goxy:

Manual for version 1.4.0

Written by Dimitri van Heesch

(©1997-2004

CONTENTS

Contents

10

11

12

13

14

15

16

17

18

19

20

User Manual

Installation

Getting started
Documenting the code

Lists

Grouping

Including formulas

Graphs and diagrams
Preprocessing

Automatic link generation
Linking to external documentation
Frequently Asked Questions

Troubleshooting

Reference Manual
Features

Doxygen History
Doxygen usage
Doxytag usage
Doxywizard usage
Installdox usage
Configuration

Special Commands

11

15

22

24

28

29

32

35

39

41

45

46

46

48

50

51

53

54

55

73

User Manual for Doxygen 1.4.0, written by Dimitri van Heesch(©1997-2004

CONTENTS

21 HTML Commands

[l Developers Manual
22 Doxygen’s Internals
23 Perl Module output format documentation

24 Internationalization

106

109

109

113

115

User Manual for Doxygen 1.4.0, written by Dimitri van Heesch(©1997-2004

CONTENTS

Introduction

Doxygen is a documentation system for C++, C, Java, Objective-C, IDL (Corba and Microsoft flavors) and
to some extent PHP, C# and D.

It can help you in three ways:

1. It can generate an on-line documentation browser (in HTML) and/or an off-line reference manual
(in IATEX) from a set of documented source files. There is also support for generating output in RTF
(MS-Word), PostScript, hyperlinked PDF, compressed HTML, and Unix man pages. The documen-
tation is extracted directly from the sources, which makes it much easier to keep the documentation
consistent with the source code.

2. You canconfiguredoxygen to extract the code structure from undocumented source files. This is very
useful to quickly find your way in large source distributions. You can also visualize the relations
between the various elements by means of include dependency graphs, inheritance diagrams, and
collaboration diagrams, which are all generated automatically.

3. You can even ‘abuse’ doxygen for creating normal documentation (as | did for this manual).

Doxygen is developed undemux and Mac OS X, but is set-up to be highly portable. As a result, it runs
on most other Unix flavors as well. Furthermore, executables for Windows are available.

This manual is divided into three parts, each of which is divided into several sections.

The first part forms a user manual:

e Sectioninstallationdiscusses how tdownload , compile and install doxygen for your platform.
e SectionGetting startedells you how to generate your first piece of documentation quickly.

e SectionDocumenting the codéemonstrates the various ways that code can be documented.
e SectionLists show various ways to create lists.

e SectionGroupingshows how to group things together.

e Sectionincluding formulasshows how to insert formulas in the documentation.

e SectionGraphs and diagrantescribes the diagrams and graphs that doxygen can generate.
e SectionPreprocessingxplains how doxygen deals with macro definitions.

e SectionAutomatic link generatiorshows how to put links to files, classes, and members in the
documentation.

e SectionOutput Formatshows how to generate the various output formats supported by doxygen.

e SectionLinking to external documentatioexplains how to let doxygen create links to externally
generated documentation.

e SectionFrequently Asked Questiomgves answers to frequently asked questions.

e SectionTroubleshootindells you what to do when you have problems.

The second part forms a reference manual:

User Manual for Doxygen 1.4.0, written by Dimitri van Heesch(©1997-2004

http://www.linux.org
http://www.doxygen.org/download.html

CONTENTS

e SectionFeaturepresents an overview of what doxygen can do.

e SectionDoxygen Historyshows what has changed during the development of doxygen and what still
has to be done.

e SectionDoxygen usagshows how to use th#oxygen program.
e SectionDoxytag usagshows how to use thgoxytag program.
e SectionDoxywizard usagshows how to use th@oxywizard program.

e Sectioninstalldox usagshows how to use thiastalldox script that is generated by doxygen if
you use tag files.

e SectionConfiguratiorshows how to fine-tune doxygen, so it generates the documentation you want.

e SectionSpecial Commandshows an overview of the special commands that can be used within the
documentation.

e SectionHTML Commandsshows an overview of the HTML commands that can be used within the
documentation.

The third part provides information for developers:

e SectionDoxygen'’s Internalgives a global overview of how doxygen is internally structured.
e SectionPerl Module output format documentatishows how to use the PerlMod output.

e Sectioninternationalizatiorexplains how to add support for new output languages.

Doxygen license

Copyright(©1997-2004 byDimitri van Heesch

Permission to use, copy, modify, and distribute this software and its documentation under the terms of
the GNU General Public License is hereby granted. No representations are made about the suitability of
this software for any purpose. It is provided "as is” without express or implied warranty. Se&g\tble
General Public License for more details.

Documents produced by doxygen are derivative works derived from the input used in their production; they
are not affected by this license.

User examples

Doxygen supports a number ofitput formatsvhere HTML is the most popular one. I've gathered some
nice examples (settp://www.doxygen.org/results.html) of real-life projects using doxy-
gen.

These are part of a larger list of projects that use doxygen (see
http://www.doxygen.org/projects.html). If you know other projects, let me know
and I'll add them.

Future work

Although doxygen is used successfully by a lot of people already, there is always room for improvement.
Therefore, | have compiled a todo/wish list ($&8p://www.doxygen.org/todo.html) of possi-
ble and/or requested enhancements.

User Manual for Doxygen 1.4.0, written by Dimitri van Heesch(©1997-2004

mailto:dimitri@stack.nl
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html

CONTENTS

Acknowledgements
Thanks go to:

e Malte Zockler and Roland Wunderling, authors of DOC++. The first version of doxygen borrowed
some code of an old version of DOC++. Although | have rewritten practically all code since then,
DOC++ has still given me a good start in writing doxygen.

e All people at Troll Tech, for creating a beautiful GUI Toolkit (which is very useful as a Win-
dows/Unix platform abstraction layer :-)

e My brotherFrank for rendering the logos.

e Harm van der Heijden for adding HTML help support.

e Wouter Slegers of our Creative Solutions for registering the www.doxygen.org domain.
e Parker Waechter for adding the RTF output generator.

e Joerg Baumann, for adding conditional documentation blocks, PDF links, and the configuration
generator.

e Matthias Andree for providing a .spec script for building rpms from the sources.
e Tim Mensch for adding the todo command.

e Christian Hammond for redesigning the web-site.

e Ken Wong for providing the HTML tree view code.

e Petr Prikryl for coordinating the internationalisation support. All language maintainers for providing
translations into many languages.

e Gerald Steffens of-trend for financial support.
e The bandPorcupine Tree for providing hours of great music to listen to while coding.

e many, many others for suggestions, patches and bug reports.

