The physics package

Sergio C. de la Barrera physics.tex@gmail.com

December 12, 2012

Contents

Befe	pre you start	1
1.1	The purpose of this package	1
1.2	Other required packages	1
1.3	Using physics in your LATEX document	2
List	of commands	2
2.1	Automatic bracing	2
2.2	Vector notation	3
2.3	Operators	4
2.4	Quick quad text	Ę
2.5	Derivatives	Ę
2.6	Dirac bra-ket notation	6
2.7	Matrix macros	7
	1.1 1.2 1.3 List 2.1 2.2 2.3 2.4 2.5 2.6	Before you start 1.1 The purpose of this package 1.2 Other required packages 1.3 Using physics in your IATEX document List of commands 2.1 Automatic bracing 2.2 Vector notation 2.3 Operators 2.4 Quick quad text 2.5 Derivatives 2.6 Dirac bra-ket notation 2.7 Matrix macros

1 Before you start

1.1 The purpose of this package

The goal of this package is to make typesetting equations for physics simpler, faster, and more humanreadable. To that end, the commands included in this package have names that make the purpose of each command immediately obvious and remove any ambiguity while reading and editing **physics** code. From a practical standpoint, it is handy to have a well-defined set of shortcuts for accessing the long-form of each of these commands. The commands listed below are therefore defined in terms of their long-form names and then shown explicitly in terms of the default shorthand command sequences. These shorthand commands are meant make it easy to remember both the shorthand names and what each one represents.

1.2 Other required packages

The physics package requires xparse and amsmath to work properly in your IATEX document. The amsmath package comes standard with most IATEX distributions and is loaded by physics for your convenience. You may also already have xparse installed on your system as it is a popular package for defining IATEX macros, however, if you are unsure you can either install it again using your local package manager (comes with most distributions) or by visiting the CTAN online package database, or you could even just try to use physics

without worrying about it. Many modern $L^{A}T_{E}X$ compilers will locate and offer to download missing packages for you.

1.3 Using physics in your LATEX document

To use the physics package, simply insert \usepackage{physics} in the preamble of your document, before \begin{document} and after \documentclass{class}:

```
\documentclass{class}
...
\usepackage{physics}
...
\begin{document}
content...
\end{document}
```

2 List of commands

2.1 Automatic bracing

2.2 Vector notation

The default del symbol ∇ used in physics vector notation can be switched to appear with an arrow $\vec{\nabla}$ by including the option arrowdel in the document preamble $\rightarrow \sec{secale} = \secale = \secale = \secale} = \secale = \secale = \secale = \secale} = \secale = \$

\vectorbold	$\mathtt{vb}\{\mathtt{a}\}\to \mathtt{a}$	upright/no Greek
	\vb*{a}, \vb*{\theta} $ ightarrow oldsymbol{a}, oldsymbol{ heta}$	italic/Greek
\vectorarrow	$va{a} \rightarrow \vec{a}$	upright/no Greek
	$\mathbf{x} \in \mathbf{a}, \mathbf{v} \in \mathbf{a}, ec{m{ heta}}$	italic/Greek
\vectorunit	$vu{a} ightarrow {\hat{a}}$	upright/no Greek
	$\forall u \in a, \forall u \in \{ theta \} ightarrow \hat{m{a}}, \hat{m{ heta}}$	italic/Greek
\dotproduct	$\verb+vdot \rightarrow \cdot as in \mathbf{a} \cdot \mathbf{b}$	note: dp is a protected T_EX primitive
\crossproduct	$cross \rightarrow x as in a \times b$	alternate name
	$cp \to x \text{ as in } \mathbf{a} \times \mathbf{b}$	shorthand name
\gradient	$\grad ightarrow {m abla}$	
	$\texttt{Psi} \to \boldsymbol{\nabla} \Psi$	default mode
	$\texttt{Vgrad(Psi+tall)} \rightarrow \boldsymbol{\nabla} \Big(\Psi + \boldsymbol{\square} \Big)$	long-form (like \qty but also handles spacing)
	$\left[\Psi + \mathbf{V} \right] \rightarrow \mathbf{\nabla} \left[\Psi + \mathbf{V} \right]$	
\divergence	\div $ ightarrow oldsymbol{ abla}$	note: $\texttt{amsmath}$ symbol \div renamed
		\divisionsymbol
	$\dim \{ vb{a}\} o {oldsymbol abla} \cdot {f a}$	default mode
	$\det(\nabla_{a}+\tau) \rightarrow \nabla \cdot (a + r)$ $\det[\nabla_{a}+\tau] \rightarrow \nabla \cdot [a + r]$	long-form
	$\det[\nabla_{a}+]$	
\curl	\curl $ ightarrow {f abla} imes$	
	$\texttt{vurl} \texttt{vb} \texttt{a} \to \boldsymbol{\nabla} \times \mathbf{a}$	default mode
	$\texttt{(vv}{a}+\texttt{(a+)} \rightarrow \nabla \times (a+)$	long-form

