
The derivative package

Written by:
Simon Jensen

sjelatex@gmail.com

Released:
v1.4

2024/02/08

The derivative package provides a set of commands which makes writing
ordinary and partial derivatives of arbitrary order in a straight forward
manner. Additionally, this package provides a set of commands to define
variants of the aforementioned derivatives. A set of optional arguments
along with lots of package options allow for easy and great flexibility over
the derivative’s format, such as where the function is positioned, point of
evaluation, and switching between fraction styles. Moreover, the mixed
order of the partial derivative and variants hereof is automatically computed.
This package is written in the expl3 language and requires therefore the
LATEX3 package bundles l3kernel and l3package. Additionally, the mleftright
package is optional and provides the improved automatically scaling \mleft
and \mright.

Contents
1 Introduction 3

2 Derivative 4
2.1 Other derivatives . 6

3 Differentials 9
3.1 Other differentials . 9

4 Options 12
4.1 Categories . 12
4.2 Package options . 13
4.3 Derivative options . 13
4.4 Differential options . 26
4.5 All derivatives and differentials . 29

5 Defining variants 31
5.1 Derivative variant . 31
5.2 Differential variant . 31

6 The mixed order 33
6.1 Sorting algorithms . 34

6.1.1 Examples . 34
6.2 Treating the numerical term . 35
6.3 Reversing the sort algorithm . 36

7 Miscellaneous 37
7.1 Slashfrac . 37

Index 38
Index of Options . 38
Index of Commands . 39

Change history 40

2

1 Introduction
This package originated as a personal package I developed several years ago for various
projects. Initially written in TEX and LATEX, it encountered numerous errors as its
complexity grew, eventually becoming a convoluted code. Consequently, I rewrote the
code using the LATEX3 language, allowing for easier maintenance. Originally, I created
this package due to the lack of robust derivative packages available. However, I later
discovered the diffcoeff package, which served the purpose well. Unfortunately, by that
time, I had already written a most of the code, undocumented. To address this, I
decided to document the code and transform it into a publicly available package.

Regarding terminology, I use the abbreviation inf to represent the operator sym-
bols 𝑑, 𝜕, 𝛿, etc., commonly used in derivatives (e.g., d𝑦

d𝑥 , 𝜕𝑦
𝜕𝑥 , 𝛿𝑦

𝛿𝑥) and differentials
(e.g., d𝑥, 𝜕𝑥, 𝛿𝑥). In the description of macros and options, I often use the nota-
tion cs-⟨placeholder⟩ to indicate a comma-separated list of ⟨placeholder⟩. For instance,
[⟨cs-numbers⟩] is used in the option section to denote a comma-separated list of numbers
for math space keys. It is important to note that whenever an argument specifies
⟨keyvalue list⟩, it refers to a comma-separated list of key-value pairs.

The GitHub repository for this package can be accessed at:
www.github.com/sjelatex/derivative.

3

https://github.com/sjelatex/derivative

2 Derivative
*[⟨keyval list⟩]{⟨function⟩}/!{⟨variables⟩}_{⟨point1⟩}^{⟨point2⟩}\pdv

Updated: v1.3 The partial derivative is defined using the \pdv command, which has both mandatory
and optional arguments. These arguments allow for the customization of specific parts
and the style of the derivative.

\DeclareDerivative{\pdv}{\partial}[style-var=multiple, style-var-/=multiple,
style-var-!=mixed, style-var-/!=multiple, delims-eval=(), delims-eval-/=(),
delims-eval-!=()]

The optional first argument of \pdv controls the placement of the function in relation*
to the fraction. By setting switch-*=false, the function is typeset in the numerator
when the star is absent, and next to the fraction when the star is present. Here is an
example:

\pdv{f}{x,y} ⟹ 𝜕2𝑓
𝜕𝑥 𝜕𝑦

\pdv*{f}{x,y} ⟹ 𝜕2

𝜕𝑥 𝜕𝑦
𝑓

The behavior of the star can be reversed by setting switch-*=true. In other words, the
equations in the previous example will be interchanged.
The second argument of \pdv, enclosed in square brackets, is optional and used to[⟨keyval list⟩]

Updated: v1.4 specify options for the derivative using a key=value syntax. For instance, the order of
differentiation can be set using the order option. Here is an example:

\pdv[order={2,3}]{f}{x,y,z} ⟹ 𝜕6𝑓
𝜕𝑥2 𝜕𝑦3 𝜕𝑧

\pdv[order={\beta,a,n+2a}]{f}{x,y,z} ⟹ 𝜕3𝑎+𝛽+𝑛𝑓
𝜕𝑥𝛽 𝜕𝑦𝑎 𝜕𝑧𝑛+2𝑎

\pdv[sep-var-inf=0]{f}{x,y,z} ⟹ 𝜕3𝑓
𝜕𝑥𝜕𝑦𝜕𝑧

\pdv[order={3/2-n/3,n/2,1/3}]{f}{x,y,z} ⟹ 𝜕𝑛/6+11/6𝑓
𝜕𝑥3/2−𝑛/3 𝜕𝑦𝑛/2 𝜕𝑧1/3

To ease the cumbersome order key, implicit orders can now be given:

\pdv[n+2, \alpha]{f}{x,y,z} ⟹ 𝜕𝑛+𝛼+3𝑓
𝜕𝑥𝑛+2 𝜕𝑦𝛼 𝜕𝑧

For a comprehensive list of available options that can be applied to derivatives, please
refer to section 4.3.
The first mandatory argument of \pdv is used to typeset the function that will be{⟨function⟩}
differentiated. Here are some examples:

4

\pdv{f(x,y,z)}{x,y,z} ⟹ 𝜕3𝑓(𝑥, 𝑦, 𝑧)
𝜕𝑥 𝜕𝑦 𝜕𝑧

\pdv{e^x\sin(y)\ln(z)}{x,y,z} ⟹ 𝜕3𝑒𝑥 sin(𝑦) ln(𝑧)
𝜕𝑥 𝜕𝑦 𝜕𝑧

The function is displayed either in the numerator or to the right of the derivative,
depending on the presence or absence of the star argument.
The fourth argument of \pdv is an optional slash that appears between the function/

Updated: v1.3 and the variable arguments, indicating an alternative style. Its behaviour depends on
the presence or absence of the exclamation mark argument.

When the exclamation mark is absent, the slash determines the fraction style in
which the derivative is typeset. By default, when the slash is absent, the derivative is
typeset with \frac, and when the slash is present, it is typeset with \slashfrac1, as
shown in the following example:

\pdv{f}{x,y} ⟹ 𝜕2𝑓
𝜕𝑥 𝜕𝑦

\pdv{f}/{x,y} ⟹ 𝜕2𝑓/𝜕𝑥 𝜕𝑦
However, when the exclamation mark argument is present, the slash argument switches
between shorthand styles rather than fraction styles.

Similar to the star argument, the effect of the slash’s presence can be reversed by
setting switch-/=true. In other words, the equations in the previous example will be
interchanged.
The fifth argument of \pdv is an optional exclamation mark that appears between the!

New: v1.3 function and the variable arguments. It allows switching the derivative into shorthand
style, as described in section 4.3.

When switch-!=false is used, along with the \pdv’s default shorthand styles, the
derivative is typeset as shown in the example below:

\pdv{f}!{x,y} ⟹ 𝜕𝑥 𝜕𝑦𝑓

\pdv{f}/!{x,y} ⟹ 𝜕𝑥 𝜕𝑦𝑓
The effect of the exclamation mark’s presence can be reversed by setting switch-!=true.
In other words, the equations in the previous example will be interchanged.
Note. The order of the slash and exclamation mark is important. For example,
\pdv{f}!/{x,y} will give 𝜕/𝑓𝑥, 𝑦 and not the indented output 𝜕𝑥 𝜕𝑦𝑓.

This is the second and final mandatory argument is used to typeset the variable in{⟨variables⟩}
which the function is differentiated with respect to. The variables should be provided
as a comma-separated list

\pdv{f}{x} ⟹ 𝜕𝑓
𝜕𝑥

\pdv{f}{x,y} ⟹ 𝜕2𝑓
𝜕𝑥 𝜕𝑦

1Note that \slashfrac is a macro defined by the package, please refer to section 7.1 for more details.

5

The last optional argument specifies the point(s) of evaluation or variables held constant._{⟨point1⟩}^{⟨point2⟩}
It is an e-type argument from the xparse package, denoted as e{_^}. This means that
the subscript _ and superscript ^ accepts an argument given within braces. The order
of the subscript and superscript is independent, as shown in the following examples:

\pdv{f}{x,y}_{(x_1,y_1)} ⟹ (𝜕2𝑓
𝜕𝑥 𝜕𝑦

)
(𝑥1,𝑦1)

\pdv{f}{x,y}^{(x_2,y_2)} ⟹ (𝜕2𝑓
𝜕𝑥 𝜕𝑦

)
(𝑥2,𝑦2)

\pdv{f}{x,y}_{(x_1,y_1)}^{(x_2,y_2)} ⟹ (𝜕2𝑓
𝜕𝑥 𝜕𝑦

)
(𝑥2,𝑦2)

(𝑥1,𝑦1)

\pdv{f}{x,y}^{(x_2,y_2)}_{(x_1,y_1)} ⟹ (𝜕2𝑓
𝜕𝑥 𝜕𝑦

)
(𝑥2,𝑦2)

(𝑥1,𝑦1)

The subscript argument is commonly used to indicate the point of evaluation or the
variables held constant. If needed, the superscript argument can be used to denote a
second point of evaluation.

2.1 Other derivatives
In addition to the partial derivative, the package also provides five other derivative
commands:

• Ordinary derivative: \odv - Used to represent the rate of change of a single-variable
function with respect to its independent variable.

• Material derivative: \mdv - Applied in fluid mechanics and continuum mechanics
to describe the rate of change of a quantity attached to a moving fluid particle.

• Functional derivative: \fdv - Used in functional analysis, calculus of variations,
and quantum mechanics to express the derivative of a functional.

• Average rate of change: \adv - Used to denote the average rate of change of a
quantity over a given interval.

• Jacobian: \jdv - Significant in multivariable calculus and linear algebra for
representing the derivative of a vector-valued function.

A unique feature of this package is that it allows you to define your own derivatives,
as described in section 5.1. This means you can create custom derivative commands
tailored to your specific needs.

If you require more information on the usage and customization of these derivative
commands, please refer to the documentation in section 5.1.

6

*[⟨keyval list⟩]{⟨function⟩}/{⟨variables⟩}_{⟨point1⟩}^{⟨point2⟩}\odv

Updated: v1.1 In this package, the ordinary derivative is defined with an upright lowercase d if the
package option upright=true is used. Otherwise, it is defined with an italic lowercase
d. This choice was made to align with the convention used in many modern books.

\DeclareDerivative{\odv}{\mathrm{d}} upright=true
\DeclareDerivative{\odv}{\mathnormal{d}} italic=true

The ordinary derivative can then be typeset as:

d𝑓
d𝑥

= lim
ℎ→0

(𝑓(𝑥 + ℎ) − 𝑓(𝑥)
ℎ

)

By adjusting the style-inf or style-inf-num and style-inf-den keys, the operator d
can be customized to personal preference or specific formatting requirements.
*[⟨keyval list⟩]{⟨function⟩}/{⟨variables⟩}_{⟨point1⟩}^{⟨point2⟩}\mdv

Updated: v1.1 The material derivative is defined with an upright uppercase D when the package
option upright=true. Otherwise, it is defined with an italic uppercase D.

