in the sunmatrix module used within the cvode package.
The table also shows, for each function, which of the code modules uses the function. Neither the main
cvode integrator or the cvspils interface call sunmatrix functions directly, so the table columns
are specific to the cvdls direct solver interface and the cvbandpre and cvbbdpre preconditioner
modules.

At this point, we should emphasize that the cvode user does not need to know anything about
the usage of matrix functions by the cvode code modules in order to use cvode. The information is
presented as an implementation detail for the interested reader.

Table 7.4: List of matrix functions usage by cvode code modules

c
v
d
l
s

c
v
b
a
n
d
p
r
e

c
v
b
b
d
p
r
e

SUNMatGetID X
SUNMatClone X

SUNMatDestroy X X X
SUNMatZero X X X
SUNMatCopy X X X

SUNMatScaleAddI X X X
SUNMatSpace † † †
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The matrix functions listed in Table 7.2 with a † symbol are optionally used, in that these are
only called if they are implemented in the sunmatrix module that is being used (i.e. their function
pointers are non-NULL). The matrix functions listed in Table 7.2 that are not used by cvode are:
SUNMatScaleAdd and SUNMatMatvec. Therefore a user-supplied sunmatrix module for cvode could
omit these functions.





Chapter 8

Description of the
SUNLinearSolver module

For problems that involve the solution of linear systems of equations, the sundials solvers operate
using generic linear solver modules (of type SUNLinearSolver), through a set of operations defined
by the particular sunlinsol implementation. These work in coordination with the sundials generic
nvector and sunmatrix modules to provide a set of compatible data structures and solvers for
the solution of linear systems using direct or iterative methods. Moreover, users can provide their
own specific sunlinsol implementation to each sundials solver, particularly in cases where they
provide their own nvector and/or sunmatrix modules, and the customized linear solver leverages
these additional data structures to create highly efficient and/or scalable solvers for their particular
problem. Additionally, sundials provides native implementations sunlinsol modules, as well as
sunlinsol modules that interface between sundials and external linear solver libraries.

The various sundials solvers have been designed to specifically leverage the use of either direct
linear solvers or scaled, preconditioned, iterative linear solvers, through their “Dls” and “Spils” in-
terfaces, respectively. Additionally, sundials solvers can make use of user-supplied custom linear
solvers, whether these are problem-specific or come from external solver libraries.

For iterative (and possibly custom) linear solvers, the sundials solvers leverage scaling and precon-
ditioning, as applicable, to balance error between solution components and to accelerate convergence
of the linear solver. To this end, instead of solving the linear system Ax = b directly, we apply the
underlying iterative algorithm to the transformed system

Ãx̃ = b̃ (8.1)

where

Ã = S1P
−1
1 AP−1

2 S−1
2 ,

b̃ = S1P
−1
1 b, (8.2)

x̃ = S2P2x,

and where

• P1 is the left preconditioner,

• P2 is the right preconditioner,

• S1 is a diagonal matrix of scale factors for P−1
1 b,

• S2 is a diagonal matrix of scale factors for P2x.

The sundials solvers request that iterative linear solvers stop based on the 2-norm of the scaled
preconditioned residual meeting a prescribed tolerance∥∥∥b̃− Ãx̃∥∥∥

2
< tol.
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We note that not all of the iterative linear solvers implemented in sundials support the full range of
the above options. Similarly, some of the sundials integrators only utilize a subset of these options.
Exceptions to the operators shown above are described in the documentation for each sunlinsol
implementation, or for each sundials solver “Spils” interface.

The generic SUNLinearSolver type has been modeled after the object-oriented style of the generic
N Vector type. Specifically, a generic SUNLinearSolver is a pointer to a structure that has an
implementation-dependent content field containing the description and actual data of the linear
solver, and an ops field pointing to a structure with generic linear solver operations. The type
SUNLinearSolver is defined as

typedef struct _generic_SUNLinearSolver *SUNLinearSolver;

struct _generic_SUNLinearSolver {
void *content;
struct _generic_SUNLinearSolver_Ops *ops;

};

The generic SUNLinearSolver Ops structure is essentially a list of pointers to the various actual
linear solver operations, and is defined as

struct _generic_SUNLinearSolver_Ops {
SUNLinearSolver_Type (*gettype)(SUNLinearSolver);
int (*setatimes)(SUNLinearSolver, void*, ATimesFn);
int (*setpreconditioner)(SUNLinearSolver, void*,

PSetupFn, PSolveFn);
int (*setscalingvectors)(SUNLinearSolver,

N_Vector, N_Vector);
int (*initialize)(SUNLinearSolver);
int (*setup)(SUNLinearSolver, SUNMatrix);
int (*solve)(SUNLinearSolver, SUNMatrix, N_Vector,

N_Vector, realtype);
int (*numiters)(SUNLinearSolver);
realtype (*resnorm)(SUNLinearSolver);
long int (*lastflag)(SUNLinearSolver);
int (*space)(SUNLinearSolver, long int*, long int*);
N_Vector (*resid)(SUNLinearSolver);
int (*free)(SUNLinearSolver);

};

The generic sunlinsol module defines and implements the linear solver operations acting on
SUNLinearSolver objects. These routines are in fact only wrappers for the linear solver operations
defined by a particular sunlinsol implementation, which are accessed through the ops field of the
SUNLinearSolver structure. To illustrate this point we show below the implementation of a typical
linear solver operation from the generic sunlinsol module, namely SUNLinSolInitialize, which
initializes a sunlinsol object for use after it has been created and configured, and returns a flag
denoting a successful/failed operation:

int SUNLinSolInitialize(SUNLinearSolver S)
{
return ((int) S->ops->initialize(S));

}

Table 8.2 contains a complete list of all linear solver operations defined by the generic sunlinsol
module. In order to support both direct and iterative linear solver types, the generic sunlinsol
module defines linear solver routines (or arguments) that may be specific to individual use cases. As
such, for each routine we specify its intended use. If a custom sunlinsol module is provided, the
function pointers for non-required routines may be set to NULL to indicate that they are not provided.

A particular implementation of the sunlinsol module must:
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Table 8.1: Identifiers associated with linear solver kernels supplied with sundials.

Linear Solver ID Solver type ID Value
SUNLINEARSOLVER DIRECT Direct solvers 0
SUNLINEARSOLVER ITERATIVE Iterative solvers 1
SUNLINEARSOLVER CUSTOM Custom solvers 2

• Specify the content field of the SUNLinearSolver object.

• Define and implement a minimal subset of the linear solver operations. See the documentation
for each sundials linear solver interface to determine which sunlinsol operations they require.

Note that the names of these routines should be unique to that implementation in order to
permit using more than one sunlinsol module (each with different SUNLinearSolver internal
data representations) in the same code.

• Define and implement user-callable constructor and destructor routines to create and free a
SUNLinearSolver with the new content field and with ops pointing to the new linear solver
operations.

• Optionally, define and implement additional user-callable routines acting on the newly defined
SUNLinearSolver (e.g., routines to set various configuration options for tuning the linear solver
to a particular problem).

• Optionally, provide functions as needed for that particular implementation to access different
parts in the content field of the newly defined SUNLinearSolver object (e.g., routines to return
various statistics from the solver).

Each sunlinsol implementation included in sundials has a “type” identifier specified in enu-
meration and shown in Table 8.1. It is recommended that a user-supplied sunlinsol implemen-
tation set this identifier based on the sundials solver interface they intend to use: “Dls” inter-
faces require the SUNLINEARSOLVER DIRECT sunlinsol objects and “Spils” interfaces require the
SUNLINEARSOLVER ITERATIVE objects.

Table 8.2: Description of the SUNLinearSolver operations

Name Usage and Description

SUNLinSolGetType type = SUNLinSolGetType(LS);
Returns the type identifier for the linear solver LS. It is used to
determine the solver type (direct, iterative, or custom) from
the abstract SUNLinearSolver interface. This is used to assess
compatibility with sundials-provided linear solver interfaces.
Returned values are given in the Table 8.1.

continued on next page
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Name Usage and Description

SUNLinSolInitialize ier = SUNLinSolInitialize(LS);
Performs linear solver initialization (assumes that all solver-
specific options have been set). This should return zero for
a successful call, and a negative value for a failure, ideally
returning one of the generic error codes listed in Table 8.4.

SUNLinSolSetup ier = SUNLinSolSetup(LS, A);
Performs any linear solver setup needed, based on an updated
system sunmatrix A. This may be called frequently (e.g. with
a full Newton method) or infrequently (for a modified Newton
method), based on the type of integrator and/or nonlinear
solver requesting the solves. This should return zero for a
successful call, a positive value for a recoverable failure and a
negative value for an unrecoverable failure, ideally returning
one of the generic error codes listed in Table 8.4.

SUNLinSolSolve ier = SUNLinSolSolve(LS, A, x, b, tol);
Solves a linear system Ax = b. This should return zero for a
successful call, a positive value for a recoverable failure and a
negative value for an unrecoverable failure, ideally returning
one of the generic error codes listed in Table 8.4.
Direct solvers: can ignore the realtype argument tol.
Iterative solvers: can ignore the sunmatrix input A since a
NULL argument will be passed (these should instead rely on the
matrix-vector product function supplied through the routine
SUNLinSolSetATimes). These should attempt to solve to the
specified realtype tolerance tol in a weighted 2-norm. If
the solver does not support scaling then it should just use a
2-norm.
Custom solvers: all arguments will be supplied, and if the
solver is approximate then it should attempt to solve to the
specified realtype tolerance tol in a weighted 2-norm. If
the solver does not support scaling then it should just use a
2-norm.

SUNLinSolFree ier = SUNLinSolFree(LS);
Frees memory allocated by the linear solver. This should re-
turn zero for a successful call, and a negative value for a failure.

SUNLinSolSetATimes ier = SUNLinSolSetATimes(LS, A data, ATimes);
(Iterative/Custom linear solvers only) Provides ATimesFn
function pointer, as well as a void * pointer to a data struc-
ture used by this routine, to a linear solver object. sundials
solvers will call this function to set the matrix-vector product
function to either a solver-provided difference-quotient via vec-
tor operations or a user-supplied solver-specific routine. This
routine should return zero for a successful call, and a negative
value for a failure, ideally returning one of the generic error
codes listed in Table 8.4.

continued on next page
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Name Usage and Description

SUNLinSolSetPreconditioner ier = SUNLinSolSetPreconditioner(LS, Pdata, Pset,
Psol);
(Optional; Iterative/Custom linear solvers only) Provides
PSetupFn and PSolveFn function pointers that implement the
preconditioner solves P−1

1 and P−1
2 from equations (8.1)-(8.2).

This routine will be called by a sundials solver, which will
provide translation between the generic Pset and Psol calls
and the integrator-specific and integrator- or user-supplied
routines. This routine should return zero for a successful call,
and a negative value for a failure, ideally returning one of the
generic error codes listed in Table 8.4.

SUNLinSolSetScalingVectors ier = SUNLinSolSetScalingVectors(LS, s1, s2);
(Optional; Iterative/Custom linear solvers only) Sets pointers
to left/right scaling vectors for the linear system solve. Here,
s1 is an nvector of positive scale factors containing the diag-
onal of the matrix S1 from equations (8.1)-(8.2). Similarly, s2
is an nvector containing the diagonal of S2 from equations
(8.1)-(8.2). Neither of these vectors are tested for positivity,
and a NULL argument for either indicates that the correspond-
ing scaling matrix is the identity. This routine should return
zero for a successful call, and a negative value for a failure,
ideally returning one of the generic error codes listed in Table
8.4.

SUNLinSolNumIters its = SUNLinSolNumIters(LS);
(Optional; Iterative/Custom linear solvers only) Should return
the int number of linear iterations performed in the last ‘solve’
call.

SUNLinSolResNorm rnorm = SUNLinSolResNorm(LS);
(Optional; Iterative/Custom linear solvers only) Should return
the realtype final residual norm from the last ‘solve’ call.

SUNLinSolResid rvec = SUNLinSolResid(LS);
(Optional; Iterative/Custom linear solvers only) If an iterative
method computes the preconditioned initial residual and re-
turns with a successful solve without performing any iterations
(i.e. either the initial guess or the preconditioner is sufficiently
accurate), then this function may be called by the sundials
solver. This routine should return the nvector containing
the preconditioned initial residual vector.

continued on next page
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Name Usage and Description

SUNLinLastFlag lflag = SUNLinLastFlag(LS);
(Optional) Should return the last error flag encountered within
the linear solver. This is not called by the sundials solvers
directly; it allows the user to investigate linear solver issues
after a failed solve.

SUNLinSolSpace ier = SUNLinSolSpace(LS, &lrw, &liw);
(Optional) Returns the storage requirements for the linear
solver LS. lrw is a long int containing the number of re-
altype words and liw is a long int containing the number
of integer words. The return value is an integer flag denoting
success/failure of the operation.
This function is advisory only, for use in determining a user’s
total space requirements.

8.1 Description of the client-supplied SUNLinearSolver rou-
tines

The sundials packages provide the ATimes, Pset and Psol routines utilized by the sunlinsol mod-
ules. These function types are defined in the header file sundials/sundials iterative.h, and are
described here in case a user wishes to interact directly with an iterative sunlinsol object.

ATimesFn

Definition typedef int (*ATimesFn)(void *A data, N Vector v, N Vector z);

Purpose These functions compute the action of a matrix on a vector, performing the operation
z = Av. Memory for z should already be allocted prior to calling this function. The
vector v should be left unchanged.

Arguments A data is a pointer to client data, the same as that supplied to SUNLinSolSetATimes.
v is the input vector to multiply.
z is the output vector computed.

Return value This routine should return 0 if successful and a non-zero value if unsuccessful.

Notes

PSetupFn

Definition typedef int (*PSetupFn)(void *P data)

Purpose These functions set up any requisite problem data in preparation for calls to the corre-
sponding PSolveFn.

Arguments P data is a pointer to client data, the same pointer as that supplied to the routine
SUNLinSolSetPreconditioner.

Return value This routine should return 0 if successful and a non-zero value if unsuccessful.

Notes
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PSolveFn

Definition typedef int (*PSolveFn)(void *P data, N Vector r, N Vector z,
realtype tol, int lr)

Purpose These functions solve the preconditioner equation Pz = r for the vector z. Memory for
z should already be allocted prior to calling this function. The parameter P data is a
pointer to any information about P which the function needs in order to do its job (set
up by the corresponding PSetupFn. The parameter lr is input, and indicates whether
P is to be taken as the left preconditioner or the right preconditioner: lr = 1 for left
and lr = 2 for right. If preconditioning is on one side only, lr can be ignored. If the
preconditioner is iterative, then it should strive to solve the preconditioner equation so
that

‖Pz − r‖wrms < tol

where the weight vector for the WRMS norm may be accessed from the main package
memory structure. The vector r should not be modified by the PSolveFn.

Arguments P data is a pointer to client data, the same pointer as that supplied to the routine
SUNLinSolSetPreconditioner.

r is the right-hand side vector for the preconditioner system
z is the solution vector for the preconditioner system
tol is the desired tolerance for an iterative preconditioner
lr is flag indicating whether the routine should perform left (1) or right (2) precondi-

tioning.

Return value This routine should return 0 if successful and a non-zero value if unsuccessful. On a
failure, a negative return value indicates an unrecoverable condition, while a positive
value indicates a recoverable one, in which the calling routine may reattempt the solution
after updating preconditioner data.

Notes

8.2 Compatibility of SUNLinearSolver modules

We note that not all sunlinsol types are compatible with all sunmatrix and nvector types provided
with sundials. In Table 8.3 we show the direct linear solvers available as sunlinsol modules, and
the compatible matrix implementations. Recall that Table 4.1 shows the compatibility between all
sunlinsol modules and vector implementations.

Table 8.3: sundials direct linear solvers and matrix implementations that can be used for each.
Linear Solver
Interface

Dense
Matrix

Banded
Matrix

Sparse
Matrix

User
Supplied

Dense X X
Band X X
LapackDense X X
LapackBand X X
klu X X
superlumt X X

continued on next page
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Linear Solver
Interface

Dense
Matrix

Banded
Matrix

Sparse
Matrix

User
Supplied

User supplied X X X X

The functions within the sundials-provided SUNLinearSolver implementations return a common
set of error codes, shown below in the Table 8.4.

