Contents

1. Introduction and Description
L1, Overview e e

1.1.1.
1.1.2.
1.1.3.
1.1.4.
1.1.5.
1.1.6.

1.2. Decoder Configuration

1.2.1.
1.2.2.
1.2.3.
1.2.4.
1.2.5.
1.2.6.

1.3. High-level Decode Process

1.3.1.
1.3.2.

Vorbis | specification

Xiph.Org Foundation
February 3, 2012

Application
Classification
Assumptions
Codec Setup and Probability Model
Format Specification
Hardware Profile

Global Config
Mode e
Mappingo
Floor
Residue e

Codebooks

Decode Setup
Decode Procedure

© © © 00 0000 ~J~J~JO O O Ui bkd

2. Bitpacking Convention 14
2.1, OVEIVIEW v o e e e e e 14

2.1.1.
2.1.2.
2.1.3.
2.1.4.
2.1.5.
2.1.6.
2.1.7.

octets, bytes and words Lo oL 14
bitorder 14
byteorder 14
coding bits into byte sequences 15
signedness 15
coding example Lo 15
decoding exampleo Lo 16

2.1.8. end-of-packet alignment
2.1.9. reading zero bits

3. Probability Model and Codebooks

3.1, Overview e e e
3.1.1. Bitwise operation Lo Lo
3.2. Packed codebook format
3.2.1. codebook decode
3.3. Use of the codebook abstraction

. Codec Setup and Packet Decode

4.1, OVEIVIEW o v o e e e

4.2. Header decode and decode setup
4.2.1. Common header decode
4.2.2. Identification header
4.2.3. Comment header,
4.2.4. Setup header

4.3. Audio packet decode and synthesis L.
4.3.1. packet type, mode and window decode
4.3.2. floor curve decode
4.3.3. nonzero vector propagate Lo
4.34. residuedecode.
4.3.5. inverse coupling L
4.3.6. dot product
4.3.7. inverse MDCT
4.3.8. overlapadd
4.3.9. output channel order

. comment field and header specification

5.1, OVErVIEW o o e e

5.2. Comment encoding L
5.2.1. Structure e
5.2.2. Content vector format
5.2.3. Encoding

. Floor type 0 setup and decode

6.1. Overview e

6.2. Floor O format
6.2.1. header decode
6.2.2. packet decode
6.2.3. curve computation

7. Floor type 1 setup and decode
71 OVErvVIEW o o o e e e
7.2. Floor 1 format e
7.2.1. model
7.2.2. header decode
7.2.3. packet decode
7.2.4. curve computation oL

8. Residue setup and decode
8.1. OVerview e e e
8.2. Residue format
83. residue 0 e e e
84. residue 1 e e
8.5, residue 2 e
8.6. Residue decode
8.6.1. header decode
8.6.2. packet decode
8.6.3. format O specifics
8.6.4. format 1 specifics
8.6.5. format 2 specifics

9. Helper equations
9.1, OVerview o o e e e e e
9.2. Functions e
9.21. ilog
9.2.2. float32unpack
9.2.3. lookupl_values
9.24. lowmeighbor. oo
9.2.5. highneighbor o
9.2.6. renderpoint
9.2.7. renderline

10.Tables
10.1. floorl inverse_.dB_table

A. Embedding Vorbis into an Ogg stream
AL Overviewo L e
A.1.1. Restrictions e
A1.2. MIME type e
A.2. Encapsulation

B. Vorbis encapsulation in RTP

45
45
45
45
47
48
49

53
53
23
26
26
o7
38
o8
29
61
61
62

63
63
63
63
63
64
64
64
64
65

66
66

68
68
68
68
69

71

1. Introduction and Description

1.1. Overview

This document provides a high level description of the Vorbis codec’s construction. A
bit-by-bit specification appears beginning in Section 4, “Codec Setup and Packet Decode”.
The later sections assume a high-level understanding of the Vorbis decode process, which
is provided here.

1.1.1. Application

Vorbis is a general purpose perceptual audio CODEC intended to allow maximum en-
coder flexibility, thus allowing it to scale competitively over an exceptionally wide range
of bitrates. At the high quality /bitrate end of the scale (CD or DAT rate stereo, 16/24
bits) it is in the same league as MPEG-2 and MPC. Similarly, the 1.0 encoder can en-
code high-quality CD and DAT rate stereo at below 48kbps without resampling to a lower
rate. Vorbis is also intended for lower and higher sample rates (from 8kHz telephony to
192kHz digital masters) and a range of channel representations (monaural, polyphonic,
stereo, quadraphonic, 5.1, ambisonic, or up to 255 discrete channels).

1.1.2. Classification

Vorbis I is a forward-adaptive monolithic transform CODEC based on the Modified Discrete
Cosine Transform. The codec is structured to allow addition of a hybrid wavelet filterbank
in Vorbis II to offer better transient response and reproduction using a transform better
suited to localized time events.

1.1.3. Assumptions

The Vorbis CODEC design assumes a complex, psychoacoustically-aware encoder and sim-
ple, low-complexity decoder. Vorbis decode is computationally simpler than mp3, although
it does require more working memory as Vorbis has no static probability model; the vector
codebooks used in the first stage of decoding from the bitstream are packed in their en-
tirety into the Vorbis bitstream headers. In packed form, these codebooks occupy only a
few kilobytes; the extent to which they are pre-decoded into a cache is the dominant factor
in decoder memory usage.

Vorbis provides none of its own framing, synchronization or protection against errors; it is
solely a method of accepting input audio, dividing it into individual frames and compressing
these frames into raw, unformatted 'packets’. The decoder then accepts these raw packets

in sequence, decodes them, synthesizes audio frames from them, and reassembles the frames
into a facsimile of the original audio stream. Vorbis is a free-form variable bit rate (VBR)
codec and packets have no minimum size, maximum size, or fixed/expected size. Packets
are designed that they may be truncated (or padded) and remain decodable; this is not to
be considered an error condition and is used extensively in bitrate management in peeling.
Both the transport mechanism and decoder must allow that a packet may be any size, or
end before or after packet decode expects.

Vorbis packets are thus intended to be used with a transport mechanism that provides
free-form framing, sync, positioning and error correction in accordance with these design
assumptions, such as Ogg (for file transport) or RTP (for network multicast). For purposes
of a few examples in this document, we will assume that Vorbis is to be embedded in an Ogg
stream specifically, although this is by no means a requirement or fundamental assumption
in the Vorbis design.

The specification for embedding Vorbis into an Ogg transport stream is in Appendix A,
“Embedding Vorbis into an Ogg stream”.

1.1.4. Codec Setup and Probability Model

Vorbis’ heritage is as a research CODEC and its current design reflects a desire to allow
multiple decades of continuous encoder improvement before running out of room within
the codec specification. For these reasons, configurable aspects of codec setup intentionally
lean toward the extreme of forward adaptive.

The single most controversial design decision in Vorbis (and the most unusual for a Vorbis
developer to keep in mind) is that the entire probability model of the codec, the Huffman
and VQ codebooks, is packed into the bitstream header along with extensive CODEC
setup parameters (often several hundred fields). This makes it impossible, as it would
be with MPEG audio layers, to embed a simple frame type flag in each audio packet, or
begin decode at any frame in the stream without having previously fetched the codec setup
header.

Note: Vorbis can initiate decode at any arbitrary packet within a bitstream so long as
the codec has been initialized /setup with the setup headers.

Thus, Vorbis headers are both required for decode to begin and relatively large as bitstream
headers go. The header size is unbounded, although for streaming a rule-of-thumb of 4kB
or less is recommended (and Xiph.Org’s Vorbis encoder follows this suggestion).

Our own design work indicates the primary liability of the required header is in mindshare;
it is an unusual design and thus causes some amount of complaint among engineers as
this runs against current design trends (and also points out limitations in some existing

software/interface designs, such as Windows” ACM codec framework). However, we find
that it does not fundamentally limit Vorbis’ suitable application space.

