
1

Vim Color Editor HOW-TO (Vi Improved
with syntax color highlighting)

Al Dev (Alavoor Vasudevan) < alavoor[AT]yahoo.com >
v19.5, 2 Nov 2003

Abstract

This document is a guide to quickly setting up the Vim color editor on Linux or Unix systems. The information here
will improve the productivity of programmers because the Vim editor supports syntax color highlighting and bold
fonts, improving the "readability" of program code. A programmer's productivity improves 2 to 3 times with a col-
or editor like Vim. The information in this document applies to all operating sytems where Vim works, such as Lin-
ux, Windows 95/NT, Apple Mac, IBM OSes, VMS, BeOS and all flavors of Unix like Solaris, HPUX, AIX, SCO,
Sinix, BSD, Ultrix etc.. (it means almost all operating systems on this planet!)

Table of Contents
Introduction .. 3

Before you Install .. 3
Install Vim on Redhat Linux .. 3
Install Vim on Debian GNU/Linux ... 4
Install Vim on Unixes ... 4
Install Vim on Microsoft Windows 95/NT .. 4
Install Vim on VMS ... 4
Install Vim on OS/2 ... 7
Install Vim on Apple Macintosh ... 7

Install Vim on Microsoft Windows 95/NT .. 8
Install bash shell .. 9
Edit bash_profile .. 9
Setup Window colors .. 10

MS Windows Notepad and Wordpad Imitator in Vim ... 10
MS Windows EditPlus Features in Vim ... 11

Setup gvim init files ... 11
Sample gvimrc file ... 12
Xdefaults parameters ... 13

Color Syntax init files ... 14
Auto source-in method .. 14
Manual method .. 15

VIM Usage ... 15
Remote Vi - MS Windows QVWM Manager .. 16
Vi companions ... 17

Directory Tree 'tags' .. 18
Ctags for ESQL ... 19
Ctags for JavaScript programs, Korn, Bourne shells .. 20
Debugger gdb .. 21

Online VIM help .. 22
Vim Home page and Vim links .. 22

Vi Resources and Tips .. 23
Vim Tutorial ... 23

Vim Color Editor HOW-TO (Vi Im-
proved with syntax color highlighting)

2

Vim Hands-on Tutorial ... 23
Vi Tutorials on Internet ... 24

Vi Tutorial .. 24
Cursor Movement Commands .. 25
Repeat Counts ... 27
Deleting Text ... 27
Changing Text ... 28
Yanking (Copying) Text .. 28
Filtering text .. 29
Marking Lines and Characters .. 29
Naming Buffers ... 30
Substitutions .. 30
Miscellaneous "Colon Commands" .. 30
Setting Options .. 31
Key Mappings ... 32
Editing Multiple Files ... 32
Final Remarks ... 33

Vim Reference Card ... 33
Vi states ... 33
Shell Commands .. 34
Setting Options .. 34
Notations used ... 34
Interrupting, cancelling .. 34
File Manipulation ... 35
Movement ... 35
Line Positioning ... 36
Character positioning .. 36
Words, sentences, paragraphs ... 37
Marking and returning ... 37
Corrections during insert ... 37
Adjusting the screen ... 38
Delete ... 38
Insert, change .. 38
Copy and Paste .. 39
Operators (use double to affect lines) ... 39
Search and replace ... 39
General ... 40
Line Editor Commands ... 40
Other commands .. 40

Vim as XML Editor ... 41
Matchit.vim & Xmledit.vim ... 41
Vim and Docbook - Useful key mappings .. 41
XML Validation ... 42

Build Your "WYSIWYG" HTML Editor With Vi & Netscape .. 42
Sample .vimhtmlrc File ... 43
WYSIWYG ... 45
Other 'WYSIWYG' uses .. 46
Source code for atchange ... 46
HTML Beautifier Inside Vim : Program Tidy .. 47

Emacs - Old Habits Die Hard ! ... 48
Related URLs .. 48
Other Formats of this Document ... 48

Acrobat PDF format ... 49
Convert Linuxdoc to Docbook format .. 50

Vim Color Editor HOW-TO (Vi Im-
proved with syntax color highlighting)

3

Convert to MS WinHelp format .. 50
Reading various formats .. 50

Copyright Notice .. 51

Introduction
(The latest version of this document is at "http://milkyway.has.it" [http://milkyway.has.it] and mirror at
"http://www.milkywaygalaxy.freeservers.com" [http://www.milkywaygalaxy.freeservers.com] . You may
want to check there for changes).

Vim stands for 'Vi Improved'. Vi is the most popular and powerful editors in the Unix world. Vi is an
abbreviation for " Vi sual" editor. One of the first editors was a line editor called 'ed' (and 'ex'). The Vi
sual editor like Vi was a vast improvement over line editors like 'ed' (or 'ex'). The editors 'ed' and 'ex' are
still available on Linux: see 'man ed' and 'man ex'.

A good editor improves programmer productivity. Vim supports color syntax highlighting of program
code and also emphasises text using different fonts like normal, bold or italics. A color editor like Vim
can improve the productivity of programmers by 2 to 3 times !! Programmers can read the code much
more rapidly as the code syntax is colored and highlighted.

Before you Install
Before you install Vim, please refer to the OS specific release notes and information about compiling and
usage of Vim at -

• Go to this location and look for files os_*.txt "http://cvs.vim.org/cgi-bin/cvsweb/vim/runtime/doc"
[http://cvs.vim.org/cgi-bin/cvsweb/vim/runtime/doc]

If you do not have the Vim package (RPM, DEB, tar, zip) then download the Vim source code by ftp
from the official Vim site

• The home page of vim is at "http://www.vim.org" [http://www.vim.org]

• Mirror site in US is at "http://www.us.vim.org" [http://www.us.vim.org]

• Ftp site "ftp://ftp.vim.org/pub/vim" [ftp://ftp.vim.org/pub/vim]

• Or use one of the mirrors "ftp://ftp.vim.org/pub/vim/MIRRORS" [ftp://ftp.vim.org/pub/vim/MIR-
RORS]

Install Vim on Redhat Linux
To use Vim install the following RPM packages on Redhat Linux -

 rpm -i vim*.rpm
OR do this -
 rpm -i vim-enhanced*.rpm
 rpm -i vim-X11*.rpm
 rpm -i vim-common*.rpm
 rpm -i vim-minimal*.rpm

You can see the list of files the vim rpm installs by -

http://milkyway.has.it
http://milkyway.has.it
http://www.milkywaygalaxy.freeservers.com
http://www.milkywaygalaxy.freeservers.com
http://cvs.vim.org/cgi-bin/cvsweb/vim/runtime/doc
http://cvs.vim.org/cgi-bin/cvsweb/vim/runtime/doc
http://www.vim.org
http://www.vim.org
http://www.us.vim.org
http://www.us.vim.org
ftp://ftp.vim.org/pub/vim
ftp://ftp.vim.org/pub/vim
ftp://ftp.vim.org/pub/vim/MIRRORS
ftp://ftp.vim.org/pub/vim/MIRRORS
ftp://ftp.vim.org/pub/vim/MIRRORS

Vim Color Editor HOW-TO (Vi Im-
proved with syntax color highlighting)

4

 rpm -qa | grep ^vim | xargs rpm -ql | less
or
 rpm -qa | grep ^vim | awk '{print "rpm -ql " $1 }' | /bin/sh | less

and browse output using j,k, CTRL+f, CTRL+D, CTRL+B, CTRL+U or using arrow keys, page up/down
keys. See 'man less'.

Note that the RPM packages for Redhat Linux use a Motif interface. If you have installed the GTK libraries
on your system, consider compiling Vim from the source code for a clean GUI interface. For information
on compiling Vim from the source code, see "Install Vim on Unixes", below.

Install Vim on Debian GNU/Linux
To install Vim on Debian Linux (GNU Linux), login as root and when connected to internet type -

apt-get install vim vim-rt

It will download the latest version of vim, install it, configure it. The first package listed is vim, the standard
editor, compiled with X11 support, vim-rt is the vim runtime, it holds all the syntax and help files.

On Debian 3.0 (woody) and above, use 'apt-get install vim' instead. The vim-rt package is part of the main
vim package.

Install Vim on Unixes
For other flavors of unixes like Solaris, HPUX, AIX, Sinix, SCO download the source code file (see the
section called “ Before you Install ”)

 zcat vim.tar.gz | tar -xvf -
 cd vim-5.5/src
 ./configure --prefix=$HOME/local
 make
 make install

You can exclude prefix option if you want to install in default location in /usr/local. If the graphics version
'gvim' gives trouble then try with

 ./configure --prefix=$HOME/local --enable-gui=motif

Install Vim on Microsoft Windows 95/NT
See the section called “ Install Vim on Microsoft Windows 95/NT ” .

Install Vim on VMS

Download files

You will need both the Unix and Extra archives to build vim.exe for VMS. For using Vim's full power
you will need the runtime files as well. Get these files (see the section called “ Before you Install ”)

Vim Color Editor HOW-TO (Vi Im-
proved with syntax color highlighting)

5

You can download precompiled executables from: "http://www.polarfox.com/vim" [http://
www.polarfox.com/vim]

VMS vim authors are -

• zoltan.arpadffy@essnet.se [mailto: zoltan.arpadffy@essnet.se]

• arpadffy@altavista.net [mailto: arpadffy@altavista.net]

• cec@gryphon.gsfc.nasa.gov [mailto: cec@gryphon.gsfc.nasa.gov]

• BNHunsaker@chq.byu.edu [mailto: BNHunsaker@chq.byu.edu]

• sandor.kopanyi@altavista.net [mailto: sandor.kopanyi@altavista.net]

Compiling

Unpack the Unix and Extra archives together into one directory. In the <.SRC> subdirectory you should
find the make file OS_VMS.MMS. By editing this file you may choose between building the character,
GUI and debug version. There are also additional options for Perl, Python and Tcl support.

