
The synttree package for typesetting syntactic

trees.∗

Matijs van Zuijlen†

June 28, 2009

Abstract

The synttree package provides a simple way to typeset syntactic trees
as used in Chomsky’s Generative Grammar.

Contents

1 Introduction 1

2 Usage 1
2.1 Drawing Options . 1
2.2 Defined Macros . 1

3 Wish List and Bugs 3

4 Related Packages 3

5 Author and License 3

6 Implementation 4
6.1 Utility macros . 4
6.2 Drawing commands . 4
6.3 Definitions . 4
6.4 Storage for information on (sub)trees 5
6.5 Adjustable and other parameters 6
6.6 Main macro . 7
6.7 Parsing . 7
6.8 Action . 8
6.9 Bottom Nodes . 10
6.10 Utility macros for the output routines 10
6.11 Output routines . 12
∗Package version 1.4.2
†e-mail: mvz@xs4all; web: http://www.matijs.net/

1

1 Introduction

The synttree package provides a macro for creating syntactic tree structures such
as those used in Noam Chomsky’s Generative Grammar. It is designed to create
a tree that looks nice, without manual tweaking, and with as little use of ‘special
effects’, such as PostScript, as possible.

Since the application is very specific, there is no need for a very complex set
of options: synttree is designed to do one thing, and do it well.

Using synttree, you can create trees of any depth, and an unlimited number
of branches (up to the memory limit of your version of TEX, of course).

2 Usage

2.1 Drawing Options

The current implementation can use either emTEX \special’s or LATEX2ε’s
\qbezier macro to draw the lines in the tree, although the latter option is proba-
bly technically not very nice. Still, the behavior defaults to the LATEX2ε version.

In order to switch between the two modes, the following options are supported:

specials Use emTEX special commands.

nospecials Don’t use emTEX special commands. This is the default.

2.2 Defined Macros

The main macro defined by this package is the \synttree macro. It takes as\synttree

arguments first an optional parameter indicating the maximum depth of the tree,
and second a parameter describing the structure of the tree, delimited by square
brackets ([and]).

A tree consists of the parent node’s label, followed by the child trees. In
principle, an unlimited number of children can be specified, but to signal runaway
trees, a warning will be issued when the number is more than ten. Each of the
child trees is again surrounded by square brackets. For example, the line

\synttree[A[B][C]]

creates the following tree:

A

CB

Note that leading and trailing spaces in the label will be ignored, so the fol-
lowing has the same result:

\synttree[A [B][C]]

Before the label, a parameter may be added. This is specified by appending
a period (.) to the opening bracket, and appending a letter that modifies the
appearance of the tree. Append a t to create a triangle instead of a line going
from the label to the level above it, and a b to specify that the node has to appear

2

at the bottom of the tree, on a line with the lowest leaves. To use b, a maximum
tree depth has to be specified. To combine the two features, use x.

Using the optional parameters, the code

\synttree{4}

[A

[B [.x Some text]]

[D [E] [F[.t G]] [H]]

]

creates this tree:

A

D

HF

G

E

B

Some text

If brackets are included in the label, surround them (or the entire label) by
braces:

\synttree[A[{B]D}][C]]

A

CB]D

The other defined macros affect the look and sizing of the trees. The distance
between levels can be adjusted by using \branchheight. It takes a length as its\branchheight

argument, and sets the distance to that length. The default distance is half an
inch. This value is the distance between the baselines of the labels, so setting it to
zero will cause everything to be on one line. The minimum horizontal separation
between edges of two children is set by \childsidesep. The default is 1em. The\childsidesep

length \childattachsep indicates the minimum distance between the attachment\childattachsep

points of two children. Here, the default is 0.5in. Finally, the balancing of the
triangles can be adjusted by using \trianglebalance. It takes a number from 0\trianglebalance

to 100, indicating the percentage of the triangle on the right side of its attachment
point to the parent. The default is 50, resulting in isosceles triangles.

