The mathtools package®

Morten Hogholm, Lars Madsen and the BIgX3 project
2024/10/04

Abstract

The mathtools package is an extension package to amsmath. There are two things
on mathtools’ agenda: (1) correct various bugs/deficiencies in amsmath until
these are fixed by the A\ 4S and (2) provide useful tools for mathematical typeset-
ting, be it a small macro for typesetting a prescript or an underbracket, or entirely
new display math constructs such as amultlined environment.

Contents
1 Introduction 2
2 Package loading 2
2.1 Special mathtoolsoptions 3
3 Tools for mathematical typesetting 4
3.1 Fine-tuning mathematicallayout 4
3.1.1 Acomplementto \smash, \1lap,and\rlap 4
3.1.2 Forcingacrampedstyle 5
3.1.3 Smashinganoperator, 7
3.1.4 Adjusting limits of operators 8
3.1.5 Swapping space above AA\/S display math environments 8
3.2 Controllingtagst e 9
3.2.1 Theappearanceoftags 9
3.2.2 Showingonlyreferencedtags 10
3.3 Extensiblesymbols L 12
3.3.1 Arrow-likesymbols L 12
3.3.2 Bracesandbrackets, 14
3.4 New mathematical buildingblocks 15
341 Matrices e 16
3.4.2 Themultlinedenvironment. 17
3.4.3 More cases-likeenvironments 19
3.4.4 Emulating indented lines in alignments. 20
3.4.5 Boxingasinglelineinanalignment 20
3.4.6 Adding arrows between lines in an alignment 22
3.4.7 Centered\vdotst 22
3.5 Intertextand shortintertext 24
3.6 Paireddelimiters 25

*This file has version number v1.31, last revised 2024/10/04.

3.6.1 Expertuse 29

3.7 Specialsymbols 30
3.7.1 Leftandrightparentheses. 30

3.7.2 Vertically centeredcolon 31

3.7.3 Some extra symbols involving vertically centered colon 31

3.74 Afewadditionalsymbols 32

4 Atribute to Michael J. Downes 32
4.1 Mathematics withinitalictext. 33
4.2 Leftsub/superscripts v i i e e 33
4.3 Declaringmathsizes 34
4.4 Spreadingequations e 34
4.5 Gatheredenvironments, 35
4.6 Splitfractions e 36

5 New additions 38
5.1 Variablemathstrut 38

1 Introduction

Although amsmath provides many handy tools for mathematical typesetting, it is
nonetheless a static package. This is not a bad thing, because what it does, it mostly
does quite well and having a stable math typesetting package is “a good thing.” How-
ever, amsmath does not fulfill all the needs of the mathematical part of the BTEX com-
munity, resulting in many authors writing small snippets of code for tweaking the
mathematical layout. Some of these snippets have also been posted to newsgroups
and mailing lists over the years, although more often than not without being released
as stand-alone packages.

The mathtools package is exactly what its name implies: tools for mathematical
typesetting. It is a collection of many of these often needed small tweaks—with some
big tweaks added as well. It can only do so by having harvesting newsgroups for code
and/or you writing the maintainers with wishes for code to be included, so if you have
any good macros or just macros that help you when writing mathematics, then don't
hesitate to report them.

As of 2020, mathtools (and empheq) is now hosted at the BIEX3 team GitHub at

https://github.com/latex3/mathtools

So if you have any issue, feel free to register an issue there.

Update 2013: We now make \ (\) and \ [\] robust (can be disabled via nonrobust
package option).

2 Package loading

The mathtools package requires amsmath but is able to pass options to it as well. Thus
aline like

\usepackage [fleqn,tbtags] {mathtools}

https://github.com/latex3/mathtools

is equivalent to

\usepackage [fleqn, tbtags]{amsmath}
\usepackage{mathtools}

2.1 Special mathtools options

l fixamsmath donotfixamsmathbugs ‘

The option fixamsmath (default) fixes two bugs in amsmath.! Should you for some
reason not want to fix these bugs then just add the option donotfixamsmathbugs (if
you can do it without typos). The reason for this extremely long name is that I really
don’t see why you wouldn’t want these bugs to be fixed, so I've made it slightly difficult
not to fix them.

l allowspaces disallowspaces ‘

Sometimes amsmath gives you nasty surprises, as here where things look seemingly
innocent:

\ [
\begin{gathered}
[t] = 100 \\
[vl = 200
\end{gathered}
\]

Without mathtools this will result in this output:

=100
[v] =200

Yes, the [t] has been gobbled without warning! Note, with modern amsmath \begin{gathered} [x]
will eat [x] and issue a warning unless x is t, b or c¢.? This is hardly what you'd expect
as an end user, as the desired output was probably something like this instead:

[£] =100
[v] =200

With the option disallowspaces (default) mathtools disallows spaces in front of op-
tional arguments where it could possibly cause problems just as amsmath does with
\\ inside the display environments. This includes the environments gathered (and
also those shown in §4.5 on page 35), aligned, multlined, and the extended matrix-
environments (§3.4.1 on page 16). If you however want to preserve the more dangerous
standard optional spaces, simply choose the option allowspaces.

ISee the online IATEX bugs database http://www.latex-project.org/cgi-bin/ltxbugs2html
under AA(S-IATEX problem reports 3591 and 3614.
20lder amsmath will silently gobble the argument.

http://www.latex-project.org/cgi-bin/ltxbugs2html

l legacycolonsymbols ‘

As of Summer 2022, we've had to rename several \...colon... symbol macros in
order to have a consistent naming scheme across different packages.® If needed, this
package option brings back the original \...colon. .. definitions. See page 31 for

more information.

3 Tools for mathematical typesetting

l \mathtoolsset{(key val list)} ‘

Many of the tools shown in this manual can be turned on and off by setting a switch to
either true or false. In all cases it is done with the command \mathtoolsset. A typical
use could be something like

\mathtoolssetq{
showonlyrefs,
mathic % or mathic = true

}

More information on the keys later on.

3.1 Fine-tuning mathematical layout

Sometimes you need to tweak the layout of formulas a little to get the best result and
this part of the manual describes the various macros mathtools provides for this.

3.1.1 Acomplement to \smash, \1lap, and \rlap

\mathllap [(mathstyle)]{(math)} \mathclap [(mathstyle)]1{{(math)}
\mathrlap [(mathstyle)] {(math)} \clap{(text)}
\mathmbox{(math)} \mathmakebox [(width)] [{pos)]1{(math)}

In [1], Alexander R. Perlis describes some simple yet useful macros for use in math
displays. For example the display

\ [
X = \sum_{1\1le i\le j\le n} X_{ij}
\]

X=) X
1<i<j<n
contains a lot of excessive white space. The idea that comes to mind is to fake the width
of the subscript. The command \mathclap puts its argument in a zero width box and
centers it, so it could possibly be of use here.

\ [
X = \sum_{\mathclap{i\le i\le j\le n}} X_{ij}
\]

3For example with unicode-math.

Posted on
comp.text.tex
Michael Herschorn
1992/07/21

XZZX,‘]'

l<i<js<n
For an in-depth discussion of these macros I find it better to read the article; an online
version can be found at

http://www.tug.org/TUGboat/Articles/tb22-4/tb72perlS.pdf

Note that the definitions shown in the article do not exactly match the definitions in
mathtools. Besides providing an optional argument for specifying the desired math
style, these versions also work around a most unfortunate TgX “feature.”* The \smash
macro is fixed too.

3.1.2 Forcing a cramped style

l \cramped [{mathstyle)] {{math)} ‘

Let’s look at another example where we have used \mathclap:

\begin{equation}\label{eq:mathclap}
\sum_{\mathclap{a~2<b~2<c}}\qquad
\sum_{a"~2<b~2<c}

\end{equation}

> > (0

a’<b’<c a’<b’<c

Do you see the difference? Maybe if I zoomed in a bit:

2. 2

a’<b*<c a’<b’<c

Notice how the limit of the right summation sign is typeset in a more compact style
than the left. It is because TgX sets the limits of operators in a cramped style. For
each of TgX’s four math styles (\displaystyle, \textstyle, \scriptstyle, and
\scriptscriptstyle), there also exists a cramped style that doesn’t raise exponents
as much. Besides in the limits of operators, TgX also automatically uses these cramped
styles in radicals such as \sqrt and in the denominators of fractions, but unfortu-
nately there are no primitive commands that allow you to detect crampedness or
switch to it.

mathtools offers the command \ cramped which forces a cramped style in normal
un-cramped math. Additionally you can choose which of the four styles you want it in
as well by specifying it as the optional argument:

\[
\cramped{x~2} \leftrightarrow x~2 \quad
\cramped[\scriptstyle]{x~2} \leftrightarrow {\scriptstyle x~2}
\]

4The faulty reboxing procedure.

http://www.tug.org/TUGboat/Articles/tb22-4/tb72perlS.pdf

Reox? 2o

You may be surprised how often the cramped style can be beneficial to your output.
Take a look at this example:

\begin{quote}
The 2005 Euro\TeX{} conference is held in Abbaye des
Pr\’emontr\’es, France, marking the 16th ($2~{2°2}$) anniversary
of both Dante and GUTenberg (the German and French \TeX{} users
group resp.).

\end{quote}

The 2005 EuroTgX conference is held in Abbaye des Prémontrés, France,
marking the 16th (222) anniversary of both Dante and GUTenberg (the Ger-
man and French TgX users group resp.).