1.1.5. Format Specification

The Vorbis format is well-defined by its decode specification; any encoder that produces
packets that are correctly decoded by the reference Vorbis decoder described below may be
considered a proper Vorbis encoder. A decoder must faithfully and completely implement
the specification defined below (except where noted) to be considered a proper Vorbis
decoder.

1.1.6. Hardware Profile

Although Vorbis decode is computationally simple, it may still run into specific limitations
of an embedded design. For this reason, embedded designs are allowed to deviate in limited
ways from the ‘full’ decode specification yet still be certified compliant. These optional
omissions are labelled in the spec where relevant.

1.2. Decoder Configuration

Decoder setup consists of configuration of multiple, self-contained component abstractions
that perform specific functions in the decode pipeline. Each different component instance
of a specific type is semantically interchangeable; decoder configuration consists both of
internal component configuration, as well as arrangement of specific instances into a decode
pipeline. Componentry arrangement is roughly as follows:

[1 T =0

blocksizes modes mappings floors |codebooks | residues
0 0 [— 0 _[— 0 [0 —_0
1 1 1 | 1 — 1
‘L2 ' 2 ' 2 | 2 i

< I < B g | 3 —L_3

packet mode number J
il | el | il | el |

n — n — n — n — n

Figure 1: decoder pipeline configuration

1.2.1. Global Config

Global codec configuration consists of a few audio related fields (sample rate, channels),
Vorbis version (always ‘0’ in Vorbis I), bitrate hints, and the lists of component instances.
All other configuration is in the context of specific components.

1.2.2. Mode

Each Vorbis frame is coded according to a master 'mode’. A bitstream may use one or
many modes.

The mode mechanism is used to encode a frame according to one of multiple possible
methods with the intention of choosing a method best suited to that frame. Different
modes are, e.g. how frame size is changed from frame to frame. The mode number of
a frame serves as a top level configuration switch for all other specific aspects of frame
decode.

A 'mode’ configuration consists of a frame size setting, window type (always 0, the Vorbis
window, in Vorbis I), transform type (always type 0, the MDCT, in Vorbis I) and a mapping
number. The mapping number specifies which mapping configuration instance to use for
low-level packet decode and synthesis.

1.2.3. Mapping

A mapping contains a channel coupling description and a list of ’submaps’ that bundle sets
of channel vectors together for grouped encoding and decoding. These submaps are not
references to external components; the submap list is internal and specific to a mapping.

A ’submap’ is a configuration/grouping that applies to a subset of floor and residue vectors
within a mapping. The submap functions as a last layer of indirection such that specific
special floor or residue settings can be applied not only to all the vectors in a given mode,
but also specific vectors in a specific mode. Each submap specifies the proper floor and
residue instance number to use for decoding that submap’s spectral floor and spectral
residue vectors.

As an example:

Assume a Vorbis stream that contains six channels in the standard 5.1 format. The sixth
channel, as is normal in 5.1, is bass only. Therefore it would be wasteful to encode a
full-spectrum version of it as with the other channels. The submapping mechanism can
be used to apply a full range floor and residue encoding to channels 0 through 4, and a
bass-only representation to the bass channel, thus saving space. In this example, channels
0-4 belong to submap 0 (which indicates use of a full-range floor) and channel 5 belongs
to submap 1, which uses a bass-only representation.

1.2.4. Floor

Vorbis encodes a spectral floor’ vector for each PCM channel. This vector is a low-
resolution representation of the audio spectrum for the given channel in the current frame,
generally used akin to a whitening filter. It is named a ’floor’ because the Xiph.Org
reference encoder has historically used it as a unit-baseline for spectral resolution.

A floor encoding may be of two types. Floor 0 uses a packed LSP representation on a
dB amplitude scale and Bark frequency scale. Floor 1 represents the curve as a piecewise
linear interpolated representation on a dB amplitude scale and linear frequency scale. The
two floors are semantically interchangeable in encoding/decoding. However, floor type 1
provides more stable inter-frame behavior, and so is the preferred choice in all coupled-
stereo and high bitrate modes. Floor 1 is also considerably less expensive to decode than
floor 0.

Floor 0 is not to be considered deprecated, but it is of limited modern use. No known
Vorbis encoder past Xiph.Org’s own beta 4 makes use of floor 0.

The values coded/decoded by a floor are both compactly formatted and make use of en-
tropy coding to save space. For this reason, a floor configuration generally refers to mul-
tiple codebooks in the codebook component list. Entropy coding is thus provided as an
abstraction, and each floor instance may choose from any and all available codebooks when
coding/decoding.

1.2.5. Residue

The spectral residue is the fine structure of the audio spectrum once the floor curve has been
subtracted out. In simplest terms, it is coded in the bitstream using cascaded (multi-pass)
vector quantization according to one of three specific packing/coding algorithms numbered
0 through 2. The packing algorithm details are configured by residue instance. As with
the floor components, the final VQ/entropy encoding is provided by external codebook
instances and each residue instance may choose from any and all available codebooks.

1.2.6. Codebooks

Codebooks are a self-contained abstraction that perform entropy decoding and, optionally,
use the entropy-decoded integer value as an offset into an index of output value vectors,
returning the indicated vector of values.

The entropy coding in a Vorbis I codebook is provided by a standard Huffman binary tree
representation. This tree is tightly packed using one of several methods, depending on
whether codeword lengths are ordered or unordered, or the tree is sparse.

The codebook vector index is similarly packed according to index characteristic. Most
commonly, the vector index is encoded as a single list of values of possible values that are
then permuted into a list of n-dimensional rows (lattice VQ).

1.3. High-level Decode Process
1.3.1. Decode Setup

Before decoding can begin, a decoder must initialize using the bitstream headers matching
the stream to be decoded. Vorbis uses three header packets; all are required, in-order, by
this specification. Once set up, decode may begin at any audio packet belonging to the
Vorbis stream. In Vorbis I, all packets after the three initial headers are audio packets.

The header packets are, in order, the identification header, the comments header, and the
setup header.

Identification Header The identification header identifies the bitstream as Vorbis, Vorbis
version, and the simple audio characteristics of the stream such as sample rate and number
of channels.

Comment Header The comment header includes user text comments (“tags”) and a
vendor string for the application/library that produced the bitstream. The encoding and
proper use of the comment header is described in Section 5, “comment field and header
specification”.

Setup Header The setup header includes extensive CODEC setup information as well
as the complete VQ and Huffman codebooks needed for decode.

1.3.2. Decode Procedure

The decoding and synthesis procedure for all audio packets is fundamentally the same.

1. decode packet type flag

2. decode mode number

3. decode window shape (long windows only)
4. decode floor
5

. decode residue into residue vectors

inverse channel coupling of residue vectors
generate floor curve from decoded floor data

compute dot product of floor and residue, producing audio spectrum vector

© © N>

inverse monolithic transform of audio spectrum vector, always an MDCT in Vorbis I
10. overlap/add left-hand output of transform with right-hand output of previous frame
11. store right hand-data from transform of current frame for future lapping

12. if not first frame, return results of overlap/add as audio result of current frame

Note that clever rearrangement of the synthesis arithmetic is possible; as an example, one
can take advantage of symmetries in the MDC'T to store the right-hand transform data of a
partial MDCT for a 50% inter-frame buffer space savings, and then complete the transform
later before overlap/add with the next frame. This optimization produces entirely equiva-
lent output and is naturally perfectly legal. The decoder must be entirely mathematically
equivalent to the specification, it need not be a literal semantic implementation.

Packet type decode Vorbis I uses four packet types. The first three packet types mark
each of the three Vorbis headers described above. The fourth packet type marks an audio
packet. All other packet types are reserved; packets marked with a reserved type should
be ignored.