3 Wish List and Bugs

It is important to note that this package may not prevent you from doing certain
things ‘wrong’. For example, triangles on non-leaf nodes are not forbidden, but
may not give the desired result.

Sometimes, the label of a parent may be a phrase, and it may be desirable
to attach the children to a particular element in that phrase (e.g., to elaborate

3

on the structure of that particular element). This is currently not possible: The
children are always attached to the center of the label. Support for this may be
added sooner or later.

4 Related Packages

A more complex package is the TreeTeX system[2]. This system, however, pro-
duces nodes consisting of a node symbol and a label, whereas in syntactic trees the
label is the node symbol. Additionally, the method of specifying the tree structure
itself makes the source code hard to read.

The xyling package[4] is a very powerful package, allowing many things that
synttree will not do. However, the nodes have to be laid out meticulously in an
array. Once that’s done, however, the result looks very good.

The “LATEX for Linguists” website[1] lists other tree-drawing packages, with
comments on their usefulness.

5 Author and License

Copyright (c) 1998, 1999, 2001, 2004–2006 Matijs van Zuijlen.
The synttree package is free software. It has been released under the terms

of the Latex Project Public License, version 1.3a.
This work has the LPPL maintenance status ‘maintained’. Its current main-

tainer is Matijs van Zuijlen. This work consists of the files synttree.dtx and
synttree.ins.

6 Implementation

6.1 Utility macros

Very useful for putting stuff after a \fi (as the name implies) [3].
1 \def\@AfterFi#1\fi{\fi#1}

2 \def\@AfterElseFi#1\else#2\fi{\fi#1}

6.2 Drawing commands

These command are used to draw the lines between the nodes. There are two
versions: one that uses the LATEX2ε \qbezier command, and one that is an
adaptation of the unsupported eepic package, and uses specials. Currently, the
package just uses the LATEX2ε version.

First, the line drawing macros themselves. These simply draw a line between
the two points given. Arguments are counters.
3 \def\MTr@latexdrawline(#1,#2)(#3,#4){%

4 {%

5 \count0=#1 \advance\count0 by #3 \divide\count0 2

6 \count1=#2 \advance\count1 by #4 \divide\count1 2

7 \qbezier(#1,#2)(\count0,\count1)(#3,#4)%

8 }%

9 }

10 \def\MTr@etexdrawline(#1,#2)(#3,#4){%

4

11 {%

12 \count0=\@wholewidth \divide\count0 by 4736

13 \special{pn \the\count0}%

14 \count0= #1\advance \count0 2368 \divide \count0 4736

15 \count1=-#2\advance \count1 -2368 \divide \count1 4736

16 \special{pa \the\count0 \space \the\count1}%

17 \count0= #3\advance \count0 2368 \divide \count0 4736

18 \count1=-#4\advance \count1 -2368 \divide \count1 4736

19 \special{pa \the\count0 \space \the\count1}%

20 \special{fp}%

21 }%

22 }

Options to select either version:
23 \DeclareOption{specials}{

24 \let\MTr@drawline\MTr@etexdrawline%

25 }

26 \DeclareOption{nospecials}{

27 \let\MTr@drawline\MTr@latexdrawline%

28 }

29 \ExecuteOptions{nospecials}%

30 \ProcessOptions%

6.3 Definitions

Some counters etc. are defined: The current level, the number of children the
current node has, the maximum level specified, also, the current branchmult, and
whether the current node should be typeset with a triangle. We need a separate
counter to hold the current branchmult, because we calculate it before parsing the
children, which will each set branchmult globally to save it into the child registers.
31 \newcount\MTr@level

32 \newcount\MTr@numchildren

33 \newcount\MTr@maxlevel

34 \newcount\MTr@mybranchmult

35 \newif\ifMTr@mytriangle

A boolean to specify whether read tokens that are not [or] should be used
as a label for a node, or just ignored.
36 \newif\ifMTr@uselabel