User Manual for Doxygen 1.4.0, written by Dimitri van Heesch(©1997-2004

http://www.stack.nl/~fidget/index.html
http://www.yourcreativesolutions.nl
http://www.e-trend.de
http://www.porcupinetree.com

Part |
User Manual

1 Installation

First go to thedownload page bttp://www.doxygen.org/download.html) to get the latest
distribution, if you did not have it already.

This section is divided into the following sections:

Compiling from source on Unix

Installing the binaries on Unix

e Known compilation problems for Unix

Compiling from source on Windows

Installing the binaries on Windows

Tools used to develop doxygen

1.1 Compiling from source on Unix
If you downloaded the source distribution, you need at least the following to build the executable:

e The GNUools flex, bison and make
e In order to generate a Makefile for your platform, you neegerl (see
http://lwww.perl.com/).

To take full advantage of doxygen'’s features the following additional tools should be installed.

e Troll Tech’s GUI toolkitQt (seehttp://www.trolltech.com/products/qgt.html) ver-
sion 2 or higher. This is needed to build the GUI front-end doxywizard.

o A IATEX distribution: for instancéeTeX 1.0
par (seénttp://lwww.tug.org/interest.html#free). This is needed for generating La-
TeX, Postscript, and PDF output.

e the Graph visualization toolkit version 1.8.10 or higher
par (seehttp://www.research.att.com/sw/tools/graphviz/). Needed for the in-
clude dependency graphs, the graphical inheritance graphs, and the collaboration graphs. If you
compile graphviz yourself, make sure you do include freetype support (which requires the freetype
library and header files), otherwise the graphs will not render proper text labels.

e The ghostscript interpreter. To be foundmatw.ghostscript.com
Compilation is now done by performing the following steps:

1. Unpack the archive, unless you already have done that:

User Manual for Doxygen 1.4.0, written by Dimitri van Heesch(©1997-2004

http://www.doxygen.org/download.html
ftp://prep.ai.mit.edu/pub/gnu/
http://www.perl.com/
http://www.trolltech.com/products/qt.html
http://www.tug.org/interest.html#free
http://www.research.att.com/sw/tools/graphviz/
http://www.ghostscript.com/

1.1 Compiling from source on Unix

gunzip doxygen-$VERSION.src.tar.gz # uncompress the archive
tar xf doxygen-$VERSION.src.tar # unpack it

2. Run the configure script:

sh ./configure

The script tries to determine the platform you use, the make tool (whicstbe GNU make) and
the perl interpreter. It will report what it finds.

To override the auto detected platform and compiler you can run configure as follows:

configure --platform platform-type

See thePLATFORMSile for a list of possible platform options.

If you have Qt-3.2.x or higher installed and want to build the GUI front-end, you should run the
configure script with the-with-doxywizard option:

configure --with-doxywizard

For an overview of other configuration options use

configure --help

3. Compile the program by running make:

make

The program should compile without problems and three binadis/gen anddoxytag) should
be available in the bin directory of the distribution.

4. Optional: Generate the user manual.

make docs

To let doxygen generate the HTML documentation.

Note:
You will need the stream edit@ed for this, but this should be available on any Unix platform.

The HTML directory of the distribution will now contain the html documentation (just pointa HTML
browser to the filendex.html in the html directory).

5. Optional: Generate a PDF version of the manual (you will neéftatex , makeindex , and
egrep for this).

make pdf

The PDF manualloxygen _manual.pdf will be located in the latex directory of the distribution.
Just view and print it via the acrobat reader.

User Manual for Doxygen 1.4.0, written by Dimitri van Heesch(©1997-2004

1.2 Installing the binaries on Unix

1.2 Installing the binaries on Unix

After the compilation of the source code donake install to install doxygen. If you downloaded the
binary distribution for Unix, type:

Jconfigure
make install

Binaries are installed into the directorgprefix >/bin . Usemake install _docs to install the
documentation and examples inta@locdir >/doxygen

<prefix > defaults tdusr but can be changed with theprefix option of the configure script. The
default <docdir > directory is<prefix >/share/doc/packages and can be changed with the
--docdir option of the configure script.

Alternatively, you can also copy the binaries from thie directory manually to sombin directory in
your search path. This is sufficient to use doxygen.

Note:
You need the GNU install tool for this to work (it is part of the fileutils package). Other install tools
may put the binaries in the wrong directory!

If you have a RPM or DEP package, then please follow the standard installation procedure that is required
for these packages.

1.3 Known compilation problems for Unix

Qt problems

The Qt include files and libraries are not a subdirectory of the directory pointed to by QTDIR on some
systems (for instance on Red Hat 6.0 includes are in /usr/include/qt and libs are in /usr/lib).

The solution: go to the root of the doxygen distribution and do:

mkdir gt

cd gt

In -s your-gt-include-dir-here include
In -s your-qgt-lib-dir-here lib

export QTDIR=$PWD

If you have a csh-like shell you should usetenv QTDIR $PWD instead of theexport command
above.

Now install doxygen as described above.

Bison problems

Versions 1.31 to 1.34 of bison contain a "bug” that results in a compiler errors like this:
ceparse.cpp:348: member ‘class CPPValue yyalloc::yyvs’ with constructor not allowed in union
This problem has been solved in version 1.35 (versions before 1.31 will also work).

Latex problems

The file adwide.sty is not available for all distributions. If your distribution does not have it please
select another paper type in the config file (seeRABERTYPEtag in the config file).

HP-UX & Digital Unix problems

If you are compiling for HP-UX with aCC and you get this error:

User Manual for Doxygen 1.4.0, written by Dimitri van Heesch(©1997-2004

1.3 Known compilation problems for Unix

/opt/aCCllbin/ld: Unsatisfied symbols:
alloca (code)

then you should (according to Anke Selig) echit_parse.cpp and replace

extern "C" {
void *alloca (unsigned int);
h

with
#include <alloca.h>

If that does not help, try removinge _parse.cpp and let bison rebuild it (this worked for me).