\DeclareDerivative{\mdv}{\mathrm{D}} upright=true
\DeclareDerivative{\mdv}{\mathnormal{D}} italic=true

In physics, the material derivative is defined by

D𝜑(𝐫, 𝑡)
D𝑡

≔ 𝜕𝜑(𝐫, 𝑡)
𝜕𝑡

+ ̇𝐫 ⋅ ∇𝜑(𝐫, 𝑡)

By adjusting the style-inf or style-inf-num and style-inf-den keys, the operator D
can be customized to personal preference or specific formatting requirements.
*[⟨keyval list⟩]{⟨function⟩}/{⟨variables⟩}_{⟨point1⟩}^{⟨point2⟩}\fdv

In this package, the functional derivative is defined with a lowercase delta. By default,
it is represented in italic form. The functional derivative can be defined as follows:

\DeclareDerivative{\fdv}{\delta}

In physics, the functional derivative is commonly employed in various equations, such
as the Lagrange equation and the derivation of the Hartree-Fock equation. Examples
of its usage include:

𝛿𝐼
𝛿𝑞𝛼

= 𝜕𝐿
𝜕𝑞𝛼

− d
d𝑡

𝜕𝐿
𝜕 ̇𝑞𝛼

= 0, 𝛿ℒ
𝛿𝜓∗

𝑛
= ̂𝐹 |𝜓𝑛⟩ − 𝜖𝑛|𝜓𝑛⟩ = 0,

*[⟨keyval list⟩]{⟨function⟩}/{⟨variables⟩}_{⟨point1⟩}^{⟨point2⟩}\adv

The average rate of change is defined to use an upright uppercase delta with the default
settings. In this package, the average rate of change is defined as

\DeclareDerivative{\adv}{\Delta}

7

The average rate of change can be expressed as

Δ𝑦
Δ𝑥

= 𝑦2 − 𝑦1
𝑥2 − 𝑥1

*[⟨keyval list⟩]{⟨function⟩}/{⟨variables⟩}_{⟨point1⟩}^{⟨point2⟩}\jdv

Updated: v1.0 In this package, the Jacobian is defined with an italic partial differential by default.
Additionally, a pair of parentheses is automatically inserted around the function and
variable.

\DeclareDerivative{\jdv}{\partial}[fun=true, var=1]

which gives
𝜕(𝑓, 𝑔, ℎ)
𝜕(𝑥, 𝑦, 𝑧)

8

3 Differentials
*[⟨keyval list⟩]{⟨variables⟩}\odif

New: v1.0
Updated: v1.1

The differential \odif is defined with both mandatory and optional arguments that
allow for customizing its typesetting and style. It is defined with an upright lowercase
d when upright=true is used. Otherwise, it will be defined with an italic lowercase d.

\DeclareDifferential{\odif}{\mathrm{d}} upright=true
\DeclareDifferential{\odif}{\mathnormal{d}} italic=true

The first argument of \odif is an optional star that determines the notation style of*
the differential. With the switch-*=false option, the variables and orders are typeset
as subscript and superscript, respectively, when the star is present. When the star is
absent, the infinitesimal is placed in front of each variable, as illustrated below:

\odif{x,y,z} ⟹ d𝑥 d𝑦 d𝑧
\odif*{x,y,z} ⟹ d𝑥,𝑦,𝑧

The behavior of the star can be reversed by setting switch-*=true. In other words, the
equations in the previous example will be interchanged.
The second argument, enclosed in square brackets, is optional and is used to specify[⟨keyval list⟩]

Updated: v1.4 options for the differential using the key=value syntax. Here are some examples:

\odif[order={n,3}]{x,y,z} ⟹ d𝑛𝑥 d3𝑦 d𝑧
\odif[sep-var-inf=0]{x,y,z} ⟹ d𝑥d𝑦d𝑧

\odif*[sep-var-var=0]{x,y,z} ⟹ d𝑥𝑦𝑧

To ease the cumbersome order key, implicit orders can now be given:

\odif[n+2, \alpha]{x,y,z} ⟹ d𝑛+2𝑥 d𝛼𝑦 d𝑧

For a comprehensive list of available options that can be applied to differentials, please
refer to section 4.4
The mandatory argument is used to typeset the variables in the differential. Here are{⟨variables⟩}
some examples:

\odif{x} ⟹ d𝑥
\odif{s_1,s_2...,s_n} ⟹ d𝑠1 d𝑠2... d𝑠𝑛

3.1 Other differentials
In addition to the regular differential, the package also provides four other differential
commands:

• Partial differential: \pdif - This command is used to typeset partial differentials.

• Uppercase D: \mdif - It is used to typeset differentials with an uppercase ”D”.

9

• Lowercase delta: \fdif - This command is used to typeset differentials with a
lowercase delta symbol.

• Uppercase delta: \adif - It is used to typeset differentials with an uppercase
Delta symbol.

A unique feature of this package is that it allows you to define your own differentials,
as described in section 5.2. This means you can create custom differential commands
tailored to your specific needs.

If you require more information on the usage and customization of these differential
commands, please refer to the documentation in section 5.2.
*[⟨keyval list⟩]{⟨variables⟩}\pdif

The partial differential \pdif is commonly used as a shorthand notation for the partial
derivative. In this package, it is defined as follows:

\DeclareDifferential{\pdif}{\partial}[style-notation=single,
style-notation-*=mixed]

The non-star and star versions are represented on the left side as:

𝜕𝑖
𝑥 𝜕𝑗

𝑦 𝜕𝑘
𝑧 ≔ 𝜕𝑖+𝑗+𝑘

𝜕𝑥𝑖 𝜕𝑦𝑗 𝜕𝑧𝑘

𝜕𝑖𝑥 𝜕𝑗𝑦 𝜕𝑘𝑧 ≔ 𝜕𝑖+𝑗+𝑘

𝜕𝑥𝑖 𝜕𝑦𝑗 𝜕𝑧𝑘

respectively.
*[⟨keyval list⟩]{⟨variables⟩}\mdif

Updated: v1.1 Another commonly used shorthand notation for derivatives is the differential with
an uppercase D. In this package it is defined with a upright D when upright=true.
Otherwise, it is defined with an italic D.

\DeclareDifferential{\mdif}{\mathrm{D}}[style-notation=single,
style-notation-*=mixed] upright=true
\DeclareDifferential{\mdif}{\mathnormal{D}}[style-notation=single,
style-notation-*=mixed italic=true

The non-star and star version gives

D𝑖
𝑥 D𝑗

𝑦 D𝑘
𝑧

D𝑖𝑥 D𝑗𝑦 D𝑘𝑧

respectively.
*[⟨keyval list⟩]{⟨variables⟩}\fdif

When working with functional derivatives, another commonly used differential is one
that uses a delta symbol. It is defined as follows:

\DeclareDifferential{\fdif}{\delta}

10

For example, in expression like:

𝛿𝐽 = ∫
𝑏

𝑎

𝜕𝐿
𝜕𝑓

𝛿𝑓(𝑥) + 𝜕𝐿
𝜕𝑓 ′

d
d𝑥

𝛿𝑓(𝑥) d𝑥

this differential is frequently encountered.
*[⟨keyval list⟩]{⟨variables⟩}\adif

A differential for differences that uses a uppercase delta is defined as

\DeclareDifferential{\adif}{\Delta}

For example, the difference between two energy levels can be written as:

Δ𝐸 = 𝐸2 − 𝐸1

11

4 Options
This package accepts its options using the familiar key=value syntax. The keys are
divided into categories, with each key having its associated category as a prefix.
{⟨command⟩}[⟨keyval list⟩]\derivset

Updated: v1.0 The \derivset command is used to set default values for derivative and differential
options in the preamble. While it can be used within the document, the new [⟨keyval
list⟩] arguments in the derivative and differential commands allow for more flexibility
in specifying options on a per-use basis.
The mandatory argument determines which command the key=value pairs are assigned{⟨command⟩}
to. The allowed ⟨commands⟩ are the derivatives and differentials defined by the package,
as well as any additional derivatives and differentials you have defined (see sections 5.1
and 5.2 for more information). Additionally, the special value all is allowed, which
provides access to the options that apply to all derivatives and differentials.

\derivset{\odv}[switch-*=true] \odv{y}{x} ⟹ d
d𝑥

𝑦

\derivset{\odif}[switch-*=true] \odif{y}{x} ⟹ d𝑦𝑥

The optional argument accepts input as a comma-separated list of key=value pairs. If[⟨keyval list⟩]
[⟨keyval list⟩] is omitted, the options will be set to the package’s default settings for
the chosen {⟨command⟩}. For example, using the \derivset{\odv} command will set
the options for the ordinary derivative to the default settings defined by the package.

\derivset{\odv}[switch-*=false] \odv{y}{x} \odv*{y}{x} ⟹ d𝑦
d𝑥

d
d𝑥

𝑦

\derivset{\odv}[switch-*=true] \odv{y}{x} \odv*{y}{x} ⟹ d
d𝑥

𝑦 d𝑦
d𝑥

\derivset{\odv} \odv{y}{x} \odv*{y}{x} ⟹ 𝑑𝑦
𝑑𝑥

𝑑
𝑑𝑥

𝑦

4.1 Categories
This section seeks to give a detailed description of each category.

• The style-⟨…⟩ keys allow you to customize the style of derivatives or differentials
by specifying options such as the fraction command, infinitesimal notation (e.g.,
𝑑, 𝜕) and its font, and variable treatment.

• The delims-⟨…⟩ keys sets the delimiters used around the ⟨…⟩. The Rule of Two
applies: ‘Always two there are, no more, no less. A left and a right delimiter’.
Only delimiters that can be scaled with commands like \left, \big, etc., are
allowed.

12

• The scale-⟨…⟩ keys sets the size of the ⟨…⟩’s delimiters. The values big, Big,
bigg, and Bigg are self-explanatory. The value none leaves the delimiters unscaled
(except for periods, which are removed). The value auto automatically scales the
delimiters using \left and \right.

• The sep-⟨…⟩-⟨…⟩ keys inserts their value between ⟨…⟩ and ⟨…⟩. If the value is
a comma-separated list of up to three numbers (e.g. {1,2,3}) it is converted
into the syntax \muskip 1 mu plus 2 mu minus 3 mu and used accordingly. For
other values, they are used as given without any conversion.

• The switch-⟨…⟩ keys allow you to change the behaviour of an argument by
swapping the effect of the presence or absence of an optional character argument.

• The sort-⟨…⟩ keys handle the sorting algorithm used for the mixed order. These
keys allow you to choose the sorting method that best suits your preferences.

• The miscellaneous keys do not fall into any of the previously mentioned categories
and does not have a prefix.

Note. A value with a superscripted R indicates that it requires a specific package to
be loaded. Additionally, some keys have multiple versions, denoted by -/, -!, and
-/! at the end. These keys are specifically related to the slash and exclamation mark
arguments.