Two saveboxes, one for the label, one to put the child in while it is being
defined.
37 \newbox\MTr@labelbox

38 \newbox\MTr@treebox

6.4 Storage for information on (sub)trees

Define storage space to store contents of and information about a tree’s children.
Distances are measured from the child’s label’s virtual attachment point to the
line to its parent — in reality, for aesthetic reasons, the line is drawn up to a
point that lies slightly higher. Drawing a box around the whole child tree, we
find the distance from the left side to the central point, v, the distance from the
right side, w. Then, we have the height (equal to the height of the label), and

5

the depth (the height of the box minus the height of the label). There are also
two external dimensions: the vertical distance from the parent label, y, and the
horizontal distance from the parent tree’s box, x. Usually, a child node is typeset
one level below its parent. However, we may set it lower, e.g., to set the child
on the bottom level. branchmult indicates how many levels below the parent the
child should be typeset.
39 \def\MTr@makechildcounter#1{%

40 \expandafter\newcount\csname MTr@child#1\endcsname%

41 }

42 \def\MTr@makechildstoreage#1{%

43 \expandafter\newsavebox\csname MTr@child#1box\endcsname%

44 \MTr@makechildcounter{#1x}%

45 \MTr@makechildcounter{#1y}%

46 \MTr@makechildcounter{#1v}%

47 \MTr@makechildcounter{#1w}%

48 \MTr@makechildcounter{#1height}%

49 \MTr@makechildcounter{#1depth}%

50 \MTr@makechildcounter{#1branchmult}%

51 \MTr@makechildcounter{#1picheight}%

52 \MTr@makechildcounter{#1triangle}%

53 }

\MTr@childparam We also need an easy way to retrieve each child’s parameters. This way, we don’t
have to use the \csname construct all the time.
54 \def\MTr@childparam#1#2{\csname MTr@child#1#2\endcsname}

Store info for current subtree: v, w (x and y are external, thus not important),
height, depth, branchmult, triangle status.
55 \newcount\MTr@treev

56 \newcount\MTr@treew

57 \newcount\MTr@treeheight

58 \newcount\MTr@treedepth

59 \newcount\MTr@branchmult

60 \MTr@branchmult 1

61 \newif\ifMTr@triangle

Next, the depth, height and half the width of the label.
62 \newcount\MTr@labeldepth

63 \newcount\MTr@labelheight

64 \newcount\MTr@labelhalfwidth

When drawing, we need morex, to store extra shift to the right when drawing the
children, and parenty, the vertical position of the point where the line from the
parent to the child starts. Also, we need the width and height of the picture being
drawn.
65 \newcount\MTr@morex

66 \newcount\MTr@parenty

67 \newcount\MTr@picwidth

68 \newcount\MTr@picheight

Finally, we need a temporary length, and four temporary counters.
69 \newlength{\MTr@templength}

70 \newcount\MTr@loopcnta

71 \newcount\MTr@tempcnta

6

72 \newcount\MTr@tempcntb

73 \newcount\MTr@tempcntc

6.5 Adjustable and other parameters

\branchheight The user can set up several parameters. First, \branchheight will set the distance
between levels. Default value is half an inch.
74 \newcount\MTr@branchheight%

75 \newcommand{\branchheight}[1]{%

76 \setlength{\MTr@templength}{#1}%

77 \MTr@branchheight\MTr@templength%

78 }

79 \branchheight{.5in}%

\trianglebalance Next, \trianglebalance will set the balancing of the triangle. Default value is
50.
80 \newcount\MTr@trianglemultright%

81 \newcount\MTr@trianglemultleft%

82 \newcommand{\trianglebalance}[1]{%

83 \MTr@trianglemultleft100%

84 \MTr@trianglemultright#1%

85 \advance\MTr@trianglemultleft-#1%

86 }

87 \trianglebalance{50}%

Distance between the labels and the lines.
88 \newcount\MTr@lineoffset

89 \setlength{\MTr@templength}{2pt}%

90 \MTr@lineoffset\MTr@templength%

Minimum label height.
91 \newlength{\MTr@minheight}

92 \setlength{\MTr@minheight}{8pt}%

\childsidesep Minimum separation between edges of two children.
93 \newcount\MTr@childsidesep