Typesetting on a grid is generally considered quite desirable, but as the second line
of the example shows, the exponents of 2 cause the line to be too tall for the normal
value of \baselineskip, so TgX inserts a \1ineskip (normal value is 1.0pt). In order
to circumvent the problem, we can force a cramped style so that the exponents aren’t
raised as much:

\begin{quote}
The 2005 Euro\TeX{} ... 16th ($\cramped{2-{2°2}}$) ...
\end{quote}

The 2005 EuroTgX conference is held in Abbaye des Prémontrés, France,
marking the 16th (22°) anniversary of both Dante and GUTenberg (the Ger-
man and French TgX users group resp.).

\crampedllap [(mathstyle)]{(math)} \crampedclap [(mathstyle)]1{{math)}
\crampedrlap [(mathstyle)] {(math)}

The commands \crampedllap, \crampedclap, and \crampedrlap are identical to
the three \mathXlap commands described earlier except the argument is typeset in
cramped style. You need this in order to typeset (1) correctly while still faking the width
of the limit.

\begin{equation*}\label{eq:mathclap-b}
\sum_{\crampedclap{a~2<b~2<c}}
\tag{\ref{eq:mathclapl}*}

\end{equation*}

> (1%
a’<b?<c

Of course you could just type
\sum_{\mathclap{\cramped{a~2<b~2<c}}}

but it has one major disadvantage: In order for \mathXlap and \cramped to get the
right size, TgX has to process them four times, meaning that nesting them as shown
above will cause TgX to typeset 42 instances before choosing the right one. In this sit-
uation however, we will of course need the same style for both commands so it makes

Suggested by
Henri Menke
2019/07/08

Feature request by
Lars Madsen
2004/05/04

sense to combine the commands in one, thus letting TgX make the choice only once
rather than twice.

\begin{crampedsubarray}{(col)} (contents) \end{crampedsubarray}
\crampedsubstack{(lines separated by \ \)}

If we go back to (1) and apply \substack, you'll notice that the cramped style, the sum
would normally apply, is now gone:

\ [
\sum_{\substack{a~2<b~2<c}}\qquad
\sum_{a"2<b~2<c}

\]
a’<b’<c a’<b’<c
We therefore provide a cramped version of \substack.’
\[

\sum_{\crampedsubstack{a~2<b~2<c}}\qquad

\sum_{a~2<b~2<c}

\]
a’<b’<c a’<b’<c

Note: We may need to add a similar hook into multlined.

3.1.3 Smashing an operator

l \smashoperator [(pos)]{(operator with limits)}

Above we showed how to get BIgX to ignore the width of the subscript of an operator.
However this approach takes a lot of extra typing, especially if you have a wide super-
script, meaning you have to put in \crampedclap in both sub- and superscript. To
make things easier, mathtools provides a \smashoperator command, which simply
ignores the width of the sub- and superscript. It also takes an optional argument, 1,
r, or 1r (default, rl is an alias for 1r), denoting which side of the operator should be
ignored (smashed).

\ [
V = \sum_{1\le i\le j\le n}~{\infty} V_{ij} \quad
X = \smashoperator{\sum_{1\le i\le j\le n}~{3456}} X_{ij} \quad
Y = \smashoperator [r]{\sum\limits_{1\le i\le j\le n}} Y_{ij} \quad
Z = \smashoperator [1]1{\mathop{T}_{1\le i\le j\le n}} Z_{ij}

\1

5\substack is internally implemented via the subarray-env, so our cramped version of \substack is
implemented via a cramped version of this env.

Feature request by
Lars Madsen
2004/07/09

oo 3456
V=) Vi X=}Xij Y=)Yy Z=T Zj
l<isj<n l<isj<n l<i<j<n lsisj=n
Note that \smashoperator always sets its argument in display style and with limits
even if you have used the nosumlimits option of amsmath. If you wish, you can use
shorthands for _ and ~ such as \sb and \sp.

3.1.4 Adjusting limits of operators

l \adjustlimits{{operator;)} _{(limit;)} {{operatory)} _{(limity)} ‘

When typesetting two consecutive operators with limits one often wishes the limits of
the operators were better aligned. Look closely at these examples:

\[
\text{a)} \lim_{n\to\infty} \max_{p\ge n} \quad
\text{b)} \lim_{n\to\infty} \max_{p~2\ge n} \quad
\text{c)} \lim_{n\to\infty} \sup_{p~2\ge nK} \quad
\text{d)} \limsup_{n\to\infty} \max_{p\ge n}

\1

a) lim max b) lim max c¢) lim sup d)limsupmax
n—oo p=n n—00 p2>p n=00 oo nk n—oo PN

a) looks okay, but b) is not quite as good because the second limit (p? = n) is signifi-
cantly taller than the first (n — co). With c) things begin to look really bad, because the
second operator has a descender while the first doesn't, and finally we have d) which

looks just as bad as c). The command \adjustlimits is useful in these cases, as you
can just put it in front of these consecutive operators and it'll make the limits line up.

\[
\text{a)} \adjustlimits\lim_{n\to\infty} \max_{p\ge n} \quad
\text{b)} \adjustlimits\lim_{n\to\infty} \max_{p~2\ge n} \quad
\text{c)} \adjustlimits\lim_{n\to\infty} \sup_{p~2\ge nK} \quad
\text{d)} \adjustlimits\limsup_{n\to\infty} \max_{p\ge n}

\1

a) lim max b)lim max c¢)lim sup d)limsupmax
n—00 p=n n—oop?zn n—oo p?2nk n—oo p=n

The use of \sb instead of _ is allowed.

3.1.5 Swapping space above A\(S display math environments

One feature that the plain old equation environment has that the .4 4S environments
do not (because of technical reasons) is the feature of using less space above the equa-
tion if the situation presents itself. The AA4S environments cannot do this, but one
can manually, using

| \SwapAboveDisplaySkip |

as the very first content within an Ap4S display math environment. It will then issue
an \abovedisplayshortskip instead of the normal \abovedisplayskip.

Note it will not work with the equation or multline environments.
Here is an example of the effect

\noindent\rule\textwidth{1lpt}
\begin{align*} A &= B \end{alignx}
\noindent\rule\textwidth{1ipt}
\begin{alignx}
\SwapAboveDisplaySkip

A &= B

\end{alignx}

3.2 Controlling tags

In this section various tools for altering the appearance of tags are shown. All of the
tools here can be used at any point in the document but they should probably affect
the whole document, so the preamble is the best place to issue them.

3.2.1 The appearance of tags

\newtagform{(name)} [(inner_format)1{(left) }{(right)}
\renewtagform{(name)} [{inner_format)]{{left) }{(right)}
\usetagform{(name)}

Altering the layout of equation numbers in amsmath is not very user friendly (it in-
volves a macro with three @’s in its name), so mathtools provides an interface some-
what reminiscent of the page style concept. This way you can define several different
tag forms and then choose the one you prefer.

As an example let’s try to define a tag form which puts the equation number in
square brackets. First we define a brand new tag form:

\newtagform{brackets}{[}{]1}
Then we activate it:
\usetagform{brackets}

The result is then
E#mc® [2]

Similarly you could define a second version of the brackets that prints the equation
number in bold face instead

\newtagform{brackets2} [\textbf]{[}{1}
\usetagform{brackets2}
\begin{equation}

E \neq m c~3
\end{equation}

E#mc® (3]

When you reference an equation with \eqref, the tag form in effect at the time of refer-
encing controls the formatting, so be careful if you use different tag forms throughout
your document.

If you want to renew a tag form, then use the command \renewtagform. Should
you want to return to the standard setting then choose

\usetagform{default}

Caveat regarding ntheorem: If you like to change the appearence of the tags and you
are also using the ntheorem package, then please postpone the change of appearance
until after loading ntheorem. (In order to do its thing, ntheorem has to mess with the
tags...)

3.2.2 Showing only referenced tags

showonlyrefs = true|false
showmanualtags = true|false
\refeq{(label)}

First of, one should always use \eqref when referring to equation numbers. When
showonlyrefs is true, we monitor \eqref{(label)}, and those used will get an equa-
tion number, whereas those not used will not. Note: We do not monitor the normal
\ref command! See the follow paragraph for situations for what to do when \eqref
cannot be used to refer to the equation.

An equation where the tag is produced with a manual \tag* shouldn't be refer-
enced with the normal \eqref because that would format it according to the current
tag format. Using just \ref on the other hand may not be a good solution either as the
argument of \tagx* is always set in upright shape in the equation and you may be ref-
erencing it in italic text. In the example below, the command \refeq is used to avoid
what could possibly lead to confusion in cases where the tag font has very different
form in upright and italic shape (here we switch to Palatino in the example):

\begin{quote}\renewcommand*\rmdefault{ppl}\normalfont\itshape
\begin{equationx*}

a=b \label{eq:example}\tag*{Q\&A}
\end{equation*}
See \ref{eq:example} or is it better with \refeq{eq:example}?
\end{quote}

a=b Q&A
See Q& A or is it better with Q&A?
Another problem sometimes faced is the need for showing the equation numbers

for only those equations actually referenced. In mathtools this can be done by set-
ting the key showonlyrefs to either true or false by using \mathtoolsset. You can also

10

Feature request by
Rasmus Villemoes
2008/03/26

choose whether or not to show the manual tags specified with \tag or \tag* by set-
ting the option showmanualtags to true or false.® For both keys just typing the name of
it chooses true as shown in the following example.