Following the three header packets, all packets in a Vorbis I stream are audio. The first
step of audio packet decode is to read and verify the packet type; a non-audio packet when
audio 1s expected indicates stream corruption or a non-compliant stream. The decoder must
tgnore the packet and not attempt decoding it to audio.

Mode decode Vorbis allows an encoder to set up multiple, numbered packet 'modes’, as
described earlier, all of which may be used in a given Vorbis stream. The mode is encoded
as an integer used as a direct offset into the mode instance index.

Window shape decode (long windows only) Vorbis frames may be one of two PCM
sample sizes specified during codec setup. In Vorbis I, legal frame sizes are powers of two
from 64 to 8192 samples. Aside from coupling, Vorbis handles channels as independent
vectors and these frame sizes are in samples per channel.

Vorbis uses an overlapping transform, namely the MDCT, to blend one frame into the
next, avoiding most inter-frame block boundary artifacts. The MDCT output of one frame
is windowed according to MDCT requirements, overlapped 50% with the output of the
previous frame and added. The window shape assures seamless reconstruction.

This is easy to visualize in the case of equal sized-windows:

10

n=2041% a/4
I

1024

|
1/4 n'=2048

Figure 2: overlap of two equal-sized windows

And slightly more complex in the case of overlapping unequal sized windows:

I T | n'=512

B0
(E048/4+51274y
pE

I [1
n=2048 374
Figure 3: overlap of a long and a short window

In the unequal-sized window case, the window shape of the long window must be modified
for seamless lapping as above. It is possible to correctly infer window shape to be applied
to the current window from knowing the sizes of the current, previous and next window.
It is legal for a decoder to use this method. However, in the case of a long window (short
windows require no modification), Vorbis also codes two flag bits to specify pre- and post-
window shape. Although not strictly necessary for function, this minor redundancy allows
a packet to be fully decoded to the point of lapping entirely independently of any other
packet, allowing easier abstraction of decode layers as well as allowing a greater level of
easy parallelism in encode and decode.

A description of valid window functions for use with an inverse MDCT can be found in [1].
Vorbis windows all use the slope function

y = sin(.5 * 7w sin®((z + .5)/n* m)).

floor decode FEach floor is encoded/decoded in channel order, however each floor belongs
to a ’submap’ that specifies which floor configuration to use. All floors are decoded before
residue decode begins.

11

residue decode Although the number of residue vectors equals the number of channels,
channel coupling may mean that the raw residue vectors extracted during decode do not
map directly to specific channels. When channel coupling is in use, some vectors will
correspond to coupled magnitude or angle. The coupling relationships are described in the
codec setup and may differ from frame to frame, due to different mode numbers.

Vorbis codes residue vectors in groups by submap; the coding is done in submap order
from submap 0 through n-1. This differs from floors which are coded using a configuration
provided by submap number, but are coded individually in channel order.

inverse channel coupling A detailed discussion of stereo in the Vorbis codec can be found
in the document Stereo Channel Coupling in the Vorbis CODEC. Vorbis is not limited to
only stereo coupling, but the stereo document also gives a good overview of the generic
coupling mechanism.

Vorbis coupling applies to pairs of residue vectors at a time; decoupling is done in-place
a pair at a time in the order and using the vectors specified in the current mapping
configuration. The decoupling operation is the same for all pairs, converting square polar
representation (where one vector is magnitude and the second angle) back to Cartesian
representation.

After decoupling, in order, each pair of vectors on the coupling list, the resulting residue
vectors represent the fine spectral detail of each output channel.

generate floor curve The decoder may choose to generate the floor curve at any appropri-
ate time. It is reasonable to generate the output curve when the floor data is decoded from
the raw packet, or it can be generated after inverse coupling and applied to the spectral
residue directly, combining generation and the dot product into one step and eliminating
some working space.

Both floor 0 and floor 1 generate a linear-range, linear-domain output vector to be multi-
plied (dot product) by the linear-range, linear-domain spectral residue.

compute floor/residue dot product This step is straightforward; for each output chan-
nel, the decoder multiplies the floor curve and residue vectors element by element, produc-
ing the finished audio spectrum of each channel.

One point is worth mentioning about this dot product; a common mistake in a fixed point
implementation might be to assume that a 32 bit fixed-point representation for floor and
residue and direct multiplication of the vectors is sufficient for acceptable spectral depth in
all cases because it happens to mostly work with the current Xiph.Org reference encoder.

However, floor vector values can span ~140dB (~24 bits unsigned), and the audio spectrum
vector should represent a minimum of 120dB (~21 bits with sign), even when output is to

12

file:stereo.html

a 16 bit PCM device. For the residue vector to represent full scale if the floor is nailed to
—140dB, it must be able to span 0 to +140dB. For the residue vector to reach full scale if
the floor is nailed at 0dB, it must be able to represent —140dB to +0dB. Thus, in order to
handle full range dynamics, a residue vector may span —140dB to +140dB entirely within
spec. A 280dB range is approximately 48 bits with sign; thus the residue vector must be
able to represent a 48 bit range and the dot product must be able to handle an effective 48
bit times 24 bit multiplication. This range may be achieved using large (64 bit or larger)
integers, or implementing a movable binary point representation.

inverse monolithic transform (MDCT) The audio spectrum is converted back into time
domain PCM audio via an inverse Modified Discrete Cosine Transform (MDCT). A detailed
description of the MDCT is available in [1].

Note that the PCM produced directly from the MDCT is not yet finished audio; it must be
lapped with surrounding frames using an appropriate window (such as the Vorbis window)
before the MDCT can be considered orthogonal.

overlap/add data Windowed MDCT output is overlapped and added with the right hand
data of the previous window such that the 3/4 point of the previous window is aligned with
the 1/4 point of the current window (as illustrated in the window overlap diagram). At
this point, the audio data between the center of the previous frame and the center of the
current frame is now finished and ready to be returned.

cache right hand data The decoder must cache the right hand portion of the current
frame to be lapped with the left hand portion of the next frame.

return finished audio data The overlapped portion produced from overlapping the pre-
vious and current frame data is finished data to be returned by the decoder. This data
spans from the center of the previous window to the center of the current window. In the
case of same-sized windows, the amount of data to return is one-half block consisting of
and only of the overlapped portions. When overlapping a short and long window, much of
the returned range is not actually overlap. This does not damage transform orthogonal-
ity. Pay attention however to returning the correct data range; the amount of data to be
returned is:

window_blocksize (previous_window) /4+window_blocksize (current_window)/4
from the center of the previous window to the center of the current window.

Data is not returned from the first frame; it must be used to 'prime’ the decode engine.
The encoder accounts for this priming when calculating PCM offsets; after the first frame,
the proper PCM output offset is '0’ (as no data has been returned yet).

13

2. Bitpacking Convention

2.1. Overview

The Vorbis codec uses relatively unstructured raw packets containing arbitrary-width bi-
nary integer fields. Logically, these packets are a bitstream in which bits are coded one-by-
one by the encoder and then read one-by-one in the same monotonically increasing order
by the decoder. Most current binary storage arrangements group bits into a native word
size of eight bits (octets), sixteen bits, thirty-two bits or, less commonly other fixed word
sizes. The Vorbis bitpacking convention specifies the correct mapping of the logical packet
bitstream into an actual representation in fixed-width words.

2.1.1. octets, bytes and words

In most contemporary architectures, a ’byte’ is synonymous with an ’octet’, that is, eight
bits. This has not always been the case; seven, ten, eleven and sixteen bit 'bytes’ have
been used. For purposes of the bitpacking convention, a byte implies the native, smallest
integer storage representation offered by a platform. On modern platforms, this is gen-
erally assumed to be eight bits (not necessarily because of the processor but because of
the filesystem/memory architecture. Modern filesystems invariably offer bytes as the fun-
damental atom of storage). A 'word’ is an integer size that is a grouped multiple of this
smallest size.