94 \newcommand{\childsidesep}[1]{%

95 \setlength{\MTr@templength}{#1}%

96 \MTr@childsidesep\MTr@templength%

97 \ignorespaces%

98 }

99 \childsidesep{1em}

\childattachsep How far apart are the attachment points of two children?
100 \newcount\MTr@childattachsep

101 \newcommand{\childattachsep}[1]{%

102 \setlength{\MTr@templength}{#1}%

103 \MTr@childattachsep\MTr@templength%

104 \ignorespaces%

105 }

106 \childattachsep{0.5in}

7

6.6 Main macro

\synttree \synttree is the main macro. If the user has not provided a maximum depth, set
it to 0. There will be no messages concerning depth, except when the bottomlevel
modifier is used. Control is passed on to \MTr@synttree

107 \def\synttree{%

108 \@ifnextchar[{\MTr@synttree{0}}{\MTr@synttree}%]

109 }

\MTr@synttree This macro sets maximum depth, end sets picture coordinates to scaled points.
Next, initial values of some variables are set, and the first real parsing macro,
\MTr@parserightbracket, is called.

110 \def\MTr@synttree#1{%

111 \MTr@maxlevel#1%

112 \unitlength 1sp%

113 \MTr@level=0%

114 \MTr@numchildren=0%

115 \MTr@uselabelfalse%

116 \MTr@parserightbracket%

117 }

6.7 Parsing

Parsing will only work if at least one] is present.

\MTr@parserightbracket First, scan until the first occurrance of]. Argument #1 will contain no], but may
contain some [, which are detected by \MTr@parseleftbracket. After #1 has
been processed, lower the nesting level. If we’re back at 0, we’re done. Otherwise,
continue looking for].

118 \def\MTr@parserightbracket#1]{%

119 \MTr@parseleftbracket#1[:\END%

120 \advance\MTr@level by -1%

121 \MTr@dorightbracket%

122 \ifnum\MTr@level=0%

123 \unhbox\MTr@childibox{}%

124 \else

125 \@AfterFi{\MTr@parserightbracket}%

126 \fi%

127 }

\Mtr@parseleftbracket Scan until the first occurrance of [. Argument #1 will contain no] or [. #2
may contain more]. Possibly, #1 is a label. If #2=:, the [was placed by
\MTr@parserightbracket, and we’re done.

128 \def\MTr@parseleftbracket#1[#2\END{%

129 \ifMTr@uselabel%

130 \MTr@bottomnodefalse%

131 \MTr@mytrianglefalse%

132 \MTr@parsedot#1.: \END%

133 \fi%

134 \ifx:#2%

135 \else%

136 \MTr@doleftbracket%

137 \advance\MTr@level by 1%

8

138 \@AfterFi{\MTr@parseleftbracket#2\END}%

139 \fi%

140 }

\Mtr@parsedot Parse the optional node argument.
141 \def\MTr@parsedot#1.#2 #3\END{%

142 \ifx:#2%

143 \setbox\MTr@labelbox\hbox{\ignorespaces#1\unskip}%

144 \else

145 \ifx#2b\MTr@bottomnodetrue\else%

146 \ifx#2x\MTr@bottomnodetrue\MTr@mytriangletrue\else%

147 \ifx#2t\MTr@mytriangletrue\else%

148 \typeout{synttree Warning: unknown dot option #2 in tree}%

149 \fi\fi\fi%

150 \MTr@parsedot#3\END

151 \fi

152 }

6.8 Action

The next macros implement the actions to be undertaken when encountering one
of the square brackets.

\MTr@doleftbracket Upon encountering a [, we go one level deeper: Begin a group, and reset param-
eters.