If you are compiling for Digital Unix, the same problem can be solved (according to Barnard Schmallhof)
by replacing the following in cparse.cpp:

#else /* not GNU C. */

#if (!defined (__STDC__) && defined (sparc)) || defined (__sparc_) \
|| defined (__sparc) || defined (__sgi)

#include <alloca.h>

with

#else /* not GNU C. */
#if (!defined (__STDC__) && defined (sparc)) || defined (__sparc_) \

|| defined (__sparc) || defined (__sgi) || defined (__osf)
#include <alloca.h>

Alternatively, one could fix the problem at the bison side. Here is patch for bison.simple (provided by
Andre Johansen):

--- bison.simple” Tue Nov 18 11:45:53 1997
+++ bison.simple Mon Jan 26 15:10:26 1998
@@ -27,7 +27,7 @@

#ifdef _ GNUC__

#define alloca __ builtin_alloca

#else /* not GNU C. */

-#if (\defined (__STDC__) && defined (sparc)) || defined (__sparc_) \
|| defined (__sparc) || defined (__sgi)

+#if (Idefined (__STDC__) && defined (sparc)) || defined (__sparc_) \
|| defined (__sparc) || defined (__sgi) || defined (__alpha)

#include <alloca.h>

#else /* not sparc */

#if defined (MSDOS) && !defined (__TURBOC_)

The generated scanner.cpp that comes with doxygen is build with this patch applied.
Sun compiler problems

It appears that doxygen doesn’t work properly if it is compiled with Sun’s C++ WorkShop Compiler. |
cannot verify this myself as | do not have access to a Solaris machine with this compiler. With GNU
compiler it does work.

when configuring with-static | got:
Undefined first referenced

symbol in file
diclose lusr/lib/libc.a(nss_deffinder.o)
disym lusr/lib/libc.a(nss_deffinder.o)
dlopen {usr/lib/libc.a(nss_deffinder.o)

User Manual for Doxygen 1.4.0, written by Dimitri van Heesch(©1997-2004

1.4 Compiling from source on Windows

Manually addingBdynamic after the target rule iMakefile.doxygen andMakefile.doxytag
will fix this:

$(TARGET): $(OBJECTS) $(OBJMOC)
$(LINK) $(LFLAGS) -0 $(TARGET) $(OBJECTS) $(OBIMOC) $(LIBS) -Bdynamic

GCC compiler problems

Older versions of the GNU compiler have problems with constant strings containing characters with char-
acter codes larger than 127. Therefore the compiler will fail to compile some of the transtdidiles.

A workaround, if you are planning to use the English translation only, is to configure doxygen with the
--english-only option.

On some platforms (such as OpenBSD) using some versions of gcc with -O2 can lead to eating all memory
during the compilation of files such as config.cpp. As a workaround use —debug as a configure option or
omit the -O2 for the particular files in the Makefile.

Gcc versions before 2.95 may produce broken binaries due to bugs in these compilers.
Dot problems

Due to a change in the way image maps are generated, older versions of doxyde?.{7) will not work
correctly with newer versions of graphviz£1.8.8). The effect of this incompatibility is that generated
graphs in HTML are not properly clickable. For doxygen 1.3 it is recommended to use at least graphviz
1.8.10 or higher.

Red Hat 9.0 problems

If you get the following error after running make

tmake error: gtools.pro:70: Syntax error

then first type

export LANG=

before running make.

1.4 Compiling from source on Windows

Currently, | have only compiled doxygen for Windows using Microsoft's Visual C++ (version 6.0). For
other compilers you may need to edit the perl scripvintools/make.pl a bit. Let me know what

you had to change if you got Doxygen working with another compiler. If you have Visual Studio you can
also use the .dsw file found in thr@ntools directory. Note that this file is not maintained by me, so it
might be outdated a little.

If you have Visual C++ 6.0, and the source distribution, you can easily build doxygen using the project files
in thewintools directory. If you want to build the CVS sources, or want to build from the command
line, or with another compiler, you have to follow the steps below.

Thomas Baust reported that if you have Visual Studio.NET (2003) then you should be aware that there is
a problem with thepopen() andpclose() implementation, which currently leaks handles, so if you build
doxygen with it and use the INPUFILTER, you will run to risk of crashing Windows! The problem is
reported to and confirmed by Microsoft so maybe it will fixed in the next service pack.

Since Windows comes without all the nice tools that Unix users are used to, you'll need to install a number
of these tools before you can compile doxygen for Windows from the command-line.

Here is what is required:

User Manual for Doxygen 1.4.0, written by Dimitri van Heesch(©1997-2004

1.4 Compiling from source on Windows

An unzip/untar tool like WinZip to unpack the tar source distribution. This can be found at
http://www.winzip.com/

The good, tested, and free alternative istdwe utility supplied withcygwin tools . Anyway,
the cygwin’s flex, bison, and sed are also recommended below.

Microsoft Visual C++ (I only tested with version 6.0). Use thevars32.bat batch file to set the
environment variables (if you did not select to do this automatically during installation).

Borland C++ or MINGW (seéttp://www.mingw.org/) are also supported.

Perl 5.0 or higher for Windows. This can be downloaded frofritp://www.Active-
State.com/Products/ActivePerl/

e The GNU tools flex, bison, and sed. To get these working on Windows you should install the

cygwin tools (seehttp://sources.redhat.com/cygwin/)
Alternatively, you can also choose to download only amall subset (see
http://www.doxygen.org/dl/cygwin _tools.zip) of the cygwin tools that | put

together just to compile doxygen.

As a third alternative one could use the GNUWIn32 tools that can be found at
http://gnuwin32.sourceforge.net/

Make sure theBISON_SIMPLE environment variable points to the location where the files
bison.simple and is located. For instance if these file i<in\tools \cygwin \usr \share
then BISONSIMPLE should be set to:/tools/cygwin/usr/share/bison.simple

Also make sure the tools are available from a dos box, by adding the directory they are in to the
search path.

For those of you who are very new to cygwin (if you are going to install it from scratch), you
should notice that there is an archive fileotstrap.zip which also contains th&ar utility
(tar.exe), gzip utilities, and thecygwinl.dll core. This also means that you have the

in hands from the start. It can be used to unpack the tar source distribution instead of using WinZip
—as mentioned at the beginning of this list of steps.

e From Doxygen-1.2.2-20001015 onwards, the distribution includes the part of Qt-2.x.y that is needed
for to compile doxygen and doxytag, The Windows specific part were also created. As a result
doxygen can be compiled on systems without X11 or the commerical version of Qt.

For doxywizard, a complete Qt library is still a requirement however. A commercial license to build
doxywizard with the latest Qt library was kindly donated to me by the nice peofiléTech
See doxygen download page for a link.

¢ If you used WinZip to extract the tar archive it will (apparently) not create empty folders, so you
have to add the foldesbjects andbin manually in the root of the distribution before compiling.

Compilation is now done by performing the following steps:

1. Open a dos box. Make sure all tools (irenake, latex , gswin32 , dvips , sed, flex ,bison ,
cl , rm, andperl), are accessible from the command-line (add them to the PATH environment
variable if needed).