The most ubiquitous architectures today consider a ’byte’ to be an octet (eight bits) and
a word to be a group of two, four or eight bytes (16, 32 or 64 bits). Note however that
the Vorbis bitpacking convention is still well defined for any native byte size; Vorbis uses
the native bit-width of a given storage system. This document assumes that a byte is one
octet for purposes of example.

2.1.2. bit order
A byte has a well-defined ’least significant’ bit (LSb), which is the only bit set when the
byte is storing the two’s complement integer value +1. A byte’s 'most significant’ bit

(MSD) is at the opposite end of the byte. Bits in a byte are numbered from zero at the
LSb to n (n = 7 in an octet) for the MSb.

2.1.3. byte order

Words are native groupings of multiple bytes. Several byte orderings are possible in a
word; the common ones are 3-2-1-0 (’big endian’ or 'most significant byte first’ in which

14

QTR W N =

the highest-valued byte comes first), 0-1-2-3 (’little endian’ or ’least significant byte first’
in which the lowest value byte comes first) and less commonly 3-1-2-0 and 0-2-1-3 ('mixed
endian’).

The Vorbis bitpacking convention specifies storage and bitstream manipulation at the byte,
not word, level, thus host word ordering is of a concern only during optimization when
writing high performance code that operates on a word of storage at a time rather than by
byte. Logically, bytes are always coded and decoded in order from byte zero through byte
n.

2.1.4. coding bits into byte sequences

The Vorbis codec has need to code arbitrary bit-width integers, from zero to 32 bits wide,
into packets. These integer fields are not aligned to the boundaries of the byte representa-
tion; the next field is written at the bit position at which the previous field ends.

The encoder logically packs integers by writing the LSb of a binary integer to the logical
bitstream first, followed by next least significant bit, etc, until the requested number of
bits have been coded. When packing the bits into bytes, the encoder begins by placing
the LSb of the integer to be written into the least significant unused bit position of the
destination byte, followed by the next-least significant bit of the source integer and so on
up to the requested number of bits. When all bits of the destination byte have been filled,
encoding continues by zeroing all bits of the next byte and writing the next bit into the
bit position 0 of that byte. Decoding follows the same process as encoding, but by reading
bits from the byte stream and reassembling them into integers.

2.1.5. signedness

The signedness of a specific number resulting from decode is to be interpreted by the
decoder given decode context. That is, the three bit binary pattern ’b111’ can be taken
to represent either ’seven’ as an unsigned integer, or -1’ as a signed, two’s complement

integer. The encoder and decoder are responsible for knowing if fields are to be treated as
signed or unsigned.

2.1.6. coding example

Code the 4 bit integer value '12’ [b1100] into an empty bytestream. Bytestream result:

15

10
11

© 0 N O U e W N =

[un
(=}

0 N O U W N =

e
= O ©

© 00 N O U W N

o
= o

© 0 N O GR W N

byte 2 [
byte 3 [

byte n [

]
]

] Dbytestream length == 1 byte

Continue by coding the 3 bit integer value -1’ [b111]:

byte
byte
byte
byte

byte

< —

= o
[ENNS
= W
=N
(o
o O

] Dbytestream length == 1 byte

Continue by coding the 7 bit integer value 17" [b0010001]:

byte
byte
byte
byte

byte

W N = O

L B B e W |

O = N
O = O
O = O
O = b
o= W
o = N
O O =

<

o O O

<-

]
]
]
]

] bytestream length == 2 bytes
bit cursor ==

Continue by coding the 13 bit integer value 6969’ [b110 11001110 01]:

byte
byte
byte
byte

byte

7

6

11
(o1
(11
oo

v
543210
11110 0]
00100 0]
001110]
000110] <-

] Dbytestream length == 4 bytes

2.1.7. decoding example

Reading from the beginning of the bytestream encoded in the above example:

byte
byte
byte
byte

W N = O

=
o =

=~

o
Or RrEO®

< —

543210

111100 <-

001000]

001110]

000110] bytestream length == 4 bytes

16

We read two, two-bit integer fields, resulting in the returned numbers 'b00’ and ’b11’. Two
things are worth noting here:

e Although these four bits were originally written as a single four-bit integer, reading
some other combination of bit-widths from the bitstream is well defined. There are
no artificial alignment boundaries maintained in the bitstream.

e The second value is the two-bit-wide integer ’b11’. This value may be interpreted
either as the unsigned value '3’, or the signed value ’-1’. Signedness is dependent on
decode context.

2.1.8. end-of-packet alignment

The typical use of bitpacking is to produce many independent byte-aligned packets which
are embedded into a larger byte-aligned container structure, such as an Ogg transport
bitstream. Externally, each bytestream (encoded bitstream) must begin and end on a byte
boundary. Often, the encoded bitstream is not an integer number of bytes, and so there is
unused (uncoded) space in the last byte of a packet.

Unused space in the last byte of a bytestream is always zeroed during the coding process.
Thus, should this unused space be read, it will return binary zeroes.

Attempting to read past the end of an encoded packet results in an ’end-of-packet’ condi-
tion. End-of-packet is not to be considered an error; it is merely a state indicating that
there is insufficient remaining data to fulfill the desired read size. Vorbis uses truncated
packets as a normal mode of operation, and as such, decoders must handle reading past
the end of a packet as a typical mode of operation. Any further read operations after an
‘end-of-packet’ condition shall also return ’end-of-packet’.

2.1.9. reading zero bits

Reading a zero-bit-wide integer returns the value 0’ and does not increment the stream
cursor. Reading to the end of the packet (but not past, such that an ’end-of-packet’
condition has not triggered) and then reading a zero bit integer shall succeed, returning 0,
and not trigger an end-of-packet condition. Reading a zero-bit-wide integer after a previous
read sets 'end-of-packet’ shall also fail with ’end-of-packet’.

17

W = O U W N =

3. Probability Model and Codebooks

3.1. Overview

Unlike practically every other mainstream audio codec, Vorbis has no statically configured
probability model, instead packing all entropy decoding configuration, VQ and Huffman,
into the bitstream itself in the third header, the codec setup header. This packed con-
figuration consists of multiple ’codebooks’, each containing a specific Huffman-equivalent
representation for decoding compressed codewords as well as an optional lookup table of
output vector values to which a decoded Huffman value is applied as an offset, generating
the final decoded output corresponding to a given compressed codeword.

3.1.1. Bitwise operation
The codebook mechanism is built on top of the vorbis bitpacker. Both the codebooks them-

selves and the codewords they decode are unrolled from a packet as a series of arbitrary-
width values read from the stream according to Section 2, “Bitpacking Convention”.

3.2. Packed codebook format
For purposes of the examples below, we assume that the storage system’s native byte

width is eight bits. This is not universally true; see Section 2, “Bitpacking Convention”
for discussion relating to non-eight-bit bytes.

3.2.1. codebook decode

A codebook begins with a 24 bit sync pattern, 0x564342:

byte 0: [0 100001017 (0x42)
byte 1: [01 00001 1] (0x43)
byte 2: [010101107] (0x56)

16 bit [codebook_dimensions] and 24 bit [codebook_entries] fields:

byte 3: [X X XXX XXX]

byte 4: [X X X X X X X X] [codebook_dimensions] (16 bit unsigned)
byte 5: [X XXX XXX X]

byte 6: [X X X X X X X X]

byte 7: [X X X X X X X X] [codebook_entries] (24 bit unsigned)

Next is the [ordered] bit flag:

18

byte 8: [X] [ordered] (1 bit)

Each entry, numbering a total of [codebook_entries], is assigned a codeword length.
We now read the list of codeword lengths and store these lengths in the array [codebook_
codeword_lengths]. Decode of lengths is according to whether the [ordered] flag is set
or unset.

e Ifthe [ordered] flag is unset, the codeword list is not length ordered and the decoder
needs to read each codeword length one-by-one.