153 \def\MTr@doleftbracket{%

154 \bgroup%

155 \MTr@numchildren=0%

156 \MTr@uselabeltrue%

157 }

\MTr@dorightbracket Upon encountering a], we typeset the current group’s tree, and end the group.
Until we encounter some brackets, we should not add tokens to any label. Save
the just-typeset tree as the newest child in the parent group — now the current
group.

158 \def\MTr@dorightbracket{%

159 \MTr@maketreebox%

160 \egroup%

161 \MTr@uselabelfalse%

162 \MTr@savecurrentchildbox%

163 }

\MTr@savecurrentchildbox Save the current picture, with all its data, in the box and registers for the next
empty child.

164 \def\MTr@savecurrentchildbox{%

165 \advance\MTr@numchildren by 1

166 \ifnum\MTr@numchildren<1%

167 \typeout{synttree internal warning: There is no child box to save.}%

168 \else

169 \ifnum\MTr@numchildren>10%

170 \typeout{synttree warning: More than 10 child boxes.

171 Can this be true?}%

172 \fi

9

173 \MTr@savechildbox{\romannumeral\MTr@numchildren}%

174 \fi

175 }

\MTr@savechildbox Save current tree in a specific child box. Basically, we just copy from the tree
registers to the child registers, except x is set to v initially. Used only in
\MTr@savecurrentchildbox.

176 \def\MTr@savechildbox#1{%

177 \expandafter

178 \ifx\csname MTr@child#1box\endcsname\relax%

179 \MTr@makechildstoreage{#1}%

180 \fi%

181 \setbox%

182 \csname MTr@child#1box\endcsname%

183 \hbox{\unhbox\MTr@treebox}%

184 \csname MTr@child#1v\endcsname\MTr@treev%

185 \csname MTr@child#1w\endcsname\MTr@treew%

186 \csname MTr@child#1x\endcsname\MTr@treev%

187 \csname MTr@child#1height\endcsname\MTr@treeheight%

188 \csname MTr@child#1depth\endcsname\MTr@treedepth%

189 \csname MTr@child#1branchmult\endcsname\MTr@branchmult%

190 \ifMTr@triangle%

191 \csname MTr@child#1triangle\endcsname 1%

192 \else%

193 \csname MTr@child#1triangle\endcsname 0%

194 \fi

195 }

6.9 Bottom Nodes

For bottom nodes, we have to adapt the vertical position so that they become,
indeed, bottom nodes. This is done by the macros \MTr@bottomnodetrue and
\MTr@bottomnodefalse.

\MTr@bottomnodetrue The node is a bottom node. Calculate the difference between this level and the
bottom level as passed to \synttree, and use this to determine how many levels
the node has to be advanced vertically to get it at the correct position. In effect,
the distance between two levels is multiplied by the “branch multiplication.” For
non-bottom nodes this is set to 1.

196 \def\MTr@bottomnodetrue{%

197 \MTr@branchmult\MTr@maxlevel%

198 \advance\MTr@branchmult-\MTr@level%

199 \advance\MTr@branchmult 1%

200 \ifnum\MTr@branchmult<1%

201 \typeout{synttree Warning: Tree has more levels than indicated.}%

202 \typeout{>> Indicated: \the\MTr@maxlevel.}%

203 \typeout{>> Level now: \the\MTr@level.}%

204 \MTr@branchmult1%

205 \fi%

206 \MTr@mybranchmult\MTr@branchmult%

207 }

\MTr@bottomnodefalse It’s not a bottom node: Just set the branch multiplication to 1.

