
A New and Improved Eclipse
Parallel Tools Platform: Advancing the
Development of Scientific Applications

Greg Watson, IBM
g.watson@computer.org

Beth Tibbitts, IBM
tibbitts@us.ibm.com

Portions of this material are supported by or based upon work supported by the Defense
Advanced Research Projects Agency (DARPA) under its Agreement No. HR0011-07-9-0002, the
United States Department of Energy under Contract No. DE-FG02-06ER25752, the Blue Waters
sustained petascale computing project, which is supported by the National Science Foundation
under award number OCI 07-25070, and the SI2-SSI Productive and Accessible Development
Workbench for HPC Applications, which is supported by the National Science Foundation under
award number OCI 1047956

Jay Alameda, NCSA
jalameda@ncsa.uiuc.edu

Jeff Overbey, UIUC
overbey2@illinois.edu

July 18, 2011

Galen Arnold, NCSA
arnoldg@ncsa.uiuc.edu

Tutorial Outline
Time (Tentative!) Module Topics Presenter

8:00-8:30 1. Overview of Eclipse
 and PTP, Installation check

  Introduction to Eclipse/PTP; demo Greg

 8:30-9:30 3. CDT: Working with C/C++
Remote Projects

  Eclipse basics; Creating a new project
  Building and launching remotely

Beth

9:30-10:00 4. Working with MPI   Makefiles, PLDT MPI tools
  Resource Managers
  Launching a parallel application

Jay

10:00-10:30 BREAK

10:30-11:00 4. Working with MPI   Makefiles, PLDT MPI tools
  Resource Managers
  Launching a parallel application

Jay

11:00-12:00 5. Debugging   Debugging an MPI program Greg

12:00 – 1:00 Lunch

1:00-2:15 6. Fortran; Refactoring   Photran overview; comparison w/ CDT
  Refactoring support

Jeff

2:15-2:30 BREAK

2:30-4:30 7. Advanced Features:
Performance Tuning & Analysis
Tools

  PLDT (MPI, OpenMP, UPC tools) (20 min)
  TAU, ETFw (20)
  GEM (20)
  Linux Tools (gprof, gcov) (20 min)
  Configuring Resource Managers (20 min)

Beth
Suzanne
Alan
Galen
Jay

4:30- 5:00 8. Other Tools, Wrapup   NCSA HPC Workbench, Other Tools, website, mailing
lists, future features

Jay/Beth

Final Slides, Installation
Instructions

 Please go to
http://wiki.eclipse.org/PTP/
tutorials/TG11 for slides and
installation instructions

1-0 Module 1

Module 1: Introduction

 Objective
 To introduce the Eclipse platform and PTP

 Contents
 What is Eclipse?
 What is PTP?

1-1 Module 1

What is Eclipse?

 A vendor-neutral open-source workbench for
multi-language development

 A extensible platform for tool integration
 Plug-in based framework to create, integrate

and utilize software tools

1-2 Module 1

Eclipse Platform

 Core frameworks and services with which all
plug-in extensions are created

 Represents the common facilities required by
most tool builders:
 Workbench user interface
 Project model for resource management
 Portable user interface libraries (SWT and JFace)
 Automatic resource delta management for

incremental compilers and builders
 Language-independent debug infrastructure
 Distributed multi-user versioned resource

management (CVS supported in base install)
 Dynamic update/install service

1-3 Module 1

Plug-ins

  Java Development Tools (JDT)
  Plug-in Development Environment (PDE)
  C/C++ Development Tools (CDT)
  Parallel Tools Platform (PTP)
  Fortran Development Tools (Photran)
  Test and Performance Tools Platform (TPTP)
  Business Intelligence and Reporting Tools (BIRT)
  Web Tools Platform (WTP)
  Data Tools Platform (DTP)
  Device Software Development Platform (DSDP)
  Many more…

1-4

Launching & Monitoring

Eclipse Parallel Tools Platform (PTP)

Debugging

Coding & Analysis

Performance Tuning

Module 1

1-5 Module 1

Parallel Tools Platform (PTP)

  The Parallel Tools Platform aims to provide a highly
integrated environment specifically designed for parallel
application development

  Features include:
  An integrated development environment (IDE) that

supports a wide range of parallel architectures and runtime
systems

  A scalable parallel debugger
  Parallel programming tools

(MPI, OpenMP, UPC, etc.)
  Support for the integration

of parallel tools
  An environment that simplifies the

end-user interaction with parallel systems
  http://www.eclipse.org/ptp

1-6 Module 1

PTP Features Demo…

  Creating a project from existing source code –
importing into Eclipse and PTP

  Content assist, searching, include browser
  Building the project
  Launching an MPI program
  Debugging an MPI program

Module 3: Working with C/C++
 Objective

 Learn basic Eclipse concepts: Perspectives, Views, …
 Learn how to use Eclipse to manage a remote project
 Learn how to use Eclipse to develop C programs
 Learn how to launch and run a remote C program

 Contents
 Brief introduction to the C/C++ Development Tools

(CDT)
 Create a simple remote application
 Learn to launch a remote C application

Module 3 3-0

3-1

Login Information

 The hands on portion of this module will be
done on a remote system at SDSC, thank you
to SDSC!
 Lincoln.ncsa.uiuc.edu
 Train41-60
 TG11tr8L!

  See the following URL for more information on the
system
  http://www.sdsc.edu/us/resources/trestles/

 Each student will be assigned an ID and password
at the start of the tutorial

 Please use only this ID
 We are also working to make this work with Ranger

and Kraken, this work is not complete… Module 3

Eclipse Basics
  A workbench contains the menus, toolbars, editors and

views that make up the main Eclipse window

perspective Module 3

view
view

view

editor

  The workbench represents
the desktop development
environment
  Contains a set of tools

for resource mgmt
  Provides a common way

of navigating through
the resources

  Multiple workbenches
can be opened at the
same time

  Only one workbench can
be open on a workspace
at a time

3-2

Perspectives

 Perspectives define the layout of views and
editors in the workbench

 They are task oriented, i.e. they contain
specific views for doing certain tasks:
 There is a Resource Perspective for manipulating

resources
 C/C++ Perspective for manipulating compiled code
 Debug Perspective for debugging applications

  You can easily switch between perspectives

 If you are on the Welcome screen now, select
“Go to Workbench” now

Module 3 3-3

Switching Perspectives

  Three ways of changing
perspectives

  Choose the Window>Open
Perspective menu option

  Then choose Other…

  Click on the Open
Perspective button in the
upper right corner of screen

  Click on a perspective
shortcut button

 Switch perspective
on next slide…

Module 3 3-4

Switch to Remote C/C++ Perspective
  Select Window>Open

Perspective
  Then choose Other…
  Only needed if you’re not

already in the perspective

  What Perspective am in in?
 See title Bar

Module 3 3-5

Views

 The workbench window is
divided up into Views

 The main purpose of a view is:
 To provide alternative ways of presenting information
 For navigation
 For editing and modifying information

 Views can have their own menus and toolbars
 Items available in menus and toolbars are

available only in that view
 Menu actions only

apply to the view

 Views can be resized

view

view view

Module 3 3-6

Stacked Views

 Stacked views appear as tabs
 Selecting a tab brings that view to the

foreground

Module 3 3-7

Help

  To access help
  Help>Help Contents
  Help>Search
  Help>Dynamic Help

  Help Contents provides
detailed help on different
Eclipse features in a
browser

  Search allows you to
search for help locally, or
using Google or the Eclipse
web site

  Dynamic Help shows help
related to the current
context (perspective, view,
etc.)

Module 3 3-8

Preferences

  Eclipse Preferences allow
customization of almost
everything

  To open use
  Mac: Eclipse>Preferences…
  Others:

Window>Preferences…

 The C/C++ preferences
allow many options to be
altered

 In this example you can
adjust what happens in the
editor as you type.

Module 2 3-9

Preferences (2)

More C/C++ preferences:
 In this example the

Code Style preferences
are shown

 These allow code to be
automatically
formatted in different
ways

Module 2 3-10

3-11

Types of C/C++ Projects
  C/C++ Projects can be

  Local – source is located on local machine, builds happen locally
  Remote – source is either located on remote machine, or

synchronized with remote machine; builds take place on remote
machine

  Makefile-based – project contains its own makefile (or makefiles)
for building the application

  Managed– Eclipse manages the build process, no makefile
required

  Parallel programs can be run on the local machine or on a remote
system
  MPI needs to be installed
  An application built locally probably can’t be run on a remote

machine unless their architectures are the same
  We will show you how to create, build and run the program on a

remote machine
  We will create a remote Makefile project

-11 Module 3

Remote Projects

“Traditional” Remote Projects
  Source is located on remote machine
  Eclipse is installed on the local machine

and can be used for:
  Editing
  Building
  Running
  Debugging

  Source indexing is performed on remote
machine
  Enables call hierarchy, type

hierarchy, include browser, search,
outline view, and more…

  Builds are performed on remote machine
  Supports both managed and makefile

projects

  Application is run and debugged remotely
using the PTP resource managers

Synchronized Projects
  Source is located on both the local system

and on a remote target system. The two
copies are kept in sync by Eclipse.