The decoder first reads one additional bit flag, the [sparse] flag. This flag de-
termines whether or not the codebook contains unused entries that are not to be
included in the codeword decode tree:

1 byte 8: [X 1] [sparse] flag (1 bit)

The decoder now performs for each of the [codebook_entries] codebook entries:

1

2 1) if([sparse] is set) {

3

4 2) [flag] = read one bit;

5 3) if([flag] is set) {

6

7 4) [length] = read a five bit unsigned integer;
8 5) codeword length for this entry is [lengthl+1;
9

10 } else {

11

12 6) this entry is unused. mark it as such.

13

14 }

15

16 } else the sparse flag is not set {

17

18 7) [length] = read a five bit unsigned integer;

19 8) the codeword length for this entry is [lengthl+1l;
20

21 }

[
N

o If the [ordered] flag is set, the codeword list for this codebook is encoded in as-
cending length order. Rather than reading a length for every codeword, the encoder
reads the number of codewords per length. That is, beginning at entry zero:

1) [current_entry] = 0;
2) [current_length] = read a five bit unsigned integer and add 1;
3) [number] = read ilog([codebook_entries] - [current_entry]) bits as an unsigned integer
4) set the entries [current_entry] through [current_entry]+[number]-1, inclusive,
of the [codebook_codeword_lengths] array to [current_lengthl
5) set [current_entry] to [number] + [current_entry]
6) increment [current_length] by 1
7) if [current_entry] is greater than [codebook_entries] ERROR CONDITION;
the decoder will not be able to read this stream.
8) if [current_entry] is less than [codebook_entries], repeat process starting at 3)
9) done.

© 0 N OO W N

=
=

19

After all codeword lengths have been decoded, the decoder reads the vector lookup table.
Vorbis I supports three lookup types:

1. No lookup

2. Implicitly populated value mapping (lattice VQ)

3. Explicitly populated value mapping (tessellated or 'foam’ VQ)
The lookup table type is read as a four bit unsigned integer:

1) [codebook_lookup_type] = read four bits as an unsigned integer
Codebook decode precedes according to [codebook_lookup_type]l:
e Lookup type zero indicates no lookup to be read. Proceed past lookup decode.

e Lookup types one and two are similar, differing only in the number of lookup values to
be read. Lookup type one reads a list of values that are permuted in a set pattern to
build a list of vectors, each vector of order [codebook_dimensions] scalars. Lookup
type two builds the same vector list, but reads each scalar for each vector explicitly,
rather than building vectors from a smaller list of possible scalar values. Lookup
decode proceeds as follows:

1) [codebook_minimum_value] = float32_unpack(read 32 bits as an unsigned integer)
2) [codebook_delta_value] = float32_unpack(read 32 bits as an unsigned integer)
3) [codebook_value_bits] read 4 bits as an unsigned integer and add 1

4) [codebook_sequence_p] read 1 bit as a boolean flag

if ([codebook_lookup_typel is 1) {

5) [codebook_lookup_values] = lookupl_values([codebook_entries], [codebook_dimensions])

} else {

=
H O © 0 N0 ks W N

Jun
V]

6) [codebook_lookup_values] = [codebook_entries] * [codebook_dimensions]

=
= W

}

7) read a total of [codebook_lookup_values] unsigned integers of [codebook_value_bits] each;
store these in order in the array [codebook_multiplicands]

o e
N o«

e A [codebook_lookup_type] of greater than two is reserved and indicates a stream
that is not decodable by the specification in this document.

An ’end of packet’ during any read operation in the above steps is considered an error
condition rendering the stream undecodable.

Huffman decision tree representation The [codebook_codeword_lengths] array and
[codebook_entries] value uniquely define the Huffman decision tree used for entropy
decoding.

Briefly, each used codebook entry (recall that length-unordered codebooks support unused
codeword entries) is assigned, in order, the lowest valued unused binary Huffman codeword

20

W N O U e W N

W 1 O U W N =

possible. Assume the following codeword length list:

entry
entry
entry
entry
entry
entry
entry
entry

Assigning codewords in order (lowest possible value of the appropriate length to highest)

N O WNN RO

: length
: length
: length
: length
: length
: length
: length
: length

W WA N

results in the following codeword list:

entry
entry
entry
entry
entry
entry
entry
entry

N U WNN e O

Note:

: length
: length
: length
: length
: length
: length
: length
: length

Unlike most binary numerical values in this document, we intend the above code-
words to be read and used bit by bit from left to right, thus the codeword 001’ is the
bit string 'zero, zero, one’. When determining ’lowest possible value’ in the assignment

2
4
4
4
4
2
3
3

codeword
codeword
codeword
codeword
codeword
codeword
codeword
codeword

00
0100
0101
0110
0111
10
110
111

definition above, the leftmost bit is the MSb.

It is clear that the codeword length list represents a Huffman decision tree with the entry

numbers equivalent to the leaves numbered left-to-right:

As we assign codewords in order, we see that each choice constructs a new leaf in the
leftmost possible position.

1 0
| |
23 4

Figure 4: huffman tree illustration

21

W = 3 Ok Ww N

Note that it’s possible to underspecify or overspecify a Huffman tree via the length list. In
the above example, if codeword seven were eliminated, it’s clear that the tree is unfinished:

1 0
| |
1 23 4

Figure 5: underspecified huffman tree illustration

Similarly, in the original codebook, it’s clear that the tree is fully populated and a ninth
codeword is impossible. Both underspecified and overspecified trees are an error condition
rendering the stream undecodable. Take special care that a codebook with a single used
entry is handled properly; it consists of a single codework of zero bits and 'reading’ a value
out of such a codebook always returns the single used value and sinks zero bits.

Codebook entries marked "unused’ are simply skipped in the assigning process. They have
no codeword and do not appear in the decision tree, thus it’s impossible for any bit pattern
read from the stream to decode to that entry number.

VQ lookup table vector representation Unpacking the VQ lookup table vectors relies
on the following values:

the [codebook_multiplicands] array
[codebook_minimum_value]
[codebook_delta_value]
[codebook_sequence_p]
[codebook_lookup_typel
[codebook_entries]
[codebook_dimensions]
[codebook_lookup_values]

Decoding (unpacking) a specific vector in the vector lookup table proceeds according to
[codebook_lookup_typel]. The unpacked vector values are what a codebook would return
during audio packet decode in a VQ context.

22

0 N O U e W N =

e e e e
W = 3 Uk W N = O ©

© 00 N O U e W N =

e e
[V I e

15

Vector value decode: Lookup type 1 Lookup type one specifies a lattice VQ lookup
table built algorithmically from a list of scalar values. Calculate (unpack) the final values
of a codebook entry vector from the entries in [codebook_multiplicands] as follows
([value_vector] is the output vector representing the vector of values for entry number
[Lookup_offset] in this codebook):

1) [last] = 0;
2) [index_divisor] = 1;
3) iterate [i] over the range O ... [codebook_dimensions]-1 (once for each scalar value in the value vector) {

4) [multiplicand_offset] = ([lookup_offset] divided by [index_divisor] using integer
division) integer modulo [codebook_lookup_values]

5) vector [value_vector] element [i] =
([codebook_multiplicands] array element number [multiplicand_offset]) *
[codebook_delta_value] + [codebook_minimum_value] + [last];

6) if ([codebook_sequence_p] is set) then set [last] = vector [value_vector] element [i]

7) [index_divisor] = [index_divisor] * [codebook_lookup_values]

}

8) vector calculation completed.