\mathtoolsset{showonlyrefs, showmanualtags}
\usetagform{brackets}
\begin{gather}
a=a \label{eq:a} \\
b=b \label{eq:b} \tag{**}
\end{gather}
This should refer to the equation containing $a=a$: \eqref{eq:a}.
Then a switch of tag forms.
\usetagform{default}
\begin{align}
c&=c \label{eqg:c} \\
d&=d \label{eq:d}
\end{align}
This should refer to the equation containing $d=d$: \eqref{eq:d}.
\begin{equation}
e=e
\end{equation}
Back to normal.\mathtoolsset{showonlyrefs=false}
\begin{equation}
f=f
\end{equation}

a=da [4]
b=b [*#]

This should refer to the equation containing a = a: [4]. Then a switch of tag forms.

c=c
d=d ®)

This should refer to the equation containing d = d: (5).
e=e
Back to normal.

f=r 6)

Note that this feature only works if you use \eqref or \refeq to reference your
equations.

When using showonlyrefs it might be useful to be able to actually add a few equation
numbers without directly referring to them.

| \noeqref{(label label,...)}

The syntax is somewhat similar to \nocite. If a label in the list is undefined we will
throw a warning in the same manner as \ref.

61 recommend setting showmanualtags to true, else the whole idea of using \tag doesn't really make
sense, does it?

11

BUG 1: Unfortunately the use of the showonlyref introduces a bug within amsmath’s
typesetting of formula versus equation number. This bug manifests itself by allowing
formulas to be typeset close to or over the equation number. Currently no general fix
is known, other than making sure that one’s formulas are not long enough to touch the
equation number.

To make a long story short, amsmath typesets its math environments twice, one
time for measuring and one time for the actual typesetting. In the measuring part,
the width of the equation number is recorded such that the formula or the equation
number can be moved (if necessary) in the typesetting part. When showonlyref is en-
abled, the width of the equation number depends on whether or not this number is
referred to. To determine this, we need to know the current label. But the current
label is not known in the measuring phase. Thus the measured width is always zero
(because no label equals not referred to) and therefore the typesetting phase does not
take the equation number into account.

BUG 2: There is a bug between showonlyrefs and the ntheorem package, when the nthe-
orem option thmmarks is active. The shown equation numbers may come out wrong
(seems to be multiplied by 2). Or the end marker may be placed in the wrong place if a
proof ends with a displayed formula, and that formula is not referred to.

There are two possible solutions to this both involving empheq. The easiest fix is to
add the following line

\usepackage [overload,ntheorem] {empheq}

before loading ntheorem. But the overload option of course disables things like
\intertext and \shortintertext.

The other thing to try is to drop the overload option and use empheq on the very
last expression, as in

\begin{empheq}{align}
A &= B \label {eq:32}\\
& = 1. \label{eq:31}
\end{empheq}
\end{proof}

The empheq package fixes some problems with ntheorem and lets mathtools get
correct access to the equation numbers again.
3.3 Extensible symbols

The number of horizontally extensible symbols in standard BIgX and amsmath is
somewhat low. This part of the manual describes what mathtools does to help this
situation.

3.3.1 Arrow-like symbols

\xleftrightarrow [(sub)]{(sup)} \xRightarrow [(sub)]{(sup)}
\xLeftarrow [(sub)]{(sup)} \xLeftrightarrow [(sub)]{{(sup)}
\xhookleftarrow [(sub)]{(sup)} \xhookrightarrow [(sub)]{(sup)}
\xmapsto [(sub)] {(sup)}

Extensible arrows are part of amsmath in the form of the commands

12

\xrightarrow [(subscript)]{(superscript)} and
\xleftarrow [(subscript)]{{superscript)}

But what about extensible versions of say, \leftrightarrow or \Longleftarrow? It
turns out that the above mentioned extensible arrows are the only two of their kind
defined by amsmath, but luckily mathtools helps with that. The extensible arrow-like
symbols in mathtools follow the same naming scheme as the one’s in amsmath so to
get an extensible \Lef tarrow you simply do a

\[
A \xLeftarrow[under]{over} B
\]

A over B

under

Caveat for \xmapsto: Whenever unicode-math is used, the macro \xmapsto will not
work correctly (a random 7 appears). This is due to how we define \xmapsto: the
symbol » -« (via \mapstochar, setup in the IKIgX kernel) and extensible \rightarrow.
The symbol behind \mapstochar is not defined in unicode, and thus is not available
in the unicode math fonts.’

\xrightharpoondown [(sub)]{(sup)} \xrightharpoonup [(sub)]{(sup)}
\xleftharpoondown [(sub)]{(sup)} \xleftharpoonup [(sub)]{(sup)}
\xrightleftharpoons [(sub)]{(sup)} \xleftrightharpoons [(sub)]{(sup)}

mathtools also provides the extensible harpoons shown above. They're taken from [6].
For those liking visuals, here are the macros in use in the order listed in the two boxes
above.

b above
below below
above above

A B A——B
below below
above above
below below

A above B
below

A above B above
below below

above

A above B
below below
above above

A——8B A=———B
below below

Change in 2020: In \xLeftarrow, \xRightarrow and \xLeftrightarrow we added
a space to the argument(s), making the arrow slightly longer and moving the argument
away from the large arrow head.

“The symbol — is in unicode and unicode-math maps \mapsto onto this symbol in the unicode math
font. Whereas without unicode-math, \mapsto is a symbol constructed by combining \mapstochar and
\rightarrow. On the other hand lualatex does have some special macros to create extensible arrows, but
none of these can write above and below at the same time. So for now we leave this unresolved.

13

Feature request by
rbrito (issue #12)
added 2022

Feature request by
quarkQuark (issue #51)
added 2024

l \xlongrightarrow [(sub)]{(sup)} \xlongleftarrow [(sub)]{(sup)} ‘

Similar to \xright/leftarrow but based on the long versions. For short arguments
it stays the same length as the \long. . . base arrow.

A— B A~—B
AL B AL B
b b
above B A above
below below
l \xLongrightarrow [(sub)]{(sup)} \xLongleftarrow [(sub)]{(sup)} ‘

Similar to \xRight/Leftarrow but based on the long versions. For short arguments
it stays the same length as the \long. . . base arrow.

B

A= A<RB
a a
A= B A<B
b b
above above
below below

3.3.2 Braces and brackets

WIEX defines other kinds of extensible symbols like \overbrace and \underbrace,
but sometimes you may want another symbol, say, a bracket.

\underbracket [(rule thickness)] [{(bracket height)]1{{(arg)}
\overbracket [(rule thickness)] [{bracket height)]1{(arg)}

The commands \underbracket and \overbracket are inspired by [6], although the
implementation here is slightly different. Used without the optional arguments the
bracket commands produce this:

$\underbracket {foo\ bar}_{baz}$ foo bar
i

baz
baz

—
$\overbracket {foo\ bar}~{baz}$ foo bar

The default rule thickness is equal to that of \underbrace (app. 5/18 ex) while the
default bracket height is equal to app. 0.7 ex. These values give really pleasing results
in all font sizes, but feel free to use the optional arguments. That way you may get
“beauties” like

\ [
\underbracket [3pt]{xxx\ yyy}_{zzz} \quad \text{and} \quad
\underbracket [1pt] [7Tpt]{xxx\ yyy}_{zzz}

\]

14

xxxyyy and xxxyyy
el L 1

zZzZz 222

\underbrace{(arg)} \LaTeXunderbrace{(arg)}
\overbrace{(arg)} \LaTeXoverbrace{(arg)}

The standard implementation of the math operators \underbrace and \overbrace
in BIEX has some deficiencies. For example, all lengths used internally are fixed and
optimized for 10 pt typesetting. As a direct consequence thereof, using font sizes other
than 10 will produce less than optimal results. Another unfortunate feature is the size
of the braces. In the example below, notice how the math operator \sum places its limit
compared to \underbrace.

Y foof
n S—~~—
ZZZ
The blue lines indicate the dimensions of the math operator and the green lines the
dimensions of foof. As you can see, there seems to be too much space between the
brace and the zzz whereas the space between brace and foof is okay. Let’s see what
happens when we use a bigger font size:

) foof

n LZZ

Now there’s too little space between the brace and the zzz and also too little space
between the brace and the foof. If you use Computer Modern you'll actually see that
the f overlaps with the brace! Let’s try in \footnotesize:
> foof
nN~—~—
ZzZzZ
Here the spacing above and below the brace is quite excessive.

As \overbrace has the exact same problems, there are good reasons for math-
tools to make redefinitions of \underbrace and \overbrace. These new versions
work equally well in all font sizes and fix the spacing issues and apart from working
with the default Computer Modern fonts, they also work with the packages mathpazo,
pamath, fourier, eulervm, cmbright, and mathptmx. If you use the ccfonts to get the
full Concrete fonts, the original version saved under the names \LaTeXunderbrace
and \LaTeXoverbrace is better, due to the special design of the Concrete extensible
braces. In that case you should probably just add the lines

\let\underbrace\LaTeXunderbrace
\let\overbrace\LaTeXoverbrace

to your preamble after loading mathtools which will restore the original definitions of
\overbrace and \underbrace.

3.4 New mathematical building blocks

In this part of the manual, various mathematical environments are described.

15

Feature request by
Lars Madsen
2004/04/05

Feature provided by
Rasmus Villemoes
2011/01/17

3.4.1 Matrices

\begin{matrix*} [(col)] (contents) \end{matrix*}

\begin{pmatrix*}[{col)] (contents) \end{pmatrix*}
\begin{bmatrix*}[(col)] (contents) \end{bmatrix*}
\begin{Bmatrix*}[{col)] {contents) \end{Bmatrix*}
\begin{vmatrix*}[{col)] {(contents) \end{vmatrix*}
\begin{Vmatrix*}[(col)] (contents) \end{Vmatrix*}

All of the amsmath matrix environments center the columns by default, which is not
always what you want. Thus mathtools provides a starred version for each of the orig-
inal environments. These starred environments take an optional argument specifying
the alignment of the columns, so that

\[
\begin{pmatrix*}[r]
-1 & 3\
2 & -4
\end{pmatrix*}
\]

yields
-1 3
2 -4

The optional argument (default is [c]) can be any column type valid in the usual
array environment.