Notice: The use of LaTeX is optional and only needed for compilation of the documentation into
PostScript or PDF. It imot needed for compiling the doxygen'’s binaries.

2. Go to the doxygen root dir and type:

make.bat msvc

User Manual for Doxygen 1.4.0, written by Dimitri van Heesch(©1997-2004

http://www.winzip.com/
http://sourceware.cygnus.com/cygwin/
http://www.mingw.org/
http://www.ActiveState.com/Products/ActivePerl/
http://www.ActiveState.com/Products/ActivePerl/
http://sources.redhat.com/cygwin/
http://www.doxygen.org/dl/cygwin_tools.zip
http://gnuwin32.sourceforge.net/
http://www.trolltech.com

15

Installing the binaries on Windows 10

1.5

This should build the executableloxygen.exe anddoxytag.exe using Microsoft’s Visual
C++ compiler (The compiler should not produce any serious warnings or errors).

You can use also thecc argument to build executables using the Borland C++ compileningw
argument to compile using GNU gcc.

To build the examples, go to tlexamples subdirectory and type:

nmake
To generate the doxygen documentation, go tadibie subdirectory and type:

nmake

The generated HTML docs are located in thé\html subdirectory.

The sources for LaTeX documentation are located in.thglatex subdirectory. From those
sources, the DVI, PostScript, and PDF documentation can be generated.

Installing the binaries on Windows

There is no fancy installation procedure at the moment (if anyone can add it in a location independent way
please let me know).

To install doxygen, just copy the binaries from thim directory to a location somewhere in the path.
Alternatively, you can include thigin directory of the distribution to the path.

There are a couple of tools you may want to install to use all of doxygen’s features:

e To generate LaTeX documentation or formulas in HTML you need the todktex |,

dvips and gswin32 . To get these working under Windows install the fpTeX dis-
tribution. You can find more info at: http://www.fptex.org/ and download it
from CTAN or one of its mirrors. In the Netherlands for example this would be:
ftp://ftp.easynet.nl/mirror/CTAN/systems/win32/fptex/

Make sure the tools are available from a dos box, by adding the directory they are in to the search
path.

For your information, the LaTeX is freely available set of so called macros and styles on the top
of the famous TeX program (by famous Donald Knuth) and the accompanied utilities (all available
for free). It is used for high quality typesetting. The result — in the form of so c&ld (DeVice
Independent) file — can be printed or displayed on various devices preserving exactly the same look
up to the capability of the device. Thlvips allows you to convert thelvi to the high quality
PostScript (i.e. PostScript that can be processed by utilitiep$kep , psbook , psselect , and
others). The derived version of TeX (the pdfTeX) can be used to produce PDF output instead of DVI,
or the PDF can be produced from PostScript using the ugib&pdf .

If you want to use MikTeX then you need to select at least the medium size
installation. For really old versions of MikTex or minimal installations, you

may need to download the fancyhdr package separately. You can find it at:
ftp://ftp.tex.ac.uk/tex-archive/macros/latex/contrib/supported/fancyhdr/

If you want to generate compressed HTML help (s6&ENERATEHTMLHELP) in the
config file, then you need the Microsoft HTML help workshop. You can download it at:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/htmlhelp/html/vscon-
HH1Start.asp

the Graph visualization toolkit version 1.8.10

(seehttp://www.research.att.com/sw/tools/graphviz/). Needed for the include
dependency graphs, the graphical inheritance graphs, and the collaboration graphs.

User Manual for Doxygen 1.4.0, written by Dimitri van Heesch(©1997-2004

http://www.fptex.org/
ftp://ftp.easynet.nl/mirror/CTAN/systems/win32/fptex/
ftp://ftp.tex.ac.uk/tex-archive/macros/latex/contrib/supported/fancyhdr/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/htmlhelp/html/vsconHH1Start.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/htmlhelp/html/vsconHH1Start.asp
http://www.research.att.com/sw/tools/graphviz/

1.6 Tools used to develop doxygen

11

1.6 Tools used to develop doxygen

Doxygen was developed and tested under Linux using the following open-source tools:

e GCC version 3.3.1

e GNU flex version 2.5.4

e GNU bison version 1.75

e GNU make version 3.80

e Perlversion 5.8.1

¢ VIM version 6.2

e Mozilla1.0

e Troll Tech’s tmake version 1.3 (included in the distribution)
e teTeX version 1.0

e CVS1.10.7

2 Getting started

The executableloxygen is the main program that parses the sources and generates the documentation.
See sectiooxygen usagéor more detailed usage information.

The executableloxytag is only needed if you want to generate references to external documentation
(i.e. documentation that was generated by doxygen) for which you do not have the sources. See section
Doxytag usagéor more detailed usage information.

Optionally, the executabldéoxywizard can be used, which is a graphical front-end for editing the con-
figuration file that is used by doxygen.

The following figure shows the relation between the tools and the flow of information between them:

User Manual for Doxygen 1.4.0, written by Dimitri van Heesch(©1997-2004

2.1 Step 1: Creating a configuration file

12

Doxywizard i Your application custom
J output
rea ;
. doxmlparser lib
generate/edit XML files L =
Contfig file
Doyt =
make ps postscript
. e
Latex files et
read generate/update ™ + L
Makefile make pdf PDF
read iin
Sources Doxygen
] read %
read generate
E —| Man pages
Custom
— headers I8
~ footers Tag file(s) Ai . ‘
—images || |/ ! Windows only !
i | |
import | doc |
refman.rtf T MS-Word I I
| |
I I
I I
| |
generate . i
i i
% | |
| |
| |
| I
HTML read chm
. -
Doxytag pages X HTML Help Workshop |
I I
parse | |
i | |
L i i

Figure 1: Doxygen information flow

2.1 Step 1: Creating a configuration file

Doxygen uses a configuration file to determine all of its settings. Each project should get its own configura-
tion file. A project can consist of a single source file, but can also be an entire source tree that is recursively
scanned.

To simplify the creation of a configuration file, doxygen can create a template configuration file for you.
To do this calldoxygen from the command line with they option:

doxygen -g <config-file>

where <config-file> is the name of the configuration file. If you omit the file name, a file named
Doxyfile will be created. If a file with the nameconfig-file> already exists, doxygen will rename

it to <config-file>.bak before generating the configuration template. If you-u§ee. the minus sign) as
the file name then doxygen will try to read the configuration file from standard isfuih().

The configuration file has a format that is similar to that of a (simple) Makefile. It contains of a number of
assignments (tags) of the form:

TAGNAME = VALU&
TAGNAME = VALUE1l VALUE2 ...