2.3 Operators

The standard set of trig functions is redefined in physics to provide automatic braces that behave like qty(). In addition, an optional power argument is provided. This behavior can be switched off by including the option notrig in the preamble $\rightarrow \sepackage[notrig]{physics}$.

Example trig redefinitions:

```
 \begin{array}{ll} \texttt{\sin} & \texttt{\sin}(\texttt{\grande}) \to \sin(\texttt{\sin}(\texttt{\grande})) \\ & \texttt{\sin}[2](\texttt{x}) \to \sin^2(x) \\ & \texttt{\sin} & \texttt{x} \to \sin x \end{array}
```

automatic braces; old \sin renamed \sine optional power can still use without an argument

The full set of available trig functions in physics includes:

```
\sum(x)
               \sinh(x)
                                \c(x)
                                                     \sum(x)
                                                                                       \sinh(x)
                                                                                                     \arcsin(x)
                                                                                                                      asin(x)
                                                                          \sin(x)
\cos(x)
               \cosh(x)
                                \arccos(x)
                                                     \lambda acos(x)
                                                                          \cos(x)
                                                                                       \cosh(x)
                                                                                                     \arccos(x)
                                                                                                                      a\cos(x)
\tan(x)
                                                                                       \tanh(x)
               \tan(x)
                                \operatorname{x}(x)
                                                     \lambdaatan(x)
                                                                          \tan(x)
                                                                                                     \arctan(x)
                                                                                                                      \operatorname{atan}(x)
                                                                    \Rightarrow
\csc(x)
               \csch(x)
                                \c(x)
                                                     \c(x)
                                                                                       \operatorname{csch}(x)
                                                                                                     \operatorname{arccsc}(x)
                                                                                                                      \operatorname{acsc}(x)
                                                                          \csc(x)
\sec(x)
               \sech(x)
                                \c(x)
                                                     \asec(x)
                                                                          \sec(x)
                                                                                       \operatorname{sech}(x)
                                                                                                     \operatorname{arcsec}(x)
                                                                                                                      \operatorname{asec}(x)
\det(x)
               \operatorname{coth}(x)
                                \arccot(x)
                                                     \Delta cot(x)
                                                                          \cot(x)
                                                                                       \operatorname{coth}(x)
                                                                                                     \operatorname{arccot}(x)
                                                                                                                      acot(x)
```

The standard trig functions (plus a few that are missing in **amsmath**) are available without any automatic bracing under a new set of longer names:

\sine	\hypsine	\arcsine	\asine
\cosine	\hypcosine	\arccosine	\acosine
\tangent	\hyptangent	\arctangent	\atangent
\cosecant	\hypcosecant	\arccosecant	\acosecant
\secant	\hypsecant	\arcsecant	\asecant
cotangent	\hypcotangent	\arccotangent	\acotangent