Table 8.4: Description of the SUNLinearSolver error codes

Name Value Description

SUNLS SUCCESS 0 successful call or converged solve
SUNLS MEM NULL -1 the memory argument to the function is NULL

SUNLS ILL INPUT -2 an illegal input has been provided to the function
SUNLS MEM FAIL -3 failed memory access or allocation
SUNLS ATIMES FAIL UNREC -4 an unrecoverable failure occurred in the ATimes routine
SUNLS PSET FAIL UNREC -5 an unrecoverable failure occurred in the Pset routine
SUNLS PSOLVE FAIL UNREC -6 an unrecoverable failure occurred in the Psolve routine
SUNLS PACKAGE FAIL UNREC -7 an unrecoverable failure occurred in an external linear

solver package
SUNLS GS FAIL -8 a failure occurred during Gram-Schmidt orthogonalization

(sunlinsol spgmr/sunlinsol spfgmr)
SUNLS QRSOL FAIL -9 a singular R matrix was encountered in a QR factorization

(sunlinsol spgmr/sunlinsol spfgmr)
SUNLS RES REDUCED 1 an iterative solver reduced the residual, but did not con-

verge to the desired tolerance
SUNLS CONV FAIL 2 an iterative solver did not converge (and the residual was

not reduced)
SUNLS ATIMES FAIL REC 3 a recoverable failure occurred in the ATimes routine
SUNLS PSET FAIL REC 4 a recoverable failure occurred in the Pset routine
SUNLS PSOLVE FAIL REC 5 a recoverable failure occurred in the Psolve routine
SUNLS PACKAGE FAIL REC 6 a recoverable failure occurred in an external linear solver

package
SUNLS QRFACT FAIL 7 a singular matrix was encountered during a QR factoriza-

tion (sunlinsol spgmr/sunlinsol spfgmr)
SUNLS LUFACT FAIL 8 a singular matrix was encountered during a LU factorization

(sunlinsol dense/sunlinsol band)

8.3 The SUNLinearSolver Dense implementation

The dense implementation of the sunlinsol module provided with sundials, sunlinsol dense,
is designed to be used with the corresponding sunmatrix dense matrix type, and one of the se-
rial or shared-memory nvector implementations (nvector serial, nvector openmp or nvec-
tor pthreads). The sunlinsol dense module defines the content field of a SUNLinearSolver to
be the following structure:

struct _SUNLinearSolverContent_Dense {
sunindextype N;
sunindextype *pivots;
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long int last_flag;
};

These entries of the content field contain the following information:

N - size of the linear system,

pivots - index array for partial pivoting in LU factorization,

last flag - last error return flag from internal function evaluations.

This solver is constructed to perform the following operations:

• The “setup” call performs a LU factorization with partial (row) pivoting (O(N3) cost), PA =
LU , where P is a permutation matrix, L is a lower triangular matrix with 1’s on the diago-
nal, and U is an upper triangular matrix. This factorization is stored in-place on the input
sunmatrix dense object A, with pivoting information encoding P stored in the pivots array.

• The “solve” call performs pivoting and forward and backward substitution using the stored
pivots array and the LU factors held in the sunmatrix dense object (O(N2) cost).

The header file to include when using this module is sunlinsol/sunlinsol dense.h. The sunlin-
sol dense module is accessible from all sundials solvers without linking to the

libsundials sunlinsoldense module library.
The sunlinsol dense module defines dense implementations of all “direct” linear solver operations
listed in Table 8.2:

• SUNLinSolGetType Dense

• SUNLinSolInitialize Dense – this does nothing, since all consistency checks are performed at
solver creation.

• SUNLinSolSetup Dense – this performs the LU factorization.

• SUNLinSolSolve Dense – this uses the LU factors and pivots array to perform the solve.

• SUNLinSolLastFlag Dense

• SUNLinSolSpace Dense – this only returns information for the storage within the solver object,
i.e. storage for N, last flag, and pivots.

• SUNLinSolFree Dense

The module sunlinsol dense provides the following additional user-callable constructor routine:

• SUNDenseLinearSolver

This function creates and allocates memory for a dense SUNLinearSolver. Its arguments are
an nvector and sunmatrix, that it uses to determine the linear system size and to assess
compatibility with the linear solver implementation.

This routine will perform consistency checks to ensure that it is called with consistent nvector
and sunmatrix implementations. These are currently limited to the sunmatrix dense matrix
type and the nvector serial, nvector openmp, and nvector pthreads vector types. As
additional compatible matrix and vector implementations are added to sundials, these will be
included within this compatibility check.

If either A or y are incompatible then this routine will return NULL.

SUNLinearSolver SUNDenseLinearSolver(N_Vector y, SUNMatrix A);
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For solvers that include a Fortran interface module, the sunlinsol dense module also includes
the Fortran-callable function FSUNDenseLinSolInit(code, ier) to initialize this sunlinsol dense
module for a given sundials solver. Here code is an integer input solver id (1 for cvode, 2 for ida,
3 for kinsol, 4 for arkode); ier is an error return flag equal to 0 for success and -1 for failure.
Both code and ier are declared to match C type int. This routine must be called after both the
nvector and sunmatrix objects have been initialized. Additionally, when using arkode with a
non-identity mass matrix, the Fortran-callable function FSUNMassDenseLinSolInit(ier) initializes
this sunlinsol dense module for solving mass matrix linear systems.

8.4 The SUNLinearSolver Band implementation

The band implementation of the sunlinsol module provided with sundials, sunlinsol band,
is designed to be used with the corresponding sunmatrix band matrix type, and one of the se-
rial or shared-memory nvector implementations (nvector serial, nvector openmp or nvec-
tor pthreads). The sunlinsol band module defines the content field of a SUNLinearSolver to be
the following structure:

struct _SUNLinearSolverContent_Band {
sunindextype N;
sunindextype *pivots;
long int last_flag;

};

These entries of the content field contain the following information:

N - size of the linear system,

pivots - index array for partial pivoting in LU factorization,

last flag - last error return flag from internal function evaluations.

This solver is constructed to perform the following operations:

• The “setup” call performs a LU factorization with partial (row) pivoting, PA = LU , where P
is a permutation matrix, L is a lower triangular matrix with 1’s on the diagonal, and U is an
upper triangular matrix. This factorization is stored in-place on the input sunmatrix band
object A, with pivoting information encoding P stored in the pivots array.

• The “solve” call performs pivoting and forward and backward substitution using the stored
pivots array and the LU factors held in the sunmatrix band object.

• A must be allocated to accommodate the increase in upper bandwidth that occurs during factor-
ization. More precisely, if A is a band matrix with upper bandwidth mu and lower bandwidth ml,
then the upper triangular factor U can have upper bandwidth as big as smu = MIN(N-1,mu+ml).
The lower triangular factor L has lower bandwidth ml.

The header file to include when using this module is sunlinsol/sunlinsol band.h. The sunlin-
sol band module is accessible from all sundials solvers without linking to the

libsundials sunlinsolband module library.
The sunlinsol band module defines band implementations of all “direct” linear solver operations
listed in Table 8.2:

• SUNLinSolGetType Band

• SUNLinSolInitialize Band – this does nothing, since all consistency checks are performed at
solver creation.

• SUNLinSolSetup Band – this performs the LU factorization.
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• SUNLinSolSolve Band – this uses the LU factors and pivots array to perform the solve.

• SUNLinSolLastFlag Band

• SUNLinSolSpace Band – this only returns information for the storage within the solver object,
i.e. storage for N, last flag, and pivots.

• SUNLinSolFree Band

The module sunlinsol band provides the following additional user-callable constructor routine:

• SUNBandLinearSolver

This function creates and allocates memory for a band SUNLinearSolver. Its arguments are
an nvector and sunmatrix, that it uses to determine the linear system size and to assess
compatibility with the linear solver implementation.

This routine will perform consistency checks to ensure that it is called with consistent nvector
and sunmatrix implementations. These are currently limited to the sunmatrix band matrix
type and the nvector serial, nvector openmp, and nvector pthreads vector types. As
additional compatible matrix and vector implementations are added to sundials, these will be
included within this compatibility check.

Additionally, this routine will verify that the input matrix A is allocated with appropriate upper
bandwidth storage for the LU factorization.

If either A or y are incompatible then this routine will return NULL.

SUNLinearSolver SUNBandLinearSolver(N_Vector y, SUNMatrix A);

For solvers that include a Fortran interface module, the sunlinsol band module also includes the
Fortran-callable function FSUNBandLinSolInit(code, ier) to initialize this sunlinsol band mod-
ule for a given sundials solver. Here code is an integer input solver id (1 for cvode, 2 for ida,
3 for kinsol, 4 for arkode); ier is an error return flag equal to 0 for success and -1 for failure.
Both code and ier are declared to match C type int. This routine must be called after both the
nvector and sunmatrix objects have been initialized. Additionally, when using arkode with a
non-identity mass matrix, the Fortran-callable function FSUNMassBandLinSolInit(ier) initializes
this sunlinsol band module for solving mass matrix linear systems.

8.5 The SUNLinearSolver LapackDense implementation

The LAPACK dense implementation of the sunlinsol module provided with sundials, sunlin-
sol lapackdense, is designed to be used with the corresponding sunmatrix dense matrix type, and
one of the serial or shared-memory nvector implementations (nvector serial, nvector openmp,
or nvector pthreads). The sunlinsol lapackdense module defines the content field of a
SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_Dense {
sunindextype N;
sunindextype *pivots;
long int last_flag;

};

These entries of the content field contain the following information:

N - size of the linear system,

pivots - index array for partial pivoting in LU factorization,

last flag - last error return flag from internal function evaluations.
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The sunlinsol lapackdense module is a sunlinsol wrapper for the LAPACK dense matrix
factorization and solve routines, *GETRF and *GETRS, where * is either D or S, depending on whether
sundials was configured to have realtype set to double or single, respectively (see Section 4.2).
In order to use the sunlinsol lapackdense module it is assumed that LAPACK has been installed
on the system prior to installation of sundials, and that sundials has been configured appropriately
to link with LAPACK (see Appendix A for details). We note that since there do not exist 128-bit
floating-point factorization and solve routines in LAPACK, this interface cannot be compiled when
using extended precision for realtype. Similarly, since there do not exist 64-bit integer LAPACK
routines, the sunlinsol lapackdense module also cannot be compiled when using int64 t for the
sunindextype.

This solver is constructed to perform the following operations:

• The “setup” call performs a LU factorization with partial (row) pivoting (O(N3) cost), PA =
LU , where P is a permutation matrix, L is a lower triangular matrix with 1’s on the diago-
nal, and U is an upper triangular matrix. This factorization is stored in-place on the input
sunmatrix dense object A, with pivoting information encoding P stored in the pivots array.

• The “solve” call performs pivoting and forward and backward substitution using the stored
pivots array and the LU factors held in the sunmatrix dense object (O(N2) cost).

The header file to include when using this module is sunlinsol/sunlinsol lapackdense.h. The in-
stalled module library to link to is libsundials sunlinsollapackdense.lib where .lib is typically
.so for shared libraries and .a for static libraries.
The sunlinsol lapackdense module defines dense implementations of all “direct” linear solver
operations listed in Table 8.2:

• SUNLinSolGetType LapackDense

• SUNLinSolInitialize LapackDense – this does nothing, since all consistency checks are per-
formed at solver creation.

• SUNLinSolSetup LapackDense – this calls either DGETRF or SGETRF to perform the LU factor-
ization.

• SUNLinSolSolve LapackDense – this calls either DGETRS or SGETRS to use the LU factors and
pivots array to perform the solve.

• SUNLinSolLastFlag LapackDense

• SUNLinSolSpace LapackDense – this only returns information for the storage within the solver
object, i.e. storage for N, last flag, and pivots.

• SUNLinSolFree LapackDense

The module sunlinsol lapackdense provides the following additional user-callable constructor rou-
tine:

• SUNLapackDense

This function creates and allocates memory for a LAPACK dense SUNLinearSolver. Its argu-
ments are an nvector and sunmatrix, that it uses to determine the linear system size and to
assess compatibility with the linear solver implementation.

This routine will perform consistency checks to ensure that it is called with consistent nvector
and sunmatrix implementations. These are currently limited to the sunmatrix dense matrix
type and the nvector serial, nvector openmp, and nvector pthreads vector types. As
additional compatible matrix and vector implementations are added to sundials, these will be
included within this compatibility check.

If either A or y are incompatible then this routine will return NULL.

SUNLinearSolver SUNLapackDense(N_Vector y, SUNMatrix A);
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For solvers that include a Fortran interface module, the sunlinsol lapackdense module also in-
cludes the Fortran-callable function FSUNLapackDenseInit(code, ier) to initialize this sunlin-
sol lapackdense module for a given sundials solver. Here code is an integer input solver id (1 for
cvode, 2 for ida, 3 for kinsol, 4 for arkode); ier is an error return flag equal to 0 for success and
-1 for failure. Both code and ier are declared to match C type int. This routine must be called after
both the nvector and sunmatrix objects have been initialized. Additionally, when using arkode
with a non-identity mass matrix, the Fortran-callable function FSUNMassLapackDenseInit(ier) ini-
tializes this sunlinsol lapackdense module for solving mass matrix linear systems.

8.6 The SUNLinearSolver LapackBand implementation

The LAPACK band implementation of the sunlinsol module provided with sundials, sunlin-
sol lapackband, is designed to be used with the corresponding sunmatrix band matrix type, and
one of the serial or shared-memory nvector implementations (nvector serial, nvector openmp,
or nvector pthreads). The sunlinsol lapackband module defines the content field of a
SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_Band {
sunindextype N;
sunindextype *pivots;
long int last_flag;

};

These entries of the content field contain the following information:

N - size of the linear system,

pivots - index array for partial pivoting in LU factorization,

last flag - last error return flag from internal function evaluations.

The sunlinsol lapackband module is a sunlinsol wrapper for the LAPACK band matrix
factorization and solve routines, *GBTRF and *GBTRS, where * is either D or S, depending on whether
sundials was configured to have realtype set to double or single, respectively (see Section 4.2).
In order to use the sunlinsol lapackband module it is assumed that LAPACK has been installed
on the system prior to installation of sundials, and that sundials has been configured appropriately
to link with LAPACK (see Appendix A for details). We note that since there do not exist 128-bit
floating-point factorization and solve routines in LAPACK, this interface cannot be compiled when
using extended precision for realtype. Similarly, since there do not exist 64-bit integer LAPACK
routines, the sunlinsol lapackband module also cannot be compiled when using int64 t for the
sunindextype.

This solver is constructed to perform the following operations:

• The “setup” call performs a LU factorization with partial (row) pivoting, PA = LU , where P
is a permutation matrix, L is a lower triangular matrix with 1’s on the diagonal, and U is an
upper triangular matrix. This factorization is stored in-place on the input sunmatrix band
object A, with pivoting information encoding P stored in the pivots array.

• The “solve” call performs pivoting and forward and backward substitution using the stored
pivots array and the LU factors held in the sunmatrix band object.

• A must be allocated to accommodate the increase in upper bandwidth that occurs during factor-
ization. More precisely, if A is a band matrix with upper bandwidth mu and lower bandwidth ml,
then the upper triangular factor U can have upper bandwidth as big as smu = MIN(N-1,mu+ml).
The lower triangular factor L has lower bandwidth ml.
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The header file to include when using this module is sunlinsol/sunlinsol lapackband.h. The
installed module library to link to is libsundials sunlinsollapackband.lib where .lib is typically
.so for shared libraries and .a for static libraries.
The sunlinsol lapackband module defines band implementations of all “direct” linear solver op-
erations listed in Table 8.2:

• SUNLinSolGetType LapackBand

• SUNLinSolInitialize LapackBand – this does nothing, since all consistency checks are per-
formed at solver creation.

• SUNLinSolSetup LapackBand – this calls either DGBTRF or SGBTRF to perform the LU factoriza-
tion.

• SUNLinSolSolve LapackBand – this calls either DGBTRS or SGBTRS to use the LU factors and
pivots array to perform the solve.

• SUNLinSolLastFlag LapackBand

• SUNLinSolSpace LapackBand – this only returns information for the storage within the solver
object, i.e. storage for N, last flag, and pivots.

• SUNLinSolFree LapackBand

The module sunlinsol lapackband provides the following additional user-callable routine:

• SUNLapackBand

This function creates and allocates memory for a LAPACK band SUNLinearSolver. Its argu-
ments are an nvector and sunmatrix, that it uses to determine the linear system size and to
assess compatibility with the linear solver implementation.

This routine will perform consistency checks to ensure that it is called with consistent nvector
and sunmatrix implementations. These are currently limited to the sunmatrix band matrix
type and the nvector serial, nvector openmp, and nvector pthreads vector types. As
additional compatible matrix and vector implementations are added to sundials, these will be
included within this compatibility check.

Additionally, this routine will verify that the input matrix A is allocated with appropriate upper
bandwidth storage for the LU factorization.

If either A or y are incompatible then this routine will return NULL.

SUNLinearSolver SUNLapackBand(N_Vector y, SUNMatrix A);

For solvers that include a Fortran interface module, the sunlinsol lapackband module also includes
the Fortran-callable function FSUNLapackBandInit(code, ier) to initialize this
sunlinsol lapackband module for a given sundials solver. Here code is an integer input solver id (1
for cvode, 2 for ida, 3 for kinsol, 4 for arkode); ier is an error return flag equal to 0 for success and
-1 for failure. Both code and ier are declared to match C type int. This routine must be called after
both the nvector and sunmatrix objects have been initialized. Additionally, when using arkode
with a non-identity mass matrix, the Fortran-callable function FSUNMassLapackBandInit(ier) ini-
tializes this sunlinsol lapackband module for solving mass matrix linear systems.