Vector value decode: Lookup type 2 Lookup type two specifies a VQ lookup table
in which each scalar in each vector is explicitly set by the [codebook_multiplicands]
array in a one-to-one mapping. Calculate [unpack| the final values of a codebook entry
vector from the entries in [codebook_multiplicands] as follows ([value_vector] is the
output vector representing the vector of values for entry number [lookup_offset] in this

codebook):

1) [last] = 0;
2) [multiplicand_offset] = [lookup_offset] * [codebook_dimensions]
3) iterate [i] over the range O ... [codebook_dimensions]-1 (once for each scalar value in the value vector) {
4) vector [value_vector] element [i] =
([codebook_multiplicands] array element number [multiplicand_offset]) *
[codebook_delta_value] + [codebook_minimum_value] + [last];
5) if ([codebook_sequence_p] is set) then set [last] = vector [value_vector] element [i]
6) increment [multiplicand_offset]

}

7) vector calculation completed.

3.3. Use of the codebook abstraction

The decoder uses the codebook abstraction much as it does the bit-unpacking convention;
a specific codebook reads a codeword from the bitstream, decoding it into an entry number,
and then returns that entry number to the decoder (when used in a scalar entropy coding

23

context), or uses that entry number as an offset into the VQ lookup table, returning a
vector of values (when used in a context desiring a VQ value). Scalar or VQ context is
always explicit; any call to the codebook mechanism requests either a scalar entry number
or a lookup vector.

Note that VQ lookup type zero indicates that there is no lookup table; requesting decode
using a codebook of lookup type 0 in any context expecting a vector return value (even in
a case where a vector of dimension one) is forbidden. If decoder setup or decode requests
such an action, that is an error condition rendering the packet undecodable.

Using a codebook to read from the packet bitstream consists first of reading and decoding
the next codeword in the bitstream. The decoder reads bits until the accumulated bits
match a codeword in the codebook. This process can be though of as logically walking the
Huffman decode tree by reading one bit at a time from the bitstream, and using the bit as
a decision boolean to take the 0 branch (left in the above examples) or the 1 branch (right
in the above examples). Walking the tree finishes when the decode process hits a leaf in
the decision tree; the result is the entry number corresponding to that leaf. Reading past
the end of a packet propagates the ’end-of-stream’ condition to the decoder.

When used in a scalar context, the resulting codeword entry is the desired return value.

When used in a VQ context, the codeword entry number is used as an offset into the VQ
lookup table. The value returned to the decoder is the vector of scalars corresponding to
this offset.

24

© 0 N U e W N -

4. Codec Setup and Packet Decode

4.1. Overview

This document serves as the top-level reference document for the bit-by-bit decode specifi-
cation of Vorbis I. This document assumes a high-level understanding of the Vorbis decode
process, which is provided in Section 1, “Introduction and Description”. Section 2, “Bit-
packing Convention” covers reading and writing bit fields from and to bitstream packets.

4.2. Header decode and decode setup

A Vorbis bitstream begins with three header packets. The header packets are, in order,
the identification header, the comments header, and the setup header. All are required for
decode compliance. An end-of-packet condition during decoding the first or third header
packet renders the stream undecodable. End-of-packet decoding the comment header is a
non-fatal error condition.

4.2.1. Common header decode

Each header packet begins with the same header fields.

1) [packet_typel : 8 bit value
2) 0x76, 0x6f, 0x72, 0x62, 0x69, 0x73: the characters ’v’,’0’,’r’,’b’,’i’,’s’ as six octets

Decode continues according to packet type; the identification header is type 1, the comment
header type 3 and the setup header type 5 (these types are all odd as a packet with a leading
single bit of ’0’ is an audio packet). The packets must occur in the order of identification,
comment, setup.

4.2.2. ldentification header

The identification header is a short header of only a few fields used to declare the stream
definitively as Vorbis, and provide a few externally relevant pieces of information about
the audio stream. The identification header is coded as follows:

1) [vorbis_version] = read 32 bits as unsigned integer

2) [audio_channels] = read 8 bit integer as unsigned

3) [audio_sample_rate] = read 32 bits as unsigned integer

4) [bitrate_maximum] = read 32 bits as signed integer

5) [bitrate_nominal] = read 32 bits as signed integer

6) [bitrate_minimum] = read 32 bits as signed integer

7) [blocksize_0] = 2 exponent (read 4 bits as unsigned integer)
8) [blocksize_1] = 2 exponent (read 4 bits as unsigned integer)
9) [framing flag] = read one bit

25

[vorbis_version] is to read '0’ in order to be compatible with this document. Both
[audio_channels] and [audio_sample_rate] must read greater than zero. Allowed final
blocksize values are 64, 128, 256, 512, 1024, 2048, 4096 and 8192 in Vorbis I. [blocksize_
0] must be less than or equal to [blocksize_1]. The framing bit must be nonzero. Failure
to meet any of these conditions renders a stream undecodable.

The bitrate fields above are used only as hints. The nominal bitrate field especially may
be considerably off in purely VBR streams. The fields are meaningful only when greater
than zero.

e All three fields set to the same value implies a fixed rate, or tightly bounded, nearly
fixed-rate bitstream

e Only nominal set implies a VBR or ABR stream that averages the nominal bitrate
e Maximum and or minimum set implies a VBR bitstream that obeys the bitrate limits
e None set indicates the encoder does not care to speculate.

4.2.3. Comment header

Comment header decode and data specification is covered in Section 5, “comment field and
header specification”.

4.2.4. Setup header

Vorbis codec setup is configurable to an extreme degree:

[1 T T a0

blocksizes modes | mappings floors codebooks | residues
0 0 |— 0 |— [+ 0 —|_ 0O
1 y S i] — 1 — (=
d ' 2 ' 2 ' 2 =
ket mod he J 3 | 2 | 25— 3 — 3
ackel mode number
. e | e | e | ey | e
n — n — n — n — n

Figure 6: decoder pipeline configuration

The setup header contains the bulk of the codec setup information needed for decode. The
setup header contains, in order, the lists of codebook configurations, time-domain trans-
form configurations (placeholders in Vorbis I), floor configurations, residue configurations,
channel mapping configurations and mode configurations. It finishes with a framing bit of
"1’. Header decode proceeds in the following order:

26

Codebooks
1. [vorbis_codebook_count] = read eight bits as unsigned integer and add one

2. Decode [vorbis_codebook_count] codebooks in order as defined in Section 3, “Prob-
ability Model and Codebooks”. Save each configuration, in order, in an array of
codebook configurations [vorbis_codebook_configurations].

Time domain transforms These hooks are placeholders in Vorbis I. Nevertheless, the
configuration placeholder values must be read to maintain bitstream sync.

1. [vorbis_time_count] = read 6 bits as unsigned integer and add one

2. read [vorbis_time_count] 16 bit values; each value should be zero. If any value is
nonzero, this is an error condition and the stream is undecodable.

Floors Vorbis uses two floor types; header decode is handed to the decode abstraction of
the appropriate type.

1. [vorbis_floor_count] = read 6 bits as unsigned integer and add one
2. For each [i] of [vorbis_floor_count] floor numbers:

a) read the floor type: vector [vorbis_floor_types] element [i] = read 16 bits
as unsigned integer

b) If the floor type is zero, decode the floor configuration as defined in Section 6,
“Floor type 0 setup and decode”; save this configuration in slot [i] of the floor
configuration array [vorbis_floor_configurations].

c) If the floor type is one, decode the floor configuration as defined in Section 7,
“Floor type 1 setup and decode”; save this configuration in slot [i] of the floor
configuration array [vorbis_floor_configurations].

d) If the the floor type is greater than one, this stream is undecodable; ERROR
CONDITION

Residues Vorbis uses three residue types; header decode of each type is identical.
1. [vorbis_residue_count] = read 6 bits as unsigned integer and add one
2. For each of [vorbis_residue_count] residue numbers:

a) read the residue type; vector [vorbis_residue_types] element [i] = read 16
bits as unsigned integer

27

b) If the residue type is zero, one or two, decode the residue configuration as defined
in Section 8, “Residue setup and decode”; save this configuration in slot [i] of
the residue configuration array [vorbis_residue_configurations].

c) If the the residue type is greater than two, this stream is undecodable; ERROR
CONDITION

Mappings Mappings are used to set up specific pipelines for encoding multichannel audio
with varying channel mapping applications. Vorbis I uses a single mapping type (0), with
implicit PCM channel mappings.