Similar behavior has also been extended to the following functions:

$\exp(\tau)$	$\exp($		\exponential
$\log(\tau)$	$\log($		\logarithm
$\ln(\tau)$	$\ln(\mathbf{r})$	old definitions \Rightarrow	\naturallogarithm
$\det(\tau)$	$\det($		\determinant
$\Pr(\tau)$	$\Pr(\frown)$		Probability

```
New operators:
\trace or \tr
                               \operatorname{tr}\rho \operatorname{also} \operatorname{tr}(\operatorname{tall}) \to \operatorname{tr}(\operatorname{tall})
                                                                                                    trace; same bracing as trig functions
                               \operatorname{Tr}\rho
\Trace or \Tr
                                                                                                    alternate
\rank
                               \operatorname{Nrank} M \to \operatorname{rank} M
                                                                                                    matrix rank
\erf
                               \operatorname{Verf}(\mathbf{x}) \to \operatorname{erf}(x)
                                                                                                    Gauss error function
\Res
                               \operatorname{Res}[f(z)] \rightarrow \operatorname{Res}[f(z)]
                                                                                                    residue; same bracing as trig functions
\principalvalue
                               pv{\inf f(z) \ dd{z}} \rightarrow \mathcal{P} \int f(z) dz
                                                                                                    Cauchy principal value
                               PV{ \inf f(z) \ dd{z} } \rightarrow P.V. \int f(z) dz
                                                                                                    alternate
```

∖Re	$\mathbb{Re}\{z\} \to \operatorname{Re}\{z\}$	old \Re renamed to \real $\rightarrow \Re$
\Im	$\operatorname{Im}\{z\} \to \operatorname{Im}\{z\}$	old \Im renamed to \imaginary $\rightarrow \Im$

2.4 Quick quad text

This set of commands produces text in math-mode padded by \quad spacing on either side. This is meant to provide a quick way to insert simple words or phrases in a sequence of equations. Each of the following commands includes a starred version which pads the text only on the right with \quad for use in aligned environments such as cases.

General text: \qqtext	$ \rightarrow word or phrase} \rightarrow word or phrase_ \qq{word or phrase} \rightarrow word or phrase_ \qq*{word or phrase} \rightarrow word or phrase_$	general quick quad text with argument normal mode; left and right starred mode; right only
Special macros	5:	
\qcomma or \q	$c \rightarrow, _$ right only	
$\cc \rightarrow _ c.c.$	complex conjugate; left and right \qua	ad unless starred $\gcc* \rightarrow c.c.$

$\langle qcc \rightarrow _ c.c. _$	complex conjugate, left and right (quad unless starred)	$qcc \rightarrow c.c.$
$\texttt{qif} \rightarrow _ if_$	left and right unless starred \qif* \rightarrow if	

```
Similar to \qif:
\qthen, \qelse, \qotherwise, \qunless, \qgiven, \qusing, \qassume, \qsince,
\qlet, \qfor, \qall, \qeven, \qodd, \qinteger, \qand, \qor, \qas, \qin
```

2.5 Derivatives

The default differential symbol d which is used in differential and derivative can be switched to an italic form d by including the option italicdiff in the preamble $\rightarrow \select$ [italicdiff] {physics}.