10

208 \def\MTr@bottomnodefalse{%

209 \MTr@mybranchmult1%

210 }

6.10 Utility macros for the output routines

\MTr@setverticalchilddimens Set vertical dimensions for a given child: y and picheight.
211 \def\MTr@setverticalchilddimens#1{%

212 \MTr@tempcnta-\MTr@branchheight%

213 \multiply\MTr@tempcnta\MTr@childparam{#1}{branchmult}%

214 \MTr@tempcntb-\MTr@tempcnta%

215 \advance\MTr@tempcntb\csname MTr@child#1depth\endcsname%

216 \advance\MTr@tempcnta-\MTr@labelheight%

217 \advance\MTr@tempcnta\csname MTr@child#1height\endcsname%

218 \csname MTr@child#1y\endcsname\MTr@tempcnta%

219 \csname MTr@child#1picheight\endcsname\MTr@tempcntb%

220 }

\MTr@adjustdistance Adjust the distance between two children. For the pair of neighboring children,
tempcnta is used temporarily to store what amounts to the distance between the
central points of the two children (the left child’s w, plus the right child’s v). If it
is below the value childattachsep, adjust values so that is equal to it. tempcnta
stores the resulting value. The right child’s x is now set to put it in the correct
position w.r.t. the left child.

221 \def\MTr@adjustdistance#1#2{%

222 \MTr@tempcnta\MTr@childparam{#1}{w}%

223 \advance\MTr@tempcnta\MTr@childsidesep%

224 \advance\MTr@tempcnta\csname MTr@child#2v\endcsname%

225 \ifnum\MTr@tempcnta<\MTr@childattachsep%

226 \MTr@tempcnta\MTr@childattachsep%

227 \fi%

228 \csname MTr@child#2x\endcsname\MTr@childparam{#1}{x}%

229 \advance\csname MTr@child#2x\endcsname\MTr@tempcnta%

230 }

\MTr@setparentdimens Set some parameters for the parent node. Parameters are the leftmost and right-
most child label.

231 \def\MTr@setparentdimens#1#2{%

Calculate the subtree’s v and w:
232 \MTr@tempcnta\MTr@childparam{#2}{x}%

233 \advance \MTr@tempcnta -\MTr@childparam{#1}{x}%

234 \divide\MTr@tempcnta 2%

235 \MTr@treev\MTr@tempcnta%

236 \MTr@treew\MTr@treev%

237 \advance \MTr@treev \csname MTr@child#1x\endcsname%

238 \advance \MTr@treew \csname MTr@child#2w\endcsname%

Calculate morex: The distance the (first) subtree has to be shifted to the right to
accomodate a large parent label size.

239 \MTr@morex\MTr@labelhalfwidth%

240 \advance\MTr@morex-\MTr@treev%

241 \ifnum\MTr@morex<0\MTr@morex0\fi%

11

Large label sizes are also incorporated into w and x.
242 \ifnum\MTr@treew<\MTr@labelhalfwidth

243 \MTr@treew\MTr@labelhalfwidth

244 \fi%

245 \ifnum\MTr@treev<\MTr@labelhalfwidth

246 \MTr@treev\MTr@labelhalfwidth

247 \fi%

Picture width.
248 \MTr@picwidth\MTr@treev%

249 \advance\MTr@picwidth\MTr@treew%

250 }

\MTr@setpictureparameters Set some parameters for the picture.
251 \def\MTr@setpictureparameters{%

252 \global\MTr@treedepth\MTr@picheight%

253 \advance\MTr@picheight\MTr@labelheight%

254 \global\MTr@treeheight\MTr@labelheight%

255 \MTr@parenty-\MTr@labelheight%

256 \advance\MTr@parenty-\MTr@labeldepth%

257 \advance\MTr@parenty-\MTr@lineoffset%

258 \global\MTr@treev\MTr@treev%

259 \global\MTr@treew\MTr@treew%

260 }

\MTr@drawlabel

261 \def\MTr@drawlabel{%

262 \put(\MTr@treev,0){%

263 \makebox(0,0)[t]{%

264 \rule{0pt}{\MTr@minheight}%

265 \usebox{\MTr@labelbox}}}%

266 }

\MTr@drawchild Draws the saved child node’s picture.
267 \def\MTr@drawchild#1{%

268 \MTr@tempcnta\MTr@childparam{#1}{x}

269 \advance\MTr@tempcnta-\MTr@childparam{#1}{v}

270 \put(\MTr@tempcnta,\MTr@childparam{#1}{y}){%

271 \makebox(0,0)[tl]{%

272 \usebox{\csname MTr@child#1box\endcsname}}}%

273 }

\MTr@drawchildline Draws the line or triangle from the parent to the given child.
274 \def\MTr@drawchildline#1{