8.7 The SUNLinearSolver KLU implementation

The klu implementation of the sunlinsol module provided with sundials, sunlinsol klu, is
designed to be used with the corresponding sunmatrix sparse matrix type, and one of the se-
rial or shared-memory nvector implementations (nvector serial, nvector openmp, or nvec-
tor pthreads). The sunlinsol klu module defines the content field of a SUNLinearSolver to be
the following structure:
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struct _SUNLinearSolverContent_KLU {
long int last_flag;
int first_factorize;
sun_klu_symbolic *symbolic;
sun_klu_numeric *numeric;
sun_klu_common common;
sunindextype (*klu_solver)(sun_klu_symbolic*, sun_klu_numeric*,

sunindextype, sunindextype,
double*, sun_klu_common*);

};

These entries of the content field contain the following information:

last flag - last error return flag from internal function evaluations,

first factorize - flag indicating whether the factorization has ever been performed,

symbolic - klu storage structure for symbolic factorization components,

numeric - klu storage structure for numeric factorization components,

common - storage structure for common klu solver components,

klu solver – pointer to the appropriate klu solver function (depending on whether it is using a CSR
or CSC sparse matrix).

The sunlinsol klu module is a sunlinsol wrapper for the klu sparse matrix factorization and
solver library written by Tim Davis [1, 11]. In order to use the sunlinsol klu interface to klu,
it is assumed that klu has been installed on the system prior to installation of sundials, and that
sundials has been configured appropriately to link with klu (see Appendix A for details). Addi-
tionally, this wrapper only supports double-precision calculations, and therefore cannot be compiled
if sundials is configured to have realtype set to either extended or single (see Section 4.2). Since
the klu library supports both 32-bit and 64-bit integers, this interface will be compiled for either of
the available sunindextype options.

The klu library has a symbolic factorization routine that computes the permutation of the linear
system matrix to block triangular form and the permutations that will pre-order the diagonal blocks
(the only ones that need to be factored) to reduce fill-in (using AMD, COLAMD, CHOLAMD, natural,
or an ordering given by the user). Of these ordering choices, the default value in the sunlinsol klu
module is the COLAMD ordering.

klu breaks the factorization into two separate parts. The first is a symbolic factorization and the
second is a numeric factorization that returns the factored matrix along with final pivot information.
klu also has a refactor routine that can be called instead of the numeric factorization. This routine
will reuse the pivot information. This routine also returns diagnostic information that a user can
examine to determine if numerical stability is being lost and a full numerical factorization should be
done instead of the refactor.

Since the linear systems that arise within the context of sundials calculations will typically
have identical sparsity patterns, the sunlinsol klu module is constructed to perform the following
operations:

• The first time that the “setup” routine is called, it performs the symbolic factorization, followed
by an initial numerical factorization.

• On subsequent calls to the “setup” routine, it calls the appropriate klu “refactor” routine,
followed by estimates of the numerical conditioning using the relevant “rcond”, and if necessary
“condest”, routine(s). If these estimates of the condition number are larger than ε−2/3 (where
ε is the double-precision unit roundoff), then a new factorization is performed.

• The module includes the routine SUNKLUReInit, that can be called by the user to force a full or
partial refactorization at the next “setup” call.



154 Description of the SUNLinearSolver module

• The “solve” call performs pivoting and forward and backward substitution using the stored klu
data structures. We note that in this solve klu operates on the native data arrays for the
right-hand side and solution vectors, without requiring costly data copies.

The header file to include when using this module is sunlinsol/sunlinsol klu.h. The installed
module library to link to is libsundials sunlinsolklu.lib where .lib is typically .so for shared
libraries and .a for static libraries.
The sunlinsol klu module defines implementations of all “direct” linear solver operations listed in
Table 8.2:

• SUNLinSolGetType KLU

• SUNLinSolInitialize KLU – this sets the first factorize flag to 1, forcing both symbolic
and numerical factorizations on the subsequent “setup” call.

• SUNLinSolSetup KLU – this performs either a LU factorization or refactorization of the input
matrix.

• SUNLinSolSolve KLU – this calls the appropriate klu solve routine to utilize the LU factors to
solve the linear system.

• SUNLinSolLastFlag KLU

• SUNLinSolSpace KLU – this only returns information for the storage within the solver interface,
i.e. storage for the integers last flag and first factorize. For additional space requirements,
see the klu documentation.

• SUNLinSolFree KLU

The module sunlinsol klu provides the following additional user-callable routines:

• SUNKLU

This constructor function creates and allocates memory for a sunlinsol klu object. Its argu-
ments are an nvector and sunmatrix, that it uses to determine the linear system size and to
assess compatibility with the linear solver implementation.

This routine will perform consistency checks to ensure that it is called with consistent nvector
and sunmatrix implementations. These are currently limited to the sunmatrix sparse matrix
type (using either CSR or CSC storage formats) and the nvector serial, nvector openmp,
and nvector pthreads vector types. As additional compatible matrix and vector implemen-
tations are added to sundials, these will be included within this compatibility check.

If either A or y are incompatible then this routine will return NULL.

SUNLinearSolver SUNKLU(N_Vector y, SUNMatrix A);

• SUNKLUReInit

This function reinitializes memory and flags for a new factorization (symbolic and numeric) to be
conducted at the next solver setup call. This routine is useful in the cases where the number of
nonzeroes has changed or if the structure of the linear system has changed which would require
a new symbolic (and numeric factorization).

The reinit type argument governs the level of reinitialization. The allowed values are:

– SUNKLU REINIT FULL – The Jacobian matrix will be destroyed and a new one will be allo-
cated based on the nnz value passed to this call. New symbolic and numeric factorizations
will be completed at the next solver setup.

– SUNKLU REINIT PARTIAL – Only symbolic and numeric factorizations will be completed.
It is assumed that the Jacobian size has not exceeded the size of nnz given in the sparse
matrix provided to the original constructor routine (or the previous SUNKLUReInit call).
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This routine assumes no other changes to solver use are necessary.

The return values from this function are SUNLS MEM NULL (either S or A are NULL), SUNLS ILL INPUT
(A does not have type SUNMATRIX SPARSE or reinit type is invalid), SUNLS MEM FAIL (realloca-
tion of the sparse matrix failed) or SUNLS SUCCESS.

int SUNKLUReInit(SUNLinearSolver S, SUNMatrix A,
sunindextype nnz, int reinit_type);

• SUNKLUSetOrdering

This function sets the ordering used by klu for reducing fill in the linear solve. Options for
ordering choice are:

0 AMD,

1 COLAMD, and

2 the natural ordering.

The default is 1 for COLAMD.

The return values from this function are SUNLS MEM NULL (S is NULL), SUNLS ILL INPUT (invalid
ordering choice), or SUNLS SUCCESS.

int SUNKLUSetOrdering(SUNLinearSolver S, int ordering_choice);

For solvers that include a Fortran interface module, the sunlinsol klu module also includes the
Fortran-callable function FSUNKLUInit(code, ier) to initialize this sunlinsol klu module for a
given sundials solver. Here code is an integer input solver id (1 for cvode, 2 for ida, 3 for kinsol,
4 for arkode); ier is an error return flag equal to 0 for success and -1 for failure. Both code and
ier are declared to match C type int. This routine must be called after both the nvector and
sunmatrix objects have been initialized. Additionally, when using arkode with a non-identity mass
matrix, the Fortran-callable function FSUNMassKLUInit(ier) initializes this sunlinsol klu module
for solving mass matrix linear systems.

The SUNKLUReInit and SUNKLUSetOrdering routines also support Fortran interfaces for the system
and mass matrix solvers:

• FSUNKLUReInit(code, NNZ, reinit type, ier) – NNZ should be commensurate with a C long
int and reinit type should be commensurate with a C int (1 = ‘FULL’, 2 = ‘PARTIAL’)

• FSUNMassKLUReInit(NNZ, reinit type, ier)

• FSUNKLUSetOrdering(code, ordering, ier) – ordering should be commensurate with a C
int

• FSUNMassKLUSetOrdering(ordering, ier)

8.8 The SUNLinearSolver SuperLUMT implementation

The superlumt implementation of the sunlinsol module provided with sundials,
sunlinsol superlumt, is designed to be used with the corresponding sunmatrix sparse matrix
type, and one of the serial or shared-memory nvector implementations (nvector serial, nvec-
tor openmp, or nvector pthreads). While these are compatible, it is not recommended to use a
threaded vector module with sunlinsol superlumt unless it is the nvector openmp module and
the superlumt library has also been compiled with OpenMP. The sunlinsol superlumt module
defines the content field of a SUNLinearSolver to be the following structure:
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struct _SUNLinearSolverContent_SuperLUMT {
long int last_flag;
int first_factorize;
SuperMatrix *A, *AC, *L, *U, *B;
Gstat_t *Gstat;
sunindextype *perm_r, *perm_c;
sunindextype N;
int num_threads;
realtype diag_pivot_thresh;
int ordering;
superlumt_options_t *options;

};

These entries of the content field contain the following information:

last flag - last error return flag from internal function evaluations,

first factorize - flag indicating whether the factorization has ever been performed,

A, AC, L, U, B - SuperMatrix pointers used in solve,

Gstat - GStat t object used in solve,

perm r, perm c - permutation arrays used in solve,

N - size of the linear system,

num threads - number of OpenMP/Pthreads threads to use,

diag pivot thresh - threshold on diagonal pivoting,

ordering - flag for which reordering algorithm to use,

options - pointer to superlumt options structure.

The sunlinsol superlumt module is a sunlinsol wrapper for the superlumt sparse matrix
factorization and solver library written by X. Sherry Li [2, 24, 12]. The package performs matrix fac-
torization using threads to enhance efficiency in shared memory parallel environments. It should be
noted that threads are only used in the factorization step. In order to use the sunlinsol superlumt
interface to superlumt, it is assumed that superlumt has been installed on the system prior to in-
stallation of sundials, and that sundials has been configured appropriately to link with superlumt
(see Appendix A for details). Additionally, this wrapper only supports single- and double-precision
calculations, and therefore cannot be compiled if sundials is configured to have realtype set to
extended (see Section 4.2). Moreover, since the superlumt library may be installed to support
either 32-bit or 64-bit integers, it is assumed that the superlumt library is installed using the same
integer precision as the sundials sunindextype option.

The superlumt library has a symbolic factorization routine that computes the permutation of
the linear system matrix to reduce fill-in on subsequent LU factorizations (using COLAMD, minimal
degree ordering on AT ∗A, minimal degree ordering on AT +A, or natural ordering). Of these ordering
choices, the default value in the sunlinsol superlumt module is the COLAMD ordering.

Since the linear systems that arise within the context of sundials calculations will typically have
identical sparsity patterns, the sunlinsol superlumt module is constructed to perform the following
operations:

• The first time that the “setup” routine is called, it performs the symbolic factorization, followed
by an initial numerical factorization.

• On subsequent calls to the “setup” routine, it skips the symbolic factorization, and only refactors
the input matrix.
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• The “solve” call performs pivoting and forward and backward substitution using the stored
superlumt data structures. We note that in this solve superlumt operates on the native data
arrays for the right-hand side and solution vectors, without requiring costly data copies.

The header file to include when using this module is sunlinsol/sunlinsol superlumt.h. The in-
stalled module library to link to is libsundials sunlinsolsuperlumt.lib where .lib is typically
.so for shared libraries and .a for static libraries.
The sunlinsol superlumt module defines implementations of all “direct” linear solver operations
listed in Table 8.2:

• SUNLinSolGetType SuperLUMT

• SUNLinSolInitialize SuperLUMT – this sets the first factorize flag to 1 and resets the
internal superlumt statistics variables.

• SUNLinSolSetup SuperLUMT – this performs either a LU factorization or refactorization of the
input matrix.

• SUNLinSolSolve SuperLUMT – this calls the appropriate superlumt solve routine to utilize the
LU factors to solve the linear system.

• SUNLinSolLastFlag SuperLUMT

• SUNLinSolSpace SuperLUMT – this only returns information for the storage within the solver
interface, i.e. storage for the integers last flag and first factorize. For additional space
requirements, see the superlumt documentation.

• SUNLinSolFree SuperLUMT

The module sunlinsol superlumt provides the following additional user-callable routines:

• SUNSuperLUMT

This constructor function creates and allocates memory for a sunlinsol superlumt object.
Its arguments are an nvector, a sunmatrix, and a desired number of threads (OpenMP or
Pthreads, depending on how superlumt was installed) to use during the factorization steps.
This routine analyzes the input matrix and vector to determine the linear system size and to
assess compatibility with the superlumt library.

This routine will perform consistency checks to ensure that it is called with consistent nvector
and sunmatrix implementations. These are currently limited to the sunmatrix sparse matrix
type (using either CSR or CSC storage formats) and the nvector serial, nvector openmp,
and nvector pthreads vector types. As additional compatible matrix and vector implemen-
tations are added to sundials, these will be included within this compatibility check.

If either A or y are incompatible then this routine will return NULL. The num threads argument
is not checked and is passed directly to superlumt routines.

SUNLinearSolver SUNSuperLUMT(N_Vector y, SUNMatrix A, int num_threads);

• SUNSuperLUMTSetOrdering

This function sets the ordering used by superlumt for reducing fill in the linear solve. Options
for ordering choice are:

0 natural ordering

1 minimal degree ordering on ATA

2 minimal degree ordering on AT +A

3 COLAMD ordering for unsymmetric matrices
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The default is 3 for COLAMD.

The return values from this function are SUNLS MEM NULL (S is NULL), SUNLS ILL INPUT (invalid
ordering choice), or SUNLS SUCCESS.

int SUNSuperLUMTSetOrdering(SUNLinearSolver S, int ordering_choice);

For solvers that include a Fortran interface module, the sunlinsol superlumt module also includes
the Fortran-callable function FSUNSuperLUMTInit(code, num threads, ier) to initialize this sun-
linsol superlumt module for a given sundials solver. Here code is an integer input solver id (1
for cvode, 2 for ida, 3 for kinsol, 4 for arkode); num threads is the desired number of Open-
MP/Pthreads threads to use in the factorization; ier is an error return flag equal to 0 for suc-
cess and -1 for failure. All of these arguments should be declared so as to match C type int.
This routine must be called after both the nvector and sunmatrix objects have been initial-
ized. Additionally, when using arkode with a non-identity mass matrix, the Fortran-callable func-
tion FSUNMassSuperLUMTInit(num threads, ier) initializes this sunlinsol superlumt module for
solving mass matrix linear systems.

The SUNSuperLUMTSetOrdering routine also supports Fortran interfaces for the system and mass
matrix solvers:

• FSUNSuperLUMTSetOrdering(code, ordering, ier) – ordering should be commensurate with
a C int

• FSUNMassSuperLUMTSetOrdering(ordering, ier)

8.9 The SUNLinearSolver SPGMR implementation

The spgmr (Scaled, Preconditioned, Generalized Minimum Residual [28]) implementation of the
sunlinsol module provided with sundials, sunlinsol spgmr, is an iterative linear solver that is
designed to be compatible with any nvector implementation (serial, threaded, parallel, and user-
supplied) that supports a minimal subset of operations (N VClone, N VDotProd, N VScale, N VLinearSum,
N VProd, N VConst, N VDiv, and N VDestroy).

The sunlinsol spgmr module defines the content field of a SUNLinearSolver to be the following
structure:

struct _SUNLinearSolverContent_SPGMR {
int maxl;
int pretype;
int gstype;
int max_restarts;
int numiters;
realtype resnorm;
long int last_flag;
ATimesFn ATimes;
void* ATData;
PSetupFn Psetup;
PSolveFn Psolve;
void* PData;
N_Vector s1;
N_Vector s2;
N_Vector *V;
realtype **Hes;
realtype *givens;
N_Vector xcor;
realtype *yg;
N_Vector vtemp;

};
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These entries of the content field contain the following information:

maxl - number of GMRES basis vectors to use (default is 5),

pretype - flag for type of preconditioning to employ (default is none),

gstype - flag for type of Gram-Schmidt orthogonalization (default is modified Gram-Schmidt),

max restarts - number of GMRES restarts to allow (default is 0),

numiters - number of iterations from the most-recent solve,

resnorm - final linear residual norm from the most-recent solve,

last flag - last error return flag from an internal function,

ATimes - function pointer to perform Av product,

ATData - pointer to structure for ATimes,

Psetup - function pointer to preconditioner setup routine,

Psolve - function pointer to preconditioner solve routine,

PData - pointer to structure for Psetup and Psolve,

s1, s2 - vector pointers for supplied scaling matrices (default is NULL),

V - the array of Krylov basis vectors v1, . . . , vmaxl+1, stored in V[0], . . . , V[maxl]. Each vi is a vector
of type nvector.,

Hes - the (maxl + 1) × maxl Hessenberg matrix. It is stored row-wise so that the (i,j)th element is
given by Hes[i][j].,

givens - a length 2*maxl array which represents the Givens rotation matrices that arise in the GMRES

algorithm. These matrices are F0, F1, . . . , Fj , where Fi =
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are represented in the givens vector as givens[0] = c0, givens[1] = s0, givens[2] = c1,
givens[3] = s1, . . . givens[2j] = cj , givens[2j+1] = sj .,

xcor - a vector which holds the scaled, preconditioned correction to the initial guess,

yg - a length (maxl+1) array of realtype values used to hold “short” vectors (e.g. y and g),

vtemp - temporary vector storage.