  Eclipse is installed on the local machine
and can be used for:
  Editing
  Building
  Running
  Debugging
  Development can continue “off-line”

  Source indexing is performed on local
machine
  Enables call hierarchy, type

hierarchy, include browser, search,
outline view, and more…

  Builds are performed on one or more
remote machines
  Supports both managed and makefile

projects
  Application is run and debugged remotely

using the PTP resource managers

3-12 Module 3

7/18/11Module 4 4-13

Traditional Remote Projects

Preparation steps:

  We will set up an SSH terminal to the remote system to
copy some files

  Make sure you are in the
Remote C/C++ perspective

  Select the Remote Systems view
 Define a new connection
 Select “SSH Only”
 Then Next

3-14 Module 3

Preparation, continued

  Add lincoln’s host info
  Then Finish

  Right click on ssh
terminals, under lincoln

  Select Launch Terminal

3-15 Module 3

Preparation, continued

 Add your training
account login

 Click through any
RSA messages

 And now you have a
terminal to lincoln

3-16 Module 3

Why did we do this?

 To show you can gain “traditional” access to a
remote host through Eclipse

 And to have you stage some directories:
 Issue the following commands in the terminal

 cp –r ~jalameda/hello_world .
 cp –r ~jalameda/shallow .
 cp –r ~jalameda/mpi .

 This will give us some source code to work
with

3-17 Module 3

  Use File>New>Remote C/C++ Project to open the
new project wizard

  The wizard will take you through the steps for creating
the project

Creating a Remote C/C++ Project

Module 3 3-18

Don’t see the “Remote C/C++ Project” choice?
Make sure you are in the Remote C/C++ Perspective

New Remote Project Wizard

  Enter project name, e.g. “hello”
  Select a Remote Provider

  Remote providers supply different
ways of accessing remote (or local)
systems

  Choose Remote Tools

  A Connection specifies how to
connect to the remote host
  Click on the New… button to create a

new connection

3-19 Module 3

Remote Host Configuration

  Enter a connection name (can be
anything) for the Target name
  Use “lincoln.ncsa.uiuc.edu”

  The host is remote, so the Remote
host option should be checked

  Enter the host name or IP address of
the remote host for the Host
  Use “lincoln.ncsa.uiuc.edu”

  Enter the user name and
password supplied at the beginning of
the tutorial for the User and
Password

  Note: if your remote machine uses OTP
for authentication, leave the password
field blank

  Click Finish
3-20 Module 3

Project Location

  The Location is the directory on
the remote host containing the
source and executable files

  Click on the browse button to
browse for folders on the remote
machine
  You should see the folders in your

home directory
  Choose the “hello” directory

  Click OK

3-21 Module 3

Project Type
  The Project type determines

information about the project
  If the project is managed or

unmanaged (described later)
  The tool chain (compiler, linker, etc.)

to use when building
  If the project creates an executable,

static, or shared library
  Options available depend on whether

the project is local or remote
  Under Remote Makefile

Project, select Empty Project
  For Toolchains, select Other

Toolchain
  Click on Finish to complete the

wizard

3-22 Module 3

  If you need to change remote connection
information (such as username or
password), use the Remote
Environments view

Changing Remote Connection Information

3-23 Module 3

  Stop the remote
connection first

  Right-click and
select Edit

  Note: running server is shown in lower right
 Opening any remote file restarts it

Project Explorer View
  Shows the user’s projects
  Each project contains

  Source files
  Executable files
  Folders
 Metadata (not visible)

  Can have any number of projects
  We only have a single project so

far

Module 3 3-24

4-25

New Project Wizard:
Create a C Project

  The New Project Wizard is used
to create a C project

  Enter Project name
  Under Project Types, select

Makefile projectEmpty
Project
  Ensures that CDT will use existing

makefiles

  Select Finish
  When prompted to switch to the

C/C++ Perspective, select Yes

Module 4 4-25

Editor and Outline View
  Double-click on

source file to open
editor

  Outline view is
shown for file in
editor

  You should see
warnings on the
include files:
we will fix this
later

  Console shows
results of build

Module 3 3-26

Editors

  An editor for a resource (e.g. a file)
opens when you double-click on
a resource

  The type of editor depends on the type of the resource
  .c files are opened with the C/C++ editor
  Some editors do not just edit raw text

  When an editor opens on a resource, it stays open across
different perspectives

  An active editor contains menus and toolbars specific to that
editor

  When you change a resource, an asterisk on the editor’s
title bar indicates unsaved changes

editor

Module 3 3-27

  Save the changes by using Command/
Ctrl-S or File>Save

Source Code Editors & Markers

  A source code editor is a
special type of editor for
manipulating source
code

  Language features are
highlighted

  Marker bars for showing
  Breakpoints
  Errors/warnings
  Task Tags, Bookmarks

  Location bar for
navigating to interesting
features in the entire file

Icons:

Module 3 3-28

Line Numbers

  Text editors can show line numbers in the
left column

3-29 Module 3

  To turn on line
numbering:
  Right-mouse click in

the editor marker bar
  Click on Show Line

Numbers

Include File Locations

  Content assist and navigation
requires knowledge of include file
location on the remote system

  The editor will indicate warnings
on lines that have the problem

  Problems View will display a
warning

  The project properties must be
changed to resolve the problem

3-30 Module 3

Indexer: Unresolved inclusion: <stdio.h> in
file: /u/ac/etrain1/hello/hello.c:11. Please re-
configure project's remote include paths or
symbols.

  Open the project properties by
right-clicking on project and
select Properties

  Expand Remote
Development

  Select Remote Paths and
Symbols

  Select GNU C to change
C paths and symbols

  Click Add
  Enter “/usr/include”
  Click OK

Changing the Project Properties

Module 3 3-31

  Click OK to save the Project
Properties

  You will be prompted to
rebuild the index
  Select Yes

  Red warnings should be
gone from editor, since
Eclipse knows the location
of the include files now

Saving the Project Properties

Module 3 3-32

  On demand hyperlink
  Hold down Command/Ctrl key
  Click on element to navigate to

its definition in the header file
(Exact key combination
depends on your OS)

  E.g. Command/Ctrl and click on
EXIT_SUCCESS

  Open declaration
  Right-click and select Open

Declaration will also open the
file in which the element is
declared

  E.g. right-click on stdio.h and
select Open Declaration

Navigating to Other Files

Module 3 3-33

Content Assist & Templates
  Type an incomplete function name e.g. “get” into the editor,

and hit ctrl-space
  Select desired completion value with cursor or mouse

Module 3 3-34

Hit ctrl-space again
for code templates   Code Templates: type

‘for’ and Ctrl-space

  To manually build, select
the project and press the
the “build” button

  Alternatively, select Project>Build
Project

  To rebuild if project is already built,
Project > Clean…

Building the Project

  The project should build automatically when created
  If there is no makefile, then the build will fail

2-35 Module 2

After building the project:
  The Console view shows build output

  If the build is successful,
the executable should appear
in the project

Building the Project (2)

2-36 Module 2

Executable

Build Problems

  If there are problems, they
will be shown in a variety
of ways
  Marker on editor line
  Marker on overview ruler
  Listed in the Problems view

  Double-click on line in
Problems view to go to
location of error

Module 3 3-37

Fix Build Problems

  Save the file
  Rebuild by pressing build

button
  Problems view is now

empty

Module 3 3-38

  Fix errors by giving getenv an argument and fixing
declarations as shown

Create a Resource Manager

  A Resource Manager specifies how/where
programs will be launched

  Switch to the Parallel Runtime perspective
  Window>Open Perspective…

  In the Resource Managers view,
right-click and select Add Resource
Manager…

  Select Remote Launch and Next >

3-39 Module 3

Configure the Resource Manager

  Choose Remote Tools for
Remote service provider

  Choose “lincoln.ncsa.uiuc.edu”
for Connection name
  This was the connection used

when the project was created

  Click Finish

3-40 Module 3

  Right-click on the new
resource manager and select
Start Resource Manager
from the menu

  If the resource manager
starts successfully, the icon
should turn green

  An icon color of red indicates
a problem occurred

Start the Resource Manager

3-41 Module 3

NOTE: On some Linux systems, starting a resource
manager may appear to hang. Open the window
you launched Eclipse from and check if there is a
prompt for a kerberos username. Hit “enter” twice
if you see the prompt.

To run the application, create a
Run Configuration

  Open the run configurations
dialog
  Click on the arrow next to the run button
  Or use Run>Run Configurations…

  Select Parallel Application
  Select the New button

Create a Run Configuration

Depending on which flavor of
Eclipse you installed, you might
have more choices of application
types

Module 3 3-42

Complete the Resources Tab

  Select your Resource Manager
  Should be selected automatically if it has been started

  The Remote Launch doesn’t require additional attributes
  Other resource managers may have additional attributes, such as a

queue name, etc.

Module 3 3-43

Complete the Application Tab

Module 3 3-44

  Make sure “hello” is selected
for the Parallel Project

  Browse to find the
executable file for the
Application program

  Launch the application by
clicking the Run button

Viewing Program Output

  When the program runs, the Console view should
automatically become active

  Any output will be displayed in this view
  Stdout is shown in black
  Stderr is shown in red

Module 3 3-45

Other CDT features

 Searching
 Mark Occurrences
 Open Declaration / hyperlinking between files

in the editor

Module 3 3-46

First, return to the “Remote C/C++
Perspective”

Language-Based Searching

  “Knows” what things can
be declared in each
language (functions,
variables, classes,
modules, etc.)