4.2 Package options
The package options can be used with the following syntax when loading the package
in the preamble:

\usepackage[⟨keyval list⟩]{derivative}

true, false falseitalic

New: v1.1 Sets the font style of the infinitesimals 𝑑 and 𝐷 used in \odv, \mdv, \odif and \mdif to
italic using \mathnormal. The italic and upright options are mutually exclusive.
true, false trueupright

New: v1.1 Sets the font style of the infinitesimals 𝑑 and 𝐷 used in \odv, \mdv, \odif and \mdif to
upright using \mathrm. The italic and upright options are mutually exclusive.

4.3 Derivative options
The options in this subsection are available fo customizing the behaviour of derivatives
defined by the package and you.

13

Style

⟨math-font-style⟩⟨infinitesimal⟩style-inf

Updated: v1.0, v1.3 Sets the infinitesimal used in the derivative. This is a meta key, which means it sets
the value of both style-inf-num and style-inf-den at the same time.

\odv[style-inf=\symbf{d}]{f}{x} ⟹ 𝐝𝑓
𝐝𝑥

⟨math-font-style⟩⟨infinitesimal⟩ dstyle-inf-num

New: v1.3 Sets the infinitesimal used in the numerator of the derivative. This option is also used
in the shorthand versions, i.e., when the exclamation mark argument is used. The
default infinitesimal is a plain d.

\odv[style-inf-num=\mathbf{d}]{f}{x} ⟹ d𝑓
d𝑥

\odv[style-inf-num=\mathbf{d}]{f}!{x} ⟹ d𝑥𝑓

⟨math-font-style⟩⟨infinitesimal⟩ dstyle-inf-den

New: v1.3 Sets the infinitesimal used in the denominator of the derivative. The default infinitesimal
is a plain d.

\odv[style-inf-den=\mathbf{d}]{f}{x} ⟹ d𝑓
d𝑥

⟨fraction⟩ \fracstyle-frac

The derivative uses the fraction set by this key when the slash argument is absent. If
switch-/=true, the derivative uses this fraction when the slash argument is present.
The key’s default value is the usual fraction \frac.

\odv[style-frac=\tfrac]{f}{x} ⟹ d𝑓
d𝑥

\odv[switch-/=true, style-frac=\tfrac]{f}/{x} ⟹ d𝑓
d𝑥

⟨fraction⟩ \slashfracstyle-frac-/

The derivative uses the fraction set by this key when the slash argument is present.
If switch-/=true, the derivative uses this fraction when the slash argument is absent.
The key’s default value is a text-styled fraction \slashfrac1 on the form d𝑓/d𝑥 .

\odv[style-frac-/=\sfrac]{f}/{x} ⟹ d𝑓/d𝑥

single, multiple singlestyle-var

New: v1.0 This option determines how the derivative treats its variables and orders when both
the slash argument and the exclamation mark are absent assuming switch-/=false and
switch-!=false

single The derivative behaves like a ordinary derivative, treating the variable argu-
ment and order as single entities.

14

multiple The derivative behaves like a partial derivative, treating the variable argument
as a list of comma-separated variables. The mixed order is automatically
calculated and sorted based on the order=⟨cs-orders⟩ key. See section 6 for
limitations on the automatic calculation.

\pdv[style-var=single, order={1,2,3}]{f}{x,y,z} ⟹ 𝜕1,2,3𝑓
𝜕𝑥, 𝑦, 𝑧1,2,3

\pdv[style-var=multiple]{f}{x,y,z} ⟹ 𝜕3𝑓
𝜕𝑥 𝜕𝑦 𝜕𝑧

single, multiple singlestyle-var-/

New: v1.3 This option behaves identically to style-var, however it is used when the slash argument
is present and the exclamation mark is absent assuming switch-/=false and switch-
!=false.

\pdv[style-var-/=single, order={1,2,3}]{f}/{x,y,z} ⟹ 𝜕1,2,3𝑓/𝜕𝑥, 𝑦, 𝑧1,2,3

\pdv[style-var-/=multiple]{f}/{x,y,z} ⟹ 𝜕3𝑓/𝜕𝑥 𝜕𝑦 𝜕𝑧

single, multiple, mixed multiplestyle-var-!

New: v1.3 This options determines the shorthand notation of the derivative when the slash
argument is absent and the exclamation mark is present assuming switch-/=false and
switch-!=false.

single Creates a single differential with variables as subscripts and orders as super-
scripts.

multiple Creates a separate differential for each variable.

mixed Creates a separate differential for each variable but with variables as subscripts
and orders as superscripts.

\pdv[style-var-!=single]{f}!{x,y,z} ⟹ 𝜕𝑥,𝑦,𝑧𝑓

\pdv[style-var-!=multiple]{f}!{x,y,z} ⟹ 𝜕𝑥 𝜕𝑦 𝜕𝑧𝑓
\pdv[style-var-!=mixed]{f}!{x,y,z} ⟹ 𝜕𝑥 𝜕𝑦 𝜕𝑧𝑓

single, multiple, mixed singlestyle-var-/!

New: v1.3 This option behaves identical to style-var-!, however it is used when both the ex-
clamation mark and slash arguments are present assuming switch-/=false and switch-
!=false.

\pdv[style-var-/!=single]{f}/!{x,y,z} ⟹ 𝜕𝑥,𝑦,𝑧𝑓

\pdv[style-var-/!=multiple]{f}/!{x,y,z} ⟹ 𝜕𝑥 𝜕𝑦 𝜕𝑧𝑓
\pdv[style-var-/!=mixed]{f}/!{x,y,z} ⟹ 𝜕𝑥 𝜕𝑦 𝜕𝑧𝑓

15

Scaling

auto, none, big, Big, bigg, Bigg autoscale-eval

Sets the size of the delimiters used for the point of evaluation. It is applied when
the slash argument is absent, assuming switch-/=false. The default behaviour is to
automatically scale the delimiters.

\pdv[scale-eval=auto]{f}{x,y}_{(x_0,y_0)} ⟹ (𝜕2𝑓
𝜕𝑥 𝜕𝑦

)
(𝑥0,𝑦0)

\pdv[scale-eval=auto]{f}!{x,y}_{(x_0,y_0)} ⟹ (𝜕𝑥 𝜕𝑦𝑓)
(𝑥0,𝑦0)

auto, none, big, Big, bigg, Bigg autoscale-eval-/

Sets the size of the delimiters used for the point of evaluation. It is applied when
the slash argument is present, assuming switch-/=false. The default behaviour is to
automatically scale the delimiters.

\pdv[scale-eval-/=none]{f}/{x,y}_{(x_0,y_0)} ⟹ (𝜕2𝑓/𝜕𝑥 𝜕𝑦)(𝑥0,𝑦0)

auto, none, big, Big, bigg, Bigg autoscale-eval-!

New: v1.3 Sets the size of the delimiters used for the point of evaluation. It is applied when
the exclamation mark argument is present, assuming switch-!=false. The default
behaviour is to automatically scale the delimiters. This option takes priority over
scale-eval-/ when the slash argument is also present.

\pdv[scale-eval-!=Big]{f}!{x,y}_{(x_0,y_0)} ⟹ (𝜕𝑥 𝜕𝑦𝑓)
(𝑥0,𝑦0)

auto, none, big, Big, bigg, Bigg autoscale-fun

Sets the size of the delimiters used around the function. It is applied when fun=true.
The default behaviour is to automatically scale the delimiters.

\pdv[scale-fun=big, fun]{f}{x,y} ⟹
𝜕2(𝑓)
𝜕𝑥 𝜕𝑦

auto, none, big, Big, bigg, Bigg autoscale-var

Sets the size of the delimiters used around the variables specified by the var={…} option
when the exclamation mark argument is absent assuming switch-!=false. The default
behaviour is to automatically scale the delimiters.

\pdv[scale-var=Big, var]{f}{x,y} ⟹ 𝜕2𝑓

𝜕(𝑥) 𝜕(𝑦)

auto, none, big, Big, bigg, Bigg autoscale-var-!

New: v1.3 Sets the size of the delimiters used around the variables specified by the var={…} option
when the exclamation mark argument is present assuming switch-!=false. The default
behaviour is to automatically scale the delimiters.

16

\pdv[scale-var-!=big, var]{f}!{x,y} ⟹ 𝜕(𝑥) 𝜕(𝑦)𝑓

auto, none, big, Big, bigg, Bigg autoscale-frac

Sets the size of the delimiters used for around the fraction. It is applied when the slash
argument is absent and frac=true, assuming switch-/=false. The default behaviour is
to automatically scale the delimiters.

\pdv[scale-frac=bigg, frac]{f}{x,y} ⟹ (𝜕2𝑓
𝜕𝑥 𝜕𝑦

)

auto, none, big, Big, bigg, Bigg autoscale-frac-/

Sets the size of the delimiters used for around the fraction. It is applied when the slash
argument is present and frac=true, assuming switch-/=false. The default behaviour
is to automatically scale the delimiters.

\pdv[scale-frac-/=Bigg, frac]{f}/{x,y} ⟹ (𝜕2𝑓/𝜕𝑥 𝜕𝑦)

Delimiters

⟨left delimiter⟩⟨right delimiter⟩ . \rvertdelims-eval

Sets the delimiters used to indicate the point of evaluation. These delimiters are
used when the slash argument is absent, assuming switch-/=false. The key’s default
delimiters are a period and a vertical line.

\pdv[delims-eval=.|]{f}{x,y}_{(x_0,y_0)} ⟹ 𝜕2𝑓
𝜕𝑥 𝜕𝑦

∣
(𝑥0,𝑦0)

⟨left delimiter⟩⟨right delimiter⟩ . \rvertdelims-eval-/

Sets the delimiters used to indicate the point of evaluation. These delimiters are
used when the slash argument is present, assuming switch-/=false. The key’s default
delimiters are a period and a vertical line.

\pdv[delims-eval-/=[]]{f}/{x,y}_{(x_0,y_0)} ⟹ [𝜕2𝑓/𝜕𝑥 𝜕𝑦]
(𝑥0,𝑦0)

⟨left delimiter⟩⟨right delimiter⟩ . \rvertdelims-eval-!

New: v1.3 Sets the delimiters used to indicate the point of evaluation. These delimiters are
used when the slash argument is present, assuming switch-!=false. The key’s default
delimiters are a period and a vertical line. This option takes priority over delims-eval-/
when the slash argument is also present.

\pdv[delims-eval-!=[]]{f}!{x,y}_{(x_0,y_0)} ⟹ [𝜕𝑥 𝜕𝑦𝑓]
(𝑥0,𝑦0)

⟨left delimiter⟩⟨right delimiter⟩ ()delims-fun

Sets the delimiters used around the function. These delimiters are used when fun=true.
The key’s default delimiters are parentheses.

17

\pdv[delims-fun=\langle\rangle, fun]{f}{x,y} ⟹ 𝜕2⟨𝑓⟩
𝜕𝑥 𝜕𝑦

⟨left delimiter⟩⟨right delimiter⟩ ()delims-var

Sets the delimiters used around the variables specified by the var={…} option when
the exclamation mark argument is absent assuming switch-!=false. The key’s default
delimiters are parentheses.