While we are at it, we also provide fenced versions of the smallmatrix environ-
ment. To keep up with the naming of the large matrix environments, we provide both
a starred and a non-starred version. Since smallmatrix is defined in a different man-
ner than the matrix environment, the option to say smallmatrix* hasto be either c,
1 orr. The default is ¢, which can be changed globally using the smallmatrix-align={(c,!
orr).

\begin{smallmatrix*} [(col)] (contents) \end{smallmatrix*}
\begin{psmallmatrix} (contents) \end{psmallmatrix}
\begin{psmallmatrix*}[{col)] {contents) \end{psmallmatrix*}
\begin{bsmallmatrix} (contents) \end{bsmallmatrix}
\begin{bsmallmatrix*} [{col)] (contents) \end{bsmallmatrix*}
\begin{Bsmallmatrix} (contents) \end{Bsmallmatrix}
\begin{Bsmallmatrix*}[{col)] {contents) \end{Bsmallmatrix*}
\begin{vsmallmatrix} (contents) \end{vsmallmatrix}
\begin{vsmallmatrix*}[{col)] {contents) \end{vsmallmatrix*}
\begin{Vsmallmatrix} (contents) \end{Vsmallmatrix}
\begin{Vsmallmatrix*2} [{col)] (contents) \end{Vsmallmatrix*}
smallmatrix-align = (¢,l or r}

smallmatrix-inner-space =\,

\

\begin{bsmallmatrix} a & -b \\ -c & d \end{bsmallmatrix}
\begin{bsmallmatrix*}[r] a & -b \\ -c & d \end{bsmallmatrix*}
\]

16

yields

a 7b][a —b]

—-cdll-c d
Inside the Xsmallmatrix construction a small space is inserted between the fences
and the contents, the size of it can be changed using smallmatrix-inner-space=(some
spacing commandy, the default is \ ,.

As an extra trick the fences will behave as open and closing fences despite their

auto-scaling nature.®

3.4.2 Themultlined environment

\begin{multlined} [(pos)] [{width)] (contents) \end{multlined}
\shoveleft [(dimen)]{(arg)} \shoveright [(dimen)]{{arg)}
firstline-afterskip = (dimen) lastline-preskip = (dimen)
multlined-width = (dimen) multlined-pos = c|b|t

Some of the amsmath environments exist in two forms: an outer and an inner envi-
ronment. One example is the pair gather & gathered. There is one important omis-
sion on this list however, as there is no inner multlined environment, so this is where
mathtools steps in.

One might wonder what the sensible behavior should be. We want it to be an inner
environment so that it is not wider than necessary, but on the other hand we would like
to be able to control the width. The current implementation of multlined handles
both cases. The idea is this: Set the first line flush left and add a hard space after it;
this space is governed by the firstline-afterskip key. The last line should be set flush
right and preceded by a hard space of size lastline-preskip. Both these hard spaces
have a default value of \multlinegap. Here we use a ‘t’ in the first optional argument
denoting a top-aligned building block (the default is ‘c’).°

\[

A = \begin{multlined}[t]
\Framebox [4cm] {first} \\
\Framebox [4cm] {last}

\end{multlined} B
\]

A :‘ first ‘ B

o=

Note also that multlined gives you access to an extended syntax for \shoveleft and
\shoveright as shown in the example below.

\[
\begin{multlined}
\Framebox[.65\columnwidth] {First line} A\
\Framebox[.5\columnwidth] {Second line} \\
\shoveleft{L+E+F+T} AR

8\1eft and \right creates an inner construction, and not as one might expect something where a pre-
ceding \sin sees an opening fence, thus the space before or after may be too large. Inside this construction
they behave.

9The helper macro \Framebox{(...)} is equivalent to \framebox{(|footnotesize\strut..)}

17

Comment added
2014/05/11

Comment added
2015/11/12

Comment added
2017/05/22

\shoveright{R+I+G+H+T} A\
\shoveleft [1cm] {L+E+F+T} A\
\shoveright [\widthof{$R+I+G+H+T$}]{R+I+G+H+T} \\
\Framebox[.65\columnwidth] {Last line}

\end{multlined}
\]
’ First line ‘
‘ Second line ‘
L+E+F+T
R+I1+G+H+T
L+E+F+T

R+I1+G+H+T

Last line

You can also choose the width yourself by specifying it as an optional argument:

\[

\begin{multlined} [b] [7cm]
\Framebox [4cm] {first} \\
\Framebox [4cm]{last}

\end{multlined} = B

\]

first ‘

‘ last =B

There can be two optional arguments (position and width) and they’re interchange-
able.

Bug 1: If used inside an array or a derivative (say, amatrix variant), multlined does
not work as expected. The implementation contains an ‘invisible’ line after the first
multline row, inside an array this line is no longer ‘invisible’ because array sets
\baselineskip to zero. We have no general workaround for this.

Bug 2: Due to the way multlined is implemented, certain constructions do not work

inside multlined. We have added a hook (\MultlinedHook) that can be added to.

The default value is a fix for subarray and crampedsubarray and thus for \substack

and \crampedsubstack (and a few others, thus add to the hook, don't replace it).
This can actually be used to fix Bug 1:

\usepackage{mathtools,etoolbox}
\newlength\Normalbaselineskip
\setlength\Normalbaselineskip{\baselineskip}
\appto\MultlinedHook{

\setlength\baselineskip{\Normalbaselineskip}
}

Caveat: \shoveleft and \shoveright does not work as expected if used as the last
line inmultlined.

18

3.4.3 More cases-like environments

\begin{dcases} (math_column) & (math_column) \end{dcases}
\begin{dcases*} (math_columny & (text_column) \end{dcases*}
\begin{rcases} (math_column) & (math_column) \end{rcases}
\begin{rcases*} (math_column) & (text_column) \end{rcases*}
\begin{drcases} (math_columny & (math_column) \end{drcases}
\begin{drcases*} (math_column) & (text_column) \end{drcasesx*}

Feature request by \begin{cases*} (math_column) & (text_column) \end{cases*}
Lars Madsen
2004/07/01 Anyone who has tried to use an integral in the regular cases environment from ams-

math will have noticed that it is set as
_|E=mc* Nothing to see here
"~ | fx-3dx Integral is text style

mathtools provides two environments similar to cases. Using the dcases environ-
ment you get the same output as with cases except that the rows are set in display

style.
\ [
\begin{dcases}
E=mc 2 & c \approx 3.00\times 10~{8}\,\mathrm{m}/\mathrm{s} \\
\int x-3\, dx & \text{Integral is display style}
\end{dcases}
\]

E=mc®* ¢=3.00x10%m/s
f x—3dx Integralis display style

Additionally the environment dcases* acts just the same, but the second column is
set in the normal roman font of the document. '’

\
a= \begin{dcasesx*}
E=mc2 & Nothing to see here \\
\int x-3\, dx & Integral is display style
\end{dcasesx*}
\]
E=mc®> Nothing to see here

a=
f x—3dx Integralis display style

The environments rcases, rcases*, drcases and drcases* are equivalent to cases
and dcases, but here the brace is placed on the right instead of on the left.

\
\begin{rcases*}
x"2 & for $x>08$\\
x"3 & else
\end{rcases*} \quad \Rightarrow \cdots
\]
x* forx>0
x> else

100r rather: it inherits the font characteristics active just before the dcases* environment.

19

Feature provided by
Lars Madsen
2008/06,05

Evolved from a request by
Merciadri Luca
2010/06/28

on comp.text.tex

3.4.4 Emulating indented lines in alignments

l \MoveEqLeft [(number)] ‘

In [7], Ellen Swanson recommends that whenever one has a long displayed formula,
spanning several lines, and it is unfeasible to align against a relation within the first
line, then all lines in the display should be aligned at the left most edge of the first
line, and all subsequent lines should be indented by 2 em (or if needed by a smaller
amount). That is we are talking about displays that end up looking like this'!

’ Long first line
= ’ 2ndline
=...
Traditionally one could do this by starting subsequent lines by &\qquad .. ., but that

is tedious. Instead the example above was made using \MoveEqLeft:

\begin{alignx}
\MoveEqLeft \Framebox[10cm] [c]{Long first line}\\
& = \Framebox[6cm] [c]{2nd line}\\
& \leq \dots

\end{alignx}

\MoveEqLeft is placed instead of the & on the first line, and will effectively move the
entire first line [(number)] of ems to the left (default is 2). If you choose to align to the
right of the relation, use \MoveEqLeft [3] to accommodate the extra distance to the
alignment point:

\begin{alignx}
\MoveEqLeft [3] \Framebox[10cm] [c]{Part 1}\\
= {} & \Framebox[8cm] [c]{2nd line}\\
& + \Framebox[4cm] [c]{last part}
\end{alignx}

’ Long first line

= ’ 2nd line

+ ’ last part

Caveat regarding \MoveEqLeft: If the first part of the equation starts with say [a],
\MoveEqLeft may attempt to eat it! You can prevent this by specifying the op-
tional argument (remember the default is the same as \MoveEqLeft [2]) or by using
\MoveEqLeft{}.

3.4.5 Boxing asingle line in an alignment

The amsmath package provides the \boxed macro to box material in math mode. But
this of course will not work if the box should cross an alignment point. We provide a
macro that can.'?