  For example, search for
every call to a function
whose name starts with
“get”

  Search can be project- or
workspace-wide

3-47 Module 3

Mark Occurrences

 Double-click on a variable in the CDT editor
 All occurrences in the source file are

highlighted to make locating the variable
easier

 Alt-shift-O to turn off

3-48 Module 3

Open Declaration

  Jumps to the declaration of
a variable, function, etc.,
even if it’s in a different file

  Right-click on an identifier
  Click Open Declaration

  Can also Ctrl-click (Mac:
Cmd-click) on an identifier
to “hyperlink” to its
declaration

3-49 Module 3

Remote Projects - Location

  How to tell where a project
resides?

  Right-click Project
  Select Properties…

  In Properties dialog,
select Resource

3-50 Module 3

Remote Projects - Reopening

  When re-opening Eclipse
workbench, remote projects
will be closed

  To re-open a closed project,
Right-click on closed project
and select Open Project

  Open project shows folder
icon, and can be expanded to
show contents of project

3-51 Module 3

4-0

Module 4: Working with MPI
 Objective

 Learn how to develop, build and launch a parallel
(MPI) program on a remote parallel machine

 Contents
 Remote project setup
 Building with Makefiles
 MPI assistance features
 Working with resource managers
 Launching a parallel application

Module 4 4-0

4-1

Local vs. Remote
  PTP allows the program to be run locally if you have MPI

installed
 However we want to run the program on a remote

machine
  We will now show you how to run a parallel program on

a remote machine
 Interactively
 Through a batch system
 Interactively through a batch system

  We have provided the source code to an MPI program
on the remote machine

  The project will be created using this source code

Module 4 4-1

Creating a Remote MPI Project

  Like the previous module, create
a new Remote C/C++ project

  Enter “shallow” for the Project
Name

  Use the same Connection as before
  Click the Browse… button and

choose the directory “shallow” in
in your home directory

  Select a Remote Makefile Project
as before

  Click Finish

4-2 Module 4

You may be prompted to open
the Remote C/C++ Perspective

Changing the Project Build Properties

  The project makefile has a non-standard name
Makefile.mk

  We need to change the build
properties so that the project
will build
  By default, the project is built by

running “make”

  Right-click on project
“shallow” in the Project
Explorer

  Select Properties

4-3 Module 4

Changing the Build Command

  Select C/C++ Build
  Uncheck Use default build command
  Change the Build command to:

 make –f Makefile.mk

4-4 Module 4

Building the Project

  Click OK to save project properties after changing
build command

  Select project and hit the build button
  The project can be built at any time

by hitting this button

4-5 Module 4

4-6

Include File Locations

  Like the previous example, Eclipse content assist and
navigation require knowledge of include file locations on the
remote system
  Since the build will be running remotely, the compiler knows

how to find include files
  But Eclipse does not

  In Project Explorer,
right-click on project

  Select Properties

Module 4 4-6

Module 4 4-7

Include files on
abe.ncsa.uiuc.edu

Remote Paths and Symbols

In Project Properties,
  Expand Remote Development
  Select

Remote Paths and Symbols
  Select Languages>GNU C

  This is compiler on abe

  Click Add…
  Enter /usr/local/openmpi-1.4.2-intel-11.1/include

  Click OK, then Add… again
  Enter /usr/include

  Click OK
  Click OK to close preferences
  When prompted to rebuild

index, click OK

MPI-Specific Features

  PTP’s Parallel Language Development Tools (PLDT)
has several features specifically for developing MPI
code
 Show MPI Artifacts
 Code completion
 Context Sensitive Help for MPI
 Hover Help
 MPI Templates in the editor

4-8 Module 4

More MPI features covered in
Module 7: Advanced Features

4-9

Show MPI Artifacts

Module 4 4-9

  In Project Explorer, select a project, folder, or a single source file
  The analysis will be run on the selected resources

  Run the analysis by clicking on drop-down menu next to the
analysis button

  Selecting Show MPI Artifacts

4-10

MPI Artifact View

  Markers indicate the
location of artifacts in
editor

  The MPI Artifact View
list the type and location
of each artifact

  Navigate to source code
line by double-clicking on
the artifact

  Run the analysis on
another file (or entire
project!) and its markers
will be added to the view

  Remove markers via
  Click on column headings

to sort

Module 4 4-10

4-11

MPI Editor Features
  Code completion will show all

the possible MPI keyword
completions

  Enter the start of a keyword
then press <ctrl-space>

Module 4 4-11

  Hover over MPI API
  Displays the function

prototype and a
description

4-12

Context Sensitive Help
  Click mouse, then press help

key when the cursor is within a
function name
  Windows: F1 key
  Linux: ctrl-F1 key
  MacOS X: Help key or

HelpDynamic Help
  A help view appears (Related

Topics) which shows
additional information
(You may need to click on MPI
API in editor again, to
populate)

  Click on the function name to
see more information

  Move the help view within your
Eclipse workbench, if you like,
by dragging its title tab

Module 4 4-12

Some special
info has been
added for MPI

APIs

4-13

MPI Templates

 Example:
 MPI send-receive

 Enter:
 mpisr <ctrl-space>

 Expands to a send-receive
pattern

 Highlighted variable names
can all be changed at once

 Type mpi <ctrl-space> <ctrl-
space> to see all templates

Add more templates using Eclipse preferences!
C/C++>Editor>Templates

Extend to other common patterns

Module 4 4-13

 Allows quick entry of common patterns in MPI programming

4-14

Running the Program
 Creating a resource manager
 Starting the resource manager
 Creating a launch configuration
 Launching the application
 Viewing the application run

Module 4 4-14

4-15

Terminology

  The Parallel Runtime perspective is provided for
monitoring and controlling applications

  Some terminology
 Resource manager - Corresponds to an instance of

a resource management system (e.g. a job
scheduler). You can have multiple resource
managers connected to different machines.

 Queue - A queue of pending jobs
 Job – A single run of a parallel application
 Machine - A parallel computer system
 Node - Some form of computational resource
 Process - An execution unit (may be multiple

threads of execution)

Module 4 4-15

4-16

Resource Managers

  PTP uses the term “resource manager” to refer to any
subsystem that controls the resources required for launching a
parallel job.

  Examples:
 Job scheduler (e.g. LoadLeveler, PBS, SLURM)
  Interactive execution (e.g. Open MPI, MPICH2, etc.)

  Each resource manager controls one target system
  Resource Managers can be local or remote
  Note: PTP 5.0 is in transition with respect to resource managers

and status monitoring;
  PBS (“jaxb lml”) is new-style resource manager, with System Monitor

runtime
  All others are old-style resource managers, using Parallel Runtime

Module 4 4-16

4-17

Preparing to Launch

Module 4 4-17

  Setting up a resource manager is done in the Parallel
Runtime perspective

  Select Window>Open Perspective>Other
  Choose Parallel Runtime and click OK

4-18

Parallel Runtime Perspective

Resource
managers
view

Machines
view

Node details
view

Jobs List view

Module 4 4-18

Console
view

Properties
view

4-19

About PTP Icons

  Open using legend icon in
toolbar

Module 4 4-19

4-20

Running Jobs Interactively

  Interactive resource
managers will run the
parallel application
immediately

  They are also used for
debugging the application

  Right-click in Resource
Managers view and select
Add Resource Manager

  Choose the Open MPI
Resource Manager Type

  Select Next>

Module 4 4-20

4-21

Configure the Remote Location
  Choose Remote Tools for

Remote service provider
  Choose the remote

connection you made
previously

  Click Next>

Module 4 4-21

4-22

Configure the Resource Manager

Module 4 4-22

  The Open MPI resource
manager will auto detect the
version and use the
appropriate commands
  Change only if you’re an

expert
  Set the location of the

“mpirun” command if it is not
in your path

  Click Next>
  Change the Name or

Description of the resource
manager if you wish

  You can also set the resource
manager to automatically
start

  Click Finish

4-23

Starting the Resource Manager

  Right click on new
resource manager and
select Start resource
manager

  If everything is ok, you
should see the resource
manager change to green

  If something goes wrong,
it will change to red

Module 4 4-23

4-24

System Monitoring

  Machine status shown
in Machines view

  Node status also
shown Machines view

  Hover over node to see
node name

  Double-click on node to
show attributes

Module 4 4-24

4-25

  Open the run configuration
dialog Run>Run
Configurations…

  Select Parallel Application
  Select the New button

Create a Launch Configuration

Depending on which flavor of Eclipse you
installed, you might have more choices in

Application types
Module 4 4-25

4-26

Complete the Resources Tab

Module 4 4-26

  Enter a name for the
launch configuration,
e.g. “shallow”

  In Resources tab,
select the resource
manager you want to
use to launch this job

  Enter a value
in the Number of
processes field

  Other fields can be used
to specify resource
manager-specific
information
 E.g. specify

By node to allocate
each process to a
different node

4-27

Complete the Application Tab

  Select the Application
tab

  Choose the Application
program by clicking
the Browse button and
locating the executable
on the remote machine
  There should be a

“shallow” executable in
the “shallow” directory

  Select Display output
from all processes in
a console view

  Click Run to run the
application

Module 4 4-27

4-28

Viewing The Run

  Double-click a
node in machines
view to see which
processes ran on
the node

  Hover over a
process for tooltip
popup

  Job status and
information

Module 4 4-28

4-29

Viewing Program Output

  Console displays
combined output
from all processes

  Properties view
shows job details

Module 4 4-29

4-30

Using a Job Scheduler

Module 4 4-30

  Setting up a resource manager is done in the System
Monitoring perspective
  (For PTP 5.0.0, this applies to PBS)