Use child’s y, but advance it to make the line stop just above the label.
275 \MTr@tempcnta\MTr@childparam{#1}{y}

276 \advance\MTr@tempcnta\MTr@lineoffset%

277 \expandafter

278 \ifnum\csname MTr@child#1triangle\endcsname=1%

279 \MTr@drawchildlinetriangle{#1}%

280 \else%

281 \MTr@drawchildlineline{#1}%

282 \fi%

12

283 }

284 \def\MTr@drawchildlineline#1{%

285 \put(0,0){\MTr@drawline%

286 (\MTr@treev,\MTr@parenty)%

287 (\MTr@childparam{#1}{x},\MTr@tempcnta)}%

288 }

289 \def\MTr@drawchildlinetriangle#1{%

290 \MTr@tempcntb\MTr@childparam{#1}{x}%

291 \MTr@tempcntc\MTr@tempcntb%

292 \advance\MTr@tempcntb \MTr@childparam{#1}{w}%

293 \advance\MTr@tempcntc -\MTr@childparam{#1}{v}%

294 \put(0,0){\MTr@drawline%

295 (\MTr@treev,\MTr@parenty)%

296 (\MTr@tempcntc,\MTr@tempcnta)}%

297 \put(0,0){\MTr@drawline%

298 (\MTr@treev,\MTr@parenty)%

299 (\MTr@tempcntb,\MTr@tempcnta)}%

300 \put(0,0){\MTr@drawline%

301 (\MTr@tempcntc,\MTr@tempcnta)%

302 (\MTr@tempcntb,\MTr@tempcnta)}%

303 }

6.11 Output routines

\MTr@maketreebox This is the main macro that starts the output.
304 \def\MTr@maketreebox{%

305 \MTr@labelheight\ht\MTr@labelbox%

306 \ifnum\MTr@labelheight<\MTr@minheight\MTr@labelheight\MTr@minheight\fi%%

307 \MTr@labeldepth\dp\MTr@labelbox%

308 \MTr@labelhalfwidth\wd\MTr@labelbox%

309 \divide\MTr@labelhalfwidth 2%

310 \ifnum\MTr@numchildren=0%

311 \global\setbox\MTr@treebox\hbox{\MTr@outputlabel}%

312 \fi%

313 \ifnum\MTr@numchildren>0%

314 \global\setbox\MTr@treebox\hbox{\MTr@outputchildren{\the\MTr@numchildren}}%

315 \fi%

316 \global\MTr@branchmult\MTr@mybranchmult%

317 \ifMTr@mytriangle%

318 \global\MTr@triangletrue%

319 \else%

320 \global\MTr@trianglefalse%

321 \fi%

322 }

\MTr@outputlabel Output a tree that is just a label, with no children.
323 \def\MTr@outputlabel{%

First, set parameters: Height and depth of the subtree are equal to height and
depth of the label. The x and w of the subtree each equal half the width of the
label. Optionally, x may be zero and w may equal to the entire width of the label.
The width and height of the picture to be drawn equal the width of the label and
the height of the tree.

324 \global\MTr@treeheight\MTr@labelheight%

13

325 \global\MTr@treedepth\MTr@labeldepth%

326 \ifMTr@mytriangle%

327 \MTr@treew\MTr@labelhalfwidth%

328 \MTr@treev\MTr@labelhalfwidth%

329 \multiply\MTr@treew \MTr@trianglemultright%

330 \multiply\MTr@treev \MTr@trianglemultleft%

331 \divide\MTr@treew 50%

332 \divide\MTr@treev 50%

333 \global\MTr@treew\MTr@treew%

334 \global\MTr@treev\MTr@treev%

335 \else%

336 \global\MTr@treew\MTr@labelhalfwidth%

337 \global\MTr@treev\MTr@labelhalfwidth%

338 \fi%

339 \MTr@picwidth\wd\MTr@labelbox%

340 \MTr@picheight\MTr@treeheight%

Second, draw the picture. The coordinates for the picture are nearly the same
throughout. In any event, the label is centered in the picture, its baseline aligned
with the bottom of the picture.