20

Reimplemented by
Florent Chervet (GL)
2011/06/11

on comp.text.tex

Comment by Qrrbrbirlbel
on tex.stackexchange.

com, 2013/05/20.

| \Aboxed{(left hand side & _right hand side)} |

Example
\begin{alignx*}
\Aboxed{ f(x) & = \int h(x)\, dx} \\
&= glx)
\end{alignx}
Resulting in:

fx) =fh(x) dx

=g

One can have multiple boxes on each line, and the “& right hand side” can even be
missing. Here is an example of how the padding in the box can be changed.

\begin{alignx*}
\setlength\fboxsep{lem}
\Aboxed{ f(x) &= 0 } & \Aboxed{ g(x) &= b} \\
\Aboxed{ h(x) } & \Aboxed{ i(x) }
\end{align*}

-0

Note how the \fboxsep change only affects the box coming immediately after it.

As \Aboxed looks for the alignment & it may be necessary to hide constructions like
matrices that also make use of &. Just add a set of braces around the construction you
want to hide.

Tip: At times users want a \Aboxed with a different type of box. To help we provide a
\Aboxed builder:

l \MakeAboxedCommand\Aboxedname\boxmacro ‘

where \boxname should be a macro taking a single argument. The normal \Aboxed is
the same as \MakeAboxedCommand\Aboxed\fbox. Thus you can do

fx)=x* flx)=x*

via

\newcommand\myboxA [1]{\fcolorbox{gray}{yellow}{#1}}

Un\Maintainer (daleif)’s note: This is one of my most used constructions whenever I edit manuscripts. I'd
rather use this than for example multline asI find it gives the text a more consistent look.
12Note that internally \Aboxed does use \boxed.

21

tex.stackexchange.com
tex.stackexchange.com

Evolved from a request by
Christian Bohr-Halling
2004/03/31

on dk.edb.tekst

Feature request by
Bruno Le Floch
(and many others)
2011/01/25

\newcommand\myboxB[1]{{\fboxsep=6pt\fboxrule=2pt\fbox{#1}}}
\MakeAboxedCommand\AboxedA\myboxA
\MakeAboxedCommand\AboxedB\myboxB
\begin{alignx*}

\AboxedA{ f(x) &= x~2 } & \AboxedB{ f(x) &= x"2 }
\end{alignx}

3.4.6 Adding arrows between lines in an alignment

This first macro is a bit misleading, it is only intended to be used in combination with
the alignat (*) environment.

\ArrowBetweenLines [(symbol)]
\ArrowBetweenLines* [(symbol)]

To add, say {§ between two lines in an alignment use \ArrowBetweenLines and the
alignat environment (note the extra pair of &'s in front):

\begin{alignat}{2}
&& \framebox[1.5cm]{} &= \framebox[3cm]{}\\
\ArrowBetweenLines % \Updownarrow is the default
&& \framebox[1.5cm]{} &= \framebox[2cm]{}
\end{alignat}

resulting in

1 1= ()

1 1=] ©)

Note the use of && starting each regular line of math. For adding the arrow on the right,
use \ArrowBetweenLinesx* [(symbol)], and end each line of math with &&.

\begin{alignat*}{2}
\framebox[1.5cm]{} &= \framebox[3cm]{} &&\\
\ArrowBetweenLines* [\Downarrow]
\framebox[1.5cm]{} &= \framebox[2cm]{} &&
\end{alignat*}

resulting in

3.4.7 Centered \vdots

If one wants to mark a vertical continuation, there is the \vdots command, but com-
bine this with an alignment and we get something rather suboptimal

[1=

22

It would be nice to have (1) a \vdots centered within the width of another symbol,
and (2) a construction similar to \ArrowBetweenLines that does not take up so much
space. We provide both.

\vdotswithin{(symbol)}
\shortvdotswithin{(symbol)}
\shortvdotswithin*{(symbol)}
\MTFlushSpaceAbove
\MTFlushSpaceBelow
shortvdotsadjustabove = (length)
shortvdotsadjustbelow = (length)

Two examples in one

\begin{align*}
a&=b A\
& \vdotswithin{=} \\
& =c A\
\shortvdotswithin{=}
& =d
\end{alignx}
yielding
a=b
=c
=d

“won

Thus \vdotswithin{=} creates a box corresponding to {}={} and typesets a “:” cen-
tered inside it. When doing this as a normal line in an alignment leaves us with exces-
sive space which \shortvdotswithin{=} takes care with for us.

The macro call \shortvdotswithin{=} corresponds to

\MTFlushSpaceAbove
& \vdotswithin{=}
\MTFlushSpaceBelow

whereas \shortvdotswithin*{=} is the case with

\MTFlushSpaceAbove
\vdotswithin{=} &
\MTFlushSpaceBelow

Note how \MTFlushSpaceBelow implicitly adds a \\ at the end of the line. Thus one
cannot have more on the line when using \shortvdotswithin or the starred version.
But, if needed, one can de-construct the macro and arrive at

\begin{alignat*}{3}
A&+ B &&= C &&+ D \\
\MTFlushSpaceAbove
&\vdotswithin{+} &&&& \vdotswithin{+}

23

Posted on
comp.text.tex
Gabriel Zachmann and
Donald Arseneau
2000/05/12-13

Posted on

tex.stackexchange.com

Tobias Weh

\MTFlushSpaceBelow
C &+ D &&= Y &&+K
\end{alignat*}

yielding
A+B=C+D
C+D=Y+K

If one has the need for such a construction.

The de-spaced version does support the spreadlines environment. The actual
amount of space being flushed above and below can be controlled by the user using
the two options indicated. Their original values are 2.15\origjot and \origjot re-
spectively (\origjot is usually 3pt).

3.5 Intertext and short intertext

l \shortintertext{(text)} ‘

amsmath provides the command \intertext for interrupting a multiline display
while still maintaining the alignment points. However the spacing often seems quite
excessive as seen below.

\begin{align}
a&=b \intertext{Some text}
c&=d
\end{align}
a=Db 9)
Some text
c=d (10)

Using the command \shortintertext alleviates this situation somewhat:

\begin{align}
a%&=b \shortintertext{Some text}
c&=d
\end{align}
a=b (11)
Some text
c=d (12)

It turns out that both \shortintertext and the original \intertext from amsmath

(referring to a suggestion has aslight problem. If we use the spreadlines (see section 4.4) to open up the equa-

by Chung-chieh Shan)
2011/05/29

tions in a multiline calculation, then this opening up value also applies to the spacing
above and below the original \shortintertext and \intertext. It can be illustrated

24

Feature request by
Lars Madsen
2004/06/25

using the following example, an interested reader can apply it with and without the
original \intertext and \shortintertext.

% the original \intertext and \shortintertext
\mathtoolsset{original-intertext,original-shortintertext}
\newcommand\myline{\par\noindent\rule{\textwidth}{1mm}}
\myline
\begin{spreadlines}{1iem}
\begin{alignx*}
AA\\ BB\\ \intertext{\myline}
AA\\ BB\\ \shortintertext{\myline}
AAM\\ BB
\end{alignx}
\end{spreadlines}
\myline

We now fix this internally for both \intertext and \shortintertext, plus we
add the possibility to fine-tune spacing around these constructions. The original ver-
sions can be brought back using the original-x keys below.

\intertext{(text)}

\shortintertext{(text)}

original-intertext = true|false (default: false)
original-shortintertext = true|false (default: false)
above-intertext-sep = (dimen) (default: Opt)
below-intertext-sep = (dimen) (default: Opt)
above-shortintertext-sep = (dimen) (default: 3pt)
below-shortintertext-sep = (dimeny (default: 3pt)

The updated \shortintertext will look like the original version unless for areas with
an enlarged \jot value (see for example the spreadlines, section 4.4). Whereas
\intertext will have a slightly smaller value above and below (corresponding to
about 3pt less space above and below), the spacing around \intertext should now
match the normal spacing going into and out of an align.

Tip: \intertext and \shortintertext also works within gather.

3.6 Paired delimiters

| \DeclarePairedDelimiter{(cmd)}{(lefi_delimy}{(right_delim)} |

In the amsmath documentation it is shown how to define a few commands for typeset-
ting the absolute value and norm. These definitions are:

\newcommand*\abs [1]{\1lvert#1\rvert}
\newcommand*\norm[1]{\1Vert#1\rVert}

While they produce correct horizontal spacing you have to be careful about the vertical
spacing if the argument is just a little taller than usual as in

a
[—I
b
Here it won'’t give a nice result, so you have to manually put in either a \1left-\right

pair or a \bigl-\bigr pair. Both methods mean that you have to delete your \abs
command, which may not sound like an ideal solution.

25

With the command \DeclarePairedDelimiter you can combine all these fea-
tures in one easy to use command. Let’s show an example:

\DeclarePairedDelimiter\abs{\1lvert}{\rvert}

This defines the command \abs just like in the amsmath documentation but with a
few additions:

e A starred variant: \abs* produces delimiters that are preceded by \left and
\right resp.:

\[
\abs*{\frac{a}{b}}
\]

3]
b
¢ A variant with an optional argument: \abs [(size_cmd)], where (size_cmd) is

either \big, \Big, \bigg, or \Bigg (if you have any bigggger versions you can
use them too).

\ [
\abs [\Bigg]{\frac{a}{b}}
\]

a
b

A note on the delimiters. Whenever the manual scalings are used we internally con-
vert them into their \. . .1 and \. . .r variants. Therefore if you define your own man-
ual scalers, remember to also have -1 and -r variants.

New from version 1.30. You can now use ».« (dot) as an empty delimiter, for macros
what only have a delimiter on one side.'

\DeclarePairedDelimiterX{(cmd)} [(num args)]1{(left_delim)}{(right_delim)}{(body)}
\delimsize

Sometimes one might want to have the capabilities of \DeclarePairedDelimiter,
but also want a macro which takes more than one argument plus being able to specify
the body of the generated macro.