  Select Window>Open Perspective>Other
  Choose System Monitoring and click OK

System Monitoring Perspective
  System view

  Jobs running
on system

  Active jobs

  Inactive jobs

Module 5 5-31

4-32

Using a Job Scheduler

  Right-click in Resource
Managers view and
select Add Resource
Manager

  Choose the PBS-
Generic-Batch
Resource Manager
Type

  Select Next>

Module 4 4-32

4-33

Configure the Remote Location
  Choose Remote Tools for

Remote service provider
  Choose the remote

connection you made
previously

  Click Next>

Module 4 4-33

4-34

Configure the Monitor
Connection

Module 4 4-34

  Keep default Monitor
Connection (same as Control
Connection), click Next

4-35

Configure the Common Resource
Manager Parameters

Module 4 4-35

  Keep default name
  Can automatically start

Resource Manager (leave
unselected today)

  Click Finish

4-36

Starting the Resource Manager

  Right click on new
resource manager and
select Start resource
manager

  If everything is ok,
you should see the
resource manager
change to green

  If something goes
wrong, it will change
to red

Module 4 4-36

4-37

System Monitoring

  System view, with
abstraction of nodes

  Active and inactive
jobs

  Hover over node to see
job running on node

Module 4 4-37

4-38

  Open the run configuration
dialog Run>Run
Configurations…

  Select Parallel Application
  Select the New

button

Create a Launch Configuration

Module 4 4-38

4-39

Complete the Resources Tab

  Enter a name for this
launch configuration, e.g.
“shallow-pbs-batch

  Choose the appropriate
Resource Manager (PBS-
Generic-Batch)

  In Resources tab, select
the PBS resource manager
you just created

  The MPI Command field
allows this job to be run
as an MPI job
  Choose mpirun

  Enter the resources
needed to run this job
  Use 1 nodes, 4 gb memory, 4

cores

  Select the destination
queue – lincoln_debug

Module 4 4-39

4-40

Complete the Application Tab

  Select the Application
tab

  Choose the Application
program by clicking the
Browse button and
locating the executable on
the remote machine
  Use the same “shallow”

executable
  Select Display output

from all processes in a
console view

  If Debugger tab has error,
select Debugger: SDM

  Click Run to submit the
application to the job
scheduler

Module 4 4-40

4-41

Job Monitoring

  Job initially
appears in
“Inactive Jobs”,
then in “Active
Jobs”, then
returns to
Inactive on
completion

  Can view output
or error by right
clicking on job,
selecting
appropriate
output

Module 4 4-41

4-42

Interactive Job Scheduler

  Right-click in Resource
Managers view and
select Add Resource
Manager

  Choose the PBS-
Generic-Interactive
Resource Manager
Type

  Select Next>

Module 4 4-42

4-43

Configure the Remote Location
  Choose Remote Tools for

Remote service provider
  Choose the remote

connection you made
previously

  Click Next>

Module 4 4-43

4-44

Configure the Monitor
Connection

Module 4 4-44

  Keep default Monitor
Connection (same as Control
Connection), click Next

4-45

Configure the Common Resource
Manager Parameters

Module 4 4-45

  Keep default name
  Can automatically start

Resource Manager (leave
unselected today)

  Click Finish

4-46

Starting the Resource Manager

  Right click on new
resource manager and
select Start resource
manager

  If everything is ok,
you should see the
resource manager
change to green

  If something goes
wrong, it will change
to red

Module 4 4-46

4-47

  Open the run configuration
dialog Run>Run
Configurations…

  Select Parallel Application
  Select the New

button

Create a Launch Configuration

Module 4 4-47

4-48

Complete the Resources Tab

  Enter a name for this
launch configuration, e.g.
“shallow-pbs-interactive

  In Resources tab, select
the PBS resource manager
you just created

  The MPI Command field
allows this job to be run
as an MPI job
  Choose mpirun

  Enter the resources
needed to run this job
  Use 4 gb memory, 4 cores

  Select the destination
queue – lincoln_debug

Module 4 4-48

4-49

Complete the Application Tab

  Select the Application
tab

  Choose the Application
program by clicking the
Browse button and
locating the executable on
the remote machine
  Use the same “shallow”

executable
  Select Display output

from all processes in a
console view

  If Debugger tab has error,
select Debugger: SDM

  Click Run to submit the
application to the job
scheduler

Module 4 4-49

Running the Interactive job

 Maximizing the
console, you can see
output from the job

 Use Run button to
re-run application
within the interactive
run

 Use Stop button to
end batch job

4-50 7/18/11Module 4

Module 5

Module 5: Parallel Debugging

 Objective
 Learn the basics of debugging parallel programs

 Contents
 Launching a debug session
 The Parallel Debug Perspective
 Controlling sets of processes
 Controlling individual processes
 Parallel Breakpoints
 Terminating processes

5-0

Module 5

Debugging an Application

  Debugging requires interactive access to the application
  Since PBS is for batch execution, we will use Open MPI to

provide interactive access to the machine (PBS will
support interactive execution in the future)

  First switch to the Parallel Runtime perspective if not
already there

5-1

Module 5

Start the Resource Manager

  If the Open_MPI Resource manager is not already
started (green icon), start it now:
  Right-click on the resource manager and select

Start Resource Manager from the menu

5-2

Module 5

Create a Debug Configuration

  A debug configuration is
essentially the same as a run
configuration (like we used
in modules 3 & 4)

  We will re-use the existing
configuration and add debug
information

  Use the drop-down next to
the debug button (bug icon)
instead of run button

  Select Debug
Configurations… to open
the Debug Configurations
dialog

5-3

Configure the Debugger Tab

  Select Debugger tab
  Select the shallow

configuration

  Make sure SDM is
selected in the
Debugger dropdown

  Check the debugger
path is correct
  Should be the path to

the sdm executable on
the remote system

  Debugger session
address should not
need to be changed

  Click on Debug to
launch the program

Module 5 5-4

Module 5

  Parallel Debug
view shows job
and processes
being debugged

  Debug view shows
threads and call
stack for individual
processes

  Source view
shows a current
line marker for all
processes

The Parallel Debug Perspective (1)

5-5

Module 5

The Parallel Debug Perspective (2)

  Breakpoints view
shows breakpoints
that have been set
(more on this later)

  Variables view
shows the current
values of variables
for the currently
selected process in
the Debug view

  Outline view (from
CDT) of source
code

5-6

Module 5

Stepping All Processes

  The buttons in the
Parallel Debug View
control groups of
processes

  Click on the Step Over
button

  Observe that all process
icons change to green,
then back to yellow

  Notice that the current
line marker has moved to
the next source line

5-7

Module 5

Stepping An Individual Process
  The buttons in the

Debug view are used
to control an
individual process, in
this case process 0

  Click the Step Over
button

  You will now see two
current line markers,
the first shows the
position of process 0,
the second shows the
positions of processes
1-3

5-8

Module 5

Process Sets (1)

  Traditional debuggers apply operations to a single
process

  Parallel debugging operations apply to a single process
or to arbitrary collections of processes

  A process set is a means of simultaneously referring to
one or more processes

5-9

Module 5

Process Sets (2)

  When a parallel debug session is first started, all
processes are placed in a set, called the Root set

  Sets are always associated with a single job
  A job can have any number of process sets
  A set can contain from 1 to the number of processes in

a job

5-10

Module 5

Operations On Process Sets

  Debug operations on the
Parallel Debug view
toolbar always apply to the
current set:
  Resume, suspend, stop,

step into, step over, step
return

  The current process set is
listed next to job name
along with number of
processes in the set

  The processes in process
set are visible in right hand
part of the view

Root set = all processes

5-11

Module 5

Create set Remove
from set

Delete
set

Change
current set

Managing Process Sets

  The remaining icons in the toolbar of the Parallel
Debug view allow you to create, modify, and delete
process sets, and to change the current process set

5-12

Module 5

Creating A New Process Set
  Select the processes

you want in the set by
clicking and dragging,
in this case, the last
three

  Click on the Create
Set button

  Enter a name for the
set, in this case
workers, and click OK

  You will see the view
change to display only
the selected processes

5-13

Module 5

Stepping Using New Process Set
  With the workers set

active, click the Step
Over button

  You will see only the
first current line
marker move

  Step a couple more
times

  You should see two line
markers, one for the
single master process,
and one for the 3
worker processes

5-14

Module 5

Process Registration

 Process set commands apply to groups of
processes

 For finer control and more detailed
information, a process can be registered and
isolated in the Debug view

 Registered processes, including their stack
traces and threads, appear in the Debug view

 Any number of processes can be registered,
and processes can be registered or
un-registered at any time

5-15

Module 5

Process Registration (2)
  By default, process 0 was

registered when the debug
session was launched

  Registered processes are
surrounded by a box and
shown in the Debug view

  The Debug view only shows
registered processes in the
current set

  Since the “workers” set
doesn’t include process 0, it
is no longer displayed in the
Debug view

5-16

Module 5

Registering A Process

  To register a process,
double-click its process
icon in the Parallel
Debug view or select a
number of processes and
click on the register
button

  To un-register a process,
double-click on the
process icon or select a
number of processes and
click on the unregister
button

Individual
(registered)
processes

Groups (sets)
of processes

5-17

Module 5

Current Line Marker

 The current line marker is used to show the
current location of suspended processes

 In traditional programs, there is a single
current line marker (the exception to this is
multi-threaded programs)

 In parallel programs, there is a current line
marker for every process

 The PTP debugger shows one current line
marker for every group of processes at the
same location