\pdv[delims-var=\{\}, var]{f}{x,y} ⟹ 𝜕2𝑓
𝜕{𝑥} 𝜕{𝑦}

⟨left delimiter⟩⟨right delimiter⟩ ()delims-var-!

New: v1.3 Sets the delimiters used around the variables specified by the var={…} option when the
exclamation mark argument is present assuming switch-!=false. The key’s default
delimiters are parentheses.

\pdv[delims-var-!=\lceil\rceil, var]{f}!{x,y} ⟹ 𝜕⌈𝑥⌉ 𝜕⌈𝑦⌉𝑓

⟨left delimiter⟩⟨right delimiter⟩ ()delims-frac

Sets delimiters used around the fraction in the derivative. These delimiters are used
when the slash argument is absent and frac=true, assuming switch-/=false. The key’s
default delimiters are parentheses.

\pdv[delims-frac=||, frac]{f}{x,y} ⟹ ∣ 𝜕2𝑓
𝜕𝑥 𝜕𝑦

∣

\pdv*[delims-frac=||, frac=true]{y}{x} ⟹ ∣ 𝜕
𝜕𝑥

∣𝑦

⟨left delimiter⟩⟨right delimiter⟩ ()delims-frac-/

Sets delimiters used around the fraction in the derivative. These delimiters are used
when the slash argument is present and frac=true, assuming switch-/=false. The
key’s default delimiters are parentheses.

\pdv[delims-frac-/=\|\|, frac]{f}/{x,y} ⟹ ∥𝜕2𝑓/𝜕𝑥 𝜕𝑦∥

\pdv*[delims-frac-/=\|\|, frac]{f}/{x,y} ⟹ ∥𝜕2/𝜕𝑥 𝜕𝑦∥𝑓

Math spacing and separators

⟨cs-number⟩, {⟨mspace⟩}, {⟨delimiter⟩} 0sep-inf-ord

Sets the separator that is inserted to the left of the infinitesimal’s power when the
(mixed) order is different from 1. The default value corresponds to 0 mu.

\pdv[sep-inf-ord=\here]{f}{x,y} ⟹ 𝜕⟨here⟩2𝑓
𝜕𝑥 𝜕𝑦

\pdv[sep-inf-ord=\here, order=2]{f}!{x,y} ⟹ 𝜕⟨here⟩2
𝑥 𝜕𝑦𝑓

\pdv[sep-inf-ord=\here, order=2]{f}/!{x,y} ⟹ 𝜕⟨here⟩2𝑥 𝜕𝑦𝑓

18

⟨cs-number⟩, {⟨mspace⟩}, {⟨delimiter⟩} 0sep-inf-fun

Sets the separator that is inserted between the infinitesimal and the function when the
(mixed) order is equal to 1. The space is only inserted when a non-blank function is
printed in the numerator. The default value corresponds to 0 mu.

\pdv[sep-inf-fun=\here]{f}{x} ⟹ 𝜕⟨here⟩𝑓
𝜕𝑥

⟨cs-number⟩, {⟨mspace⟩}, {⟨delimiter⟩} 0sep-ord-fun

Sets the separator that is inserted between the function and the infinitesimal’s order
when the order is different from 1. The space is only inserted when a non-blank
function is printed in the numerator. The default value corresponds to 0 mu.

\pdv[sep-ord-fun=\here]{f}{x,y} ⟹ 𝜕2⟨here⟩𝑓
𝜕𝑥 𝜕𝑦

⟨cs-number⟩, {⟨mspace⟩}, {⟨delimiter⟩} 0sep-frac-fun

New: v1.0 Sets the separator that is inserted between the fractional part of the derivative and the
function when a non-blank function is printed next to the derivative. The default value
corresponds to 0 mu.

\pdv*[sep-frac-fun=\here]{f}{x,y} ⟹ 𝜕2

𝜕𝑥 𝜕𝑦
⟨here⟩𝑓

⟨cs-number⟩, {⟨mspace⟩}, {⟨delimiter⟩} 0sep-inf-var

Sets the separator that is inserted between the infinitesimal and the following non-blank
variable. In shorthand mode, the order must also be different from 1. The default value
corresponds to 0 mu.

\pdv[sep-inf-var=\here, order=2]{f}{x,y} ⟹ 𝜕3𝑓
𝜕⟨here⟩𝑥2 𝜕⟨here⟩𝑦

\pdv[sep-inf-var=\here, order=2]{f}!{x,y} ⟹ 𝜕2
⟨here⟩𝑥 𝜕⟨here⟩𝑦𝑓

\pdv[sep-inf-var=\here, order=2]{f}/!{x,y} ⟹ 𝜕2𝑥 𝜕⟨here⟩𝑦𝑓

⟨cs-number⟩, {⟨mspace⟩}, {⟨delimiter⟩} 0sep-var-ord

Sets the separator that is inserted to the left of the variable’s power when its order is
different from 1. The default value corresponds to 0 mu.

\pdv[sep-var-ord=\here, order=n]{f}{x,y} ⟹ 𝜕𝑛+1𝑓
𝜕𝑥⟨here⟩𝑛 𝜕𝑦

⟨cs-number⟩, {⟨mspace⟩}, {⟨delimiter⟩} \mathop{}\!sep-var-inf

Sets the separator that is inserted between a variable and the following infinitesimal
when more than one non-blank variables are given. In fraction mode, it is also required
that the variable’s order is equal to 1. The default value is \mathop{}\!.

19

\pdv[sep-var-inf=\here, order=n]{f}{x,y,z} ⟹ 𝜕𝑛+2𝑓
𝜕𝑥𝑛 𝜕𝑦⟨here⟩𝜕𝑧

\pdv[sep-var-inf=\here, order=n]{f}!{x,y,z} ⟹ 𝜕𝑛
𝑥 ⟨here⟩𝜕𝑦⟨here⟩𝜕𝑧𝑓

\pdv[sep-var-inf=\here, order=n]{f}/!{x,y,z} ⟹ 𝜕𝑛𝑥⟨here⟩𝜕𝑦⟨here⟩𝜕𝑧𝑓

⟨cs-number⟩, {⟨mspace⟩}, {⟨delimiter⟩} \mathop{}\!sep-ord-inf

Sets the separator that is inserted between an order and the following infinitesimal
when more than one non-blank variables are given. In fraction mode, it is also required
that the variable’s order is different from 1. The default value is \mathop{}\!.

\pdv[sep-ord-inf=\here, order=n]{f}{x,y,z} ⟹ 𝜕𝑛+2𝑓
𝜕𝑥𝑛⟨here⟩𝜕𝑦 𝜕𝑧

⟨cs-number⟩, {⟨mspace⟩}, {⟨delimiter⟩} ,sep-ord-ord

New: v1.3 Sets the separator that is inserted between two orders when more than one non-blank
variables are given in shorthand notation when it is set to single. The default value is
a comma.

\odv[sep-ord-ord=\here, order={n,2}]{f}/!{x,y} ⟹ d𝑛⟨here⟩2
𝑥,𝑦 𝑓

⟨cs-number⟩, {⟨mspace⟩}, {⟨delimiter⟩} 0sep-ord-var

New: v1.3 Sets the separator that is inserted between an order and the following variable in
shorthand notation when it is set to multiple. The default value corresponds to 0 mu.

\odv[sep-ord-var=\here, order=n]{f}!{x,y} ⟹ d𝑛⟨here⟩𝑥 d𝑦𝑓

⟨cs-number⟩, {⟨mspace⟩}, {⟨delimiter⟩} ,sep-var-var

New: v1.0 Sets the separator that is inserted between two variables when more than one non-blank
variables are given in shorthand notation when it is set to single. The default value is
a comma.

\odv[sep-var-var=\here]{f}{x,y} ⟹ d𝑓
d𝑥⟨here⟩𝑦

\odv[sep-var-var=\here]{f}/!{x,y} ⟹ d𝑥⟨here⟩𝑦𝑓

⟨cs-number⟩, {⟨mspace⟩}, {⟨delimiter⟩} 0sep-eval-sb

Sets the separator that is inserted in the evaluation subscript left to the point of
evaluation when a non-blank subscript is given. The default value corresponds to 0 mu.

\pdv[sep-eval-sb=\here]{f}{x,y}_{(x_1,y_1)} ⟹ (𝜕2𝑓
𝜕𝑥 𝜕𝑦

)
⟨here⟩(𝑥1,𝑦1)

⟨cs-number⟩, {⟨mspace⟩}, {⟨delimiter⟩} 0sep-eval-sp

Sets the separator that is inserted in the evaluation superscript left to the point of
evaluation when a non-blank superscript is given. The default value corresponds to 0
mu.

20

\pdv[sep-eval-sp=\here]{f}{x,y}^{(x_2,y_2)} ⟹ (𝜕2𝑓
𝜕𝑥 𝜕𝑦

)
⟨here⟩(𝑥2,𝑦2)

Switches

true, false falseswitch-*

The effect of the star argument can be toggled with the value true. For example,
compare below where the option is disabled (false) and enabled (true). The default
value is false.

\pdv[switch-*=false]{f}{x,y} ⟹ 𝜕2𝑓
𝜕𝑥 𝜕𝑦

\pdv[switch-*=true]{f}{x,y} ⟹ 𝜕2

𝜕𝑥 𝜕𝑦
𝑓

true, false falseswitch-/

The effect of the slash argument can be toggled with the value true. For example,
compare below where the option is disabled (false) and enabled (true). The default
value is false.

\pdv[switch-/=false]{f}{x,y} ⟹ 𝜕2𝑓
𝜕𝑥 𝜕𝑦

\pdv[switch-/=true]{f}{x,y} ⟹ 𝜕2𝑓/𝜕𝑥 𝜕𝑦

true, false falseswitch-!

New: v1.3 The effect of the exclamation mark argument can be toggled with the value true. For
example, compare below where the option is disabled (false) and enabled (true). The
default value is false.

\pdv[switch-!=false]{f}{x,y} ⟹ 𝜕2𝑓
𝜕𝑥 𝜕𝑦

\pdv[switch-!=true]{f}{x,y} ⟹ 𝜕𝑥 𝜕𝑦𝑓

true, false trueswitch-sort

New: v1.2 This options disables (false) and enables (true) the sorting algorithm behind the
mixed order. The sorting algorithm is only used/available in fraction mode when it is
multiple. When disabled, the terms in the mixed order are arranged according to their
first appearance in order={…}. Compare below where the option is disabled (false)
and enabled (true). The default value is true.