You will need either the DECSET mms utility or the freely available clone of it called mmk (VMS has no
make utility in the standard distribution). You can download mmk from http://www.openvms.digital.com/
freeware/MMK/

If you have MSS on your system, the command

> mms /descrip=os_vms.mms

will start building your own customised version of Vim. The equivalent command for mmk is:

> mmk /descrip=os_vms.mms

Deploy

Vim uses a special directory structure to hold the document and runtime files:

 vim (or wherever)
 |- tmp
 |- vim55
 |----- doc
 |----- syntax
 |- vim56
 |----- doc
 |----- syntax
 vimrc (system rc files)
 gvimrc
Use:
> define/nolog device:[leading-path-here.vim] vim
> define/nolog device:[leading-path-here.vim.vim56] vimruntime
> define/nolog device:[leading-path-here.tmp] tmp

to get vim.exe to find its document, filetype, and syntax files, and to specify a directory where temporary
files will be located. Copy the "runtime" subdirectory of the vim distribution to vimruntime.

http://www.polarfox.com/vim
http://www.polarfox.com/vim
http://www.polarfox.com/vim
mailto: zoltan.arpadffy@essnet.se
mailto: zoltan.arpadffy@essnet.se
mailto: arpadffy@altavista.net
mailto: arpadffy@altavista.net
mailto: cec@gryphon.gsfc.nasa.gov
mailto: cec@gryphon.gsfc.nasa.gov
mailto: BNHunsaker@chq.byu.edu
mailto: BNHunsaker@chq.byu.edu
mailto: sandor.kopanyi@altavista.net
mailto: sandor.kopanyi@altavista.net

Vim Color Editor HOW-TO (Vi Im-
proved with syntax color highlighting)

6

Note: Logicals $VIMRUNTIME and $TMP are optional. Read more at :help runtime

Practical usage

Usually you want to run just one version of Vim on your system, therefore it is enough to dedicate one
directory for Vim. Copy all Vim runtime directory structure to the deployment position. Add the following
lines to your LOGIN.COM (in SYS$LOGIN directory). Set up logical $VIM as:

> $ define VIM device: <path>

Set up some symbols:

> $! vi starts Vim in chr. mode.
> $ vi*m :== mcr device:<path>VIM.EXE
> $!gvi starts Vim in GUI mode.
> $ gv*im :== spawn/nowait mcr device:<path>VIM.EXE -g

Create .vimrc and .gvimrc files in your home directory (SYS$LOGIN).

The easiest way is just rename example files. You may leave the menu file (MENU.VIM) and files vimrc
and gvimrc in the original $VIM directory. It will be default setup for all users, and for users is enough
just to have their own additions or resetting in home directory in files .vimrc and .gvimrc. It should work
without problems.

Note: Remember, system rc files (default for all users) do not have the leading "." So, system rc files are:

> VIM$:vimrc
> VIM$:gvimrc
> VIM$:menu.vim

and user's customised rc files are:

> sys$login:.vimrc
> sys$login:.gvimrc

You can check that everything is on the right place with the :version command.

Example LOGIN.COM:
> $ define/nolog VIM RF10:[UTIL.VIM]
> $ vi*m :== mcr VIM:VIM.EXE
> $ gv*im :== spawn/nowait mcr VIM:VIM.EXE -g
> $ set disp/create/node=192.168.5.223/trans=tcpip

Note: This set-up should be enough if you are working in a standalone server or clustered environment, but
if you want to use Vim as an internode editor, it should suffice. You just have to define the "whole" path:

> $ define VIM "<server_name>[""user password""]::device:<path>"
> $ vi*m :== "mcr VIM:VIM.EXE"

as for example:

Vim Color Editor HOW-TO (Vi Im-
proved with syntax color highlighting)

7

> $ define VIM "PLUTO::RF10:[UTIL.VIM]"
> $ define VIM "PLUTO""ZAY mypass""::RF10:[UTIL.VIM]" ! if passwd required

You can also use $VIMRUNTIME logical to point to proper version of Vim if you have multiple versions
installed at the same time. If $VIMRUNTIME is not defined Vim will borrow value from $VIM logical.
You can find more information about $VIMRUNTIME logical by typing :help runtime as a Vim command.

GUI mode questions

VMS is not a native X window environment, so you can not start Vim in GUI mode "just like that". But
it is not too complicated to get a running Vim.

1) If you are working on the VMS X console:
 Start Vim with the command:
> $ mc device:<path>VIM.EXE -g
 or type :gui as a command to the Vim command prompt. For more info :help gui
2) If you are working on other X window environment as Unix or some remote X
 VMS console. Set up display to your host with:
> $ set disp/create/node=<your IP address>/trans=<transport-name>
 and start Vim as in point 1. You can find more help in VMS documentation or
 type: help set disp in VMS prompt.
 Examples:
> $ set disp/create/node=192.168.5.159 ! default trans is DECnet
> $ set disp/create/node=192.168.5.159/trans=tcpip ! TCP/IP network
> $ set disp/create/node=192.168.5.159/trans=local ! display on the same node

Note: you should define just one of these. For more information type $help set disp in VMS prompt.

Install Vim on OS/2
Read the release notes for Vim on OS/2, see the section called “ Before you Install ” .

At present there is no native PM version of the GUI version of vim: The OS/2 version is a console applica-
tion. However, there is now a Win32s-compatible GUI version, which should be usable by owners of Warp
4 (which supports Win32s) in a Win-OS/2 session. The notes in this file refer to the native console version.

To run Vim, you need the emx runtime environment (at least rev. 0.9b). This is generally available as
(ask Archie about it):

 emxrt.zip emx runtime package

Install Vim on Apple Macintosh
Read the release notes for Vim on OS/2, see the section called “ Before you Install ” .

The author of Vim on Mac (old version vim 3.0) is

Eric Fischer
5759 N. Guilford Ave

Vim Color Editor HOW-TO (Vi Im-
proved with syntax color highlighting)

8

Indianapolis IN 46220 USA

Email to enf@pobox.com [mailto: enf@pobox.com]

Mac Bug Report When reporting any Mac specific bug or feature change, makes sure to include the fol-
lowing address in the "To:" or "Copy To:" field.

dany.stamant@sympatico.ca [mailto: dany.stamant@sympatico.ca]

Vim compiles out of the box with the supplied CodeWarrior project when using CodeWarrior 9. If you
are using a more recent version (e. g. CW Pro) you have to convert the project first. When compiling Vim
for 68k Macs you have to open the "size" resource in ResEdit and enable the "High level events aware"
button to get drag and drop working. You have to increase the memory partition to at least 1024 kBytes
to prevent Vim from crashing due to low memory.

 vim:ts=8:sw=8:tw=78:

Install Vim on Microsoft Windows 95/NT
For Windows 95/NT, download the Vim zip file. Double click on the vim.exe and do "FULL" install and
not "Typical" to get graphics and colors.

If you decide download in parts, then you must download TWO zip files -

• Runtime support file vim*rt.zip

• Vim command file vim*60.zip . Where Vim version is 5.6.

Get one big executable or two zip files from: Goto "http://www.vim.org" [http://www.vim.org] and
click on Download-> download FAQ-> Windows 95/NT or click on these "ftp://vim.ftp.fu-berlin.de/
pc/gvim60.zip" [ftp://vim.ftp.fu-berlin.de/pc/gvim60.zip] and "ftp://vim.ftp.fu-berlin.de/pc/vim60rt.zip"
[ftp://vim.ftp.fu-berlin.de/pc/vim60rt.zip] . (see also the section called “ Before you Install ”)

Unpack the zip files using the Winzip "http://www.winzip.com" [http://www.winzip.com] . Both the zip
files (vim*rt.zip and vim*60.zip) must be unpacked in the same directory like say c:\vim .

For Windows 95/98, set the environment variable VIM (all caps no lowercase) in autoexec.bat by adding
this line -

set VIM=c:\vim\vim60

For Windows NT, add the environment variable VIM (all caps no lowercase) to the Start | Control Panel
| System | Environment | System Properties dialog. For Windows 2000, click on Start | Control Panel |
System | Advanced | Environment Variable dialog and add variable VIM (all caps no lowercase):

VIM=c:\vim\vim60

The VIM variable should point to wherever you installed the vim60 directory. You can also set your PATH
to include the gvim.exe's path.

You may need to logoff and relogin to set your environment. Bring up a MS-DOS window by click on
Start->Programs->MSDOS (for Windows 95/98) and Start->Run->cmd (for Windows NT/2000). At an
MS-DOS prompt type -

mailto: enf@pobox.com
mailto: enf@pobox.com
mailto: dany.stamant@sympatico.ca
mailto: dany.stamant@sympatico.ca
http://www.vim.org
http://www.vim.org
ftp://vim.ftp.fu-berlin.de/pc/gvim60.zip
ftp://vim.ftp.fu-berlin.de/pc/gvim60.zip
ftp://vim.ftp.fu-berlin.de/pc/gvim60.zip
ftp://vim.ftp.fu-berlin.de/pc/vim60rt.zip
ftp://vim.ftp.fu-berlin.de/pc/vim60rt.zip
http://www.winzip.com
http://www.winzip.com

Vim Color Editor HOW-TO (Vi Im-
proved with syntax color highlighting)

9

c:\> set vim
c:\> cd vim\vim60
c:\> install.exe

For 'set vim' command, you should see - VIM=c:\vim\vim60 and start the install program which will setup
the enviroment.

Create a short-cut on to your desktop by click-and-drag from c:\vim\vim60\gvim.exe.

Color Syntax Highlighting: To enable color syntaxt highlighting and other nice features you must copy
the gvimrc_example file to the $VIM_gvimrc. In my case it is c:\vim\vim60_gvimrc.

c:\> copy c:\vim\vim60\gvimrc_example $VIM_gvimrc

Useful Tips :

• Just double click on gvim icon on desktop and click MyComputer->C:drive->Select a file and drag and
drop it into the gvim window. The file is automatically opened by gvim window!!

• To automatically maximize the Vim window in MS Windows, you can use "http://
www.southbaypc.com/AutoSizer" [http://www.southbaypc.com/AutoSizer] or you can right click on
Gvim shortcut and select properties and pick maximize the window on startup.

Install bash shell
In order make MS Windows 95/98/NT/2000/XP even more user-friendly, install the bash shell
(Bourne Again Shell). Install "http://sources.redhat.com/cygwin/setup.exe" [http://sources.redhat.com/
cygwin/setup.exe] (Cygwin-setup program) and select bash and other common utilities. The CygWin main
site is at "http://sources.redhat.com/cygwin" [http://sources.redhat.com/cygwin] . With CygWin the Win-
dows 2000 computer will look like Linux/Unix box!! And combined with gvim editor, the Windows 2000
gives programmers more power. The cygwin home is at "http://cygwin.com" [http://cygwin.com] .

You may also want to install MKS in case you are planning to use Java and Java compilers. Get MKS
from "http://www.mks.com" [http://www.mks.com] .