This solver is constructed to perform the following operations:

• During construction, the xcor and vtemp arrays are cloned from a template nvector that is
input, and default solver parameters are set.

• User-facing “set” routines may be called to modify default solver parameters.

• Additional “set” routines are called by the sundials solver that interfaces with sunlinsol spgmr
to supply the ATimes, PSetup, and Psolve function pointers and s1 and s2 scaling vectors.



160 Description of the SUNLinearSolver module

• In the “initialize” call, the remaining solver data is allocated (V, Hes, givens, and yg )

• In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the
sundials solver itself, that translates between the generic PSetup function and the solver-specific
routine (solver-supplied or user-supplied).

• In the “solve” call, the GMRES iteration is performed. This will include scaling, preconditioning,
and restarts if those options have been supplied.

The header file to include when using this module is sunlinsol/sunlinsol spgmr.h. The sunlin-
sol spgmr module is accessible from all sundials solvers without linking to the

libsundials sunlinsolspgmr module library.
The sunlinsol spgmr module defines implementations of all “iterative” linear solver operations listed
in Table 8.2:

• SUNLinSolGetType SPGMR

• SUNLinSolInitialize SPGMR

• SUNLinSolSetATimes SPGMR

• SUNLinSolSetPreconditioner SPGMR

• SUNLinSolSetScalingVectors SPGMR

• SUNLinSolSetup SPGMR

• SUNLinSolSolve SPGMR

• SUNLinSolNumIters SPGMR

• SUNLinSolResNorm SPGMR

• SUNLinSolResid SPGMR

• SUNLinSolLastFlag SPGMR

• SUNLinSolSpace SPGMR

• SUNLinSolFree SPGMR

The module sunlinsol spgmr provides the following additional user-callable routines:

• SUNSPGMR

This constructor function creates and allocates memory for a spgmr SUNLinearSolver. Its
arguments are an nvector, the desired type of preconditioning, and the number of Krylov
basis vectors to use.

This routine will perform consistency checks to ensure that it is called with a consistent nvector
implementation (i.e. that it supplies the requisite vector operations). If y is incompatible, then
this routine will return NULL.

A maxl argument that is ≤ 0 will result in the default value (5).

Allowable inputs for pretype are PREC NONE (0), PREC LEFT (1), PREC RIGHT (2) and PREC BOTH
(3); any other integer input will result in the default (no preconditioning). We note that some
sundials solvers are designed to only work with left preconditioning (ida and idas) and others
with only right preconditioning (kinsol). While it is possible to configure a sunlinsol spgmr
object to use any of the preconditioning options with these solvers, this use mode is not supported
and may result in inferior performance.

SUNLinearSolver SUNSPGMR(N_Vector y, int pretype, int maxl);
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• SUNSPGMRSetPrecType

This function updates the type of preconditioning to use. Supported values are PREC NONE (0),
PREC LEFT (1), PREC RIGHT (2) and PREC BOTH (3).

This routine will return with one of the error codes SUNLS ILL INPUT (illegal pretype), SUNLS MEM NULL
(S is NULL) or SUNLS SUCCESS.

int SUNSPGMRSetPrecType(SUNLinearSolver S, int pretype);

• SUNSPGMRSetGSType

This function sets the type of Gram-Schmidt orthogonalization to use. Supported values are
MODIFIED GS (1) and CLASSICAL GS (2). Any other integer input will result in a failure, returning
error code SUNLS ILL INPUT.

This routine will return with one of the error codes SUNLS ILL INPUT (illegal gstype), SUNLS MEM NULL
(S is NULL) or SUNLS SUCCESS.

int SUNSPGMRSetGSType(SUNLinearSolver S, int gstype);

• SUNSPGMRSetMaxRestarts

This function sets the number of GMRES restarts to allow. A negative input will result in the
default of 0.

This routine will return with one of the error codes SUNLS MEM NULL (S is NULL) or SUNLS SUCCESS.

int SUNSPGMRSetMaxRestarts(SUNLinearSolver S, int maxrs);

For solvers that include a Fortran interface module, the sunlinsol spgmr module also includes
the Fortran-callable function FSUNSPGMRInit(code, pretype, maxl, ier) to initialize this sunlin-
sol spgmr module for a given sundials solver. Here code is an integer input solver id (1 for cvode,
2 for ida, 3 for kinsol, 4 for arkode); pretype and maxl are the same as for the C function SUNSPGMR;
ier is an error return flag equal to 0 for success and -1 for failure. All of these input arguments should
be declared so as to match C type int. This routine must be called after the nvector object has been
initialized. Additionally, when using arkode with a non-identity mass matrix, the Fortran-callable
function FSUNMassSPGMRInit(pretype, maxl, ier) initializes this sunlinsol spgmr module for
solving mass matrix linear systems.

The SUNSPGMRSetPrecType, SUNSPGMRSetGSType and SUNSPGMRSetMaxRestarts routines also sup-
port Fortran interfaces for the system and mass matrix solvers (all arguments should be commensurate
with a C int):

• FSUNSPGMRSetGSType(code, gstype, ier)

• FSUNMassSPGMRSetGSType(gstype, ier)

• FSUNSPGMRSetPrecType(code, pretype, ier)

• FSUNMassSPGMRSetPrecType(pretype, ier)

• FSUNSPGMRSetMaxRS(code, maxrs, ier)

• FSUNMassSPGMRSetMaxRS(maxrs, ier)

8.10 The SUNLinearSolver SPFGMR implementation

The spfgmr (Scaled, Preconditioned, Flexible, Generalized Minimum Residual [27]) implementation
of the sunlinsol module provided with sundials, sunlinsol spfgmr, is an iterative linear solver
that is designed to be compatible with any nvector implementation (serial, threaded, parallel,
and user-supplied) that supports a minimal subset of operations (N VClone, N VDotProd, N VScale,
N VLinearSum, N VProd, N VConst, N VDiv, and N VDestroy). Unlike the other Krylov iterative linear
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solvers supplied with sundials, FGMRES is specifically designed to work with a changing precondi-
tioner (e.g. from an iterative method).

The sunlinsol spfgmr module defines the content field of a SUNLinearSolver to be the following
structure:

struct _SUNLinearSolverContent_SPFGMR {
int maxl;
int pretype;
int gstype;
int max_restarts;
int numiters;
realtype resnorm;
long int last_flag;
ATimesFn ATimes;
void* ATData;
PSetupFn Psetup;
PSolveFn Psolve;
void* PData;
N_Vector s1;
N_Vector s2;
N_Vector *V;
N_Vector *Z;
realtype **Hes;
realtype *givens;
N_Vector xcor;
realtype *yg;
N_Vector vtemp;

};

These entries of the content field contain the following information:

maxl - number of FGMRES basis vectors to use (default is 5),

pretype - flag for use of preconditioning (default is none),

gstype - flag for type of Gram-Schmidt orthogonalization (default is modified Gram-Schmidt),

max restarts - number of FGMRES restarts to allow (default is 0),

numiters - number of iterations from the most-recent solve,

resnorm - final linear residual norm from the most-recent solve,

last flag - last error return flag from an internal function,

ATimes - function pointer to perform Av product,

ATData - pointer to structure for ATimes,

Psetup - function pointer to preconditioner setup routine,

Psolve - function pointer to preconditioner solve routine,

PData - pointer to structure for Psetup and Psolve,

s1, s2 - vector pointers for supplied scaling matrices (default is NULL),

V - the array of Krylov basis vectors v1, . . . , vmaxl+1, stored in V[0], . . . , V[maxl]. Each vi is a vector
of type nvector.,
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Z - the array of preconditioned Krylov basis vectors z1, . . . , zmaxl+1, stored in Z[0], . . . , Z[maxl].
Each zi is a vector of type nvector.,

Hes - the (maxl + 1) × maxl Hessenberg matrix. It is stored row-wise so that the (i,j)th element is
given by Hes[i][j].,

givens - a length 2*maxl array which represents the Givens rotation matrices that arise in the FGM-
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are represented in the givens vector as givens[0] = c0, givens[1] = s0, givens[2] = c1,
givens[3] = s1, . . . givens[2j] = cj , givens[2j+1] = sj .,

xcor - a vector which holds the scaled, preconditioned correction to the initial guess,

yg - a length (maxl+1) array of realtype values used to hold “short” vectors (e.g. y and g),

vtemp - temporary vector storage.

This solver is constructed to perform the following operations:

• During construction, the xcor and vtemp arrays are cloned from a template nvector that is
input, and default solver parameters are set.

• User-facing “set” routines may be called to modify default solver parameters.

• Additional “set” routines are called by the sundials solver that interfaces with sunlinsol spfgmr
to supply the ATimes, PSetup, and Psolve function pointers and s1 and s2 scaling vectors.

• In the “initialize” call, the remaining solver data is allocated (V, Hes, givens, and yg )

• In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the
sundials solver itself, that translates between the generic PSetup function and the solver-specific
routine (solver-supplied or user-supplied).

• In the “solve” call, the FGMRES iteration is performed. This will include scaling, precondition-
ing, and restarts if those options have been supplied.

The header file to include when using this module is sunlinsol/sunlinsol spfgmr.h. The sunlin-
sol spfgmr module is accessible from all sundials solvers without linking to the

libsundials sunlinsolspfgmr module library.
The sunlinsol spfgmr module defines implementations of all “iterative” linear solver operations
listed in Table 8.2:

• SUNLinSolGetType SPFGMR

• SUNLinSolInitialize SPFGMR

• SUNLinSolSetATimes SPFGMR

• SUNLinSolSetPreconditioner SPFGMR

• SUNLinSolSetScalingVectors SPFGMR

• SUNLinSolSetup SPFGMR
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• SUNLinSolSolve SPFGMR

• SUNLinSolNumIters SPFGMR

• SUNLinSolResNorm SPFGMR

• SUNLinSolResid SPFGMR

• SUNLinSolLastFlag SPFGMR

• SUNLinSolSpace SPFGMR

• SUNLinSolFree SPFGMR

The module sunlinsol spfgmr provides the following additional user-callable routines:

• SUNSPFGMR

This constructor function creates and allocates memory for a spfgmr SUNLinearSolver. Its
arguments are an nvector, a flag indicating to use preconditioning, and the number of Krylov
basis vectors to use.

This routine will perform consistency checks to ensure that it is called with a consistent nvector
implementation (i.e. that it supplies the requisite vector operations). If y is incompatible, then
this routine will return NULL.

A maxl argument that is ≤ 0 will result in the default value (5).

Since the FGMRES algorithm is designed to only support right preconditioning, then any of the
pretype inputs PREC LEFT (1), PREC RIGHT (2), or PREC BOTH (3) will result in use of PREC RIGHT;
any other integer input will result in the default (no preconditioning). We note that some
SUNDIALS solvers are designed to only work with left preconditioning (ida and idas). While
it is possible to use a right-preconditioned sunlinsol spfgmr object for these packages, this
use mode is not supported and may result in inferior performance.

SUNLinearSolver SUNSPFGMR(N_Vector y, int pretype, int maxl);

• SUNSPFGMRSetPrecType

This function updates the flag indicating use of preconditioning. Since the FGMRES algorithm
is designed to only support right preconditioning, then any of the pretype inputs PREC LEFT
(1), PREC RIGHT (2), or PREC BOTH (3) will result in use of PREC RIGHT; any other integer input
will result in the default (no preconditioning).

This routine will return with one of the error codes SUNLS MEM NULL (S is NULL) or SUNLS SUCCESS.

int SUNSPFGMRSetPrecType(SUNLinearSolver S, int pretype);

• SUNSPFGMRSetGSType

This function sets the type of Gram-Schmidt orthogonalization to use. Supported values are
MODIFIED GS (1) and CLASSICAL GS (2). Any other integer input will result in a failure, returning
error code SUNLS ILL INPUT.

This routine will return with one of the error codes SUNLS ILL INPUT (illegal gstype), SUNLS MEM NULL
(S is NULL), or SUNLS SUCCESS.

int SUNSPFGMRSetGSType(SUNLinearSolver S, int gstype);

• SUNSPFGMRSetMaxRestarts

This function sets the number of FGMRES restarts to allow. A negative input will result in the
default of 0.

This routine will return with one of the error codes SUNLS MEM NULL (S is NULL) or SUNLS SUCCESS.

int SUNSPFGMRSetMaxRestarts(SUNLinearSolver S, int maxrs);
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For solvers that include a Fortran interface module, the sunlinsol spfgmr module also includes
the Fortran-callable function FSUNSPFGMRInit(code, pretype, maxl, ier) to initialize this sun-
linsol spfgmr module for a given sundials solver. Here code is an integer input solver id (1 for
cvode, 2 for ida, 3 for kinsol, 4 for arkode); pretype and maxl are the same as for the C func-
tion SUNSPFGMR; ier is an error return flag equal to 0 for success and -1 for failure. All of these
input arguments should be declared so as to match C type int. This routine must be called af-
ter the nvector object has been initialized. Additionally, when using arkode with a non-identity
mass matrix, the Fortran-callable function FSUNMassSPFGMRInit(pretype, maxl, ier) initializes
this sunlinsol spfgmr module for solving mass matrix linear systems.

The SUNSPFGMRSetPrecType, SUNSPFGMRSetGSType, and SUNSPFGMRSetMaxRestarts routines also
support Fortran interfaces for the system and mass matrix solvers (all arguments should be commen-
surate with a C int):

• FSUNSPFGMRSetGSType(code, gstype, ier)

• FSUNMassSPFGMRSetGSType(gstype, ier)

• FSUNSPFGMRSetPrecType(code, pretype, ier)

• FSUNMassSPFGMRSetPrecType(pretype, ier)

• FSUNSPFGMRSetMaxRS(code, maxrs, ier)

• FSUNMassSPFGMRSetMaxRS(maxrs, ier)

8.11 The SUNLinearSolver SPBCGS implementation

The spbcgs (Scaled, Preconditioned, Bi-Conjugate Gradient, Stabilized [29]) implementation of
the sunlinsol module provided with sundials, sunlinsol spbcgs, is an iterative linear solver
that is designed to be compatible with any nvector implementation (serial, threaded, parallel,
and user-supplied) that supports a minimal subset of operations (N VClone, N VDotProd, N VScale,
N VLinearSum, N VProd, N VDiv, and N VDestroy). Unlike the spgmr and spfgmr algorithms, sp-
bcgs requires a fixed amount of memory that does not increase with the number of allowed iterations.

The sunlinsol spbcgs module defines the content field of a SUNLinearSolver to be the following
structure:

struct _SUNLinearSolverContent_SPBCGS {
int maxl;
int pretype;
int numiters;
realtype resnorm;
long int last_flag;
ATimesFn ATimes;
void* ATData;
PSetupFn Psetup;
PSolveFn Psolve;
void* PData;
N_Vector s1;
N_Vector s2;
N_Vector r;
N_Vector r_star;
N_Vector p;
N_Vector q;
N_Vector u;
N_Vector Ap;
N_Vector vtemp;

};
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These entries of the content field contain the following information:

maxl - number of spbcgs iterations to allow (default is 5),

pretype - flag for type of preconditioning to employ (default is none),

numiters - number of iterations from the most-recent solve,

resnorm - final linear residual norm from the most-recent solve,

last flag - last error return flag from an internal function,

ATimes - function pointer to perform Av product,

ATData - pointer to structure for ATimes,

Psetup - function pointer to preconditioner setup routine,

Psolve - function pointer to preconditioner solve routine,

PData - pointer to structure for Psetup and Psolve,

s1, s2 - vector pointers for supplied scaling matrices (default is NULL),

r - a nvector which holds the current scaled, preconditioned linear system residual,

r star - a nvector which holds the initial scaled, preconditioned linear system residual,

p, q, u, Ap, vtemp - nvectors used for workspace by the spbcgs algorithm.

This solver is constructed to perform the following operations:

• During construction all nvector solver data is allocated, with vectors cloned from a template
nvector that is input, and default solver parameters are set.

• User-facing “set” routines may be called to modify default solver parameters.