\pdv[switch-sort=false, order={a+b,2kn-d,2-2b}]{f}{x,y,z} ⟹ 𝜕𝑎−𝑏+2𝑘𝑛−𝑑+2𝑓
𝜕𝑥𝑎+𝑏 𝜕𝑦2𝑘𝑛−𝑑 𝜕𝑧2−2𝑏

\pdv[switch-sort=true, order={a+b,2kn-d,2-2b}]{f}{x,y,z} ⟹ 𝜕2𝑘𝑛+𝑎−𝑏−𝑑+2𝑓
𝜕𝑥𝑎+𝑏 𝜕𝑦2𝑘𝑛−𝑑 𝜕𝑧2−2𝑏

21

Sort

The keys mentioned in this subsection will be briefly described here, with a more
detailed explanation provided in section 6.
abs, lexical, number, sign, symbol sign, symbol, abssort-method

Updated: v1.2 Sets the sorting method for the mixed order using build-in algorithms.

abs Sorts terms in descending order based on their absolute value.

lexical Sorts terms alphabetically in lexicographical ascending order.

number Sorts terms in descending order based on their numerical value.

sign Sorts terms by their sign, placing positive terms before the negative terms.

symbol Sorts terms in descending order based on their symbolic length.

This option accepts a comma-separated list of values, allowing up to three values. For
example:

\pdv[sort-method=abs, order={kn-c,2a-3b}]{f}{x,y} ⟹ 𝜕−3𝑏+2𝑎+𝑘𝑛−𝑐𝑓
𝜕𝑥𝑘𝑛−𝑐 𝜕𝑦2𝑎−3𝑏

\pdv[sort-method=lexical, order={kn-c,2a-3b}]{f}{x,y} ⟹ 𝜕2𝑎−3𝑏−𝑐+𝑘𝑛𝑓
𝜕𝑥𝑘𝑛−𝑐 𝜕𝑦2𝑎−3𝑏

\pdv[sort-method=number, order={kn-c,2a-3b}]{f}{x,y} ⟹ 𝜕2𝑎+𝑘𝑛−𝑐−3𝑏𝑓
𝜕𝑥𝑘𝑛−𝑐 𝜕𝑦2𝑎−3𝑏

\pdv[sort-method=symbol, order={kn-c,2a-3b}]{f}{x,y} ⟹ 𝜕𝑘𝑛−𝑐+2𝑎−3𝑏𝑓
𝜕𝑥𝑘𝑛−𝑐 𝜕𝑦2𝑎−3𝑏

\pdv[sort-method=sign, order={kn-c,2a-3b}]{f}{x,y} ⟹ 𝜕𝑘𝑛+2𝑎−𝑐−3𝑏𝑓
𝜕𝑥𝑘𝑛−𝑐 𝜕𝑦2𝑎−3𝑏

\pdv[sort-method={sign,abs}, order={kn-c,2a-3b}]{f}{x,y} ⟹ 𝜕2𝑎+𝑘𝑛−3𝑏−𝑐𝑓
𝜕𝑥𝑘𝑛−𝑐 𝜕𝑦2𝑎−3𝑏

\pdv[sort-method={sign,symbol,abs}, order={kn-c,2a-3b}]{f}{x,y} ⟹ 𝜕𝑘𝑛+2𝑎−3𝑏−𝑐𝑓
𝜕𝑥𝑘𝑛−𝑐 𝜕𝑦2𝑎−3𝑏

Notice the different term ordering achieved with each method. For a more detailed
explanation of this key, see section 6.1 for more information. The default value uses
the three algorithms sign, symbol, abs.
auto, first, last, symbolic autosort-numerical

Updated: v1.0 Determines the placement of the numerical term2 in the mixed order. The placement
options are as follows:

2The numerical term refers to the sum of all orders that consist solely of numbers and do not include
any symbols.

22

first Always places the numerical term as the first term in the mixed order.

last Always places the numerical term as the last term in the mixed order.

auto After sorting, the numerical term is automatically positioned based on the
sign of the first symbolic term. If positive, the numerical term is placed last.
If negative, the numerical term is placed first.

symbolic Treats the numerical term as a symbolic term with a symbolic length of zero
and sorts it alongside all other terms.

Here are some examples to illustrate the different placements of the numerical term:

\pdv[sort-numerical=first, order={n,2}]{f}{x,y} ⟹ 𝜕2+𝑛𝑓
𝜕𝑥𝑛 𝜕𝑦2

\pdv[sort-numerical=last, order={-n,2}]{f}{x,y} ⟹ 𝜕−𝑛+2𝑓
𝜕𝑥−𝑛 𝜕𝑦2

\pdv[sort-numerical=auto, order={n,2}]{f}{x,y} ⟹ 𝜕𝑛+2𝑓
𝜕𝑥𝑛 𝜕𝑦2

\pdv[sort-numerical=auto, order={-n,2}]{f}{x,y} ⟹ 𝜕2−𝑛𝑓
𝜕𝑥−𝑛 𝜕𝑦2

\pdv[sort-numerical=symbolic, order={2+n,-a}]{f}{x,y} ⟹ 𝜕𝑛+2−𝑎𝑓
𝜕𝑥2+𝑛 𝜕𝑦−𝑎

This key is further described in section 6.2. The default value is auto.
true, false falsesort-abs-reverse

When the value true is used with this option, the sorting order is reversed to ascending
order. See section 6.3 for more information.

\pdv[sort-abs-reverse=false, sort-method=abs, order=2a-3b]{f}{x} ⟹ 𝜕−3𝑏+2𝑎𝑓
𝜕𝑥2𝑎−3𝑏

\pdv[sort-abs-reverse=true, sort-method=abs, order=2a-3b]{f}{x} ⟹ 𝜕2𝑎−3𝑏𝑓
𝜕𝑥2𝑎−3𝑏

true, false falsesort-lexical-reverse

New: v1.2 When the value true is used with this option, the sorting order is reversed to lexico-
graphical descending order. See section 6.3 for more information.

\pdv[sort-lexical-reverse=false, sort-method=lexical, order=a+b]{f}{x} ⟹ 𝜕𝑎+𝑏𝑓
𝜕𝑥𝑎+𝑏

\pdv[sort-lexical-reverse=true, sort-method=lexical, order=a+b]{f}{x} ⟹ 𝜕𝑏+𝑎𝑓
𝜕𝑥𝑎+𝑏

23

true, false falsesort-number-reverse

New: v1.0 When the value true is used with this option, the sorting order is reversed to ascending
order. See section 6.3 for more information.

\pdv[sort-number-reverse=false, sort-method=number, order=2a-3b]{f}{x} ⟹ 𝜕2𝑎−3𝑏𝑓
𝜕𝑥2𝑎−3𝑏

\pdv[sort-number-reverse=true, sort-method=number, order=2a-3b]{f}{x} ⟹ 𝜕−3𝑏+2𝑎𝑓
𝜕𝑥2𝑎−3𝑏

true, false falsesort-sign-reverse

When the value true is used with this option, the sorting order is reversed, placing
negative terms before the positive terms. See section 6.3 for more information.

\pdv[sort-sign-reverse=false, sort-method=sign, order=a-b]{f}{x} ⟹ 𝜕𝑎−𝑏𝑓
𝜕𝑥𝑎−𝑏

\pdv[sort-sign-reverse=true, sort-method=sign, order=a-b]{f}{x} ⟹ 𝜕−𝑏+𝑎𝑓
𝜕𝑥𝑎−𝑏

true, false falsesort-symbol-reverse

When the value true is used with this option, the sorting order is reversed to ascending
order. See section 6.3 for more information.

\pdv[sort-symbol-reverse=false, sort-method=symbol, order=ab+c]{f}{x} ⟹ 𝜕𝑎𝑏+𝑐𝑓
𝜕𝑥𝑎𝑏+𝑐

\pdv[sort-symbol-reverse=true, sort-method=symbol, order=ab+c]{f}{x} ⟹ 𝜕𝑐+𝑎𝑏𝑓
𝜕𝑥𝑎𝑏+𝑐

Miscellaneous

true, false falsefun

New: v1.0 This option allows you to add (true) or remove (false) delimiters around the function.
Note that if the option is not explicitly set, it is considered equivalent to fun=true. By
default, the value is false.

\pdv[fun=false]{f}{x} ⟹ 𝜕𝑓
𝜕𝑥

\pdv[fun=true]{f}{x} ⟹ 𝜕(𝑓)
𝜕𝑥

\pdv[fun]{f}{x} ⟹ 𝜕(𝑓)
𝜕𝑥

true, false falsefrac

New: v1.0 This option allows you to add (true) or remove (false) delimiters around the fractional
part of the derivative. Note that if the option is not explicitly set, it is considered
equivalent to frac=true. By default, the value is false.

24

\pdv[frac=false]{f}{x} ⟹ 𝜕𝑓
𝜕𝑥

\pdv[frac=true]{f}{x} ⟹ (𝜕𝑓
𝜕𝑥

)

\pdv*[frac=true]{f}{x} ⟹ (𝜕
𝜕𝑥

)𝑓

\pdv[frac]{f}{x} ⟹ (𝜕𝑓
𝜕𝑥

)

none, all, ⟨cs-numbers⟩ nonevar

New: v1.0 This option allows you to add or remove delimiters around the variables. The value all
adds delimiters around all variables and none removed all delimiters. If only specific
variables require delimiters, you can use ⟨cs-numbers⟩. For example, var={1,3} adds
delimiters around the first and third variables. Note that if the option is not explicitly
set, it is considered equivalent to var=all. By default, the value is none.

\pdv[var=none]{f}{x,y,z,t} ⟹ 𝜕4𝑓
𝜕𝑥 𝜕𝑦 𝜕𝑧 𝜕𝑡

\pdv[var={1,3}]{f}{x,y,z,t} ⟹ 𝜕4𝑓
𝜕(𝑥) 𝜕𝑦 𝜕(𝑧) 𝜕𝑡

\pdv[var=all]{f}{x,y,z,t} ⟹ 𝜕4𝑓
𝜕(𝑥) 𝜕(𝑦) 𝜕(𝑧) 𝜕(𝑡)

\pdv[var]{f}{x,y,z,t} ⟹ 𝜕4𝑓
𝜕(𝑥) 𝜕(𝑦) 𝜕(𝑧) 𝜕(𝑡)

{⟨cs-orders⟩} 1order
ord

New: v1.0

Sets the order of differentiation for each variable as a comma separated list of values.

\pdv[order={2,3}]{f}{x,y,z} ⟹ 𝜕6𝑓
𝜕𝑥2 𝜕𝑦3 𝜕𝑧

\pdv[order={\beta,a,n+2a}]{f}{x,y,z} ⟹ 𝜕3𝑎+𝛽+𝑛𝑓
𝜕𝑥𝛽 𝜕𝑦𝑎 𝜕𝑧𝑛+2𝑎

\pdv[order={2,n^2,n^2-1}]{f}{x,y,z} ⟹ 𝜕2𝑛2+1𝑓
𝜕𝑥2 𝜕𝑦𝑛2 𝜕𝑧𝑛2−1

\pdv[order={3/2-n/3,n/2,1/3}]{f}{x,y,z} ⟹ 𝜕𝑛/6+11/6𝑓
𝜕𝑥3/2−𝑛/3 𝜕𝑦𝑛/2 𝜕𝑧1/3

{⟨mixed order⟩} 1mixed-order
mixord

New: v1.0

This option allows you to manually specify the mixed order of differentiation, overriding
the automatically calculated value based on the orders set by order={⟨orders⟩}. In cases
where the automatic calculation fails or when a different form is preferred, you can use
this option to set the desired mixed order.