1. [vorbis_mapping_count] = read 6 bits as unsigned integer and add one
2. For each [i] of [vorbis_mapping_count] mapping numbers:

a) read the mapping type: 16 bits as unsigned integer. There’s no reason to save
the mapping type in Vorbis I.

b) If the mapping type is nonzero, the stream is undecodable
c¢) If the mapping type is zero:
i. read 1 bit as a boolean flag

A. if set, [vorbis_mapping_submaps] = read 4 bits as unsigned integer
and add one

B. if unset, [vorbis_mapping_submaps] = 1
ii. read 1 bit as a boolean flag
A. if set, square polar channel mapping is in use:

e [vorbis_mapping_coupling_steps] = read 8 bits as unsigned inte-
ger and add one

e for [j] each of [vorbis_mapping_coupling_steps] steps:

— vector [vorbis_mapping_magnitude] element [j]=read ilog([audio_
channels] - 1) bits as unsigned integer

— vector [vorbis_mapping_angle] element [j]= read ilog([audio_
channels] - 1) bits as unsigned integer

— the numbers read in the above two steps are channel numbers repre-
senting the channel to treat as magnitude and the channel to treat
as angle, respectively. If for any coupling step the angle chan-
nel number equals the magnitude channel number, the magnitude
channel number is greater than [audio_channels]-1, or the angle

28

channel is greater than [audio_channels]-1, the stream is unde-
codable.

B. if unset, [vorbis_mapping_coupling_steps] =0

ili. read 2 bits (reserved field); if the value is nonzero, the stream is undecodable

iv. if [vorbis_mapping_submaps] is greater than one, we read channel multi-
plex settings. For each [j] of [audio_channels] channels:

A. vector [vorbis_mapping_mux] element [j] = read 4 bits as unsigned

B.

integer

if the value is greater than the highest numbered submap ([vorbis_
mapping_submaps] - 1), this in an error condition rendering the stream
undecodable

v. for each submap [j] of [vorbis_mapping_submaps] submaps, read the
floor and residue numbers for use in decoding that submap:

A.
B.

E.

read and discard 8 bits (the unused time configuration placeholder)

read 8 bits as unsigned integer for the floor number; save in vector
[vorbis_mapping_submap_floor] element [j]

. verify the floor number is not greater than the highest number floor

configured for the bitstream. If it is, the bitstream is undecodable

. read 8 bits as unsigned integer for the residue number; save in vector

[vorbis_mapping_submap_residue] element [j]

verify the residue number is not greater than the highest number residue
configured for the bitstream. If it is, the bitstream is undecodable

vi. save this mapping configuration in slot [i] of the mapping configuration
array [vorbis_mapping_configurations].

Modes

1. [vorbis_mode_count] = read 6 bits as unsigned integer and add one

2. For each of [vorbis_mode_count] mode numbers:

a) [vorbis_mode_blockflag] = read 1 bit

b

d

) [vorbis_mode_windowtype] = read 16 bits as unsigned integer
¢) [vorbis_mode_transformtype] = read 16 bits as unsigned integer
)

[vorbis_mode_mapping] = read 8 bits as unsigned integer

29

e) verify ranges; zero is the only legal value in Vorbis I for [vorbis_mode_windowtype]
and [vorbis_mode_transformtype]. [vorbis_mode_mapping] must not be
greater than the highest number mapping in use. Any illegal values render the
stream undecodable.

f) save this mode configuration in slot [i] of the mode configuration array [vorbis_
mode_configurations].

3. read 1 bit as a framing flag. If unset, a framing error occurred and the stream is not
decodable.

After reading mode descriptions, setup header decode is complete.

4.3. Audio packet decode and synthesis

Following the three header packets, all packets in a Vorbis I stream are audio. The first
step of audio packet decode is to read and verify the packet type. A non-audio packet when
audio 1s expected indicates stream corruption or a non-compliant stream. The decoder must
tgnore the packet and not attempt decoding it to audio.

4.3.1. packet type, mode and window decode

1. read 1 bit [packet_type]; check that packet type is 0 (audio)
2. read ilog([vorbis_mode_count]-1) bits [mode_number]

3. decode blocksize [n] is equal to [blocksize_0] if [vorbis_mode_blockflag] is 0,
else [n] is equal to [blocksize_1].

4. perform window selection and setup; this window is used later by the inverse MDCT:

a) if this is a long window (the [vorbis_mode_blockflag] flag of this mode is
set):

i. read 1 bit for [previous_window_flag]
ii. read 1 bit for [next_window_flag]

iii. if [previous_window_flag] is not set, the left half of the window will be
a hybrid window for lapping with a short block. See Section 1.3.2, “Win-
dow shape decode (long windows only)” for an illustration of overlapping
dissimilar windows. Else, the left half window will have normal long shape.

iv. if [next_window_flag] is not set, the right half of the window will be a
hybrid window for lapping with a short block. See Section 1.3.2, “Win-
dow shape decode (long windows only)” for an illustration of overlapping
dissimilar windows. Else, the left right window will have normal long shape.

30

b) if this is a short window, the window is always the same short-window shape.

Vorbis windows all use the slope function y = sin(% * sin®((z + 0.5)/n * 7)), where n is
window size and x ranges 0...n — 1, but dissimilar lapping requirements can affect overall
shape. Window generation proceeds as follows:

1.
2.

[window_center] = [n] /2
if ([vorbis_mode_blockflag] is set and [previous_window_flag] is not set) then
a) [left_window_start] = [n]/4 - [blocksize_0]/4
b) [left_window_end] = [n]/4 + [blocksize_0]/4
c) [left_n] = [blocksize_0]/2
else
a) [left_window_start] =0
b) [left_window_end] = [window_center]
¢) [left_n] = [n]/2
if ([vorbis_mode_blockflag] is set and [next_window_flag] is not set) then
a) [right_window_start] = [n]*3/4 - [blocksize_0]/4
b) [right_window_end] = [n]*3/4 + [blocksize_0]/4
¢) [right_n] = [blocksize_0]/2
else
a) [right_window_start] = [window_center]
b) [right_window_end] = [n]
¢) [right_n] = [n]/2

. window from range 0 ... [left_window_start]-1 inclusive is zero

. for [i] in range [left_window_start] ... [left_window_end]-1, window([i]) =

sin(Z # sin®(([i]-[left_window_start]+0.5) / [left_n] *3))

window from range [left_window_end] ... [right_window_start]-1 inclusive is
one
for [i] in range [right_window_start] ... [right_window_end]-1, window([i])

= sin(5 *sin*(([i]-[right_window_start]+0.5) / [right_n] *Z + %))

window from range [right_window_start] ... [n]-1 is zero

31

An end-of-packet condition up to this point should be considered an error that discards
this packet from the stream. An end of packet condition past this point is to be considered
a possible nominal occurrence.

4.3.2. floor curve decode

From this point on, we assume out decode context is using mode number [mode_number]
from configuration array [vorbis_mode_configurations] and the map number [vorbis_
mode_mapping] (specified by the current mode) taken from the mapping configuration
array [vorbis_mapping_configurations].

Floor curves are decoded one-by-one in channel order.
For each floor [i] of [audio_channels]
1. [submap_number] = element [i] of vector [vorbis_mapping mux]
2. [floor_number] = element [submap_number] of vector [vorbis_submap_floor]

3. if the floor type of this floor (vector [vorbis_floor_types] element [floor_number])
is zero then decode the floor for channel [i] according to the subsubsection 6.2.2,
“packet decode”

4. if the type of this floor is one then decode the floor for channel [i] according to the
subsubsection 7.2.3, “packet decode”

5. save the needed decoded floor information for channel for later synthesis

6. if the decoded floor returned "unused’, set vector [no_residue] element [i] to true,
else set vector [no_residue] element [i] to false

An end-of-packet condition during floor decode shall result in packet decode zeroing all
channel output vectors and skipping to the add/overlap output stage.