• Additional “set” routines are called by the sundials solver that interfaces with sunlinsol spbcgs
to supply the ATimes, PSetup, and Psolve function pointers and s1 and s2 scaling vectors.

• In the “initialize” call, the solver parameters are checked for validity.

• In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the
sundials solver itself, that translates between the generic PSetup function and the solver-specific
routine (solver-supplied or user-supplied).

• In the “solve” call the spbcgs iteration is performed. This will include scaling and precondi-
tioning if those options have been supplied.

The header file to include when using this module is sunlinsol/sunlinsol spbcgs.h. The sunlin-
sol spbcgs module is accessible from all sundials solvers without linking to the

libsundials sunlinsolspbcgs module library.
The sunlinsol spbcgs module defines implementations of all “iterative” linear solver operations
listed in Table 8.2:

• SUNLinSolGetType SPBCGS

• SUNLinSolInitialize SPBCGS

• SUNLinSolSetATimes SPBCGS

• SUNLinSolSetPreconditioner SPBCGS

• SUNLinSolSetScalingVectors SPBCGS
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• SUNLinSolSetup SPBCGS

• SUNLinSolSolve SPBCGS

• SUNLinSolNumIters SPBCGS

• SUNLinSolResNorm SPBCGS

• SUNLinSolResid SPBCGS

• SUNLinSolLastFlag SPBCGS

• SUNLinSolSpace SPBCGS

• SUNLinSolFree SPBCGS

The module sunlinsol spbcgs provides the following additional user-callable routines:

• SUNSPBCGS

This constructor function creates and allocates memory for a spbcgs SUNLinearSolver. Its
arguments are an nvector, the desired type of preconditioning, and the number of linear
iterations to allow.

This routine will perform consistency checks to ensure that it is called with a consistent nvector
implementation (i.e. that it supplies the requisite vector operations). If y is incompatible, then
this routine will return NULL.

A maxl argument that is ≤ 0 will result in the default value (5).

Allowable inputs for pretype are PREC NONE (0), PREC LEFT (1), PREC RIGHT (2) and PREC BOTH
(3); any other integer input will result in the default (no preconditioning). We note that some
sundials solvers are designed to only work with left preconditioning (ida and idas) and others
with only right preconditioning (kinsol). While it is possible to configure a sunlinsol spbcgs
object to use any of the preconditioning options with these solvers, this use mode is not supported
and may result in inferior performance.

SUNLinearSolver SUNSPBCGS(N_Vector y, int pretype, int maxl);

• SUNSPBCGSSetPrecType

This function updates the type of preconditioning to use. Supported values are PREC NONE (0),
PREC LEFT (1), PREC RIGHT (2), and PREC BOTH (3).

This routine will return with one of the error codes SUNLS ILL INPUT (illegal pretype), SUNLS MEM NULL
(S is NULL), or SUNLS SUCCESS.

int SUNSPBCGSSetPrecType(SUNLinearSolver S, int pretype);

• SUNSPBCGSSetMaxl

This function updates the number of linear solver iterations to allow.

A maxl argument that is ≤ 0 will result in the default value (5).

This routine will return with one of the error codes SUNLS MEM NULL (S is NULL) or SUNLS SUCCESS.

int SUNSPBCGSSetMaxl(SUNLinearSolver S, int maxl);

For solvers that include a Fortran interface module, the sunlinsol spbcgs module also includes
the Fortran-callable function FSUNSPBCGSInit(code, pretype, maxl, ier) to initialize this sun-
linsol spbcgs module for a given sundials solver. Here code is an integer input solver id (1 for
cvode, 2 for ida, 3 for kinsol, 4 for arkode); pretype and maxl are the same as for the C func-
tion SUNSPBCGS; ier is an error return flag equal to 0 for success and -1 for failure. All of these
input arguments should be declared so as to match C type int. This routine must be called af-
ter the nvector object has been initialized. Additionally, when using arkode with a non-identity
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mass matrix, the Fortran-callable function FSUNMassSPBCGSInit(pretype, maxl, ier) initializes
this sunlinsol spbcgs module for solving mass matrix linear systems.

The SUNSPBCGSSetPrecType and SUNSPBCGSSetMaxl routines also support Fortran interfaces for
the system and mass matrix solvers (all arguments should be commensurate with a C int):

• FSUNSPBCGSSetPrecType(code, pretype, ier)

• FSUNMassSPBCGSSetPrecType(pretype, ier)

• FSUNSPBCGSSetMaxl(code, maxl, ier)

• FSUNMassSPBCGSSetMaxl(maxl, ier)

8.12 The SUNLinearSolver SPTFQMR implementation

The sptfqmr (Scaled, Preconditioned, Transpose-Free Quasi-Minimum Residual [13]) implementa-
tion of the sunlinsol module provided with sundials, sunlinsol sptfqmr, is an iterative linear
solver that is designed to be compatible with any nvector implementation (serial, threaded, parallel,
and user-supplied) that supports a minimal subset of operations (N VClone, N VDotProd, N VScale,
N VLinearSum, N VProd, N VConst, N VDiv, and N VDestroy). Unlike the spgmr and spfgmr al-
gorithms, sptfqmr requires a fixed amount of memory that does not increase with the number of
allowed iterations.

The sunlinsol sptfqmr module defines the content field of a SUNLinearSolver to be the fol-
lowing structure:

struct _SUNLinearSolverContent_SPTFQMR {
int maxl;
int pretype;
int numiters;
realtype resnorm;
long int last_flag;
ATimesFn ATimes;
void* ATData;
PSetupFn Psetup;
PSolveFn Psolve;
void* PData;
N_Vector s1;
N_Vector s2;
N_Vector r_star;
N_Vector q;
N_Vector d;
N_Vector v;
N_Vector p;
N_Vector *r;
N_Vector u;
N_Vector vtemp1;
N_Vector vtemp2;
N_Vector vtemp3;

};

These entries of the content field contain the following information:

maxl - number of TFQMR iterations to allow (default is 5),

pretype - flag for type of preconditioning to employ (default is none),

numiters - number of iterations from the most-recent solve,
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resnorm - final linear residual norm from the most-recent solve,

last flag - last error return flag from an internal function,

ATimes - function pointer to perform Av product,

ATData - pointer to structure for ATimes,

Psetup - function pointer to preconditioner setup routine,

Psolve - function pointer to preconditioner solve routine,

PData - pointer to structure for Psetup and Psolve,

s1, s2 - vector pointers for supplied scaling matrices (default is NULL),

r star - a nvector which holds the initial scaled, preconditioned linear system residual,

q, d, v, p, u - nvectors used for workspace by the SPTFQMR algorithm,

r - array of two nvectors used for workspace within the SPTFQMR algorithm,

vtemp1, vtemp2, vtemp3 - temporary vector storage.

This solver is constructed to perform the following operations:

• During construction all nvector solver data is allocated, with vectors cloned from a template
nvector that is input, and default solver parameters are set.

• User-facing “set” routines may be called to modify default solver parameters.

• Additional “set” routines are called by the sundials solver that interfaces with sunlinsol sptfqmr
to supply the ATimes, PSetup, and Psolve function pointers and s1 and s2 scaling vectors.

• In the “initialize” call, the solver parameters are checked for validity.

• In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the
sundials solver itself, that translates between the generic PSetup function and the solver-specific
routine (solver-supplied or user-supplied).

• In the “solve” call the TFQMR iteration is performed. This will include scaling and precondi-
tioning if those options have been supplied.

The header file to include when using this module is sunlinsol/sunlinsol sptfqmr.h. The sun-
linsol sptfqmr module is accessible from all sundials solvers without linking to the

libsundials sunlinsolsptfqmr module library.
The sunlinsol sptfqmr module defines implementations of all “iterative” linear solver operations
listed in Table 8.2:

• SUNLinSolGetType SPTFQMR

• SUNLinSolInitialize SPTFQMR

• SUNLinSolSetATimes SPTFQMR

• SUNLinSolSetPreconditioner SPTFQMR

• SUNLinSolSetScalingVectors SPTFQMR

• SUNLinSolSetup SPTFQMR

• SUNLinSolSolve SPTFQMR

• SUNLinSolNumIters SPTFQMR
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• SUNLinSolResNorm SPTFQMR

• SUNLinSolResid SPTFQMR

• SUNLinSolLastFlag SPTFQMR

• SUNLinSolSpace SPTFQMR

• SUNLinSolFree SPTFQMR

The module sunlinsol sptfqmr provides the following additional user-callable routines:

• SUNSPTFQMR

This constructor function creates and allocates memory for a sptfqmr SUNLinearSolver. Its
arguments are an nvector, the desired type of preconditioning, and the number of linear
iterations to allow.

This routine will perform consistency checks to ensure that it is called with a consistent nvector
implementation (i.e. that it supplies the requisite vector operations). If y is incompatible, then
this routine will return NULL.

A maxl argument that is ≤ 0 will result in the default value (5).

Allowable inputs for pretype are PREC NONE (0), PREC LEFT (1), PREC RIGHT (2) and PREC BOTH
(3); any other integer input will result in the default (no preconditioning). We note that
some sundials solvers are designed to only work with left preconditioning (ida and idas)
and others with only right preconditioning (kinsol). While it is possible to configure a sun-
linsol sptfqmr object to use any of the preconditioning options with these solvers, this use
mode is not supported and may result in inferior performance.

SUNLinearSolver SUNSPTFQMR(N_Vector y, int pretype, int maxl);

• SUNSPTFQMRSetPrecType

This function updates the type of preconditioning to use. Supported values are PREC NONE (0),
PREC LEFT (1), PREC RIGHT (2), and PREC BOTH (3).

This routine will return with one of the error codes SUNLS ILL INPUT (illegal pretype), SUNLS MEM NULL
(S is NULL), or SUNLS SUCCESS.

int SUNSPTFQMRSetPrecType(SUNLinearSolver S, int pretype);

• SUNSPTFQMRSetMaxl

This function updates the number of linear solver iterations to allow.

A maxl argument that is ≤ 0 will result in the default value (5).

This routine will return with one of the error codes SUNLS MEM NULL (S is NULL) or SUNLS SUCCESS.

int SUNSPTFQMRSetMaxl(SUNLinearSolver S, int maxl);

For solvers that include a Fortran interface module, the sunlinsol sptfqmr module also includes
the Fortran-callable function FSUNSPTFQMRInit(code, pretype, maxl, ier) to initialize this sun-
linsol sptfqmr module for a given sundials solver. Here code is an integer input solver id (1
for cvode, 2 for ida, 3 for kinsol, 4 for arkode); pretype and maxl are the same as for the C
function SUNSPTFQMR; ier is an error return flag equal to 0 for success and -1 for failure. All of
these input arguments should be declared so as to match C type int. This routine must be called
after the nvector object has been initialized. Additionally, when using arkode with a non-identity
mass matrix, the Fortran-callable function FSUNMassSPTFQMRInit(pretype, maxl, ier) initializes
this sunlinsol sptfqmr module for solving mass matrix linear systems.

The SUNSPTFQMRSetPrecType and SUNSPTFQMRSetMaxl routines also support Fortran interfaces
for the system and mass matrix solvers (all arguments should be commensurate with a C int):

• FSUNSPTFQMRSetPrecType(code, pretype, ier)
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• FSUNMassSPTFQMRSetPrecType(pretype, ier)

• FSUNSPTFQMRSetMaxl(code, maxl, ier)

• FSUNMassSPTFQMRSetMaxl(maxl, ier)

8.13 The SUNLinearSolver PCG implementation

The pcg (Preconditioned Conjugate Gradient [14]) implementation of the sunlinsol module provided
with sundials, sunlinsol pcg, is an iterative linear solver that is designed to be compatible with
any nvector implementation (serial, threaded, parallel, and user-supplied) that supports a minimal
subset of operations (N VClone, N VDotProd, N VScale, N VLinearSum, N VProd, and N VDestroy).
Unlike the spgmr and spfgmr algorithms, pcg requires a fixed amount of memory that does not
increase with the number of allowed iterations.

Unlike all of the other iterative linear solvers supplied with sundials, pcg should only be used
on symmetric linear systems (e.g. mass matrix linear systems encountered in arkode). As a result,
the explanation of the role of scaling and preconditioning matrices given in general must be modified
in this scenario. The pcg algorithm solves a linear system Ax = b where A is a symmetric (AT = A),
real-valued matrix. Preconditioning is allowed, and is applied in a symmetric fashion on both the
right and left. Scaling is also allowed and is applied symmetrically. We denote the preconditioner and
scaling matrices as follows:

• P is the preconditioner (assumed symmetric),

• S is a diagonal matrix of scale factors.

The matrices A and P are not required explicitly; only routines that provide A and P−1 as operators
are required. The diagonal of the matrix S is held in a single nvector, supplied by the user.

In this notation, pcg applies the underlying CG algorithm to the equivalent transformed system

Ãx̃ = b̃ (8.3)

where

Ã = SP−1AP−1S,

b̃ = SP−1b, (8.4)

x̃ = S−1Px.

The scaling matrix must be chosen so that the vectors SP−1b and S−1Px have dimensionless com-
ponents.

The stopping test for the PCG iterations is on the L2 norm of the scaled preconditioned residual:

‖b̃− Ãx̃‖2 < δ

⇔
‖SP−1b− SP−1Ax‖2 < δ

⇔
‖P−1b− P−1Ax‖S < δ

where ‖v‖S =
√
vTSTSv, with an input tolerance δ.

The sunlinsol pcg module defines the content field of a SUNLinearSolver to be the following
structure:

struct _SUNLinearSolverContent_PCG {
int maxl;
int pretype;
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int numiters;
realtype resnorm;
long int last_flag;
ATimesFn ATimes;
void* ATData;
PSetupFn Psetup;
PSolveFn Psolve;
void* PData;
N_Vector s;
N_Vector r;
N_Vector p;
N_Vector z;
N_Vector Ap;

};

These entries of the content field contain the following information:

maxl - number of pcg iterations to allow (default is 5),

pretype - flag for use of preconditioning (default is none),

numiters - number of iterations from the most-recent solve,

resnorm - final linear residual norm from the most-recent solve,

last flag - last error return flag from an internal function,

ATimes - function pointer to perform Av product,

ATData - pointer to structure for ATimes,

Psetup - function pointer to preconditioner setup routine,

Psolve - function pointer to preconditioner solve routine,

PData - pointer to structure for Psetup and Psolve,

s - vector pointer for supplied scaling matrix (default is NULL),

r - a nvector which holds the preconditioned linear system residual,

p, z, Ap - nvectors used for workspace by the pcg algorithm.

This solver is constructed to perform the following operations:

• During construction all nvector solver data is allocated, with vectors cloned from a template
nvector that is input, and default solver parameters are set.

• User-facing “set” routines may be called to modify default solver parameters.

• Additional “set” routines are called by the sundials solver that interfaces with sunlinsol pcg
to supply the ATimes, PSetup, and Psolve function pointers and s scaling vector.

• In the “initialize” call, the solver parameters are checked for validity.

• In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the
sundials solver itself, that translates between the generic PSetup function and the solver-specific
routine (solver-supplied or user-supplied).

• In the “solve” call the pcg iteration is performed. This will include scaling and preconditioning
if those options have been supplied.
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The header file to include when using this module is sunlinsol/sunlinsol pcg.h. The sunlin-
sol pcg module is accessible from all sundials solvers without linking to the

libsundials sunlinsolpcg module library.
The sunlinsol pcg module defines implementations of all “iterative” linear solver operations listed
in Table 8.2:

• SUNLinSolGetType PCG

• SUNLinSolInitialize PCG

• SUNLinSolSetATimes PCG

• SUNLinSolSetPreconditioner PCG

• SUNLinSolSetScalingVectors PCG – since pcg only supports symmetric scaling, the second
nvector argument to this function is ignored

• SUNLinSolSetup PCG

• SUNLinSolSolve PCG

• SUNLinSolNumIters PCG

• SUNLinSolResNorm PCG

• SUNLinSolResid PCG

• SUNLinSolLastFlag PCG

• SUNLinSolSpace PCG

• SUNLinSolFree PCG

The module sunlinsol pcg provides the following additional user-callable routines:

• SUNPCG

This constructor function creates and allocates memory for a pcg SUNLinearSolver. Its ar-
guments are an nvector, a flag indicating to use preconditioning, and the number of linear
iterations to allow.
This routine will perform consistency checks to ensure that it is called with a consistent nvector
implementation (i.e. that it supplies the requisite vector operations). If y is incompatible then
this routine will return NULL.
A maxl argument that is ≤ 0 will result in the default value (5).
Since the pcg algorithm is designed to only support symmetric preconditioning, then any of
the pretype inputs PREC LEFT (1), PREC RIGHT (2), or PREC BOTH (3) will result in use of the
symmetric preconditioner; any other integer input will result in the default (no preconditioning).
Although some sundials solvers are designed to only work with left preconditioning (ida and
idas) and others with only right preconditioning (kinsol), pcg should only be used with these
packages when the linear systems are known to be symmetric. Since the scaling of matrix rows
and columns must be identical in a symmetric matrix, symmetric preconditioning should work
appropriately even for packages designed with one-sided preconditioning in mind.
SUNLinearSolver SUNPCG(N_Vector y, int pretype, int maxl);

• SUNPCGSetPrecType

This function updates the flag indicating use of preconditioning. As above, any one of the input
values, PREC LEFT (1), PREC RIGHT (2), or PREC BOTH (3) will enable preconditioning; PREC NONE
(0) disables preconditioning.
This routine will return with one of the error codes SUNLS ILL INPUT (illegal pretype), SUNLS MEM NULL
(S is NULL), or SUNLS SUCCESS.
int SUNPCGSetPrecType(SUNLinearSolver S, int pretype);
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• SUNPCGSetMaxl

This function updates the number of linear solver iterations to allow.