5-18

Module 5

Multiple processes marker

Registered process marker

Un-registered process marker

Colors And Markers

  The highlight color depends on
the processes suspended at
that line:
  Blue: All registered process(es)
  Orange: All unregistered process

(es)
  Green: Registered or unregistered

process with no source line (e.g.
suspended in a library routine)

  The marker depends on the
type of process stopped at that
location

  Hover over marker for more
details about the processes
suspend at that location

5-19

Module 5

  Apply only to processes in the particular set that is
active in the Parallel Debug view when the breakpoint
is created

  Breakpoints are colored depending on the active
process set and the set the breakpoint applies to:
 Green indicates the breakpoint set is the same

as the active set.
  Blue indicates some processes in the breakpoint set are

also in the active set (i.e. the process sets overlap)
  Yellow indicates the breakpoint set is different from the

active set (i.e. the process sets are disjoint)
  When the job completes, the breakpoints are

automatically removed

Breakpoints

5-20

Module 5

Creating A Breakpoint
  Select the process set that

the breakpoint should apply
to, in this case, the workers
set

  Double-click on the left edge
of an editor window, at the
line on which you want to set
the breakpoint, or right click
and use the Parallel
BreakpointToggle
Breakpoint context menu

  The breakpoint is displayed
on the marker bar

5-21

Module 5

Hitting the Breakpoint
  Switch back to the Root set

by clicking on the Change
Set button

  Click on the Resume button
in the Parallel Debug view

  In this example, the three
worker processes have hit the
breakpoint, as indicated by
the yellow process icons and
the current line marker

  Process 0 is still running as its
icon is green

  Processes 1-3 are suspended
on the breakpoint

5-22

Module 5

More On Stepping
  The Step buttons are only

enabled when all processes
in the active set are
suspended (yellow icon)

  In this case, process 0 is still
running

  Switch to the set of
suspended processes (the
workers set)

  You will now see the Step
buttons become enabled

5-23

Module 5

Breakpoint Information

 Hover over breakpoint icon
 Will show the sets this breakpoint applies to

 Select Breakpoints view
 Will show all breakpoints in all projects

5-24

 Use the menu in the breakpoints view to group
breakpoints by type

 Breakpoints sorted by breakpoint set (process
set)

Module 5

Breakpoints View

5-25

Module 5

  Apply to all processes and all jobs
  Used for gaining control at debugger startup
  To create a global breakpoint

  First make sure that no jobs are selected (click in white
part of jobs view if necessary)

 Double-click on the left edge of an editor window
 Note that if a job is selected, the breakpoint will apply to

the current set

Global Breakpoints

5-26

Module 5

Terminating A Debug Session

  Click on the Terminate
icon in the Parallel
Debug view to
terminate all processes
in the active set

  Make sure the Root set
is active if you want to
terminate all processes

  You can also use the
terminate icon in the
Debug view to
terminate the currently
selected process

5-27

Module 6: Fortran

 Objective
 Learn what Photran is and how it compares to CDT
 Learn how to create a Fortran MPI application
 Learn about refactoring support

 Contents
 Overview of Photran
 Module 3 redux (in Fortran)
 Differences between Photran and CDT
 Pointers to online documentation for Photran
 Refactoring support

Module 6 6-0

Ralph Johnson’s research group at UIUC used to meet at Pho-Tran…

…which became the name of their Fortran IDE.

Photran
•  http://www.eclipse.org/photran
•  Official Eclipse Foundation project;

part of the Parallel Tools Platform (PTP)

•  Supports Fortran 77, 90, 95, 2003, & 2008
•  Built on CDT; largely similar to it

•  Primary contributor: UIUC
•  Contrib’s from Intel, IBM, LANL, & others

Module 6 6-3

Fortran
Editor &
Outline

Module 6 6-4

Context-
Aware

Highlighting

Module 6 6-5

CVS
support

Module 6 6-6

Module 6 6-7

Debugging
(GDB GUI)

Module 6 6-8

Installing Photran

  You will need a Fortran compiler
(e.g., gfortran), make, and gdb to
compile & debug Fortran programs

  From the Help menu, choose
 Install New Software…

  Select the Indigo update site

 Under Programming Langs
Check Fortran Dev. Tools

  Click Next
  Finish installing:

  Next, Accept license, Finish
  Features and prerequisites

are downloaded and installed…
  Restart Eclipse when prompted

Module 6 6-9

http://wiki.eclipse.org/PTP/photran/documentation/photran7installation

Using Photran

 It’s just like using CDT...
 Similar New Project wizards
 Similar build procedure
 Similar launch/debug procedure

 ...but not exactly
 Remote development partially supported
 Configuring fixed vs. free form file extensions
 Different editor features
 Different advanced features

Module 6 6-10

Switch to C/C++ Perspective
 Only needed if

you’re not
already in the
perspective

 What Perspective
 am in in?
 See Title Bar

Fortran

Module 6 6-11

(same as for C/C++)

Creating a Fortran Application

Steps:
  Create a new Fortran project
  Edit source code
  Save and build

Module 6 6-12

(same as Creating a C/C++ Application)

New Fortran Project Wizard

Create a new MPI project
  FileNewFortran Project

(see prev. slide)
  Name the project

‘MyHelloProject’
  Under Project types, under

Makefile Project, select MPI
Hello World Fortran Project
and hit Next

  On Basic Settings
page, fill in information
for your new project
(Author name etc.)
and hit Finish

There are
“Managed Build”
projects for
Fortran too…

…but this is a
Makefile project,
where you
maintain the
Makefile

Module 6 6-13

(similar to New C/C++ Project Wizard)

Fortran Projects View

  Represents user’s data
  It is a set of user defined

resources
 Files
 Folders
 Projects

 Collections of files and
folders

 Plus meta-data
  Resources are visible in the

Fortran Projects View

Module 6 6-14

(similar to C/C++ Project Explorer view)

Editor and Outline View
  Double-click on

source file to
open Fortran
editor

  Outline view is
shown for file in
editor

Module 6 6-15

(similar to C/C++)

Build

  Your program should build when created.
  To rebuild, many ways include:

  Select project, Hit hammer icon in toolbar
  Select project, Project Build Project
  Right mouse on project, Clean Project

6-16 Module 6

(same as C/C++)

Et Cetera
  Creating a launch configuration is identical

(Suggestion: Uncheck Stop on startup at main
in the Debugger tab)

Module 6 6-17

Et Cetera

 Debugging is identical

 Launching a parallel application is identical

 Debugging a parallel application is identical

Module 6 6-18

Diagnosing Common Problems

  Right-click on the project
in the Fortran Projects
view, and choose
Properties

  Expand Fortran
BuildSettings

  Switch to the Error
Parsers tab

  Are Photran’s error parsers
checked? If not, click
Check all

  Click OK and re-build

Building: Are compile errors
not shown in the Problems
view?

Module 6 6-19

(also true for C/C++)

  Right-click on the project in
the Fortran Projects view,
and choose Properties

  Expand Fortran
BuildSettings

  Switch to the Binary
Parsers tab

  Make sure the parser for
your platform is checked
 PE = Windows
 Elf = Linux
 Mach-O = Mac OS X

  Click OK

Launching: Is a binary not
listed when creating a launch
configuration?

Differences (1): MPI Project Wizard

  In the MPI Hello World C Project (local project),
the MPI compiler is set in the project settings…
(Local, managed build project: see Module 7, Advanced
Features)

  …but in the MPI Hello World Fortran Project,
the MPI compiler is set in a Makefile.

Module 6 6-20

Differences (2): Content Assist

  Content assist is disabled by default.
(So are Declaration View, Hover Tips, Fortran Search, &
refactorings.)
You must specifically enable it for your project.

  Right-click on the
project in the Fortran
Projects view, and
choose Properties

  Expand Fortran
Analysis/Refactoring

  Check Enable Fortran
analysis/refactoring

  Click OK
  Close and re-open any

Fortran editors
Module 6 6-21

Differences (3): Source Form
 Fortran files are either free form or fixed form;

some Fortran files are preprocessed (#define, #ifdef, etc.)

 Determined by filename extension
 Source form is set in the project properties

  Defaults:

 Fixed form: .f .fix .for .fpp .ftn .f77

 Free form: .f08 .f03 .f95 .f90 < unpreprocessed
 .F08 .F03 .F95 .F90 < preprocessed

 Many features will not work if filename extensions
are associated incorrectly
(Outline view, content assist, Fortran Search, refactorings,
Open Declaration, …)

Module 6 6-22

Differences (3): Source Form

  Right-click a project
in the Fortran
Projects view

  Click Properties

  Navigate the tree to
Fortran General
Source Form

  Select source form
for each filename
extension

  Click OK

Set free/fixed form associations in the project properties

Module 6 6-23

Differences (3): Source Form

  Navigate the tree
to General
Content Types

  Expand Text
Fortran Source
File

  Add custom
filename
extensions

Add new filename extensions in workspace preferences

Module 6 6-24

Differences (4): Remote Support

  Remote Fortran support is improving

  Synchronized remote projects

  Create Synchronized C/C++ Project, then
Convert to Fortran Project

  All features should work, except no support for
remote INCLUDE/#include files

  Fully remote projects

  Create Remote C/C++ Project, then
Convert to Fortran Project

  Do not enable analysis/refactoring

Module 6 6-25

For More Information

  Photran online documentation
linked from http://www.eclipse.org/photran

 Installation Guide

 User’s Guide
General introduction, basic features

 Advanced Features Guide
Features requiring analysis/refactoring to be enabled

Module 6 6-26

Refactoring

  Refactoring is the research
motivation for Photran @ Illinois
  Illinois is a leader in refactoring research

  “Refactoring” was coined in our group
(Opdyke & Johnson, 1990)

  We had the first dissertation…
(Opdyke, 1992)

  …and built the first refactoring tool…
(Roberts, Brant, & Johnson, 1997)

  …and first supported the C preprocessor
(Garrido, 2005)

  Photran’s agenda: refactorings for HPC,
language evolution, refactoring framework

  Photran 6.0: 16 refactorings
  Photran 7.0: 31 refactorings

(making changes to source code that don’t affect the behavior of the program)

Module 6 6-27

In Java (Murphy-Hill et al., ICSE 2008):

Rename Refactoring
 Changes the name of a variable, function, etc.,

including every use
(change is semantic, not textual, and can be workspace-wide)

 Only proceeds if the new name will be legal
(aware of scoping rules, namespaces, etc.)