User Manual for Doxygen 1.4.0, written by Dimitri van Heesch(©1997-2004

2.2 Step 2: Running doxygen 13

You can probably leave the values of most tags in a generated template configuration file to their default
value. See sectioBonfigurationfor more details about the configuration file.

If you do not wish to edit the config file with a text editor, you should have a lodlogywizard which is a
GUI front-end that can create, read and write doxygen configuration files, and allows setting configuration
options by entering them via dialogs.

For a small project consisting of a few C and/or C++ source and header files, you catNE&aVE tag
empty and doxygen will search for sources in the current directory.

If you have a larger project consisting of a source directory or tree you should put the root directory or
directories after th&NPUT tag, and add one or more file patterns tofteE_PATTERNStag (for instance

x.cpp +.h). Only files that match one of the patterns will be parsed (if the patterns are omitted a list
of source extensions is used). For recursive parsing of a source tree you mustRECIHRSIVEtag to

YES To further fine-tune the list of files that is parsed #%¢CLUDE andEXCLUDE_PATTERNStags

can be used. To omit aiést directories from a source tree for instance, one could use:

EXCLUDE_PATTERNS = */test/*

Doxygen normally parses files if they are C or C++ sources. If a file hi a or.odl extension it is
treated as an IDL file. If it has java extension it is treated as a file written in Java. Files ending with
.cs are treated as C# files. Finally, files with the extensi@hg , .php4 ,.inc or.phtml are treated
as PHP sources.

If you start using doxygen for an existing project (thus without any documentation that doxygen is aware
of), you can still get an idea of what the documented result would be. To do so, you must E&t-the
TRACT_ALL tag in the configuration file t?f¥' ES Then, doxygen will pretend everything in your sources

is documented. Please note that as a consequence warnings about undocumented members will not be
generated as long &XTRACT_ALL is settoYES

To analyse an existing piece of software it is useful to cross-reference a (documented) entity with its defini-
tion in the source files. Doxygen will generate such cross-references if you ssOthBCEBROWSER

tag toYES It can also include the sources directly into the documentation by séiIdIE_SOURCES

to YES(this can be handy for code reviews for instance).

2.2 Step 2: Running doxygen
To generate the documentation you can now enter:

doxygen <config-file>

Doxygen will create dtml , rtf |, latex and/ormandirectory inside the output directory. As the names
suggest these directories contain the generated documentation in HTMLARPé&ahd Unix-Man page
format.

The default output directory is the directory in whidlbxygen is started. The directory to which the
output is written can be changed using &I TPUT.DIRECTORY, HTML _OUTPUT, RTF.OUTPUT,
LATEX _OUTPUT, andMAN _OUTPUT tags of the configuration file. If the output directory does not
exist,doxygen will try to create it for you.

The generated HTML documentation can be viewed by pointing a HTML browser tade&.html
file in thehtml directory. For the best results a browser that supports cascading style sheets (CSS) should
be used (I'm currently using Netscape 4.61 to test the generated output).

The generated*TpX documentation must first be compiled byAagX compiler (I use teTeX distribution
version 0.9 that containg=X version 3.14159). To simplify the process of compiling the generated doc-
umentationdoxygen writes aMakefile into thelatex directory. By typingmake in the latex

User Manual for Doxygen 1.4.0, written by Dimitri van Heesch(©1997-2004

2.3 Step 3: Documenting the sources 14

directory the dvi filerefman.dvi will be generated (provided that you have a make tool catleéde of
course). This file can then be viewed uskulyi or converted into a PostScript filefman.ps by typing

make ps (this requiresivips). To put 2 pages on one physical page nske ps_2onl instead. The
resulting PostScript file can be send to a PostScript printer. If you do not have a PostScript printer, you can
try to use ghostscript to convert PostScript into something your printer understands. Conversion to PDF is
also possible if you have installed the ghostscript interpreter; justhgie pdf (ormake pdf 2onl).

To get the best results for PDF output you should sePthé HYPERLINKS tag toYES

The generated man pages can be viewed usingnidne program. You do need to make sure the man
directory is in the man path (see tNANPATNnvironment variable). Note that there are some limitations

to the capabilities of the man page format, so some information (like class diagrams, cross references and
formulas) will be lost.

2.3 Step 3: Documenting the sources

Although documenting the source is presented as step 3, in a new project this should of course be step 1.
Here | assume you already have some code and you want doxygen to generate a nice document describing
the APl and maybe the internals as well.

If the EXTRACT_ALL option is set taNOin the configuration file (the default), then doxygen will only
generate documentation fdocumentednembers, files, classes and namespaces. So how do you document
these? For members, classes and namespaces there are basically two options:

1. Place aspecialdocumentation block in front of the declaration or definition of the member, class
or namespace. For file, class and namespace members it is also allowed to place the documention
directly after the member. See sectiSpecial documentation blocke learn more about special
documentation blocks.

2. Place a special documentation block somewhere else (another file or another logaatiqgnjt a
structural commanéh the documentation block. A structural command links a documentation block
to a certain entity that can be documented (e.g. a member, class, hamespace or file). See section
Documentation at other plac&slearn more about structural commands.

Files can only be documented using the second option, since there is no way to put a documentation
block before a file. Of course, file members (functions, variable, typedefs, defines) do not need an explicit
structural command,; just putting a special documentation block in front or behind them will do.

The text inside a special documentation block is parsed before it is written to the HTML afiigidér L
output files.

During parsing the following steps take place:

e The special commands inside the documentation are executed. See Spetitoal Commandfor
an overview of all commands.

¢ If a line starts with some whitespace followed by one or more asteridkanfl then optionally more
whitespace, then all whitespace and asterisks are removed.

e All resulting blank lines are treated as a paragraph separators. This saves you from placing new-
paragraph commands yourself in order to make the generated documentation readable.

e Links are created for words corresponding to documented classes.

¢ Links to members are created when certain patterns are found in the text. SeeAetdmatic link
generatiorfor more information on how the automatic link generation works.

e HTML tags that are in the documentation are interpreted and convertéfEtodquivalents for the
IATEX output. See sectioHTML Commanddor an overview of all supported HTML tags.

User Manual for Doxygen 1.4.0, written by Dimitri van Heesch(©1997-2004

3 Documenting the code

3.1 Special documentation blocks

A special documentation block is a C or C++ comment block with some additional markings, so doxygen
knows it is a piece of documentation that needs to end up in the generated documentation.

For each code item there are two types of descriptions, which together form the documentdtifi: a
description andletaileddescription, both are optional. Having more than one brief or detailed description
however, is not allowed.

As the name suggest, a brief description is a short one-liner, whereas the detailed description provides
longer, more detailed documentation.