Edit bash_profile
After installing the Cygwin, insert some useful aliases in ~/.bash_profile file. Open a cygwin window and
at bash prompt -

bash$ cd $HOME
bash$ gvim .bash_profile
set -o vi
alias ls='ls --color '
alias cp='cp -i '
alias mv='mv -i '
alias rm='rm -i '
alias vi='gvim '
alias vip='gvim ~/.bash_profile & '
alias sop='. ~/.bash_profile '
alias mys='mysql -uroot -p '

http://www.southbaypc.com/AutoSizer
http://www.southbaypc.com/AutoSizer
http://www.southbaypc.com/AutoSizer
http://sources.redhat.com/cygwin/setup.exe
http://sources.redhat.com/cygwin/setup.exe
http://sources.redhat.com/cygwin/setup.exe
http://sources.redhat.com/cygwin
http://sources.redhat.com/cygwin
http://cygwin.com
http://cygwin.com
http://www.mks.com
http://www.mks.com

Vim Color Editor HOW-TO (Vi Im-
proved with syntax color highlighting)

10

PATH=$PATH:"/cygdrive/c/Program Files/mysql/bin"

With color ls, when you do ls you will see all the directory names and files in different colors (it looks
great!!). With set -o vi, you can use the command line history editing just as in linux.

Setup Window colors
The default background color of MS DOS prompt window is black and white text. You must change the
color, fontsize and window size to make it more pleasing. On MS Windows 2000, click on button Start-
>Run and type "cmd" and hit return. On MS Windows 95/98/NT click on Start->Programs->MSDOS
Prompt which will bring up MSDOS window. Right click on the top left corner of the MSDOS prompt
window and select properties. Select color background and enter R=255, G=255, B=190 (red, green, blue)
for lightyellow background and text foreground color to black (R=0, G=0, B=0). This sets background to
light yellow and text foreground to black and this combination is most pleasing to human eyes. If you have
problems with colors in cygwin bash window when doing 'man ls', set the text color to "marune".

For Windows95 see Color for MS-DOS prompt window [http://www.elementkjournals.com/w95/9711/
w9597b3.htm] .

MS Windows Notepad and Wordpad Imitator in
Vim

Is there a MS Windows Notepad or Wordpad for Linux or Unix? Yes there is!! For those non-technical
users of MS Windows who extensively use the Notepad and Wordpad, there is a command 'evim' which
imitates the Notepad and Wordpad. The 'evim' is exactly like Notepad and Wordpad and has all their
functionalities. You need to install the package vim-X11 package to enable evim.

bash$ evim <filename>

On Unixes like HPUX, Solaris, AIX do these:

 ln -s /usr/local/bin/vim /usr/local/bin/gvim
 ln -s /usr/local/bin/vim /usr/local/bin/evim

 Create a command file 'notepad' in /usr/local/bin/notepad with these 2 lines below:
 #!/bin/sh
 /usr/local/bin/evim $@

If evim is linked to vim it automatically launches evim. Or you can set up alias for evim and givm as below:

 alias evim='vim -g -U /usr/local/vim/share/vim/vim61/evim.vim '
 alias gvim='vim -g '

Wordpad for Unix/Linux? Look at TED, AbiWord and OpenOffice. Visit TED - A Wordpad for Lin-
ux [http://www.nllgg.nl/Ted] or AbiWord - Light weight, small software [http://www.abiword.org] or
OpenOffice - Heavy weight, big software [http://www.openoffice.org] .

See also Wine project which has notepad and wordpad WINE project [http://www.winehq.org] .

http://www.elementkjournals.com/w95/9711/w9597b3.htm
http://www.elementkjournals.com/w95/9711/w9597b3.htm
http://www.elementkjournals.com/w95/9711/w9597b3.htm
http://www.nllgg.nl/Ted
http://www.nllgg.nl/Ted
http://www.nllgg.nl/Ted
http://www.abiword.org
http://www.abiword.org
http://www.openoffice.org
http://www.openoffice.org
http://www.winehq.org
http://www.winehq.org

Vim Color Editor HOW-TO (Vi Im-
proved with syntax color highlighting)

11

MS Windows EditPlus Features in Vim
Vim has many of the features of EditPlus editor and in near future will try incorporate many good features
of EditPlus editor :

• Left hand side File Navigator - In Vim (gvim) click on menu Window-> 'Split File Explorer' and ajust
the width of file explorer window.

• Connect direct to remote host via ftp and handle automatically the edits and uploads (looks as if the
remote files and folders are in local host).

• Many other features

The EditPlus is at EditPlus [http://www.editplus.com] . See also TextPad [http://www.textpad.com] and
UltraEdit [http://www.ultraedit.com] .

Setup gvim init files
To enable the syntax color highlighting you MUST copy the gvimrc file to your home directory. This will
also put the "Syntax" Menu with gvim command. You can click on Syntax Menu and select appropriate
languages like C++, Perl, Java, SQL, ESQL etc..

cd $HOME
cp /usr/doc/vim-common-5.3/gvimrc_example ~/.gvimrc

Comment lines in .gvimrc begin with double-quotes ("). You can customize gvim by editing the file
$HOME/.gvimrc and put the following lines -

" This line is a comment one which begins with double-quotes
" The best is the bold font, try all of these and pick one....
set guifont=8x13bold
"set guifont=9x15bold
"set guifont=7x14bold
"set guifont=7x13bold
"
" Highly recommended to set tab keys to 4 spaces
set tabstop=4
set shiftwidth=4
"
" The opposite is 'set wrapscan' while searching for strings....
set nowrapscan
"
" The opposite is set noignorecase
set ignorecase
set autoindent
"
" You may want to turn off the beep sounds (if you want quite) with visual bell
" set vb
" Source in your custom filetypes as given below -
" so $HOME/vim/myfiletypes.vim

It is very strongly recommended that you set the tabstop to 4 and shiftwidth to 4. The tabstop is
the number of spaces the TAB key will indent while editing with gvim. The shiftwidth is the number

http://www.editplus.com
http://www.editplus.com
http://www.textpad.com
http://www.textpad.com
http://www.ultraedit.com
http://www.ultraedit.com

Vim Color Editor HOW-TO (Vi Im-
proved with syntax color highlighting)

12

of spaces the lines will be shifted with "> > " or " < < " vi commands. Refer to Vi tutorials the section
called “ Vim Tutorial ” for more details.

To see the list of available fonts on Linux/Unix see the command xlsfonts . Type -

 bash$ xlsfonts | less
 bash$ xlsfonts | grep -i bold | grep x
 bash$ man xlsfonts

Sample gvimrc file
You can change the settings like color, bold/normal fonts in your $HOME/.gvimrc file. It is very strong-
ly recommended that you set the background color to lightyellow or white with black foreground.
Ergonomics says that best background color is lightyellow or white with black foreground. Hence
change the variable 'guibg' in your $HOME/.gvimrc file as follows:

 highlight Normal guibg=lightyellow

The sample gvimrc from /usr/doc/vim-common-5.3/gvimrc_example is as follows:

" Vim
" An example for a gvimrc file.
" The commands in this are executed when the GUI is started.
"
" To use it, copy it to
" for Unix and OS/2: ~/.gvimrc
" for Amiga: s:.gvimrc
" for MS-DOS and Win32: $VIM_gvimrc
" Make external commands work through a pipe instead of a pseudo-tty
"set noguipty
" set the X11 font to use. See 'man xlsfonts' on unix/linux
" set guifont=-misc-fixed-medium-r-normal--14-130-75-75-c-70-iso8859-1
set guifont=8x13bold
"set guifont=9x15bold
"set guifont=7x14bold
"set guifont=7x13bold
"
" Highly recommended to set tab keys to 4 spaces
set tabstop=4
set shiftwidth=4
"
" The opposite is 'set wrapscan' while searching for strings....
set nowrapscan
"
" The opposite is set noignorecase
set ignorecase
"
" You may want to turn off the beep sounds (if you want quite) with visual bell
" set vb
" Source in your custom filetypes as given below -
" so $HOME/vim/myfiletypes.vim

Vim Color Editor HOW-TO (Vi Im-
proved with syntax color highlighting)

13

" Make command line two lines high
set ch=2
" Make shift-insert work like in Xterm
map <S-Insert> <MiddleMouse>
map! <S-Insert> <MiddleMouse>
" Only do this for Vim version 5.0 and later.
if version >= 500
 " I like highlighting strings inside C comments
 let c_comment_strings=1
 " Switch on syntax highlighting.
 syntax on
 " Switch on search pattern highlighting.
 set hlsearch
 " For Win32 version, have "K" lookup the keyword in a help file
 "if has("win32")
 " let winhelpfile='windows.hlp'
 " map K :execute "!start winhlp32 -k <cword> " . winhelpfile <CR>
 "endif
 " Hide the mouse pointer while typing
 set mousehide
 " Set nice colors
 " background for normal text is light grey
 " Text below the last line is darker grey
 " Cursor is green
 " Constants are not underlined but have a slightly lighter background
 highlight Normal guibg=grey90
 highlight Cursor guibg=Green guifg=NONE
 highlight NonText guibg=grey80
 highlight Constant gui=NONE guibg=grey95
 highlight Special gui=NONE guibg=grey95
endif

See also sample vimrc used for console mode vim command from /usr/doc/vim-com-
mon-5.3/vimrc_example.

Xdefaults parameters
You can set some of the Vim properties in Xdefaults file.

WARNING: Do not set Vim*geometry as it will break the gvim menu, use Vim.geometry instead .

Edit the $HOME/.Xdefaults file and add the following lines:

! GVim great Colors.
Vim*useSchemes: all
Vim*sgiMode: true
Vim*useEnhancedFSB: true
Vim.foreground: Black
!Vim.background: lightyellow2
Vim*background: white
! Do NOT use Vim*geometry , this will break the menus instead
! use Vim.geometry. Asterisk between Vim and geometry is not allowed.
! Vim.geometry: widthxheight

Vim Color Editor HOW-TO (Vi Im-
proved with syntax color highlighting)

14

Vim.geometry: 88x40
!Vim*font: -misc-fixed-medium-r-normal--20-200-75-75-c-100-iso8859-15-*5
Vim*menuBackground: yellow
Vim*menuForeground: black

In order for this change to take effect, type -

 xrdb -merge $HOME/.Xdefaults
 man xrdb

You can also edit the ~/.gvimrc file to change the background colors

 gvim $HOME/.gvimrc
The best background color is lightyellow or white, with black foreground.
 highlight Normal guibg=lightyellow

Color Syntax init files

Auto source-in method
This section below is obtained from gvim session by typing 'help syntax' -

bash$ gvim some_test
:help syntax

Click on the menu Window=>Close_Others to close other Window. And then do CTRL+] on 'Syntax
Loading Procedure' menu which will take you there. (Use CTRL+T to rewind and go back).