  Select Fortran Perspective
 Open a source file
  Click in editor view on

declaration of a variable
  Select menu item

RefactorRename
 Or use context menu

  Enter new name

Module 6 6-28

(also available in C/C++)

  Moves statements into a new subroutine, replacing the
statements with a call to that subroutine

  Local variables are passed as arguments

Extract Procedure Refactoring

  Select a sequence of statements
  Select menu item

RefactorExtract Procedure…
 Or use context menu

  Enter new name

Module 6 6-29

(also available in C/C++ - “Extract Function”)

  Fortran does not require variable declarations
(by default, names starting with I-N are integer variables; others are reals)

  This adds an IMPLICIT NONE statement and adds explicit
variable declarations for all implicitly declared variables

Introduce IMPLICIT NONE Refactoring

  Introduce in a single file by
opening the file and selecting
RefactorIntroduce IMPLICIT
NONE…

  Introduce in multiple files by
selecting them in the Fortran
Projects view, right-clicking on
the selection, and choosing
RefactorIntroduce IMPLICIT
NONE…

Module 6 6-30

Module 7: Advanced Development

 Objective
 Become familiar with other tools that help

parallel application development

 Contents
 Parallel Language Development Tools: MPI, OpenMP, UPC

 Overview of UPC tools
 Performance Tuning and other external tools:

 PTP External Tools Framework (ETFw), TAU
 Parallel Performance Wizard (PPW)

 MPI Analysis: GEM (Graphical Explorer of MPI Programs)

Module 7 7-0

Eclipse UPC Features

Module 7 7-1

 CDT:
 Parser/Editor support
 Code templates
 IBM XLc (incl. xlUPC) – remote
 Berkeley UPC toolchain – local (see backup slides)

 PTP:
 Artifact identification; Hover/dynamic help assistance
 More Code templates
 Remote UPC parsing and builds with xlupc
 Parallel Performance Wizard integration with PTP

CDT - UPC Support

  Filetypes of “upc” will get UPC syntax high-
lighting, content assist, etc.

  Use Preferences to
change default for *.c
if you like
(we’ll show you how)

Module 7 7-2

UPC Content Assist, Hover Help

  In Editor, type
upc and hit control-
space
(once)

  A list of possible
completions is
provided.

  Choose with mouse
or cursor.

  Hover over
API

  Hyperlink too

Module 7 7-3

UPC templates - using

  In Editor, type
upc and hit control-space
(twice)

Module 7 7-4

UPC templates – viewing/adding

  Eclipse preferences: add
more! Or just see
what’s there
 C/C++ > Editor >

Templates

Module 7 7-5

Show UPC Artifacts

  Add some UPC api’s to your sample project
  Show UPC Artifacts – remote projects need CDT > 8.0

Module 7 7-6

Other UPC features

 UPC parser is remote-enabled
 Remote UPC projects can be developed efficiently

 Remote xlUPC toolchain enables remote build
of IBM xlUPC project
 Managed Build (user-friendly) way to specify and

manage complex build options without makefiles

Module 7 7-7

More Advanced Features: Demos

 ETFw – External Tools Framework and
TAU, Tuning and Analysis Utilities
 Suzanne Millstein, U. Oregon

 PPW – Parallel Performance Wizard
 No demo today)

 GEM – Graphical Explorer of MPI Programs
 Dynamic Formal Verification for MPI
 Alan Humphrey, U. Utah

Module 7 7-8

PTP/External Tools Framework
formerly “Performance Tools Framework”

Goal:
 Reduce the “eclipse plumbing”

necessary to integrate tools
 Provide integration for

instrumentation, measurement, and
analysis for a variety of performance
tools

  Dynamic Tool Definitions:
Workflows & UI

  Tools and tool workflows are
specified in an XML file

  Tools are selected and configured in
the launch configuration window

  Output is generated, managed and
analyzed as specified in the
workflow

Module 7 7-9

PTP TAU plug-ins
http://www.cs.uoregon.edu/research/tau

  TAU (Tuning and Analysis Utilities)
  First implementation of External Tools Framework (ETFw)
  Eclipse plug-ins wrap TAU functions, make them available

from Eclipse
  Compatible with Photran and CDT projects and with PTP

parallel application launching
  Other plug-ins launch Paraprof from Eclipse too

Module 7 7-10

TAU Integration with PTP

 TAU: Tuning and
Analysis Utilities
 Performance data

collection and analysis
for HPC codes

 Numerous features
 Command line interface

 The TAU Workflow:
 Instrumentation
 Execution
 Analysis

Module 7 7-11

Parallel Performance Wizard (PPW)
  Full-featured performance tool for

PGAS programming models
  Currently supports UPC, SHMEM, and

MPI
  Extensible to support other models
  PGAS support by way of Global Address

Space Performance (GASP) interface
(http://gasp.hcs.ufl.edu)

  PPW features:
  Easy-to-use scripts for backend data

collection
  User-friendly GUI with familiar

visualizations
  Advanced automatic analysis support

  More information and free
download: http://ppw.hcs.ufl.edu

Module 7 7-12

  We implement the ETFw to make
PPW’s capabilities available within
Eclipse
  Compile with instrumentation,

parallel launch with PPW
  Generates performance data file in

workspace, PPW GUI launched

  PPW is often used for UPC
application analysis
  ETFw extended to support UPC
  Many UPC features in PTP

  For more information:

 http://ppw.hcs.ufl.edu
 ppw@hcs.ufl.edu

PPW Integration via ETFw

Module 7 7-13

GEM
Graphical Explorer of MPI Programs

 Contributed to PTP by University of Utah in 2009
  Available with PTP since v3.0

 Dynamic verification for MPI C/C++ that detects:
 Deadlocks
 MPI object leaks
  Functionally irrelevant barriers
  Local assertion violations

 Offers rigorous coverage guarantees
  Complete nondeterministic coverage for MPI
  Communication / synchronization behaviors
 Determines relevant interleavings, replaying as necessary

Module 7 7-14

GEM - Overview

(Image courtesy of Steve Parker, U of Utah)

7-15

  Front-end for In-situ Partial Order
(ISP), Developed at U. Utah

  Introduces “push-button”
verification into the MPI
development cycle for PTP

  Automatically instruments and runs
user code, displaying post
verification results

  Variety of views & tools to facilitate
debugging and code understanding

GEM – Views & Tools
 Analyzer View

 Highlights bugs, and facilitates
 post-verification review / debugging

Module 7 7-16

Browser View
Groups & helps quickly localizes

MPI problems. Maps errors to
source code line in editor

GEM – Views & Tools (cont.)

17

 Happens-Before Viewer
Shows required orderings and communication matches

(currently an external tool)

Module 7 7-18

Using GEM – ISP Installation

 ISP itself must be installed prior to using GEM

 Download ISP at http://www.cs.utah.edu/fv/ISP

 Make sure libtool, automake and autoconf are installed.

 Just untar isp-0.2.0.tar.gz into a tmp directory:
 Configure and install

 ./configure
 make
 make install

  This installs binaries and necessary scripts

Using GEM
 Create local or remote MPI C/C++ project

 Make sure your project builds correctly
 Managed build and Makefile projects supported

 Set preferences via GEM Preference Pages
 From the trident icon or context

menus user can:

 Formally Verifying MPI Program
 Launches verification engine ISP
 Generates log file for post-

verification analysis
 Opens relevant GEM views

Module 7 7-19

GEM Analyzer View
 Reports program errors, and runtime statistics

 Debug-style source code stepping of interleavings
 Point-to-point / Collective Operation matches
 Internal Issue Order / Program Order views
 Rank Lock feature – focus on a particular process

 Also controls:
 Call Browser
 Happens Before Viewer launch
  Re-launching of GEM

Module 7 7-20

GEM Browser View

Module 7 7-21

 Tabbed browsing for each type of MPI error/warning

 Each error/warning mapped to offending line of
source code in Eclipse editor

 One click to visit the Eclipse editor, to examine:
 Calls involved in deadlock
 Irrelevant barriers
 MPI Object Leaks sites
 MPI type mismatches
  Local Assertion Violations

GEM – Help Plugin
Extensive how-to sections, graphical aids and

trouble shooting section

Module 7 7-22

GEM/ISP Success Stories
 Umpire Tests

  http://www.cs.utah.edu/fv/ISP-Tests
 Documents bugs missed by tests, caught by ISP

 MADRE (EuroPVM/MPI 2007)
  Previously documented deadlock detected

 N-Body Simulation Code
  Previously unknown resource leak caught during
 EuroPVM/MPI 2009 tutorial !