341 \advance\MTr@picheight\MTr@treedepth%

342 \begin{picture}%

343 (\MTr@picwidth,\MTr@picheight)%

344 (-\MTr@treev,-\MTr@picheight)%

345 %\put(-\MTr@treev,-\MTr@picheight){\framebox(\MTr@picwidth,\MTr@picheight){}}%

346 \put(-\MTr@treev,0){%

347 \makebox(0,0)[tl]{%

348 \rule{0pt}{\MTr@minheight}%

349 \usebox{\MTr@labelbox}}}%

350 \end{picture}%

351 }

\MTr@outputchildren Output a tree or subtree with at least one child tree.
352 \def\MTr@outputchildren#1{%

Calculate desired distance between the children. The cumulative value is put into
treev.

353 \ifnum#1>1

354 \MTr@loopcnta 1

355 \loop

356 \edef\MTr@temp{\romannumeral\MTr@loopcnta}%

357 \ifnum\MTr@loopcnta<#1

358 \advance \MTr@loopcnta by 1

359 \MTr@adjustdistance{\MTr@temp}{\romannumeral\MTr@loopcnta}%

360 \repeat

361 \fi

Calculate the subtree’s v and w, based on the children, and the label’s width.
362 \MTr@setparentdimens{i}{\romannumeral#1}%

After the call to setparentdimens, all children’s x values must be advanced by
morex. In the same loop, also set vertical position and picture height for each
child. The height of the picture is the height of the largest child.

363 \MTr@picheight 0%

364 \MTr@loopcnta #1

14

365 \loop

366 \edef\MTr@temp{\romannumeral\MTr@loopcnta}%

367 \advance\MTr@childparam{\MTr@temp}{x}\MTr@morex%

368 \MTr@setverticalchilddimens{\romannumeral\MTr@loopcnta}%

369 \ifnum\MTr@childparam{\MTr@temp}{picheight}>\MTr@picheight%

370 \MTr@picheight\MTr@childparam{\MTr@temp}{picheight}%

371 \fi%

372 \advance \MTr@loopcnta by -1 \ifnum\MTr@loopcnta>0 \repeat

Set various other parameters.
373 \MTr@setpictureparameters%

Start the picture and draw the label. Next, draw each child, and the line to that
child. Then, end the picture.

374 \begin{picture}(\MTr@picwidth,\MTr@picheight)(0,-\MTr@picheight)%

375 %\put(0,-\MTr@picheight){\framebox(\MTr@picwidth,\MTr@picheight){}}%

376 \MTr@drawlabel%

377 \MTr@loopcnta #1

378 \loop

379 \expandafter\MTr@drawchild{\romannumeral\MTr@loopcnta}%

380 \expandafter\MTr@drawchildline{\romannumeral\MTr@loopcnta}

381 \advance \MTr@loopcnta by -1 \ifnum\MTr@loopcnta>0 \repeat

382 \end{picture}%

383 }

References

[1] Doug Arnold LATEX for Linguists
At http://www.essex.ac.uk/linguistics/clmt/latex4ling/

[2] A. Brüggemann-Klein and D. Wood. Drawing trees nicely with TEX File
tree doc.tex in the treetex package

[3] Jonathan Fine. Some Basic Control Macros for TEX TUGboat, Volume 13
(1992), No. 1

[4] Ralf Vogel xyling — LATEX macros for linguistic graphics
At http://www.ling.uni-potsdam.de/ rvogel/xyling/

15