\DeclarePairedDelimiterX extends the features of \DeclarePairedDelimiter
such that the user will get a macro which is fenced off at either end, plus the capability
to provide the (body) for whatever the macro should do within these fences.

Inside the (body) part, the macro \delimsize refers to the size of the outer fences.
It can then be used inside (body) to scale any inner fences.

Thus

\DeclarePairedDelimiter{(cmd)}{(left_delim)}{(right_delim)}

is the same thing as

13The syntax is borrowed from \left. \frac{1}{2}\right\rvert where the dot marks an empty de-
limiter.

26

\DeclarePairedDelimiterX{(cmd)} [1]{(left_delim)}{(right_delim)}{#1}

Let us do some examples. First we want to prepare a macro for inner products,
with two arguments such that we can hide the character separating the arguments
(a journal style might require a semi-colon, so we will save a lot of hand editing). This
can be done via

\DeclarePairedDelimiterX\innerp[2]{\langle}{\rangle}{#1,#2}

More interestingly we can refer to the size inside the (code). Here we do a weird three
argument ‘braket’

\DeclarePairedDelimiterX\braket [3]{\langle}{\ranglel}’
{#1\,\delimsize\vert\, \mathopen{}#2\,\delimsize\vert\, \mathopen{}#3}

Note the use of \mathopen{}’ in the (body) of \braket, this is very important when
a scalable delimiter is being used and it does not present itself as a left or right delim-
iter. You will see why it is needed if you use \braket{A}{-B}{C} in a version without
\mathopen{}."

Then we get

\
\innerp*{A}{ \frac{1}{2} } \quad
\braket [\Big] {B}{\sum_{k} f_k}{C}

(43) (#z]e)

With the inner scaling, we can provide macros whose syntax closely follows the
mathematical meaning. Fx for building sets, try this'®

% just to make sure it exists
\providecommand\given{}
% can be useful to refer to this outside \Set
\newcommand\SetSymbol [1] [1{%
\nonscript\:#1\vert
\allowbreak
\nonscript\:
\mathopen{}}
\DeclarePairedDelimiterX\Set [1]\{\}{/
\renewcommand\given{\SetSymbol [\delimsize] }
#1

\[\Set*{ x \in X \given \frac{\sqrt{x}}{x~2+1} > 1 } \]

14Basically, the problem is that \vert is a ‘symbol’, thus | — B is interpreted subtraction, not a symbol
followed by negative B (aka a sign). When \mathopen{} is added, TgX is told that an opening delimiter just
occurred, and it will adjust the minus accordingly.

15The reason for using a separate \SetSymbol macro has to do with complicated set definitions, where
the condition spans several lines. In this case \Set cannot be used. Thus it is nice to be able to refer to the
specific set building symbol we have decided to use in this document. Also remember to add \allowbreak
before the proceeding inserted space. Then that space will disappear when a line break occurs.

27

—>1
x*+1
Thus we end up with a syntax much closer to how we read this aloud. Also we hide the
‘given’ symbol for easy replacement. '

Combining with etoolbox it becomes easy to make a function that automatically
provides a marker for a blank argument:

frex| LZ o)

\usepackage{etoolbox}

\DeclarePairedDelimiterX\norm[1]\1Vert\rVert{
\ifblank{#1}{\:\cdot\:}{#1}

}

Then \norm{} will give you || - || while \norm{a} gives the expected | a].

\DeclarePairedDelimiterXPP{(cmd)} [(num args)]{{pre code)}{(left_delim)}

Feature request by {(right_delimy}{{post code)}{{body)}
Barbara Beeton (on TSE)
2013/10/07 \DeclarePairedDelimiterX has an annoying caveat: it is very hard to make a macro

\1lnorm{a} that should result in || al|».!”

As a consequence we provide \DeclarePairedDelimiterXPP.!® With the addi-
tion of the {({pre code)} and {{post code) } itisidentical to \DeclarePairedDelimiterX.
It should be interpreted as

{{pre code)} {(left_delim)} {(right_delim)} {{post code)} {{body)}
An %2 norm can now be defined as
\DeclarePairedDelimiterXPP\1lnorm[1]{}\1Vert\rVert{_2}{#1}

A probability macro with build in support for conditionals (\given initialized as
above)

\DeclarePairedDelimiterXPP\Prob[1]{\mathbb{P}}) {}{
\renewcommand\given{\nonscript\:\delimsize\vert\nonscript\:\mathopen{}}
#1}

Thus giving support for \Prob{A \given B}.

Note 1: As the number of arguments increases the \DeclarePairedDelimiter. ..
macros become hard for users to understand. A key-value interface would be better.
This is planed for a future release. In http://tex.stackexchange.com/a/136767
/3929 there is a suggested replacement for \DeclarePairedDelimiter, that greatly
reduces the number of macros and provides a key-val interface. However, the code
uses xparse, and if we want to use xparse for some of our macros, we might just as well
rewrite the entire mathtools package in expl3. Also it is not obvious how to get xparse
to support [3] for the number of arguments. We will consider this for a future release.

Note 2: If you want to define your own manual scaler macros, it is important that
you besides \foo also define \fool and \foor. When a scaler is specified, in say
\abs [\big] {{arg)}, we actually use \bigl and \bigr.

16The \nonscript construction removes the \ : in sub- and superscript, this might not always be prefer-
able. You can use \mathchoice{\: }{\:}{\,}{\, } instead of \nonscript\:.

17The added ‘_2’ is hard to get around the argument parsing.

18Extended DeclarePairedDelimiter with Pre and Post code.

28

http://tex.stackexchange.com/a/136767/3929
http://tex.stackexchange.com/a/136767/3929

Note 3: In the unlikely event that you choose to use, say, \section{Foo $\norm[\big]{bar}$}
you will get an error because \big is getting expanded too early. Sadly, due to how
\DeclarePairedDelimiter is implemented one cannot use [\protect\big]. At

present (until amsmath makes \big and friends robust), the best solution'? is to load

the etoolbox package and add \robustify\big and similar to your preamble.

3.6.1 Expertuse

Within the starred version of \DeclarePairedDelimiter and \DeclarePairedDelimiterX
we make a few changes such that the auto scaled \1eft and \right fences behave as
opening and closing fences, i.e. sin(x) vs. sin (x) (the later made via $\sin\left (x\right)$),
notice the gap between ‘sin’ and ‘(. In some special cases it may be useful to be able to

tinker with the behavior.

\reDeclarePairedDelimiterInnerWrapper{(macro name)}%
{(star ornostarnonscaled ornostarscaled)}{{code)}

Internally several macros are created, including three call backs that take care of the
formatting. There is one internal macro for the starred version, labeled star, the
other two are labeled nostarnonscaled and nostarscaled. Within {code), #1 will
be replaced by the (scaled) left fence, #3 the corresponding (scaled) right fence, and
#2 the stuff in between. For example, here is how one might turn the content into
\mathinner:

\DeclarePairedDelimiter\abs\lvert\rvert
\reDeclarePairedDelimiterInnerWrapper\abs{star}{#1#2#3}
\reDeclarePairedDelimiterInnerWrapper\abs{nostarnonscaled}{\mathinner{#1#2#3}}
\reDeclarePairedDelimiterInnerWrapper\abs{nostarscaled}{\mathinner{#1#2#3}}

The default values for the call backs correspond to

star: \mathopen{}\mathclose\bgroup #1#2\aftergroup\egroup #3
nostarnonscaled: \ifx.#1\else\mathopen#1\fi#2\ifx.#3\else\mathclose#3\fi
nostarscaled: \mathopen{#1}#2\mathclose{#3}

The twonostar. . . versions look the same, but they are not. In most (math) fonts, the
first item in this list will be different from the rest (the superscript sits higher).?°

\mathclose{\rvert}~2\mathclose\rvert~2\rvert~2

Breaking change: Prior to May 2017, we used two wrappers, the other named nostar.
As of May 2017 nostar has been split into nostarnonscaled and nostarscaled and
nostar alone is no longer supported (will give an error).

Note: Since we are using macros to add the \left...\right constructions around
some body;, it is (in principle) possible to make such a construction breakable across
lines, even breakable within an align construction. Currently, this can only be ap-
plied to macros made using \DeclarePairedDelimiter and not macros made using
\DeclarePairedDelimiterX or \DeclarePairedDelimiterXPP as the contents are

Bhttps://tex.stackexchange.com/a/639238/3929
20nterestingly it did not show up in the font of this manual, which uses the fourier font set.

29

https://tex.stackexchange.com/a/639238/3929

typeset inside a group (to limit \delimsize) and thus hide any & or \\ from align and
Feature provided by align breaks down.
Sebastien Gouezel When \DeclarePairedDelimiter is used, Sebastien Gouezel has provided the
2014/05/14 following example

\newcommand\MTkillspecial [1]{/ helper macro

\bgroup

\catcode ‘\&=9

\let\\\relax

\scantokens{#11}%

\egroup

}

\DeclarePairedDelimiter\abs\lvert\rvert

\reDeclarePairedDelimiterInnerWrapper\abs{star}{
\mathopen{#1\vphantom{\MTkillspecial{#2}}\kern-\nulldelimiterspace\right.}
#2
\mathclose{\left.\kern-\nulldelimiterspace\vphantom{\MTkillspecial{#2}}#3}}

Then this example works just fine:

\begin{align*}
f(a) &=
\!\begin{aligned}[t]
\abs*{ & \frac{1}{2}+\cdots \\
& \dots+\frac{1}{2} }
\end{aligned}
\end{align*}

f(a):‘%.;_...
|

..+_

2

3.7 Special symbols

This part of the manual is about special symbols. So far only one technique is covered,
but more will come.