 Large Case Studies
  ParMETIS, MPI-BLAST, IRS (Sequoia Benchmark), and a few

SPEC-MPI benchmarks could be handled

 Full Tutorial including LiveDVD ISO available
  Visit http://www.cs.utah.edu/fv/GEM

Module 7 7-23

Module 7 7-24

GEM Future Plans

 Incorporation of HB Viewer into GEM as a new view

 Add Pthread support to visualize Pthread calls made
from within MPI space

GEM Future Plans
 GEM will serve as a front-end for other tools

 Integration of Distributed Analyzer of MPI Programs
(DAMPI), developed at University of Utah
 ISP scales to 10s of processes
 DAMPI scales to 1000s of processes (C/C++/Fortran)
 Decentralized scheduler uses Lamport Clocks

Module 7 7-25

Use ISP at small scale,
then launch DAMPI at

scale on a cluster 	

PTP Adv. Development: Summary

 A diversity of other tools aid parallel development
 Parallel Language Development Tools:

MPI, OpenMP, UPC, LAPI, etc.
 External Tools Framework (ETFw) eases integration of

existing (command-line, etc.) tools
 TAU Performance Tuning uses ETFw
 PPW (Parallel Perf. Wizard) uses ETFw for UPC analysis
 Feedback view maps tool findings with source code

 MPI Analysis: GEM

 A diversity of contributors too!
 We welcome other contributions. Let us help!

Module 7 7-26

Module 7 7-27

Backup

 Not covered in today’s tutorial,
but included for reference

 Creating a local MPI project, and using the wizards
 MPI Assistance tools
 MPI Barrier analysis on a local project

 OpenMP tools
 UPC tools installation and local projects
 External Tools Framework (ETFw) details, overview

of integrating other tools into PTP
 ETFw Feedback view incl. sample exercise

Module 7 7-28

Parallel Lang. Dev. Tools
 PLDT Features

 Analysis of C and C++ code to determine the
location of MPI, OpenMP, and UPC Artifacts

 Content assist via ctrl+space (“completion”)
 Hover help
 Reference information about the API calls via Dynamic

Help
 New project wizard automatically configures managed

build projects for MPI & OpenMP
 OpenMP problems view of common errors
 OpenMP “show #pragma region” , “show concurrency”
 MPI Barrier analysis - detects potential deadlocks

Some MPI features were covered in Module 4
Note: Some PLDT features don’t work on remote (RDT) projects

Module 7 7-29

Added by PLDT (Parallel Lang. Dev. Tools)
feature of PTP

 MPI Context sensitive help
 MPI artifact locations
 MPI barrier analysis
 MPI templates

 For this part, we will use the local MPI New
Project Wizard and the “MPI Hello World”
project

MPI Assistance Tools

Module 7 7-30

Creating Local Project

 The next slide shows you how to create a local
MPI project.

 If you do not have MPI on your local machine,
you can’t build or run.

 But you should be able to demonstrate the MPI
features in PTP’s PLDT regardless.

 Several PLDT MPI features pertain to developing
code – just using the local editor, etc.

 Most PLDT features do work on remote projects.

Module 7 7-31

Create local MPI Project

Using a Managed
Build Project – for a
quick sample local
MPI project
 File > New > C
Project
 Give Project a
name, e.g. HelloMPI
 Confirm Toolchain
 Select MPI Hello
World C Project

Module 7 7-32

Set MPI Preferences
  When creating a local

MPI project with the
wizard, you need to set
MPI Preferences (once)

  This assures the include
paths, etc. will be set
for new MPI projects –
for building, and for
Eclipse assistance
features for MPI.

  Select Yes to set the MPI
preferences.���

Module 7 7-33

Note: if you do not have MPI on your local
machine, you can use just an MPI header
file (mpi.h) so you play with the PTP MPI
development features without building or
running on your local machine.	

No
MPI?

Set MPI Preferences (2)

  On the MPI
Preferences page, add
a new MPI include
path.

  New … and point to
the directory
containing your MPI
header file (mpi.h)

  Select OK
  Back on New Project

Wizard page, select
Next> and fill in
Author name, etc.

Module 7 7-34

Review MPI Project Settings

  On the next wizard page,
review the MPI project
settings based on the
information you have
provided.

  Make changes if you wish.
  The defaults should be fine.
  Click Finish.
  You will be prompted to

switch perspectives

Module 7 7-35

Create MPI Project

Recap:
  File > New > C Project
  Give Project a name, e.g.

HelloMPI
  Select Toolchain
  Select MPI Hello World C

Project
  Set MPI Prefs, if first time
  Click Finish

  Note: if it doesn’t build on
your machine, you can still
continue with this exercise

Module 7
7-36

Project Properties:
Managed Build Project

 Right-click on project in Project Explorer
view and select Properties

 Project Properties for Managed Build project
 Compiler, Linker, etc. settings set automatically

without a Makefile

Module 7 7-37

Show MPI Artifacts

  Markers indicate the
location of artifacts in
editor

  In MPI Artifact View
sort by any column
(click on col. heading)

  Navigate to source code
line by double-clicking
on the artifact

  Run the analysis on
another file and its
markers will be added to
the view

  Remove markers via

Module 7 7-38

  Select source file in Project Explorer;
Select Show MPI Artifacts
in PLDT menu

MPI Barrier Analysis
Verify barrier
synchronization in C/
MPI programs

Interprocedural static
analysis outputs:

 For verified programs,
lists barrier statements
that synchronize
together (match)
  For synchronization
errors, reports counter
example that illustrates
and explains the error

Module 7 7-39

Local
files only

MPI Barrier Analysis – Try it

Resulting statement

Module 7 7-40

Add some barriers:
  Inside the sample if

(rank…) add a barrier:
  Use Content Assist to

help you type
  Type: MPI_ and press

Ctrl-space. See
completion alternatives.
Keep typing until you see
MPI_Barrier and hit enter.

  For args, start typing
MPI_Comm_ etc. and it
will also complete
MPI_COMM_WORLD

  Add the same barrier
statement at the end of
the else as well.

MPI Barrier Analysis – Try it (2)

Module 7 7-41

Run the Analysis:
  In the Project Explorer,

Select the source file (or
directory, or project) of
file(s) to analyze

  Select the MPI Barrier
Analysis action in the
menu���

MPI Barrier Analysis - views

MPI Barriers view

Simply lists the barriers

Like MPI Artifacts view,
double-click to navigate
to source code line (all
3 views)

Barrier Matches view
Groups barriers that
match together in a
barrier set – all
processes must go
through a barrier in the
set to prevent a
deadlock

Barrier Errors view

If there are errors, a
counter-example
shows paths with
mismatched number
of barriers

Module 7 7-42

MPI Templates

 Eclipse preferences: add more!
 C/C++ > Editor > Templates

 Extend to other common patterns

Module 7 7-43

  Allows quick entry of
common patterns in MPI
programming

  Example: MPI send-
receive

  Enter: mpisr <ctrl-
space>

  Expands to the code
shown at right

  Highlighted variable
names can all be
changed at once

  Type mpi <ctrl-space>
<ctrl-space> to see all
templates

OpenMP Managed Build
Project

  This will need OpenMP
preferences (e.g. include file
location) set up as well

  Create a new OpenMP project
  FileNewC Project
 Name the project e.g.

‘MyOpenMPproject’
  Select Toolchain
  Select OpenMP Hello

World C Project
  Select Next, then fill in

other info like MPI project

Module 7 7-44

Local
files only

Setting OpenMP Special
Build Options

  OpenMP typically requires
special compiler options.
 Open the project

properties
 Expand C/C++ Build
 Select Settings
 Select C Compiler

 In Miscellaneous,
add option(s).
-fopenmp

  Click OK; Project should
attempt to build

Module 7 7-45

Show OpenMP Artifacts

  Select source file,
folder, or project

  Run analysis

  See artifacts in
OpenMP Artifact
view

Module 7 7-46

Show Pragma Region

  Run OpenMP
analysis

  Right click on
pragma in
artifact view

  Select Show
pragma region

  See highlighted region in C editor

Module 7 7-47

UPC
 

Module 7 7-48

UPC Features Installation
 If you installed PTP PLDT UPC feature, you should

have CDT UPC feature too

  See Also:
http://wiki.eclipse.org/PTP/other_tools_setup#Using_UPC_features

  You can also install UPC features from the CDT-specific update site
  Enable it in update manager
 Help, Install New Software, Click available Software Sites link
  Check the CDT site:

http://download.eclipse.org/tools/cdt/releases/helios
  Click OK to return to Install dialog
  In Work with: select the CDT site you enabled
  Check UPC features

  Finish install
and restart

Module 7 7-49

BUPC toolchain
only on CDT site

UPC syntax in .c files

 UPC syntax is
recognized by the
parser in *.upc
files

 Copy helloUPC.upc
to hello.c to see
the difference

Module 7 7-50

Keywords as
well as new
syntax are
recognized

Highlight color

No Highlight color

UPC syntax in .c files (2)

 To enable UPC syntax in *.c files, we will
change the language mappings

 Preferences, C/C++, Language Mappings
 Click the Add… button to add a Language

mapping.

Module 7 7-51

 For Content Type,
C Source File

 For Language,
select UPC

 Click OK, OK

UPC syntax in .c files (3)

 Now UPC syntax
is recognized
in both types
of files

 You may need
to close and
re-open a file
to see the change.