25

\pdv[order={n+3k, n-k}]{f}{x,y} ⟹ 𝜕2𝑛+2𝑘𝑓
𝜕𝑥𝑛+3𝑘 𝜕𝑦𝑛−𝑘

\pdv[order={n+3k, n-k}, mixed-order={2(n+k)}]{f}{x,y} ⟹ 𝜕2(𝑛+𝑘)𝑓
𝜕𝑥𝑛+3𝑘 𝜕𝑦𝑛−𝑘

4.4 Differential options
The options in this subsection are available for customizing the behaviour of differentials
defined by the package and you.

Style

⟨math-font-style⟩⟨infinitesimal⟩ dstyle-inf

Sets the infinitesimal used in the differential. The default infinitesimal is a plain d.

\odif[style-inf=\mathbf{d}]{x_1,x_2,x_3} ⟹ d𝑥1 d𝑥2 d𝑥3

single, multiple, mixed multiplestyle-var

Updated: v1.3 This options determines the shorthand notation of the differential when the star
argument is absent assuming switch-*=false.

single Creates a single differential with variables as subscripts and orders as super-
scripts.

multiple Creates a separate differential for each variable.

mixed Creates a separate differential for each variable but with variables as subscripts
and orders as superscripts.

\odif[style-var=multiple, order={n,1,2}]{x,y,z,t} ⟹ d𝑛𝑥 d𝑦 d2𝑧 d𝑡

\odif[style-var=single, order={n,1,2}]{x,y,z,t} ⟹ d𝑛,1,2
𝑥,𝑦,𝑧,𝑡

\odif[style-var=mixed, order={n,1,2}]{x,y,z,t} ⟹ d𝑛
𝑥 d𝑦 d2

𝑧 d𝑡

single, multiple, mixed singlestyle-var-*

Updated: v1.3 This option behaves identically to style-var, however it is used when the star argument
is present assuming switch-*=false.

Scaling

auto, none, big, Big, bigg, Bigg autoscale-var

Sets the size of the delimiters used around the variables specified by the var={…} option
when the star argument is absent assuming switch-*=false. The default behaviour is
to automatically scale the delimiters.

26

\odif[scale-var=none, var]{r,\theta,\varphi} ⟹ d(𝑟) d(𝜃) d(𝜑)

\odif[scale-var=Big, var]{r,\theta,\varphi} ⟹ d(𝑟) d(𝜃) d(𝜑)

auto, none, big, Big, bigg, Bigg autoscale-var-*

Sets the size of the delimiters used around the variables specified by the var={…} option
when the star argument is present assuming switch-*=false. The default behaviour is
to automatically scale the delimiters.

\odif[scale-var-*=auto, var]{r,\theta,\varphi} ⟹ d(𝑟),(𝜃),(𝜑)

\odif[scale-var-*=big, var]{r,\theta,\varphi} ⟹ d(𝑟),(𝜃),(𝜑)

Delimiters

⟨left delimiter⟩⟨right delimiter⟩ ()delims-var

Sets the delimiters used around the variables specified by the var={…} option when
the star argument is absent assuming switch-*=false. The default delimiters are
parentheses.

\odif[delims-var=\{\}, var]{x,y} ⟹ d{𝑥} d{𝑦}
\odif[delims-var=[], var]{x,y} ⟹ d[𝑥] d[𝑦]

⟨left delimiter⟩⟨right delimiter⟩ ()delims-var-*

Sets the delimiters used around the variables specified by the var={…} option when
the star argument is present assuming switch-*=false. The default delimiters are
parentheses.

\odif[delims-var-*=\|\|, var]{x,y} ⟹ d‖𝑥‖,‖𝑦‖

\odif[delims-var-*=\langle\rangle, var]{x,y} ⟹ d⟨𝑥⟩,⟨𝑦⟩

Math spacing and separators

⟨cs-number⟩, {⟨mspace⟩}, {⟨delimiter⟩} \mathop{}\!sep-begin

Sets the separator that is inserted at the beginning of the expression. The default value
is \mathop{}\!.

\odif[sep-begin=\here]{x,y,z} ⟹ ⟨here⟩d𝑥 d𝑦 d𝑧

⟨cs-number⟩, {⟨mspace⟩}, {⟨delimiter⟩} 0sep-inf-ord

Sets the separator that is inserted to the left of the infinitesimal’s power when the
order is different from 1. The default value corresponds to 0 mu.

\odif[sep-inf-ord=\here, order=2]{x,y} ⟹ d⟨here⟩2𝑥 d𝑦

27

⟨cs-number⟩, {⟨mspace⟩}, {⟨delimiter⟩} 0sep-inf-var

Sets the separator that is inserted between the infinitesimal and the following non-blank
variable when the associated order is equal to 1. The key’s default value corresponds
to 0 mu.

\odif[sep-inf-var=\here, order=2]{x,y} ⟹ d2𝑥 d⟨here⟩𝑦

⟨cs-number⟩, {⟨mspace⟩}, {⟨delimiter⟩} 0sep-ord-var

Sets the separator that is inserted between an order and the following non-blank variable
when the order is different from 1. This option is only available when the style is set
to multiple. The default value corresponds to 0 mu.

\odif[sep-ord-var=\here, order=2]{x,y} ⟹ d2⟨here⟩𝑥 d𝑦

⟨cs-number⟩, {⟨mspace⟩}, {⟨delimiter⟩} \mathop{}\!sep-var-inf

Sets the separator that is inserted between a non-blank variable and the following
infinitesimal when more than one non-blank variables are given. The default value is
\mathop{}\!.

\odif[sep-var-inf=\here]{x,y} ⟹ d𝑥⟨here⟩d𝑦

⟨cs-number⟩, {⟨mspace⟩}, {⟨delimiter⟩} ,sep-var-var

Sets the separator that is inserted between two variables when more than one non-blank
variables are given. This option is only available when the style is set to single. The
default value is a comma.

\odif*[sep-var-var=\here]{x,y} ⟹ d𝑥⟨here⟩𝑦

⟨cs-number⟩, {⟨mspace⟩}, {⟨delimiter⟩} ,sep-ord-ord

Sets the separator that is inserted between two orders that are both not equal to 1.
This option is only available when the style is set to single. The default value is a
comma.

\odif*[sep-ord-ord=\here, order={2,n}]{x,y} ⟹ d2⟨here⟩𝑛
𝑥,𝑦

⟨cs-number⟩, {⟨mspace⟩}, {⟨delimiter⟩} 0sep-end

Sets the separator that is inserted at the end of the expression. The default value
corresponds to 0 mu.

\odif[sep-end=\here]{x,y} ⟹ d𝑥 d𝑦⟨here⟩

28

Switches

true, false falseswitch-*

The effect of the star argument can be toggled with the value true. For example,
compare below where the option is disabled (false) and enabled (true). The default
value is false.

\odif[switch-*=false]{x,y,z,t} ⟹ d𝑥 d𝑦 d𝑧 d𝑡
\odif[switch-*=true]{x,y,z,t} ⟹ d𝑥,𝑦,𝑧,𝑡

Miscellaneous

none, all, ⟨cs-numbers⟩ nonevar

This option allows you to add or remove delimiters around the variables. The value all
adds delimiters around all variables and none removed all delimiters. If only specific
variables require delimiters, you can use ⟨cs-numbers⟩. For example, var={1,3} adds
delimiters around the first and third variables. Note that if the option is not explicitly
set, it is considered equivalent to all. By default, the value is none.

\odif[var=none]{x,y,z,t} ⟹ d𝑥 d𝑦 d𝑧 d𝑡
\odif[var={1,3}]{x,y,z,t} ⟹ d(𝑥) d𝑦 d(𝑧) d𝑡
\odif[var=all]{x,y,z,t} ⟹ d(𝑥) d(𝑦) d(𝑧) d(𝑡)

\odif[var]{x,y,z,t} ⟹ d(𝑥) d(𝑦) d(𝑧) d(𝑡)

{⟨cs-orders⟩} 1order
ord Sets the order of differentiation for each variable as a comma separated list of values.

\odif[order={2,3}]{x,y,z} ⟹ d2𝑥 d3𝑦 d𝑧

\odif[order={\beta,a,n+2a}]{x,y,z} ⟹ d𝛽𝑥 d𝑎𝑦 d𝑛+2𝑎𝑧

4.5 All derivatives and differentials
The options in this subsection are applied to all derivatives and differentials because they
define settings that should be consistent regardless of the specific derivative or differen-
tial. These options can be accessed using the command \derivset{all}[⟨key=value⟩].

The options in this subsection are applied to all derivatives and differential because
some options should be consisting regardless of the derivative and differential. The
options are accessed using \derivset{all}[⟨key=value⟩].

\derivset{all}[key=value]

leftright, mleftmrightR leftright or mleftmrightRscale-auto

Updated: v1.1 Sets the automatic delimiter scaling commands. The value leftright sets them as
\left and \right while mleftmright sets them as \mleft and \mright from the mleftrigth
package. The default value is leftright unless mleftright is loaded, in which case it is
mleftmright.

29

\derivset{all}[scale-auto=leftright] a \pdv[frac]{f}{x} a ⟹ 𝑎 (𝜕𝑓
𝜕𝑥

) 𝑎

\derivset{all}[scale-auto=mleftmright] a \pdv[frac]{f}{x} a ⟹ 𝑎(𝜕𝑓
𝜕𝑥

)𝑎

Notice the space difference between the a’s and the parentheses in the two equations.

30

5 Defining variants
This section goes into detail on how to define derivative and differential variants based
on the package’s internal commands. The derivative package provides a LATEX 2𝜀-based
approach to defining derivatives and differentials.

5.1 Derivative variant
⟨control-sequence⟩{⟨infinitesimal⟩}[⟨key=value⟩]\NewDerivative

\RenewDerivative
\ProvideDerivative
\DeclareDerivative

This family of commands is used to define a derivative variant with the macro name
⟨control-sequence⟩.

• \NewDerivative will issue an error if ⟨control-sequence⟩ has already been defined.

• \RenewDerivative will issue an error if ⟨control-sequence⟩ has not previously been
defined.

• \ProvideDerivative will define ⟨control-sequence⟩ if it does not have an existing
definition. It will not issue any errors.

• \DeclareDerivative will always define the ⟨control-sequence⟩ with the new defini-
tion regardless of whether it already exists.

Examples of their use can be found in section 2.
The first argument specifies the macro name of the derivative being defined.⟨control-sequence⟩

The second argument sets the infinitesimal of the derivative ⟨control-sequence⟩. It is{⟨infinitesimal⟩}
equivalent to setting style-inf={⟨infinitesimal⟩}.
The optional argument accepts a comma-separated list of key=value pairs, allowing you[⟨key=value⟩]
to override the package’s default values for the keys given. If the optional argument is
omitted, the derivative will use the package’s default settings.

5.2 Differential variant
⟨control-sequence⟩{⟨infinitesimal⟩}[⟨key=value⟩]\NewDifferential

\RenewDifferential
\ProvideDifferential
\DeclareDifferential

This family of commands is used to define a differential variant with the macro name
⟨control-sequence⟩.

• \NewDifferential will issue an error if ⟨control-sequence⟩ has already been defined.

• \RenewDifferential will issue an error if ⟨control-sequence⟩ has not previously been
defined.