4.3.3. nonzero vector propagate

A possible result of floor decode is that a specific vector is marked 'unused’ which indicates
that that final output vector is all-zero values (and the floor is zero). The residue for that
vector is not coded in the stream, save for one complication. If some vectors are used and
some are not, channel coupling could result in mixing a zeroed and nonzeroed vector to
produce two nonzeroed vectors.

for each [i] from O ... [vorbis_mapping_coupling_steps]-1

1. if either [no_residue] entry for channel ([vorbis_mapping magnitude] element
[i]) or channel ([vorbis_mapping_angle] element [i]) are set to false, then both

32

must be set to false. Note that an 'unused’ floor has no decoded floor information;
it is important that this is remembered at floor curve synthesis time.

4.3.4. residue decode

Unlike floors, which are decoded in channel order, the residue vectors are decoded in

submap order.

for each submap [i] in order from 0 ... [vorbis_mapping_submaps]-1
1. [ch]l =0
2. for each channel [j] in order from O ... [audio_channels] -1

a) if channel [j] in submap [i] (vector [vorbis_mapping_mux] element [j] is

equal to [1])
i. if vector [no_residue] element [j] is true
A. vector [do_not_decode_flag] element [ch] is set
else
A. vector [do_not_decode_flag] element [ch] is unset
ii. increment [ch]
3. [residue_number] = vector [vorbis_mapping_submap_residue] element [i]
4. [residue_type] = vector [vorbis_residue_types] element [residue_number]

5. decode [ch] vectors using residue [residue_number], according to type [residue_
typel, also passing vector [do_not_decode_flag] to indicate which vectors in the
bundle should not be decoded. Correct per-vector decode length is [n] /2.

6. [ch] =0
7. for each channel [j] in order from 0 ... [audio_channels]

a) if channel [j] is in submap [i] (vector [vorbis_mapping_mux] element [j] is
equal to [i])

i. residue vector for channel [j] is set to decoded residue vector [ch]

1i. increment [ch]

4.3.5. inverse coupling

for each [i] from [vorbis_mapping_coupling_steps]-1 descending to 0

33

1. [magnitude_vector] = the residue vector for channel (vector [vorbis_mapping_
magnitude] element [i])

2. [angle_vector] = the residue vector for channel (vector [vorbis_mapping_angle]
element [i])

3. for each scalar value [M] in vector [magnitude_vector] and the corresponding scalar
value [A] in vector [angle_vector]:

a) if ([M] is greater than zero)
i. if ([A] is greater than zero)
A. [new_M] = [M]
B. [new_A]l = [M]-[A]
else
A. [new_A]l = [M]
B. [new_M] = [M]+[A]
else
i. if ([A] is greater than zero)
A. [new_M] = [M]
B. [new_A] = [M]+[A]
else
A. [new_A] = [M]
B. [new_M] = [M]-[A]
b) set scalar value [M] in vector [magnitude_vector] to [new_M]

c) set scalar value [A] in vector [angle_vector] to [new_A]

4.3.6. dot product
For each channel, synthesize the floor curve from the decoded floor information, according
to packet type. Note that the vector synthesis length for floor computation is [n] /2.

For each channel, multiply each element of the floor curve by each element of that channel’s
residue vector. The result is the dot product of the floor and residue vectors for each
channel; the produced vectors are the length [n] /2 audio spectrum for each channel.

One point is worth mentioning about this dot product; a common mistake in a fixed point
implementation might be to assume that a 32 bit fixed-point representation for floor and

34

residue and direct multiplication of the vectors is sufficient for acceptable spectral depth in
all cases because it happens to mostly work with the current Xiph.Org reference encoder.

However, floor vector values can span ~140dB (~24 bits unsigned), and the audio spectrum
vector should represent a minimum of 120dB (~21 bits with sign), even when output is to
a 16 bit PCM device. For the residue vector to represent full scale if the floor is nailed to
—140dB, it must be able to span 0 to +140dB. For the residue vector to reach full scale if
the floor is nailed at 0dB, it must be able to represent —140dB to +0dB. Thus, in order to
handle full range dynamics, a residue vector may span —140dB to +140dB entirely within
spec. A 280dB range is approximately 48 bits with sign; thus the residue vector must be
able to represent a 48 bit range and the dot product must be able to handle an effective 48
bit times 24 bit multiplication. This range may be achieved using large (64 bit or larger)
integers, or implementing a movable binary point representation.

4.3.7. inverse MDCT

Convert the audio spectrum vector of each channel back into time domain PCM audio
via an inverse Modified Discrete Cosine Transform (MDCT). A detailed description of
the MDCT is available in [I]. The window function used for the MDCT is the function
described earlier.

4.3.8. overlap_add

Windowed MDCT output is overlapped and added with the right hand data of the previous
window such that the 3/4 point of the previous window is aligned with the 1/4 point of
the current window (as illustrated in Section 1.3.2, “Window shape decode (long windows
only)”). The overlapped portion produced from overlapping the previous and current frame
data is finished data to be returned by the decoder. This data spans from the center of the
previous window to the center of the current window. In the case of same-sized windows,
the amount of data to return is one-half block consisting of and only of the overlapped
portions. When overlapping a short and long window, much of the returned range does not
actually overlap. This does not damage transform orthogonality. Pay attention however
to returning the correct data range; the amount of data to be returned is:

window_blocksize (previous_window)/4+window_blocksize (current_window)/4

from the center (element windowsize/2) of the previous window to the center (element
windowsize/2-1, inclusive) of the current window.

Data is not returned from the first frame; it must be used to 'prime’ the decode engine.
The encoder accounts for this priming when calculating PCM offsets; after the first frame,
the proper PCM output offset is '0’ (as no data has been returned yet).

35

4.3.9. output channel order

Vorbis I specifies only a channel mapping type 0. In mapping type 0, channel mapping is im-
plicitly defined as follows for standard audio applications. As of revision 16781 (20100113),
the specification adds defined channel locations for 6.1 and 7.1 surround. Ordering/location
for greater-than-eight channels remains ’left to the implementation’.

These channel orderings refer to order within the encoded stream. It is naturally possible
for a decoder to produce output with channels in any order. Any such decoder should
explicitly document channel reordering behavior.

one channel the stream is monophonic
two channels the stream is stereo. channel order: left, right
three channels the stream is a 1d-surround encoding. channel order: left, center, right

four channels the stream is quadraphonic surround. channel order: front left, front right,
rear left, rear right

five channels the stream is five-channel surround. channel order: front left, center, front
right, rear left, rear right

six channels the stream is 5.1 surround. channel order: front left, center, front right, rear
left, rear right, LFE

seven channels the stream is 6.1 surround. channel order: front left, center, front right,
side left, side right, rear center, LFE

eight channels the stream is 7.1 surround. channel order: front left, center, front right,
side left, side right, rear left, rear right, LFE

greater than eight channels channel use and order is defined by the application

Applications using Vorbis for dedicated purposes may define channel mapping as seen fit.
Future channel mappings (such as three and four channel Ambisonics) will make use of
channel mappings other than mapping 0.

36

http://www.ambisonic.net/

[

O © 000 U R W N =

5. comment field and header specification

5.1. Overview

The Vorbis text comment header is the second (of three) header packets that begin a Vorbis
bitstream. It is meant for short text comments, not arbitrary metadata; arbitrary metadata
belongs in a separate logical bitstream (usually an XML stream type) that provides greater
structure and machine parseability.

The comment field is meant to be used much like someone jotting a quick note on the
bottom of a CDR. It