The csvsimple-legacy package
Manual for version 2.7.0 (2024/09/27)

Thomas F. Sturm'

https://www.ctan.org/pkg/csvsimple
https://github.com/T-F-S /csvsimple

Abstract

csvsimple(-legacy) provides a simple ETEX interface for the processing of files
with comma separated values (CSV). csvsimple-legacy relies heavily on the key
value syntax from pgfkeys which results in an easy way of usage. Filtering and table
generation is especially supported. Since the package is considered as a lightweight
tool, there is no support for data sorting or data base storage.

Actually, csvsimple-legacy is identical to the old version 1.22 (2021/06/07)
of csvsimple. It is superseded by csvsimple-13, a I¥TEX3 implementation of
csvsimple which is a nearly drop-in for the erstwhile implementation.

e If you are a new user or an experienced user of csvsimple creating a new
document, you are encouraged to turn to csvsimple-13, see
«The csvsimple-13 package»

e If you used csvsimple before version 2.00 in one or many documents, there
is no need to change anything. Loading csvsimple without options loads
csvsimple-legacy. csvsimple-legacy will be maintained to stay func-
tional as it is for the sake of compatibility to old documents.

o Differences between csvsimple-legacy and csvsimple-13 are discussed in
«The csvsimple package».

IProf. Dr. Dr. Thomas F. Sturm, Institut fiir Mathematik und Informatik, University of the Bundeswehr
Munich, D-85577 Neubiberg, Germany; email: thomas.sturm@unibw.de

https://www.ctan.org/pkg/csvsimple
https://github.com/T-F-S/csvsimple
mailto:thomas.sturm@unibw.de

Contents

1 Introduction
1.1 Loading the Package L

1.2 First Steps

2 Macros for the Processing of CSV Files

3 Option Keys
Command Definition L Lo
Header Processing and Column Name Assignment
Consistency Check o . L L

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

Filtering .

Table Support e
Special Characters e e e

Separators

Miscellaneous e

Sorting . .

4 String Tests

5 Examples
5.1 A Serial Letter e e e e
5.2 A Graphical Presentation o
5.3 Macro code inside thedata
5.4 Tables with Number Formatting
5.5 CSV data without header line
5.6 Imported CSV data e
5.7 Emncodingo e e e

Index

w

14
14
16
17
18
20
21
22
23
24

29

30
30
32
36
37
40
42
43

45

1 Introduction

The csvsimple-legacy package is applied to the processing of CSV? files. This processing is
controlled by key value assignments according to the syntax of pgfkeys. Sample applications of
the package are tabular lists, serial letters, and charts.

An alternative to csvsimple-legacy is the datatool package which provides considerably more
functions and allows sorting of data by INTEX. csvsimple-legacy has a different approach for
the user interface and is deliberately restricted to some basic functions with fast processing
speed.

Mind the following restrictions:

e Sorting is not supported directly but can be done with external tools, see Section 3.9 on
page 24.

e Values are expected to be comma separated, but the package provides support for other
separators, see Section 3.7 on page 22.

e Values are expected to be either not quoted or quoted with curly braces {} of TEX groups.
Other quotes like doublequotes are not supported directly, but can be achieved with ex-
ternal tools, see Section 5.6 on page 42.

e Every data line is expected to contain the same amount of values. Unfeasible data lines
are silently ignored by default, but this can be configured, see Section 3.3 on page 17.

1.1 Loading the Package

The package csvsimple-legacy loads the packages pgfkeys, etoolbox, and ifthen.
csvsimple-legacy itself is loaded with one of the following alternatives inside the preamble:

\usepackage{csvsimple}

% or alternatively (not simultaneously!)
\usepackage [legacy]{csvsimple}

% or alternatively (not simultaneously!)
\usepackage{csvsimple-legacy}

Not automatically loaded, but used for many examples are the packages longtable and
booktabs.

208V file: file with comma separated values.

1.2 First Steps

Every line of a processable CSV file has to contain an identical amount of comma?® separated
values. The curly braces {} of TEX groups can be used to mask a block which may contain
commas not to be processed as separators.

The first line of such a CSV file is usually but not necessarily a header line which contains the
identifiers for each column.

CSV file «grade.csv»

name,givenname,matriculation,gender,grade
Maier,Hans,12345,m,1.0
Huber,Anna,23456,f,2.3
WeiBlback,Werner,34567,m,5.0
Bauer,Maria,19202,f,3.3

The most simple way to display a CSV file in tabular form is the processing with the

\csvautotabular 'Y command.
4 N
\csvautotabular{grade.csv}
name givenname | matriculation | gender | grade
Maier Hans 12345 m 1.0
Huber Anna 23456 f 2.3
Weiflback | Werner 34567 m 5.0
Bauer Maria 19202 f 3.3

P

Typically, one would use \csvreader "I ® instead of \csvautotabular to gain full control over

the interpretation of the included data.

In the following example, the entries of the header line are automatically assigned to TEX macros
which may be used deliberately.

\begin{tabular}{|1lc|}\hlineJ,
\bfseries Person & \bfseries Matr.~No.
\csvreader [head to column names]{grade.csv}{}/
{\\\givenname\ \name & \matriculationl},
\\\hline
\end{tabular}
Person Matr. No.
Hans Maier 12345
Anna Huber 23456
Werner Weif3back 34567
Maria Bauer 19202

3See /csv/separator ~T 2?2 for other separators than comma.

\csvreader is controlled by a plenty of options. For example, for table applications line breaks
are easily inserted by /csv/late after line "', This defines a macro execution just before
the following line. Additionally, the assignment of columns to TEX macros is shown in a non
automated way.

4

\begin{tabular}{|r|1llc|}\hliney,

& Person & Matr.~No.\\\hline\hline

\csvreader[late after line=\\\hlinel/,
{grade.csv}{name=\name,givenname=\firstname,matriculation=\matnumber}y,
{\thecsvrow & \firstname~\name & \matnumber}/,

\end{tabular}
‘ ‘ Person ‘ Matr. No. ‘
1 | Hans Maier 12345
2 | Anna Huber 23456
3 | Werner Weiflback 34567
4 | Maria Bauer 19202

\ /

An even more comfortable and preferrable way to create a table is setting appropriate option
keys. Note, that this gives you the possibility to create a pgfkeys style which contains the whole
table creation.

4

\csvreader [tabular=|r|llc]l,
table head=\hline & Person & Matr.~No.\\\hline\hline,
late after line=\\\hlinelJ
{grade.csv}{name=\name,givenname=\firstname,matriculation=\matnumber}j,
{\thecsvrow & \firstname~\name & \matnumber}J,

‘ ‘ Person ‘ Matr. No. ‘
1 | Hans Maier 12345
2 | Anna Huber 23456
3 | Werner Weiflback 34567
4 | Maria Bauer 19202

The next example shows such a style definition with the convenience macro \csvstyle " 11

Here, we see again the automated assignment of header entries to column names by /csv/head
to column names 0. For this, the header entries have to be without spaces and special
characters. But you can always assign entries to canonical macro names by hand like in the
examples above. Here, we also add a /csv/head to column names prefix 10 to avoid macro
name clashes.

/

\csvstyle{myTableStyle}{tabular=|r|1l|cl,
table head=\hline & Person & Matr.-~No.\\\hline\hline,
late after line=\\\hline,
head to column names,
head to column names prefix=MY,

}

\csvreader [myTableStyle]{grade.csv}{}/
{\thecsvrow & \MYgivenname~\MYname & \MYmatriculation}J,

‘ ‘ Person ‘ Matr. No. ‘
1 | Hans Maier 12345
2 | Anna Huber 23456
3 | Werner Weiflback 34567
4 | Maria Bauer 19202

Another way to address columns is to use their roman numbers. The direct addressing is done
by \csvcoli, \csvcolii, \csvcoliii, ...:

/ N\

\csvreader [tabular=|r|l]lc]l,
table head=\hline & Person & Matr.~No.\\\hline\hline,
late after line=\\\hline]
{grade.csv}{}/
{\thecsvrow & \csvcolii~\csvcoli & \csvcoliiil},

‘ ‘ Person ‘ Matr. No. ‘
1 | Hans Maier 12345
2 | Anna Huber 23456
3 | Werner Weiflbéack 34567
4 | Maria Bauer 19202

And yet another method to assign macros to columns is to use arabic numbers for the assignment:

4 N

\csvreader[tabular=|r|l|cl,
table head=\hline & Person & Matr.-~No.\\\hline\hline,
late after line=\\\hlinelY,
{grade.csv}{1=\name, 2=\firstname,3=\matnumber}j,
{\thecsvrow & \firstname~\name & \matnumber}/,

‘ ‘ Person ‘ Matr. No. ‘
1 | Hans Maier 12345
2 | Anna Huber 23456
3 | Werner Weiflbiack 34567
4 | Maria Bauer 19202

For recurring applications, the pgfkeys syntax allows to create own styles for a consistent
and centralized design. The following example is easily modified to obtain more or less option
settings.
4 N
\csvset{myStudentList/.style={/,

tabular=|r|llcl,

table head=\hline & Person & #1\\\hline\hline,

late after line=\\\hline,

column names={name=\name,givenname=\firstname}

13

\csvreader [myStudentList={Matr.~No.}]{grade.csv}{matriculation=\matnumber}y,
{\thecsvrow & \firstname~\name & \matnumber}j,

\hfill%

\csvreader [myStudentList={Grade}]{grade.csv}{grade=\grade}/

{\thecsvrow & \firstname~\name & \gradel/,

‘ ‘ Person ‘ Matr. No. ‘ ‘ ‘ Person ‘ Grade ‘
1 | Hans Maier 12345 1 | Hans Maier 1.0
2 | Anna Huber 23456 2 | Anna Huber 2.3
3 | Werner Weiflback 34567 3 | Werner Weiflback 5.0
4 | Maria Bauer 19202 4 | Maria Bauer 3.3

»P.11

Alternatively, column names can be set by \csvnames and style definitions by

\csvstyle " !''. With this, the last example is rewritten as follows:

/ N\

\csvnames{myNames}{1=\name, 2=\firstname,3=\matnumber,5=\grade}
\csvstyle{myStudentList}{tabular=|r|llcl,

table head=\hline & Person & #1\\\hline\hline,

late after line=\\\hline, myNames}

\csvreader [myStudentList={Matr.~No.}]{grade.csv}{}/
{\thecsvrow & \firstname~\name & \matnumber}j,
\hfill%

\csvreader [myStudentList={Grade}]{grade.csv}{}/
{\thecsvrow & \firstname~\name & \gradel/,

| [Person [Matr. No. ‘ | [Person [Grade ‘
1 | Hans Maier 12345 1 | Hans Maier 1.0
2 | Anna Huber 23456 2 | Anna Huber 2.3
3 | Werner Weiflback 34567 3 | Werner Weiflback 5.0
4 | Maria Bauer 19202 4 | Maria Bauer 3.3

The data lines of a CSV file can also be filtered. In the following example, a certificate is printed
only for students with grade unequal to 5.0.

4 N
\csvreader[filter not strcmp={\grade}{5.0}]7
{grade.csv}{1=\name,2=\firstname,3=\matnumber,4=\gender,5=\gradel}/
{\begin{center}\Large\bfseries Certificate in Mathematics\end{center}
\large\ifcsvstrcmp{\gender}{f}{Ms.}{Mr.}
\firstname~\name, matriculation number \matnumber, has passed the test
in mathematics with grade \grade.\par\ldots\par
Y

Certificate in Mathematics
Mr. Hans Maier, matriculation number 12345, has passed the test in mathematics
with grade 1.0.

Certificate in Mathematics
Ms. Anna Huber, matriculation number 23456, has passed the test in mathematics
with grade 2.3.

Certificate in Mathematics
Ms. Maria Bauer, matriculation number 19202, has passed the test in mathematics
with grade 3.3.

2 Macros for the Processing of CSV Files

\csvreader [(options)]{(file name)}{{assignments)}{ (command list)}

\csvreader reads the file denoted by (file name) line by line. Every line of the file has to
contain an identical amount of comma separated values. The curly braces {} of TEX groups
can be used to mask a block which may contain commas not to be processed as separators.

The first line of such a CSV file is by default but not necessarily processed as a header
line which contains the identifiers for each column. The entries of this line can be used to
give (assignments) to TEX macros to address the columns. The number of entries of this
first line determines the accepted number of entries for all following lines. Every line which
contains a higher or lower number of entries is ignored during standard processing.

The (assignments) are given by key value pairs (name)=(macro). Here, (name) is an entry
from the header line or the arabic number of the addressed column. (macro) is some TEX
macro which gets the content of the addressed column.

The (command list) is executed for every accepted data line. Inside the (command list) is
applicable:
e \thecsvrow or the counter csvrow which contains the number of the current data line
(starting with 1).
e \csvcoli, \csvcolii, \csvcoliii, ..., which contain the contents of the column
entries of the current data line. Alternatively can be used:
o (macro) from the (assignments) to have a logical addressing of a column entry.
Note, that the (command list) is allowed to contain \par and that all macro definitions are
made global to be used for table applications.

The processing of the given CSV file can be controlled by various (options) given as key
value list. The feasible option keys are described in section 3 from page 14.
4 N
\csvreader[tabular=|r|1|1|, table head=\hline, table foot=\hline]{grade.csv}/
{name=\name, givenname=\firstname,grade=\grade}/,
{\grade & \firstname~\name & \csvcoliii}

1.0 | Hans Maier 12345
2.3 | Anna Huber 23456
5.0 | Werner Weiiback | 34567
3.3 | Maria Bauer 19202

Mainly, the \csvreader command consists of a \csvloop macro with following parameters:

\csvloop{(options), file=(file name), column names=(assignments),
command=(command list)}

Therefore, the application of the keys /csv/file

for \csvreader.

—-P.23 da” P.14

and /csv/comman is useless

\csvloop{(options)}
Usually, \csvreader may be preferred instead of \csvloop. \csvreader is based on

\csvloop which takes a mandatory list of (options) in key value syntax. This list of
(options) controls the total processing. Especially, it has to contain the CSV file name.

\csvloop{file={grade.csv}, head to column names, command=\name,
before reading={List of students:\ 1},
late after line={{,}\ }, late after last line=.}

List of students: Maier, Huber, Weiflbéck, Bauer.

The following \csvauto. ..

commands are intended for quick data overview with limited for-

matting potential. See Subsection 3.5 on page 20 for the general table options in combination

with \csvreader

>P. 8 >»P.8

and \csvloop

\csvautotabular [(options)]1{(file name)}

\csvautotabular is an abbreviation for the application of the option key
/csv/autotabular 2 together with other (options) to \csvloop & This macro
reads the whole CSV file denoted by (file name) with an automated formatting.

/ N\

\csvautotabular{grade.csv}

name givenname | matriculation | gender | grade
Maier Hans 12345 m 1.0
Huber Anna 23456 f 2.3
Weilbiack | Werner 34567 m 5.0
Bauer Maria 19202 f 3.3

\csvautotabular[filter equal={\csvcoliv}{f}]{grade.csv}

name givenname | matriculation | gender | grade
Huber | Anna 23456 f 2.3
Bauer | Maria 19202 f 3.3

\csvautolongtable [(options)]{{file name)}

csvautolongtable is an abbreviation for the application of the option key
/csv/autolongtable "2V together with other (options) to \csvloop "'®. This macro
reads the whole CSV file denoted by (file name) with an automated formatting. For
application, the package longtable is required which has to be loaded in the preamble.

[\csvautolongtable{grade.csv}]
name givenname | matriculation | gender | grade
Maier Hans 12345 m 1.0
Huber Anna 23456 f 2.3
Weilback | Werner 34567 m 5.0
Bauer Maria 19202 f 3.3

\csvautobooktabular [(options)]{(file name)}
\csvautobooktabular is an abbreviation for the application of the option key
/csv/autobooktabular *7?0 together with other (options) to \csvloop ¥ This
macro reads the whole CSV file denoted by (file name) with an automated formatting. For
application, the package booktabs is required which has to be loaded in the preamble.

\csvautobooktabular{grade.csv}
name givenname matriculation gender grade
Maier Hans 12345 m 1.0
Huber Anna 23456 f 2.3
Weilbdack Werner 34567 m 5.0
Bauer Maria 19202 f 3.3

\csvautobooklongtable [(options)]{{file name)}

csvautobooklongtable is an abbreviation for the application of the option key
/csv/autobooklongtable "2 together with other (options) to \csvloop '"®. This
macro reads the whole CSV file denoted by (file name) with an automated formatting. For
application, the packages booktabs and longtable are required which have to be loaded
in the preamble.

[\csvautobooklongtable{grade.csv}]
name givenname matriculation gender grade
Maier Hans 12345 m 1.0
Huber Anna 23456 f 2.3
Weilbiack Werner 34567 m 5.0
Bauer Maria 19202 f 3.3

10

\csvset{(options)}

P. P.8

Sets (options) for every following \csvreader "'® and \csvloop

command may be used for style definitions.

4 N

. For example, this

\csvset{grade list/.style=
{column names={name=\name,givenname=\firstname,grade=\gradel},
passed/.style={filter not strcmp={\grade}{5.0}} }

The following students passed the test in mathematics:
\csvreader[grade list,passed]{grade.csv}{}{\firstname\ \name\ (\grade); }J

The following students passed the test in mathematics: Hans Maier (1.0); Anna Huber (2.3); Maria
Bauer (3.3);

\csvstyle{(key)}{{options)}
Abbreviation for \csvset{(key)/.style={(options)}} to define a new style.

\csvnames{(key)}H(assignments)}

Abbreviation for \csvset{(key)/.style={column names={(assignments)}}} to define ad-
ditional (assignments) of macros to columns.

/ N\

\csvnames{grade list}{name=\name,givenname=\firstname,grade=\grade}
\csvstyle{passed}{filter not strcmp={\grade}{5.0}}

The following students passed the test in mathematics:
\csvreader[grade list,passed]{grade.csv}{}{\firstname\ \name\ (\grade); 1}/

The following students passed the test in mathematics: Hans Maier (1.0); Anna Huber (2.3); Maria
Bauer (3.3);

\ /

\csvheadset{{assignments)}

For some special cases, this command can be used to change the (assignments) of macros
to columns during execution of \csvreader " ® and \csvloop "%,

/ N\

\csvreader{grade.csv}{}/
{ \csvheadset{name=\n} \fbox{\n}
\csvheadset{givenname=\n} \ldots\ \fbox{\n} 1}/

‘Maier‘ ‘Hans‘ ‘Huber‘ ‘Anna‘ ‘Weiﬁbéck‘ ‘Werner‘ ‘Bauer‘ ‘Maria‘

11

\csviffirstrow{(then macros)}{(else macros)}

Inside the command list of \csvreader "%, the (then macros) are executed for the first
data line, and the (else macros) are executed for all following lines.
\csvreader[tabbing, head to column names, table head=\hspace*{3cm}\=\kill]/,

{grade.csv}{}/
{\givenname~\name \> (\csviffirstrow{first entry!!}{following entry})}

Hans Maier
Anna Huber
Werner Weifiback
Maria Bauer

first entry!!)

following entry)
following entry)
following entry)

Py

\ v

\csvifoddrow{(then macros)}{(else macros)}

Inside the command list of \csvreader %, the (then macros) are executed for odd-
numbered data lines, and the (else macros) are executed for even-numbered lines.

/ N\

\csvreader[head to column names,tabular=|1|1|1]|1],
table head=\hline\bfseries \# & \bfseries Name & \bfseries Grade\\\hline,
table foot=\hlinel{grade.csv}{}{/
\csvifoddrow{\slshape\thecsvrow & \slshape\name, \givenname & \slshape\gradel}/
{\bfseries\thecsvrow & \bfseries\name, \givenname & \bfseries\gradel}}

| Name Grade
1 Maier, Hans 1.0
2 Huber, Anna 2.3
3 Weifiback, Werner | 5.0
4 Bauer, Maria 3.3

The \csvifoddrow macro may be used for striped tables:

/ N\

% This example needs the xcolor package
\csvreader[head to column names,tabular=rlcc,
table head=\hline\rowcolor{red!50!black}\color{white}\# & \color{white}Person
& \color{white}Matr.~No. & \color{white}Grade,
late after head=\\\hline\rowcolor{yellow!50},
late after line=\csvifoddrow{\\\rowcolor{yellow!50}}{\\\rowcolor{red!25}}]7
{grade.csv}{}/
{\thecsvrow & \givenname~\name & \matriculation & \gradel}/,

\

Person Matr. No. Grade
1 Hans Maier 12345 1.0
2 Anna Huber 23456 2.3
3 Werner Weif3back 34567 5.0
4 Maria Bauer 19202 3.3

Alternatively, \rowcolors from the xcolor package can be used for this purpose:

/

% This example needs the xcolor package
\csvreader[tabular=rlcc, before table=\rowcolors{2}{red!25}{yellow!50},
table head=\hline\rowcolor{red!50!black}\color{white}\# & \color{white}Person
& \color{white}Matr.~No. & \color{white}Grade\\\hline,
head to column names]{grade.csv}{}/
{\thecsvrow & \givenname~\name & \matriculation & \gradelJ,

Person Matr. No. Grade
1 Hans Maier 12345 1.0
2 Anna Huber 23456 2.3
3 Werner Weif3back 34567 5.0
4 Maria Bauer 19202 3.3

12

\csvfilteraccept

All following consistent data lines will be accepted and processed. This command overwrites
all previous filter settings and may be used inside /csv/full filter "!” to implement
an own filtering rule together with \csvfilterreject.

/ N\

\csvreader [autotabular,
full filter=\ifcsvstrcmp{\csvcoliv}{m}{\csvfilteraccept}{\csvfilterreject}
J{grade.csv}{}{\csvlinetotablerow}

name givenname | matriculation | gender | grade

Maier Hans 12345 m 1.0

Weifibdack | Werner 34567 m 5.0
\csvfilterreject

All following data lines will be ignored. This command overwrites all previous filter settings.

\csvline

This macro contains the current and unprocessed data line.

4 N

\csvreader[no head, tabbing, table head=\textit{line XX:}\=\killlJ,
{grade.csv}{}{\textit{line \thecsvrow:} \> \csvlinel}/,

line 1: name,givenname,matriculation,gender,grade
line 2: Maier,Hans,12345,m,1.0

line 3: Huber,Anna,23456,f,2.3

line 4: Weillback, Werner,34567,m,5.0

line 5: Bauer,Maria,19202,f,3.3

\ /

\thecsvrow

Typesets the current data line number. This is the current number of accepted data lines
without the header line. The IXTEX counter csvrow can be addressed directly in the usual
way, e.g. by \roman{csvrow}.

\thecsvinputline

Typesets the current file line number. This is the current number of all data lines including
the header line. The KTEX counter csvinputline can be addressed directly in the usual
way, e.g. by \roman{csvinputline}.

\csvreader[no head, filter test=\ifnumequal{\thecsvinputline}{3}]7/
{grade.csv}{}/
{The line with number \thecsvinputline\ contains: \csvlinel}J,

The line with number 3 contains: Huber,Anna,23456,f,2.3

U 2016-07-01 \csvlinetotablerow

Typesets the current processed data line with & between the entries.

13

3 Option Keys

For the (options) in \csvreader ’ P8 respectively \csvloop "7 ® the following pgf keys can be

applied. The key tree path /csv/ is not to be used inside these macros.

3.1 Command Definition

/csv/before reading=(code) (no default, initially empty)
Sets the (code) to be executed before the CSV file is processed.

/csv/after head=(code) (no default, initially empty)

Sets the (code) to be executed after the header line is read.

/csv/before filter=(code) (no default, initially empty)

Sets the (code) to be executed after reading and consistency checking of a data line. They are
executed before any filter condition is checked, see /csv/filter 19, Also see /csv/full
filter "F19.

/csv/late after head=(code) (no default, initially empty)
Sets the (code) to be executed after reading and disassembling of the first accepted data
line. They are executed before further processing of this line.

/csv/late after line=(code) (no default, initially empty)
Sets the (code) to be executed after reading and disassembling of the next accepted data
line (after /csv/before filter). They are executed before further processing of this next
line. late after line overwrites late after first line and late after last line.
Note that table options like /csv/tabular ~ 2 set this key to \\ automatically.

/csv/late after first line=(code) (no default, initially empty)
Sets the (code) to be executed after reading and disassembling of the second accepted data
line instead of /csv/late after line. This key has to be set after late after line.

/csv/late after last line=(code) (no default, initially empty)
Sets the (code) to be executed after processing of the last accepted data line instead of
/csv/late after line. This key has to be set after late after line.

/csv/before line=(code) (no default, initially empty)

Sets the (code) to be executed after /csv/late after line and before /csv/command.
before line overwrites before first line.

/csv/before first line=(code) (no default, initially empty)
Sets the (code) to be executed instead of /csv/before line for the first accepted data line.
This key has to be set after before line.

/csv/command=(code) (no default, initially \csvline)

Sets the (code) to be executed for every accepted data line. They are executed between
/csv/before line and /csv/after line.

/csv/after line={code) (no default, initially empty)

Sets the (code) to be executed for every accepted data line after /csv/command. after line
overwrites after first line.

/csv/after first line=(code) (no default, initially empty)
Sets the (code) to be executed instead of /csv/after line for the first accepted data line.
This key has to be set after after line.

/csv/after reading=(code) (no default, initially empty)
Sets the (code) to be executed after the CSV file is processed.

14

\csvreader [

before reading = \meta{before reading}\\,
after head = \meta{after head},

before filter = \\\meta{before filter},
late after head = \meta{late after head},
late after line = \meta{late after linel},

late after first line = \meta{late after first linel},
late after last line = \\\meta{late after last line},

before line = \meta{before line},
before first line = \meta{before first line},
after line = \meta{after linel},

after first line = \meta{after first line},
after reading = \\\meta{after reading}

J{grade.csv}{name=\name}{\textbf{\name}}/,

(before reading)

(after head)

(before filter)(late after head){before first line)Maier(after first line)
(before filter)(late after first line)(before lineyHuber(after line)
(before filter)(late after line){before line)WeiBback (after line)
(before filter)(late after line)(before line)Bauer(after line)
(late after last line)
(after reading)

\

/

Additional command definition keys are provided for the supported tables, see Section 3.5 from

page 20.

15

3.2 Header Processing and Column Name Assignment

/csv/head=true|false (default true, initially true)

If this key is set, the first line of the CSV file is treated as a header line which can be used
for column name assignments.

/csv/no head (no value)

Abbreviation for head=false, i.e. the first line of the CSV file is treated as data
line. Note that this option cannot be used in combination with \csvautotabular "7,
/csv/autotabular P20

, and similar automated commands/options. See Section 5.5 on
page 40 for assistance.

/csv/column names={assignments) (no default, initially empty)
Adds some new (assignments) of macros to columns in key value syntax. Existing assign-
ments are kept.

/csv/column names reset (no value)

Clears all assignments of macros to columns.

/csv/head to column names=true|false (default true, initially false)

If this key is set, the entries of the header line are used automatically as macro names for
the columns. This option can be used only, if the header entries do not contain spaces and
special characters to be used as feasible XTEX macro names. Note that the macro definition
is global and may therefore override existing macros for the rest of the document. Adding
/csv/head to column names prefix may help to avoid unwanted overrides.

N 2019-07-16 /csv/head to column names prefix=(tert) (no default, initially empty)

The given (text) is prefixed to the name of all macros generated by /csv/head to column
names. For example, if you use the settings

head to column names,
head to column names prefix=MY,

a header entry section will generate the corresponding macro \MYsection instead of de-
stroying the standard IATEX \section macro.

16

3.3 Consistency Check

/csv/check column count=true|false (default true, initially true)
This key defines, wether the number of entries in a data line is checked against an expected
value or not.

If true, every non consistent line is ignored without announcement.
If false, every line is accepted and may produce an error during further processing.

/csv/no check column count (no value)
Abbreviation for check column count=false.

/csv/column count={number) (no default)

Sets the (number) of feasible entries per data line. This setting is only useful in connection
with /csv/no head "0 since (number) would be replaced by the number of entries in
the header line otherwise.

/csv/on column count error=(code) (no default, initially empty)

(code) to be executed for unfeasible data lines.

/csv/warn on column count error (style, no value)

Display of a warning for unfeasible data lines.

17

3.4 Filtering

N 2016-07-01 /csv/filter test=(condition) (no default)

Only data lines which fulfill a logical (condition) are accepted. For the (condition), every
single test normally employed like

[\iftest{some testing}{true}{false}]

can be used as

[filter test=\iftest{some testing},]

For \iftest, tests from the etoolbox package like \ifnumcomp, \ifdimgreater, etc. and
from Section 4 on page 29 can be used.
4 N
\csvreader[head to column names,tabular=1111,
table head=\toprule & \bfseries Name & \bfseries Matr & \bfseries Grade\\\midrule,
table foot=\bottomrule,
%>> list only matriculation numbers greater than 20000 <<
filter test=\ifnumgreater{\matriculation}{20000},
I{grade.csv}{}{/

\thecsvrow & \slshape\name, \givenname & \matriculation & \gradel}

Name Matr Grade
1 Huber, Anna 23456 2.3
2 Weilback, Werner 34567 5.0
/csv/filter stremp={(stringA)}{(stringB)} (style, no default)

Ounly lines where (stringA) and (stringB) are equal after expansion are accepted. The
implementation is done with \ifcsvstrcmp ~F 2,

/csv/filter not strcmp={(stringA)}{(stringB)} (style, no default)

Only lines where (stringA) and (stringB) are not equal after expansion are accepted. The
implementation is done with \ifcsvnotstrcmp ~" 27,

N 2016-07-01 /csv/filter expr=(condition) (no default)

Only data lines which fulfill a logical (condition) are accepted. For the (condition), every
boolean expression from the etoolbox package is feasible. To preprocess the data line
before testing the (condition), the option key /csv/before filter " ' can be used.

4 N
\csvreader [head to column names,tabular=1111,
table head=\toprule & \bfseries Name & \bfseries Matr & \bfseries Grade\\\midrule,
table foot=\bottomrule,
%>> list only matriculation numbers greater than 20000
% and grade less than 4.0 <<
filter expr={ test{\ifnumgreater{\matriculation}{20000}}
and test{\ifdimless{\grade pt}{4.0pt}} },
J{grade.csv}{}{/

\thecsvrow & \slshape\name, \givenname & \matriculation & \grade}

Name Matr Grade
1 Huber, Anna 23456 2.3

18

N 2016-07-01 /csv/filter ifthen=(condition) (no default)

Only data lines which fulfill a logical (condition) are accepted. For the (condition), every
term from the ifthen package is feasible. To preprocess the data line before testing the
(condition), the option key /csv/before filter "' can be used.

4 N
\csvreader [head to column names,tabular=1111,
table head=\toprule & \bfseries Name & \bfseries Matr & \bfseries Grade\\\midrule,
table foot=\bottomrule,
%>> list only female persons <<
filter ifthen=\equal{\gender}{f},
I{grade.csv}{}{/

\thecsvrow & \slshape\name, \givenname & \matriculation & \grade}

Name Matr Grade

1 Huber, Anna 23456 2.3
2 Bauer, Maria 19202 3.3

/csv/filter=(condition) (no default)
Alias for /csv/filter ifthen.
/csv/filter equal={(stringA)}{(stringB)} (style, no default)

Only lines where (stringA) and (stringB) are equal after expansion are accepted. The
implementation is done with the ifthen package.

/csv/filter not equal={(stringA)}H{(stringB)} (style, no default)

Only lines where (stringA) and (stringB) are not equal after expansion are accepted. The
implementation is done with the ifthen package.

/csv/no filter (no value, initially set)
Clears a set filter.

/csv/filter accept all (no value, initially set)
Alias for no filter. All consistent data lines are accepted.

/csv/filter reject all (no value)
All data line are ignored.

N 2016-07-01 /csv/full filter=(code) (no default)

Technically, this key is an alias for /csv/before filter "' 14 Philosophically,

/csv/before filter ' computes something before a filter condition is set, but
/csv/full filter should implement the full filtering. Especially, \csvfilteraccept "I 13
or \csvfilterreject 13 should be set inside the (code).

4 N
\csvreader [head to column names,tabular=1111,

table head=\toprule & \bfseries Name & \bfseries Matr & \bfseries Grade\\\midrule,

table foot=\bottomrule,

%>> list only matriculation numbers greater than 20000

% and grade less than 4.0 <<

full filter=\ifnumgreater{\matriculation}{20000}
{\ifdimless{\grade pt}{4.0pt}{\csvfilteraccept}{\csvfilterreject}}
{\csvfilterreject},

J{grade.csv}{}{/

\thecsvrow & \slshape\name, \givenname & \matriculation & \gradel}

Name Matr Grade
1 Huber, Anna 23456 2.3

19

3.5 Table Support

/csv/tabular=(table format) (style, no default)
Surrounds the CSV processing with \begin{tabular}{(table format)} at begin and
with \end{tabular} at end. Additionally, the commands defined by the key values of
/csv/before table, /csv/table head, /csv/table foot,and /csv/after table are ex-
ecuted at the appropriate places.

/csv/centered tabular=(table format) (style, no default)
Like /csv/tabular but inside an additional center environment.

/csv/longtable=(table format) (style, no default)
Like /csv/tabular but for the longtable environment. This requires the package
longtable (not loaded automatically).

/csv/tabbing (style, no value)
Like /csv/tabular but for the tabbing environment.

/csv/centered tabbing (style, no value)
Like /csv/tabbing but inside an additional center environment.

/csv/no table (style, no value)
Deactivates tabular, longtable, and tabbing.

/csv/before table=(code) (no default, initially empty)
Sets the (code) to be executed before \begin{tabular} or before \begin{longtable} or
before \begin{tabbing}, respectively.

/csv/table head=(code) (no default, initially empty)
Sets the (code) to be executed after \begin{tabular} or after \begin{longtable} or after
\begin{tabbing}, respectively.

/csv/table foot=(code) (no default, initially empty)
Sets the (code) to be executed before \end{tabular} or before \end{longtable} or before
\end{tabbing}, respectively.

/csv/after table=(code) (no default, initially empty)

Sets the (code) to be executed after \end{tabular} or after \end{longtable} or after
\end{tabbing}, respectively.

The following auto options are the counterparts for the respective quick overview commands like
\csvautotabular 9. They are listed for completeness, but are unlikely to be used directly.

/csv/autotabular=(file name) (no default)
Reads the whole CSV file denoted (file name) with an automated formatting.

/csv/autolongtable=(file name) (no default)

Reads the whole CSV file denoted (file name) with an automated formatting using the
required longtable package.

/csv/autobooktabular=(file name) (no default)

Reads the whole CSV file denoted (file name) with an automated formatting using the
required booktabs package.

/csv/autobooklongtable=(file name) (no default)

Reads the whole CSV file denoted (file name) with an automated formatting using the
required booktabs and longtable packages.

20

3.6 Special Characters

Be default, the CSV content is treated like normal ITEX text, see Subsection 5.3 on page 36.
But, TEX special characters of the CSV content may also be interpreted as normal characters,
if one or more of the following options are used.

/csv/respect tab=true|false (default true, initially false)
If this key is set, every tabulator sign inside the CSV content is a normal character.

/csv/respect percent=truel|false (default true, initially false)
If this key is set, every percent sign "%" inside the CSV content is a normal character.
/csv/respect sharp=true|false (default true, initially false)
If this key is set, every sharp sign "#" inside the CSV content is a normal character.
/csv/respect dollar=truel|false (default true, initially false)
If this key is set, every dollar sign "$" inside the CSV content is a normal character.
/csv/respect and=true|false (default true, initially false)
If this key is set, every and sign "&" inside the CSV content is a normal character.
/csv/respect backslash=true|false (default true, initially false)

If this key is set, every backslash sign "\" inside the CSV content is a normal character.

/csv/respect underscore=true|false (default true, initially false)
If this key is set, every underscore sign "_" inside the CSV content is a normal character.
/csv/respect tilde=true|false (default true, initially false)
If this key is set, every tilde sign "~" inside the CSV content is a normal character.
/csv/respect circumflex=true|false (default true, initially false)
If this key is set, every circumflex sign "~" inside the CSV content is a normal character.
/csv/respect leftbrace=true|false (default true, initially false)

If this key is set, every left brace sign "{" inside the CSV content is a normal character.
/csv/respect rightbrace=true|false (default true, initially false)
If this key is set, every right brace sign "}" inside the CSV content is a normal character.

/csv/respect all (style, no value, initially unset)

Set all special characters from above to normal characters. This means a quite verbatim
interpretation of the CSV content.

/csv/respect none (style, no value, initially set)

Do not change any special character from above to normal character.

21

3.7 Separators

/csv/separator=(sign) (no default, initially comma)

Sets the (sign) which is treates as separator between the data values of a data line. Feasible

values are:

9

e comma: This is the initial value with ’,’ as separator.

e semicolon: Sets the separator to ’;’.

/ N\

% \usepackage{tcolorbox} for tcbverbatimwrite
\begin{tcbverbatimwrite}{testsemi.csv}
name;givenname;matriculation;gender;grade
Maier;Hans;12345;m;1.0
Huber;Anna;23456;f;2.3
Weiflbédck;Werner;34567;m;5.0
\end{tcbverbatimwrite}

\csvautobooktabular [separator=semicolon] {testsemi.csv}

name givenname matriculation gender grade
Maier Hans 12345 m 1.0
Huber Anna 23456 f 2.3
Weilbick Werner 34567 m 5.0

e pipe: Sets the separator to ’|’.

/ N\

% \usepackage{tcolorbox} for tcbverbatimwrite
\begin{tcbverbatimwrite}{pipe.csv}
name | givenname |[matriculation|gender|grade
Maier|Hans|12345|m|1.0
Huber|Anna|23456|f|2.3
WeiBbéck|Werner|34567|m|5.0
\end{tcbverbatimwrite}

\csvautobooktabular [separator=pipe] {pipe.csv}

name givenname matriculation gender grade
Maier Hans 12345 m 1.0
Huber Anna 23456 f 2.3
Weiback Werner 34567 m 5.0

« tab: Sets the separator to the tabulator sign. Automatically, /csv/respect tab 2!

is set also.

22

3.8 Miscellaneous

/csv/every csv (style, initially empty)
A style definition which is used for every following CSV file. This definition can be over-
written with user code.

% Sets a warning message for unfeasible data lines.
\csvset{every csv/.style={warn on column count errorl}}
% Alternatively:

\csvstyle{every csv}{warn on column count error}

/csv/default (style)

A style definition which is used for every following CSV file which resets all settings to
default values®. This key should not be used or changed by the user if there is not a really
good reason (and you know what you do).

/csv/file=(file name) (no default, initially unknown.csv)
Sets the (file name) of the CSV file to be processed.

/csv/preprocessed file=(file name) (no default, initially \jobname_sorted.csv)

Sets the (file name) of the CSV file which is the output of a preprocessor.

/csv/preprocessor={macro) (no default)

Defines a preprocessor for the given CSV file. The (macro) has to have two mandatory
arguments. The first argument is the original CSV file which is set by /csv/file. The
second argument is the preprocessed CSV file which is set by /csv/preprocessed file.

Typically, the (macro) may call an external program which preprocesses the original CSV
file (e.g. sorting the file) and creates the preprocessed CSV file. The later file is used by
\csvreader "® or \csvloop "8,

4 N
\newcommand{\mySortTool}[2]{/
% call to an external program to sort file #1 with resulting file #2

}

\csvreader [/
preprocessed file=\jobname_sorted.csv,
preprocessor=\mySortTool,

1{some.csv}{}{/
% do something

\ V.

See Subsection 3.9 on page 24 for a concrete sorting preprocessing implemented with an
external tool.

/csv/no preprocessing (style, no value, initially set)

Clears any preprocessing, i.e. preprocessing is switched of.

‘default is used because of the global nature of most settings.

23

3.9 Sorting

TEX/ITEX was not born under a sorting planet. csvsimple-legacy provides no sorting of data
lines by K TEX-methods since sorting can be done much faster and much better by external tools.

First, one should consider the appropriate place for sorting:

e CSV files may be sorted by a tool before the IXTEX document is processed at all. If the
CSV data is not likely to change, this is the most efficient method.

e CSV files may be sorted by a tool every time before the IWTEX document is compiled. This
could be automated by a shell script or some processing tool like arara.

e (CSV files may be sorted on-the-fly by a tool during compilation of a IATEX document.
This is the most elegant but not the most efficient way.

The first two methods are decoupled from anything concerning csvsimple-legacy. For the third
method, the /csv/preprocessor 2% option is made for. This allows to access an external tool
for sorting. Which tool is your choice.

CSV-Sorter was written as a companion tool for csvsimple. It is an open source Java command-
line tool for sorting CSV files, available at
http://T-F-S.github.io/csvsorter/ or https://github.com/T-F-S/csvsorter

It can be used for all three sorting approaches described above. There is special support for
on-the-fly sorting with CSV-Sorter using the following options.

1. To use the sorting options, you have to install CSV-Sorter before!
csvsimple v1.12 or newer needs CSV-Sorter v0.94 of newer!

2. You have to give permission to call external tools during compilation, i.e. the
command-line options for latex have to include -shell-escape.

/csv/csvsorter command=(system command) (no default, initially csvsorter)

The (system command) specifies the system call for CSV-Sorter (without the options).
If CSV-Sorter was completely installed following its documentation, there is nothing to
change here. If the csvsorter. jar file is inside the same directory as the K TEX source file,
you may configure:

[\csvset{csvsorter command=java -jar csvsorter.jar}]

/csv/csvsorter configpath=(path) (no default, initially .)

Sorting with CSV-Sorter is done using XML configuration files. If these files are not stored
inside the same directory as the IXTEX source file, a (path) to access them can be configured:

[\csvset{csvsorter configpath=xmlfiles}]

Here, the configuration files would be stored in a subdirectory named xmlfiles.

/csv/csvsorter log=(file name) (no default, initially csvsorter.log)
Sets the log file of CSV-Sorter to the given (file name).

[\csvset{csvsorter log=outdir/csvsorter.log}]

Here, the log file is written to a subdirectory named outdir.

24

http://T-F-S.github.io/csvsorter/
https://github.com/T-F-S/csvsorter

/csv/csvsorter token=(file name) (no default, initially \jobname.csvtoken)

Sets (file name) as token file. This is an auxiliary file which communicates the success of
CSV-Sorter to csvsimple.

[\csvset{csvsorter log=outdir/\jobname.csvtoken}]

Here, the token file is written to a subdirectory named outdir.

/csv/sort by=(file name) (style, initially unset)

The (file name) denotes an XML configuration file for CSV-Sorter. Setting this option
inside \csvreader "F® or \csvloop "7 ® will issue a system call to CSV-Sorter.

e CSV-Sorter uses the given CSV file as input file.

o CSV-Sorter uses (file name) as configuration file.

e The output CSV file is denoted by /csv/preprocessed file which is by
default \jobname_sorted.csv. This output file is this actual file processed by
\csvreader " & or \csvloop "8,

« CSV-Sorter also generates a log file denoted by /csv/csvsorter log ' ?* which is
by default csvsorter.log.

—-P.23

First example: To sort our example grade. csv file according to name and givenname, we
use the following XML configuration file. Since CSV-Sorter uses double quotes as default
brackets for column values, we remove bracket recognition to avoid a clash with the escaped
umlauts of the example CSV file.

Configuration file «namesort.xml»

<?rxml verstion="1.0" encoding="UTF-8"?>
<csv>
<bracket empty="true" />
<sortlines>
<column name="name" order="ascending" type="string"/>
<column name="givenname" order="ascending" type="string"/>
</sortlines>
</csv>

% \usepackage{booktabs}
\csvreader[sort by=namesort.xml,
head to column names,
tabular=>{\color{red}}11111,
table head=\toprule Name & Given Name & Matriculation & Gender & Grade\\\midrule,
table foot=\bottomrule]
{grade.csv}{}{\csvlinetotablerow}

Name Given Name Matriculation Gender Grade
Bauer Maria 19202 f 3.3
Huber Anna 23456 f 2.3
Maier Hans 12345 m 1.0
Weiback Werner 34567 m 5.0

25

Second example: To sort our example grade.csv file according to grade, we use the
following XML configuration file. Further, persons with the same grade are sorted by name
and givenname. Since CSV-Sorter uses double quotes as default brackets for column values,
we remove bracket recognition to avoid a clash with the escaped umlauts of the example

CSV file.

Configuration file «gradesort.xml»

<?rxml verston="1.0" encoding="UTF-8"?>
<csv>
<bracket empty="true" />
<sortlines>
<column name="grade" order="ascending" type="double"/>
<column name="name" order="ascending" type="string"/>
<column name="givenname" order="ascending" type="string"/>
</sortlines>
</csv>

% \usepackage{booktabs}
\csvreader [sort by=gradesort.xml,
head to column names,
tabular=1111>{\color{red}}1,
table head=\toprule Name & Given Name & Matriculation & Gender & Grade\\\midrule,
table foot=\bottomrule]
{grade.csv}{}{\csvlinetotablerow}

Name Given Name Matriculation Gender Grade
Maier Hans 12345 m 1.0
Huber Anna 23456 f 2.3
Bauer Maria 19202 f 3.3
Weilback Werner 34567 m 5.0

26

Third example: To generate a matriculation/grade list, we sort our example grade.csv
file using the following XML configuration file. Again, since CSV-Sorter uses double quotes
as default brackets for column values, we remove bracket recognition to avoid a clash with
the escaped umlauts of the example CSV file.

Configuration file «matriculationsort.xml»

<?zml wversion="1.0" encoding="UTF-8"2>
<csv>
<bracket empty="true" />
<sortlines>
<column name="matriculation" order="ascending" type="integer"/>
</sortlines>
</csv>

% \usepackage{booktabs}
\csvreader[sort by=matriculationsort.xml,
head to column names,
tabular=>{\color{red}}11,
table head=\toprule Matriculation & Grade\\\midrule,
table foot=\bottomrule]
{grade.csv}{}{\matriculation & \grade}

Matriculation Grade

12345 1.0
19202 3.3
23456 2.3
34567 5.0

27

/csv/new sorting rule={(name)}{(file name)} (style, initially unset)

This is a convenience option to generate a new shortcut for often used /csv/sort
by ~ %% applications. It also adds a more semantic touch. The new shortcut option is
’ sort by (name)]Which expands to’ sort by={(file name)}]

Consider the following example:

4

\

\csvautotabular [sort by=namesort.xml]{grade.csv}

name givenname | matriculation | gender | grade
Bauer Maria 19202 f 3.3
Huber Anna 23456 f 2.3
Maier Hans 12345 m 1.0
Weifiback | Werner 34567 m 5.0

A good place for setting up a new sorting rule would be inside the preamble:

4

\

\csvset{new sorting rule={namel}{namesort.xml}}

Now, we can use the new rule:

/

\csvautotabular[sort by name]{grade.csv}

name givenname | matriculation | gender | grade
Bauer Maria 19202 f 3.3
Huber Anna 23456 f 2.3
Maier Hans 12345 m 1.0
Weilbiack | Werner 34567 m 5.0

28

4 String Tests

The following string tests are complementing the string tests from the etoolbox package. They
all do the same, i.e., comparing expanded strings for equality.

e \ifcsvstrcmp is the most efficient method, because it uses native compiler string com-
parison (if available).

e \ifcsvstrequal does not rely on a compiler. It also is the fallback implementation for
\ifcsvstrcmp, if there is no native comparison method.

e \ifcsvprostrequal is possibly more failsafe than the other two string tests. It may be
used, if strings contain dirty things like \textbf{A}.

N 2016-07-01 \ifcsvstrcmp{(stringA)}{(stringB)}{ (true)}{(false)}
Compares two strings and executes (true) if they are equal, and (false) otherwise. The com-
parison is done using \pdfstrcmp, if compilation is done with pdfIATEX. The comparison
is done using \pdf@strcmp, if the package pdftexcmds is loaded and compilation is done
with lual&fTEX or XelATEX. Otherwise, \ifcsvstrcmp is identical to \ifcsvstrequal. This
command cannot be used inside the preamble.

N 2016-07-01 \ifcsvnotstrcmp{(stringA)}{(stringB)}{(true)}{(false)}
Compares two strings and executes (true) if they are not equal, and (false) otherwise. The
implementation uses \ifcsvstrcmp.

N 2016-07-01 \ifcsvstrequal{(stringA)}{(stringB)}{ (true)}{(false)}
Compares two strings and executes (true) if they are equal, and (false) otherwise. The
strings are expanded with \edef in the test.

N 2016-07-01 \ifcsvprostrequal{(stringA)}{(stringB)}{(true)}{(false)}

Compares two strings and executes (true) if they are equal, and (false) otherwise. The
strings are expanded with \protected@edef in the test, i.e. parts of the strings which are
protected stay unexpanded.

29

5 Examples

5.1 A Serial Letter

In this example, a serial letter is to be written to all persons with addresses from the following
CSV file. Deliberately, the file content is not given in very pretty format.

CSV file «address.csv»

name,givenname,gender,degree,street,zip,location,bonus
Maier,Hans,m, ,Am Bachweg 17,10010,Hopfingen,20

% next line with a comma in curly braces
Huber ,Erna,f,Dr.,{Moosstraie 32, Hinterschlag},10020,0rtingstetten,30
WeiBbédck,Werner,m,Prof. Dr.,Brauallee 10,10030,Klingenbach,40

/% this line is ignored J

Siebener , Franz,m, , Blaumeisenweg 12 , 10040 , Pardauz , 50

% preceding and trailing spaces in entries are rTemoved J

Schmitt,Anton,m, ,{\AE{}1fred-Esplanade, T\ae{}g 37}, 10050, \0E{}resung,60

\ V.

Firstly, we survey the file content quickly using \csvautotabular. As can be seen, unfeasible
lines are ignored automatically.

/ \
\tiny\csvautotabular{address.csv}
name givenname gender degree street zip location bonus
Maier Hans m Am Bachweg 17 10010 Hopfingen 20
Huber Erna f Dr. Moosstrae 32, Hinterschlag 10020 Ortingstetten 30
Weilback ‘Werner m Prof. Dr. Brauallee 10 10030 Klingenbach 40
Siebener Franz m Blaumeisenweg 12 10040 Pardauz 50
Schmitt Anton m Alfred-Esplanade, Teg 37 10050 (Eresung 60
\ /

Now, we create the serial letter where every feasible data line produces an own page. Here,
we simulate the page by a tcolorbox (from the package tcolorbox). For the gender specific
salutations, an auxiliary macro \ifmale is introduced.

30

% this example requires the tcolorbox package
\newcommand{\ifmale} [2]{\ifcsvstrcmp{\gender}

\csvreader [head to column names]{address.csv}

{m}{#1}{#2}}

{H%

\begin{tcolorbox} [colframe=DarkGray, colback=White,arc=0mm,width=(\linewidth-2pt)/2,
equal height group=letter,before=,after=\hfill,fonttitle=\bfseries,

adjusted title={Letter to \namel}]

\ifcsvstrcmp{\degree}{}{\ifmale{Mr.}{Ms.}}{

\street\\\zip~\location

\tcblower

{\itshape Dear \ifmale{Sir}{Madam},}\\

we are pleased to announce you a bonus valu

which will be delivered to \location\ soon.
\end{tcolorbox}}

Letter to Maier

Mr. Hans Maier
Am Bachweg 17
10010 Hopfingen

Dear Sir,

we are pleased to announce you a bonus value
of 20% which will be delivered to Hopfingen
soon.

Letter to Weilback

Prof. Dr. Werner Weif3back
Brauallee 10
10030 Klingenbach

Dear Sir,

we are pleased to announce you a bonus value
of 40% which will be delivered to Klingen-
bach soon.

\degree}~\givenname~\name\\

e of \bonus\%{}
\\\1ldots

Letter to Huber

Dr. Erna Huber
Moosstrafle 32, Hinterschlag
10020 Ortingstetten

Dear Madam,

we are pleased to announce you a bonus value
of 30% which will be delivered to Ortingstet-
ten soon.

Letter to Siebener

Mr. Franz Siebener

Blaumeisenweg 12

10040 Pardauz

Dear Sir,

we are pleased to announce you a bonus value
of 50% which will be delivered to Pardauz
soon.

Letter to Schmitt

Mr. Anton Schmitt

Zlfred-Esplanade, Teeg 37

10050 (Eresung

Dear Sir,

we are pleased to announce you a bonus value
of 60% which will be delivered to (Eresung

soon.

5.2 A Graphical Presentation

For this example, we use some artificial statistical data given by a CSV file.

CSV file «data.csv»

land, group,amount
Bayern,A,1700
Baden-Wiirttemberg,A,2300
Sachsen,B, 1520
Thiiringen,A, 1900
Hessen,B,2100

\ /

Firstly, we survey the file content using \csvautobooktabular.

4 N

% needs the booktabs package
\csvautobooktabular{data.csv}

land group amount
Bayern A 1700
Baden-Wiirttemberg A 2300
Sachsen B 1520
Thiiringen A 1900
Hessen B 2100

The amount values are presented in the following diagram by bars where the group classification
is given using different colors.

4 N

% This example requires the package tikz
\begin{tikzpicture} [Group/A/.style={left color=red!10,right color=red!20},
Group/B/.style={left color=blue!10,right color=blue!20}]
\csvreader[head to column names]{data.csv}{}{/
\begin{scopel} [yshift=-\thecsvrow cm]
\path [draw,Group/\group] (0,-0.45)
rectangle node[font=\bfseries] {\amount} (\amount/1000,0.45);
\node[left] at (0,0) {\land};
\end{scope} }
\end{tikzpicture}

Bayern 1700

Baden-Wiirttemberg 2300

Sachsen| 1520

Thiiringen 1900

Hessen 2100

32

It would be nice to sort the bars by length, i.e. to sort the CSV file by the amount column. If
the CSV-Sorter program is properly installed, see Subsection 3.9 on page 24, this can be done
with the following configuration file for CSV-Sorter:

Configuration file «amountsort.xml»

<?zml wversion="1.0" encoding="UTF-8"2>
<csv>
<bracket empty="true" />
<sortlines>
<column name="amount" order="descending" type="double"/>
<column name="land" order="ascending" type="string"/>
</sortlines>
</csv>

\

Now, we just have to add an option sort by=amountsort.xml:

4

% This example requires the package tikz
% Also, the CSV-Sorter tool has to be installed
\begin{tikzpicture} [Group/A/.style={left color=red!10,right color=red!20},
Group/B/.style={left color=blue!10,right color=blue!20}]
\csvreader[head to column names,sort by=amountsort.xml]{data.csv}{}{/
\begin{scope} [yshift=-\thecsvrow cm]
\path [draw,Group/\group] (0,-0.45)
rectangle node[font=\bfseries] {\amount} (\amount/1000,0.45);
\node[left] at (0,0) {\land};
\end{scope} }
\end{tikzpicture}

Baden-Wiirttemberg 2300

Hessen 2100

Thiiringen 1900

Bayern 1700

Sachsen| 1520

33

Next, we create a pie chart by calling \csvreader twice. In the first step, the total sum of
amounts is computed, and in the second step the slices are drawn.

/ N\

% Modified example from www.texample.net for pie charts

% This example needs the packages tikz, xcolor, calc
\definecolorseries{myseries}{rgb}{step}[rgbl{.95,.85,.55}{.17,.47,.37}
\resetcolorseries{myseries}/,

% a pie slice
\newcommand{\slice}[4]{
\pgfmathsetmacro{\midangle}{0.5*#1+0.5*#2}
\begin{scope}
\clip (0,0) -- (#1:1) arc (#1:#2:1) -- cycle;
\colorlet{SliceColor}{myseries!!+}/
\fill[inner color=SliceColor!30,outer color=SliceColor!60] (0,0) circle (icm);
\end{scope}
\draw[thick] (0,0) -- (#1:1) arc (#1:#2:1) -- cycle;
\node [label=\midangle:#4] at (\midangle:1) {};
\pgfmathsetmacro{\temp}{min((#2-#1-10)/110%(-0.3),0)}
\pgfmathsetmacro{\innerpos}{max(\temp,-0.5) + 0.8}
\node at (\midangle:\innerpos) {#3};
¥

% sum of amounts
\csvreader [before reading=\def\mysum{0}]{data.csv}{amount=\amount}{’
\pgfmathsetmacro{\mysum}{\mysum+\amount}y,

}

% drawing of the pie chart

\begin{tikzpicture} [scale=3]Y

\def\mya{0}\def\myb{0}

\csvreader[head to column names]{data.csv}{}{/
\let\mya\myb
\pgfmathsetmacro{\myb}{\myb+\amount}
\slice{\mya/\mysum*360}{\myb/\mysum*360}{\amount}{\land}

}
\end{tikzpicturel}/
Baden-Wiirttemberg
Bayern
Sachsen
Hessen
Thiiringen

34

Finally, the filter option is demonstrated by separating the groups A and B. Every item is piled
upon the appropriate stack.

/

\newcommand{\drawGroup} [2] {/
\def\mya{0}\def\myb{0}
\node [below=3mm] at (2.5,0) {\bfseries Group #1};
\csvreader [head to column names,filter equal={\group}{#1}]{data.csv}{}{/
\let\mya\myb
\pgfmathsetmacro{\myb}{\myb+\amount}
\path[draw,top color=#2!25,bottom color=#2!50]
(0,\mya/1000) rectangle node{\land\ (\amount)} (5,\myb/1000);
1

\begin{tikzpicture}
\fill[gray!75] (-1,0) rectangle (13,-0.1);
\drawGroup{A}{red}
\begin{scope} [xshift=7cm]
\drawGroup{B}{blue}
\end{scope}

\end{tikzpicture}

35

5.3 Macro code inside the data

If needed, the data file may contain macro code. Note that the first character of a data line is
not allowed to be the backslash ’\’.

CSV file «macrodata.csv»

type,description,content

M,A nice \textbf{formula}, $\displaystyle \int\frac{i}{x} = \lnlx|+c$
G,A \textcolor{red}{colored} ball, {\tikz \shadedraw [shading=ball] (0,0) circle (.5cm);}
M,\textbf{Another} formula, $\displaystyle \lim\limits_{n\to\infty} \frac{1}{n}=0%

Firstly, we survey the file content using \csvautobooktabular.

4 N

\csvautobooktabular{macrodata.csv}

type description content

M A nice formula / l =Ilnx+e¢
T

G A colored ball

M Another formula lim l =0
n—oo M

\csvstyle{my enumerate}{head to column names,
before reading=\begin{enumerate},after reading=\end{enumeratel}}

\csvreader [my enumerate]{macrodata.csv}{}{/
\item \description:\par\content}

\bigskip

Now, formulas only:

\csvreader [my enumerate,filter equal={\type}{M}]{macrodata.csv}{}{/
\item \description:\gquad\content}

1. A nice formula:

/1
—=Inx+c¢
T

2. A colored ball:

3. Another formula:

lim l =0
n—oo M

Now, formulas only:

1. A nice formula: / i =Ilnx+e¢

2. Another formula: lim — =0
n—oo0 M

36

5.4 Tables with Number Formatting

We consider a file with numerical data which should be pretty-printed.

CSYV file «data_numbers.csv»

month, dogs, cats
January, 12.50,12.3eb
February, 3.32, 8.7e3

March, 43, 3.1e6
April, 0.33, 21.2e4
May, 5.12, 3.45e6
June, 6.44, 6.66e6
July, 123.2,7.3e7

August, 12.3, 5.3e4
September,2.3, 4.4e4
October, 6.5, 6.5e6
November, 0.55, 5.5eb
December, 2.2, 3.3e3

\

/

The siunitx package provides a new column type S which can align material using a number
of different strategies. The following example demonstrates the application with CSV reading.

The package documentation of siunitx contains a huge amount of formatting options.

4
% \usepackage{siunitx,array,booktabs}
\csvloop{

file=data_numbers.csv,

head to column names,

tabular={1SS[table-format=2.2e1]@{}c},

command=\month & \dogs & \cats &,
table foot=\bottomrule}

before reading=\centering\sisetup{table-number-alignment=center},

table head=\toprule\textbf{Month} & \textbf{Dogs} & \textbf{Cats} &\\\midrule,

Month Dogs Cats

January 12.50 12.3 x 10°
February 3.32 8.7 x10°
March 43 3.1 x10°
April 0.33 21.2 x10*
May 5.12 3.45 x 10°
June 6.44 6.66 x 10°
July 123.2 7.3 x 107
August 12.3 5.3 x 10
September 2.3 4.4 x10*
October 6.5 6.5 x 10°
November 0.55 55 x10°
December 2.2 3.3 x10°

37

Special care is needed, if the first or the last column is to be formatted with the column type S.
The number detection of siunitx is disturbed by the line reading code of csvsimple-legacy
which actually is present at the first and last column. To avoid this problem, the content of
the first and last column could be formatted not by the table format definition, but by using a
suitable \tablenum formatting directly, see siunitx.

Another and very nifty workaround suggested by Enrico Gregorio is to add an invisible dummy
column with c@{} as first column and @{}c as last column:

/ N\

% \usepackage{siunitx,array,booktabs}
\csvloop{
file=data_numbers.csv,
head to column names,
before reading=\centering\sisetup{table-number-alignment=center},
tabular={c@{}S[table-format=2.2e1]S@{}c},
table head= & \textbf{Cats} & \textbf{Dogs} & \\\midrule,
command= & \cats & \dogs &,
table foot=\bottomrule}

Cats Dogs

12.3 x 10° 12.50
8.7 x10° 3.32
3.1 x10% 43

21.2 x 10* 0.33
3.45 x 10° 5.12
6.66 x 10° 6.44
7.3 x 107 123.2
53 x10* 123
4.4 x10* 2.3
6.5 x 10° 6.5
55 x10° 0.55
3.3 x10° 2.2

38

Now, the preceding table shall be sorted by the cats values. If the CSV-Sorter program is prop-
erly installed, see Subsection 3.9 on page 24, this can be done with the following configuration
file for CSV-Sorter:

Configuration file «catsort.xml»

<?zml version="1.0" encoding="UTF-8"?>
<csv>
<bracket empty="true" />
<sortlines>
<column name="cats" order="ascending" type="double"/>
</sortlines>
</csv>

\ v

Now, we just have to add an option sort by=catsort.xml:

/ N\

% \usepackage{siunitx,array,booktabs}
% Also, the CSV-Sorter tool has to be installed
\csvloop{
file=data_numbers.csv,
sort by=catsort.xml,
head to column names,
before reading=\centering\sisetup{table-number-alignment=center},
tabular={1SS[table-format=2.2e1]@{}c},
table head=\toprule\textbf{Month} & \textbf{Dogs} & \textbf{Cats} & \\\midrule,
command=\month & \dogs & \cats &,
table foot=\bottomrule}

Month Dogs Cats

December 2.2 3.3 x10°
February 3.32 8.7 x10°
September 2.3 4.4 x10*
August 12.3 5.3 x 10*
April 0.33 21.2 x10*
November 0.55 55 x10°
January 12.50 12.3 x 10°
March 43 3.1 x10°
May 5.12 3.45 x 10°
October 6.5 6.5 x 10°
June 6.44 6.66 x 10°
July 123.2 7.3 x 107

39

5.5 CSV data without header line

CSV files with a header line are more semantic than files without header, but it’s no problem
to work with headless files.

For this example, we use again some artificial statistical data given by a CSV file but this time
without header.

CSV file «data_headless.csv»

Bayern,A,1700
Baden-Wiirttemberg, A, 2300
Sachsen,B, 1520
Thiiringen,A, 1900
Hessen,B,2100

Note that you cannot use the /csv/no head "' !0 option for the auto tabular commands. If no
options are given, the first line is interpreted as header line which gives an unpleasant result:

\csvautobooktabular{data_headless.csv}
Bayern A 1700
Baden-Wiirttemberg A 2300
Sachsen B 1520
Thiiringen A 1900
Hessen B 2100
To get the expected result, one can redefine /csv/table head ' 2" using \csvlinetotablerow ’
which holds the first line data for the \csvauto... commands:
\csvautobooktabular[table head=\toprule\csvlinetotablerow\\]{data_headless.csv}
Bayern A 1700
Baden-Wiirttemberg A 2300
Sachsen B 1520
Thiiringen A 1900
Hessen B 2100

This example can be extended to insert a table head for this headless data:

/ N\

\csvautobooktabular[table head=\toprule\bfseries Land & \bfseries Group
& \bfseries Amount\\\midrule\csvlinetotablerow\\]{data_headless.csv}
Land Group Amount
Bayern A 1700
Baden-Wiirttemberg A 2300
Sachsen B 1520
Thiiringen A 1900
Hessen B 2100

40

P.13

P.8 »P. 16

For the normal \csvreader’ command, the /csv/no head option should be applied.
Of course, we cannot use /csv/head to column names ' !0 because there is no head, but the
columns can be addressed by their numbers:

/

\csvreader [no head,
tabular=1r,
table head=\toprule\bfseries Land & \bfseries Amount\\\midrule,
table foot=\bottomrule]
{data_headless.csv}
{1=\1and,3=\amount}
{\land & \amount}

Land Amount
Bayern 1700
Baden-Wiirttemberg 2300
Sachsen 1520
Thiiringen 1900
Hessen 2100

41

5.6 Imported CSV data

If data is imported from other applications, there is not always a choice to format in comma
separated values with curly brackets.

Consider the following example data file:

CSV file «imported.csv»

"name" ;"address";"email"

"Frank Smith";"Yellow Road 123, Brimblsby";"frank.smithQorganization.org"
"Mary May";"Blue Alley 2a, London";"mmay@maybe.uk"

"Hans Meier";"Hauptstrafle 32, Berlin";"hans.meier@corporation.de"

If the CSV-Sorter program is properly installed, see Subsection 3.9 on page 24, this can be
transformed on-the-fly with the following configuration file for CSV-Sorter:

Configuration file «transform.xml»

<?zml version="1.0" encoding="UTF-8"?>

<csv>
<bracket leftsymbol="doublequote" rightsymbol="doublequote" />
<delimiter signsymbol="semicolon" />
<outBracket leftsymbol="braceleft" rightsymbol="braceright" />
<outDelimiter signsymbol="comma" />

</csv>

\ V.

Now, we just have to add an option sort by=transform.xml to transform the input data. Here,
we actually do not sort.

/ N\

% \usepackage{booktabs,array}
% Also, the CSV-Sorter tool has to be installed
\newcommand{\Header}[1]{\normalfont\bfseries #1}

\csvreader[
sort by=transform.xml,
tabular=>{\itshape}11>{\ttfamily}1,
table head=\toprule\Header{Name} & \Header{Address} & \Header{email}\\\midrule,
table foot=\bottomrule]
{imported.csv}{}{\csvlinetotablerow}

Name Address email

Frank Smith ~ Yellow Road 123, Brimblsby frank.smith@organization.org
Mary May Blue Alley 2a, London mmay@maybe . uk
Hans Meier Hauptstrafle 32, Berlin hans.meier@corporation.de

\ /

The file which is generated on-the-fly and which is actually read by csvsimple-legacy is the
following:

{name},{address},{email}

{Frank Smith},{Yellow Road 123, Brimblsbyl},{frank.smith@organization.org}
{Mary May},{Blue Alley 2a, London},{mmay@maybe.uk}

{Hans Meier},{HauptstraBe 32, Berlin},{hans.meier@corporation.de}

42

5.7 Encoding
If the CSV file has a different encoding than the IXTEX source file, then special care is needed.

e The most obvious treatment is to change the encoding of the CSV file or the TEX source
file to match the other one (every good editor supports such a conversion). This is the
easiest choice, if there a no good reasons against such a step. E.g., unfortunately, several
tools under Windows need the CSV file to be cp1252 encoded while the IXTEX source file
may need to be utf8 encoded.

e The inputenc package allows to switch the encoding inside the document, say from utf8
to cp1252. Just be aware that you should only use pure ASCII for additional texts inside
the switched region.

% !TeX encoding=UTF-8

% cooa
\usepackage [ut£8] {inputenc}
hooen

\begin{document}

% oo

\inputencoding{latinl}}, only use ASCII from here, e.g. "Uberschrift
\csvreader[). ..
1{data_cp1252.csv}{%. ..
Hi ...
}
\inputencoding{utf8}
B
\end{document}

\ /

e As a variant to the last method, the encoding switch can be done using options from
csvsimple-legacy:

/ N
% !TeX encoding=UTF-8
b cooa
\usepackage [utf8] {inputenc}
hoounn
\begin{document}
% oo

% only use ASCII from here, e.g. "Uberschrift
\csvreader[’. ..
before reading=\inputencoding{latinil},
after reading=\inputencoding{utf8},
1{data_cp1252.csv}{%. ..
P4 cooc
}
b cooo
\end{document}

43

o If the CSV-Sorter program is properly installed, see Subsection 3.9 on page 24, the CSV
file can be re-encoded on-the-fly with the following configuration file for CSV-Sorter:

Configuration file «encoding.xml»

<?xml wversion="1.0" encoding="UTF-8"2>
<csv>

<noHeader/>

<bracket empty="true"/>

<charset in="windows-1252" out="UTF-8"/>
</csv>

% !'TeX encoding=UTF-8
% coao
\usepackage [utf8] {inputenc}
b cooa
\begin{document}
hooen
\csvreader[}. ..
sort by=encoding.xml,
J{data_cp1252.csv}i{/. ..
FA cooc
}
hoounn
\end{document}

44

Index

after first line key, 14 \csvfilteraccept, 13

after head key, 14 \csvfilterreject, 13

after line key, 14 \csvheadset, 11

after reading key, 14 \csviffirstrow, 12

after table key, 20 \csvifoddrow, 12

autobooklongtable key, 20 \csvline, 13

autobooktabular key, 20 \csvlinetotablerow, 13

autolongtable key, 20 \csvloop, 8

autotabular key, 20 \csvnames, 11
\csvreader, 8

before filter key, 14 \csvset, 11

before first line key, 14 csvsorter command key, 24

before line key, 14 csvsorter configpath key, 24

before reading key, 14 csvsorter log key, 24

before table key, 20 csvsorter token key, 25

\csvstyle, 11
centered tabbing key, 20

centered tabular key, 20 default key, 23

check column count key, 17

column count key, 17 every csv key, 23

column names key, 16

column names reset key, 16 file key, 23

comma value, 22 filter key, 19

command key, 14 filter accept all key, 19

Commands filter equal key, 19
\csvautobooklongtable, 10 filter expr key, 18
\csvautobooktabular, 10 filter ifthen key, 19
\csvautolongtable, 9 filter not equal key, 19
\csvautotabular, 9 filter not strcmp key, 18
\csvcoli, 8 filter reject all key, 19
\csvcolii, 8 filter strcmp key, 18
\csvcoliii, 8 filter test key, 18
\csvfilteraccept, 13 full filter key, 19
\csvfilterreject, 13
\csvheadset, 11 head key, 16
\csviffirstrow, 12 head to column names key, 16
\csvifoddrow, 12 head to column names prefix key, 16

\csvline, 13
\csvlinetotablerow, 13
\csvloop, 8
\csvnames, 11
\csvreader, 8
\csvset, 11

\ifcsvnotstrcmp, 29
\ifcsvprostrequal, 29
\ifcsvstrcmp, 29
\ifcsvstrequal, 29

Keys
\csvstyle, 11 /csv/
\ifcsvnotstrcmp, 29 after first line, 14
\ifcsvprostrequal, 29 after head, 14
\ifcsvstrcmp, 29 after line, 14
\ifcsvstrequal, 29 after reading, 14
\thecsvinputline, 13 after table, 20
\thecsvrow, 8, 13 autobooklongtable, 20
\csvautobooklongtable, 10 autobooktabular, 20
\csvautobooktabular, 10 autolongtable, 20
\csvautolongtable, 9 autotabular, 20
\csvautotabular, 9 before filter, 14

\csvcoli, 8
\csvcolii, 8
\csvcoliii, 8

before first line, 14
before line, 14

45

before reading, 14
before table, 20
centered tabbing, 20
centered tabular, 20
check column count, 17
column count, 17

column names, 16

column names reset, 16
command, 14

csvsorter command, 24
csvsorter configpath, 24
csvsorter log, 24
csvsorter token, 25
default, 23

every csv, 23

file, 23

filter, 19

filter accept all, 19
filter equal, 19

filter expr, 18

filter ifthen, 19

filter not equal, 19
filter not strcmp, 18
filter reject all, 19
filter strcmp, 18

filter test, 18

full filter, 19

head, 16

head to column names, 16
head to column names prefix, 16
late after first line, 14
late after head, 14

late after last line, 14
late after line, 14
longtable, 20

new sorting rule, 28

no check column count, 17
no filter, 19

no head, 16

no preprocessing, 23

no table, 20

on column count error, 17
preprocessed file, 23
preprocessor, 23

respect all, 21

respect and, 21

respect backslash, 21
respect circumflex, 21
respect dollar, 21
respect leftbrace, 21
respect none, 21

respect percent, 21
respect rightbrace, 21
respect sharp, 21
respect tab, 21

respect tilde, 21
respect underscore, 21
separator, 22

sort by, 25

46

tabbing, 20
table foot, 20
table head, 20
tabular, 20

warn on column count error, 17

late after first line key, 14
late after head key, 14

late after last line key, 14
late after line key, 14
longtable key, 20

new sorting rule key, 28

no check column count key, 17
no filter key, 19

no head key, 16

no preprocessing key, 23

no table key, 20

on column count error key, 17

pipe value, 22
preprocessed file key, 23
preprocessor key, 23

respect all key, 21
respect and key, 21
respect backslash key, 21
respect circumflex key, 21
respect dollar key, 21
respect leftbrace key, 21
respect none key, 21
respect percent key, 21
respect rightbrace key, 21
respect sharp key, 21
respect tab key, 21
respect tilde key, 21
respect underscore key, 21

semicolon value, 22
separator key, 22
sort by key, 25

tab value, 22

tabbing key, 20
table foot key, 20
table head key, 20
tabular key, 20
\thecsvinputline, 13
\thecsvrow, 8, 13

Values
comma, 22
pipe, 22
semicolon, 22
tab, 22

warn on column count error key, 17

	Introduction
	Loading the Package
	First Steps

	Macros for the Processing of CSV Files
	Option Keys
	Command Definition
	Header Processing and Column Name Assignment
	Consistency Check
	Filtering
	Table Support
	Special Characters
	Separators
	Miscellaneous
	Sorting

	String Tests
	Examples
	A Serial Letter
	A Graphical Presentation
	Macro code inside the data
	Tables with Number Formatting
	CSV data without header line
	Imported CSV data
	Encoding

	Index