If a file type you want to use is not detected, then there are two ways to add it.

Method 1: You can modify the $VIMRUNTIME/filetype.vim file, but this is not recommended as it will
be overwritten when you install a new version of Vim.

Method 2: Create a file in $HOME/vim/myfiletypes.vim and put these lines in it -

"
" ***
" Filename : $HOME/vim/myfiletypes.vim
" See the document by typing :help autocmd within vim session
" see also the doc at /usr/share/vim/doc/autocmd.txt
" This file will setup the autocommands for new filetypes
" using the existing syntax-filetypes.
" For example when you open foo.prc it will use syntax of plsql
" Basically does :set filetype=prc inside vim
" Add a line in $HOME/.gvimrc as below:
" so $HOME/vim/myfiletypes.vim
"
" ***
augroup filetype
 au!

Vim Color Editor HOW-TO (Vi Im-
proved with syntax color highlighting)

15

 au! BufRead,BufNewFile *.phc set filetype=php
 au! BufRead,BufNewFile *.mine set filetype=mine
 au! BufRead,BufNewFile *.xyz set filetype=drawing
 au! BufRead,BufNewFile *.prc set filetype=plsql
augroup END

Then add a line in your $HOME/.vimrc and $HOME/.gvimrc file to source in the file "myfiletypes.vim".
(CAUTION: You MUST put this in both vimrc and gvimrc files in order for this to work) Example:

 so $HOME/vim/myfiletypes.vim

NOTE: Make sure that you set "so myfiletypes.vim" before switching on file type detection. This is must
be before any ":filetype on" or ":syntax on" command.

See the documentation on autocommand at -

• :help autocmd (within a vim editing session)

• See also the doc at /usr/share/vim/doc/autocmd.txt

Your file will then be sourced in after the default FileType autocommands have been installed. This allows
you to overrule any of the defaults, by using ":au!" to remove any existing FileType autocommands for
the same pattern. Only the autocommand to source the scripts.vim file is given later. This makes sure that
your autocommands in "myfiletypes.vim" are used before checking the contents of the file.

Manual method
Instead of using "Syntax" menu you can also manually source in the syntax file. Edit the file with gvim
and at : (colon) command give 'so' command. For example -

 gvim foo.pc
 :so $VIM/syntax/esqlc.vim

The syntax source files are at /usr/share/vim/syntax/*.vim. Vim supports more than 120 different syntax
files for different languages like C++, PERL, VHDL, JavaScript,...and so on!!

Each syntax file supports one or more default file name extensions, for example, JavaScript syntax file
supports the *.js extension. If you happen to use an extension that conflicts with another default syntax
file (such as adding JavaScript to a *.html file) than you can source in the additional syntax file with the
command :so $VIM/syntax/javascript.vim. To avoid all of this typing, you can create a soft link like -

 ln -s $VIM/syntax/javascript.vim js
 gvim foo.html (... this file contains javascript functions and HTML)
 :so js

VIM Usage
You can use Vim in two modes - one with GUI and other without GUI. To use GUI use command -

 gvim foo.cpp

Vim Color Editor HOW-TO (Vi Im-
proved with syntax color highlighting)

16

To use non-gui mode give -

 vim foo.cpp
OR plain vanilla mode
 vi foo.cpp

It is very strongly recommended that you always use gvim instead of vim, since GUI mode with colors
will definitely improve your productivity. The vim also gives colors but cannot set the background colors
and gvim can set the background and foreground colors.

GUI mode gvim provides the following -

• You can mark the text using the mouse to do cut, copy and paste.

• You can use the Menu bar which has - File, Edit, Window, Tools, Synatx and Help buttons.

• Also in near future in gvim - a second menu bar will display the list of files being edited,
and you can switch files by clicking on the filenames, until then you can use vi commands
- :e#, :e#1, :e#2, :e#3, :e#4,so on to select the files.

Remote Vi - MS Windows QVWM Manager
QVWM Window Manager is the best as it is very similar in appearance to Microsoft Windows. If you
want to use Vi and Vim remotely from a MS Windows PC client, then you should use VNC + QVWM
manager. Servers are generally located in remote Data Centers and to edit the files, you should first login to
remote servers from MS Windows or Linux desktop PCs. After starting VNC server and QVWM manager
on remote server, you should fire up vncviewer on your client desktop and edit remote files with gvim .

To use graphical editor like gvim for remote operations, use the following techniques below:

You can use the VNC to display remote machines on your local display.

• The VNC is at "http://www.uk.research.att.com/vnc" [http://www.uk.research.att.com/vnc] and com-
mercial VNC is at "http://www.realvnc.com" [http://www.realvnc.com]

• Get VNC rpms from rpmfind [http://rpmfind.net/linux/rpm2html/search.php?query=vnc] or from com-
mercial VNC at "http://www.realvnc.com" [http://www.realvnc.com]

• The best Window manager for VNC is QVWM which is like MS Windows 98/NT/2000 interface, get
it from "http://www.qvwm.org" [http://www.qvwm.org] .

• After starting vncserver, you can start the vncviewer program on clients like MS Windows, Mac or
Linux.

• See also the List of X11 Windows Managers [http://www.dlhoffman.com/publiclibrary/RPM/
X11_Window_Managers.html] .

Compiling qvwm on Solaris : On Solaris you should install the following packages which you can get
from "http://sun.freeware.com" [http://sun.freeware.com] - xpm, imlib, jpeg, libungif, giflib (giftran),
libpng, tiff. And you can download the binary package for solaris from "http://www.qvwm.org" [http://
www.qvwm.org] .

Or you can download the qvwm source for solaris from "http://www.qvwm.org" [http://www.qvwm.org]
and compile it using gcc. If mainsite is busy use the mirror sites listed there. Click on the link "The latest
version of qvwm is [ftp/http]" to download the source code.

http://www.uk.research.att.com/vnc
http://www.uk.research.att.com/vnc
http://www.realvnc.com
http://www.realvnc.com
http://rpmfind.net/linux/rpm2html/search.php?query=vnc
http://rpmfind.net/linux/rpm2html/search.php?query=vnc
http://www.realvnc.com
http://www.realvnc.com
http://www.qvwm.org
http://www.qvwm.org
http://www.dlhoffman.com/publiclibrary/RPM/X11_Window_Managers.html
http://www.dlhoffman.com/publiclibrary/RPM/X11_Window_Managers.html
http://www.dlhoffman.com/publiclibrary/RPM/X11_Window_Managers.html
http://sun.freeware.com
http://sun.freeware.com
http://www.qvwm.org
http://www.qvwm.org
http://www.qvwm.org
http://www.qvwm.org
http://www.qvwm.org

Vim Color Editor HOW-TO (Vi Im-
proved with syntax color highlighting)

17

Troubleshooting the compile:

• You must install all the packages listed - xpm, imlib, jpeg, libungif, giflib, libpng, tiff. Otherwise src
will not compile

• Must edit the src/util.cc file and change snprintf to printf to compile the program to get rid of the compile
errors.

• You should put unsigned long before arg in usleep() usleep((unsigned long) 10000)

• Still problems then see "http://www.milkywaygalaxy.freeservers.com/vnc" [http://
www.milkywaygalaxy.freeservers.com/vnc] for compile instructions.

For transferring files from Unix to MS Windows use the ftp clients like

• Commercial :

1. The ftp voyager "http://cws.internet.com/ftp-ftpvoyag.html" [http://cws.internet.com/ftp-
ftpvoyag.html]

2. Cute ftp "http://cws.internet.com/ftp-cuteftp.html" [http://cws.internet.com/ftp-cuteftp.html]

• Free ratings:

1. WSFTP : "http://www.csra.net/junodj/ws_ftp32.htm" [http://www.csra.net/junodj/ws_ftp32.htm]

2. LeechFTP "http://cws.internet.com/ftp-leechftp.html" [http://cws.internet.com/ftp-leechftp.html]
"http://stud.fh-heilbronn.de/~jdebis/leechftp/" [http://stud.fh-heilbronn.de/~jdebis/leechftp/]

3. FTP Control "http://cws.internet.com/ftp-ftpcontrol.html" [http://cws.internet.com/ftp-
ftpcontrol.html]

4. GetRight "http://cws.internet.com/ftp-getright.html" [http://cws.internet.com/ftp-getright.html]

Vi companions
Generally Vim is used in conjunction with other powerful tools like ctags and gdb . ctags is for very
rapid navigation through millions of lines of "C/C++" code and gdb is for debugging the "C/C++" code.
A brief introduction of these two indispensable commands will be given in this chapter.

ctags is the most powerful command available for coding C, C++, Java, Perl, Korn/Bourne shell scripts
or Fortran. Developers very extensively use ctags to navigate through thousands of functions within C/
C++ programs. See 'man ctags' on Unix. It is very important that you learn how to use ctags to develop
programs in C or C++, Java, etc.. Navigation is the single most important task while doing development
of C or C++ code. Using ctags you can very quickly read the code by jumping from a calling line to the
called function, drill down deeper into nested function calls, and unwind back all the way up to the top.
You can go back and forth from function to function very quickly.

Without NAVIGATION you will be completely lost! ctags is like the magnetic COMPASS needle for
the programmers.

Usage of ctags :

 ctags *.cpp
 gvim -t foo_function

http://www.milkywaygalaxy.freeservers.com/vnc
http://www.milkywaygalaxy.freeservers.com/vnc
http://www.milkywaygalaxy.freeservers.com/vnc
http://cws.internet.com/ftp-ftpvoyag.html
http://cws.internet.com/ftp-ftpvoyag.html
http://cws.internet.com/ftp-ftpvoyag.html
http://cws.internet.com/ftp-cuteftp.html
http://cws.internet.com/ftp-cuteftp.html
http://www.csra.net/junodj/ws_ftp32.htm
http://www.csra.net/junodj/ws_ftp32.htm
http://cws.internet.com/ftp-leechftp.html
http://cws.internet.com/ftp-leechftp.html
http://stud.fh-heilbronn.de/~jdebis/leechftp/
http://stud.fh-heilbronn.de/~jdebis/leechftp/
http://cws.internet.com/ftp-ftpcontrol.html
http://cws.internet.com/ftp-ftpcontrol.html
http://cws.internet.com/ftp-ftpcontrol.html
http://cws.internet.com/ftp-getright.html
http://cws.internet.com/ftp-getright.html

Vim Color Editor HOW-TO (Vi Im-
proved with syntax color highlighting)

18

 gvim -t main

This will edit the C++ program file which contains the function foo_function() and will automatically
place the cursor on the first line of the function foo_function(). The second command takes you to the line
with the main() function definition.