A maxl argument that is ≤ 0 will result in the default value (5).

This routine will return with one of the error codes SUNLS MEM NULL (S is NULL) or SUNLS SUCCESS.

int SUNPCGSetMaxl(SUNLinearSolver S, int maxl);

For solvers that include a Fortran interface module, the sunlinsol pcg module also includes the
Fortran-callable function FSUNPCGInit(code, pretype, maxl, ier) to initialize this sunlinsol pcg
module for a given sundials solver. Here code is an integer input solver id (1 for cvode, 2 for ida,
3 for kinsol, 4 for arkode); pretype and maxl are the same as for the C function SUNPCG; ier is
an error return flag equal to 0 for success and -1 for failure. All of these input arguments should be
declared so as to match C type int. This routine must be called after the nvector object has been
initialized. Additionally, when using arkode with a non-identity mass matrix, the Fortran-callable
function FSUNMassPCGInit(pretype, maxl, ier) initializes this sunlinsol pcg module for solving
mass matrix linear systems.

The SUNPCGSetPrecType and SUNPCGSetMaxl routines also support Fortran interfaces for the
system and mass matrix solvers (all arguments should be commensurate with a C int):

• FSUNPCGSetPrecType(code, pretype, ier)

• FSUNMassPCGSetPrecType(pretype, ier)

• FSUNPCGSetMaxl(code, maxl, ier)

• FSUNMassPCGSetMaxl(maxl, ier)

8.14 SUNLinearSolver Examples

There are SUNLinearSolver examples that may be installed for each implementation; these make
use of the functions in test sunlinsol.c. These example functions show simple usage of the
SUNLinearSolver family of functions. The inputs to the examples depend on the linear solver type,
and are output to stdout if the example is run without the appropriate number of command-line
arguments.
The following is a list of the example functions in test sunlinsol.c:

• Test SUNLinSolGetType: Verifies the returned solver type against the value that should be
returned.

• Test SUNLinSolInitialize: Verifies that SUNLinSolInitialize can be called and returns
successfully.

• Test SUNLinSolSetup: Verifies that SUNLinSolSetup can be called and returns successfully.

• Test SUNLinSolSolve: Given a sunmatrix object A, nvector objects x and b (where Ax = b)
and a desired solution tolerance tol, this routine clones x into a new vector y, calls SUNLinSolSolve
to fill y as the solution to Ay = b (to the input tolerance), verifies that each entry in x and y
match to within 10*tol, and overwrites x with y prior to returning (in case the calling routine
would like to investigate further).

• Test SUNLinSolSetATimes (iterative solvers only): Verifies that SUNLinSolSetATimes can be
called and returns successfully.

• Test SUNLinSolSetPreconditioner (iterative solvers only): Verifies that SUNLinSolSetPreconditioner
can be called and returns successfully.

• Test SUNLinSolSetScalingVectors (iterative solvers only): Verifies that SUNLinSolSetScalingVectors
can be called and returns successfully.
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• Test SUNLinSolLastFlag: Verifies that SUNLinSolLastFlag can be called, and outputs the
result to stdout.

• Test SUNLinSolNumIters (iterative solvers only): Verifies that SUNLinSolNumIters can be
called, and outputs the result to stdout.

• Test SUNLinSolResNorm (iterative solvers only): Verifies that SUNLinSolResNorm can be called,
and that the result is non-negative.

• Test SUNLinSolResid (iterative solvers only): Verifies that SUNLinSolResid can be called.

• Test SUNLinSolSpace verifies that SUNLinSolSpace can be called, and outputs the results to
stdout.

We’ll note that these tests should be performed in a particular order. For either direct or iterative lin-
ear solvers, Test SUNLinSolInitialize must be called before Test SUNLinSolSetup, which must be
called before Test SUNLinSolSolve. Additionally, for iterative linear solvers Test SUNLinSolSetATimes,
Test SUNLinSolSetPreconditioner and Test SUNLinSolSetScalingVectors should be called be-
fore Test SUNLinSolInitialize; similarly Test SUNLinSolNumIters, Test SUNLinSolResNorm and
Test SUNLinSolResid should be called after Test SUNLinSolSolve. These are called in the appro-
priate order in all of the example problems.

8.15 SUNLinearSolver functions used by CVODE

In Table 8.5, we list the linear solver functions in the sunlinsol module used within the cvode
package. The table also shows, for each function, which of the code modules uses the function.
In general, the main cvode integrator considers three categories of linear solvers, direct, iterative
and custom, with interfaces accessible in the cvode header files cvode/cvode direct.h (cvdls),
cvode/cvode spils.h (cvspils) and cvode/cvode customls.h (cvcls), respectively. Hence, the
table columns reference the use of sunlinsol functions by each of these solver interfaces.

As with the sunmatrix module, we emphasize that the cvode user does not need to know detailed
usage of linear solver functions by the cvode code modules in order to use cvode. The information
is presented as an implementation detail for the interested reader.

Table 8.5: List of linear solver functions usage by cvode code modules

c
v
d
l
s

c
v
sp

il
s

c
v
c
l
s

SUNLinSolGetType X X †
SUNLinSolSetATimes X †

SUNLinSolSetPreconditioner X †
SUNLinSolSetScalingVectors X †

SUNLinSolInitialize X X X
SUNLinSolSetup X X X
SUNLinSolSolve X X X

SUNLinSolNumIters X †
SUNLinSolResNorm X †
SUNLinSolResid X †

SUNLinSolLastFlag
SUNLinSolFree X X X
SUNLinSolSpace † † †

The linear solver functions listed in Table 8.2 with a † symbol are optionally used, in that these
are only called if they are implemented in the sunlinsol module that is being used (i.e. their function
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pointers are non-NULL). Also, although cvode does not call SUNLinSolLastFlag directly, this routine
is available for users to query linear solver issues directly.



Appendix A

SUNDIALS Package Installation
Procedure

The installation of any sundials package is accomplished by installing the sundials suite as a whole,
according to the instructions that follow. The same procedure applies whether or not the downloaded
file contains one or all solvers in sundials.

The sundials suite (or individual solvers) are distributed as compressed archives (.tar.gz).
The name of the distribution archive is of the form solver-x.y.z.tar.gz, where solver is one of:
sundials, cvode, cvodes, arkode, ida, idas, or kinsol, and x.y.z represents the version number
(of the sundials suite or of the individual solver) . To begin the installation, first uncompress and
expand the sources, by issuing

% tar xzf solver-x.y.z.tar.gz

This will extract source files under a directory solver-x.y.z.
Starting with version 2.6.0 of sundials, CMake is the only supported method of installation.

The explanations of the installation procedure begins with a few common observations:

• The remainder of this chapter will follow these conventions:

srcdir is the directory solver-x.y.z created above; i.e., the directory containing the sundials
sources.

builddir is the (temporary) directory under which sundials is built.

instdir is the directory under which the sundials exported header files and libraries will be
installed. Typically, header files are exported under a directory instdir/include while
libraries are installed under instdir/lib, with instdir specified at configuration time.

• For sundials CMake-based installation, in-source builds are prohibited; in other words, the
build directory builddir can not be the same as srcdir and such an attempt will lead to an error.
This prevents “polluting” the source tree and allows efficient builds for different configurations
and/or options.

• The installation directory instdir can not be the same as the source directory srcdir.

• By default, only the libraries and header files are exported to the installation directory instdir.
If enabled by the user (with the appropriate toggle for CMake), the examples distributed with
sundials will be built together with the solver libraries but the installation step will result
in exporting (by default in a subdirectory of the installation directory) the example sources
and sample outputs together with automatically generated configuration files that reference the
installed sundials headers and libraries. As such, these configuration files for the sundials ex-
amples can be used as ”templates” for your own problems. CMake installs CMakeLists.txt files
and also (as an option available only under Unix/Linux) Makefile files. Note this installation
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approach also allows the option of building the sundials examples without having to install
them. (This can be used as a sanity check for the freshly built libraries.)

• Even if generation of shared libraries is enabled, only static libraries are created for the FCMIX
modules. (Because of the use of fixed names for the Fortran user-provided subroutines, FCMIX
shared libraries would result in ”undefined symbol” errors at link time.)

A.1 CMake-based installation

CMake-based installation provides a platform-independent build system. CMake can generate Unix
and Linux Makefiles, as well as KDevelop, Visual Studio, and (Apple) XCode project files from the
same configuration file. In addition, CMake also provides a GUI front end and which allows an
interactive build and installation process.

The sundials build process requires CMake version 2.8.12 or higher and a working C compiler.
On Unix-like operating systems, it also requires Make (and curses, including its development libraries,
for the GUI front end to CMake, ccmake), while on Windows it requires Visual Studio. CMake is con-
tinually adding new features, and the latest version can be downloaded from http://www.cmake.org.
Build instructions for CMake (only necessary for Unix-like systems) can be found on the CMake web-
site. Once CMake is installed, Linux/Unix users will be able to use ccmake, while Windows users will
be able to use CMakeSetup.

As previously noted, when using CMake to configure, build and install sundials, it is always
required to use a separate build directory. While in-source builds are possible, they are explicitly
prohibited by the sundials CMake scripts (one of the reasons being that, unlike autotools, CMake
does not provide a make distclean procedure and it is therefore difficult to clean-up the source tree
after an in-source build). By ensuring a separate build directory, it is an easy task for the user to
clean-up all traces of the build by simply removing the build directory. CMake does generate a make
clean which will remove files generated by the compiler and linker.

A.1.1 Configuring, building, and installing on Unix-like systems

The default CMake configuration will build all included solvers and associated examples and will build
static and shared libraries. The installdir defaults to /usr/local and can be changed by setting the
CMAKE INSTALL PREFIX variable. Support for FORTRAN and all other options are disabled.

CMake can be used from the command line with the cmake command, or from a curses-based
GUI by using the ccmake command. Examples for using both methods will be presented. For the
examples shown it is assumed that there is a top level sundials directory with appropriate source,
build and install directories:

% mkdir (...)sundials/instdir
% mkdir (...)sundials/builddir
% cd (...)sundials/builddir

Building with the GUI

Using CMake with the GUI follows this general process:

• Select and modify values, run configure (c key)

• New values are denoted with an asterisk

• To set a variable, move the cursor to the variable and press enter

– If it is a boolean (ON/OFF) it will toggle the value

– If it is string or file, it will allow editing of the string

– For file and directories, the <tab> key can be used to complete
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• Repeat until all values are set as desired and the generate option is available (g key)

• Some variables (advanced variables) are not visible right away

• To see advanced variables, toggle to advanced mode (t key)

• To search for a variable press / key, and to repeat the search, press the n key

To build the default configuration using the GUI, from the builddir enter the ccmake command
and point to the srcdir:

% ccmake ../srcdir

The default configuration screen is shown in Figure A.1.

Figure A.1: Default configuration screen. Note: Initial screen is empty. To get this default config-
uration, press ’c’ repeatedly (accepting default values denoted with asterisk) until the ’g’ option is
available.

The default instdir for both sundials and corresponding examples can be changed by setting the
CMAKE INSTALL PREFIX and the EXAMPLES INSTALL PATH as shown in figure A.2.

Pressing the (g key) will generate makefiles including all dependencies and all rules to build sun-
dials on this system. Back at the command prompt, you can now run:

% make

To install sundials in the installation directory specified in the configuration, simply run:

% make install
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Figure A.2: Changing the instdir for sundials and corresponding examples

Building from the command line

Using CMake from the command line is simply a matter of specifying CMake variable settings with
the cmake command. The following will build the default configuration:

% cmake -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \
> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \
> ../srcdir
% make
% make install

A.1.2 Configuration options (Unix/Linux)

A complete list of all available options for a CMake-based sundials configuration is provide below.
Note that the default values shown are for a typical configuration on a Linux system and are provided
as illustration only.

BLAS ENABLE - Enable BLAS support
Default: OFF
Note: Setting this option to ON will trigger additional CMake options. See additional informa-
tion on building with BLAS enabled in A.1.4.

BLAS LIBRARIES - BLAS library
Default: /usr/lib/libblas.so
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Note: CMake will search for libraries in your LD LIBRARY PATH prior to searching default system
paths.

BUILD ARKODE - Build the ARKODE library
Default: ON

BUILD CVODE - Build the CVODE library
Default: ON

BUILD CVODES - Build the CVODES library
Default: ON

BUILD IDA - Build the IDA library
Default: ON

BUILD IDAS - Build the IDAS library
Default: ON

BUILD KINSOL - Build the KINSOL library
Default: ON

BUILD SHARED LIBS - Build shared libraries
Default: ON

BUILD STATIC LIBS - Build static libraries
Default: ON

CMAKE BUILD TYPE - Choose the type of build, options are: None (CMAKE C FLAGS used), Debug,
Release, RelWithDebInfo, and MinSizeRel
Default:
Note: Specifying a build type will trigger the corresponding build type specific compiler flag
options below which will be appended to the flags set by CMAKE <language> FLAGS.

CMAKE C COMPILER - C compiler
Default: /usr/bin/cc

CMAKE C FLAGS - Flags for C compiler
Default:

CMAKE C FLAGS DEBUG - Flags used by the C compiler during debug builds
Default: -g

CMAKE C FLAGS MINSIZEREL - Flags used by the C compiler during release minsize builds
Default: -Os -DNDEBUG

CMAKE C FLAGS RELEASE - Flags used by the C compiler during release builds
Default: -O3 -DNDEBUG

CMAKE CXX COMPILER - C++ compiler
Default: /usr/bin/c++
Note: A C++ compiler (and all related options) are only triggered if C++ examples are enabled
(EXAMPLES ENABLE CXX is ON). All sundials solvers can be used from C++ applications by
default without setting any additional configuration options.

CMAKE CXX FLAGS - Flags for C++ compiler
Default:

CMAKE CXX FLAGS DEBUG - Flags used by the C++ compiler during debug builds
Default: -g
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CMAKE CXX FLAGS MINSIZEREL - Flags used by the C++ compiler during release minsize builds
Default: -Os -DNDEBUG

CMAKE CXX FLAGS RELEASE - Flags used by the C++ compiler during release builds
Default: -O3 -DNDEBUG

CMAKE Fortran COMPILER - Fortran compiler
Default: /usr/bin/gfortran
Note: Fortran support (and all related options) are triggered only if either Fortran-C sup-
port is enabled (FCMIX ENABLE is ON) or BLAS/LAPACK support is enabled (BLAS ENABLE or
LAPACK ENABLE is ON).

CMAKE Fortran FLAGS - Flags for Fortran compiler
Default:

CMAKE Fortran FLAGS DEBUG - Flags used by the Fortran compiler during debug builds
Default: -g

CMAKE Fortran FLAGS MINSIZEREL - Flags used by the Fortran compiler during release minsize builds
Default: -Os

CMAKE Fortran FLAGS RELEASE - Flags used by the Fortran compiler during release builds
Default: -O3

CMAKE INSTALL PREFIX - Install path prefix, prepended onto install directories
Default: /usr/local
Note: The user must have write access to the location specified through this option. Exported
sundials header files and libraries will be installed under subdirectories include and lib of
CMAKE INSTALL PREFIX, respectively.

CUDA ENABLE - Build the sundials cuda vector module.
Default: OFF

EXAMPLES ENABLE C - Build the sundials C examples
Default: ON

EXAMPLES ENABLE CUDA - Build the sundials cuda examples
Default: OFF
Note: You need to enable cuda support to build these examples.

EXAMPLES ENABLE CXX - Build the sundials C++ examples
Default: OFF

EXAMPLES ENABLE RAJA - Build the sundials raja examples
Default: OFF
Note: You need to enable cuda and raja support to build these examples.