• \ProvideDifferential will define ⟨control-sequence⟩ if it does not have an existing
definition. It will not issue any errors.

• \DeclareDifferential will always define the ⟨control-sequence⟩ with the new defin-
ition regardless of whether it already exists.

31

Examples of their use can be found in section 3.
The first argument specifies the macro name of the differential being defined.⟨control-sequence⟩

The second argument sets the infinitesimal of the differential ⟨control-sequence⟩. It is{⟨infinitesimal⟩}
equivalent to setting style-inf={⟨infinitesimal⟩}.
The optional argument accepts a comma-separated list of {key=value} pairs, allowing[⟨key=value⟩]
you to override the package’s default values for the keys given. If the optional argument
is omitted, the derivative will use the package’s default settings.

32

6 The mixed order
The algorithm used to calculate the mixed order is advanced and can handle a wide
range of inputs, including numbers, symbols and fractions. It accurately parses the
orders to generate the appropriate mixed order. Let’s consider some examples to
illustrate its capabilities:

\pdv[order={n+1,2}]{f}{x,y} ⟹ 𝜕𝑛+3𝑓
𝜕𝑥𝑛+1 𝜕𝑦2

\pdv[order={n+1,2n}]{f}{x,y} ⟹ 𝜕3𝑛+1𝑓
𝜕𝑥𝑛+1 𝜕𝑦2𝑛

\pdv[order={n^2,n^2}]{f}{x,y} ⟹ 𝜕2𝑛2𝑓
𝜕𝑥𝑛2 𝜕𝑦𝑛2

\pdv[order={2/n-1/2, 3/n+m/3}]{f}{x,y,z} ⟹ 𝜕𝑚/3+5/𝑛+1/2𝑓
𝜕𝑥2/𝑛−1/2 𝜕𝑦3/𝑛+𝑚/3 𝜕𝑧

The algorithm handles these cases and calculates the mixed order correctly. However,
there are certain limitations when dealing with parentheses, except for a specific case
where there is a single term in the denominator.

\pdv[order={2/n-1/2, 3/(2n)+m/3}]{f}{x,y} ⟹ 𝜕7/(2𝑛)+𝑚/3−1/2𝑓
𝜕𝑥2/𝑛−1/2 𝜕𝑦3/(2𝑛)+𝑚/3

\pdv[order={(2n+m)/3, 3n+m/3}]{f}{x,y} ⟹ 𝜕𝑚)/3+(2𝑛+𝑚/3+3𝑛𝑓
𝜕𝑥(2𝑛+𝑚)/3 𝜕𝑦3𝑛+𝑚/3

\pdv[order={2/(2n+m), 1/(2(2n+m))}]{f}{x,y} ⟹ 𝜕1/(2(2𝑛+2/(2𝑛+𝑚))+𝑚)𝑓
𝜕𝑥2/(2𝑛+𝑚) 𝜕𝑦1/(2(2𝑛+𝑚))

In the third equation, the mixed order doesn’t make sense because the algorithm splits
up the orders at + and − within parentheses without evaluating them correctly. For
example, 2/(2𝑛 + 𝑚), 1/(2(2𝑛 + 𝑚)) is incorrectly split into 2/(2𝑛, 𝑚), 1/(2(2𝑛, 𝑚)).
The same happens in the second equation. To address this limitation, the package
provides the mixed-order option, which overrides the incorrect output. You can specify
the desired mixed order manually.

\pdv[order={(2n+m)/3, 3n+m/3}, mixord=8n/3+2m/3]{f}{x,y} ⟹ 𝜕8𝑛/3+2𝑚/3𝑓
𝜕𝑥(2𝑛+𝑚)/3 𝜕𝑦3𝑛+𝑚/3

\pdv[order={2/(2n+m), 1/(2(2n+m))}, mixord=5/(2(2n+m))]{f}{x,y} ⟹ 𝜕5/(2(2𝑛+𝑚))𝑓
𝜕𝑥2/(2𝑛+𝑚) 𝜕𝑦1/(2(2𝑛+𝑚))

By using the mixed-order option, you can ensure that the mixed order is displayed
correctly, even when the algorithm’s output may be incorrect or when a different form
is preferred.

33

6.1 Sorting algorithms
A unique feature of this package is that the sorting method behind the mixed order may
be changed using built-in algorithms. These algorithms are designed to offer variety of
ways to sort the mixed order according to ones preferences.

abs Sorts terms based on their absolute value in descending order. By setting
sort-abs-reverse=true, terms are sorted in ascending order instead.

lexical Sorts the terms alphabetically in lexicographical order. By setting sort-
lexical-reverse=true, terms are sorted in reverse lexicographical order.

number Sorts terms based on their numerical value in descending order. By setting
sort-number-reverse=true, terms are sorted in ascending order instead.

sign Sorts terms by their sign, placing positive terms before negative terms. By
setting, sort-sign-reverse=true, places negative terms before positive terms.

symbol Sorts terms in descending order based on their symbolic length. By setting
sort-symbol-reverse=true, terms are sorted in ascending order instead.

The sorting method allows up to three algorithms given by sort-method={algorithm1,
algorithm2, algorithm3}. The list of orders is primarily sorted based on algorithm 1’s
condition. In case of ties, algorithm 2 is used for further sorting, and so on.

Consider the list {a,-c,-b,d} and the sorting method sort-method={sign,lexical}.
Initially, the sign algorithm sorts the list as {a,d,-c,-b}. However, due to ties, other
valid orderings exist like {d,a,-c,-b}, {a,d,-b,-c} and {d,a,-b,-c}. Subsequently,
the lexical algorithm sorts the tied values alphabetically as {a,d,-b,-c}.

6.1.1 Examples

The examples below use partial derivatives with order={3a-3hh-2b, 4c+4gg+2ff, -5d-
5ee}, along with a close-up view of the mixed order. Square brackets indicate how the
terms was sorted by the applied algorithm. ‘Positive’ and ‘negative’, ‘long’ and ‘short’,
and ‘big’ and ‘low’ refer to the sign, symbol, and abs algorithms, respectively.

The default sorting method is sort-method={sign,symbol,abs} which is used below.
The sign algorithm separate the positive and negative terms. Within each group, the
symbol algorithm sorts the terms based on symbolic length. Finally, In the resulting
four groups, the abs algorithm sorts the terms based on absolute value.

𝜕4𝑔𝑔+2𝑓𝑓+4𝑐+3𝑎−5𝑒𝑒−3ℎℎ−5𝑑−2𝑏𝑓
𝜕𝑥3𝑎−3ℎℎ−2𝑏 𝜕𝑦4𝑐+4𝑔𝑔+2𝑓𝑓 𝜕𝑧−5𝑑−5𝑒𝑒

4𝑔𝑔⎵
big

+ 2𝑓𝑓⎵
low⎵⎵⎵⎵

long

+ 4𝑐⎵
big

+ 3𝑎⎵
low⎵⎵⎵

short⎵⎵⎵⎵⎵⎵⎵⎵⎵
positive

− 5𝑒𝑒⎵
big

− 3ℎℎ⎵
low⎵⎵⎵⎵

long

− 5𝑑⎵
big

− 2𝑏⎵
low⎵⎵⎵

short⎵⎵⎵⎵⎵⎵⎵⎵⎵
negative

34

By interchanging the sign and symbol algorithm in the previous example, then the
symbol algorithm will be applied first and the sign algorithm handles the symbolic ties.

𝜕4𝑔𝑔+2𝑓𝑓−5𝑒𝑒−3ℎℎ+4𝑐+3𝑎−5𝑑−2𝑏𝑓
𝜕𝑥3𝑎−3ℎℎ−2𝑏 𝜕𝑦4𝑐+4𝑔𝑔+2𝑓𝑓 𝜕𝑧−5𝑑−5𝑒𝑒

4𝑔𝑔⎵
big

+ 2𝑓𝑓⎵
low⎵⎵⎵⎵

positive

− 5𝑒𝑒⎵
big

− 3ℎℎ⎵
low⎵⎵⎵⎵

negative⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
long

+ 4𝑐⎵
big

+ 3𝑎⎵
low⎵⎵⎵

positive

− 5𝑑⎵
big

− 2𝑏⎵
low⎵⎵⎵

negative⎵⎵⎵⎵⎵⎵⎵⎵
short

In contrast to the previous two examples with three algorithms, this example uses a
sorting method with two algorithms: sort-method={sign,symbol}. The terms are first
sorted by sign and then by symbolic length.

𝜕4𝑔𝑔+2𝑓𝑓+3𝑎+4𝑐−3ℎℎ−5𝑒𝑒−2𝑏−5𝑑𝑓
𝜕𝑥3𝑎−3ℎℎ−2𝑏 𝜕𝑦4𝑐+4𝑔𝑔+2𝑓𝑓 𝜕𝑧−5𝑑−5𝑒𝑒

4𝑔𝑔 + 2𝑓𝑓⎵⎵⎵⎵
long

+ 3𝑎 + 4𝑐⎵⎵⎵
short⎵⎵⎵⎵⎵⎵⎵⎵

positive

− 3ℎℎ − 5𝑒𝑒⎵⎵⎵⎵
long

− 2𝑏 − 5𝑑⎵⎵⎵
short⎵⎵⎵⎵⎵⎵⎵⎵

negative

In the last example, a sorting method with a single algorithm, sort-method=symbol, is
used.

𝜕−3ℎℎ+4𝑔𝑔+2𝑓𝑓−5𝑒𝑒+3𝑎−2𝑏+4𝑐−5𝑑𝑓
𝜕𝑥3𝑎−3ℎℎ−2𝑏 𝜕𝑦4𝑐+4𝑔𝑔+2𝑓𝑓 𝜕𝑧−5𝑑−5𝑒𝑒

− 3ℎℎ + 4𝑔𝑔 + 2𝑓𝑓 − 5𝑒𝑒⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
long

+ 3𝑎 − 2𝑏 + 4𝑐 − 5𝑑⎵⎵⎵⎵⎵⎵⎵
short

6.2 Treating the numerical term
After handling the symbolic part of the mixed order, we now turn our attention to
the numerical term2, which has a symbolic length of zero. For this reason it is treated
differently than the symbolic terms. It can be placed either at the beginning or at the
end of the mixed order by first and last, respectively. Alternatively, it is automatically
positioned in the mixed order using auto. Setting sort-numerical=symbolic, treats the
numerical term as a symbolic term. Its behaviour is determined by the chosen algorithms
in sort-method={…}. In this example the sort method is the default value of the package.