3.7.1 Left and right parentheses

l \lparen \rparen

When you want a big parenthesis or bracket in a math display you usually just type
\left(... \right) or \left[... \right]

KIgX also defines the macro names \1brack and \rbrack to be shorthands for the left
and right square bracket resp., but doesn’t provide similar definitions for the paren-
theses. Some packages need command names to work with?! so mathtools defines the
commands \1lparen and \rparen to represent the left and right parenthesis resp.

21The empheq package needs command names for delimiters in order to make auto-scaling versions.

30

Posted on
comp.text.tex
Donald Arseneau
2000/12/07

3.7.2 Vertically centered colon

centercolon = true|false
\vcentcolon \ordinarycolon

When trying to show assignment operations as in a := b, one quickly notices that the
colon is not centered on the math axis as the equal sign, leading to an odd-looking out-
put. The command \vcentcolon is a shorthand for such a vertically centered colon,
and can be used as in $a \vcentcolon= b$ and results in the desired output: a := b.
See also the colonequals package.

Typing \vcentcolon every time is quite tedious, so one can use the key centercolon
to make the colon active instead.

\mathtoolsset{centercolon}
\[

a :=b
\]

\mathtoolsset{centercolon=false}
a:=b

In this case the command \ordinarycolon typesets an ... ordinary colon (what a
surprise).

Warning: centercolon does not work with languages that make use of an active colon,
most notably French. Sadly the babel package does not distinguish between text and
math when it comes to active characters. Nor does it provide any hooks to deal with
math. So currently no general solution exists for this problem.

3.7.3 Some extra symbols involving vertically centered colon

Inspired by the txfonts and pxfonts we provide some colon+symbol combinations such
that they will be available even when current font does not provide the combined sym-
bol.

Breaking change Summer 2022: As is listed in the manual for newtxmath/newpxmath??,
the symbols \coloneq/\Coloneq and \eqcolon/\Eqcolon in txfonts/pxfonts gener-
ated the wrong symbols, or at least was not consistent with the naming converntion
by other packages. This has now also been fixed in mathtools, giving us the following
colon symbol list:

\dblcolon
\coloneq = \Coloneq = \eqcolon =1 \Eqcolon =
\colonapprox := \Colonapprox = \colonsim i~ \Colonsim i~

Legacy duplicate names:

\coloneqq = \eqqcolon = \Coloneqq := \Eqqcolon =
Extra symbols added Summer 2022:

\approxcolon =: \Approxcolon =i \simcolon ~: \Simcolon ~:
\colondash :— \Colondash i:— \dashcolon —: \Dashcolon -

22These superceeds txfonts and pxfonts.

31

If for some reason you need to revert to original (pre summer 2022) colon symbol
names, use the legacycolonsymbols package option. In which case the macro
names maps to:

\coloneqq = \Coloneqq = \coloneq :— Coloneq -
\eqgcolon =t \Eqqcolon =: \eqcolon - \Egcolon -
\colonapprox := \Colonapprox = \colonsim i~ \Colonsim i~
\dblcolon

Extra symbols added Summer 2022:

\approxcolon =: \Approxcolon =: \simcolon ~: \Simcolon ~
\colondash :— \Colondash i— \dashcolon —: \Dashcolon -

Colon symbol names with legacycolonsymbols package option.

Note that the symbol names are added at the start of the document via the \provide. . .
mechanism, thus if some font package provide a symbol of the same macro name, we
do nothing.

3.7.4 Afew additional symbols

Most provided math font sets are missing the symbols \nuparrow and \ndownarrow
(i.e. negated up- and downarrow) plus a ‘big’ version of \times. Therefore we will
provide constructed versions of these whenever they are not already available.

\nuparrow
\ndownarrow
\bigtimes

Note: These symbols are constructed via features from the graphicx package, and thus
may not display correctly in most DVI previewers. Also note that \nuparrow and
\ndownarrow are constructed via \nrightarrow and \nleftarrrow respectively, so
these need to be present. Usually this is done via amssymb, but some packages may be
incompatible with amssymb so the user will have to load amssymb or a similar package,
that provides \nrightarrow and \nleftarrow, themselves.

With those requirements in place, we have

\[
\lim_{a\ndownarrow 0} f(a) \neq \bigtimes_n X_n \qquad
\frac{ \bigtimes_{k=1}"7 B_k \nuparrow \Omega }{2}

\]

X7 _BrtQ

lim fl@ 2 Xx, d=Bete

a0 n 2

4 A tribute to Michael J. Downes

Michael J. Downes (1958-2003) was one of the major architects behind amsmath and
member of the BIEX Team. He made many great contributions to the TgX community;
not only by the means of widely spread macro packages such as amsmath but also in
the form of actively giving advice on newsgroups. Some of Michael’s macro solutions
on the newsgroups never made it into publicly available macro packages although they
certainly deserved it, so mathtools tries to rectify this matter. The macros described in
this section are either straight copies or heavily inspired by his original postings.

32

4.1 Mathematics within italic text

Posted on

comp.text.tex l maﬂﬁc:truafalsel

Michael J. Downes

1998/05/14 TgX usually takes care of italic corrections in text, but fails when it comes to math. If
you use the BIgX inline math commands \ (and \) you can however work around it
by setting the key mathic to true as shown below.

\begin{quote}\itshape

Compare these lines: \par

\mathtoolsset{mathic} % or \mathtoolsset{mathic=true}
Subset of \(V\) and subset of \(A\). \par
\mathtoolsset{mathic=false}

Subset of \(V\) and subset of \(A\).

\par

\end{quote}

Compare these lines:
Subset of 'V and subset of A.
Subset of V and subset of A.

As 0f 2013, \ (\) are robust, as are the italic corrected versions.

Caveat: Italic correction is a treacherous area. For example any penalties will cancel
the italic correction inserted by \ ((for an explanation see [8], section 4.3.3). We have
changed Michael’s original to accommodate one specific penalty construction: the tie,
i.e., ‘text™\ (" will work as expected (as of July, 2014).

4.2 Left sub/superscripts

Posted on \prescript{(sup)}H(sub)}{(arg)} prescript-sup-format = (cmd)
comp.text.tex prescript-sub-format = (cmd) prescript-arg-format = (cmd)
Michael J. Downes

2000/12/20 Sometimes one wants to put a sub- or superscript on the left of the argument. The
\prescript command does just that:

\ L
{3~{4}_{12}\mathbf{C}~{5+}_{2} \quad
\prescript{14}{2}{\mathbf{C}}~{5+}_{2} \quad
\prescript{4}{12}{\mathbf{C}}~{5+}_{2} \quad
\prescript{14}{}{\mathbf{C}}~{56+}_{2} \quad
\prescript{}{2}{\mathbf{C}}~{5+}_{2}

\]

4 ~5+ 14,5+ 45+ 145+ 5+
12C2 2C2 12C2 CZ 2C2

The formatting of the arguments is controlled by three keys. This silly example
shows you how to use them:

\newcommand*\myisotope [3]{%
\begingroup % to keep changes local. We cannot use a brace group
% as it affects spacing!

33

Posted on
comp.text.tex
Michael J. Downes
2002/10/17

Comment added
2015/11/12

Posted on
comp.text.tex
Michael J. Downes
2002/10/17

\mathtoolsset{
prescript-sup-format=\mathit,
prescript-sub-format=\mathbf,
prescript-arg-format=\mathrm,

Yh

\prescript{#1}{#2}{#3}/,
\endgroup
}
\ L
\myisotope{A}{Z}X}\to \myisotope{A-4}{Z-2}{Y}+
\myisotope{4}{2}{\alpha}
\]

A A-dv, | 4
7X =7 Y+,

(Though a package like mhchem might be more suitable for this type of material.)

4.3 Declaring math sizes

| \DeclareMathSizes{(dimen)}{(dimen)}{(dimen)H(dimen)}

If you don’t know about \DeclareMathSizes, then skip the rest of this text. If you do
know;, then all that is needed to say is that with mathtools it is patched so that all regular
dimension suffixes are now valid in the last three arguments. Thus a declaration such
as

\DeclareMathSize{9.5dd}{9.5dd}{7.5dd}{6.5dd}

will now work (it doesn’t in standard BIEX). When this bug has been fixed in BIEX, this
fix will be removed from mathtools.

The fix was added to the BIgX kernel in 2015. We will continue to provide it on older
kernels.

4.4 Spreading equations

l \begin{spreadlines}{(dimen)} (contents) \end{spreadlines}

The spacing between lines in a multiline math environment such as gather is gov-
erned by the dimension \jot. The spreadlines environment takes one argument
denoting the value of \ jot inside the environment:

\begin{spreadlines}{20pt}
Large spaces between the lines.
\begin{gather}

a=b\\

c=d
\end{gather}
\end{spreadlines}
Back to normal spacing.
\begin{gather}

a=b\\

c=d

34

Posted on
comp.text.tex
Michael J. Downes
2001/01/17

\end{gather}

Large spaces between the lines.

a=b (13)

c=d (14)
Back to normal spacing.

a=b (15)

c=d (16)

4.5 Gathered environments

\begin{lgathered} [(pos)] (contents) \end{lgathered}
\begin{rgathered} [(pos)] (contents) \end{rgathered}
\newgathered{(name)}{(pre_line)}{(post_line) }{ (after)}
\renewgathered{(name)}{(pre_line)}{(post_line) }{{after)}

In a document set in £leqn, you might sometimes want an inner gathered environ-
ment that doesn’t center its lines but puts them flush left. The 1gathered environment
works just like the standard gathered except that it flushes its contents left:

\begin{equation}
\begin{lgathered}
x=1,\quad x+1=2 \\
y=2
\end{1lgathered}
\end{equation}
x=1, x+1=2
y=2
Similarly the rgathered puts it contents flush right.
More interesting is probably the command \newgathered. In this example we de-
fine a gathered version that centers the lines and also prints a star and a number at the
left of each line.