EXAMPLES ENABLE F77 - Build the sundials Fortran77 examples
Default: ON (if FCMIX ENABLE is ON)

EXAMPLES ENABLE F90 - Build the sundials Fortran90 examples
Default: OFF

EXAMPLES INSTALL - Install example files
Default: ON
Note: This option is triggered when any of the sundials example programs are enabled
(EXAMPLES ENABLE <language> is ON). If the user requires installation of example programs
then the sources and sample output files for all sundials modules that are currently enabled
will be exported to the directory specified by EXAMPLES INSTALL PATH. A CMake configuration
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script will also be automatically generated and exported to the same directory. Additionally, if
the configuration is done under a Unix-like system, makefiles for the compilation of the example
programs (using the installed sundials libraries) will be automatically generated and exported
to the directory specified by EXAMPLES INSTALL PATH.

EXAMPLES INSTALL PATH - Output directory for installing example files
Default: /usr/local/examples
Note: The actual default value for this option will be an examples subdirectory created under
CMAKE INSTALL PREFIX.

FCMIX ENABLE - Enable Fortran-C support
Default: OFF

HYPRE ENABLE - Enable hypre support
Default: OFF
Note: See additional information on building with hypre enabled in A.1.4.

HYPRE INCLUDE DIR - Path to hypre header files

HYPRE LIBRARY DIR - Path to hypre installed library files

KLU ENABLE - Enable KLU support
Default: OFF
Note: See additional information on building with KLU enabled in A.1.4.

KLU INCLUDE DIR - Path to SuiteSparse header files

KLU LIBRARY DIR - Path to SuiteSparse installed library files

LAPACK ENABLE - Enable LAPACK support
Default: OFF
Note: Setting this option to ON will trigger additional CMake options. See additional informa-
tion on building with LAPACK enabled in A.1.4.

LAPACK LIBRARIES - LAPACK (and BLAS) libraries
Default: /usr/lib/liblapack.so;/usr/lib/libblas.so
Note: CMake will search for libraries in your LD LIBRARY PATH prior to searching default system
paths.

MPI ENABLE - Enable MPI support (build the parallel nvector).
Default: OFF
Note: Setting this option to ON will trigger several additional options related to MPI.

MPI MPICC - mpicc program
Default:

MPI MPICXX - mpicxx program
Default:
Note: This option is triggered only if MPI is enabled (MPI ENABLE is ON) and C++ examples are
enabled (EXAMPLES ENABLE CXX is ON). All sundials solvers can be used from C++ MPI appli-
cations by default without setting any additional configuration options other than MPI ENABLE.

MPI MPIF77 - mpif77 program
Default:
Note: This option is triggered only if MPI is enabled (MPI ENABLE is ON) and Fortran-C support
is enabled (FCMIX ENABLE is ON).
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MPI MPIF90 - mpif90 program
Default:
Note: This option is triggered only if MPI is enabled (MPI ENABLE is ON), Fortran-C support is
enabled (FCMIX ENABLE is ON), and Fortran90 examples are enabled (EXAMPLES ENABLE F90 is
ON).

MPI RUN COMMAND - Specify run command for MPI
Default: mpirun Note: This option is triggered only if MPI is enabled (MPI ENABLE is ON).

OPENMP ENABLE - Enable OpenMP support (build the OpenMP nvector).
Default: OFF

PETSC ENABLE - Enable PETSc support
Default: OFF
Note: See additional information on building with PETSc enabled in A.1.4.

PETSC INCLUDE DIR - Path to PETSc header files

PETSC LIBRARY DIR - Path to PETSc installed library files

PTHREAD ENABLE - Enable Pthreads support (build the Pthreads nvector).
Default: OFF

RAJA ENABLE - Enable raja support (build the raja nvector).
Default: OFF
Note: You need to enable cuda in order to build the raja vector module.

SUNDIALS INDEX TYPE - Integer type used for sundials indices, options are: int32 t or int64 t
Default: int64 t

SUNDIALS PRECISION - Precision used in sundials, options are: double, single, or extended
Default: double

SUPERLUMT ENABLE - Enable SuperLU MT support
Default: OFF
Note: See additional information on building with SuperLU MT enabled in A.1.4.

SUPERLUMT INCLUDE DIR - Path to SuperLU MT header files (typically SRC directory)

SUPERLUMT LIBRARY DIR - Path to SuperLU MT installed library files

SUPERLUMT THREAD TYPE - Must be set to Pthread or OpenMP
Default: Pthread

USE GENERIC MATH - Use generic (stdc) math libraries
Default: ON

xSDK Configuration Options

sundials supports CMake configuration options defined by the Extreme-scale Scientific Software
Development Kit (xSDK) community policies (see https://xsdk.info for more information). xSDK
CMake options are unused by default but may be activated by setting USE XSDK DEFAULTS to ON.

When xSDK options are active, they will overwrite the corresponding sundials option and may
have different default values (see details below). As such the equivalent sundials options should
not be used when configuring with xSDK options. In the GUI front end to CMake (ccmake), setting
USE XSDK DEFAULTS to ON will hide the corresponding sundials options as advanced CMake variables.
During configuration, messages are output detailing which xSDK flags are active and the equivalent
sundials options that are replaced. Below is a complete list xSDK options and the corresponding
sundials options if applicable.
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TPL BLAS LIBRARIES - BLAS library
Default: /usr/lib/libblas.so
sundials equivalent: BLAS LIBRARIES
Note: CMake will search for libraries in your LD LIBRARY PATH prior to searching default system
paths.

TPL ENABLE BLAS - Enable BLAS support
Default: OFF
sundials equivalent: BLAS ENABLE

TPL ENABLE HYPRE - Enable hypre support
Default: OFF
sundials equivalent: HYPRE ENABLE

TPL ENABLE KLU - Enable KLU support
Default: OFF
sundials equivalent: KLU ENABLE

TPL ENABLE PETSC - Enable PETSc support
Default: OFF
sundials equivalent: PETSC ENABLE

TPL ENABLE LAPACK - Enable LAPACK support
Default: OFF
sundials equivalent: LAPACK ENABLE

TPL ENABLE SUPERLUMT - Enable SuperLU MT support
Default: OFF
sundials equivalent: SUPERLUMT ENABLE

TPL HYPRE INCLUDE DIRS - Path to hypre header files
sundials equivalent: HYPRE INCLUDE DIR

TPL HYPRE LIBRARIES - hypre library
sundials equivalent: N/A

TPL KLU INCLUDE DIRS - Path to KLU header files
sundials equivalent: KLU INCLUDE DIR

TPL KLU LIBRARIES - KLU library
sundials equivalent: N/A

TPL LAPACK LIBRARIES - LAPACK (and BLAS) libraries
Default: /usr/lib/liblapack.so;/usr/lib/libblas.so
sundials equivalent: LAPACK LIBRARIES
Note: CMake will search for libraries in your LD LIBRARY PATH prior to searching default system
paths.

TPL PETSC INCLUDE DIRS - Path to PETSc header files
sundials equivalent: PETSC INCLUDE DIR

TPL PETSC LIBRARIES - PETSc library
sundials equivalent: N/A

TPL SUPERLUMT INCLUDE DIRS - Path to SuperLU MT header files
sundials equivalent: SUPERLUMT INCLUDE DIR

TPL SUPERLUMT LIBRARIES - SuperLU MT library
sundials equivalent: N/A
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TPL SUPERLUMT THREAD TYPE - SuperLU MT library thread type
sundials equivalent: SUPERLUMT THREAD TYPE

USE XSDK DEFAULTS - Enable xSDK default configuration settings
Default: OFF
sundials equivalent: N/A
Note: Enabling xSDK defaults also sets CMAKE BUILD TYPE to Debug

XSDK ENABLE FORTRAN - Enable sundials Fortran interface
Default: OFF
sundials equivalent: FCMIX ENABLE

XSDK INDEX SIZE - Integer size (bits) used for indices in sundials, options are: 32 or 64
Default: 32
sundials equivalent: SUNDIALS INDEX TYPE

XSDK PRECISION - Precision used in sundials, options are: double, single, or quad
Default: double
sundials equivalent: SUNDIALS PRECISION

A.1.3 Configuration examples

The following examples will help demonstrate usage of the CMake configure options.
To configure sundials using the default C and Fortran compilers, and default mpicc and mpif77
parallel compilers, enable compilation of examples, and install libraries, headers, and example sources
under subdirectories of /home/myname/sundials/, use:

% cmake \
> -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \
> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \
> -DMPI_ENABLE=ON \
> -DFCMIX_ENABLE=ON \
> /home/myname/sundials/srcdir
%
% make install
%

To disable installation of the examples, use:

% cmake \
> -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \
> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \
> -DMPI_ENABLE=ON \
> -DFCMIX_ENABLE=ON \
> -DEXAMPLES_INSTALL=OFF \
> /home/myname/sundials/srcdir
%
% make install
%

A.1.4 Working with external Libraries

The sundials suite contains many options to enable implementation flexibility when developing so-
lutions. The following are some notes addressing specific configurations when using the supported
third party libraries. When building sundials as a shared library external libraries any used with
sundials must also be build as a shared library or as a static library compiled with the -fPIC flag.
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Building with BLAS

sundials does not utilize BLAS directly but it may be needed by other external libraries that sun-
dials can be build with (e.g. LAPACK, PETSc, SuperLU MT, etc.). To enable BLAS, set the
BLAS ENABLE option to ON. If the directory containing the BLAS library is in the LD LIBRARY PATH
environment variable, CMake will set the BLAS LIBRARIES variable accordingly, otherwise CMake will
attempt to find the BLAS library in standard system locations. To explicitly tell CMake what libraries
to use, the BLAS LIBRARIES variable can be set to the desired library. Example:

% cmake \
> -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \
> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \
> -DBLAS_ENABLE=ON \
> -DBLAS_LIBRARIES=/myblaspath/lib/libblas.so \
> -DSUPERLUMT_ENABLE=ON \
> -DSUPERLUMT_INCLUDE_DIR=/mysuperlumtpath/SRC
> -DSUPERLUMT_LIBRARY_DIR=/mysuperlumtpath/lib
> /home/myname/sundials/srcdir
%
% make install
%

If enabling LAPACK and allowing CMake to automatically locate the LAPACK library, it is not
necessary to also enable BLAS as CMake will find the corresponding BLAS library and include it
when searching for LAPACK.

Building with LAPACK

To enable LAPACK, set the LAPACK ENABLE option to ON. If the directory containing the LAPACK li-
brary is in the LD LIBRARY PATH environment variable, CMake will set the LAPACK LIBRARIES variable
accordingly, otherwise CMake will attempt to find the LAPACK library in standard system locations.
To explicitly tell CMake what library to use, the LAPACK LIBRARIES variable can be set to the de-
sired libraries. When setting the LAPACK location explicitly the location of the corresponding BLAS
library will also need to be set. Example:

% cmake \
> -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \
> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \
> -DBLAS_ENABLE=ON \
> -DBLAS_LIBRARIES=/mylapackpath/lib/libblas.so \
> -DLAPACK_ENABLE=ON \
> -DLAPACK_LIBRARIES=/mylapackpath/lib/liblapack.so \
> /home/myname/sundials/srcdir
%
% make install
%

If enabling LAPACK and allowing CMake to automatically locate the LAPACK library, it is not
necessary to also enable BLAS as CMake will find the corresponding BLAS library and include it
when searching for LAPACK.

Building with KLU

The KLU libraries are part of SuiteSparse, a suite of sparse matrix software, available from the Texas
A&M University website: http://faculty.cse.tamu.edu/davis/suitesparse.html. sundials has
been tested with SuiteSparse version 4.5.3. To enable KLU, set KLU ENABLE to ON, set KLU INCLUDE DIR
to the include path of the KLU installation and set KLU LIBRARY DIR to the lib path of the KLU
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installation. The CMake configure will result in populating the following variables: AMD LIBRARY,
AMD LIBRARY DIR, BTF LIBRARY, BTF LIBRARY DIR, COLAMD LIBRARY, COLAMD LIBRARY DIR, and
KLU LIBRARY.

Building with SuperLU MT

The SuperLU MT libraries are available for download from the Lawrence Berkeley National Labo-
ratory website: http://crd-legacy.lbl.gov/∼xiaoye/SuperLU/#superlu mt. sundials has been
tested with SuperLU MT version 3.1. To enable SuperLU MT, set SUPERLUMT ENABLE to ON, set
SUPERLUMT INCLUDE DIR to the SRC path of the SuperLU MT installation, and set the variable
SUPERLUMT LIBRARY DIR to the lib path of the SuperLU MT installation. At the same time, the
variable SUPERLUMT THREAD TYPE must be set to either Pthread or OpenMP.
Do not mix thread types when building sundials solvers. If threading is enabled for sundials by
having either OPENMP ENABLE or PTHREAD ENABLE set to ON then SuperLU MT should be set to use
the same threading type.

Building with PETSc

The PETSc libraries are available for download from the Argonne National Laboratory website:
http://www.mcs.anl.gov/petsc. sundials has been tested with PETSc version 3.7.2. To en-
able PETSc, set PETSC ENABLE to ON, set PETSC INCLUDE DIR to the include path of the PETSc
installation, and set the variable PETSC LIBRARY DIR to the lib path of the PETSc installation.

Building with hypre

The hypre libraries are available for download from the Lawrence Livermore National Laboratory
website: http://computation.llnl.gov/projects/hypre. sundials has been tested with hypre
version 2.11.1. To enable hypre, set HYPRE ENABLE to ON, set HYPRE INCLUDE DIR to the include
path of the hypre installation, and set the variable HYPRE LIBRARY DIR to the lib path of the hypre
installation.

Building with CUDA

sundials cuda modules and examples are tested with version 8.0 of the cuda toolkit. To build them,
you need to install the Toolkit and compatible NVIDIA drivers. Both are available for download
from NVIDIA website: https://developer.nvidia.com/cuda-downloads. To enable cuda, set
CUDA ENABLE to ON. If you installed cuda in a nonstandard location, you may be prompted to set the
variable CUDA TOOLKIT ROOT DIR with your cuda Toolkit installation path. To enable cuda examples,
set EXAMPLES ENABLE CUDA to ON.

Building with RAJA

To build sundials raja modules you need to enable sundials cuda support, first. You also need a
cuda-enabled raja installation on your system. raja is free software, developed by Lawrence Liver-
more National Laboratory, and can be obtained from https://github.com/LLNL/RAJA. Next you need
to set RAJA ENABLE to ON, to enable building the raja vector module, and EXAMPLES ENABLE RAJA to
ON to build the raja examples. If you installed raja to a nonstandard location you will be prompted
to set the variable RAJA DIR with the path to the raja CMake configuration file. sundials was tested
with raja version 0.3.

A.1.5 Testing the build and installation

If sundials was configured with EXAMPLES ENABLE <language> options to ON, then a set of regression
tests can be run after building with the make command by running:

% make test
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Additionally, if EXAMPLES INSTALL was also set to ON, then a set of smoke tests can be run after
installing with the make install command by running:

% make test_install

A.2 Building and Running Examples

Each of the sundials solvers is distributed with a set of examples demonstrating basic usage. To
build and install the examples, set at least of the EXAMPLES ENABLE <language> options to ON,
and set EXAMPLES INSTALL to ON. Specify the installation path for the examples with the variable
EXAMPLES INSTALL PATH. CMake will generate CMakeLists.txt configuration files (and Makefile
files if on Linux/Unix) that reference the installed sundials headers and libraries.

Either the CMakeLists.txt file or the traditional Makefile may be used to build the examples as
well as serve as a template for creating user developed solutions. To use the supplied Makefile simply
run make to compile and generate the executables. To use CMake from within the installed example
directory, run cmake (or ccmake to use the GUI) followed by make to compile the example code.
Note that if CMake is used, it will overwrite the traditional Makefile with a new CMake-generated
Makefile. The resulting output from running the examples can be compared with example output
bundled in the sundials distribution.
NOTE: There will potentially be differences in the output due to machine architecture, compiler
versions, use of third party libraries etc.

A.3 Configuring, building, and installing on Windows

CMake can also be used to build sundials on Windows. To build sundials for use with Visual
Studio the following steps should be performed:

1. Unzip the downloaded tar file(s) into a directory. This will be the srcdir

2. Create a separate builddir

3. Open a Visual Studio Command Prompt and cd to builddir

4. Run cmake-gui ../srcdir

(a) Hit Configure

(b) Check/Uncheck solvers to be built

(c) Change CMAKE INSTALL PREFIX to instdir

(d) Set other options as desired

(e) Hit Generate

5. Back in the VS Command Window:

(a) Run msbuild ALL BUILD.vcxproj

(b) Run msbuild INSTALL.vcxproj

The resulting libraries will be in the instdir. The sundials project can also now be opened in Visual
Studio. Double click on the ALL BUILD.vcxproj file to open the project. Build the whole solution to
create the sundials libraries. To use the sundials libraries in your own projects, you must set the
include directories for your project, add the sundials libraries to your project solution, and set the
sundials libraries as dependencies for your project.
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A.4 Installed libraries and exported header files

Using the CMake sundials build system, the command

% make install

will install the libraries under libdir and the public header files under includedir. The values for these
directories are instdir/lib and instdir/include, respectively. The location can be changed by setting
the CMake variable CMAKE INSTALL PREFIX. Although all installed libraries reside under libdir/lib,
the public header files are further organized into subdirectories under includedir/include.