There are several ways to mark a comment block as a detailed description:

1. You can use the JavaDoc style, which consist of a C-style comment block starting witfsfuike
this:

Vi

* .. text ...
*/

2. or you can use the Qt style and add an exclamation mark (!) after the opening of a C-style comment
block, as shown in this example:

%1
* .. text ...
*/

In both cases the intermediatis are optional, so

*!
R (=) (R
*/

is also valid.

3. A third alternative is to use a block of at least two C++ comment lines, where each line starts with
an additional slash or an exclamation mark. Here are examples of the two cases:

17
/... text ...
1

or

i
/... text ...
i

4. Some people like to make their comment blocks more visible in the documentation. For this purpose
you can use the following:

M
I ... text ...
M

User Manual for Doxygen 1.4.0, written by Dimitri van Heesch(©1997-2004

3.1 Special documentation blocks

16

For the brief description there are also several posibilities:

1. One could use thgbrief command with one of the above comment blocks. This command ends at
the end of a paragraph, so the detailed description follows after an empty line.

Here is an example:

/*! \brief Brief description.

* Brief description continued.
*

* Detailed description starts here.
*

2. If JAVADOC_AUTOBRIEFis set toYESin the configuration file, then using JavaDoc style comment
blocks will automatically start a brief description which ends at the first dot followed by a space or
new line. Here is an example:

/** Brief description which ends at this dot. Details follow
* here.
*/

The option has the same effect for multi-line special C++ comments:

/Il Brief description which ends at this dot. Details follow
Il here.

3. Athird option is to use a special C++ style comment which does not span more than one line. Here
are two examples:

/Il Brief description.
/** Detailed description. */

or

/I' Brief descripion.

/I' Detailed description
/! starts here.

Note the blank line in the last example, which is required to separate the brief description from the
block containing the detailed description. TH&/ADOC_AUTOBRIEF should also be set tdOfor
this case.

As you can see doxygen is quite flexible. The following however is not legal

/I' Brief description, which is

/I' really a detailed description since it spans multiple lines.
/*! Oops, another detailed description!

*/

because doxygen only allows one brief and one detailed description.

Furthermore, if there is one brief description before a declaration and one before a definition of a code item,
only the one before theéeclarationwill be used. If the same situation occurs for a detailed description, the
one before thelefinitionis preferred and the one before the declaration will be ignored.

Here is an example of a documented piece of C++ code using the Qt style:

User Manual for Doxygen 1.4.0, written by Dimitri van Heesch(©1997-2004

3.1 Special documentation blocks

/I' A test class.
/!

A more elaborate class description.
*/

class Test

{
public:

/' An enum.

/*! More detailed enum description. */

enum TEnum {
TVvall, /*!< Enum value TVall. */
TVal2, /*I< Enum value TVal2. */
TVal3 /*I< Enum value TVal3. */

/I' Enum pointer.
/%! Details. */
*enumPtr,

/' Enum variable.
/*! Details. */
enumVar,

/I' A constructor.
[*!
A more elaborate description of the constructor.
*
Test();

/I' A destructor.
/!
A more elaborate description of the destructor.
*
“Test();

/I' A normal member taking two arguments and returning an integer value.
!
\param a an integer argument.
\param s a constant character pointer.
\return The test results
\sa Test(), “Test(), testMeToo() and publicVar()
*
int testMe(int a,const char *s);

/I' A pure virtual member.
!
\sa testMe()
\param c1 the first argument.
\param c2 the second argument.
*
/
virtual void testMeToo(char cl,char c2) = O;

/I A public variable.
/!
Details.
*/
int publicVar;

/I' A function variable.
[*!
Details.
*/
int (*handler)(int a,int b);

The one-line comments contain a brief description, whereas the multi-line comment blocks contain a more

User Manual for Doxygen 1.4.0, written by Dimitri van Heesch(©1997-2004

3.1 Special documentation blocks 18

detailed description.

The brief descriptions are included in the member overview of a class, namespace or file and are printed
using a small italic font (this description can be hidden by setiRgEF MEMBER_DESCto NOin the

config file). By default the brief descriptions become the first sentence of the detailed descriptions (but this
can be changed by setting tREPEAT BRIEF tag toNQ. Both the brief and the detailed descriptions are
optional for the Qt style.

By default a JavaDoc style documentation block behaves the same way as a Qt style documentation block.
This is not according the JavaDoc specification however, where the first sentence of the documentation
block is automatically treated as a brief description. To enable this behaviour you shold¥YABOC -
AUTOBRIEFto YES in the configuration file. If you enable this option and want to put a dot in the middle

of a sentence without ending it, you should put a backslash and a space after it. Here is an example:

/** Brief description (e.g.\ using only a few words). Details follow. */

Here is the same piece of code as shown above, this time documented using the JavaDoc style and
JAVADOC_AUTOBRIEF set to YES:

/**

* A test class. A more elaborate class description.
*/

class Test

{
public:

/**
* An enum.

* More detailed enum description.
*

enum TEnum {
TVall, /**< enum value TVall. */
TVal2, /**< enum value TVal2. */
TVal3 /**< enum value TVal3. */

*enumPtr, /**< enum pointer. Details. */
enumVar; /**< enum variable. Details. */

/**

* A constructor.

* A more elaborate description of the constructor.
*

Test();

/**
* A destructor.
* A more elaborate description of the destructor.
*

“Test();

/**
* a normal member taking two arguments and returning an integer value.
* @param a an integer argument.

* @param s a constant character pointer.

* @see Test()

* @see “Test()

* @see testMeToo()

* @see publicvar()

* @return The test results

*

int testMe(int a,const char *s);

User Manual for Doxygen 1.4.0, written by Dimitri van Heesch(©1997-2004

3.2 Putting documentation after members

/**

* A pure virtual member.

* @see testMe()

* @param cl the first argument.

* @param c2 the second argument.
*

virtual void testMeToo(char cl,char c2) = O;
/**

* a public variable.

* Details.

*

int publicVar;

/**

* a function variable.

* Detalls.

*/

int (*handler)(int a,int b);

Unlike most other documentation systems, doxygen also allows you to put the documentation of members
(including global functions) in front of thdefinition This way the documentation can be placed in the
source file instead of the header file. This keeps the header file compact, and allows the implementer of the
members more direct access to the documentation. As a compromise the brief description could be placed
before the declaration and the detailed description before the member definition.

3.2 Putting documentation after members
If you want to document the members of a file, struct, union, class, or enum, and you want to put the
documentation for these members inside the compound, it is sometimes desired to place the documentation

block after the member instead of before. For this purpose you should put an additiomadker in the
comment block.