\differential	$d \rightarrow d$	
	\dd $\mathbf{x} ightarrow \mathrm{d} x$	no spacing (not recommended)
	$dd{x} \rightarrow dx$	automatic spacing based on neighbors
	\dd[3]{x} $ ightarrow \mathrm{d}^3 x$	optional power
	\dd(\cos\theta) $ ightarrow { m d}(\cos heta)$	long-form; automatic braces
\derivative	$ \begin{aligned} & \operatorname{dv}\{\mathbf{x}\} \to \frac{\mathrm{d}}{\mathrm{dx}} \\ & \operatorname{dv}\{\mathbf{f}\}\{\mathbf{x}\} \to \frac{\mathrm{d}f}{\mathrm{dx}} \\ & \operatorname{dv}[\mathbf{n}]\{\mathbf{f}\}\{\mathbf{x}\} \to \frac{\mathrm{d}^n f}{\mathrm{dx}^n} \end{aligned} $	one argument
	$\det{f}{x} \rightarrow \frac{\mathrm{d}f}{\mathrm{d}x}$ in (two arguments
	$dv[n]{f}{x} \rightarrow \frac{d^n f}{dx^n}$	optional power
	$dv{x}()$	long-form; automatic braces, spacing
	$dv*{f}{x} \rightarrow df/dx$	inline form using \flatfrac
\partialderivative	$\begin{aligned} dv*{f}{x} &\to df/dx \\ dv*{f}{x} &\to \frac{\partial}{\partial x} \end{aligned}$	alternate name
	$pdv{x} \rightarrow \frac{\partial}{\partial x}$	shorthand name
	$pdv{f}{x} \rightarrow \frac{\partial f}{\partial x}$	two arguments
	$ \begin{array}{l} \forall dx \\ \forall dx \\ \forall dx \\ \forall dx \\ f \\ x \\ \phi dx \\ f \\ x \\ \phi dx \\$	optional power

$$\begin{array}{ll} \label{eq:linear_states} & \label{eq:linear_states} & \label{eq:linear_states} \\ \label{eq:linear_states} & \label{eq:li$$

2.6 Dirac bra-ket notation

The following collection of macros for Dirac notation contains two fundamental commands, \bra and \ket, along with a set of more specialized macros which are essentially combinations of the fundamental pair. The specialized macros are both useful and descriptive from the perspective of generating physics code, however, the fundamental commands are designed to contract with one another algebraically when appropriate and are thus suggested for general use. For instance, the following code renders correctly¹

 $\boldsymbol{\Phi} \rightarrow \langle \phi | \psi \rangle$ as opposed to $\langle \phi | \psi \rangle$

whereas a similar construction with higher-level macros will not contract in a robust manner

$$\mathbf{\Delta}_{\phi} = \langle \phi | | \psi \rangle$$

On the other hand, the correct output can be generated by sticking to the fundamental commands,

 $bra{\phi|\psi\rangle \langle \xi|$

allowing the user to type out complicated quantum mechanical expressions without worrying about bra-ket contractions. That being said, the high-level macros do have a place in convenience and readability, as long as the user is aware of rendering issues that may arise due to an absence of automatic contractions.

 $^{^{1}}$ Note the lack of a space between the bra and ket commands. This is necessary is order for the bra to find the corresponding ket and form a contraction.

2.7 Matrix macros

The following matrix macros produce unformatted rows and columns of matrix elements for use as separate matrices as well as blocks within larger matrices. For example, the command \identitymatrix{2} which has also has the shortcut \immat{2} produces the elements of a 2×2 identity matrix $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ without braces or grouping. This allows the command to also be used within another matrix, as in:

\begin{pmatrix}	(1)	$0 \rangle$
$\operatorname{imat}{2} \setminus a \& b \qquad \Rightarrow$	0	1
\end{pmatrix}	$\backslash a$	ь/

To specify elements on the right of left sides of our \imat{2} sub-matrix we use the grouping command \matrixquantity or \mqty to effectively convert \imat{2} into a single matrix element of a larger matrix:

\begin{pmatrix}	(1)	0	a
$\timest{2} & \timest{2} & \timest{a} & \ti$	0	1	b
\end{pmatrix}	$\backslash c$	d	e

The extra mqty groups were required in this case in order to get the *a* and *b* elements to behave as a single element, since $mqty{imat{2}}$ also acts like a single matrix element (the same can be said of the grouped *c* and *d* elements). Finally, the outermost pmatrix environment could have also been replaced with the physics macro mqty(), allowing the above example to be written on one line:

\matrixquantity	\mqty{a & b \\ c & d} $ ightarrow {a \ b \ c \ d}$
	$\operatorname{M}(a \& b \setminus c \& d) \rightarrow \begin{pmatrix} a & b \\ c & d \end{pmatrix}$
	$\texttt{Mqty*(a \& b \setminus c \& d)} \rightarrow \begin{pmatrix} a & b \\ c & d \end{pmatrix}$
	$ \text{Mqty}[a \& b \setminus c \& d] \rightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix} $ $ \text{Mqty}[a \& b \setminus c \& d] \rightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix} $
	\mqty a & b \\ c & d $ ightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix}$
\smallmatrixquantity	$\label{eq:linear_strain} $$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
\matrixdeterminant	$ \begin{array}{c c} \mbox{\sc left} & \m$
\identitymatrix	\imat{n}
\xmatrix	$\begin{split} & \langle \operatorname{smqty}(\operatorname{imat}\{3\}) \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ & \langle \operatorname{smqty}(\operatorname{kmat}\{1\}\{2\}\{3\}) \rightarrow \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ smqty}(\operatorname{kmat}\{3\}\{3\}) \rightarrow \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} \end{split}$
	$ \begin{array}{c} (\operatorname{smqty}((\operatorname{xmat}(1) \ 2) \ 0)) & \to \begin{pmatrix} a_{11} \ a_{12} \ a_{13} \\ a_{21} \ a_{22} \ a_{23} \\ a_{31} \ a_{32} \ a_{33} \end{pmatrix} \\ \\ (\operatorname{xmat}(\operatorname{xmat}(3) \ 3)) & \to \begin{pmatrix} a_{11} \ a_{12} \ a_{13} \\ a_{21} \ a_{22} \ a_{23} \\ a_{31} \ a_{32} \ a_{33} \end{pmatrix} \end{array} $
\zeromatrix	$\label{eq:smqty} $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$$
\paulimatrix	$eq:linear_line$
\diagonalmatrix	\dmat{a,b,c,}
	$\operatorname{Mqty}(\operatorname{Mat}\{1,2,3\}) \rightarrow \begin{pmatrix} 1 & & \\ & 2 & \\ & & 3 \end{pmatrix}$
	$\label{eq:mqty(dmat{1,2,3})} \rightarrow \begin{pmatrix} 1 & & \\ & 2 & \\ & & 3 \end{pmatrix}$ $\label{eq:mqty(dmat[0]{1,2})} \rightarrow \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$
	$\operatorname{Mqty}(\operatorname{Mat}\{1,2\&3\backslash\backslash4\&5\}) \rightarrow \begin{pmatrix} 1 & & \\ & 2 & 3 \\ & 4 & 5 \end{pmatrix}$
\antidiagonalmatrix	\admat{a,b,c,}
	$\texttt{Mqty(\texttt{admat}\{1,2,3\})} \rightarrow \begin{pmatrix} & 1 \\ 2 & \\ 3 & \end{pmatrix}$

groups a set of matrix elements into a single object

parentheses

alternate parentheses

square brackets

vertical bars

alternative syntax; robust and more $\ensuremath{\mbox{LAT}_{\mbox{E}}}\xspace{\mbox{Arised}}\xspace{\mbox{Ar$

the smallmatrix form of \mqty small version of \mqty() small version of \mqty*() small version of \mqty[] small version of \mqty||

matrix determinant

small matrix determinant elements of $n \times n$ identity matrix formatted with \mqty or \smqty elements of $n \times m$ matrix filled with xformatted with \mqty or \smqty star for element indices

as a vector with indices

 $n \times m$ matrix filled with zeros equivalent to $\mathbf{m}_{n} \in \{0, 1, 2, 3 \text{ or } x, y, z\}$

specify up to eight diagonal or block diagonal elements

optional argument to fill spaces

enter matrix elements for each block as a single diagonal element

same as syntax as \dmat