17

\newcounter{steplinecnt}
\newcommand\stepline{\stepcounter{steplinecnt}\thesteplinecnt}
\newgathered{stargathered}
{\1lap{\stepline}$*$\quad\hfil}}, \hfil for centering
{\hfil}% \hfil for centering
{\setcounter{steplinecnt}{0}}), reset counter

With these definitions we can get something like this:

\begin{gather}
\begin{stargathered}
x=1,\quad x+1=2 \\
y=2
\end{stargathered}
\end{gather}

35

1+ x=1, x+1=2
(18)
2% y=2
\renewgathered renews a gathered environment of course.
In all fairness it should be stated that the original concept by Michael has been
extended quite a bit in mathtools. Only the end product of 1gathered is the same.

4.6 Split fractions

Posted on \splitfrac{(start line)}{{continuation)}
comp.text.tex \splitdfrac{(start line)}{{continuation)}
Michael J. Downes
2001/12/06 These commands provide split fractions, e.g., multiline fractions:
\[
a=\frac{

\splitfrac{xy + xy + xy + xy + xy}
{+ xy + xy + xy + xy}

}
{z}
=\frac{
\splitdfrac{xy + xy + xy + xy + xy}
{+ xy + xy + xy + xy}

}

{z}

\]
Xy+Xy+Xy+xy+xy Xy+xy+xy+xy+xy
. FXY+XY+XY+XY +XY+XY+ XY+ XY
z z

The difference between \splitfrac and \splitdfrac is that the former forces its
arguments to be typeset in text-mode math, the latter does not.

Note: Ifyou try to nest \splitfrac inside each other you may need to add \mathstrut
to the first argument of the nested fraction to get the spacing look even. It is not added
by default as often a more cramped look is desired:

\ L

\frac{
\splitfrac{xy + xy + xy + xy + xy}
{

\splitfrac{xy + xy + xy + xy + xy}
{+ xy + xy + xy + xy}
}
}
{z}
=\frac{
\splitfrac{xy + xy + xy + xy + xy}
{
\splitfrac{\mathstrut xy + xy + xy + Xy + Xy}
{+ xy + xy + xy + xy}
}
}
{z}

36

\]

Xy+Xy+xy+xy+xy Xy+xy+xy+txy+xy
Xy+xy+xy+xy+xy Xy+Xy+XxXy+xy+xy
+XY+XY+XY+XY +Xy+Xy+Xy+xy
z z

Note how the line spaces aren'’t even on the left hand side.
For even more control, one can use aligned or gathered instead of \splitfrac.

37

Feature request by
Frank Mittelbach
2020

5 New additions

5.1 Variable math strut

l \xmathstrut [{(depth increase)]{(increase)} ‘

In typography we use struts to ensure specific line spacing. In text we have the \strut
and in math \mathstrut. Both have no width, but equal the height and depth of an
»(« from the current text/math font and size. In math we often need to make minute
adjustments in macro definitions etc. The extended math strut \xmathstrut allows to
increase (decrease if negative) the math strut in two ways.

For an (increase) (a decimal number), say 0.1,

\xmathstrut{0.1}

will give you a new strut where 10% of the total height of the normal math strut
(\mathstrut=\xmathstrut{0}) will be added to both the height and the depth of the
original strut (thus 20% gets added in total). On the other hand

\xmathstrut[0.2]{0.1}

will result in a strut where 20% is added to the depth and 10% is added to the height,
resulting in a strut that is 30% larger than normal.

The following example is inspired (with permission) from an example showcasing
\xmathstrut in the upcoming third edition of The LaTeX Companion. The example is
very relevant as the entries of the cases () environment are typeset in text style math
and thus may end up looking quite squished.”?

x—1

x—1 i
x—sinx x>0 sy x>0
Vi-x vs. Vi-x
0 otherwise 0 otherwise

\[\begin{casesx*}
\frac{ \frac{ x-1 }{ x-\sin x } } \sqrt{ 1-x } } & $x>0$ \\
0 & otherwise
\end{cases*}
\qquad\text{vs.}\qquad
\begin{cases*}
\frac{ \frac{ \xmathstrut{0.1} x-1 }
{ \xmathstrut{0.25} x-\sin x } }
{\xmathstrut{0.4} \sqrt{ 1-x } } & $x>0% \\
0 & otherwise
\end{cases*} \]

To showcase the optional argument, it is probably easiest to make the strut visible.
Here you'll see that \mathstrut and \xmathstrut{0} is the same:

e

23Which is why Frank suggested the macro (including its implementation) in the first place.

38

\newcommand\vfb[1] {\begingroup\fboxsep=0pt\boxed{\,#1\,}\endgroup}

\[

a

a

\]

\vfb{ \mathstrut } \ 7% normal strut

\vfb{ \xmathstrut{0} } \ % just O => normal strut

\vib{ \xmathstrut{0.5} } \ ' twice as large 507 + 50%

\vEfb{ \zmathstrut{-0.1} } \ 7% negative gives something smaller
\vfb{ \xmathstrut[0.5]{0} } % change only the depth

- the last box showcases a strut where we have only changed the depth of the strut. One
can see \xmathstrut [0.5] {0} kind of the opposite of \smash[b]{. ..}, the former
makes the depth larger and the latter ignores the depth.

References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

Alexander R. Perlis, A complement to \smash, \llap, and \rlap, TUGboat 22(4)
(2001). Available at https: //www.tug.org/TUGboat/tb22-4/tb72perlS. pdf.

American Mathematical Society and Michael Downes, Technical notes on the ams-
math package. Version 2.0, 1999/10/29. Available via http: //mirrors.ctan.org
/macros/latex/required/amsmath/technote.pdf.

Frank Mittelbach, Rainer Schopf, Michael Downes, David M. Jones and David
Carlisle, The amsmath package. Version 2.17e, 2020/01/20. Maintained by the
WIEX3 project. Available as file http://mirrors.ctan.org/macros/latex/
required/amsmath/amsmath.dtx.

Frank Mittelbach and Michel Goossens. The BIgX Companion. Tools and Tech-
niques for Computer Typesetting. Addison-Wesley, Boston, Massachusetts, 2 edi-
tion, 2004. With Johannes Braams, David Carlisle, and Chris Rowley.

David Carlisle, The keyval Package. Version 1.15, 2014/10/28. Available via https:
//ctan.org/pkg/keyval.

Herbert Vo8, Math mode. Version 2.47, 2014/01/30. Available as http://mirror
s.ctan.org/obsolete/info/math/voss/mathmode/Mathmode.pdf. Please
note that the author has marked the document as obsolete.

Ellen Swanson, Mathematics into type. American Mathematical Society, updated
edition, 1999. Updated by Arlene O’Sean and Antoinette Schleyer. Available from
the AMS athttps://www.ams.org/arc/styleguide/mit-2.pdf.

Victor Eijkhout, TgX by Topic, A Texnician’s Reference, 2007. The book is available at
https://ctan.org/pkg/texbytopic.

39

https://www.tug.org/TUGboat/tb22-4/tb72perlS.pdf
http://mirrors.ctan.org/macros/latex/required/amsmath/technote.pdf
http://mirrors.ctan.org/macros/latex/required/amsmath/technote.pdf
http://mirrors.ctan.org/macros/latex/required/amsmath/amsmath.dtx
http://mirrors.ctan.org/macros/latex/required/amsmath/amsmath.dtx
https://ctan.org/pkg/keyval
https://ctan.org/pkg/keyval
http://mirrors.ctan.org/obsolete/info/math/voss/mathmode/Mathmode.pdf
http://mirrors.ctan.org/obsolete/info/math/voss/mathmode/Mathmode.pdf
https://www.ams.org/arc/styleguide/mit-2.pdf
https://ctan.org/pkg/texbytopic

	Contents
	1 Introduction
	2 Package loading
	2.1 Special mathtools options

	3 Tools for mathematical typesetting
	3.1 Fine-tuning mathematical layout
	3.1.1 A complement to \smash, \llap, and \rlap
	3.1.2 Forcing a cramped style
	3.1.3 Smashing an operator
	3.1.4 Adjusting limits of operators
	3.1.5 Swapping space above AMS display math environments

	3.2 Controlling tags
	3.2.1 The appearance of tags
	3.2.2 Showing only referenced tags

	3.3 Extensible symbols
	3.3.1 Arrow-like symbols
	3.3.2 Braces and brackets

	3.4 New mathematical building blocks
	3.4.1 Matrices
	3.4.2 The multlined environment
	3.4.3 More cases-like environments
	3.4.4 Emulating indented lines in alignments
	3.4.5 Boxing a single line in an alignment
	3.4.6 Adding arrows between lines in an alignment
	3.4.7 Centered \vdots

	3.5 Intertext and short intertext
	3.6 Paired delimiters
	3.6.1 Expert use

	3.7 Special symbols
	3.7.1 Left and right parentheses
	3.7.2 Vertically centered colon
	3.7.3 Some extra symbols involving vertically centered colon
	3.7.4 A few additional symbols

	4 A tribute to Michael J. Downes
	4.1 Mathematics within italic text
	4.2 Left sub/superscripts
	4.3 Declaring math sizes
	4.4 Spreading equations
	4.5 Gathered environments
	4.6 Split fractions

	5 New additions
	5.1 Variable math strut

	References