Here are some examples:

int var; /*I< Detailed description after the member */

This block can be used to put a Qt style detailed documentation blibeka member. Other ways to do
the same are:

int var; /**< Detailed description after the member */
or

int var; //'< Detailed description after the member
<

or

int var; ///< Detailed description after the member
i<

Most often one only wants to put a brief description after a member. This is done as follows:

int var; //'< Brief description after the member

User Manual for Doxygen 1.4.0, written by Dimitri van Heesch(©1997-2004

3.3 Documentation at other places

or

int var; ///< Brief description after the member

Note that these blocks have the same structure and meaning as the special comment blocks in the previous
section only the< indicates that the member is located in front of the block instead of after the block.

Here is an example of the use of these comment blocks:

/¥1 A test class */

class Test

{
public:
/** An enum type.
* The documentation block cannot be put after the enum!
*
/
enum EnumType

int EVall, [**< enum value 1 */
int EVal2 /**< enum value 2 */

\;oid member(); //'< a member function.

protected:
int value; [*I< an integer value */
h

Warning:
These blocks can only be used to docummeimbersand parameters They cannot be used to doc-
ument files, classes, unions, structs, groups, namespaces and enums themselves. Furthermore, the
structural commands mentioned in the next section (|idass) are ignored inside these comment
blocks.

3.3 Documentation at other places

So far we have assumed that the documentation blocks are always located in front of the declaration or
definition of a file, class or namespace or in front or after one of its members. Although this is often
comfortable, there may sometimes be reasons to put the documentation somewhere else. For documenting
a file this is even required since there is no such thing as "in front of a file”. Doxygen allows you to put
your documentation blocks practically anywhere (the exception is inside the body of a function or inside a
normal C style comment block).

The price you pay for not putting the documentation block before (or after) an item is the need to put a
structural command inside the documentation block, which leads to some duplication of information.

Structural commands (like all other commands) start with a backslgsbr(an at-sign @ if you prefer
JavaDaoc style, followed by a command name and one or more parameters. For instance, if you want to
document the clasest in the example above, you could have also put the following documentation
block somewhere in the input that is read by doxygen:

/*1 \class Test
\brief A test class.

A more detailed class description.
*/

Here the special commangdlass is used to indicate that the comment block contains documentation for
the classTest . Other structural commands are:

User Manual for Doxygen 1.4.0, written by Dimitri van Heesch(©1997-2004

3.3 Documentation at other places

21

\struct to document a C-struct.

\union to document a union.

\enumto document an enumeration type.

\fn to document a function.

\var to document a variable or typedef or enum value.

\def to document a #define.

e \file todocument afile.

\namespace to document a namespace.

\package to document a Java package.

\interface to document an IDL interface.

See sectioBpecial Command®r detailed information about these and many other commands.

To document a member of a C++ class, you must also document the class itself. The same holds for
namespaces. To document a global C function, typedef, enum or preprocessor definition you must first
document the file that contains it (usually this will be a header file, because that file contains the information
that is exported to other source files).

Let's repeat that, because it is often overlooked: to document global objects (functions, typedefs, enum,
macros, etc), yomustdocument the file in which they are defined. In other words, tharstat least be a

/*1 \file */
ora
* @file */

line in this file.

Here is an example of a C header narstdctcmd.h that is documented using structural commands:

/*1 \file structcmd.h
\brief A Documented file.

Details.
*/

/*! \def MAX(a,b)
\brief A macro that returns the maximum of \a a and \a b.

Details.
*/

/*! \var typedef unsigned int UINT32
\brief A type definition for a .

Details.
*/

/*1 \var int errno
\brief Contains the last error code.

\warning Not thread safe!

User Manual for Doxygen 1.4.0, written by Dimitri van Heesch(©1997-2004

22

*/

~

*I \fn int open(const char *pathname,int flags)
\brief Opens a file descriptor.

\param pathname The name of the descriptor.
\param flags Opening flags.
*

~

*I \fn int close(int fd)
\brief Closes the file descriptor \a fd.
\param fd The descriptor to close.

*

/*I \fn size_t write(int fd,const char *buf, size_t count)
\brief Writes \a count bytes from \a buf to the filedescriptor \a fd.
\param fd The descriptor to write to.
\param buf The data buffer to write.
\param count The number of bytes to write.
*/

/*! \fn int read(int fd,char *buf,size_t count)
\brief Read bytes from a file descriptor.
\param fd The descriptor to read from.
\param buf The buffer to read into.
\param count The number of bytes to read.
*/

#define MAX(a,b) (((a)>(b))?(a):(b))
typedef unsigned int UINT32;

int errno;

int open(const char *,int);

int close(int);

size_t write(int,const char *, size_t);
int read(int,char *size_t);

Because each comment block in the example above contains a structural command, all the comment blocks
could be moved to another location or input file (the source file for instance), without affecting the generated
documentation. The disadvantage of this approach is that prototypes are duplicated, so all changes have
to be made twice! Because of this you should first consider if this is really needed, and avoid structural
commands if possible. | often receive examples that con@ircommand in comment blocks which are

place in front of a function. This is clearly a case where\tfrecommand is redundant and will only lead

to problems.

4 Lists

Doxygen has a number of ways to create lists of items.
Using dashes

By putting a number of column-aligned minus signs at the start of a line, a bullet list will automatically be
generated. Numbered lists can also be generated by using a minus followed by a hash. Nesting of lists is
allowed.

Here is an example:

* A list of events:

* - mouse events

* -# mouse move event

* -# mouse click event\n

* More info about the click event.

User Manual for Doxygen 1.4.0, written by Dimitri van Heesch(©1997-2004

23

-# mouse double click event
- keyboard events

-# key down event

-# key up event

EE I R

More text here.
*/

The result will be:

A list of events:

e Mmouse events

1. mouse move event

2. mouse click event
More info about the click event.

3. mouse double click event
e keyboard events

1. key down event
2. key up event

More text here.

If you use tabs within lists, please make sure {aB _SIZE in the configuration file is set to the correct
tab size.

You can end a list by starting a new paragraph or by putting a dot (.) on an empty line at the same indent
level as the list you would like to end.

Here is an example that speaks for itself:

/**
Text before the list
- list item 1
- sub item 1
- sub sub item 1
- sub sub item 2

The dot above ends the sub sub item list.
More text for the first sub item

The dot above ends the first sub item.
More text for the first list item
- sub item 2
- sub item 3
- list item 2

*
*
*
*
*
*
*
*
*
*
*
*
*
*
* .
* More text in the same paragraph.
*

* More text in a new paragraph.