Inside the Vim editor, you can jump to a function by typing : (colon) tag < function name > as below -

 :tag sample_function

This will place the cursor on first line of sample_function()

If you want to jump into the function from a line in file which contains the function name, place the
cursor just before the function name and press CTRL+] (press control key and left-square-bracket key
simultaneously).

 // example code
 switch(id_number) {
 Case 1:
 if (foo_function(22, "abcef") == 3)
 ^
 |
 |
 |
 Place the cursor here (just before foo_function) and press CTRL+]
 This takes you to the function named "foo_function".
 To come back to this line press CTRL+t

To go back to the calling line press CTRL+t (Control key and letter 't' together). Keep pressing CTRL+t
to unwind and go to the first line where you started the navigation. That is you can keep pressing CTRL
+] and then keep pressing CTRL+t to go back. You can repeat these as many times as you want to have
complete navigation through all the functions of C or C++.

Directory Tree 'tags'
To recursively process the tags file for the entire directory :

$ cd $HOME
$ ctags -R

This will recurse the directory underneath and create a tag file all the files under the directory and beneath.
But to use this tag file you must set the following in the vim session or modify .gvimrc file

$ vi ~/.gvimrc
" Set the tag file search order
set tags=./tags,tags,~/tags,/home/john/ccplus/tags

Or in the Vim session you set the tags with colon command:

$ vi somefile.cpp

Vim Color Editor HOW-TO (Vi Im-
proved with syntax color highlighting)

19

:set tags=./tags,tags,~/tags,/home/john/ccplus/tags

Ctags for ESQL
Since ctags does not directly support the Embedded SQL/C (ESQL) language, the following shell script
can be used to create tags for esql. ESQL/C is database SQL commands embedded inside the "C" programs.
Oracle's ESQL/C is called Pro*C and Sybase, Informix have ESQL/C and PostgreSQL has product "ecpg".

Save this file as "sqltags.sh" and do chmod a+rx tags_gen.sh.

#!/bin/sh
Program to create ctags for ESQL, C++ and C files
ESQL_EXTN=pc
tag_file1=tags_file.1
tag_file2=tags_file.2
which_tag=ctags
rm -f $tag_file1 $tag_file2 tags
aa=`ls *.$ESQL_EXTN`
#echo $aa
for ii in $aa
do
 #echo $ii
 jj=`echo $ii | cut -d'.' -f1`
 #echo $jj
 if [! -f $jj.cpp]; then
 echo " "
 echo " "
 echo "***"
 echo "ESQL *.cpp files does not exist.. "
 echo "You must generate the *.cpp from *.pc file"
 echo "using the Oracle Pro*C pre-compiler or Sybase"
 echo "or Informix esql/c pre-compiler."
 echo "And then re-run this command"
 echo "***"
 echo " "
 exit
 fi
 rm -f tags
 $which_tag $jj.cpp
 kk=s/$jj\.cpp/$jj\.pc/g
 #echo $kk > sed.tmp
 #sed -f sed.tmp tags >> $tag_file1
 #sed -e's/sample\.cpp/sample\.pc/g' tags >> $tag_file1
 sed -e $kk tags >> $tag_file1
done
Now handle all the C++/C files - exclude the ESQL *.cpp files
rm -f tags $tag_file2
bb=`ls *.cpp *.c`
aa=`ls *.$ESQL_EXTN`
for mm in $bb
do
 ee=`echo $mm | cut -d'.' -f1`
 file_type="NOT_ESQL"

Vim Color Editor HOW-TO (Vi Im-
proved with syntax color highlighting)

20

 # Exclude the ESQL *.cpp and *.c files
 for nn in $aa
 do
 dd=`echo $nn | cut -d'.' -f1`
 if ["$dd" = "$ee"]; then
 file_type="ESQL"
 break
 fi
 done
 if ["$file_type" = "ESQL"]; then
 continue
 fi
 rm -f tags
 $which_tag $mm
 cat tags >> $tag_file2
done
mv -f $tag_file2 tags
cat $tag_file1 >> tags
rm -f $tag_file1
Must sort tags file for it work properly
sort tags > $tag_file1
mv $tag_file1 tags

Ctags for JavaScript programs, Korn, Bourne shells
The shell script given below can be used to generate tags for a very large variety of programs written
in JavaScript, PHP/FI scripts, Korn shell, C shell, Bourne shell and many others. This is a very generic
module.

Save this file as tags_gen.sh and do chmod a+rx tags_gen.sh.

#!/bin/sh
tmp_tag=tags_file
tmp_tag2=tags_file2
echo " "
echo " "
echo " "
echo " "
echo " "
echo "Generate tags for"
while :
do
 echo " Enter file extension for which you want to generate tags."
 echo -n " File-extension should be like sh, js, ksh, etc... : "
 read ans
 if ["$ans" == ""]; then
 echo " "
 echo "Wrong entry. Try again!"
 else
 break
 fi
done
\rm -f $tmp_tag

Vim Color Editor HOW-TO (Vi Im-
proved with syntax color highlighting)

21

aa=`ls *.$ans`
for ii in $aa
do
 jj=`echo $ii | cut -d'.' -f1`
 #echo $jj
 cp $ii $jj.c
 ctags $jj.c
 echo "s/$jj.c/$ii/g" > $tmp_tag2
 sed -f $tmp_tag2 tags >> $tmp_tag
 \rm -f tags $jj.c
done
sort $tmp_tag > tags
\rm -f $tmp_tag $tmp_tag2

Debugger gdb
You would be using gdb extensively along with Vi. Debugging is the most important aspect of program-
ming as the major cost of software projects goes into debugging and testing.

To debug C++/C programs use 'gdb' tool. See 'man gdb' . You must compile your programs with -g3
option like

 gcc -g3 foo.c foo_another.c sample.c

To set up easy aliases do -

 Setup an alias in your ~/.bash_profile alias gdb='gdb
 -directory=/home/src -directory=/usr/myname/src ' Give - gdb foo.cpp
 gdb> dir /hom2/another_src This will add to file search path
 gdb> break 'some_class::func<TAB><TAB> This will
 complete the function name saving you typing time... and will output
 like - gdb> break 'some_class::function_foo_some_where(int aa,
 float bb)'

Pressing TAB key twice is the command line completion, which will save you lots of typing time. This
is one of the most important technique of using gdb.

To get online help do -

 gdb> help Gives online help gdb> help breakpoints Gives more
 details about breakpoints.

To set breakpoints and do debugging

 unixprompt> gdb exe_filename gdb> b main This will put
 breakpoint in main() function gdb> b 123 This will put breakpoint
 in line 123 of the current file gdb> help breakpoints Gives more
 details about breakpoints.

Vim Color Editor HOW-TO (Vi Im-
proved with syntax color highlighting)

22

To analyze the core dumps do

 unixprompt> gdb exe_filename core gdb> bt Gives backtrace of
 functions and line numbers where the program failed gdb> help
 backtrace Gives more details about backtrace.

You can also use GUI version of gdb called xxgdb.

See also gdb interface to Vim at "http://www.lxlinux.com/gdbvim.tgz" [http://www.lxlinux.com/
gdbvim.tgz] .

Memory leak tools -

• Freeware Electric Fence on linux cd,

• Commercial tools Purify "http://www.rational.com" [http://www.rational.com]

• Insure++ "http://www.insure.com" [http://www.insure.com]

Online VIM help
See the online man pages. At unix shell prompt type 'man vim' and 'man gvim' .

Or inside the gvim session type :help to get the help page. See also the section called “ Vim Tutorial ” To
see the settings type :set all or :set. To see list of options type :options. To see topics on set type :help set.

 VIM - main help file Move around: Use the cursor keys, or "h" to go
 left, "j" to go down, "k" to go up, "l" to go right. ":1" takes you to
 1st line of page ":n" takes you to nth line of page "<SHIFT>g"
 takes you to bottom of page ":/someword/ will search for "someword" in
 doc Close this window: Use ":q<Enter>". Jump to a subject:
 Position the cursor on a tag between |bars| and hit CTRL-]. With the
 mouse: ":set mouse=a" to enable the mouse (in xterm or GUI).
 Double-click the left mouse button on a tag between |bars|. jump back:
 Type CTRL-T or CTRL-O. Get specific help: It is possible to go
 directly to whatever you want help on, by giving an argument to the
 ":help" command |:help|. It is possible to further specify the
 context: WHAT PREPEND EXAMPLE ~ Normal mode commands (nothing) :help x
 Visual mode commands v_ :help v_u Insert mode commands i_ :help
 i_<Esc> command-line commands : :help :quit command-line editing
 c_ :help c_ Vim command arguments - :help -r options '
 :help 'textwidth' list of documentation files: |howto.txt| how to do
 the most common things |intro.txt| introduction to Vim |index.txt|
 alphabetical index for each mode |autocmd.txt| automatically executing
 commands on an event |change.txt| delete and replace text

Vim Home page and Vim links
The home page of vim is at "http://www.vim.org" [http://www.vim.org] and mirror site in US is at "http://
www.us.vim.org" [http://www.us.vim.org]

http://www.lxlinux.com/gdbvim.tgz
http://www.lxlinux.com/gdbvim.tgz
http://www.lxlinux.com/gdbvim.tgz
http://www.rational.com
http://www.rational.com
http://www.insure.com
http://www.insure.com
http://www.vim.org
http://www.vim.org
http://www.us.vim.org
http://www.us.vim.org
http://www.us.vim.org

Vim Color Editor HOW-TO (Vi Im-
proved with syntax color highlighting)

23

Vim FAQ is at "http://www.grafnetix.com/~laurent/vim/faq.html" [http://www.grafnetix.com/~lau-
rent/vim/faq.html] and at "http://www.vim.org/faq" [http://www.vim.org/faq]

Eli's Vim Page at "http://www.netusa.net/~eli/src/vim.html" [http://www.netusa.net/~eli/src/vim.html]

Vi Lovers home page "http://www.thomer.com/thomer/vi/vi.html" [http://www.thomer.com/thomer/vi/
vi.html]

Vim Reference Guide at "http://scisun.sci.ccny.cuny.edu/~olrcc/vim/" [http://scisun.sci.ccny.cuny.edu/
~olrcc/vim/]

Vim mailing list at "http://www.findmail.com/listsaver/vimannounce.html" [http://www.findmail.com/
listsaver/vimannounce.html] and "http://www.vim.org/mail.html" [http://www.vim.org/mail.html]

Mailing list archives are kept at:

• "http://www.egroups.com/group/vim" [http://www.egroups.com/group/vim]

• "http://www.egroups.com/group/vimdev" [http://www.egroups.com/group/vimdev]

• "http://www.egroups.com/group/vimannounce" [http://www.egroups.com/group/vimannounce]

Vim macros "http://www.grafnetix.com/~laurent/vim/macros.html" [http://www.grafnetix.com/~lau-
rent/vim/macros.html]

Vi Resources and Tips
The following Vi resources are available on internet:

• O'Reilly "Learning the Vi Editor" at "http://www.eyetap.org/ece385/oreilly/unix/vi/index.htm" [http://
www.eyetap.org/ece385/oreilly/unix/vi/index.htm]

• Vi Google directory at Google-Vi [http://directory.google.com/Top/Computers/Software/Editors/Vi/?
tc=1]

• Resources, Tips, News about Vim "http://vim.sourceforge.net" [http://vim.sourceforge.net]

• Vi Cheatsheet "http://www.geekcheat.com/Merchant2/merchant.mv" [http://www.geekcheat.com/
Merchant2/merchant.mv]

• Vim and vi article "http://www.troubleshooters.com/lpm/200212/200212.htm" [http://
www.troubleshooters.com/lpm/200212/200212.htm]

• Vim Outliner - An outline processor is a software program enabling the user to quickly construct out-
lines, and better yet, to correct and rearrange the outline. "http://www.troubleshooters.com/vimoutlin-
er" [http://www.troubleshooters.com/vimoutliner]

Vim Tutorial

Vim Hands-on Tutorial
On Linux system see the tutorial at /usr/doc/vim-common-5.*/tutor, on other unix systems go to directory
where vim is installed and look for doc directory.

http://www.grafnetix.com/~laurent/vim/faq.html
http://www.grafnetix.com/~laurent/vim/faq.html
http://www.grafnetix.com/~laurent/vim/faq.html
http://www.vim.org/faq
http://www.vim.org/faq
http://www.netusa.net/~eli/src/vim.html
http://www.netusa.net/~eli/src/vim.html
http://www.thomer.com/thomer/vi/vi.html
http://www.thomer.com/thomer/vi/vi.html
http://www.thomer.com/thomer/vi/vi.html
http://scisun.sci.ccny.cuny.edu/~olrcc/vim/
http://scisun.sci.ccny.cuny.edu/~olrcc/vim/
http://scisun.sci.ccny.cuny.edu/~olrcc/vim/
http://www.findmail.com/listsaver/vimannounce.html
http://www.findmail.com/listsaver/vimannounce.html
http://www.findmail.com/listsaver/vimannounce.html
http://www.vim.org/mail.html
http://www.vim.org/mail.html
http://www.egroups.com/group/vim
http://www.egroups.com/group/vim
http://www.egroups.com/group/vimdev
http://www.egroups.com/group/vimdev
http://www.egroups.com/group/vimannounce
http://www.egroups.com/group/vimannounce
http://www.grafnetix.com/~laurent/vim/macros.html
http://www.grafnetix.com/~laurent/vim/macros.html
http://www.grafnetix.com/~laurent/vim/macros.html
http://www.eyetap.org/ece385/oreilly/unix/vi/index.htm
http://www.eyetap.org/ece385/oreilly/unix/vi/index.htm
http://www.eyetap.org/ece385/oreilly/unix/vi/index.htm
http://directory.google.com/Top/Computers/Software/Editors/Vi/?tc=1
http://directory.google.com/Top/Computers/Software/Editors/Vi/?tc=1
http://directory.google.com/Top/Computers/Software/Editors/Vi/?tc=1
http://vim.sourceforge.net
http://vim.sourceforge.net
http://www.geekcheat.com/Merchant2/merchant.mv
http://www.geekcheat.com/Merchant2/merchant.mv
http://www.geekcheat.com/Merchant2/merchant.mv
http://www.troubleshooters.com/lpm/200212/200212.htm
http://www.troubleshooters.com/lpm/200212/200212.htm
http://www.troubleshooters.com/lpm/200212/200212.htm
http://www.troubleshooters.com/vimoutliner
http://www.troubleshooters.com/vimoutliner
http://www.troubleshooters.com/vimoutliner

Vim Color Editor HOW-TO (Vi Im-
proved with syntax color highlighting)

24

 bash$ cd /usr/doc/vim-common*/tutor
 bash$ less README.txt
 bash$ cp tutor $HOME
 bash$ cd $HOME
 bash$ less tutor

Vi Tutorials on Internet
• Purdue University "http://ecn.www.ecn.purdue.edu/ECN/Documents/VI/" [http://

ecn.www.ecn.purdue.edu/ECN/Documents/VI/]

• Advanced Vi tutorial "http://www.yggdrasil.com/bible/bible-src/user-alpha-4/guide/node171.html"
[http://www.yggdrasil.com/bible/bible-src/user-alpha-4/guide/node171.html]

• Tutorials "http://www.cfm.brown.edu/Unixhelp/vi_.html" [http://www.cfm.brown.edu/Unix-
help/vi_.html]

• Univ of Hawaii tutorial "http://www.eng.hawaii.edu/Tutor/vi.html" [http://www.eng.hawaii.edu/Tu-
tor/vi.html]

• InfoBound "http://www.infobound.com/vi.html" [http://www.infobound.com/vi.html]

• Vi Lovers home page "http://www.thomer.com/thomer/vi/vi.html" [http://www.thomer.com/thomer/
vi/vi.html]

• vi Help file "http://www.vmunix.com/~gabor/vi.html" [http://www.vmunix.com/~gabor/vi.html]

• These are dead links::

Quick Vi tutorial "http://linuxwww.db.erau.edu/LUG/node165.html" [http://linuxwww.db.erau.edu/
LUG/node165.html]

• Tutorials "http://www.linuxbox.com/~taylor/4ltrwrd/section3_4.html" [http://www.linuxbox.com/
~taylor/4ltrwrd/section3_4.html]

• Unix world online vi tutorial "http://www.networkcomputing.com/unixworld/unixhome.html" [http://
www.networkcomputing.com/unixworld/unixhome.html]

• Cornell Univ "http://www.tc.cornell.edu/Edu/Tutor/Basics/vi/" [http://www.tc.cornell.edu/Edu/Tu-
tor/Basics/vi/]

• Beginner's Guide to vi "http://www.cs.umr.edu/unixinfo/general/packages/viguide.html" [http://
www.cs.umr.edu/unixinfo/general/packages/viguide.html]

• vim FAQ "http://www.math.fu-berlin.de/~guckes/vim/faq/" [http://www.math.fu-berlin.de/~guck-
es/vim/faq/]

There are many Vi Tutorials on internet. In Yahoo (Lycos, excite or Hotbot) enter "Vi Tutorial" in search
field and search engine will return many pointers.

Vi Tutorial
In this tutorial, we describe some "advanced" vi concepts and commands, so you can appreciate the power
of vi and so you decide how to build your knowledge of vi commands. Nearly all vi references list
the available commands, but many don't bother to discuss how the commands interrelate; this topic is the
main purpose of this tutorial.

http://ecn.www.ecn.purdue.edu/ECN/Documents/VI/
http://ecn.www.ecn.purdue.edu/ECN/Documents/VI/
http://ecn.www.ecn.purdue.edu/ECN/Documents/VI/
http://www.yggdrasil.com/bible/bible-src/user-alpha-4/guide/node171.html
http://www.yggdrasil.com/bible/bible-src/user-alpha-4/guide/node171.html
http://www.cfm.brown.edu/Unixhelp/vi_.html
http://www.cfm.brown.edu/Unixhelp/vi_.html
http://www.cfm.brown.edu/Unixhelp/vi_.html
http://www.eng.hawaii.edu/Tutor/vi.html
http://www.eng.hawaii.edu/Tutor/vi.html
http://www.eng.hawaii.edu/Tutor/vi.html
http://www.infobound.com/vi.html
http://www.infobound.com/vi.html
http://www.thomer.com/thomer/vi/vi.html
http://www.thomer.com/thomer/vi/vi.html
http://www.thomer.com/thomer/vi/vi.html
http://www.vmunix.com/~gabor/vi.html
http://www.vmunix.com/~gabor/vi.html
http://linuxwww.db.erau.edu/LUG/node165.html
http://linuxwww.db.erau.edu/LUG/node165.html
http://linuxwww.db.erau.edu/LUG/node165.html
http://www.linuxbox.com/~taylor/4ltrwrd/section3_4.html
http://www.linuxbox.com/~taylor/4ltrwrd/section3_4.html
http://www.linuxbox.com/~taylor/4ltrwrd/section3_4.html
http://www.networkcomputing.com/unixworld/unixhome.html
http://www.networkcomputing.com/unixworld/unixhome.html
http://www.networkcomputing.com/unixworld/unixhome.html
http://www.tc.cornell.edu/Edu/Tutor/Basics/vi/
http://www.tc.cornell.edu/Edu/Tutor/Basics/vi/
http://www.tc.cornell.edu/Edu/Tutor/Basics/vi/
http://www.cs.umr.edu/unixinfo/general/packages/viguide.html
http://www.cs.umr.edu/unixinfo/general/packages/viguide.html
http://www.cs.umr.edu/unixinfo/general/packages/viguide.html
http://www.math.fu-berlin.de/~guckes/vim/faq/
http://www.math.fu-berlin.de/~guckes/vim/faq/
http://www.math.fu-berlin.de/~guckes/vim/faq/

Vim Color Editor HOW-TO (Vi Im-
proved with syntax color highlighting)

25

Cursor Movement Commands
The vi cursor movement commands allow you to position the cursor in the file and/or on the screen
efficiently, with a minimum number of keystrokes. There are oodles of cursor movement commands -
don't try memorizing them all at once! Later, we'll see that much of the power of vi comes from mixing
cursor movement commands with other commands to delete, change, yank (copy), and filter text.

Please edit a large text file (say, wknight) so you can experiment with each command as it is described.
Keep in mind these commands will only work in Command Mode, not Insert Mode; if you start getting
your "commands" in your text, press the ESC key to return to Command Mode.

• cursor keys : As we've seen, cursor keys move by single character amounts left, down, up, and right.
Movement above the top of the file, below the bottom, to the right of the end of a line, or left of the
beginning is not allowed (no line wrapping).

• hjkl : When vi was written (around 1978), many terminals on UNIX systems did not have cursor keys!
h, j, k, and l were chosen as commands to move left, down, up, and right, respectively. Try them! Most
vi diehards prefer these to the cursor keys because

• (a) they are in the same place on all keyborads, and

• (b) they fit nicely under the fingers, unlike most cursor keys, which are arranged in a box or "T" or
some other nonlinear shape.