The installed libraries and exported header files are listed for reference in Table A.1. The file
extension .lib is typically .so for shared libraries and .a for static libraries. Note that, in the Tables,
names are relative to libdir for libraries and to includedir for header files.

A typical user program need not explicitly include any of the shared sundials header files from
under the includedir/include/sundials directory since they are explicitly included by the appropriate
solver header files (e.g., cvode dense.h includes sundials dense.h). However, it is both legal and
safe to do so, and would be useful, for example, if the functions declared in sundials dense.h are to
be used in building a preconditioner.

Table A.1: sundials libraries and header files
shared Libraries n/a

Header files sundials/sundials config.h sundials/sundials fconfig.h
sundials/sundials types.h sundials/sundials math.h
sundials/sundials nvector.h sundials/sundials fnvector.h
sundials/sundials iterative.h sundials/sundials direct.h
sundials/sundials dense.h sundials/sundials band.h
sundials/sundials matrix.h sundials/sundials version.h
sundials/sundials linearsolver.h

nvector serial Libraries libsundials nvecserial.lib libsundials fnvecserial.a
Header files nvector/nvector serial.h

nvector parallel Libraries libsundials nvecparallel.lib libsundials fnvecparallel.a
Header files nvector/nvector parallel.h

nvector openmp Libraries libsundials nvecopenmp.lib libsundials fnvecopenmp.a
Header files nvector/nvector openmp.h

nvector pthreads Libraries libsundials nvecpthreads.lib libsundials fnvecpthreads.a
Header files nvector/nvector pthreads.h

nvector parhyp Libraries libsundials nvecparhyp.lib
Header files nvector/nvector parhyp.h

nvector petsc Libraries libsundials nvecpetsc.lib
Header files nvector/nvector petsc.h

nvector cuda Libraries libsundials nveccuda.lib
Header files nvector/nvector cuda.h

nvector/cuda/ThreadPartitioning.hpp
nvector/cuda/Vector.hpp
nvector/cuda/VectorKernels.cuh

continued on next page
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nvector raja Libraries libsundials nvecraja.lib
Header files nvector/nvector raja.h

nvector/raja/Vector.hpp
sunmatrix band Libraries libsundials sunmatrixband.lib

libsundials fsunmatrixband.a
Header files sunmatrix/sunmatrix band.h

sunmatrix dense Libraries libsundials sunmatrixdense.lib
libsundials fsunmatrixdense.a

Header files sunmatrix/sunmatrix dense.h
sunmatrix sparse Libraries libsundials sunmatrixsparse.lib

libsundials fsunmatrixsparse.a
Header files sunmatrix/sunmatrix sparse.h

sunlinsol band Libraries libsundials sunlinsolband.lib
libsundials fsunlinsolband.a

Header files sunlinsol/sunlinsol band.h
sunlinsol dense Libraries libsundials sunlinsoldense.lib

libsundials fsunlinsoldense.a
Header files sunlinsol/sunlinsol dense.h

sunlinsol klu Libraries libsundials sunlinsolklu.lib
libsundials fsunlinsolklu.a

Header files sunlinsol/sunlinsol klu.h
sunlinsol lapackband Libraries libsundials sunlinsollapackband.lib

libsundials fsunlinsollapackband.a
Header files sunlinsol/sunlinsol lapackband.h

sunlinsol lapackdense Libraries libsundials sunlinsollapackdense.lib
libsundials fsunlinsollapackdense.a

Header files sunlinsol/sunlinsol lapackdense.h
sunlinsol pcg Libraries libsundials sunlinsolpcg.lib

libsundials fsunlinsolpcg.a
Header files sunlinsol/sunlinsol pcg.h

sunlinsol spbcgs Libraries libsundials sunlinsolspbcgs.lib
libsundials fsunlinsolspbcgs.a

Header files sunlinsol/sunlinsol spbcgs.h
sunlinsol spfgmr Libraries libsundials sunlinsolspfgmr.lib

libsundials fsunlinsolspfgmr.a
Header files sunlinsol/sunlinsol spfgmr.h

sunlinsol spgmr Libraries libsundials sunlinsolspgmr.lib
libsundials fsunlinsolspgmr.a

Header files sunlinsol/sunlinsol spgmr.h
sunlinsol sptfqmr Libraries libsundials sunlinsolsptfqmr.lib

libsundials fsunlinsolsptfqmr.a
continued on next page
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Header files sunlinsol/sunlinsol sptfqmr.h
sunlinsol superlumt Libraries libsundials sunlinsolsuperlumt.lib

libsundials fsunlinsolsuperlumt.a
Header files sunlinsol/sunlinsol superlumt.h

cvode Libraries libsundials cvode.lib libsundials fcvode.a
Header files cvode/cvode.h cvode/cvode impl.h

cvode/cvode direct.h cvode/cvode spils.h
cvode/cvode bandpre.h cvode/cvode bbdpre.h

cvodes Libraries libsundials cvodes.lib
Header files cvodes/cvodes.h cvodes/cvodes impl.h

cvodes/cvodes direct.h cvodes/cvodes spils.h
cvodes/cvodes bandpre.h cvodes/cvodes bbdpre.h

arkode Libraries libsundials arkode.lib libsundials farkode.a
Header files arkode/arkode.h arkode/arkode impl.h

arkode/arkode direct.h arkode/arkode spils.h
arkode/arkode bandpre.h arkode/arkode bbdpre.h

ida Libraries libsundials ida.lib libsundials fida.a
Header files ida/ida.h ida/ida impl.h

ida/ida direct.h ida/ida spils.h
ida/ida bbdpre.h

idas Libraries libsundials idas.lib
Header files idas/idas.h idas/idas impl.h

idas/idas direct.h idas/idas spils.h
idas/idas bbdpre.h

kinsol Libraries libsundials kinsol.lib libsundials fkinsol.a
Header files kinsol/kinsol.h kinsol/kinsol impl.h

kinsol/kinsol direct.h kinsol/kinsol spils.h
kinsol/kinsol bbdpre.h
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CVODE Constants

Below we list all input and output constants used by the main solver and linear solver modules,
together with their numerical values and a short description of their meaning.

B.1 CVODE input constants

cvode main solver module

CV ADAMS 1 Adams-Moulton linear multistep method.
CV BDF 2 BDF linear multistep method.
CV FUNCTIONAL 1 Nonlinear system solution through functional iterations.
CV NEWTON 2 Nonlinear system solution through Newton iterations.
CV NORMAL 1 Solver returns at specified output time.
CV ONE STEP 2 Solver returns after each successful step.

Iterative linear solver module

PREC NONE 0 No preconditioning
PREC LEFT 1 Preconditioning on the left only.
PREC RIGHT 2 Preconditioning on the right only.
PREC BOTH 3 Preconditioning on both the left and the right.
MODIFIED GS 1 Use modified Gram-Schmidt procedure.
CLASSICAL GS 2 Use classical Gram-Schmidt procedure.

B.2 CVODE output constants

cvode main solver module

CV SUCCESS 0 Successful function return.
CV TSTOP RETURN 1 CVode succeeded by reaching the specified stopping point.
CV ROOT RETURN 2 CVode succeeded and found one or more roots.
CV WARNING 99 CVode succeeded but an unusual situation occurred.
CV TOO MUCH WORK -1 The solver took mxstep internal steps but could not reach

tout.
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CV TOO MUCH ACC -2 The solver could not satisfy the accuracy demanded by the
user for some internal step.

CV ERR FAILURE -3 Error test failures occurred too many times during one in-
ternal time step or minimum step size was reached.

CV CONV FAILURE -4 Convergence test failures occurred too many times during
one internal time step or minimum step size was reached.

CV LINIT FAIL -5 The linear solver’s initialization function failed.
CV LSETUP FAIL -6 The linear solver’s setup function failed in an unrecoverable

manner.
CV LSOLVE FAIL -7 The linear solver’s solve function failed in an unrecoverable

manner.
CV RHSFUNC FAIL -8 The right-hand side function failed in an unrecoverable man-

ner.
CV FIRST RHSFUNC ERR -9 The right-hand side function failed at the first call.
CV REPTD RHSFUNC ERR -10 The right-hand side function had repetead recoverable er-

rors.
CV UNREC RHSFUNC ERR -11 The right-hand side function had a recoverable error, but no

recovery is possible.
CV RTFUNC FAIL -12 The rootfinding function failed in an unrecoverable manner.
CV MEM FAIL -20 A memory allocation failed.
CV MEM NULL -21 The cvode mem argument was NULL.
CV ILL INPUT -22 One of the function inputs is illegal.
CV NO MALLOC -23 The cvode memory block was not allocated by a call to

CVodeMalloc.
CV BAD K -24 The derivative order k is larger than the order used.
CV BAD T -25 The time t is outside the last step taken.
CV BAD DKY -26 The output derivative vector is NULL.
CV TOO CLOSE -27 The output and initial times are too close to each other.

cvdls linear solver modules

CVDLS SUCCESS 0 Successful function return.
CVDLS MEM NULL -1 The cvode mem argument was NULL.
CVDLS LMEM NULL -2 The cvdls linear solver has not been initialized.
CVDLS ILL INPUT -3 The cvdls solver is not compatible with the current nvec-

tor module.
CVDLS MEM FAIL -4 A memory allocation request failed.
CVDLS JACFUNC UNRECVR -5 The Jacobian function failed in an unrecoverable manner.
CVDLS JACFUNC RECVR -6 The Jacobian function had a recoverable error.
CVDLS SUNMAT FAIL -7 An error occurred with the current sunmatrix module.

cvdiag linear solver module

CVDIAG SUCCESS 0 Successful function return.
CVDIAG MEM NULL -1 The cvode mem argument was NULL.
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CVDIAG LMEM NULL -2 The cvdiag linear solver has not been initialized.
CVDIAG ILL INPUT -3 The cvdiag solver is not compatible with the current nvec-

tor module.
CVDIAG MEM FAIL -4 A memory allocation request failed.
CVDIAG INV FAIL -5 A diagonal element of the Jacobian was 0.
CVDIAG RHSFUNC UNRECVR -6 The right-hand side function failed in an unrecoverable man-

ner.
CVDIAG RHSFUNC RECVR -7 The right-hand side function had a recoverable error.

cvspils linear solver modules

CVSPILS SUCCESS 0 Successful function return.
CVSPILS MEM NULL -1 The cvode mem argument was NULL.
CVSPILS LMEM NULL -2 The cvspils linear solver has not been initialized.
CVSPILS ILL INPUT -3 The cvspils solver is not compatible with the current nvec-

tor module, or an input value was illegal.
CVSPILS MEM FAIL -4 A memory allocation request failed.
CVSPILS PMEM NULL -5 The preconditioner module has not been initialized.
CVSPILS SUNLS FAIL -6 An error occurred with the current sunlinsol module.
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CVSpilsGetNumJTSetupEvals, 56
CVSpilsGetNumLinIters, 55
CVSpilsGetNumPrecEvals, 56
CVSpilsGetNumPrecSolves, 56
CVSpilsGetNumRhsEvals, 57
CVSpilsGetReturnFlagName, 57
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CVSpilsJacTimesSetupFn, 64
CVSpilsJacTimesVecFn, 63
CVSpilsPrecSetupFn, 65
CVSpilsPrecSolveFn, 65
CVSpilsSetEpsLin, 43
CVSpilsSetJacTimes, 43
CVSpilsSetLinearSolver, 27, 32, 33
CVSpilsSetPreconditioner, 42

data types
Fortran, 75

eh data, 61
error control

order selection, 14
step size selection, 14

error messages, 36
redirecting, 36
user-defined handler, 37, 60

FCVBANDSETJAC, 81
FCVBBDINIT, 90
FCVBBDOPT, 90
FCVBBDREINIT, 91
FCVBJAC, 81
FCVBPINIT, 88
FCVBPOPT, 89
FCVCOMMFN, 91
FCVDENSESETJAC, 81
FCVDIAG, 84
FCVDJAC, 80
FCVDKY, 84
FCVDLSINIT, 80
FCVEWT, 79
FCVEWTSET, 80
FCVFREE, 85
FCVFUN, 78
FCVGETERRWEIGHTS, 85
FCVGETESTLOCALERR, 85
FCVGLOCFN, 91
FCVJTIMES, 82, 91
FCVJTSETUP, 83, 91
FCVMALLOC, 79
FCVMALLOC, 79
FCVODE, 84
fcvode interface module

interface to the cvbandpre module, 88–89
interface to the cvbbdpre module, 89–91
optional input and output, 85
rootfinding, 86–88
usage, 77–85
user-callable functions, 76–77
user-supplied functions, 77

FCVPSET, 83

FCVPSOL, 83
FCVREINIT, 85
FCVSETIIN, 85
FCVSETRIN, 85
FCVSPARSESETJAC, 82
FCVSPILSINIT, 82
FCVSPILSSETJAC, 82, 88, 90
FCVSPILSSETPREC, 82
FCVSPJAC, 81

half-bandwidths, 67, 71
header files, 25, 67, 70
HNIL WARNS, 86

INIT STEP, 86
IOUT, 85, 87
itask, 28, 34
iter, 29, 41

Jacobian approximation function
band

use in fcvode, 81
dense

use in fcvode, 80
diagonal

difference quotient, 33
difference quotient, 41
Jacobian times vector

difference quotient, 42
use in fcvode, 82
user-supplied, 42

Jacobian-vector product
user-supplied, 63–64

Jacobian-vector setup, 64–65
sparse

use in fcvode, 81
user-supplied, 41, 62–63

lmm, 29, 59
lsode, 1

MAX CONVFAIL, 86
MAX ERRFAIL, 86
MAX NITERS, 86
MAX NSTEPS, 86
MAX ORD, 86
MAX STEP, 86
maxord, 38, 59
memory requirements

cvbandpre preconditioner, 68
cvbbdpre preconditioner, 73
cvdiag linear solver interface, 57
cvdls linear solver interface, 53
cvode solver, 47
cvspils linear solver interface, 55
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N VDestroyVectorArray ParHyp, 109
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N VPrintFile Parallel, 102
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N VPrintFile Raja, 115
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NLCONV COEF, 86
nonlinear system

definition, 11
Newton convergence test, 13
Newton iteration, 12–13

NV COMM P, 101
NV CONTENT OMP, 103
NV CONTENT P, 101
NV CONTENT PT, 106
NV CONTENT S, 98
NV DATA OMP, 104
NV DATA P, 101
NV DATA PT, 106
NV DATA S, 98
NV GLOBLENGTH P, 101
NV Ith OMP, 104
NV Ith P, 101
NV Ith PT, 106
NV Ith S, 99
NV LENGTH OMP, 104
NV LENGTH PT, 106
NV LENGTH S, 98
NV LOCLENGTH P, 101
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NV NUM THREADS OMP, 104
NV NUM THREADS PT, 106
NV OWN DATA OMP, 104
NV OWN DATA P, 101
NV OWN DATA PT, 106
NV OWN DATA S, 98
NVECTOR module, 93

optional input
direct linear solver interface, 41–42
iterative linear solver, 42–43
rootfinding, 43–44
solver, 36–41

optional output
band-block-diagonal preconditioner, 73
banded preconditioner, 68
diagonal linear solver interface, 57–59
direct linear solver interface, 53–54
interpolated solution, 44
iterative linear solver interface, 55–57
solver, 47–52
version, 45

output mode, 15, 34

portability, 24
Fortran, 75

preconditioning
advice on, 15, 20
band-block diagonal, 69
banded, 66
setup and solve phases, 20
user-supplied, 42, 65

pvode, 1

RCONST, 24
realtype, 24
reinitialization, 59
right-hand side function, 60
Rootfinding, 16, 27, 34, 86
ROUT, 85, 87
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SM SPARSETYPE S, 133
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SM UBAND B, 127
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STAB LIM, 86
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SUNBandMatrix Print, 128
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SUNBandMatrix UpperBandwidth, 128
SUNDenseLinearSolver, 147
SUNDenseMatrix, 123
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SUNKLU, 154
SUNKLUReInit, 154
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SUNLapackDense, 150
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SUNLinearSolver module, 139
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SUNSparseFromBandMatrix, 134
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SUNSPTFQMR, 170
SUNSPTFQMRSetMaxl, 170
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SUNSuperLUMT, 157
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tolerances, 12, 31, 61

UNIT ROUNDOFF, 24

User main program
cvbandpre usage, 67
cvbbdpre usage, 70
fcvbbd usage, 89
fcvbp usage, 88
fcvode usage, 77
IVP solution, 26

user data, 37, 60–62, 70

vode, 1
vodpk, 1

weighted root-mean-square norm, 12
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