 Note: in Project Properties, you can do this
for just individual projects.

Module 7 7-52

Highlight color

Highlight color

Berkeley UPC toolchain

 Local projects only
 File > New >

C project
 Hello World

UPC project
 Select toolchain

(if you don’t have
the toolchain, it just
won’t build.)

 Next, Next, Finish

Module 7 7-53

BUPC toolchain

 Bring up
Project
Properties to
see details
of BUPC
toolchain:

 Project,
right mouse,
Properties

Module 7 7-54

Hello World UPC project

 Hello (Berkeley) World UPC project
 Note UPC syntax highlighting
 Toolchain has been modified for UPC

Module 7 7-55

UPC on abe.ncsa.uiuc.edu

  BUPC is located at:
  /usr/apps/mpi/upc/berkeley_upc

  To run from cmd line on abe:
  setenv PATH /usr/apps/mpi/upc/berkeley_upc/bin:${PATH}

TO RUN FROM PTP/ECLIPSE:
  In your home dir on abe: use ‘helloUPC’ to make a remote proj
  Set Remote Paths and Symbols to include:

  /usr/apps/mpi/upc/berkeley_upc/opt/include/upcr_preinclude
  To run: use a Generic Remote Launch for Resource Manager
  Run config:

  Application program: /usr/apps/mpi/upc/berkeley_upc/bin/
upcrun

  Arguments tab: -q -n 4 ~/helloUPC/helloUPC

Module 7 7-56

External Tools Framework
ETFw Motivation

 There are numerous command-line oriented
development tools employed in HPC

 These can be complicated or time consuming
to use

 IDE integration for individual development
tools is slow and inconsistent

 We want all our development tools in one
place with one interface

 We want our development tools to work
together

Module 7 7-57

ETFw: Development Tool
Workflows

 Variations on ‘Compile, Execute, Analyze-
Results’ are common to most software
development

 These steps may be tedious and time
consuming, especially over multiple iterations

 By defining both tool interfaces and behavior
in an XML document these steps can be
simplified and automated

Module 7 7-58

ETFw: The Build Phase

 Set compilers and arguments for each language
 Define UI for compiler/compiler-wrapper

configuration

Module 7 7-59

ETFw: The Execution Phase

 Specify composed execution tools such as
Perfsuite or Valgrind

 Set launch environment variables
 Define variables and tool options in XML or

provide a UI in the IDE
 Integrates with PTP parallel launch

environment

Module 7 7-60

ETFw: The Analysis/Post-
Processing Phase

 Sequentially run
tools on program
output

 Launch external
visualization tools

Module 7 7-61

ETFw: XML-Defined UI
Components

 Each pane constructs a set of options
sent to a tool or a set of environment
variables

 Numerous options for converting a
command line interface into an
intelligent GUI without Eclipse coding
Module 7 7-62

ETFw: Advanced Components

 Extension points
allow integration with
UIs and workflow
behavior too complex
to define in XML

 Logical and iterative
workflows for
successive executions
and parametric
studies

Module 7 7-63

ETFw: Using Workflows

 New workflows are
added to the ETFw
launch configuration
system

 Multiple workflow
configurations can be
defined and saved for
different use cases

 XML Workflow
definitions can be saved
and reused in different
environments

Module 7 7-64

ETFw: General Purpose Workflow

 Automated
 Generalized
 Quick performance

analysis and other
development tool
integration

 Exposes tool
capabilities to the user

Module 7 7-65

ETFw: Continuing Development

Plans:
 Integration with PTP Remote Development

Tools
 Additional options for GUI definition
 Generalization of TAU specific features such as

hardware counter selection and performance
data storage

 Contact: Wyatt Spear

Module 7 7-66

  Many existing tools provide
information that can be mapped to
source code lines
  Compiler errors, warnings,

suggestions
  Performance tool findings

  ETFw feedback view provided to
aid construction of these views
  Currently geared toward data

provided by tools in XML files
  Original ETFw facilities aid the

CALL of external tools from PTP
  Feedback view aids the

exposition of results to the
user

ETFw Feedback view

Module 7 7-67

Examples:
  Compiler optimization

report
  Performance tool data
  Refactoring tool uses

“advice” from external files

Feedback Sample

Module 7 7-68

 Download a sample implementation of the
feedback view:

 Complete instructions here:
http://wiki.eclipse.org/PTP/ETFw/feedback

 And on following slide…

Feedback Sample – (1) Install

Module 7 7-69

 Download the plugin jar file
  http://download.eclipse.org/tools/ptp/misc/feedback/

org.eclipse.ptp.etfw.feedback.sample_1.0.0.201010280927.jar

 Save it in your eclipse/dropins directory
 This is a “quick and dirty” type of installation
 Eclipse knows to look here when it starts, and it

installs whatever it finds here

 Then restart eclipse
  You should see the feedback icon

Feedback Sample – (2) data files

Module 7 7-70

 You have the Feedback sample plug-in installed
 Now you need some sample files for it to process

 sample.c and sample.xml
 They are hidden in the plug-in!
 Let’s take it apart to find them
 Unzip the jar file; they are in the data/ directory

 Alternate instructions on the wiki page
 Put them in a (local) eclipse project

Feedback Sample – (3) Try it

Module 7 7-71

 You have the Feedback sample plug-in installed
 You have an xml file that it can parse, and the

source file that it refers to.

1.  Select xml file

2.  Click feedback button
3.  See Sample Feedback

view
4.  Double-click in view

to navigate to source
code lines

END

Module 7 7-72

Module 8: Other Tools and
Wrap-up

 Objective
 How to find more information on PTP
 Learn about other tools related to PTP
 See PTP upcoming features

 Contents
 Links to other tools, including performance tools
 Planned features for new versions of PTP
 Additional documentation
 How to get involved

Module 8 8-0

NCSA
HPC Workbench

  Tools for NCSA Blue Waters
  http://www.ncsa.illinois.edu/BlueWaters/
  Sustained Petaflop system

  Based on Eclipse and PTP
  Includes some related tools

 Performance tools
 Scalable debugger
 Workflow tools (https://wiki.ncsa.uiuc.edu/

display/MRDPUB/MRD+Public+Space+Home
+Page)

  Part of the enhanced computational environment
described at:
 http://www.ncsa.illinois.edu/BlueWaters/ece.html

Module 8 8-1

NCSA HPC Workbench Coding &
Analysis

(CDT, PLDT,
Photran)

Scalable Debugger

PTP
Launching &
Monitoring

Performance
Tuning

(HPC toolkit,
HPCS toolkit,

RENCI, …)

Workflow

Module 8 8-2

Planned PTP Future Work

 Scalability improvements
  UI to support 1M processes
  Optimized communication protocol
  Very large application support

 Resource Managers
  More implementations of configurable resource managers

 Synchronized project improvements
  Conversion wizard
  Resolving merge conflicts

 Enhancements to the debugger
  Stability enhancements
  Transition to Scalable Communication Infrastructure (SCI)

Module 8 8-3

Useful Eclipse Tools

  Linux Tools (autotools, valgrind, Oprofile, Gprof)
  http://eclipse.org/linuxtools

  Python
  http://pydev.org

  Ruby
  http://www.aptana.com/products/radrails

  Perl
  http://www.epic-ide.org

  Git
  http://www.eclipse.org/egit

  VI bindings
  Vrapper (open source) - http://vrapper.sourceforge.net
  viPlugin (commercial) - http://www.viplugin.com

Module 8 8-4

Online Information

  Information about PTP
 Main web site for downloads, documentation, etc.

 http://eclipse.org/ptp
 Developers’ (and users) wiki for designs, planning,

meetings, etc.
 http://wiki.eclipse.org/PTP

  Articles and other documents
 http://wiki.eclipse.org/PTP/articles

  Information about Photran
 Main web site for downloads, documentation, etc.

 http://eclipse.org/photran
  User’s manuals

 http://wiki.eclipse.org/PTP/photran/documentation

Module 8 8-5

Mailing Lists

  PTP Mailing lists
 Major announcements (new releases, etc.) - low volume

 http://dev.eclipse.org/mailman/listinfo/ptp-announce

  User discussion and queries - medium volume
 http://dev.eclipse.org/mailman/listinfo/ptp-user

 Developer discussions - high volume
 http://dev.eclipse.org/mailman/listinfo/ptp-dev

  Photran Mailing lists
  User discussion and queries

  http://dev.eclipse.org/mailman/listinfo/photran

 Developer discussions –
  http://dev.eclipse.org/mailman/listinfo/photran-dev

Module 8 8-6

Getting Involved

 See http://eclipse.org/ptp
 Read the developer documentation on the wiki
 Join the mailing lists
 Attend the monthly developer meetings

 Teleconference Monthly
 Each second Tuesday, 1:00 pm ET
 Details on the PTP wiki

 Attend the montly user meetings
 Teleconference Monthly
 Each 4th Wednesday, 2:00 pm ET

PTP will only succeed with your participation!

Module 8 8-7

Thanks for attending
We hope you found it useful	

PTP Tutorial Feedback

 Please complete feedback form
 Your feedback is valuable!

Module 8 8-8

	ptp-00-tg11.ppt
	ptp-01-intro.ppt
	ptp-03-c.ppt
	ptp-04-mpi.ppt
	ptp-05-debug.ppt
	ptp-06-fortran.ppt
	ptp-07-advFeat.ppt
	ptp-08-wrapup.ppt