Why h, j, k, and l? Well, in the ASCII character set, CTRL-H is backspace (moves left), CTRL-J is
linefeed (moves down), and, of course, k and l are next to h and j, so you see, they're mnemonic.

• 0 : ("zero", not "oh") Move to the beginning of current line. (To try this and the next few commands, use
the cursor keys or h j k l to move to an indented text line that contains few "e" characters. If you can't find
an indented line in your file, create one by inserting a few space characters at the beginning of a line.)

• ^ : Move to first non-white character of current line. (For indented line, 0 and ^ are different.)

• $: Move to last character of current line.

• tC : Move to (but not on) next character c in current line. (Press 0, then press te. This will move to
the first e in the curent line.)

• fC : Find (move on top of) next character c in current line. (Press fe, and the cursor will find - that is,
move on top - the next e in the current line.)

• TC : Move to (but not on) the previous character c in current line (Press $, then Te.)

• FC : Find (move on top of) the previous character c in current line. (Press Fe.)

• n| : Move to column n in current line. (Try 20 |. The digits 2 and 0 will not be displayed as you type
them, but when you press | the cursor will move to column 20.) Try some experiments with t f T F | .
When you do something illegal, vi will beep your terminal.

• w : Forward to beginning of next "small" word (a "small" word consists of unbroken alphanumeric
characters or punctuation characters, but not mixed alphanumeric and punctuation). Try tapping w a
dozen times or so - note what happens at punctuation.

• W : Forward to beginning of next "big" word (alphanumeric and punctuation mixed). Try W a dozen
times or so.

• b : Backward to beginning of "small" word.

Vim Color Editor HOW-TO (Vi Im-
proved with syntax color highlighting)

26

• B : Backward to beginning of "big" word.

• e : Forward to end of "small" word.

• E : Forward to end of "big" word.

• + Return : Move to first non-white space character on next line. (+ and the Return key have the same
effect.)

• - : Move to first non-white space character on previous line.

•) : Move to the end of sentence. (A sentence ends either at a blank line or at a period or examination
mark followed by two space characters or at the end of a line. A period or exclamation mark followed
by one space character does not end a sentence; this is correct behaviour, according to traditional rules
of how sentences should appear in typed documents, but often appears wrong to those who have never
suffered through a formal typing class.)

• (: Move to beginning of sentence.

• } : Move to end of paragraph. (Paragraphs are seperated with blank lines, by vi 's definition.)

• { : Move to beginning of paragraph.

• H : Move to home position (top line) on the screen

• M : Move to middle line on the screen.

• L : Move to last line on the screen.

• nG : Move to line n. If n is not given, move to the last line in the file. (Try 15G to move to line 15,
for example. The CTRL-G command displays the name of the file, some status information, and the
current line number. To move to the top of the file: 1G)

• CTRL-d : Scroll down half-screen (see note).

• CTRL-u : Scroll up half-screen (see note).

• CTRL-f : Move forward one-screen (see note).

• CTRL-b : Move backward one-screen (see note).

• Note : These four scrolling/paging commands cannot be used with the delete, change, yank, or filter
commands.

• /reg_exp : Move to next occurrence of the regular expression reg_exp When you press /, the cursor
drops to the lower left corner of the screen and waits for you to type in the regular expression. Press
the Return key to finish; vi then searches forward for the next occurrence of the regular expression.
For example, press /the followed by Return. This moves forward to the next occurrence of the, perhaps
imbedded in the middle of some longer word (other, weather, etc.). If you just press / and then Return,
vi searches for the next occurrence of whatever the last regular expression was that you searched for.

• n : Has the same effect as pressing / and then Return; i.e., searches for the next occurrence of whatever
the last regular expression was that you searched for.

• ?reg_exp : Searches backward, rather than forward. If no reg_exp is given, it searches for the last regular
expression that was entered. Both / and ? wrap around, so searching "below" the bottom or "above" the
top of the file is legal.

Vim Color Editor HOW-TO (Vi Im-
proved with syntax color highlighting)

27

• N : Same as pressing ? and then Return.

Repeat Counts
Many of the movement commands discussed above can be preceded with a repeat count; the movement
is simply repeated the given number of times:

• 3w : Move forward three words

• 5k : Move up four characters

• 3fa : Find the third succeeding a in current line

• 6+ : Move down six lines

For some commands, the "repeat counts" has special meaning:

• 4H : Move to Line 4 on the screen (home plus 3)

• 8L : Move to the eigth line from the bottom of the screen

• 3$: Move to the end of the third line down

For some commands (e.g., ^) the repeat count is ignored; for others (e.g., / and ?) it is illegal

Deleting Text
We've seen that dd deletes the current line. This can be used with a repeat count: 3dd deletes three lines,
the current line, and the two following lines.

The d command can be used as a "prefix" on most of the movement commands above to delete nearly
arbitrary chunks of text. When used with d, the movement commands are called target specifiers. d can
be given a repeat count. (As you try these experiments, remember to press u after each command to undo
the deletion).

• dw : Delete "small" word forward

• d3w : Delete three "small" words forward

• 3dw : Three times, delete "small" word forward

• 3d3w : Three times, delete three "small" words forward (that is, delete nine "small" words forward)

• d+ : Delete current line and next line down

• d/the : Delete from current character up to but not including the next occurrence of the pattern the.

• d$: Delete to end of line

• d0 : Delete to beginning of line

• d30G : Delete from the curent line to and including Line 30

• dG : Delete from current line to and including last line

• d1G : Delete from current line to and including Line 1

Vim Color Editor HOW-TO (Vi Im-
proved with syntax color highlighting)

28

To delete single characters, use x. x can be given a repeat count:

• 15x : Delete current and 14 following characters

x is actually just an abbreviation of d1; that is, delete one character right.

Changing Text
The c command is similar to d, except it toggles vi into Insert Mode, allowing the original (unwanted)
text to be changed to something else.

For example, put the cursor on the beginning of a word (press w to get to the beginning of the next word).
Then, press cw to change that word. On the screen, the last character in the word being changed will be
replaced with a $ symbol indicating the boundary of the change; type in a new word (you will overwrite
the original word on the screen) and press the ESC key when done. Your input may be longer or shorter
than the word being changed.

Put the cursor at the beginning of a line containing at least three words, and try c3w to change three words.
Try c$ to change to the end of the current line. In all cases where the change affects only the current line,
the boundary of the change is indicated with $.

When a change affects more than just the current line, vi deletes the original text from the screen and
toggles into Insert Mode. For example, try c3+ to change the current and the next three lines; vi deletes
the four original lines from the screen and toggles into Insert Mode in a new blank line. As usual, press
the ESC key when you have finished entering your new text.

Some other change commands:

• cc : Change current line

• 5cc : Change five lines (current and next four)

• c/the : Change from current character up to but not including the next occurrence of the pattern the

• c$: Change to end of line

• c30G : Change from the current line to and including Line 30

• cG : Change from curernt line to and including last line

• c1G : Change from curernt line to and including Line 1

Yanking (Copying) Text
The y command yanks a copy of text into a buffer; the yanked text can then be put (or pasted) elsewhere
in the file using p or P.

The simplest form of yank is yy to yank the current line; after yy, try p to put a copy of the yanked line
after the cursor. Following yy, you can make as many copies of the yanked line as you want by moving
up and down in the file and pressing p.

To copy multiple lines, try, for example, 5yy (yank the current and next four lines). p puts a copy of the
yanked lines after the cursor; the sequence 5yyp "works" but it probably doesn't do what you would like.
The P command is like p, but puts a copy of the yanked text ahead of the cursor; try the sequence 5yyP.

Other yank commands:

Vim Color Editor HOW-TO (Vi Im-
proved with syntax color highlighting)

29

• y3w : Yank three words

• y$: Yank to end of current line

• y1G : Yank from current line to and including Line 1

Filtering text
The filter command ! , prompts for the name of a UNIX command (which should be a filter), then passes
selected lines through the filter, replacing those selected line in the vi buffer with the output of the filter
command. vi 's ability to pass nearly arbitrary chunks of text through any UNIX filter adds incredible
flexibility to vi , at no "additional cost" in size or performance to vi itself.

Some examples will help illustrate. Create a line in your file containing just the word who and absolutely
no other text. Put the cursor on this line, and press !! This command is analogous to dd, cc, or yy, but
instead of deleting, changing, or yanking the current line, it filters the current line. When you press the
second !, the cursor drops down to the lower left corner of the screen and a single ! is displayed, prompting
you to enter the name of a filter. As the filter name, type sh and press the Return key. sh (the Bourne
shell) is a filter! It reads standard input, does some processing of its input (that is, executes commands),
and sends its output (the output of those commands) to standard output. Filtering the line containing who
through sh causes the line containing who to be replaced with a list of the current users on the system -
right in your file!

Try repeating this process with date . That is, create a line containing nothing but the word date , then
put the cursor on the line, and press !!sh and the Return key. The line containing date is replaced with
the output of the date command.

Put your cursor on the first line of the output of who. Count the number of lines. Suppose, for example,
the number is six. Then select those six lines to be filtered through sort; press 6!!sort and the Return key.
The six lines will be passed through sort, and sort's output replaces the original six lines.

The filter command can only be used on complete lines, not on characters or words.

Some other filter commands (here, < CR > means press Return):

• !/the < CR > sort < CR > : Sort from the current line up to and including the next line containing the

• !1Ggrep the < CR > : Replace from the current line to and including Line 1 with just the lines that
contain the

• !Gawk '{print $1}' < CR > : From the current line to the end of file, replace every line with just its
first word.

Marking Lines and Characters
You can mark lines and characters to be used as targest for movement, deletion, change, yanking, and
filtering using the command mc, where c is a lowercase letter.

For example, put the cursor in the middle of some word and press ma. This marks the character under
the cursor as mark a.

Now, move the cursor off the marked character and to a different line (use the cursor keys, CTRL-u, or
whatever). To return to the marked line, press 'a (that is, single quote, then a). This moves to the first non-
white space character on the line containing mark a.

Vim Color Editor HOW-TO (Vi Im-
proved with syntax color highlighting)

30

Move off that line again. To return to the marked character, press ̀ a (that is, backquote, then a). This moves
on top of the character marked with a.

Marking is usually used with deleting, changing, yanking or filtering. For example, move the cursor to
a line other than the one containing mark a, and then press d'a (d, single quote, a). This deletes from the
current line to and including the line marked with a.