sort-numerical=auto:
𝜕𝛽+2𝑓

𝜕𝑥𝛽 𝜕𝑦2
𝜕𝛽−2𝑓

𝜕𝑥𝛽 𝜕𝑦−2
𝜕2−𝛽𝑓

𝜕𝑥−𝛽 𝜕𝑦2
𝜕−2−𝛽𝑓

𝜕𝑥−𝛽 𝜕𝑦−2

sort-numerical=first:
𝜕2+𝛽𝑓

𝜕𝑥𝛽 𝜕𝑦2
𝜕−2+𝛽𝑓

𝜕𝑥𝛽 𝜕𝑦−2
𝜕2−𝛽𝑓

𝜕𝑥−𝛽 𝜕𝑦2
𝜕−2−𝛽𝑓

𝜕𝑥−𝛽 𝜕𝑦−2

sort-numerical=last:
𝜕𝛽+2𝑓

𝜕𝑥𝛽 𝜕𝑦2
𝜕𝛽−2𝑓

𝜕𝑥𝛽 𝜕𝑦−2
𝜕−𝛽+2𝑓

𝜕𝑥−𝛽 𝜕𝑦2
𝜕−𝛽−2𝑓

𝜕𝑥−𝛽 𝜕𝑦−2

sort-numerical=symbolic:
𝜕𝛽+2𝑓

𝜕𝑥𝛽 𝜕𝑦2
𝜕𝛽−2𝑓

𝜕𝑥𝛽 𝜕𝑦−2
𝜕2−𝛽𝑓

𝜕𝑥−𝛽 𝜕𝑦2
𝜕−𝛽−2𝑓

𝜕𝑥−𝛽 𝜕𝑦−2

35

6.3 Reversing the sort algorithm
The reverse keys serves to reverse the sorting algorithms’ ordering, providing more
flexibility over the sorting method. If the default ordering of an algorithm is not
preferred it may be reversed with the corresponding reverse key. The examples below
showcase the reverse functionality. Note that sort-method={1 algorithm only} is also
used to better demonstrate the reverse feature, where the algorithm is the one used in
the reverse key.

sort-abs-reverse=false:
𝜕−3𝑏+2𝑎𝑓

𝜕𝑥2𝑎 𝜕𝑦−3𝑏 sort-abs-reverse=true:
𝜕2𝑎−3𝑏𝑓

𝜕𝑥2𝑎 𝜕𝑦−3𝑏

sort-number-reverse=false:
𝜕2𝑎−3𝑏𝑓

𝜕𝑥2𝑎 𝜕𝑦−3𝑏 sort-number-reverse=true:
𝜕−3𝑏+2𝑎𝑓

𝜕𝑥2𝑎 𝜕𝑦−3𝑏

sort-sign-reverse=false:
𝜕𝑎−𝑏𝑓

𝜕𝑥𝑎 𝜕𝑦−𝑏 sort-sign-reverse=true:
𝜕−𝑏+𝑎𝑓

𝜕𝑥𝑎 𝜕𝑦−𝑏

sort-symbol-reverse=false:
𝜕𝑎𝑏+𝑐𝑓

𝜕𝑥𝑎𝑏 𝜕𝑦𝑐 sort-symbol-reverse=true:
𝜕𝑐+𝑎𝑏𝑓

𝜕𝑥𝑎𝑏 𝜕𝑦𝑐

sort-lexical-reverse=false:
𝜕𝑎+𝑏+𝑐𝑓

𝜕𝑥𝑎 𝜕𝑦𝑐 𝜕𝑧𝑏 sort-lexical-reverse=true:
𝜕𝑐+𝑏+𝑎𝑓

𝜕𝑥𝑎 𝜕𝑦𝑐 𝜕𝑧𝑏

36

7 Miscellaneous
7.1 Slashfrac
[⟨scale⟩]{⟨numerator⟩}{⟨denominator⟩}\slashfrac

The text-styled fraction, 𝑎/𝑏 , is commonly used in text-mode. While \slashfrac{a}{b}
requires more keystrokes to write than a/b, a macro is needed for implementing
text-styled derivatives.
The optional argument serves as the scaling parameter for the solidus and accepts the[⟨scale⟩]
following inputs:

\slashfrac{y_f}{x} ⟹ 𝑦𝑓/𝑥

\slashfrac[auto]{y_f}{x} ⟹ 𝑦𝑓/𝑥

\slashfrac[none]{y_f}{x} ⟹ 𝑦𝑓/𝑥

\slashfrac[big]{y_f}{x} ⟹ 𝑦𝑓/𝑥

\slashfrac[Big]{y_f}{x} ⟹ 𝑦𝑓/𝑥

\slashfrac[bigg]{y_f}{x} ⟹ 𝑦𝑓/𝑥

\slashfrac[Bigg]{y_f}{x} ⟹ 𝑦𝑓/𝑥

Omitting [⟨scale⟩] sets the scaling parameter to auto.
Typesets the fraction’s numerator.{⟨numerator⟩}

Typesets the fraction’s denominator.{⟨denominator⟩}

37

Index
Numbers in bold refer to the page where the entry is defined.

Index of Options

delims
delims-eval, 17
delims-eval-!, 17
delims-eval-/, 17
delims-frac, 18
delims-frac-/, 18
delims-fun, 17
delims-var, 18, 27
delims-var-!, 18
delims-var-*, 27

misc
frac, 17, 18, 24
fun, 16, 17, 24
italic, 7, 9, 10, 13
mixed-order, 25, 33
mixord, 25
ord, 25, 29
order, 4, 15, 25, 25, 29, 34
upright, 7, 9, 10, 13
var, 25, 29

scale
scale-auto, 29
scale-eval, 16
scale-eval-!, 16
scale-eval-/, 16
scale-frac, 17
scale-frac-/, 17
scale-fun, 16
scale-var, 16, 26
scale-var-!, 16
scale-var-*, 27
sep
sep-begin, 27
sep-end, 28
sep-eval-sb, 20

sep-eval-sp, 20
sep-frac-fun, 19
sep-inf-fun, 19
sep-inf-ord, 18, 27
sep-inf-var, 19, 28
sep-ord-fun, 19
sep-ord-inf, 20
sep-ord-ord, 20, 28
sep-ord-var, 20, 28
sep-var-inf, 19, 28
sep-var-ord, 19
sep-var-var, 20, 28
sort
sort-abs-reverse, 23, 34
sort-lexical-reverse, 23, 34
sort-method, 22, 34, 35
sort-number-reverse, 24, 34
sort-numerical, 22, 35
sort-sign-reverse, 24, 34
sort-symbol-reverse, 24, 34
style
style-frac, 14
style-frac-/, 14
style-inf, 14, 26, 31, 32
style-inf-den, 14
style-inf-num, 14
style-var, 14, 26
style-var-!, 15
style-var-*, 26
style-var-/, 15
style-var-/!, 15
switch
switch-!, 5, 14–18, 21
switch-*, 4, 9, 21, 26, 27, 29
switch-/, 5, 14–18, 21
switch-sort, 21

38

Index of Commands

A
\adif, 10, 11
\adv, 6, 7

D
\DeclareDerivative, 31, 31
\DeclareDifferential, 31, 31
\derivset, 12, 12, 29

F
\fdif, 10, 10
\fdv, 6, 7

J
\jdv, 6, 8

M
\mdif, 9, 10
\mdv, 6, 7

N
\NewDerivative, 31, 31
\NewDifferential, 31, 31

O
\odif, 9, 9
\odv, 6, 7, 12

P
\ProvideDerivative, 31, 31
\ProvideDifferential, 31, 31
\pdif, 9, 10, 10
\pdv, 4, 4, 5

R
\RenewDerivative, 31, 31
\RenewDifferential, 31, 31

S
\slashfrac, 37, 37

39

Change history
• First release of the package. The package is currently in a beta version.v0.9

2019-07-21
Beta

• Please ignore this version, since it contained the wrong .sty and .pdf files :(.v0.95
2019-09-18

Beta • Removed the single token restriction on the infinitesimal since it was unnecessary.
• Fixed documentation errors and typos.
• Made minor fixes to the code.

• Contains the correct .sty and .pdf files :).v0.95b
2019-09-21

Beta • Made one minor code fix.

• Fixed the issue with double superscript for higher-order derivatives when thev0.96
2019-12-22

Beta variable contained a superscript.

• Fixed the argument specifier of __deriv_scale_big:nnnn when it was used (itv0.97
2020-02-03

Beta was used with :nnnm).

• Fixed a bug related to the subscript argument caused by recent changes to thev0.98
2020-07-20

Beta xparse package dated 2020-05-14 (the fix also works with earlier versions of xparse).

• Added new options for derivatives.v1.0
2021-05-25

• Added new values for existing options.
• Added new commands for writing differentials.
• Changed the usage of style-inf.
• Changed the order argument to an option argument.
• Adjusted default values for certain options.
• Expanded math space keys to accept more general inputs.
• Changed \derivset to define default options.
• Merged the codes for ordinary and partial derivatives.
• Removed the mixed order argument.
• Removed the options misc-add-delims and misc-remove-delims.
• Replaced the commands in section 5 with new ones, as the old ones are deprecated.
• Code clean-up and optimization.
• Fixed code errors.

40

• Fixed documentation errors.
• Improved support for preventing options affecting nested derivatives/differentials.

• Changed the default value of the option sep-end due to issues.v1.01
2021-05-28

• Fixed code errors due to changes introduced in version 1.0 to the option style-inf.
• Fixed documentation errors.

• Added package options to be used with \usepackage[⟨options⟩]{derivative}.v1.1
2021-06-03

• Removed the hidden dependency on unicode-math when using XƎTEX or LuaTEX.
• Replaced \symup with \mathrm for simplicity.
• If mleftright is loaded, the default value of scale-auto is set to mleftmright.

• Code clean-up and optimisation that significantly speeds up usage of the package.v1.2
2022-07-09

• Added new a sorting algorithm sort-method=lexical, which sorts terms alpha-
betically.

• Added the option sort-lexical-reverse to reverse the alphabetical sorting order.
• Added the option switch-sort to enable/disable the sorting algorithm for the

mixed order.
• Fixed a bug related to scale-⟨…⟩=none when the corresponding delimiter option

contained a period.
• Fixed documentation errors.

• Code clean-up and minor optimisation.v1.3
2023-07-26

• Fixed documentation errors.
• Updated documentation to include more examples.
• Enhanced the algorithm that automatically calculates the mixed order to support

fractional calculus.
• Introduced a new argument, !, for derivatives to enable shorthand notation.
• Added new options style-inf-den. and style-inf-num to set the infinitesimals

in the denominator and numerator, respectively.
• Added new options style-var-/, style-var-! and style-var-/! to set the style

of the derivatives.
• Added new options scale-var-! and delims-var-! for variable delimiters in

shorthand mode.
• Added new options scale-eval-! and delims-eval-! for evaluation delimiters in

shorthand mode.

• Fixed issue relating to the order when nesting derivatives (issues #14).v1.31
2023-11-04

• Introduced implicit order parameter to simplify specifying the order of differenti-v1.4
2024-02-08 ation, for example: \pdv[n,2]{f}{x,y} (issues #2 and #10).

41

	1 Introduction
	2 Derivative
	2.1 Other derivatives

	3 Differentials
	3.1 Other differentials

	4 Options
	4.1 Categories
	4.2 Package options
	4.3 Derivative options
	4.4 Differential options
	4.5 All derivatives and differentials

	5 Defining variants
	5.1 Derivative variant
	5.2 Differential variant

	6 The mixed order
	6.1 Sorting algorithms
	6.1.1 Examples

	6.2 Treating the numerical term
	6.3 Reversing the sort algorithm

	7 Miscellaneous
	7.1 Slashfrac

	Index
	Index of Options
	Index of Commands

	Change history