*/

Using HTML commands

If you like you can also use HTML commands inside the documentation blocks. Using these commands
has the advantage that it is more natural for list items that consists of multiple paragraphs.

Here is the above example with HTML commands:

User Manual for Doxygen 1.4.0, written by Dimitri van Heesch(©1997-2004

* A list of events:

* o o

* mouse events

*

* mouse move event

* mouse click event\n

* More info about the click event.
* mouse double click event
*
* keyboard events
*
* key down event
* key up event
*
*
* More text here.

Note:
The indentation here is not important.

Using \arg or @li

For compatibility with the Troll Tech’s internal documentation tool and with KDoc, doxygen has two
commands that can be used to create simple unnested lists.

See\argand\li for more info.

5 Grouping

Doxygen has two mechanisms to group things together. One mechanism works at a global level, creating a
new page for each group. These groups are called "modules” in the documentation. The other mechanism
works within a member list of some compound entity, and is refered to as a "member group”.

5.1 Modules

Modules are a way to group things together on a separate page. You can document a group as a whole, as
well as all individual members. Members of a group can be files, namespaces, classes, functions, variables,
enums, typedefs, and defines, but also other groups.

To define a group, you should put théefgroupcommand in a special comment block. The first argument

of the command is a label that should uniquely identify the group. You can make an entity a member of a
specific group by putting gingroupcommand inside its documentation block. The second argument is the
title of the group.

To avoid putting\ingroupcommands in the documentation of each member you can also group members
together by the open mark@{ before the group and the closing marl@rafter the group. The markers
can be put in the documentation of the group definition or in a separate documentation block.

Groups can also be nested using these grouping markers.

You will get an error message when you use the same group label more than once. If you don’t want
doxygen to enforce unique labels, then you can e#dtogroupinstead of\defgroup It can be used
exactly like\defgroup but when the group has been defined already, then it silently merges the existing
documentation with the new one. The title of the group is optional for this command, so you can use

/** \addtogroup <label> */

User Manual for Doxygen 1.4.0, written by Dimitri van Heesch(©1997-2004

5.1 Modules 25

Mep
ey

to add members to a group that is defined in more detail elsewhere.

Note that compound entities (like classes, files and namespaces) can be put into multiple groups, but mem-
bers (like variable, functions, typedefs and enums) can only be a member of one group (this restriction is
to avoid ambiguous linking targets).

Doxygen will put members into that group where the grouping definition had the highest priority: f.i.
\ingroupoverrides any automatic grouping definition @ @ . Conflicting grouping definitions with the
same priority trigger a warning, unless one definition was for a member without any explicit documentation.
The following example puts VarInA into group A and silently resolves the conflict for IntegerVariable by
putting it into group IntVariables, because the second instance of IntegerVariable is undocumented:

/**

* \ingroup A

*

extern int VarlnA,;

/**

* \defgroup IntVariables Global integer variables
*/

rF@{*

/** an integer variable */

extern int IntegerVariable;

@y

/**

* \defgroup Variables Global variables
*/

rF@{*

[** a variable in group A */

int VarlnA;

int IntegerVariable;

@y

The \ref command can be used to refer to a group. The first argument ofr#ficeommand should be
group’s label. To use a custom link name, you can put the name of the links in double quotes after the
label, as shown by the following example

This is the \ref group_label "link" to this group.

The priorities of grouping definitions are (from highest to lowesghgroup \defgroup \addtogroup
\weakgroup The last command is exactly lik@ddtogroupwith a lower priority. It was added to allow
"lazy” grouping definitions: you can use commands with a higher priority in your .h files to define the
hierarchy andweakgroupgn .c files without having to duplicate the hierarchy exactly.

Example:
/** @defgroup groupl The First Group
* This is the first group
* @{

User Manual for Doxygen 1.4.0, written by Dimitri van Heesch(©1997-2004

5.1 Modules

26

*/

/** @brief class C1 in group 1 */
class C1 {};

/** @brief class C2 in group 1 */
class C2 {};

/** function in group 1 */
void func() {}

¥ @} * /I end of groupl

/**
* @defgroup group2 The Second Group

* This is the second group
*

/** @defgroup group3 The Third Group
* This is the third group
*

/** @defgroup group4 The Fourth Group
* @ingroup group3

* Group 4 is a subgroup of group 3
*

/**

* @ingroup group2

* @brief class C3 in group 2

*/

class C3 {};

/** @ingroup group2

* @brief class C4 in group 2
*

class C4 {};

[** @ingroup group3

* @brief class C5 in @link group3 the third group@endlink.
*

class C5 {};

/** @ingroup groupl group2 group3 group4

* namespace N1 is in four groups

* @sa @link groupl The first group@endlink, group2, group3, group4
*

* Also see @ref mypage2

*

namespace N1 {};

= @file

* @ingroup group3

* @brief this file in group 3

*

/** @defgroup group5 The Fifth Group
This is the fifth group

* @

*

/** @page mypagel This is a section in group 5
* Text of the first section

/** @page mypage2 This is another section in group 5
* Text of the second section

User Manual for Doxygen 1.4.0, written by Dimitri van Heesch(©1997-2004

5.2 Member Groups

27

*
¥ @} */ /I end of group5

/** @addtogroup groupl

*

* More documentation for the first group.
NG
*

/** another function in group 1 */
void func2() {}

/** yet another function in group 1 */
void func3() {}

* @} * /I end of groupl

5.2 Member Groups

If a compound (e.g. a class or file) has many members, it is often desired to group them together. Doxygen
already automatically groups things together on type and protection level, but maybe you feel that this is
not enough or that that default grouping is wrong. For instance, because you feel that members of different
(syntactic) types belong to the same (semantic) group.

A member group is defined by a

1@y
1@}

block or a

F@p
r@w

block if you prefer C style comments. Note that the members of the group should be physcially inside the
member group’s body.

Before the opening marker of a block a separate comment block may be placed. This block should contain
the @name(or \namg command and is used to specify the header of the group. Optionally, the comment
block may also contain more detailed information about the group.

Nesting of member groups is not allowed.

If all members of a member group inside a class have the same type and protection level (for instance all
are static public members), then the whole member group is displayed as a subgroup of the type/protection
level group (the group is displayed as a subsection of the "Static Public Members” section for instance).
If two or more members have different types, then the group is put at the same level as the automatically
generated groups. If you want to force all member-groups of a class to be at the top level, you should put a
\nosubgroupingommand inside the documentation of the class.

Example:

/** A class. Details */
class Test

{
public:
