The CodeDoc class
v.0.3
2010/03/30

Paul Isambert
zappathustra@free.fr

CodeDoc is a class designed to produce IATEX files such as packages and classes along with their documen-
tations. It does not depart from BTEX’s ordinary syntax, unlike e.g. DocStrip, allows any existing class
to be loaded with its options and offers various fully customizable verbatim environments that allows
authors to typeset the code and documentation of their files as they want. To create the documentation,
we compile the document as usual; to create the external file(s), we simply put produce in the class
options and compile as before.

Despite my earliest expectations, CodeDoc is not better than DocStrip. It is simply different. If you
want a well-delimited approach to literate programming, use DocStrip. On the other hand, CodeDoc
is more natural, in the sense that it is ordinary BTEX all the way down. Note that you can ‘mimick’
DocStrip, either by putting any character at the beginning of each line of your code and setting the
\Gobble parameter to 1 (this would be ‘inverted DocStrip’), or by setting the comment character to be
of category 9 (‘ignored’) and beginning each line of the documentation with this character. In this latter
case, only commands that are considered by CodeDoc when producing a file should not be commented
out... but I'm going too fast here, and you should learn the basics first...

CodeDoc is still in its infancy, as indicated by its version number. Although it has passed the test of
producing this documentation, countless bugs will probably be reported, and meaningful suggestions will
be made. Be patient, and send them to me. Any reported bug and meaningful suggestion will be rewarded
by a musical note, played by a virtual instrument, and sent in the mp8 format. Isn’t it amazing? I
know it is. I will have to hire musically educated secretaries to face the consequences of such a reckless
proposition. But it is worth it. Once a stable version is reached, I might even write a symphony.!

Some of the ideas of this class are not mine; some were inspired by others; some are mine but were
independantly implemented in other places; may all these people be thanked, as well as all the verbatim
wizards around the world. And, oh, yeah, some ideas are mine, too.

1“Meaningful suggestion’ and ‘stable version’ are fuzzy terms, you complain. Of course they are. Give me a chance!

Changes in version 0.3

= Fixed \ProduceFile, which ruined everything in produce mode when used without
optional arguments.

Changes in version 0.2

= Bug fix to make \ref work properly in the unmodified code environment.

= Files \input and read in produce mode won’t produce error messages anymore...
at least with e-TEX.

Contents

I User’s manual

1 Code & Documentation
1.1 Writing code oL e e
1.2 Macros to describe macros . . . v v v o i e e e e e e e e e e e e e e e e e

1.3 Choosing the class
1.4 Dangerous strings

2 Verbatim Madness

2.1 Example environmentso Lo

2.2 \ShortVerb and friends

2.3 Using fancyvrb L e
3 Summary of commands

3.1 Classoptions e

3.2 Environments e e e e e

3.3 Commands e

II Implementation

4 Options and basic definitions

5 Normal mode
5.1 Describing macros

5.2 \ShortVerb and associates
5.3 Verbatim definitions e e e
5.4 The default code environment e e e e
5.5 Example environmentso
5.5.1 Examples without e-TEX
5.5.2 Examples with e-TEX o . oo

5.6 File management

6 Produce mode

6.1 Messages
6.2 Testing strings L e
6.3 Macros executed in produce mode Ll Lo
6.4 Writing environments L L e

6.5 File management

Index

17
17
17
17

21
21

22
22
25
30
32
34
39
40
43

45
45
45
48
o4
56

60

Part 1
User’s manual

1 Code & Documentation

The source of this documentation looks roughly like this:

\documentclass[article(adpaper),
%produce,
J{codedoc}

Preamble of the document

\begin{document}
\section{Code \& Documentation}
The source of this document...

\ProduceFile{codedoc.cls}[codedoc] [v.0.3] [2010/03/30]
\begin{code}

Material here will be written to codedoc.cls

and typeset verbatim in the documentation.
\end{code}

\ShortCode/

/
Thts too...

/

\begin{invisible}
This matertal will be written to codedoc.cls
but not typeset in the documentation.
\end{invisible}

\end{document}

Everything between \begin{code} and \end{code} is written verbatim to the dvi file. It is also the
case for everything between two \ShortCode symbol, in this example ‘/’. Finally, if the comment sign at
the beginning of the second line were removed, thus enabling the produce option, then this code would be
written to codedoc.cls and no documentation would be produced. This is CodeDoc’s basic mechanism.
Let’s review it more precisely. In what follows, I will say ‘normal mode’ if the produce option is not
turned on, that is when we’re typesetting the documentation, and ‘produce mode’ otherwise, that is when
produce is present among the class options and CodeDoc is used to create an external file.

The first two sections of this manual explain how CodeDoc works and provide many examples. The
third section lists all commands in alphabetical order, and explains what they do in each mode in a more
systematic fashion.

1.1 Writing code

\ProduceFile{(File)}[(File name)] [(File version)] [(File date)]

In normal mode, this macro provides four commands: \FileSource stores (File), and the next three
arguments are stored in \FileName, \FileVersion and \FileDate respectively. Those are optional, as
indicated by their syntax.

In produce mode, CodeDoc opens (File) and writes to it everything in a code environment. \FileName,
\FileVersion and \FileDate are also provided and may be used in \Header (see below) or in the file
itself with \CodeEscape (see page 16). Thus, you can avoid mismatches between your documentation
and the \ProvidesPackage declaration, for instance.

e \CloseFile{(File)}
In produce mode, when the autoclose option is on, \ProduceFile closes the file that was currently
under production, if any. But you might want to keep a file open, in case you're writing to several files
at the same time. That’s why CodeDoc’s basic behavior is to keep all files open. Thus

\def\foo{%
FO0}
but who knows? that might be useful when building a complicated package.
But TEX cannot keep open as many files as one wants. Actually, CodeDoc will start complaining when
more than 16 files are simultaneously in production. \CloseFile is used to close those whose production
is over and allocate their streams to new files. @ oo s flow?

will write to myfile and \relax to myotherfile. This might not be very good practice,

e code
This is the basic environment that writes its content to an external file in produce mode or displays it
verbatim in the documentation in normal mode. There is nothing much to say. Each line is numbered,
as one generally wants the implementation of a code to be. One important thing is that everything on
the line after \begin{code} will be gobbled. \end{code} can appear wherever you want.

e \CodeFont{(Font specifications)}
The font of the code environment may be changed with \CodeFont (by default, it’s \ttfamily). Since
everything is in a group, you can use ‘spreading commands’.

e \LineNumber{code}{(Font specifications)}{(Width)}[(Number)]
This sets the style of the line number, the width of the box it is put in (by default, it’s Opt, so numbers
are in the left margin), and the starting value. The first argument is code and not (code), because
\LineNumber is a macro that applies to all example environments (see the next section), and its first
argument is the name of the environment to modify. By default, code is not an example environment
(although it might be redefined as such) but this command is nonetheless available.

25 | def\foo{%
26 FOO}

Note that \LineNumber inherits the specification of \CodeFont that it doesn’t override, in this example

the italic shape. The \color command does not belong to CodeDoc, but to the xcolor package. If you

want to do really interesting things with code, it is better to redefine it as an example (see next section).
As usual with verbatim environments, there exists a starred version of code that shows spaces.

invisible

In normal mode, everything in a invisible environment is skipped. In produce mode, however, the
material is written to the file in production. This is useful to write code you don’t want to comment in
the documentation, like specifications at the beginning of the file or repetitive macro definitions. As you
might imagine, there is no starred variant.

\Header{(Tezt)}

In produce mode, unless the noheader option is on, CodeDoc writes the following at the beginning of
every file:

% This is (\FileName), produced by the CodeDoc class

% with the ‘produce’ option on.

h

% To create the documentation, compile (jobname.tez)

% without the ‘produce’ option.

"

% SOURCE: (File (\input in File...))

% DATE: (\FileDate)

% VERSION: (\FileVersion)

where \FileName, \FileDate and \FileVersion are set by \ProduceFile. The ‘\input in file’ part
is optional and recursive, depending on files \input in your document. With \Header, you can change
this and print (Text) instead. In (Text), ends of line are obeyed, and a comment sign followed by a space
will start every line. Comment signs are normal sign. \Header should appear before \ProduceFile.

\AddBlankLine
In produce mode, CodeDoc writes a blank line to the file under production. Useful to delimit macros.

\TabSize{(Number)}
This is the number of spaces by which a tabulation will be represented in verbatim context. Default is 2.
In produce mode, however, tabs are written as tabs, so this parameter has no effect.

\Gobble{(Number)}
The number of characters that will be gobbled at the beginning of each line. This works both in normal
mode and in produce mode. This might be useful to indent code lines to make them more visible. When
gobbling, a tab is considered as a single character and not as n characters, n being the value of \TabSize.
A totally blank line is written as a totally blank line in both modes, i.e. CodeDoc does not fill its
need for gobbled characters on the next line. The \end{code} line doesn’t need to be indented, although
it can be. If there are more characters than the value of \Gobble before \end{code}, then a new line is
created.

My own value for \TabSize is 2,

hence the 2-space tab here,
but in the right panel it’s 3 .

e \BoxTolerance{(Dimension)}
Verbatim lines often go into the right margin. This is the threshold above which TEX reports an overfull
box. Default is Opt.

1.2 Macros to describe macros

Most of the commands in this section are similar to those in DocStrip. CodeDoc has an indexing mecha-
nism that simply uses Makelndex; if the index option is on, the makeidx package is loaded and \makeindex
is executed. This also means that \printindex is available. CodeDoc does not require a special style file
for Makelndex. Thus, users can compile a documentation made with CodeDoc with Makelndex’s default
specifications.

e \DescribeMacro{(Macro)}

e \DefineMacro{(Macro)}
These commands print their argument according to \PrintMacro (see below). The first token is \stri-
ng’ed,? so it can be a control sequence. They also create an index entry with the first token, and here lies
their difference: they print the page number differently to distinguish whether a macro is described or
defined (in the implementation). By default described macros have normal page numbers while defined
macros have theirs in italics. This is not conventional, I agree, but it can be changed.?

e \DescribeEnvironment{(Environment)}

e \DefineEnvironment{(Environment)}
This is similar to the macro version above, except that the entry is followed by ‘(environment)’ in the
index.

e \DescribeIndexFont{(Font specifications)} Don't you find these

e \DefineIndexFont{(Font specifications)} e comne
This sets how the page numbers are printed for described and defined macros (and environments)
respectively. {(Font specifications)} should be commands like \ttfamily and not argument-taking com-
mands like \texttt. You know that if you use Makelndex.

e \PrintMacro{(Macro or environment)}
This is the command that typeset the (\string’ed) macro. It takes one argument. It is shown here not
to use it as is but to redefine it. Its default definition is:

That is, it puts the macro in the margin. (Obviously, it was redefined in this documentation.) To achieve
the same effect as with DocStrip, the following command is needed.

e \DocStripMarginpar
This reverses marginpar and sets the right value for \marginparpush and \marginparwidth. They
weren’t included by default because you have the right to do what you want with your margins.

2Verbatim text does not break by itself. I've used \VerbCommand here (see below) to include a discretionary.
3Since CodeDoc doesn’t index macros when used in the code, I’ve found this choice more readable.

e \IgnorePrefix{(Macro prefiz)}

Many package and class authors prefix their internal commands with a string of letters to avoid clashes
with other packages. For instance, if one writes a package mypack, one may name all internal commands
\mp@foo, \mp@boo, \mp@moo, etc. Unfortunately, when indexed, they will all end up in the ‘M’ letter,
whereas one might want to have them sorted without the prefix, with \mp@foo indexed as if it was
\foo, etc. This is what \IgnorePrefix does; when sorting entries produced by \DescribeMacro and
\DefineMacro, (Macro prefiz) is ignored, although it is printed of course as part of the name. In
our example, one would say \IgnorePrefix{mp@}. This command has two restrictions: first, (Macro
prefiz) should be no more than 8 characters long; second, any macro described with \DescribeMacro or
\DefineMacro should have as many characters as \IgnorePrefix, 3 in our example. A simple way to
circumvent the latter shortcoming is to temporarily define (Macro prefir) as an empty string:

Will be indezed as |\foo

This will cause an error message

This is perfectly ok

You can have several \IgnorePrefix specifications, they are effective for the macros that follow them. For
instance, some macros in CodeDoc are prefixed with cd@e, and when I define them in this documentation
I specify \IgnorePrefix{cd@@} and then immediately \IgnorePrefix{cd@}, which is the normal prefix.

\PrintPrefix{(Macro prefiz)}

Like \PrintMacro, this command is not shown here to be used but to be redefined. It is put just be-
fore (Macro prefiz) when printing the index, so that you can typeset it differently. For instance, most
CodeDoc’s internal macros are prefixed with cd@. I have specified \IgnorePrefix{cd@} for this doc-
umentation and defined \PrintPrefix as \def\PrintPrefix{\textcolor{gray}} so that all prefixes
are printed in gray (thanks to the xcolor package). For instance, \cd@BadChar is printed \cd@BadChar
in the index (which you can verify if the obeystop option is commented out, thus including the im-
plementation in the documentation). Obviously, \def\PrintPrefix#1{\textcolor{gray}{#1}} would
have been equally efficient. Just note that since \PrintPrefix is \let to \relax by default, you have to
use \newcommand and not \renewcommand when defining it for the first time, in case you prefer IXTEX’s
command definitions.

\meta{(4rgument)}

\marg{(4rgument)}

\oarg{(4rgument)}

\parg{(4drgument)}

These are well-known. In case you’ve forgotten:
\meta{Argument} = (Argument)

\marg{Mandatory argument} = {(Mandatory argument)}
\oarg{Optional argument} = [{Optional argument)]
\parg{Picture argument} = ({Picture argument))

\bslash
Everybody needs a backslash. This one is meant to print equally well in usual contexts and in PDF
bookmarks created by hyperref, if any. So it can be used in titles without restriction.

\StopHere{(Code)}

If the obeystop command is on, CodeDoc will execute (Code) and then \end{document}, otherwise
nothing happens. If the index option is also on, \printindex will be automatically executed after
(Code). This is useful to let the user print a version of the documentation with some part(s) left out,
typically the implementation.

1.3 Choosing the class

CodeDoc by itself defines nothing that one wants a class to define. Tt lets the user call the desired class.
To do so, just add the name of the class in the options of the \documentclass declaration. If you
want the class to load options itself, put them after the name of the class, between parenthesis, and
separated by semi-colons. Thus, \documentclass[memoir]{codedoc} loads the memoir class without
options while \documentclass[memoir (adpaper;oneside)]{codedoc} loads it with the a4paper and
oneside options.?

By default, CodeDoc loads the article class without options.

1.4 Dangerous strings @

Daaaaaaangerouuuuuus...

In produce mode, CodeDoc becomes a string tester and nothing else. Hence, there are strings you don’t
want it to see because you don’t want it to execute them. For instance, you don’t want \end{document}
to be executed unless at the end of the document. So when you say \verb+\end{document}+, you want
CodeDoc to identify that \end{document} is not for real. Fortunately, CodeDoc does so. To some extent.

More precisely, CodeDoc identifies its own verbatim commands (described in the next section), BTEX’s
\verb and verbatim environment, as well as verbatim environments created with the fancyvrb package
and the ‘short verb’ characters defined with \DefineShortVerb from the same package. Thus, you can
safely use fancyvrb and its companion fvrb-ex.

However, \begin’s and \end’s are not the only strings that must be used carefully. The most important
things you want CodeDoc to ignore in case they shouldn’t be executed are its own macros. For instance,
you don’t want \ProduceFile to be executed when there’s no reason to do so. But, unless you're
documenting CodeDoc itself, what might be the situation where \ProduceFile is executed wrongly?
Simply if you use it in a statement with \let, \def, \newcommand, etc. In produce mode, CodeDoc does
not recognizes these commands and for instance in \let\ProduceFile\mycommand, \let will be skipped
and \ProduceFile executed. Hence the following.

e \DangerousEnvironment{(List of environments)}
Whenever you want CodeDoc to skip an environment in produce mode, for instance because it’s a verbatim
environment designed by yourself, you can add its name to \DangerousEnvironment. If you add more
than one name, use commas as separators.

e \StartIgnore

e \StopIgnore
In produce mode, when CodeDoc encouters \StartIgnore, everything is skipped until \StopIgnore is
found. This is useful to hide parts of your document that are irrelevant to the file you’re building in
produce mode (which is probably contained in the ‘implementation’ section). You should be careful to
define your example environments and other verbatim devices outside the skipped material, if you want
CodeDoc to identify them properly when it stops ignoring things.

This will be skipped by CodeDoc

This too, but that will be taken into
account im mormal mode

However, you should be aware of the following points:
e Any command that has some effect in produce mode should appear verbatim in your document.

4This means that if you specify an unknown option for CodeDoc, it will try to load an (probably) unknown class, and
you will get the corresponding error message.

Conversely,

o Commands that have some effect in produce mode cannot be redefined for that mode.

And when I say ‘cannot’, I mean ‘you can try, it won’t work’. This leads to the final principle:

e You can redefine a command to have the desired effect in normal mode as long as you respect its arguments,
so that it can work properly in produce mode. And this should be done between \StartIgnore and
\StopIgnore, of course.

For instance, you can say:

\StartIgnore

\renewcommand\CloseFile[1]{End of #1\clearpage}
\StopIgnore

and when you say \CloseFile{myfile}, ‘End of myfile’ will be printed to the documentation, and a
new page will be created, while in produce mode CodeDoc will do its usual job. On the other hand,
although \let\cf\CloseFile is meaningful in normal mode, in produce mode it won’t take effect,
i.e. CodeDoc won’t close anything. Finally, the previous example would have been catastrophic with-
out \StartIgnore and \StopIgnore, because in produce mode, CodeDoc would have tried to execute
\CloseFile.

\StartIgnore and \StopIgnore are also useful to make CodeDoc go faster and avoid errors, if you
use it with \input. For instance, the following file would be perfect, provided everything that should be
written to an external file is contained in implementation.tex

Write your verbatim definitions here, so that CodeDoc can see them

This example leads us to the final restriction:

e You should use \input in the BTgX’s way, i.e. \input{myfile}, and not in TEX’s original way,
i.e. \input myfile, if the file in question is to be read in produce mode. In the example above,
documentation can be \input as you want, but implementation should be \input as shown.

To know what commands have some effect in produce mode, see the summary of commands.

2 Verbatim Madness

2.1 Example environments

e example
e \CodeInput
e \CodeOutput
At first sight, the example environment is totally useless. Indeed, the following code does nothing:

\begin{example}
\TeX

\end{example}

10

However, it provides two commands \CodeInput and \CodeOuput. The former prints the code verbatim
(and in typewriter font), and the latter executes it. So in the end it’s very useful to document your
package or class, because it avoids typing the code twice (and therefore errors are avoided).

\begin{example}
\TeX
\end{example}
\CodeInput\noindent yields \CodeOutput

The example environment is just one instance of a family of environments that you can create by
yourself with the following commands.

e \NewExample[(Options)]l{(Name)}{(Code input)}{(Code output)}{(Immediate ezecution)}

e \RenewExample[(Options)]{(Name)}{(Code input)}{(Code output)}{(Immediate ezecution)}
These two macros (whose difference is similar to the one between \newcommand and \renewcommand) cre-
ate an environment (Name) that will provide two commands, \CodeInput and \CodeOutput, whose effect
is defined by (Code input) and (Code output). Moreover, (Name) will execute (Immediate execution).

(Code input) and {Code output) have a peculiar syntax. The code to be processed is represented by #.
For instance, the example environment is defined as:

\NewExample{example} This is (Name)
{\ttfamily#} \Codelnput yields but the code in typewriter font

{#} \CodeOutput simply emecutes the code
{3 Nothing ts done when example s called

You can do whatever you want. The code, represented by #, may be the argument of a macro. For
instance:

‘Hello, world’, what a cliché!

What does myex do? It sets the verbatim code in typewriter font and underlines it (which is admittedly

not the most interesting thing you can do). (Code output) is empty, so \CodeOutput will yields nothing.

Finally, (Immediate execution) calls \CodeInput, so there’s no need to call it after the environment.
The following points apply:

e All environments thus defined have a starred variant that shows spaces as characters.

e \CodeInput, \CodeOuput and (Immediate ezecution) are groups, so you can put any command in them,
they won’t spread. For instance, in myex above, there’s no need to add a group to restrict the application
of \ttfamily.

e \CodelOuput really executes your code. Any error will appear as such.

e Since \CodeQuput is a group, the definition you make won’t work for the rest of your document, unless
you make them global. For instance:

11

will yield an error message, because \foo was only locally defined in \CodeQuput.

e Everything on the same line after the \begin statement of an environment will be gobbled.

e By default, CodeDoc does not add any space or \par before \CodeInput, \CodeOuput and (Immediate
execution). A \par is added after \CodeInput if and only if the \end statement appears on its own line.
Here’s an illustration:

\NewExample{myex}{\ttfamily#}{#}{}
\parindentOpt

\begin{myex}
\TeX
\end{myex}
+\CodeInput+ yields +\CodeOutput+

\vskiplem
\begin{myex}

\TeX\end{myex}

+\CodeInput+ yields +\CodeOutput+

e The code environment can be freely redefined as an example environment.

e All example environments obey \TabSize and \Gobble as defined in the previous section, as well as
\LineNumber if they are numbered (see below). See the description of \eTeX0ff and \eTeX0n below for
a comment on \Gobble.

(Options) may be one or several of the following (separated by commas):
numbered
Each line of \CodeInput is numbered. The count starts back to 1 at each occurrence of the environment.
continuous
Each line of \CodeInput is numbered. The count starts where the last occurrence of the same environment
left. As an (utterly boring) example:

12

SIGH .

\NewExample [numbered] {myex1}{\ttfamily#}
{}{\CodeInput}

\LineNumber{myex1}{\itshape}{lem}

\NewExample [continuous] {myex2}{\ttfamily
\color{red}#}{}{\CodeInput}

\LineNumber{myex2}{\itshapel}{2em}

\begin{myex2}

First line

Second line

\end{myex2}

\begin{myex1}

First line

Second line

\end{myex1}

\begin{myex2}

Third line

Fourth line

\end{myex2}

visibleEQOL
This is more complicated and requires some knowledge of how CodeDoc builds examples.

Although you might not know it, your TgX distribution is very probably running on e-TEX. That’s
the reason why CodeDoc can process some code verbatim and executes it at the same time, as in the
example environments, without the need for an external file. This is completely impossible with the
original implementation of TEX. If, for some reason, you don’t have e-TEX, or you’re not running on it,
then CodeDoc will use an external file.

However, e-TEX’s ‘virtual external file’ mechanism is not perfect, and CodeDoc has to cope with it.
What happens is that when you use \CodeOutput, CodeDoc hacks your code a little in order to simulate
a real TEX code; namely, before anything is processed, CodeDoc removes ends of lines and commented
parts of lines. For instance, if you say:

what CodeDoc really processes with \CodeInput is \def\foo{F00!}_ \foo. Most of the time, that’s
exactly what you want. But it might happen that you’re toying around with ends of lines or comment
characters, and in that case everything will go wrong, as in:

This will not produce ‘I'm writing a % sign’, because CodeDoc will remove everything from the comment
sign to the end of the line, so that what \CodeOuput will try to execute is:

and of course the aborted \catcode declaration will yield an error message. To avoid this problem, the
visibleEOL option makes CodeDoc keeps everything. But now there’s another issue: comments and end
of line characters are processed at the same time as other macros and aren’t interpreted independantly
as in normal TEX. For instance, the following code, if the visibleEOL option is on for the environment
in question, will apply \emph to the end of line character and not to A.

\emph
A

So you should be sure that comments and line ends occur where they won’t hinder anything. If you find
this utterly complicated, then you can use an external file whenever you’re hacking ends of line, thanks
to the following two macros.

\eTeX0ff

\eTeX0n

The former makes CodeDoc process all examples environments with an external file (whose extension
is .exp). The latter makes everything back to normal. If \eTeX0ff applies, the visibleEQOL option is of
course irrelevant. Note that these two macros apply to examples that follow them and not to example
definitions. For instance, \eTeX0ff and then \NewExample{myex}{#}{}{} will not lead CodeDoc to use
an external file whenever myex is called, but simply as long as no \eTeX0n appears. To put simply, these
two macros have no effect on \NewExample.

If \Gobble is positive, examples with e-TEX and examples without behave differently. The latter
gobble characters before writing to the external file. Thus, \CodeOutput will execute line with the first
characters gobbled. With e-TgX, however, nothing is gobbled in \CodeOutput. This means that first
characters, if meant to be gobbled, will be executed. Most of the time, such characters are spaces, and
the difference won’t be noticed. If, for some reason, you use other characters instead, and if you want to
call \CodeOutput nonetheless, then a switch to an external file may be a good idea.

2.2 \ShortVerb and friends

CodeDoc provides a number of facilities to act on verbatim contexts. They declare one or more character(s)
to have a special effect under certain circumstances.

\ShortVerb{(Character)}

\UndoShortVerb

This is well-known. (Character) is turned into a shorthand for \verb. You can define only one such
character, and that’s why \UndoShortVerb doesn’t take an argument (like all \Undo... below). In
CodeDoc verbatim contexts, this character returns to its normal value.

\ShortCode [(Ezample name)]l{(Character)}

\UndoShortCode

This turns (Character) into an equivalent of \begin{code} and \end{code}. In normal mode, the
verbatim material will be printed according to { Example name)’s specifications. If this optional argument
is not present, then \ShortCode will follow code’s style. Most importantly, in produce mode everything
between two (Characters) will be written to the file under production.

14

Oh yeah, braces are never
needed. . .

\ShortVerb and \ShortCode have one caveat. If you \Undo. .. them and the next character (disre-
garding spaces, comments and ends of lines) is a short verb or a short code respectively, in produce mode
it will fire as if it was still active. A pair of braces after the \Undo. .. statement prevents this.

\VerbBreak{(Character)}

\UndoVerbBreak

Every once in a while, breaking a verbatim line may be useful. In verbatim contexts, (Character) breaks
the line, creates an unnumbered new one and indents it to the indentation of the original line. When
\CodeOutput is processed, the \VerbBreak character is ignored. However, you should not break in the
middle of a control sequence (admittingly a strange idea), or it won’t form. It is also ignored, of course,
when writing to a file in produce mode.

\VerbBreak{\=} An escape character is ok
\begin{examplex}
\TeX
\emph=\TeX
\end{example*}\CodeInput

And the result is: \CodeOutput

\VerbCommand{(Escape)}{(Left brace)}{(Right brace)}
\UndoVerbCommand
In verbatim contexts, those three characters will serve to form control sequences. In \CodeOuput and
produce mode, they are ignored. More specifically, (Escape) gobbles all letters following it (forming a
putative command name) while everything vanishes that appears between (Left brace) and (Right brace).
This is not a very sound device, and above all you should add a (Left brace)-(Right brace) pair after
a command called with (FEscape), if it precedes a command to be executed in \CodeOutput. That is,
suppose \VerbCommand{!}{(}{)}, then !foo\foo is a very bad idea in your code, while !foo()\foo is
ok. All the comments in the examples here are done with \VerbCommand.

Since numbered examples environment define the current label to be the number of the current line,
an interesting application is to use \label to refer to it.

15

Mind my word,
don't use it

e \CodeEscape{(Character)}
e \UndoCodeEscape
In normal mode, this command does absolutely nothing. However, in produce mode, (Character)
becomes an escape character to form control sequences that will be expanded when writing to the file
under production. It’s useful mainly to put the values defined by \ProduceFile somewhere in your file.
For instance, the following code

will write \ProvidesPackage{mypack}[2009/02/24 v.2.1 My super package.] to mypack.sty.

2.3 Using fancyvrb

CodeDoc is minimally compatible with fancyvrb, in the sense that verbatim characters defined and un-
defined with \DefineShortVerb and \UndefineShortVerb are recognized in produce mode (hopefully).
Besides, verbatim environments defined with \DefineVerbatimEnvironment are automatically added to
the list of dangerous environments. The environments offered by fancyvrb and the fvrb-ex companion
package already belong to that list.

You can even redefine the code environment with fancyvrb facilities.> However:

e \ShortCode will stick to the last style defined for code (if it is set to follow this environment).

e Since everything is gobbled after \begin{code} in produce mode, you can freely put your keyval pairs
here, as usual with fancyvrb. However, you should not input these pairs on the following line(s), although
it’s ok with fancyvrb. The following code will lead xleftmargin=1cm] to be written on the file under
production.

51t will indeed add code to the list of dangerous environment, which is already the case when code is redefined with
\RenewExample. But CodeDoc evaluates whether an environment is code before checking the list of dangerous environments.

e The gobble and commandchars parameters will be obeyed in normal mode (since fancyvrb is in charge),
but not in produce mode, unless you also specify the \Gobble and \VerbCommand parameters (see above)
accordingly.

3 Summary of commands

In this section I explain the behavior of all CodeDoc constructions in normal and produce mode re-
spectively. Commands which have some effect in produce mode are subject to the restrictions given in
section 1.4.

3.1 Class options

autoclose

Normal Mode: Does nothing.

Produce Mode: The current file is closed when a new one is opened with \ProduceFile.

index

Normal Mode: Loads makeidx and calls \makeindex. \StopHere automatically launches \printindex.
Produce Mode: Does nothing.

e noheader

Normal Mode: Does nothing.

Produce Mode: No header is written to the file when it is opened.

obeystop

Normal Mode: The document stops at \StopHere{(Code)} and executes (Code). If the index option is on,
\printindex is executed after (Code).

Produce Mode: Does nothing.

tracing0, tracingl, tracing2

Normal Mode: Does nothing.

Produce Mode: CodeDoc normally writes a report to the log file. If tracing0 is on, there’s no report; if
tracingl is on (which is default), CodeDoc reports only about opening files and writing code. With tracing2, it
also reports about characters defined as \ShortVerb or \CodeEscape, environments added to the list of dangerous
environments, etc.

3.2 Environments

code

Normal Mode: The content is displayed verbatim according to the style defined for code.

Produce Mode: The content is written to the file in production.

example

Normal Mode: A minimal example environment that provides \CodeInput (in typewriter font) and \CodeInput.
Produce Mode: The content is skipped.

invisible

Normal Mode: The content is skipped.

Produce Mode: The content is written to the file in production.

3.3 Commands

\AddBlankLine

Normal Mode: Does nothing.

Produce Mode: Adds a blank line to the file in production.

\bslash

Normal Mode: Prints \. Designed to adapt to hyperref’s bookmarks.
Produce Mode: Does nothing.

17

\BoxTolerance{(Dimension)}

Normal Mode: Excess size tolerated before a verbatim line is reported as an overfull box.

Produce Mode: Does nothing.

\CloseFile{(File)}

Normal Mode: \FileName and others are not available anymore.

Produce Mode: Closes (File). No file is considered in production until the next \ProduceFile, even if there are
open files. Useless in autoclose mode.

\CodeEscape{(Character)}

Normal Mode: Does nothing.

Produce Mode: (Character) turns into an escape character in code contezts.

\CodeFont{(Font specifications)}

Normal Mode: The style of the code environment if it has not been redefined with \RenewExample. Default is
\ttfamily.

Produce Mode: Does nothing.

\CodeInput

Normal Mode: Displays the code of the last example environment verbatim, according to the style defined for
that environment.

Produce Mode: Does nothing.

\CodeQOutput

Normal Mode: Executes the code of the last example environment, according to the style defined for that
environment.

Produce Mode: Does nothing.

\DangerousEnvironment{(List of environments)}

Normal Mode: Does nothing.

Produce Mode: The environments in the list are skipped during processing.
\DefineEnvironment{(Environment)}

Normal Mode: Prints (Environment) according to \PrintMacro and adds it to the index with ‘(environment)’
and a line number typeset according to \DefineIndexFont.

Produce Mode: Gobbles the first characters of (Environment), just in case.

\DefineIndexFont{(Font specifications)}

Normal Mode: Style of the page number in the index for \DefineMacro and \DefineEnvironment entries.
Produce Mode: Does nothing.

\DefineMacro{(¥acro)}

Normal Mode: Prints (Macro) according to \PrintMacro and adds it to the index with a line number typeset
according to \DefineIndexFont.

Produce Mode: Gobbles the first characters of (Macro), just in case.

\DescribeEnvironment{(Environment)}

Normal Mode: Prints (Environment) according to \PrintMacro and adds it to the index with ‘(environment)’
and a line number typeset according to \DescribeIndexFont.

Produce Mode: Gobbles the first characters of (Environment), just in case.

\DescribeIndexFont{(Font specifications)}

Normal Mode: Style of the page number in the index for \DescribeMacro and \DescribeEnvironment entries.
Produce Mode: Does nothing.

\DescribeMacro{(Nacro)}

Normal Mode: Prints (Macro) according to \PrintMacro and adds it to the index with a line number typeset
according to \DescribeIndexFont.

Produce Mode: Gobbles the first characters of (Macro), just in case.

\DocStripMarginpar

Normal Mode: Sets the adequate values for the proper printing of macros with \DescribeMacro and \DefineMacro
(and variants for environments), so that they appear \marginpar’ed as with DocStrip. More precisely, it executes
\reversmarginpar, and sets \marginparpush to Opt and \marginparwidth to 8pc.

Produce Mode: Does nothing.

\eTeX0ff

Normal Mode: All subsequent example environments are processed with an external file, whose extension
is .exp.

Produce Mode: Does nothing.

\eTeX0n

Normal Mode: All subsequent example environments are processed without an external file. This is default.
(Requires e-TEX, of course.)

Produce Mode: Does nothing.

18

e \Gobble{(Number)}
Normal Mode: The number of characters that will be gobbled at the beginning of each example and code
environments. In case of a blank line, nothing is gobbled, but a blank line is added. Tab characters count as one
character.
Produce Mode: Same as in normal mode, but when writing to the file in production.
\Header{(Tezt)}
Normal Mode: Does nothing.
Produce Mode: Tezt to be written at the beginning of a file when it is opened with \ProduceFile. Comment
characters will be automatically added at the beginning of each line. Ends of lines are obeyed. If the noheader
option is on, nothing is written.
\IgnorePrefix{(Hacro prefiz)}
Normal Mode: Ignores (Macro prefiz) when sorting index entries generated by \DescribeMacro and \DefineMacro.
(Macro prefiz) will be typeset according to \PrintPrefix in the index.
Produce Mode: Does nothing.
e \LineNumber{(Vame)}{(Font specifications)}{(Width)}[(Number)]

Normal Mode: The line number of (Name) will be typeset according to (Font specifications) in a box that will
@7 spread from the left margin into the main text width by a length of (Width) (Opt by default). The next (Name)
will start at (Number) if specified.
Produce Mode: Does nothing.
\marg{(4rgument)}
Normal Mode: \marg{Argument} prints {(Argument)} (mandatory argument).
Produce Mode: Does nothing.
\meta{(4rgument)}
Normal Mode: \meta{Argument} prints (Argument).
Produce Mode: Does nothing.
\NewExample [(Options)]{(Name)}{(Code input)}{(Code output)}{(Immediate ezecution)}
Normal Mode: Creates (Name) as an example environment to provide \CodeInput as (Code input) (where the
code to be typeset is represented by #) and \CodeOutput as (Code output) (where the code to be executed is
represented by #). When encountered, (Name) executes (Immediate ezecution). (Code input), (Code output) and
(Immediate execution) can be empty.
Options are:
numbered: Each line of (Name) is numbered.
continuous: Each line of (Name) is numbered and numbering continues from one (Name) to the other.
visibleEOL: If (Name) is processed with e-TEX, This prevents ends of lines and commented parts of lines from
being removed before anything is executed in \CodeInput. See page 13 for a discussion.
Produce Mode: Adds (Name) to the list of dangerous environments and gobbles the remaining arguments.
\oarg{(4rgument)}
Normal Mode: \oarg{Argument} prints [(Argument)] (optional argument).
Produce Mode: Does nothing.
\parg{(4rgument)}
Normal Mode: \parg{Argument} prints ((Argument)) (picture argument).
Produce Mode: Does nothing.
\PrintMacro{(Macro or environment)}
Normal Mode: Typesets the argument to \DescribeMacro, \DefineMacro, \DescribeEnvironment and \Defi-
neEnvironment. Should be freely redefined by users. By default, it prints its argument as with DocStrip, provided
\DocStripMarginpar has been executed beforehand.
Produce Mode: Does nothing.
\PrintPrefix{(Macro prefiz)}
Normal Mode: Typesets (Macro prefiz), as defined by \IgnorePrefix, in the index. Should be redefined by
the user. By default, it does nothing.
Produce Mode: Does nothing.
\ProduceFile{(File)}[(File name)] [(File version)] [(File date)]
Normal Mode: Provides (File) as \FileSource, (File name) as \FileName, (F'ile version) as \FileVersion and
(File date) as \FileDate.
Produce Mode: Opens (File) and writes the header (unless noheader is on), unless (File) is already open and
autoclose is not specified, in which case CodeDoc will simply puts (File) back in production. Subsequent code
will be written to this file. Closes the current file if autoclose is on. Provides (File name) as \FileName, (File
version) as \FileVersion and (File date) as \FileDate, to be used with \CodeEscape.
\RenewExample [(Options)]{(Name)}{(Code input)}{(Code output)}{(Immediate ezecution)}
Normal Mode: Same as \NewExample to redefine (Name).
Produce Mode: Adds (Name) to the list of dangerous environments and gobbles the remaining arguments.

19

e \ShortCode{(Character)}

Normal Mode: Turns (Character) into a shorthand for \begin{document} and \end{document}.

Produce Mode: Like in normal mode: everything between two {(Characters) will be written to the file in produc-

tion.

\ShortVerb{(Character)}

Normal Mode: Turns (Character) into a shorthand for \verb.

Produce Mode: Subsequently gobbles everything between two (Characters).

\StartIgnore

Normal Mode: Does nothing.

Produce Mode: Stops ezecuting anything until \StopIgnore.

\StopHere{(Code)}

Normal Mode: If the obeystop option is on, executes (Code) followed by \printindex if index is on, and ends

the document.

Produce Mode: Does nothing.

\StopIgnore

Normal Mode: Does nothing.

Produce Mode: Marks the end of \StartIgnore.

\TabSize{(Number)}

Normal Mode: Sets the number of spaces to represent a tab character in verbatim contexts.

Produce Mode: Does nothing.

\UndoCodeEscape

Normal Mode: Does nothing.

Produce Mode: Sets the \CodeEscape character to a normal character.

e \UndoShortCode

Normal Mode: Sets the \ShortCode character to a normal character.

Produce Mode: Sets the \ShortCode character to a normal character.

\UndoShortVerb

Normal Mode: Sets the \ShortVerb character to a normal character.

Produce Mode: Sets the \ShortVerdb character to a normal character.

\UndoVerbBreak

Normal Mode: Sets the \VerbBreak character to a normal character.

Produce Mode: Sets the \VerbBreak character to a normal character.

e \UndoVerbCommand

Normal Mode: Sets the \VerbCommand characters to normal characters.

Produce Mode: Sets the \VerbCommand character to normal characters.

\VerbBreak{(Character)}

Normal Mode: Turns (Character) into a line breaker in verbatim contexts; more precisely, the line will break

where (Character) appears and will be indented with the same amount of space as the original one. (Character)

is ignored in \CodeQOutput.

Produce Mode: Ignores (Character) when writing to the file in production.

e \VerbCommand{(Escape)}{(Left brace)}{(Right brace)}
Normal Mode: Turns (Escape) into an escape character in verbatim contexts, and (Left brace) and (Right
brace) into characters of category 1 and 2 respectively. In \CodeOutput, (Escape) gobbles all subsequent letters
and everything between (Left brace) and (Right brace) is gobbled too.
Produce Mode: Does the same as normal mode for \CodeOutput. Letters following (Escape) are gobbled, as is
everything between (Left brace) and (Right brace).

20

Part II
Implementation

The usual things (; is my \CodeEscape character). Turning ~~7 into an active character is
less usual but useful to delimit ends of code material.

1 \NeedsTeXFormat{LaTeX2e}

2 \ProvidesClass{;FileName}[;FileDate ;FileVersion Code and documentation in one file.]
3 \makeatletter

4 \catcode‘\~~?7=13

4 Options and basic definitions

\cd@GetClass Options are mostly conditional switching. \cd@tracingmode will be used in an \ifcase
statement. \cd@GetClass will be analyzed to retrieve the class and its options.

5 \newif\ifcd@produce

6 \newif\ifcd@autoclose

7 \newif\ifcd@obeystop

8 \newif\ifcd@makeindex

9 \newif\ifcd@noheader

10 \newcount\cd@tracingmode

11 \cd@tracingmodel

12 \def\cd@GetClass{article ()}

13

14 \DeclareOption{autoclose}{\cd@autoclosetrue}
15 \DeclareOption{produce}{\cd@producetrue}

16 \DeclareOption{index}{\cd@makeindextrue}

17 \DeclareOption{obeystop}{\cd@obeystoptrue}
18 \DeclareOption{noheader}{\cd@noheadertrue}
19 \DeclareOption{tracing0}{\cd@tracingmodeO}
20 \DeclareOption{tracingl}{\cd@tracingmodel}
21 \DeclareOption{tracing2}{\cd@tracingmode2}
22 \DeclareOption*{\edef\cd@GetClass{\CurrentOption()}}
23 \ProcessOptions\relax

\cd@end We define \cd@LoadClass as a recursive retrieval of options, then passed to the class with
\cd@LoadClass \PassOptionsToClass, which we load. This is done only if we’re not in produce mode, in
\cd@GetOptions which case no class is loaded.

24 \def\cd@end{cd@end}

25 \ifcd@produce

26 \else

27 \def\cd@LoadClass#1 (#2){%

28 \def\cd@Class{#1}

29 \expandafter\cd@GetOptions#2;cd@end;%
30 \LoadClass{#1}%

31 \@ifnextchar ({\expandafter\@gobble\@gobble}{}}
32 \def\cd@GetOptions#1;{%

33 \def\cd@TempArg{#1}

34 \ifx\cd@TempArg\cd@end

35 \let\cd@next\relax

36 \elsel

37 \PassOptionsToClass{#1}{\cd@Class}’
38 \let\cd@next\cd@GetOptions

39 \fi\cd@next}
40 \expandafter\cd@LoadClass\cd@GetClass

21

\StopHere

Still in normal mode, we load makeidx if required and define \StopHere accordingly.

41 \ifcd@makeindex

42 \RequirePackage{makeidx}
43 \makeindex

44 \else

45 \let\printindex\relax

46 \fi

47 \ifcd@obeystop

48 \ifcd@makeindex

49 \long\def\StopHere#1{#1\relax\par\printindex\end{document}}
50 \else

51 \long\def\StopHere#1{#1\relax\par\end{document}}

52 \fi

53 \else

54 \long\def\StopHere#1{}

55 \fi

56 \fi

5 Normal mode

Although the following code is used in normal mode only, I did not feel like embedding
hundreds of lines under a \ifcd@produce conditional. Pure superstition, perhaps.
Here’s the switch for e-TEX and some shorthands.

57 \newif\ifcd@eTeX

58 \@ifundefined{eTeXversion}{\cd@eTeXfalse}{\cd@eTeXtrue}
59

60 \def\cd@Warning{\ClassWarningNoLine{codedoc}}

61 \def\cd@Error#1{\ClassError{codedoc}{#1}{}}

5.1 Describing macros

\DocStripMarginpar
\PrintMacro

\DescribeIndexFont
\DescribeMacro
\cd@DescribeMacro
\DescribeEnvironment
\cd@DescribeEnvironment
\DefineIndexFont
\DefineMacro
\cd@DefineMacro
\DefineEnvironment
\cd@DefineEnvironment

Most of the following macros are imitated from DocStrip, in a simpler but less careful manner.
The first two are straightforward.

62 \def\DocStripMarginpar{\reversemarginpar\marginparpushOpt\relax\marginparwidth8pc\relax}
63 \def\PrintMacro#1{\noindent\marginpar{\raggedleft\strut\ttfamily#1}\ignorespaces}

\DescribeMacro and its companions first turn @ into a letter, so that a control sequence
containing it is recognized as such, sets \cd@Index, used in the \ifcase statement below
(a simple conditional could do the job, since there are only two values, but there might
be more someday if one wants to distinguish other index entries, like ‘used’ macros), and
pass their arguments to \PrintMacro with the first token \string’ed (even in the case of
an environment, because someone might describe its environment with a \begin{myenv}
command). In case of a macro, the argument is also passed to \cd@MakeEntry to index it.

The hyperref package does not work properly with indexes if a style is specified with |
in the entry. Since we use such styles, and since we want to use hyperref, we circumvent the
problem with \hyperpage added to the style. By default, it does nothing, but if the user
loads hyperref, it will have the adequate meaning.

64 \newcount\cd@Index

65 \def\hyperpage#1{#1}

66

67 \def\DescribeIndexFont#1{\gdef\cdatDescribeFont##1{{#1\hyperpage{##1}}}}
68 \DescribeIndexFont{}

69 \def\DescribeMacro{\makeatletter\cd@DescribeMacro}

70 \def\cd@escribeMacro#1{/

71 \makeatother/,

72 \cd@Index=0 7

73 \cd@MakeEntry#1\cdQEndOfEntryj

74 \PrintMacro{\string#1}}

75 \def\DescribeEnvironment{\makeatletter\cd@DescribeEnvironment}
76 \def\cd@DescribeEnvironment#1{%

22

\cd@MakeEntry

\cd@AnalyzeEntry
\AtChar

\IgnorePrefix

\. | am a macro

\cd@IgnorePrefix
\cd@MakePrefix

7
78
79
80
81
82
83
84
85
86
87
88

94
95
96
97
98

99
100
101
102
103
104
105
106
107
108

109
110

111
112
113
114
115

\makeatother),
\index{#1@\texttt{#1} (environment) |cdatDescribeFont}/,
\PrintMacro{\string#1}}

\def\DefineIndexFont#1{\gdef\cdatDefineFont##1{{#1\hyperpage{##1}}}}
\DefineIndexFont{\itshape}
\def\DefineMacro{\makeatletter\cd@DefineMacro}
\def\cd@DefineMacro#1{/

\makeatother),

\cd@Index1 %

\cd@MakeEntry#1\cd@EndOfEntry?,

\PrintMacro{\string#1}}
\def\DefineEnvironment{\makeatletter\cd@DefineEnvironment}
\def\DefineEnvironment#1{%

\makeatother),

\index{#1@\texttt{#1} (environment) |cdatDefineFont}

\PrintMacro{\string#1}}

This takes two arguments but considers only the first one, so that \DescribeMacro{\foo\marg{Argument}}
will ignore \marg{Argument}. We pass that argument to \cd@AnalyzeEntry with the es-

cape character removed (for a proper indexing), call \cd@AnalyzePrefix on the result and

finally \cd@@MakeEntry

\def\cd@MakeEntry#1#2\cdOEnd0fEntry{/
\def\cd@TempEntry{}%
\begingroup\escapechar\m@ne\expandafter\cdO@AnalyzeEntry\string#1\cd@end\endgroup
\expandafter\cd@AnalyzePrefix\cd@TempEntry\cdQendy
\expandafter\cd@@MakeEntry\cd@TempEntry\cd@EndOfEntry}

The aim of this macro is to process @. Indeed, @ is Makelndex’s operator to signal that an
entry should be indexed under another name (as done here). But @ is also a very popular
letter in TEX’s world when it comes to macros. DocStrip’s solution is to create a special style
file for Makelndex, so that the function of @ is taken over by another character. But then,
when a user compiles a DocStrip document, this style file must be indicated to Makelndex,
which many people might not do. So I prefer to leave Makelndex alone and process the entry
beforehand, replacing @ by a character denotation. That’s the job of \cd@AnalyzeEntry,
which scans the macro name token by token and replace @ by \AtChar.

\chardef\AtChar=*\@
\def\cd@AnalyzeEntry#1{/
\let\cd@next\cdQ@AnalyzeEntryj
\ifx#1\cd@endy,
\let\cd@next\relax
\else\if#1@}
\expandafter\gdef\expandafter\cd@TempEntry\expandafter{\cd@TempEntry\AtChar}}
\else/
\expandafter\gdef\expandafter\cd@TempEntry\expandafter{\cd@TempEntry#1}%
\fi\fi\cd@next}

Here comes the mechanism to remove prefixes when sorting entries. \IgnorePrefix simply
resets some values and call \cd@IgnorePrefix on its argument along with a terminator.

\newcount\cd@PrefixCount
\def\IgnorePrefix#1{\cd@PrefixCount\z0@\def\Prefix{}\cd@IgnorePrefix#1\cd@end}

This analyzes the prefix just like \cd@AnalyzeEntry above and replaces all occurrences of @
by \AtChar. Since the name of the macro is \string’ed when subjected to \DefineMacro
and others, we also \string all letters of the prefix, which have then category code 12.

\def\cd@IgnorePrefix#1{J
\let\cd@next\cd@IgnorePrefixy
\ifx#1\cd@end/
\def\cd@next{\expandafter\cd@ScanPrefix\Prefix\cd@end}}
\else\if#1@},

23

\cd@ScanPrefix
\cd@DefPrefix
\cd@AnalyzePrefix

\cd@ComparePrefix

\cd@@MakeEntry
\PrintPrefix

116
117
118
119
120
121
122

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

150
151
152
153
154
155
156
157

158
159
160
161
162
163
164

\expandafter\def\expandafter\Prefix\expandafter{\Prefix\AtChar}/,
\else/,
\edef\cd@PrefixLetter{\string#1}/,
\expandafter\cd@MakePrefix\cd@PrefixLettery
\fi\fi\cd@next}

\def\cd@MakePrefix#1{}

\expandafter\def\expandafter\Prefix\expandafter{\Prefix#1}}}

Then we just scan the prefix to compute the number of characters it is made of. \cd@Analy-
zePrefix is defined accordingly to take the right number of characters out of a macro name

(fed in \cd@MakeEntry above) and lump them into \cd@TempPrefix, and define the rest of

the entry as the remaining characters up to the terminator.

\def\cd@ScanPrefix#1{J

\ifx#1\cd@end,
\let\cd@next\cd@DefPrefix},
\else’
\advance\cd@PrefixCount\@neY,
\let\cd@next\cd@ScanPrefix¥
\fi\cd@next}

\def\cd@efPrefix{y,

\ifcase\cd@PrefixCount}
\def\cd@AnalyzePrefix##1\cdOend{}/
\or\def\cd@AnalyzePrefix##1##2\cdQend{}
\def\cd@TempPrefix{##1}\def\cd@RestOfEntry{##2}\cd@ComparePrefix}J,
\or\def\cd@AnalyzePrefix##1##2##3\cdCend{
\def\cd@TempPrefix{##1##2}\def\cdORestOfEntry{##3}\cd@ComparePrefix}/,
\or\def\cd@AnalyzePrefix##1##2##3##4\cdCend{/
\def\cd@TempPrefix{##1##2##3}\def\cd@RestOfEntry{##4}\cd@ComparePrefixl}},
\or\def\cdQ@AnalyzePrefix##1##2##3##4##5\cd@end{’
\def\cd@TempPrefix{##1##2##3##4}\def\cd@RestOfEntry{##5}\cd@ComparePrefix}}
\or\def\cd@AnalyzePrefix##1##2##3##4##5##6\cdCend{/
\def\cd@TempPrefix{##1##2##3##4##5}\def\cd@RestOfEntry{##6}\cd@ComparePrefix}},
\or\def\cd@AnalyzePrefix##1##2##3##4##5##6##7 \cdCend{),
\def\cd@TempPrefix{##1##2##3##4##5##6}\def\cdORestOfEntry{##7}\cd@ComparePrefixl}/,
\or\def\cd@AnalyzePrefix##1##2##3# #A##E##E6##T##8\ cdCend{)
\def\cd@TempPrefix{##1##2##3##4##54#6##7}\def\cdORestOfEntry{##8}\cd@ComparePrefixl}/,
\or\def\cd@AnalyzePrefix##1##2##3##4##5##6## 7 ##8##9\cdCend{),
\def\cd@TempPrefix{##1##2##3##4##54##6##7##8} \def\cdORestOfEntry{##9}\cd@ComparePrefix}y,
\filignorespaces}

Comparing prefixes is simply a matter of string testing. In case they match, the entry is

redefined as the \cd@Rest0OfEntry, so that macros will be indexed with the prefix removed.

\newif\ifcd@Prefix
\def\cd@ComparePrefix{’

\ifx\cd@TempPrefix\Prefixj
\expandafter\def\expandafter\cd@TempEntry\expandafter{\cd@RestOfEntry}/
\cd@Prefixtrue,

\else}

\cd@Prefixfalse},

\fi}

Finally, \cd@@MakeEntry indexes the macro under its name with a prefixed escapechar (since
it was removed above) and \Prefix in case it was found to match. We also set some default
values.

\def\cd@0MakeEntry#1\cdOEndOfEntry{%

\ifcd@Prefix}
\ifcase\cd@Index%
\index{#1@\texttt{\char\escapechar\PrintPrefix\Prefix#1}|cdatDescribeFont}J,
\or%
\index{#10@\texttt{\char\escapechar\PrintPrefix\Prefix#1}|cdatDefineFont}}
\£i

24

\meta
\marg
\oarg
\parg

\cd@bslash
\bslash

165
166
167
168
169
170
171
172
173
174

175
176
177
178

179
180
181

\elsel,
\ifcase\cd@Index
\index{#1@\texttt{\char\escapechar#1}|cdatDescribeFont}/
\or’%
\index{#1@\texttt{\char\escapechar#1}|cdatDefineFont}/,
\fi%
\fi}

\IgnorePrefix{}%
\let\PrintPrefix\relax

These again are imitated from the DocStrip bundle, with less care.

\def\meta#1{{\ensuremath\langle\emph{#1}\ensuremath\ranglel}}
\def\marg#1{\texttt{\{F\meta{#1}\texttt{\}}}
\def\oarg#i{\texttt{[}\meta{#1}\texttt{]}}
\def\parg#i{\texttt{(}\meta{#1}\texttt{)}}

We define our backslash to adapt to hyperref. To this end, we use \texorpdfstring, an
hyperref command that expands to its first argument in normal contexts and to its second
one in bookmarks.

The only problem is that hyperref defines \textorpdfstring with \newcommand instead
of \def. So we obviously can’t define it here, and we wait for the beginning of the document.

\def\cd@bslash{\char‘\\}

\def\bslash{\texorpdfstring{\cd@bslash}{\string\\}}
\AtBeginDocument{\@ifundefined{texorpdfstring}{\def\texorpdfstring#1#2{#1}}{}}

5.2 \ShortVerb and associates

\cd@CharErr
\cd@BadChar

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

Before entering the intricate realm of verbatim text, here are some simpler definitions.
First, we delimit what characters we consider to be acceptable in \ShortVerb and other.
The choice might seem rather conservative, but things are less dangerous this way.

\def\cdeCharErr#1#2{J,
\bgroup
\escapechar\m@ne
\cd@Error{You can’t use \string#l for \string\\#2}
\egroup}

\newif\ifcd@BadChar

\def\cd@BadChar#1#2{/
\cd@BadChartrue
\ifcase\catcode‘#1 ¥ \

\cd@CharErr{\\}{#2}%
\or {
\cdeCharErr{\{}{#2}%
\or) }
\cd@CharErr{\}}{#2}/
\or) $
\cd@BadCharfalse/
\or’ &
\cd@BadCharfalse/,
\or}, ~~M
\orl, #
\cd@BadCharfalse/,
\or} ~
\cd@BadCharfalseY
\or) _
\cd@BadCharfalse/,
\or}% Ignored
\or), Spaces
\cd@CharErr{spaces}{#2}/

25

\cd@UndoErr
\cd@efErr

\ShortVerb

212
213
214
215
216
217
218
219
220

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

237
238
239
240
241
242
243

244
245
246
247

248
249
250

251
252

\or} Letters
\cd@CharErr{letters}{#2. \MessageBreak That’s really badl}/
\or} Other
\cd@BadCharfalse},
\or} Active
\cd@CharErr{#1}{#2 - it’s already activel}/
\or’% %
\cd@CharErr{#1}{#2},
\fi}

We also define two templates for error messages in case the user wants to \Undo. . . something
that was never done or define a new character while one is already in use.

\def\cd@UndoErr#1{
\bgroup/
\escapechar\m@ne},
\cd@Error{’
There is no \string\\\string#1\space defined.\MessageBreak},
\string\\Undo\string#1\space on line \the\inputlineno\space is useless}),
\egroup}
\def\cd@DefErr#1#2{}
\bgroup/
\escapechar\m@ne},
\expandafter\xdef\csname cd@#2Error\endcsname{’,
\noexpand\cd@Error{}
You’ve already defined \string#l as a \string\\#2\noexpand\MessageBreakJ,
on 1. \the\inputlineno. You can’t have two.\noexpand\MessageBreaky,
Say \string\\Undo#2\space and then \string\\#2\space to changel}}/
\egroup}

Before defining any character, we run some tests: is it a bad character, and is there another
character already in use? In the latter case, \ifcd@ShortVerb should be switched to true.

\newif\ifcd@ShortVerb

\def\ShortVerb#1{Y
\cd@BadChar{#1}{ShortVerb}
\ifcd@BadChar}
\else\ifcd@ShortVerb

\cd@ShortVerbError

If none of the above applies, we switch the conditional to true define \cd@ShortVerbError
with \cd@DefErr. We also store the character’s original catcode to restore if undone.

\else
\cd@ShortVerbtrue
\cd@efErr{#1}{ShortVerb}
\chardef\cd@ShortVerbCat\catcode‘#1%,

Then we use the ~ with lowercase trick to define the character.
\bgroup%

\lccode‘\~=“#1%
\lowercase{/

A \ShortVerb character makes the adequate modifications to display text verbatim. \cd@Verbatim
is CodeDoc’s container of all such modifications (mostly catcode changing). \catcode‘#1=13
is necessary because the character might be one of the specials whose catcode is changed in
\cd@Verbatim, e.g. & We also launch \cd@ShortVerb which works like \verb.

\leavevmode is needed in case the \ShortVerb character starts a paragraph, as in the
one you’re reading.

\gdef~{\leavevmode\bgroup\ttfamily\cd@Verbatim\catcode ‘#1\active\cd@ShortVerbl}y
\gdef\cd@ShortVerb##1~{##1\egroupl}/

26

\UndoShortVerb

\ShortCode

\cd@MakeShortCode

\cd@ShortCode
\cd@ShortEnd
\cd@ActivateShortCode

253
254
255
256
257
258
259
260
261
262

263

264
265
266
267
268
269
270

271
272
273
274
275
276
277
278

279
280
281
282
283
284
285

286
287
288

289

Finally we (re)define \UndoShortVerb to restore the original catcode and switch the appro-
priate conditional. Last but not least, we make the character active.

\gdef\UndoShortVerb{/
\ifcd@ShortVerby
\cd@ShortVerbfalse’,
\catcode‘~\cd@ShortVerbCat¥
\else%
\cd@UndoErr{\ShortVerbl}
\fi}}%
\egroup’
\catcode‘#1=13
\fi\fi}¥%
This is the default definition for this command, when no \ShortVerb has been defined.
\def\UndoShortVerb{\cd@UndoErr{\ShortVerb}}

\ShortCode works with the same pattern as \ShortVerb with important variations. First,
we check whether there’s an optional argument.

\newif\ifcd@ShortCode
\newif\ifcd@ShortCodeChar

\def\ShortCode{%
\@ifnextchar[
{\cd@MakeShortCode}
{\cd@MakeShortCode[code] }}

Then we define the real macro. We store the name of the environment and run the same
tests as above.

\bgroup

\catcode‘\~"M13Y},

\gdef\cd@MakeShortCode [#1]#2{%
\def\cd@TempEnv{#1}/,
\cd@BadChar{#2}{ShortCode}
\ifcd@BadChar}
\else\ifcd@ShortCodeChary,

\cd@ShortCodeError?,

Then we check whether the environment exists, thanks to \(Environment)@cd@EOL which is
defined for (Environment) when created with \NewExample.

\else/
\expandafter\ifx\csname #1@cd@EOL\endcsname\relaxy,
\cd@Error{}
‘#1° is not an example environment.\MessageBreaky,
‘code’ is selected insteadl}
\def\cd@TempEnv{codel}’,
\fi¥

This is the same as above: we state that a character has been defined as a \ShortCode.

\cd@ShortCodeChartrue’,
\cd@efErr{#2}{ShortCodel}
\chardef\cd@ShortCodeCat=\catcode‘#2

Then we define the character to launch the appropriate environment, but with \ifcd@Short-
Code turned to true. What will happen depends on the status of the environment. If it is the
default code environement, it will call \cd@ShortCode as defined here, which is equivalent to
\code itself (see below). On the other hand, if the environment is an example environement,
the special example macro will be called and delimit its argument with \cd@ShortEnd, which
is the \ShortCode character itself. \cd@ActivateShortCode is needed to reactivate the
character in case it was one of the specials, as we did for \ShortVerb.

\bgroup%

27

\UndoShortCode

\VerbBreak

\cd@ActivateVerbBreak

290 \lccode‘\~=‘#2Y

291 \lowercase{/

292 \gdef~{\cd@ShortCodetrue\csname\cd@TempEnv\endcsname}’,

293 \gdef\cd@ShortEnd{~}%

294 \gdef\cd@ShortCode##1~~"M##2~{\cd@StartGobble##2~~7\egroup}/
295 \gdef\cd@ActivateShortCode{\catcode‘#2=13\relaxl}),

The rest is equivalent to \ShortVerb above.

296 \gdef\UndoShortCode{},

297 \ifcd@ShortCodeChar?

298 \catcode‘~=\cd@ShortCodeCat\relax/,
299 \let\cd@ActivateShortCode\relax}
300 \cd@ShortCodeCharfalse

301 \else),

302 \cd@UndoErr{\ShortCodel}%

303 \£i}}%

304 \egroup’

305 \catcode‘#2=13 Y

306 \fi\fil}%
307 \egroup
308 \def\UndoShortCode{\cd@UndoErr{\ShortCodel}}

\VerbBreak starts as above.

309 \newif\ifcd@VerbBreak

310 \newtoks\cd@QEverypar

311

312 \def\VerbBreak#1{%

313 \cd@BadChar{#1}{VerbBreak}
314 \ifcd@BadChar?

315 \else\ifcd@VerbBreak},

316 \cd@VerbBreakError},

317 \else\cd@VerbBreaktrue

318 \cd@efErr{#1}{VerbBreak}/
319 \bgroup’

320 \lccode‘\~“#1 ¥

321 \lowercase{/

However, \VerbBreak characters become active only in verbatim contexts. We create
\cd@ActivateVerbBreak to that end. When active the character stores the current value
of \everypar and then empties it (because the broken line should start with nothing).

322 \gdef\cd@ActivateVerbBreak{’
323 \catcode‘#1\active,

324 \gdef~{%

325 \cd@@Everypar\everypar/
326 \everypar{}/

Then we set a scratch dimension to \cd@FirstSpaces times the width of a space in the
current font. \cd@FirstSpaces is incremented by spaces and tabs at the beginning of each
lines. In case the current environment is numbered, we increase our scratch dimension by
the width of the box containing the number, stored in \(Environment)@cd@boxwidth.

327 \dimenO=\cd@FirstSpaces\fontdimen2\font\relax},

328 \expandafter\ifx\csname\cd@ExampleName @cd@boxwidth\endcsname\relax/,
329 \elsel

330 \advance\dimenO \csname\cd@ExampleName @cd@boxwidth\endcsname\relaxy
331 \fi¥

28

\cd@IgnoreVerbBreak

\VerbCommand

332
333

334
335
336
337
338
339
340
341
342
343
344

\cd@ActivateVerbCommand

\cd@IgnoreVerbCommand
\UndoVerbCommand

345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

Finally, we create a paragraph, turn to horizontal mode, restore \everypar in its initial value
and create a space of the desired width, namely the same as the space at the beginning of
the original broken line.

\endgraf\leavevmode\everypar\cd@QEverypar\hbox to\dimenO{\hss}}}}/
\egroup’

The character should be ignored in \CodeOutput, and this is what we do here. The \Undo. ..
variant simply sets these commands to \relax.

\def\cd@IgnoreVerbBreak{\catcode‘#1=9\relax}/
\fi\fi}
\def\UndoVerbBreak{/
\ifcd@VerbBreak/,
\let\cd@ActivateVerbBreak\relax
\let\cd@IgnoreVerbBreak\relax
\cd@VerbBreakfalse
\else
\cd@UndoErr{\VerbBreak}
\fi}
\let\cd@ActivateVerbBreak\relax

\VerbCommand is similar once again. We define \cd@ActivateVerbCommand to change the
catcodes of the characters to 0, 1 and 2 in verbatim contexts and \cd@IgnoreVerbCommand
to turn the second character into a command that gobbles its argument, delimited by the
third character. This is straightforward, but the first character is more complicated: it has
to gobble letters and only letters.

\newif\ifcd@VerbCommand

\def\VerbCommand#1#2#3{
\cd@BadChar{#1}{VerbCommand}/,
\cd@BadChar{#2}{VerbCommand}/
\cd@BadChar{#3}{VerbCommand}/,
\ifcd@BadChar}

\else\ifcd@VerbCommand},
\cd@VerbCommandError

\else%

\cd@DefErr{#1, \string#2 and \string#3}{VerbCommand}
\cd@VerbCommandtrue?,
\def\cd@ActivateVerbCommand{\catcode‘#1=0 \catcode‘#2=1 \catcode‘#3=2\relax}/
\def\cd@IgnoreVerbCommand{¥
\catcode‘#1=13 Y
\lccode‘\"=‘#1 7
\lowercase{\def~{\cd@GobbleLetters}}/
\catcode‘#2=13 Y
\lccode‘\"=‘#2 %
\lowercase{\def ~####1#3{}}}%

\fi\fi}

\def\UndoVerbCommand{

\ifcd@VerbCommandy,
\let\cd@ActivateVerbCommand\relax},
\let\cd@IgnoreVerbCommand\relax
\cd@VerbCommandfalse},

\else’

\cd@UndoErr{\VerbCommand}Y,

\fil}/

\let\cd@IgnoreVerbCommand\relax

\let\cd@ActivateVerbCommand\relax

29

\cd@GobbleLetters

\CodeEscape
\UndoCodeEscape

Gobbling letters is not a very delicate process. We take the next token, check whether it
is of category 11, and eat it away if it is the case. That’s the reason why \VerbCommand
is not very sound. If the next token happens to be a macro (as might be the case since in
\CodeOutput, since the escape character is turned back to 0), trying to evaluate its catcode
is not a good idea.

376 \def\cd@GobbleLetters#1{\ifnum\catcode‘#1=11 \expandafter\cd@GobbleLetters\else\expandafter#1\fi}
Finally, \CodeEscape doesn’t do much in normal mode. We simply check characters.

377 \newif\ifcd@CodeEscape,

378

379 \def\CodeEscape#1{}

380 \cd@BadChar{#1}{CodeEscapel}/
381 \ifcd@BadChar?,

382 \else\ifcd@CodeEscapel

383 \cd@CodeEscapeErrory,

384 \else),

385 \cd@CodeEscapetrue,

386 \cd@DefErr{#1}{CodeEscapel}/,

387 \fi\fi}
388 \def\UndoCodeEscape{%
389 \ifcd@CodeEscape,

390 \cd@CodeEscapefalse,

391 \elsel

392 \cd@UndoErr{\CodeEscapel}/
393 \fi}}

5.3 Verbatim definitions

\cd@SpaceChar

\cd@MakeSpace
\cd@ObeySpaces

Here comes the time to do some verbatim. We start with space. \ifcd@Star is the con-
ditional switched to true if we’re in a starred verbatim environment. We define the visible
space character to be space of category 12 in typewriter font, as usual. @ o e

394 \newif\ifcd@Star

395 \newif\ifcd@NewLine

396 \newcount\cd@FirstSpaces

397

398 \bgroup

399 \catcode‘\ 127

400 \gdef\cd@SpaceChar{\texttt{ }}/

Since we want spaces at the beginning of a line to count how many they are, so that
\VerbBreak can properly break the line, we don’t equate the space character with \@xobeysp
(I¥TEX’s verbatim space) or \cd@SpaceChar directly; instead, \cd@ObeySpaces will print the
space, being called by real spaces in \cd@VerbTab and \cd@VerbSpace. (~~I denotes a tab
character).

401 \catcode‘\"~I=13\relax,

402 \catcode‘\ =13\relax/

403 \gdef\cd@MakeSpace{/

404 \ifcd@Star

405 \let\cd@ObeySpaces\cd@SpaceChary,
406 \else’

407 \let\cd@ObeySpaces\Q@xobeysp
408 \fi},

409 \catcode‘\ =13\relax/

410 \catcode‘\""~I=13\relax},

411 \let =\cd@VerbSpace/,

412 \let~~I=\cd@VerbTabl}}

30

\cd@VerbSpace
\cd@VerbTab

\cd@Verbatim

\BoxTolerance
\TabSize
\Gobble

413
414
415
416
417
418
419
420
421
422

423
424
425

426
427
428

429
430
431
432
433
434

435
436
437
438
439
440
441
442
443

444
445
446
447

In verbatim contexts, a space takes the next character as an argument; in case \ifcd@NewLine
is true, which it is at the beginning of every line (thanks to an \everypar), it increments
\cd@FirstSpaces, which is used by \VerbBreak. A tab character does the same except
that the \cd@FirstSpaces is increased by the value of \TabSize (stored in \cd@TabSize).
In case the next character is not a space or a tab, \ifcd@NewLine is set to false.

Spaces leaves a \cd@0ObeySpaces while tabs create an empty box of width \TabSize
times the width of a space in the current font.

\gdef\cd@VerbSpace#1{/

\cd@0beySpaces/
\ifcd@NewLine\advance\cd@FirstSpacesi\relax\fiJ
\ifx#1~"I\else\ifx#1 \else\cdONewLinefalse\fi\fi#1}J
\gdef\cd@VerbTab#1{}

\leavevmode\hbox}
to\cd@TabSize\fontdimen2\font{\hss}/
\ifcd@NewLine\advance\cd@FirstSpaces\cd@TabSize\fi}
\ifx#1~"I\else\ifx#1 \else\cd@NewLinefalse\fi\fi#1}
\egroup

Here comes the verbatimizer. First, we cancel the parindent and sets \hfuzz to \cd@Box-
Tolerance, which stores the argument of \BoxTolerance.

\def\cd@Verbatim{
\parindent\z@/
\hfuzz=\cd@BoxTolerance},

Then, if a \ShortVerb was defined, we undo it, so that it appears as any other character in
this context. If this verbatim was called by the \ShortVerb character itself, remember that
it restores itself to 13.

\ifcd@ShortVerb¥
\UndoShortVerbY,
\fi%

If we're not in a verbatim context called by \ShortCode, we undo it, for the same reason.

\ifcd@ShortCodeY
\else%
\ifcd@ShortCodeChar},

\UndoShortCode}
\fi%
\fi%

We change the usual catcodes and reactivate the \ShortCode character, just in case it was
changed by \dospecials or \@noligs. We activate the verb break and the verb command,
and the rest is straightforward.

\let\do\@makeother\dospecials\@noligs%

\ifcd@ShortCodeY
\cd@ActivateShortCode},

\fi%

\cd@ActivateVerbBreak},

\cd@ActivateVerbCommand}

\frenchspacing

\catcode‘\~"M=13\relax},

\cd@MakeSpacel}’,

These are pretty straigthforward too. I defined a macro instead of a simple dimension or
number, because it seems to me that something like \TabSize{25} is much more common in
the I’ TEX world than \TabSize25. Besides, a \relax is automatically added, which avoids
€rrors.

\newdimen\cd@BoxTolerance
\def\BoxTolerance#1{\cd@BoxTolerance=#1\relax}
\def\TabSize#1{\chardef\cd@TabSize=#1\relax}
\TabSize2

31

448 \def\Gobble#1{\chardef\cd@GobbleNum=#1\relax}
449 \GobbleO

5.4 The default code environment

\CodeFont

\code

\invisible

The basic code environment is quite simple. First, we define \CodeFont, which simply stores
its argument in \cd@CodeFont, to be released later. The following macros are explained more
properly in the definition of \NewExample below.

450 \def\CodeFont#1{\def\cd0@CodeFont{#1}}

451 \CodeFont{\ttfamily}

452 \newcount\code@cd@LineNumber

453 \def\code@cd@boxwidth{Opt}

454 \def\code@cd@BoxStyle{\rmfamily\footnotesize}
455 \gdef\code@cd@LineNumberBox{/

456 \global\advance\code@cd@LineNumberl\relaxy
457 \def\Q@currentlabel{\the\code@cd@LineNumber}y
458 \hbox to\code@cd@boxwidth{}

459 \hss}

460 \code@cd@BoxStyle\relaxy

461 \the\code@cd@LineNumber\enspace}}’,

462 \let\code@cd@EOL\iffalse}

We create a paragraph and stores the name of the environment (used in \VerbBreak to
check the width of the line number box).

463 \def\code{%

464 \endgraf/

465 \bgroup’

466 \def\cd@ExampleName{codel}

We launch the verbatim definitions and the complicated \cd@ObeyLines (see below) that
makes ends of lines work properly (gobbling characters if needed).

467 \cd@Verbatimj,
468 \cd@0ObeyLinesY

Every new paragraph, i.e. every line in that context, typeset the line number and switches
some values exlIplained above. We also set the font.

469 \everypar{/%

470 \code@cd@LineNumberBox
471 \cd@NewLinetrue},

472 \cd@FirstSpacesO\relax}/
473 \cd@CodeFont}

Finally, we call the proper macro, depending on whether \code was called by \begin{code},
\begin{codex*} or the \ShortCode character.

474 \ifcd@ShortCode’
475 \global\cd@ShortCodefalse,
476 \let\cd@next\cd@ShortCode
A77 \else\ifcd@Stary
478 \global\cd@Starfalse,
479 \let\cd@next\cd@StarCode’
480 \else,
481 \let\cd@next\cd@Code,
482 \fi\fi\cd@next}
The starred variant of \code switches to true the conditional used just above. Let’s also

define the invisible environment, which takes an argument delimited by \end{invisible}
and thus needs to turn some catcodes.

483 \expandafter\def\csname code*\endcsname{\cd@Startrue\code}

484 \def\invisible{}

485 \bgroup’

486 \catcode‘\\=12 \catcode‘\{=12 \catcode‘\}=12 \catcode‘\""M=13

32

\cd@Code
\cd@StarCode
\cd@Invisible

\cd@StartGobble

487

488
489

490
491
492
493
494
495
496
497
498
499
500
501

502
503
504

505
506
507
508

509
510
511

512
513
514

515
516
517
518

\cd@Invisible}

The ~~7 character is used to delimit the end of the verbatim material (this is important
because all ends of line scan ahead, see below). Since it is compared in an \ifx conditional,
I define it to do nothing but with a distinct definition.

\gdef~~?{\cd@UnlikelyCommand}
\gdef\cd@UnlikelyCommand{}

\begin{code} expects \end{code} while \begin{codex} expects \end{code*}. That’s the
reason why we distinguish \cd@Code and \cd@StarCode. Apart from that, they do the same:
they typeset their argument (the first one is the end of the line) and close the environment.
\cd@StartGobble is, obviously, the character gobbler for the first line. \cd@Invisible also
matches its end but prints nothing.

\begingroup

\catcode‘|=0

\catcode‘<=1

\catcode‘>=2

\catcode‘{=12

\catcode‘}=12

\catcode‘\""M=13 ¥

\catcode‘\\=12 ¥

| gdef | cd@Code#1~~"M#2\end{code}<|cd@StartGobble#2~"7|egroup|end<code>>},

| gdef | cd@StarCode#1~"M#2\end{code*}<|cd@StartGobble#2~~7|egroup|end<code*>>},
|gdef | cd@Invisible#1~~"M#2\end{invisible}<|egroup|end<invisible>|ignorespaces>}
| endgroup

Here comes a fastidious part. Because we want to gobble characters at the beginning of
each line (according to \Gobble), ends of lines do not simply create a new paragraph, they
also give a look at the next line and gobble the adequate number of characters. Unfortu-
nately, their definition changes slightly according to the context (default code and examples
with or without e-TEX). Let’s set the stage.

\newcount\cd@GobbleCount},
\begingroup
\catcode‘\""M13\relax},

This is the gobbler called at the beginning of the material enclosed in a default code envi-
ronment. If we meet ~~7, i.e. if the environment is empty, we do nothing.

\gdef\cd@StartGobble#1{}
\ifx#1~"7%

\cd@GobbleCount=0 Y%

\let\cd@next\relax,

Else, if we have reached the value set by \Gobble (stored in \cd@GobbleNum), we replace
the token we were considering in the stream.

\else\ifnum\cd@GobbleCount=\cd@GobbleNum},
\cd@GobbleCount=0 Y%
\def\cd@next{#1}%

If we meet an end of line character, that is, if the environment begins with a blank line, we
put it back too (it will create a paragraph, among other things).

\else\ifx#1~"M}
\cd@GobbleCount=0 Y%
\def\cd@next{~"M}/,

Finally, if none of the above apply, we keep gobbling.

\else%
\advance\cd@GobbleCountl 7%
\let\cd@next\cd@StartGobble},

\fi\fi\fi\cd@next}/,

33

\cd@0beyLines

519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534

In the code environment, ends of lines act exactly like \cd@StartGobble except that they
create a paragraph in the first three cases.

\gdef\cd@0beyLines{}
\def~~M##1{%
\ifx##1°~7Y
\cd@GobbleCount=0 %
\def\cd@next{\leavevmode\endgraf}j
\else\ifnum\cd@GobbleCount=\cd@GobbleNum},
\cd@GobbleCount=0 %
\def\cd@next{\leavevmode\endgraf##1}J
\else\ifx##1~"MY
\cd@GobbleCount=0 %
\def\cd@next{\leavevmode\endgraf "M}/
\else%
\advance\cd@GobbleCountl 7%
\let\cd@next~"M}
\fi\fi\fi\cdOnext}}
\endgroup

5.5 Example environments

\eTeXOn
\eTeX0ff

\NewExample
\cd@NewExample
\RenewExample
\cd@RenewExample
\cd@GobbleThree

535
536
537
538
539
540
541

542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566

Examples are quite different from the default code environment, since they provide both
the input and the output of a code. Besides, if available, they make use of e-TEX.
Here’s the command to switch from e-TEX to external file.

\def\eTeX0n{%
\@ifundefined{eTeXversion}/
{\cd@Error{y
You’re not running on eTeX.\MessageBreak
Command \string\eTeXOn\space ignored}}’
{\cd@eTeXtruel}}
\def\eTeX0ff{\cdGeTeXfalse}

\NewExample and \RenewExample work similarly but in an inverted way. Both test for
options and launch \cd@@NewExample on the options and example name if nothing is wrong.
Beforehand, they turn # into an active character, which will be \let later to the code
material with additional macros.

\def\NewExample{’
\@ifnextchar [%
{\cd@NewExamplel}}
{\cd@NewExample [1}}
\def\cd@NewExample [#1]#2{}
\expandafter\ifx\csname #2\endcsname\relax
\def\cd@next{\catcode‘\#=13 \cd@@NewExample{#1}{#2}}%
\else}
\let\cd@next\relax
\cd@Error{}
Style ‘#2’ already defined or the name\MessageBreak},
is already in use.\MessageBreak},
Use \protect\RenewExample\space if you want to redefine it}
\let\cd@next\cd@GobbleThree,
\fi\cd@next}

\def \RenewExample{},
\@ifnextchar[%
{\cd@RenewExamplel}
{\cd@RenewExample[]}}
\def\cd@RenewExample [#1]#2{%
\expandafter\ifx\csname #2\endcsname\relax
\let\cd@next\relax,
\cd@Error{/
Style ‘#2’ is undefined.\MessageBreaky

34

\cd@@NewExample

\cd@ExampleName

\CodeInput
\CodeOutput
\cd@MakeExample

567 Use \protect\NewExample\space to redefine it}},

568 \let\cd@next\cd@GobbleThree/,

569 \else\expandafter\ifx\csname #2\endcsname\code/

570 \def\CodeFont{},

571 \cd@Error{}

572 You have redefined the ‘code’ environment.\MessageBreak/,
573 \string\CodeFont\space is no longer operative}}

574 \fi%

575 \def\cd@next{\catcode‘\#=13 \cd@ONewExample{#1}{#2}1}/

576 \filcd@next}

577

578 \def\cd@GobbleThree#1#2#3{}

Here is the working mechanism behind both \NewExample and \RenewExample. Since # will
have a special function, we do some catcode changing. The definition is \long, of course.

579 \begingroup

580 \catcode‘\"=6 7

581 \catcode‘\#=13

582 \long\gdef\cd@@NewExample"1"2"3"4"5{},

We define some default values: \(Ezample)@cd@EQL is a switch used when the example is
processed with e-TEX, indicating whether ends of lines are visible or not. By default, they
aren’t, but options may change it. \(Ezample)@cd@LineNumberBox is the command used in
examples to typeset the line number. By default, it is set to \relax because examples have
no line number.

We store the name of the example to be retrieved when the environment is processed, but
actually it is stored here for the options. Finally, we analyze options with a terminator.

583 \expandafter\gdef\csname"2Q@cd@EOL\endcsname{\iffalsel}},

584 \expandafter\let\csname'"2@cd@LineNumberBox\endcsname\relax
585 \def\cd@ExampleName{"2}

586 \cd@ExampleOptions'"1l,cd@end,%

Now we define \(Ezample), which will be called by \begin{(Ezample)}, as usual in KTEX.
Each time, it redefines \CodeInput and \CodeOutput. Both store the name of the example,
\let # to \cd@Input and \cd@Output respectively, whose definitions depends on the way
the example is processed (e-TEX or not), and finally execute the definition given by the
user. \cd@MakeExample simply executes the last argument; it will be called at the end of
the environment. Note the extra pairs of braces in all cases.

587 \expandafter\def\csname'"2\endcsname{%

588 \gdef\CodeInput{{/

589 \def\cd@ExampleName{"2}/,

590 \let#\cd@Inputy

591 "3}

592 \gdef\CodeOutput{/

593 \def\cd@ExampleName{" 2}/

594 \let#\cd@Output{"4}}%

595 \gdef\cd@MakeExample{{"5}}%

Finally, we launch the example maker with the name of the environment (to match its proper
end).

596 \cd@Example{"2}}%

We also define the starred version of \(Ezample), whose only difference is to switch the star
conditional. Finally, we restore the category code of # and close.

597 \expandafter\def\csname'"2*\endcsname{J,

598 \global\cd@Startrue’,

599 \gdef\CodeInput{{/

600 \def\cdCExampleName{"2}V
601 \cd@Startrue,

602 \let#\cd@Input,

35

\cd@numbered
\cd@continuous
\cd@visibleEQOL

\cd@empty

\cd@ExampleOptions

603
604
605
606
607
608
609
610

611
612
613
614

615
616
617
618
619

620
621
622
623

624
625
626
627
628
629
630

631
632
633
634
635
636
637
638
639
640
641
642
643

"33}

\gdef\CodeOutput{/
\def\cd@ExampleName{"2}%
\let#\cd@Output{"4}}%

\gdef\cd@MakeExample{{"5}}%

\cd@Example{"2x}1}},

\catcode ‘\#=6\relax}/
\endgroup

Now we process options. First we define some keywords.

\def\cd@numbered{numbered}
\def\cd@continuous{continuous}
\def\cd@visibleEOL{visibleEOL}
\def\cd@empty{}

This is the option processor. It is recursive and stops when it meets the terminator. It
simply stores the name of the option and acts accordingly.

\def\cd@ExampleOptions#1,{%
\def\cd@TempOption{#1}%
\let\cd@next\cdQ@ExampleOptionsy
\ifx\cd@TempOption\cd@end’,

\let\cd@next\relax

If the option is numbered, we create a new count register, set the width of the box containing
the number to Opt by default, and define the style of this number to be \relax by default
too. They will be modified by \LineNumber.

\else\ifx\cd@TempOption\cd@numberedy,
\global\expandafter\newcount\csname\cdO@ExampleName Qcd@LineNumber\endcsname,
\expandafter\gdef\csname\cdO@ExampleName Qcd@boxwidth\endcsname{Opt}%
\expandafter\let\csname\cd@ExampleName @cd@BoxStyle\endcsname\relax/

We then define the macro executed by the environment for the line number; it increments
the count, stores its value as the current label for \label and \ref, create a box of the
desired width, flushes everything to the right, executes the style and typeset the value of
the counter.

\expandafter\gdef\csname\cdO@ExampleName Qcd@LineNumberBox\endcsname{}
\expandafter\advance\csname\cd@ExampleName QcdOLineNumber\endcsnamel\relax}
\def\@currentlabel{\expandafter\the\csname\cd@ExampleName @cdOLineNumber\endcsnamely,
\hbox to\csname\cd@ExampleName @cd@boxwidth\endcsname{’,

\hss
\csname\cd@ExampleName Qcd@BoxStyle\endcsname\relaxy,
\expandafter\the\csname\cdO@ExampleName @cd@LineNumber\endcsname\enspace}ll}’

If the option is continuous, we do the same thing, except that the count register is created
if and only if it does not already exists (so that a modified continuous example environment
will continue where it stopped; the user may use \LineNumber to start back from 0), and
the \advance of the count is \global, so that the last value is always retained from one
environment to the other.

\else\ifx\cd@TempOption\cd@continuous
\expandafter\ifx\csname\cd@ExampleName @cd@LineNumber\endcsname\relaxy,
\global\expandafter\newcount\csname\cdOExampleName Qcd@LineNumber\endcsname,
\fi¥
\expandafter\gdef\csname\cdO@ExampleName Qcd@boxwidth\endcsname{Opt}%
\expandafter\let\csname\cdOExampleName @cd@BoxStyle\endcsname\relax/
\expandafter\gdef\csname\cdO@ExampleName Qcd@LineNumberBox\endcsname{}
\global\expandafter\advance\csname\cd@ExampleName @cd@LineNumber\endcsnamel\relax
\def\@currentlabel{\expandafter\the\csname\cd@ExampleName @cdO@LineNumber\endcsnamel}y,
\hbox to\csname\cd@ExampleName Qcd@boxwidth\endcsname{}
\hss%
\csname\cd@ExampleName Qcd@BoxStyle\endcsname\relax,
\expandafter\the\csname\cdO@ExampleName @cd@LineNumber\endcsname\enspace}l}’

36

\LineNumber
\cd@SetLineNumber

example

\CodeInput
\CodeQOutput

\cd@Example

644
645
646
647
648
649

650
651
652
653
654
655
656
657
658
659
660
661

663
664
665
666
667

668

669
670
671
672
673
674
675
676

677
678
679
680
681
682
683

684
685
686
687

The visibleEOL option simply sets the relevant conditional to true.

\else\ifx\cd@TempOption\cd@visibleEQLY
\expandafter\gdef\csname\cdO@ExampleName Qcd@EOL\endcsname{\csname iftrue\endcsnamel,
\else\ifx\cd@TempOption\cd@empty
\elsel,
\cd@Error{‘#1’ is not a valid optionl}
\fi\fi\fi\fi\fi\cd@next}’

\LineNumber is straightforward. After some testing, it sets the macro created above to the
values specified. If a a square bracket follows, it executes \cd@SetLineNumber.

\def\LineNumber#1#2#3{%
\expandafter\ifx\csname#10cdQEOL\endcsname\relax,
\cd@Error{‘#1’ is not an example environment’}},
\else\expandafter\ifx\csname #1@cd@LineNumber\endcsname\relax
\cd@Warning{%
‘#1° is not ‘numbered’ nor ‘continuous’.\MessageBreak
\string\LineNumber\space on line \the\inputlineno\space is useless}{}}
\else/
\expandafter\gdef\csname #1Q@cd@BoxStyle\endcsname{#2}/
\expandafter\gdef\csname #1@cd@boxwidth\endcsname{#3}}
\fi\fi},
\@ifnextchar [{\cd@SetLineNumber#1}\relax}
\def\cd@SetLineNumber#1 [#2]{%
\expandafter\ifx\csname#1Q@cd@LineNumber\endcsname\relaxy,
\elsel
\csname#1@cd@LineNumber\endcsname=#2\relax
\expandafter\advance\csname#10@cd@LineNumber\endcsname\m@ne?,

\fi}
The default example environment is thus easily created.
\NewExample{example}{\ttfamily#}{#}{}
If no example has been created, these two macros yields error messages.

\def\CodeInput{’
\cd@Error{Y
No example environment has been created.\MessageBreaky
\string\CodeInput\space is void}}
\def\CodeOutput{’
\cd@Error{
No example environment has been created.\MessageBreak},
\string\CodeOutput\space is void}}

And here comes the core example environment. First, some catcode changing.

\begingroup
\catcode‘|=0 %
\catcode‘<=1 Y,
\catcode‘>=2 Y,
\catcode‘{=12 %
\catcode‘}=12 %
\catcode‘\\=12 %

This prepares the conditions for the processing of the material. Let’s start with the usual
stuff:

| gdef | cd@Example#1<Y
| bgroup’
|let|do|@makeother?,
|dospecialsy,

37

\cd@MakeExampleEnd
\cd@ExampleEnd

688
689
690
691

693
694
695
696
697
698
699

700
701
702
703
704
705
706
707
708
709

710
711
712
713
714
715
716
717
718
719
720
721

Now, if the environment was called by a \ShortCode character, there is no environment to
close (\cd@EndEnv executes \end{(Environment)}). We call \cd@MakeExampleEnd, defined
below, on the character, and we reactivate this character just in case it was one of the special.

| ifcd@ShortCode’
|globall|let|cd@EndEnv|relax
| expandafter|cd@MakeExampleEnd | expandafter<|cd@ShortEnd>}
|global|cd@ShortCodefalse,
| cd@ActivateShortCode’,

If the environment was called by a regular \begin({Environment) statement, we define the
proper end (the argument comes from \(Ezample), see the definition in \cd@@NewExample
above). If there exists a \ShortCode character, we undefine it.

|else
| gdef | cd@EndEnv< | end<#1>>},
| cd@MakeExampleEnd<\end{#1}>}
| ifcd@ShortCodeChary,
| UndoShortCode?,
[£i%
[£i¥%

If there’s a short verb, we turn it off, we set tabs to 12 so they are written to the file as any
other character, we activate ends of lines and in case e-TEX is to process the example, we
also activate comment characters (e-TEX’s scanning mechanism is peculiar and commented
parts of the code wouldn’t be taken into account otherwise).

| ifcd@ShortVerb),
| UndoShortVerb?,
| £i%
|catcode|~~I=12
|catcode‘|~"M=13 Y
|ifcd@eTeX%
|catcode® |%=13 Y
[£i%
| cd@ExampleEnd>7,
| endgroup

\cd@MakeExampleEnd defines \cd@ExampleEnd so that the environment meets its proper
end. It also launches the real processing, depending on the use of e-TgX or not.

The argument has been passed in \cd@Example above, and is either \end{(Environment)}
(with the proper catcodes) or the \ShortCode character.

In case we're using e-TEX, we close some groups and environments, empty \everypar
and assign the input. We switch the star conditional after that, because it is needed when
the input is assigned and \cd@Verbatim is called.

\begingroup
\catcode‘\""M=13
h
\gdef\cdO@MakeExampleEnd#1{%
\ifcd@eTeXY
\gdef\cd@ExampleEnd##1~"M##2#1{%
\egroup%
\cd@EndEnv?,
\bgroup%
\everypar{}/%
\cd@AssigneTeXInput{##2}J
\global\cd@Starfalsel}y

38

If we’re not using e-TgX, we do some testing beforehand. We just want to inform the user
that we’re opening an external file. If it already exists, we keep silent.

722 \else),
723 \def\cd@ExampleEnd##1~~M##2#1{/
724 \expandafter\ifx\csname cd@TestRead\endcsname\relax,
725 \newread\cd@TestRead’,
726 \fi¥
727 \openin\cd@TestRead=\jobname.exp %
728 \ifeof\cd@TestRead\relax
729 \cd@Warning{’
730 You’re not running on eTeX or you’ve said \string\eTeXO0ff.\MessageBreak],
731 I create the file \jobname.exp to produce\MessageBreaky
732 the example environment on line \the\inputlineno.\MessageBreaky,
733 You can delete it whenever you want, but\MessageBreak],
734 keeping it prevents this message from reappearing.}/
735 \fi%
736 \closein\cd@TestRead %
\cd@expFile If it does not already exists, we create the output stream \cd@expFile, which opens an

external scratch file for example processing.

737 \expandafter\ifx\csname cd@expFile\endcsname\relax/
738 \newwrite\cd@expFile},

739 \fi%

740 \immediate\openout\cd@expFile=\jobname.exp %

We \let ends of lines to a macro equivalent to the one described above for the default
code environment, except that each line is written to the external file. We launch it on the
material suffixed with a complicated tail to match all cases.

741 \let~~M\cd@noeTeXEOLY
742 ~CM##2° NPT,

Finally, we close everything and assign input once again.

743 \egroup’

744 \cd@EndEnv?,

745 \immediate\closeout\cd@expFile},
746 \bgroup’

747 \everypar{}/

748 \cd@AssignInput?

749 \egroup\global\cd@Starfalsel}),
750 \fi}}

751 \endgroup
5.5.1 Examples without ¢-TpX

\cd@noeTeXEQL Here’s how ends of lines are processed when writing the code material to an external file. If
we find ~~7, which marks the end of the material, we stop.

752 \begingroup

753 \catcode‘\""M\active}
754 \gdef\cd@noeTeXEOL#1{%
755 \ifx#1~"7}

756 \cd@GobbleCount=0 %
757 \let~~M\relax
758 \let\cd@next\relax’,

If we find an end of line, that means there’s a blank line, and we write it to the jobname.exp.

759 \else\ifx#1~"Mj
760 \cd@GobbleCount=0 %
761 \def\cd@next{\immediate\write\cdQexpFile{}\cd@noeTeXEOL}’

39

\cd@LineWrite

\cd@AssignInput

\cd@Input

\cd@0utput

762
763
764
765
766
767
768

769

770
771
772
773
774
775
776
it
778
779
780
781
782

783
784
785
786
787
788

789

If we have gobbled enough characters, we write the line to the external file. Otherwise, we
repeat.

\else\ifnum\cd@GobbleCount=\cd@GobbleNum},
\cd@GobbleCount=0 %
\def\cd@next{\cd@LineWrite#1}/,

\else’

\advance\cd@GobbleCountl %
\let\cd@next\cd@noeTeXEOLY,
\fi\fi\fi\cd@next}/,

The line written is delimited by its end. This explains the ~~7~~M~~7 suffix at the end of the
material on line 742. In case \end{(Ezample)} occurs on its own line, we need a terminator,
hence the first ~~7. If it occurs at the end of the last line, asin ... end of code\end{code},
we need ~"M so that the argument of \cd@LineWrite is properly delimited. The first
~=7 is then written to the file, but it expands to nothing. Since \cd@LineWrite calls
\cd@noeTeXEOL, we need another delimitator, hence the second ~~7.

\gdef\cd@LineWrite#1~"M{\immediate\write\cdQexpFile{#1}\cd@noeTeXEOL}/

Now we define the macro that will be used in \CodeInput (where # is \let to \cd@Input)
and \CodeOutput (where it is \let to \cd@Qutput).

The input is quite similar to the default code environment. We define ends of lines as usual
in verbatim contexts and we read from the scratch file.

\newtoks\cd@Everypar
h
\gdef\cd@AssignInput{y
\gdef\cd@Input{/
\bgroup%
\cd@Everypar\everypar’,
\everypar{/,
\leavevmode\csname\cdO@ExampleName Qcd@LineNumberBox\endcsname\relax
\cd@NewLinetrue\cd@FirstSpacesO\relax\the\cdQEverypar\relax}/
\cd@Verbatimj,
\def~"M{\leavevmode\endgraf}’
\input{\jobname.expl}’
\egroupl}’

The output also reads from the file and simply ignores verb breaks and commands.

\gdef\cdeOutput{%

\bgroup%
\cd@IgnoreVerbBreaky
\cd@IgnoreVerbCommandy
\input{\jobname.exp}%

\egroupl}’

Finally, we execute the last argument to \NewExample, i.e. what was dubbed here (Immediate
execution).

\cd@MakeExamplel}’

5.5.2 Examples with ¢-TgX

\cd@AssigneTeXInput

Examples with e-TEX are much more complicated. We use the \scantokens command,
whose function is to read its argument as if catcodes were not fixed. For instance,
\def\scan#1{{\catcode‘\\=12\scantokens{#1}}}

\scan\foo

yields \foo, although the backslash was an escape character when read. The problem is
that \scantokens interprets ends of lines and comments characters with their current val-
ues. Ends of lines yields a \par token as usual; the problem is that this token is scanned
anew, and if you have turned the backslash to a category 12 character, it will appear as
such. Moreover, commented parts of a line are ignored. For instance,

\scan{

40

aJ, mycomment

b}
yields a\par b. So \scantokens as it stands is not appropriate for verbatim material. @ rroeeen
The solution is to turned ends of lines and comments to other catcodes beforehand. Thus
the previous example yields a% mycomment~~M~~Mb~~M. (The final end of line is added by
\scantokens.) Now we need some hacking to produce the desired result.
\cd@Input The input begins with the usual verbatim preparation.

790 \long\gdef\cd@AssigneTeXInput#1{}
791 \gdef\cd@Input{’

792 \bgroup’

793 \cd@Everypar\everypar’,

794 \everypar{/

795 \leavevmode\csname\cd@ExampleName @cd@LineNumberBox\endcsname\relax/
796 \cd@NewLinetrue\cd@FirstSpacesO\relax\the\cd@Everypar\relaxl}/

797 \cd@Verbatimj,

We define ends of lines as yet another gobbling mechanism. We use ~~7 once again to delimit
material, and define it to make ends of lines ignored in case it is read, so that the additional
~~M at the end of \scantokens will be ineffective.

798 \catcode‘\""M=13 ¥
799 \let~~M\cd@eTeXStartGobbleY
800 \catcode‘\~~?713 Y%
801 \def~~?{\catcode‘\""M=9\relax}/
802 \scantokens{~~“M#1~~7}J
803 \egroupl}’
\cd@Output Output is still worse. Even comments are active.
804 \gdef\cd@Output{’
805 \bgroup’
806 \cd@IgnoreVerbBreaky
807 \catcode‘\~"?713 Y%
808 \catcode‘\%=13 %
809 \catcode‘\~"M=13 ¥

The next step depends on the user’s choice about ends of lines. If they are visible, we process
the material as is, with special definitions of % and ~~M to mimick TEX’s normal behavior.

810 \csname\cd@ExampleName QcdQEQOL\endcsname},
811 \cd@VisibleComment?

812 \let~~M\cd@eTeXOutVisibleEQOLY,

813 \def~~7{\let~"M\relaxl}’

814 \cd@IgnoreVerbCommand’

815 \scantokens{#1~~7}/,

If ends of lines are not visible, we execute the material beforehand with only %, ~~M and ~~7
effective, to remove unwanted code. Macros are not executed because the backslash is still
of category 12. Once ends of lines are thus processed, we scan everything anew, ignoring
the last ~~M and ~~@, which has a special function (see below).

816 \else’

817 \cd@ActiveComment}

818 \let~~M\cd@eTeX0utEOL%

819 \def~~7{\catcode‘\~"M9\relax}/
820 \xdef\cdQexinput{#1~~7}/

821 \cd@IgnoreVerbCommandy

822 \catcode‘\~"M=9

823 \catcode‘\~~0@=9

824 \expandafter\scantokens\expandafter{\cd@exinputl}y
825 \fi%

826 \egroupl}’

827 \cd@MakeExample\egroup}’

41

\cd@eTeXStartGobble
\cd@eTeXEQOL

\cd@eTeX0utVisibleEQOL

\cd@eTeX0utEOL

828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858

859
860
861
862
863
864
865
866
867
868

869
870
871
872

Once again, macros to gobble the right number of characters at the beginning of each line.
These are for the input. It is not possible to put \cd@eTeXStartGobble directly at the
beginning of \scantokens, because the backslash would not be understood as an escape
character. Thus we have to \1let ~~M to it, and once it has done its job, make it change the
meaning of ~~M to \cd@eTeXEQL. (That’s also the reason why we couldn’t reuse the gobble
macro of the default code environment, although they are quite similar.)

\gdef\cd@eTeXStartGobble#1{
\ifx#1-~7%
\cd@GobbleCount=0 %
\let\cd@next\relax,
\else\ifnum\cd@GobbleCount=\cd@GobbleNum},
\cd@GobbleCount=0 %
\let~~M\cd@eTeXEOLY
\def\cd@next{#1}%
\else\ifx#1~"M}
\cd@GobbleCount=0 %
\let~~M\cd@eTeXEOLY,
\let\cd@next~"M}
\else%
\advance\cd@GobbleCountl 7%
\let\cd@next\cd@eTeXStartGobble
\fi\fi\fi\cd@next}/,
h
\gdef\cd@eTeXEOL#1{%
\ifx#1~"7%
\cd@GobbleCount=0 %
\def\cd@next{\let~"M\relax\leavevmode\endgraf}y
\else\ifx#1~~M}
\cd@GobbleCount=0 %
\def\cd@next{\leavevmode\endgraf "M}/,
\else\ifnum\cd@GobbleCount=\cd@GobbleNum},
\cd@GobbleCount=0 %
\def\cd@next{\leavevmode\endgraf#1}},
\else’
\advance\cd@GobbleCountl 7%
\let\cd@next~"MY}
\fi\fi\fi\cd@next}/,

And now, the output. If ends of lines are visible, we set them to create a \par if the next
character is another end of line (i.e. if we find a blank line) or to put it back into the stream
otherwise, with a space before.

\gdef\cd@eTeX0utVisibleEOL#1{%
\ifx#1~"?Y
\let~"M\relax,
\let\cd@next\relax,
\else\ifx#1~~M}
\par’
\let\cd@next~"M}
\else’
\def\cd@next{ #1}}
\fi\fi\cd@next}%

If ends of lines are not visible, i.e. if they are processed before anything else, we do something
similar, except that we add a dummy character, which will be ignored when the material
is scanned, but will nonetheless prevent the formation of macro names across lines. Tail
recursion is forbidden, since this will be used in a \edef, so we \expandafter instead.
\catcode‘\"~@=12\relax’,
\gdef\cd@eTeX0utEOL#1{%

\ifx#1~~7%

\else\ifx#1~~M}

42

873 \par’

874 \expandafter~"M/,
875 \elsel,
876 ~~Q@ \expandafter\expandafter\expandafter#1/,

877 \fi\fil}¥%

Now we deal with comments. First we do some catcode changing. (We need a comment
character since we’re currently in a group where ends of lines are active).

878 \catcode‘\/=14\relax/
879 \catcode‘\%=13\relax/
880 \catcode‘\ =12\relax/
881 \catcode‘\""I=12\relax/

\cd@VisibleComment If ends of lines are visible we define comments to eat everything until the end of the line and
\cd@EatBOL then launch a macro whose sole purpose is to remove spaces at the beginning of the next
line.

882 \gdef\cd@VisibleComment{/
883 \def'##1~~M{\cd@EatBOL}/
884 \def\cd@EatBOL##1{/

885 \let\cd@next\cdQ@EatBOL/
886 \ifx##1 /

887 \else\ifx##1~~I/

888 \else\ifx##1~~"M/

889 \let\cd@next\par/

890 \else/

891 \def\cd@next{##1}/

892 \fi\fi\fi\cd@next}}/

\cd@ActiveComment If ends of line are not visible, we do the same in the \expandafter way.

\cdQEatBOL 43 \gdef\cd@ActiveComment{/

894 \def##1~"M{\cd@EatBOL}/

895 \def\cd@EatBOL##1{/

896 \ifx##1 /

897 \expandafter\cd@EatBOL/

898 \else\ifx##1~"I/

899 \expandafter\expandafter\expandafter\cd@EatBOL/
900 \else\ifx##1~~M/

901 \par/

902 \else/

903 \expandafter\expandafter\expandafter\expandafter\expandafter\expandafter\expandafter##1/
904 \fi\fi\fi}}/

905 \endgroup

5.6 File management

Here are some simple macro for the reader’s relief.
\CloseFile Closing a file in normal mode simply makes all file identification macros unavailable.

906 \def\CloseFile#1{%
907 \def\FileSourced{%

908 \cd@Error{}

909 No file in production. \string\FileSource\space is empty}}/
910 \def\FileName{’

911 \cd@Error{}

912 No file in production. \string\FileName\space is empty}}/
913 \def\FileVersion{J

914 \cd@Error{}

915 No file in production. \string\FileVersion\space is emptyl}}%
916 \def\FileDate{’

917 \cd@Error{}

918 No file in production. \string\FileDate\space is empty}}}

43

\@cd@LineCount

\ProduceFile

\FileSource

\cd@GetFileName
\FileName
\cd@GetFileVersion
\FileVersion
\cd@GetFileDate
\FileDate

That’s why, in normal mode, we close a file right now. We nonetheless create a dummy file
name for the sake of \ProduceFile below.

919 \ifcd@produce,

920 \def\FileName{}

921 \def\FileVersion{}

922 \def\FileDate{}

923 \else

924 \CloseFile{}

925 \def\FileSource{}

926 \newcount\@cd@LineCount},
927 \fi

In normal mode, the main job of \ProduceFile is to reset some line number counts. In
autoclose mode, there’s only one counter, since files are closed when a new one is opened.

928 \def\ProduceFile#1{}
929 \ifcd@autoclose
930 \code@cd@LineNumberO\relax¥

If autoclose is off, we allocate a count for each file, so lines are numbered according to
the file they belong to. We store the last value for the file we’re going to close (stored in
\FileSource), and set the line number of the code to the number for the file we’re going
to (re)open. That’s why we needed a dummy \FileSource above, when \ProduceFile is
executed for the first time.

931 \else}
932 \expandafter\csname\FileSource @cd@LineCount\endcsname=\code@cd@LineNumber?
933 \expandafter\ifx\csname #1@cd@LineCount\endcsname\relaxy
934 \expandafter\newcount\csname #10cd@LineCount\endcsname},
935 \code@cd@LineNumber0O\relax/
936 \elseY,
937 \expandafter\code@cd@LineNumber\csname #10cd@LineCount\endcsname},
938 \fif
939 \fij
We reset \FileName and others, because their definition is optional. \FileSource is manda-

tory and is the actual argument of \ProduceFile. We launch the appropriate macro if a
left bracket follows.

940 \def\FileName{J,

941 \cd@Error{}

942 No \string\FileName\space has been given to \FileSourcel}}/
943 \def\FileVersion{J

944 \cd@Error{Y

945 No \string\FileVersion\space has been given to \FileSourcel}}}
946 \def\FileDate{},

947 \cd@Error{}

948 No \string\FileDate\space has been given to \FileSourcel}}}
949 \edef\FileSource{#1}/

950 \@ifnextchar[’

951 {\cd@GetFileNamel}J,

952 \relax}

These are straightforward and don’t need any comment. What if 1 want

comment?

953 \def\cd@GetFileName [#1]{%

954 \edef\FileName{#1}/

955 \@ifnextchar[\cd@GetFileVersion\relax}
956 \def\cd@GetFileVersion[#1]{%

957 \edef\FileVersion{#1}/

958 \@ifnextchar[\cd@GetFileDate\relax}
959 \def\cd@GetFileDate [#1]1{%

960 \edef\FileDate{#1}}

44

\Header
\cd@HeaderGobble
\AddBlankLine
\StartIgnore
\StopIgnore
\DangerousEnvironment

Finally, we define those macros that have no effect in normal mode to have, well, no effect.
Since comment signs are ‘other’ characters in produce mode, we change their catcode here
too, so that the user may close the argument to \Header after a comment sign.

961 \def\Header{\bgroup\catcode‘\%=12 \cd@HeaderGobble}
962 \long\def\cd@HeaderGobble#1{\egroup}

963 \let\AddBlankLine\relax

964 \let\StartIgnore\relax

965 \let\StopIgnore\relax

966 \def\DangerousEnvironment#1{}

6 Produce mode

We now turn to produce mode, where codedoc becomes CodeDoc and strange things happen.

6.1 Messages

\cd@Tracing
\cd@TChar
\cd@TUChar
\cd@TCode

\cd@Error
\cd@CDWarning
\cd@NoFileWarning

CodeDoc may be quite talkative. According to the tracing option, we define some messages.

967 \ifcase\cd@tracingmode

968 \def\cd@Tracing#1{}

969 \def\cd@TChar#1#2{}

970 \def\cd@TUChar#1{}

971 \let\cd@TCode\relax

972 \or

973 \def\cd@Tracing#1{}

974 \def\cd@TChar#1#2{}

975 \def\cd@TUChar#1{}

976 \def\cd@TCode{\immediate\writel7{%

977 ***x Code written from line \the\cd@ProduceLine\space to
\the\inputlineno\space to \cd@CurrentFile. ***}}

978 \or

979 \def\cd@Tracing#1{\immediate\writel7{0n line \the\cd@ProducelLine: #1.}}

980 \def\cd@TChar#1#2{

981 \bgroup

982 \escapechar\m@ne\cd@Tracing{‘\string#1’ defined as \string\\#2}

983 \egroup}

984 \def\cdQ@TUChar#1{

985 \bgroup

986 \escapechar\m@ne\cd@Tracing{\string\\#1 undone}

987 \egroup}

988 \def\cd@TCode{\immediate\writel7{}

989 *** Code written from line \the\cd@ProduceLine\space to
\the\inputlineno\space to \cd@CurrentFile. ***}}

990 \fi

We also define errors and warnings; there’s no need to follow ITEX’s ordinary syntax here.

991 \def\cd@CDError#1{J

992 \immediate\writel7{}

993 ~~J! CodeDoc Error:~~J#1~~J1.\the\cd@ProducelLine~~J }}

994 \def\cd@CDWarning#1{Y

995 \immediate\writel7{}

996 ~~J7 CodeDoc Warning: ~~J#1~~J1.\the\cd@ProducelLine~"~J }}

997 \def\cd@NoFileWarning{\cd@CDWarning{No file in production. This code will be lost.}}

6.2 Testing strings

\@documentclasshook

In produce mode, CodeDoc is a string tester; more precisely it imitates TEX’s normal mech-
anism: the escape character is turned into an active character that gathers letters following
it and executes the name they form (in a modified fashion, however, to execute only relevant
macros).

First, we redefine what happens at the end of the class to alter the behavior of special
characters. However, we maintain comments and turn \ into an active character.

45

‘ Woooo, scary...

\cd@LeftBrace
\cd@RightBrace
\cd@LeftBracket
\cd@Space

998 \ifcd@produce

999 \def\@documentclasshook{
1000 \let\do\@makeother
1001 \dospecials

1002 \catcode‘\""I=12\relax
1003 \catcode‘\%=14\relax
1004 \catcode‘\\\active

By default, \normalsize is an error message, so we redefine it. We start the report.

1005 \let\normalsize\relax

1006 \ifnum\cd@tracingmode>0

1007 \immediate\writel7{~~J*** CODEDOC REPORT ***~~J}
1008 \fi

We don’t load any font, so there’s no need to bother with overfull boxes nor outputs.
However, by pure superstition, I prefer some care.

Does he know
what he's doing?

1009 \hfuzz=100cm}
1010 \output={\deadcyclesO\setbox0\box255}
1011 \everypar{}

Most of the following are already 0. However, \tracingcommands2 would explode the log
file, so we take some care once again.

1012 \tracingcommands\z@\tracingmacros\z@\tracingoutput\z@\tracingparagraphs\z@
1013 \tracingpages\z@\tracinglostchars\z@\tracingrestores\z@\tracingstats\z@}
1014 \fi

Some characters are special, to say the least. We need to be able to recognize them.

1015 \begingroup
1016 \catcode‘\{=12 %
1017 \catcode‘\}=12 9

\cd@Tab1018 \catcode\<=1 ¥

\cd@End0fLine
\cd@Comment

\cd@Escape

1019 \catcode‘\>=2 },

1020 \gdef\cd@LeftBrace<{>
1021 \gdef\cd@RightBrace<}>
1022 \gdef\cd@LeftBracket<[>
1023 \catcode‘\ =12\relax
1024 \catcode‘\"~I=12\relax
1025 \gdef\cd@Space< >

1026 \gdef\cd@Tab<~~I>

1027 \catcode‘\~"M=12\relax’,
1028 \gdef\cd@End0fLine<~"M>%
1029 \catcode‘\/=14\relax/
1030 \catcode‘\%=12\relax/
1031 \gdef\cd@Comment<%>/
1032 \endgroup

Here comes the definition of the escape character as itself... The backslash can’t be allowed
to have catcode 0, otherwise control sequences would form and fire. We don’t want that,
obviously. On the other hand, some control sequences should be executed, so they must be
form beforehand. Here’s how \ works. First, it stores the current line number for messages.

1033 \newcount\cd@ProduceLine

1034

1035 \begingroup

1036 \catcode‘|=0 7%

1037 \catcode‘\\=13

1038 |gdef | cd@Escape{\}/

1039 |gdef\#1{%

1040 |cd@ProduceLlinel|inputlineno

46

Then it turns ends of lines and comments to other characters, because we don’t want to
pass them unnoticed. If the next character is of category code 11, we start forming a control
sequence. Otherwise, we gobble it and stop.

1041 |bgroup

1042 |catcode‘|~"M=12

1043 |catcode|%=12 %

1044 | gdef | cd@MacroName{}%

1045 |ifnum|catcode‘#1=11

1046 |def | cd@nextq{|cd@Gather#1}

1047 |else

1048 |def | cd@nextd{|egroupl|relax}

1049 [fi

1050 | cd@next}

\cd@Gather Forming macro names is quite simple: if the next character is a letter, we add it to the

\cd@MacroName temporary name. Otherwise, we store it in \cd@NextChar and start doing what TEX does
\cd@NextChar when it has formed a control sequence.

1051 |longlgdef | cd@Gather#1{},
1052 |ifnum|catcode‘#1=11 %

1053 | xdef | cd@MacroNameq{ | cd@MacroName#1}
1054 |let|cd@next | cd@Gather),

1055 |elsel,

1056 |gdef | cd@NextChar{#11}%

1057 |let|cd@next | cd@GobbleSpace,

1058 |fi|cd@next}

1059 |endgroup

\cd@GobbleSpace That is, we skip spaces and ends of lines, so that the real next character will be put next to
the formed control sequence, in case it is an argument.
In case the next argument is none of the above, we call \cd@Evaluate, which will expand
the macro, on the next character.

1060 \long\def\cd@GobbleSpace{’

1061 \let\cd@next\cd@TakeNextChar

1062 \ifx\cd@NextChar\cd@Space

1063 \else\ifx\cd@NextChar\cd@Tab

1064 \else\ifx\cd@NextChar\cd@EndOfLine
1065 \else\ifx\cd@NextChar\cd@Comment

1066 \let\cd@next\cdQ@GobbleEndOfLine

1067 \else

1068 \egroup

1069 \def\cd@next{\expandafter\cd@Evaluate\cd@NextChar}

1070 \fi\fi\fi\fi\cd@next}

\cd@TakeNextChar These do what they say.

\cd@GobbleEndOfLine |7 \long\def\cd@TakeNextChar#1{\gdef\cd@NextChar{#1}\cd@GobbleSpace}

1072 \begingroup

1073 \catcode‘\""M=12}

1074 \gdef\cd@GobbleEndOfLine#1~~M#2{%
1075 \gdef\cd@NextChar{#2}%

1076 \cd@GobbleSpacel}/

1077 \endgroup

\cd@Evaluate Finally, we take the name thus formed, and execute \(Name)@Produce. As you might
imagine, the only macros containing the @Produce suffix are defined by CodeDoc. So, most
of the time, this execution will be no more than a \relax. Which is exactly what we want.

1078 \def\cd@Evaluate{\csname\cd@MacroName @Produce\endcsname}

47

6.3 Macros executed in produce mode

To understand what follows, simply remember that \(Macro)@Produce is executed
when CodeDoc encounters \(Macro). So, for instance, \ShortVerb@Produce is \ShortVerb
in produce mode.
Macro names will become quite long, so we add some left margin. . v.. could have done
\cd@Gobble First, some gobbler. that before...

1079 \def\cd@Gobble#1{}

\cd@PrepareChar Macros like \ShortVerb can take four kinds of argument. If you want + to be a
\ShortVerb, you can say \ShortVerb+, \ShortVerb\+, \ShortVerb{+} and \Short-
Verb{\+}. Since CodeDoc has already considered the next character when executing
\ShortVerb@Produce, its catcode can’t be changed, and a left brace is of category 12
and a backslash of category 13. So we have to gobble the next character if it is one
of them.

\cd@PrepareChar takes a macro as an argument and replaces it in the stream with
the next character gobbled or not. The backslash is turned into an escape character
to handle the \ShortVerb{\+} case, where the left brace is gobbled; the backslash
hasn’t been read yet, so we can use it.

1080 \def\cd@PrepareChar#1{

1081 \catcode‘\\=0 ¥

1082 \def\cd@next{\expandafter#1\cd@Gobble}
1083 \ifx\cd@NextChar\cd@LeftBrace},

1084 \else\ifx\cd@NextChar\cd@Escape/

1085 \else

1086 \def\cd@next{#1}

1087 \fi\fil}}

\ShortVerb@Produce Thus, \ShortVerb@Produce calls \cd@PrepareChar with \cd@MakeShortVerb@Produce,
\DefineShortVerb@Produce which will do the real job to the character. We define fancyvrb’s \Def ineShortVerb to
\cd@VerbList do the same thing. \cd@VerbList contains all such characters, since \Def ineShortVerb

can define several of them. It will be used in writing environments to neutralize them.

1088 \def\ShortVerb@Produce{\cd@PrepareChar\cd@MakeShortVerbOProduce\cd@next}
1089 \let\DefineShortVerb@Produce\ShortVerb@Produce
1090 \def\cd@VerbList{}

\cd@MakeShortVerb@Produce Now we inform the user that the character was \ShortVerb’ed.

1091 \def\cd@MakeShortVerb@Produce#1{}
1092 \cd@TChar{#1}{ShortVerb}

We add it to \cd@VerbList.
1093 \expandafter\def\expandafter\cd@VerbList\expandafter{\cd@VerbList#1,}

\cd@ShortVerb@Produce And we simply define the character to gobble everything until its next occurrence.
\UndoShortVerb@Produce We also define the \Undo. .. variant.

1094 \lccode‘\~=‘#1 Y%

1095 \lowercase{)

1096 \def~{\bgroup\let\do\@makeother\dospecials\catcode‘#1\active\cd@ShortVerb@Producel}’
1097 \def\cd@ShortVerb@Produce##1~{\egroup}}’

1098 \def\UndoShortVerb@Produce{\cd@TUChar{ShortVerb}\catcode‘#1=12\relax}

1099 \catcode‘#1=13 Y

1100 \catcode‘\\=13\relax}

1101 \let\UndoShortVerb@Produce\relax

\UndefineShortVerb@Produce We define a variant for fancyvrb, because it takes an argument.

\cd@UndefineShortVerb@Produce
1102 \def\UndefineShortVerb@Produce{\cd@PrepareChar\cd@UndefineShortVerb@Produce\cd@next}/

1103 \def\cd@UndefineShortVerb@Produce#1{
1104 \cd@TUChar{ShortVerb (from fancyvrb)}
1105 \catcode‘#1=12 \catcode‘\\=13\relax}

48

\VerbBreak@Produce
\cd@MakeVerbBreak@Produce
\cd@IgnoreVerbBreak 1106
1107

\UndoVerbBreak@Produce
1108

1109
1110
1111
1112
1113

\cd@Gobblelptions
1114
\ShortCode@Produce

1115
1116
1117
1118
1119
1120

\cd@MakeShortcode@Produce
\cd@ShortWriteFile
\ActivateShortCode@Produce

\cd@UndoShortCode@Produce1121

1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141

\VerbCommand@Produce
\cd@VerbEscape@Produce
\cd@TempEsc

1142
1143
1144

\cd@IgnoreEscape@Produce

1145
1146
1147
1148

In produce mode, the \VerbBreak character is simply ignored.

\def\VerbBreak@Produce{\cd@PrepareChar\cd@MakeVerbBreak@Produce\cd@next}
\def\cd@MakeVerbBreak@Produce#1{
\cd@TChar{#1}{VerbBreak}
\def\cd@IgnoreVerbBreak{\catcode‘#1=9\relax}
\def\UndoVerbBreak@Produce{\cd@TUChar{VerbBreak}\let\cd@IgnoreVerbBreak\relax}
\catcode ‘\\=13\relax}
\let\cd@IgnoreVerbBreak\relax
\let\UndoVerbBreak@Produce\relax

This is useful for \ShortCode and also \NewExample
\def\cd@GobbleOptions#1 [#2] #3{\def\cd@NextChar{#3}\expandafter#1l\cd@NextChar}
We check for options.

\def\ShortCode@Produce{}
\ifx\cd@NextChar\cd@LeftBracket
\def\cd@next{\cd@GobbleOptions\ShortCode@Producel},
\elsel
\cd@PrepareChar\cd@MakeShortCode@Produce
\fi\cdOnext}

The \ShortCode character in produce mode is similar to its counterpart in normal
mode, except that it follows what code does in this mode. So give a look at the
definition of the code environment to understand what is going on here.

\begingroup
\catcode‘\~"M13%
\gdef\cd@MakeShortCode@Produce#1{}
\cd@TChar{#1}{ShortCode}
\lccode‘\"="#1},
\lowercase{/
\def~{\cd@ProduceLine\inputlineno\cd@ShortCodetrue\cd@CodeWritel}
\def\ActivateShortCode@Produce{\catcode‘#1\activel}
\def\cd@ShortWriteFile##1~~"M##2~{}
~AMERH2S?T M7,
\ifx\cd@NoFileWarning\relax/
\cd@TCodeY
\elsel,
\cd@NoFileWarningy,

\fi\egroup}}’
\def\UndoShortCode@Produce{\cd@TUChar{ShortCode}\catcode‘#1=12\relax}/,
\catcode‘\\=13 ¥
\catcode‘#1=13\relax}/

\endgroup
\let\ActivateShortCode@Produce\relax
\let\UndoShortCode@Produce\relax

\VerbCommand characters do what they do in \CodeOutput in normal mode. The
escape gobble letters and the braces gobble what they contain.
First, we store the escape character for the message.

\def\VerbCommand@Produce{\cd@PrepareChar\cd@VerbEscape@Produce\cd@next}
\def\cd@VerbEscape@Produce#1{
\bgroup\escapechar\m@ne\xdef\cd@TempEsc{\string#1}\egroup

Then we turn it into a letter gobbler.

\def\cd@IgnoreEscape@Produce{
\catcode‘#1=13
\lccode‘\~=“#1
\lowercase{\def~{\cd@GobbleLetters}}}

49

This is not what you think it is. We’re not considering whether the character to come
is a left brace, but whether \cd@NextChar, i.e. the character following \VerbCommand,
was a left brace; this means that a right brace is to come, and we want to gobble it
before processing what follows.

1149 \ifx\cd@NextChar\cd@LeftBrace
1150 \def\cd@next{\expandafter\cd@VerbBraces@Produce\cd@Gobble}
1151 \else
1152 \let\cd@next\cd@VerbBraces@Produce
1153 \fi\cdO@next}
\cd@VerbBraces@Produce The rest is pretty straightforward and similar to what we did in normal mode.

\cd@@VerbBraces@Produce1154 \def\cd@VerbBraces@Produce{\catcode‘\{=1 \catcode‘\}=2 \cd@@VerbBraces@Produce}

\cd@IgnoreBraces@Produce | 55 \def\cde@VerbBraces@Produce#1#2{%

\UndoVerbCommand@Produce | |56 \expandafter\cd@TChar\expandafter{\cd@TempEsc’, ‘\string#1’ and ‘\string#2’}{VerbCommand}
1157 \def\cd@IgnoreBraces@Produce{’,

1158 \catcode‘#1=13
1159 \lccode‘\~=“#1
1160 \lowercase{\def ~####1#2{}}}

1161 \catcode‘\\=13 \catcode‘\{=12 \catcode‘\}=12\relax}
1162 \def\UndoVerbCommand@Produce{

1163 \cd@TUChar{VerbCommand}

1164 \let\cd@IgnoreEscape@Produce\relax

1165 \let\cd@IgnoreBraces@Produce\relax}

1166 \let\cd@IgnoreEscape@Produce\relax

1167 \let\cd@IgnoreBraces@Produce\relax

\CodeEscape@Produce \CodeEscape is easy: we simply define a macro to turn the character into an escape
\cd@CodeEscape@Produce in code contexts.

\cd@ActivateCodeEscape1168 \def\CodeEscape@Produce{\cd@PrepareChar\cd@CodeEscape@Produce\cd@next}

\UndoCodeEscapeCProduce 1149 \def\cd@CodeEscape@Produce#1{}
1170 \cd@TChar{#1}{CodeEscape}
1171 \def\cd@ActivateCodeEscape{\catcode‘#1=0\relax}\catcode‘\\=13\relax}
1172 \let\cd@ActivateCodeEscape\relax
1173 \def\UndoCodeEscape@Produce{\cd@TUChar{CodeEscape}\let\cd@ActivateCodeEscape\relax}

\NewExample@Produce These two macros launch the option gobbler if there are any. \cd@DangerousExample@Produce
\RenewExample@Produce is defined later because it takes its argument between braces of category 12, like other
Macros.

1174 \def\NewExample@Produce{’,
1175 \ifx\cd@NextChar\cd@LeftBracket’

1176 \def\cd@next{\cd@GobbleOptions\NewExample@Producel}
1177 \elsel,
1178 \let\cd@next\cd@DangerousExample@Produce,

1179 \fi\cd@next}
1180 \let\RenewExample@Produce\NewExample@Produce

\cd@@Evaluate Ignoring the input boils down to modifying the definition of \cd@Evaluate until it
\StartIgnore@Produce founds \StopIgnore. Meanwhile, it does nothing.
\Cd@FindIgHOIGIISI \let\cd@@Evaluate\cd@Evaluate

\cd@Stoplgnore gy \def\StartIgnore@Produce{
1183 \cd@Tracing{\string\StartIgnore\space found. I will ignore everything from now on}
1184 \let\cd@Evaluate\cd@FindIgnore}
1185 \def\cd@FindIgnore{
1186 \expandafter\ifx\csname cd@\cd@MacroName\endcsname\cd@StopIgnore

1187 \cd@Tracing{\string\StopIgnore\space found. I resume my normal behavior}
1188 \let\cd@Evaluate\cd@@Evaluate
1189 \fi}

1190 \def\cd@StopIgnore{\cd@StopIgnore}

50

\verb@Produce
\cd@VerbEater
\cd@@VerbEater

\DescribeMacro@Produce
\DefineMacro@Produce
\DescribeEnvironment@Produce
\DefineEnvironment@Produce
\noexpand@Produce
\string@Produce
\protect@Produce

\begin@Produce
\end@Produce

\Gobble@Produce

\Header@Produce
\cd@HeaderEQL

1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202

1203
1204
1205
1206
1207
1208
1209

1210
1211
1212
1213
1214
1215
1216
1217

1218
1219
1220
1221
1222
1223

1224
1225
1226
1227
1228
1229
1230
1231
1232
1233

The produce version of TEX’s \verb gobbles its argument after it has checked for a
star.

\def\verb@Produce{\count@=0 \cd@VerbEater}
\def\cd@VerbEater#1{/
\ifcase\count@ Y%
\ifx#1*
\count@=1 %
\let\cd@@VerbEater\cd@VerbEater
\else
\def\cd@@VerbEater##1#1{}
\fi
\else
\def\cd@@VerbEater##1#1{}
\fi\cd@@VerbEater}

The normal counterparts of these might take dangerous arguments, so we need to
neutralize them. The first four gobble two tokens, i.e. a left brace and/or an escape
character, so the following macro won’t form. The last three just gobble the escape
character.

\def\DescribeMacro@Produce#1#2{}
\def\DefineMacro@Produce#1#2{}
\def\DescribeEnvironment@Produce#1#2{}
\def\DefineEnvironment@Produce#1#2{}
\def\noexpand@Produce#1{}

\def\string@Produce#1{}

\def\protect@Produce#1{} Stop executing things!

They're innocent!
\begin and \end statements are executed if and only if there follows a left brace. This
decreases the number of possible errors. The double-@ versions take their arguments
in ‘other’ braces, so they are defined later.

\def\begin@Produceq{
\ifx\cd@NextChar\cd@LeftBrace
\expandafter\begin@QProduce
\fi}
\def\end@Produce{
\ifx\cd@NextChar\cdQLeftBrace
\expandafter\end@@Produce
\fi}

The produce version of \Gobble is similar to the normal version, except that it take
cares of braces. \Gobble@@Produce is defined below.

\def\Gobble@Produce#1{%
\ifx\cd@NextChar\cd@LeftBrace},
\def\cd@next{\expandafter\Gobble@@Produce\cd@NextChar}
\else
\def\cd@next{\chardef\cd@GobbleNum=#1\relax}/,
\fi\cd@next}

The header is an easy matter. The only thing not to forget is to change the catcode
of \back to 0.

\newif\ifcdO@HeaderFirstLine
\begingroup
\catcode‘\~"M=13 Y
\catcode‘\/=14 7,
\catcode‘\%=12 /
\gdef\Header@Produce{/
\bgroup/
\catcode‘\~"M=13 /
\catcode‘\%=12 /
\catcode‘\\=0 /

51

\cd@DocumentString
\cd@CodeString
\cd@StarCodeString
\cd@InvisibleString
\cd@StoredEnvironments

\Header@@Produce

\Gobble@@Produce

\DangerousEnvironment@Produc
\cd@DangerousExample@Produce
\DefineVerbatimEnvironment

\begin@@Produce

1234
1235
1236

1237
1238
1239
1240
1241

1242
1243
1244
1245
1246
1247
1248
1249

1250
1251
1252

1253

e

1254
1255
1256
1257
1258
1259
1260

1261
1262
1263
1264
1265
1266
1267
1268
1269
1270

\Header@@Producel}/
\gdef\cd@HeaderEQL{\def~~"M{~~J% }}
\endgroup

We’ll need these presently.

\def\cd@ocumentString{document}

\def\cd@CodeString{code}

\def\cd@StarCodeString{code*}
\def\cd@InvisibleString{invisible}
\def\cd@StoredEnvironments{example,verbatim,Verbatim,BVerbatim,
LVerbatim,SaveVerbatim,VerbatimQut,Example,CenterExample,
SideBySideExample,PCenterExample,PSideBySideExample,}

Here comes the macros that take their arguments bewteen braces of category 12.
The \if... will be needed in \input@Produce.

\newif\ifcd@everyeof
\cdQ@everyeoftrue

\begingroup

\catcode‘\{=12
\catcode‘\}=12
\catcode‘\<=1 %
\catcode‘\>=2

This defines \cd@Header, which is executed in \ProduceFile, to write the text
input by the user to the newly opened file. The group we close was opened in
\Header@Produce.

\long\gdef\Header@@Produce{#1}<

\gdef\cd@Header<\bgroup\cd@HeaderEOL\cd@ProduceFile<\cd@Comment\space#1>\egroup>

\egroup>
This is launched by \Gobble@Produce
\gdef\Gobble@@Produce{#1}<\chardef\cd@GobbleNum=#1\relax>

Here we add dangerous environments to the list above, to be checked below.

\cd@DangerousExample@Produce has such a cumbersome definition because it is
meant to gobble the remaining three arguments of \NewExample and \RenewExample.
They might be separated by spaces, and since spaces have category 12 in produce
mode, they won’t be skipped and \cd@angerousExample@Produce wouldn’t match
its definition, as TEX likes to say.

\gdef\DangerousEnvironment@Produce{#1}<
\cd@Tracing<#1 added to dangerous environments>
\xdef\cd@StoredEnvironments<\cd@StoredEnvironments#1,>>
\gdef\cd@DangerousExample@Produce{#1}#2{#3}#4{#5}#6{#7}<
\cd@Tracing<#1 added to dangerous environments (CodeDoc examples)>
\xdef\cd@StoredEnvironments<\cd@StoredEnvironments#1,>>
\let\DefineVerbatimEnvironment@Produce\DangerousEnvironment@Produce

\begin statements simply check their argument: if it is code, code* or invisible, it
turns to writing mode. Otherwise, the name of the argument is checked against the
list of dangerous environments. See below where normal braces are restored.

\gdef\beginQ@@Produce{#1}<
\def\cd@TempArg<#1>
\ifx\cd@TempArg\cd@CodeString

\let\cd@next\cd@Codelirite
\else\ifx\cd@TempArg\cd@StarCodeString
\cd@Startrue
\let\cd@next\cd@Codelirite
\else\ifx\cd@TempArg\cd@InvisibleString
\cd@Invisibletrue
\let\cd@next\cd@Codelirite

52

1271 \else
1272 \def\cd@next<\cd@CheckEnvironment<#1>>
1273 \fi\fi\fi\cd@next>

\end@Produce There’s only one thing that can wake an \end statement: document. If it finds
\end{document}, CodeDoc stops. Otherwise, \end statements are ignored.

1274 \gdef\end@@Produce{#1}<

1275 \def\cd@TempArg<#1>
1276 \ifx\cd@TempArg\cd@ocumentString

1277 \def\cd@next<\cd@Tracing<\string\end{document}>
1278 \ifnum\cd@tracingmode=0 %
1279 \else
1280 \immediate\writel7<~~J*x* END OF CODEDOC REPORT ***~~J>
1281 \fi\@@end>
1282 \else
1283 \let\cd@next\relax
1284 \fi\cdO@next>

\ProduceFile@Produce We define these right now, to be used later.

\CloseFile@Produce

1285 \gdef\ProduceFile@Produce{#1}<\ProduceFile@@Produce<#1>>
1286 \gdef\CloseFile@Produce{#1}<\CloseFile@OProduce<#1>>

\input@Produce We need a terribly boring definition of \input for the default header, so that files
\cd@CurrentSource are properly tracked back to their source. Besides, \input in TEX’s way, i.e. without
braces, is not allowed anymore, if it is to be read by CodeDoc in produce mode. I feel
like removing the whole thing altogether.

Lines 1289 to 1298 were added in version 0.2. I had overlooked the fact that if an
\input file ended with a control sequence, then the rather complicated mechanism of
\cd@Gather and its friends would run into the end of the file and produce an error
message. With good ol’ TgX, I don’t know how to overcome this; hence the warning.
With e-TgX, however, I use \everyeof to add a pair of braces just for the sake of

some harmless tokens. Anyway, who’s using TgX anymore?

1287 \newcount\cd@InputDepth
1288 \gdef\input@Produce{#1}<
1289 \ifcd@everyeof

1290 \cd@everyeoffalse

1291 \ifx\everyeof\Qundefined

1292 \cd@CDWarning<y,

1293 You’re not running on e-TeX; the \string\input\space of files might be problematic.’

1294 ~~JAdd ‘{}’ at the end of \string\input\space files if you ever get a ‘File ended...’
message>

1295 \else

1296 \everyeof<{}>

1297 \fi

1298 \fi

1299 \cd@Tracing<\string\input\space file #1>

1300 \expandafter\let\csname cd@MasterSource\the\cd@InputDepth\endcsname\cd@CurrentSource

1301 \edef\cd@CurrentSource<#1 (\string\input\space in \cd@CurrentSource)>

1302 \advance\cd@InputDepthi\relax

1303 \@@input #1l\relax

1304 \advance\cd@InputDepth-1\relax

1305 \expandafter\let\expandafter\cd@CurrentSource\csname cd@MasterSource
\the\cd@InputDepth\endcsname>

\cd@MakeSpecialEater If we find a dangerous environment, we launch this on its name, which eats everything
\cd@SpecialEater until \end{<Athe>}.

1306 \catcode‘\|=0 %

1307 \catcode\\=13

1308 |gdef | cd@MakeSpecialEater#1<

1309 |longldef|cd@SpecialEater##1\end{#1}<>
1310 |cd@SpecialEater>

53

1311 |endgroup

\cd@CurrentSource Back to normal braces. This is a default value needed in \input@Produce. The
extension is just a guess, of course.

1312 \edef\cd@CurrentSource{\jobname.tex}

\cd@CheckEnvironment This is the checking mechanism used in \begin statement to detect dangerous envi-
\cd@@CheckEnvironment ronments. Note that we check all environments in their starred version too.

1313 \def\cd@CheckEnvironment#1{

1314 \def\cd@TempEnv{#1}

1315 \expandafter\cd@@CheckEnvironment\cd@StoredEnvironments cd@end,}
1316 \def\cd@@CheckEnvironment#1,{

1317 \def\cd@@TempEnv{#1}

1318 \def\cd@@StarTempEnv{#1x*}

1319 \ifx\cd@@TempEnv\cd@end

1320 \let\cd@next\relax

1321 \else\ifx\cd@@TempEnv\cdQ@TempEnv

1322 \def\cd@next{\cd@MakeSpecialEater{#1}}
1323 \else\ifx\cd@@StarTempEnv\cd@TempEnv

1324 \def\cd@next{\cd@MakeSpecialEater{#1%}}
1325 \else

1326 \let\cd@next\cd@@CheckEnvironment

1327 \fi\fi\fi
1328 \cd@next}

6.4 Writing environments

CodeDoc looks for code, code* and invisible environments and process them line
by line.
\cd@MakeOther First, we need a recursive catcode changer.

1329 \def\cd@MakeOther#1,{J
1330 \def\cd@TempArg{#1}/,
1331 \ifx\cd@TempArg\cd@end/
1332 \elsel

1333 \catcode‘#1=12 ¥
1334 \expandafter\cd@MakeOther?,
1335 \fi}
\cd@Codelrite This is the writing macro, called by \begin when the appropriate argument is found,

or by the \ShortCode character. \dospecials is probably useless since all specials
are already done, but at least it changes the category of the escape and the comment.

1336 \newif\ifcd@Invisible
1337 \begingroup

1338 \catcode‘\~"M=13\relax
1339 \gdef\cd@CodeWrite{’
1340 \bgroup/

1341 \let\do\@makeother,
1342 \dospecials’,
1343 \catcode‘\""I=12 ¥

We turn all verb characters (defined by fancyvrb’s \DefineShortVerb) into other
characters, ignore the verb break, neutralize the short code if we’re not in a short
code environment (the redefinition of \cd@TUChar just prevents an unwanted message
sent to the user if tracing is 2) an reactivate it otherwise, ignore \VerbCommand and
activate \CodeEscape. We turn ends of lines into proper gobbler once again.

1344 \expandafter\cd@MakeOther\cd@VerbList cd@end,%
1345 \cd@IgnoreVerbBreaky

1346 \ifcd@ShortCode}

1347 \ActivateShortCode@Produce}

1348 \else},

1349 \let\cd@TempTUChar\cd@TUChar

54

\cd@ProduceEQOL
\cd@LineWrite@Produce

\cd@WriteFile
\cd@StarWriteFile
\cd@InvisibleWriteFile

1350
1351
1352
1353
1354
1355
1356
1357
1358

1359
1360
1361
1362
1363
1364
1365
1366
1367

1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383

1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400

\def\cd@TUChar##1{}

\UndoShortCode@Produce,

\let\cd@TUChar\cd@TempTUChar
\fi%
\cd@IgnoreEscape@Produce,
\cd@IgnoreBraces@Produce},
\cd@ActivateCodeEscapel
\catcode‘\~"M=13\relax’
\let~"M\cd@produceEOLY

Finally we launch the adequate macro. They all do the same thing, but they look for
different \end statements.

\ifcd@ShortCode}
\global\cd@ShortCodefalse\let\cd@next\cd@ShortWriteFile}
\else\ifcd@Star/
\global\cd@Starfalse\let\cdOnext\cd@StarWriteFile
\else\ifcd@Invisible
\global\cd@Invisiblefalse\let\cd@next\cd@InvisibleWriteFile}
\else,
\let\cd@next\cd@WriteFile},
\fi\fi\fi\cdCnextl}}

This is similar to the version for examples without e-TEX in normal mode, i.e. it
writes to an external file, specified in \cd@ProduceFile.

\gdef\cd@produceEOL#1{Y
\ifx#1~"7%
\cd@GobbleCount=0 ¥
\let~~M\relax,
\let\cd@next\relax},
\else\ifx#1~~M}
\cd@GobbleCount=0 %
\def\cd@next{\cd@ProduceFile{}\cd@produceEOL}
\else\ifnum\cd@GobbleCount=\cd@GobbleNum},
\cd@GobbleCount=0 %
\def\cd@next{\cd@LineWrite@Produce#1}},
\else’
\advance\cd@GobbleCountl %
\let\cd@next\cd@produceEOLY
\fi\fi\fi\cdOnext}y
\gdef\cd@LineWrite@Produce#1~"M{\cd@ProduceFile{#1}\cd@produceEOL}/

And here is the end. It is the first ~~M, \1let to \cd@ProduceEOL, which launches
everything. The conditional switches between an error message (no file in production)
and a report (code written).

\catcode‘[=0 %
\catcode‘<=1 Y
\catcode‘>=2 Y
\catcode‘{=12
\catcode‘}=12
\catcode‘\\=12
|longlgdef | cd@WriteFile#1~~M#2\end{code}<
~oM#2~ "7 MY,
|ifx|cd@NoFileWarning|relaxy
| cd@TCode
lelse’,
| cd@NoFileWarning
|filegroup>%
|longlgdef | cd@StarWiriteFile#1~"M#2\end{code*}<}
STM#2- T MY,
|ifx|cdONoFileWarning|relaxy,
| cd@TCode

55

1401 |else

1402 | cd@NoFileWarningy,

1403 |filegroup>%

1404 |longlgdef|cd@InvisibleWriteFile#1~"M#2\end{invisiblel}<Y

1405 ~TM#2-~?77 MY

1406 |ifx|cd@NoFileWarning|relaxy,
1407 | cd@TCodeY

1408 |elsel

1409 | cd@NoFileWarningy

1410 |filegroup>%
1411 |endgroup

6.5 File management & i counde crrange

\cd@Closed
\cd@Open
\cd@Wait

\cd@CurrentFile
\cd@ProduceFile
\AddBlankLine@Produce

\ProduceFile@@Produce

This the final step: handling files in produce mode.
First, some keywords.

1412 \def\cd@Closed{closed}
1413 \def\cd@Open{open}
1414 \def\cd@Wait{wait}

Some basic definitions. \@unused is ITEX’s unattributed stream for messages. We
let it write to he log file. \cd@ProduceFile is the writing macro (used in writing
environments above); as long as no file is open, it does nothing.

1415 \newcount\cd@ProduceCount

1416

1417 \def\cd@CurrentFile{}

1418 \chardef\@unused=17

1419

1420 \def\cd@ProduceFile#1{}

1421 \def\AddBlankLine@Produce{\cd@ProduceFile{}}

This is called by \ProduceFile, via \ProduceFile@Produce above. If the file is
closed ore already in production, we signal it to the user:

1422 \def\ProduceFileQ@@Produce#1{}
1423 \let\cd@next\relax
1424 \expandafter\ifx\csname #1@Status\endcsname\cd@Closed

1425 \cd@CDError{/

1426 File ‘#1’ has already been closed.~"J/

1427 If I open it again, it will be erased.~"JJ

1428 I can’t do that. I quit. Sorry.}

1429 \let\cd@next\@Qend

1430 \else\expandafter\ifx\csname #1@Status\endcsname\cd@0pen
1431 \cd@CDWarning{%

1432 File ‘#1’ is currently in production.~"JJ

1433 Why do you try to open it again?}

The file is waiting if it has been opened previously and another one has been opened
too afterward, provided autoclose is off. In which case, we set it to open:

1434 \else\expandafter\ifx\csname #1@Status\endcsname\cd@Wait
1435 \expandafter\let\csname #1@Status\endcsname\cd@Open

We disable the warning about the absence of a file in production and define \cd@ProduceFile
to write to this file.

1436 \let\cd@NoFileWarning\relax
1437 \def\cd@ProduceFile{\immediate\write\csname #1@Stream\endcsname}

We set the current file to wait and define the one we’re dealing with to be the current
file.

1438 \expandafter\let\csname \cd@CurrentFile @Status\endcsname\cd@Wait
1439 \def\cd@CurrentFile{#1}

56

Now, if the file has never been opened, we need an output stream. If they were all
allocated, we look whether some were made available thanks to a \CloseFile.

1440 \else\ifnum\cd@ProduceCount>15
1441 \chardef\cd@ProduceStream=16
1442 \expandafter\cd@FindStream\cd@StreamList cd@end,

If no stream is found, CodeDoc feels so bad that it quits.

1443 \ifnum\cd@ProduceStream=16 %
1444 \cd@CDError{}
1445 No more stream for a new file. Close one with \string\CloseFile\space~"J%
1446 (or use the ‘autoclose’ option).~"J}
1447 This situation makes me feel bad. I quit.}
1448 \let\cd@next\@Qend
Else, we’re very happy, and if there is already a file in production, we close it or let
it wait.
1449 \else
1450 \cd@Tracing{I will now produce file #1}
1451 \ifx\cd@CurrentFile\cd@empty
1452 \else
1453 \ifcd@autoclose
1454 \cd@Tracing{I close file \cd@CurrentFile\space (autoclose mode)}
1455 \expandafter\let\csname \cd@CurrentFile @Status\endcsname\cd@Closed
1456 \else
1457 \expandafter\let\csname \cd@CurrentFile Q@Status\endcsname\cd@Wait
1458 \fi
1459 \fi

Then we define our file as the current one, let the world know that it is open, allocate
the stream to its name, open it, etc., and launch a macro to retrieve some information

if any.
1460 \def\cd@CurrentFile{#1}
1461 \expandafter\let\csname #10Status\endcsname\cd@0pen
1462 \expandafter\chardef\csname #1@Stream\endcsname\cd@ProduceStream
1463 \immediate\openout\cdO@ProduceStream=#1
1464 \let\cd@NoFileWarning\relax
1465 \def\cd@ProduceFile{\immediate\write\cd@ProduceStream}
1466 \let\cd@next\cd@GetFile@Produce
1467 \fi

If there was an available stream in the first place, we do exactly the same.

1468 \else\chardef\cd@ProduceStream\cd@ProduceCount

1469 \cd@Tracing{I will now produce file #1}

1470 \ifx\cd@CurrentFile\cd@empty

1471 \else

1472 \ifcd@autoclose

1473 \cd@Tracing{I close file \cd@CurrentFile\space (autoclose mode)}
1474 \expandafter\let\csname \cd@CurrentFile @Status\endcsname\cd@Closed
1475 \else

1476 \expandafter\let\csname \cd@CurrentFile @Status\endcsname\cd@Wait
1477 \fi

1478 \fi

1479 \def\cd@CurrentFile{#1}

1480 \expandafter\let\csname #1@Status\endcsname\cd@0pen

1481 \expandafter\chardef\csname #1Q@Stream\endcsname\cd@ProduceStream

1482 \immediate\openout\cd@ProduceStream=#1 %

1483 \let\cd@NoFileWarning\relax

1484 \def\cd@ProduceFile{\immediate\write\cd@ProduceStream}

1485 \ifcd@autoclose

1486 \else

1487 \advance\cd@ProduceCount\0@ne

57

1488 \fi
1489 \let\cd@next\cd@GetFile@Produce
1490 \fi\fi\fi\fi\cd@next}

\cd@GetFile@Produce This is designed to retrieve optional information following \ProduceFile. We undo

\cd@GetFileName@Produce the \ShortVerb and \ShortCode because they might appear there. (My \ShortCode

\cd@GetFileVersion@Produce is a slash, which is used in date too.) We also set the backslash as an escape character,
\cd@GetFileDate@Produce because control sequences might appear here.

In all cases, if nothing follows, and if the noheader option is off, we write the
header to the file.

1491 \def\cd@GetFile@Produce{
1492 \bgroup

1493 \UndoShortCode@Produce

1494 \UndoShortVerb@Produce

1495 \gdef\FileName{}

1496 \gdef\FileVersion{}

1497 \gdef\FileDate{}

1498 \@ifnextchar[

1499 {\catcode‘\\\z@ \cd@GetFileName@Produce}
1500 {\ifcd@noheader\else\cd@Header\fi\egroup}}

1501 \def\cd@GetFileName@Produce [#1]{

1502 \xdef\FileName{#1}

1503 \catcode‘\\\active

1504 \@ifnextchar[

1505 {\catcode‘\\\z@ \cd@GetFileVersion@Produce}
1506 {\ifcdOnoheader\else\cd@Header\fi\egroup}}
1507 \def\cd@GetFileVersion@Produce [#1]1{%

1508 \xdef\FileVersion{#1}

1509 \catcode‘\\\active

1510 \@ifnextchar[

1511 {\catcode‘\\\z@ \cd@GetFileDate@Produce}
1512 {\ifcd@noheader\else\cd@Header\fi\egroup}}
1513 \def\cd@GetFileDate@Produce [#1]{%

1514 \xdef\FileDate{#1}

1515 \ifcd@noheader\else\cd@Header\fi\egroup}

\CloseFile@@Produce Closing a file is a lot of uninteresting testing...

1516 \def\CloseFile@@Produce#1q{
1517 \ifcd@autoclose

1518 \expandafter\ifx\csname #10Status\endcsname\relax

1519 \cd@CDWarning{’

1520 You haven’t opened ‘#1’. Closing it does nothing.~"~J}

1521 Besides, you’re in autoclose mode. \string\CloseFile\space is redundant.}
1522 \else\expandafter\ifx\csname #1@Status\endcsname\cd@Closed

1523 \cd@CDWarning{%

1524 ‘#1’ was already closed. Closing it again does nothing.~"J

1525 Besides, you’re in autoclose mode. \string\CloseFile\space is redundant.}
1526 \else

1527 \cd@CDWarning{’

1528 You’re in autoclose mode. \string\CloseFile\space is redundant.}

1529 \fi\fi}

1530 \else

1531 \expandafter\ifx\csname #1@Status\endcsname\relax

1532 \cd@CDWarning{%

1533 You haven’t opened ‘#1’. Closing it does nothing.}

1534 \else\expandafter\ifx\csname #1@Status\endcsname\cd@Closed

1535 \cd@CDWarning{%

1536 ‘#1’ was already closed. Closing it again does nothing.}

58

If everything is okay, beside closing the file, we also define the no-file warning and
neutralize the writing macro. We also add the stream allocated to that file to
\cd@StreamList, so that it may be retrieved if all other streams are unavailable.

1537 \else
1538 \cd@Tracing{I close file #1}
1539 \expandafter\let\csname #10Status\endcsname\cd@Closed
1540 \def\cd@TempFile{#1}
1541 \ifx\cd@TempFile\cd@CurrentFile
1542 \def\cd@NoFileWarning{\cd@CDWarning{No file in production.
This code will be lost.}}
1543 \def\cd@ProduceFile##1{}%
1544 \fi
1545 \edef\cd@StreamList{%
1546 \cd@StreamList\expandafter\the\csname #10Stream\endcsname,}
1547 \fi\fi\fi}
\cd@StreamList The last thing to do is to build that list of streams made available by the closing of
\cd@BuildList a file.

1548 \def\cd@StreamList{}
1549 \def\cd@BuildList#1cd@end,{\def\cd0@StreamList{#1}}

\cd@FindStream When we look for a stream, we simply check the content of \cd@BuildList, and if we
find the terminator, this means that no stream has been made available. Otherwise,
we define \cd@ProduceStream, which will be allocated to the file we’re trying to open,
as the first stream we find in the list, and we rebuild the latter with the remaining
numbers.

1550 \newif\ifcd@stream

1551 \def\cd@FindStream#1,{%
1552 \def\cd@TempArg{#1}
1553 \ifx\cd@TempArg\cd@end

1554 \cd@streamfalse

1555 \let\cd@@next\relax

1556 \else

1557 \cd@streamtrue

1558 \chardef\cd@ProduceStream=#1 9
1559 \let\cd@@next\cd@BuildList

1560 \fi\cd@@next}
\cd@Header Finally, here’s the default header.

1561 \catcode‘\%=12\relax

1562 \edef\cd@Header{

1563 \noexpand\cd@ProduceFile{} This is \noexpand\FileName, produced by the CodeDoc class
1564 ~~J), with the ‘produce’ option on.

1565 ~~J%

1566 ~~J% To create the documentation, compile \cd@CurrentSource
1567 ~~J), without the ‘produce’ option.

1568 ~~J%

1569 ~~J% SOURCE: \noexpand\cd@CurrentSource

1570 ~~J% DATE: \noexpand\FileDate

1571 ~~J% VERSION: \noexpand\FileVersion

1572 }}

1573 \catcode‘\}%=14\relax

. and we say goodbye. The end.‘5== vou!
1574 \makeatother

59

Index

This index was generated by the \DescribeMacro-like commands. It only reports where macros are
described (page numbers in normal font) and defined (page numbers in italics). In the current version,

CodeDoc does not index macros when used in the code.
Entries are sorted ignoring the cd@ and cd@@ prefizes.

\@cd@LineCount, 44
\@documentclasshook, 45

\cd@ActivateCodeEscape, 50
\cd@ActivateShortCode, 27

\ActivateShortCode@Produce, 49

\cd@ActivateVerbBreak, 28
\cd@ActivateVerbCommand, 29
\cd@ActiveComment, 43
\AddBlankLine, 6, 17, 45
\AddBlankLine@Produce, 56
\cd@AnalyzeEntry, 23
\cd@AnalyzePrefix, 24
\cd@AssigneTeXInput, 40
\cd@AssignInput, 40
\AtChar, 23

\cd@BadChar, 25
\begin@@Produce, 52
\begin@Produce, 51
\BoxTolerance, 6, 17, 31
\cd@bslash, 25
\bslash, 8, 17, 25
\cd@BuildList, 59

\cdO@CDWarning, 45
\cd@CharErr, 25
\cd@@CheckEnvironment, 5/
\cd@CheckEnvironment, 54
\cd@Closed, 56
\CloseFile, 5, 18, 43
\CloseFile@@Produce, 58
\CloseFile@Produce, 53
\cd@Code, 3%

\code, 32

code (environment), 5, 17
\CodeEscape, 16, 18, 30
\CodeEscape@Produce, 50
\cd@CodeEscape@Produce, 50
\CodeFont, 5, 18, 32
\CodeInput, 10, 18, 35, 87
\CodeOutput, 10, 18, 35, 37
\cd@CodeString, 52
\cd@CodeWrite, 54
\cd@Comment, 46
\cd@ComparePrefix, 24

\cd@continuous, 36
\cd@CurrentFile, 56
\cd@CurrentSource, 53, 5/

\DangerousEnvironment, 9, 18, 45
\DangerousEnvironment@Produce, 52
\cd@DangerousExample@Produce, 52
\cd@DefErr, 26
\DefineEnvironment, 7, 18, 22
\cd@DefineEnvironment, 22

\Def ineEnvironment@Produce, 51
\DefinelIndexFont, 7, 18, 22
\DefineMacro, 7, 18, 22
\cd@DefineMacro, 22

\Def ineMacro@Produce, 51
\DefineShortVerb@Produce, /8
\DefineVerbatimEnvironment, 52
\cd@DefPrefix, 2/
\DescribeEnvironment, 7, 18, 22
\cd@DescribeEnvironment, 22
\DescribeEnvironment@Produce, 51
\DescribeIndexFont, 7, 18, 22
\DescribeMacro, 7, 18, 22
\cd@DescribeMacro, 22
\DescribeMacro@Produce, 51
\DocStripMarginpar, 7, 18, 22
\cd@DocumentString, 52

\cd@EatBOL, 43
\cdCempty, 36

\cd@end, 21
\end@Produce, 51, 53
\cd@EndOfLine, 46
\cd@Error, 45
\cd@Escape, 46
\cd@eTeXEOL, 42
\eTeX0ff, 14, 18, 34
\eTeX0n, 14, 18, 34
\cd@eTeX0utEQL, 42
\cd@eTeX0utVisibleEOL, 42
\cd@eTeXStartGobble, /2
\cd@@Evaluate, 50
\cd@Evaluate, 47
\cd@Example, 37

example (environment), 10, 17, 37
\cdOExampleEnd, 38

\cd@ExampleName, 35
\cd@ExampleOptions, 36
\cd@expFile, 39

\FileDate, 44
\FileName, 44
\FileSource, 44
\FileVersion, 44
\cd@FindIgnore, 50
\cd@FindStream, 59

\cd0@Gather, 47
\cd0GetClass, 21
\cd@GetFile@Produce, 58
\cd@GetFileDate, 44
\cd@GetFileDate@Produce, 58
\cd@GetFileName, 4/
\cd@GetFileName@Produce, 58
\cd@GetFileVersion, /4
\cd@GetFileVersion@Produce, 58
\cd@GetOptions, 21
\Gobble, 6, 18, 31
\cd0@Gobble, 48
\Gobble@@Produce, 52
\Gobble@Produce, 51
\cd0GobbleEndOfLine, 47
\cd@GobbleLetters, 30
\cd@Gobblelptions, 49
\cd@GobbleSpace, 47
\cd0GobbleThree, 3/

\Header, 6, 19, 45
\cd@Header, 59
\Header@@Produce, 52
\Header@Produce, 51
\cdOHeaderEOL, 51
\cd@HeaderGobble, 45

\cd@IgnoreBraces@Produce, 50
\cd@IgnoreEscape@Produce, 49
\IgnorePrefix, 7, 19, 23
\cd@IgnorePrefix, 23
\cd@IgnoreVerbBreak, 29, /9
\cd@IgnoreVerbCommand, 29
\cd@Input, 40, 41
\input@Produce, 53
\cd@Invisible, 3%
\invisible, %2

invisible (environment), 6, 17
\cd@InvisibleString, 52
\cd@InvisibleWriteFile, 55

\cd@LeftBrace, 46
\cdOLeftBracket, 46
\LineNumber, 5, 19, 37
\cd@LineWrite, 40
\cd@LineWrite@Produce, 55
\cd@LoadClass, 21

61

\cd@MacroName, 47
\cd@0MakeEntry, 24
\cd@MakeEntry, 23
\cdOMakeExample, 35
\cdOMakeExampleEnd, 38
\cd@MakeOther, 5/
\cd@MakePrefix, 2%
\cd@MakeShortCode, 27
\cd@MakeShortcode@Produce, 49
\cd@MakeShortVerb@Produce, 48
\cd@MakeSpace, 30
\cd@MakeSpecialEater, 53
\cd@MakeVerbBreak@Produce, 49
\marg, 8, 19, 25

\meta, 8, 19, 25

\NewExample, 11, 19, 34
\cd@CNewExample, 35
\cd@NewExample, 34
\NewExample@Produce, 50
\cd@NextChar, 47
\cd@noeTeXEOL, 39
\noexpand@Produce, 51
\cd@NoFileWarning, 45
\cd@numbered, 36

\oarg, 8, 19, 25
\cd@0beyLines, %/
\cd@0beySpaces, 30
\cd@0pen, 56
\cd@Output, 40, 41

\parg, 8, 19, 25
\cd@PrepareChar, 48
\PrintMacro, 7, 19, 22
\PrintPrefix, 8, 19, 24
\cd@ProduceEQL, 55
\ProduceFile, 4, 19, 44
\cd@ProduceFile, 56
\ProduceFile@@Produce, 56
\ProduceFile@Produce, 53
\protect@Produce, 51

\RenewExample, 11, 19, 3/
\cdORenewExample, 34
\RenewExample@Produce, 50
\cd@RightBrace, 46

\cd@ScanPrefix, 24
\cd@SetLineNumber, 37
\ShortCode, 14, 19, 27
\cd@ShortCode, 27
\ShortCode@Produce, 49
\cd@ShortEnd, 27
\ShortVerb, 14, 20, 26
\ShortVerb@Produce, 48
\cd@ShortVerb@Produce, 48
\cd@ShortWriteFile, 49

\cd@Space, 46 \cd@WriteFile, 55
\cd@SpaceChar, 30

\cd@SpecialEater, 53 What am 1
\Cd@StarCode, 33 ‘ doing here?)]-a 57 7, 97]-]-7 13, 157 167]-97 235 307 417
\cd@StarCodeString, 52 44-46, 48, 51, 56, 59

\cd@StartGobble, 33
\StartIgnore, 9, 20, 45
\StartIgnore@Produce, 50
\cd@StarWriteFile, 55
\StopHere, 8, 20, 22
\StopIgnore, 9, 20, 45
\cd@StopIgnore, 50
\cd@StoredEnvironments, 52
\cd@StreamlList, 59
\string@Produce, 51

\cd@Tab, 46
\TabSize, 6, 20, 31
\cd@TakeNextChar, 47
\cd@TChar, 45
\cd@TCode, 45
\cd@TempEsc, 49
\cd0Tracing, 45
\cd@TUChar, 45

\UndefineShortVerb@Produce, 48
\cd@UndefineShortVerb@Produce, /8
\UndoCodeEscape, 16, 20, 30
\UndoCodeEscape@Produce, 50
\cd@UndoErr, 26
\UndoShortCode, 14, 20, 28
\cd@UndoShortCode@Produce, 49
\UndoShortVerb, 14, 20, 27
\UndoShortVerb@Produce, 48
\UndoVerbBreak, 15, 20
\UndoVerbBreak@Produce, 49
\UndoVerbCommand, 15, 20, 29
\UndoVerbCommand@Produce, 50

\verb@Produce, 51
\cd@Verbatim, 51
\cd@@VerbBraces@Produce, 50
\cd@VerbBraces@Produce, 50
\VerbBreak, 15, 20, 28
\VerbBreak@Produce, 49
\VerbCommand, 15, 20, 29
\VerbCommand@Produce, 49
\cd@@VerbEater, 51
\cd@VerbEater, 51
\cd@VerbEscape@Produce, 49
\cd@VerbList, 48
\cd@VerbSpace, 31
\cd@VerbTab, &1
\cd@VisibleComment, 43
\cd@visibleEQL, 36

\cd@Wait, 56

62

	I User's manual
	Code & Documentation
	Writing code
	Macros to describe macros
	Choosing the class
	Dangerous strings

	Verbatim Madness
	Example environments
	\ShortVerb and friends
	Using fancyvrb

	Summary of commands
	Class options
	Environments
	Commands

	II Implementation
	Options and basic definitions
	Normal mode
	Describing macros
	\ShortVerb and associates
	Verbatim definitions
	The default code environment
	Example environments
	Examples without e-TeX
	Examples with e-TeX

	File management

	Produce mode
	Messages
	Testing strings
	Macros executed in produce mode
	Writing environments
	File management

	 Index