Put the cursor in the middle of a different word and press mb to set mark b. Now, move the cursor away
from that word (but only a few lines, so you can see what we're about to do more easily), and then press
d`b (d, backquote, b). This deletes from the current CHARACTER to and including the CHARACTER
marked with b.

As another example, to sort the output of who, mark the first line (ma), then move the cursor to the last
line and press !'asort and the Return key.

If you jump to a mark and decide you want to jump back to whatever you jumped from, you can press
'' (jump back to line) or `` (jump back to character).

Naming Buffers
When you delete, change, or yank text, the original text is stored (until the next delete, change, or yank)
in an unnamed buffer from which it can be put using p or P. Using the unnamed buffer, only the most
recently deleted, changed or yanked text may be recovered.

If you wish to delete, change, or yank multiple sections of text and remember them all (up to a maximum
of 26), you can give a buffer name ahead of the delete change or yank command. A buffer name has the
form "c (double quote, lowercase c).

For example, press "ayy to yank the current line into buffer a, then move to a different line and press "byy
to yank that line into buffer b. Now, move elsewhere in the file and press "ap and "bp to put copies of
the text stored in buffers a and b.

Some other named buffer commands:

• "a6yy : Yank six lines (current and next five) into buffer a

• "bd1G : Delete from the curernt line to and including Line 1, storing the deleted lines in buffer b

• "cy'c : Yank from the current line to the line marked c into buffer c (marks and buffers are distinct, and
may have the same name without confusing vi)

Substitutions
To substitute one chunk of text for another in lines throughout your file, use the :s command. Some sub-
stitute examples:

• :1,$s/the/THE/g From Line 1 to the last line (line $), substitute for the text THE; do this globally in
each line where the occurrs

• :'a,.s/.*/ha ha/ From the line marked a to the current line (line .), substitute for everything on the line
the text ha ha

Miscellaneous "Colon Commands"
All colon commands begin with a colon; when you press the colon, the cursor drops to the lower left corner
of the screen, and a colon prompt is displayed waiting for you to finish your colon command.

Vim Color Editor HOW-TO (Vi Im-
proved with syntax color highlighting)

31

Some important examples:

• :w Write the buffer contents to the file without quitting from vi

• :w abc Write the buffer contents to the file abc (creating abc if it doesn't exist, or overwriting current
contents if it does exist) without quitting from vi

• :1,10w abc Write lines 1 through 10 to file abc

• :'a,$w abc Write from the line marked a to the last line into file abc

• :e abc Edit file abc, instead of the current file. vi prints an error message if changes have been made
to the curernt file that have not been saved with :w

• :e! abc Edit file abc, throwing away any changes that may have been made to the current file

• :e # Edit the prior file edited (successive :e# commands toggle back and forth between two files)

• :f abc Change the file anme for the current vi buffer to abc

• :q Quit, unless unsaved chanegs have been made

• :q! Quit, throwing away any changes that may have been made

• :r abc Read the file abc into current vi buffer, after the line the cursor is on (try :r croc to read in a
copy of the croc file)

• :!cmd Execute command cmd (who, sort, ls, etc.)

Setting Options
Various options affect the "feel" of vi . You can display all the various options that can be set using the
colon command :set all. You can also use set to change options.

For example, if you want to see line numbers for the lines in the file you're editing, use the command :set
number. To turn off line numbering, use the command :set nonumber. Most options can be abbreviated; :set
nu turns on line numbering and :set nonu turns off line numbering.

If you :set nomagic, the special meanings of regular expression characters (period, asterisk, square bracket,
etc.) are switched off. Use :set magic to restore the special meanings.

Some options take a value. For example, :set tabstop=4 causes tabs to be displayed as four space characters,
rather than the usual eight.

If you find you always want certain options set certain ways, you can put the set commands you want ina
file .exrc, or you can set up the environment variable EXINIT to specify the options you want.

For example, if your login shell is Bourne shell, this line could go in your .profile file:

 EXINIT='set nomagic nu tabstop=4'; export EXINIT

If your login shell is a C shell, this line could go in your .login file:

 setenv EXINIT 'set nomagic nu tabstop=4'

Vim Color Editor HOW-TO (Vi Im-
proved with syntax color highlighting)

32

Key Mappings
If you find you're performing a series of simple commands over and over, you can map the command series
to an unused command key using the :map command. If your mapping must include control characters
such as Return key (CTRL-M in ASCII) or the ESC (CTRL-[in ASCII) key, precede such characters with
CTRL-v to suppress their usual special meaning.

For example, this command maps CTRL-A to move the cursor forward 55 lines, then back up to the most
recent blank line, then change that blank line to a formfeed (CTRL-L) and three blank lines. That is, each
CTRL-A will paginate the next page, without splitting paragraphs across pages.

Note: In this command, each control character is shown as ^C, where C is some uppercase letter. For
example, CTRL-M is shown as ^M. Also, when you enter this command you will not see the CTRL-v
characters as shown: each CTRL-v merely suppresses the usual special meaning of the following control
character, so when you press the sequence ^V^M, all you will see on the screen is ^M. In this command,
^M is the Return key and ^[is the ESC key.

 :map ^A 55+?^$^V^Mcc^V^L^V^M^V^M^V^M^V^[

Editing Multiple Files
You can edit multiple files with vi by giving multiple file names as command line arguments:

 vi croc fatherw wknight

Three colon commands are used to move through the multiple files:

• :n Move to the next file in the argument list (you must save changes with :w or vi will print an error
message)

• :N Move to the previous file in the argument list (you must save changes with :w or vi will print an
error message)

• :rew Rewind and start over with the first file in the argument list

The :n, :N, and :rew commands are somewhat clumsy, but there are some important benefits: the contents
of named buffers ("a, "b, "c, etc.) are remembered across files, so you can use :n and :rew with p and P
to copy text back and forth between files. Also, the most recent search string for the / and ? commands
remembered across files, so you can do repetitive searches in multiple files rather easily.

For example, try the following experiment: First get out of vi , then execute vi with croc and wknight
as arguments:

 $ vi croc wknight

In croc, search for the

/the < CR >

Yank this line into buffer a:

"ayy

Vim Color Editor HOW-TO (Vi Im-
proved with syntax color highlighting)

33

Now go to the next file (you've made no change to croc, so this will work):

:n < CR >

Search for the "next" line containing the, without retyping the search string:

n

Put a copy of buffer a after the current line in wknight:

"ap

Move down two lines, and yank the current line into buffer b:

jj"byy

Save the changes to wknight

:w < CR >

Now, rewind to croc

:rew < CR >

Search again, and put a copy of buffer b after the found line:

n"bp

Save the changes, and exit vi

ZZ

Final Remarks
This tutorial was intended to introduce some of the vi capabilities that you might overlook in your system's
vi manual or that might not be mentioned in the manual (different systems have manuals of widely varying
quality).

You will not be a vi expert after reading this tutorial, but you will have a good appreciation of vi 's
capabilities. Only time and effort can make a vi expert. But the efficiency and universality of vi make
this effort pay off in the long run.

You may have decided you hate vi . So be it! But be aware that vi remains the standard UNIX text
editor - the one editor you can count on being available on every UNIX system you'll use - so even if you
prefer to use something else day-to-day, you'd be well advised to know the bare minimum vi material
covered in this tutorial.

Vim Reference Card

Vi states
Vi has 3 modes:

1. command mode - Normal and initial state; others return here (use ESC to abort a partially typed
command)

Vim Color Editor HOW-TO (Vi Im-
proved with syntax color highlighting)

34

2. input mode - entered by specific commands a i A I o O c C s S R and ended by ESC or abnormally
with interrupt

3. line mode - i.e. waiting for input after a : , / , ? or a ! command (end with CR , abort with CTRL-
c). CTRL is the control key: CTRL-c means "control c"

Shell Commands
1. TERM= code Puts a code name for your terminal into the variable TERM

2. export TERM Conveys the value of TERM (the terminal code) to any UNIX system program that
is terminal dependant.

3. tput init Initializes the terminal so that it will function properly with various UNIX system programs.

4. vi filename Accesses the vi screen editor so that you can edit a specified file.

5. vi file1 file2 file3 Enters three files into the vi buffer to be edited. Those files are file1, file2, and file3 .

6. view file Invoke vi editor on file in read-only mode

7. vi -R file Invoke vi editor on file in read-only mode

8. vi -r file Recover file and recent edits after system crash

Setting Options
1. :set option Activate option

2. :set option=value Assign value to option

3. :set no option Deactivate option

4. :set Display options set by user

5. :set all Display list of all current options, both default and those set by the user

6. :set option ? Display values of option

Notations used
Notations:

1. CTRL-c CTRL is the control key: CTRL-c means "control c"

2. CR is Carriage return (ENTER key)

Interrupting, cancelling
1. ESC end insert or incomplete command

2. CTRL-? CTRL is the control key: CTRL-? means "control ?" delete or rubout interrupts

3. CTRL-l reprint/refresh screen if CTRL-? scrambles it

Vim Color Editor HOW-TO (Vi Im-
proved with syntax color highlighting)

35

File Manipulation
1. ZZ Save the file and exit vi

2. :wq Save the file and exit vi

3. :w Write the current file

4. :w! Force write the current file, if file is read-only

5. :w name Write to file name

6. :q Exit from vi

7. :q! Force exit from vi (discarding changes)

8. :e name Edit file name

9. :e! reedit, discard changes

10.:e + name edit file name , starting at end

11.:e + n edit starting at line n

12.:e # edit alternate file

13.:n edit next file in arglist

14.:args list files in current filelist

15.:rew rewind current filelist and edit first file

16.:n args specify new arglist

17.:f show current file and line

18.CTRL-G synonym for :f , show current file and line

19.:ta tag to tag file entry tag

20.CTRL-] :ta, following word is tag

Movement
1. Arrows Move the cursor

2. CTRL-d Scroll half page down

3. CTRL-u Scroll half page up

4. CTRL-f Scroll a full page down

5. CTRL-b Scroll a full page up

6. :0 Move to start of file

7. :n Move to line number n

Vim Color Editor HOW-TO (Vi Im-
proved with syntax color highlighting)

36

8. :$ Move to end of file

9. 0 Move to start of line

10.̂ Move to first non-blank character

11.$ Move to end of line

12.CR Move to the start of next line

13.- Move to the start of previous line

14.% Find matching bracket

15.G goto line (last line default)

16.]] next section/function

17.[[previous section/function

Line Positioning
1. H Home window line

2. L Last window line

3. M Middle window line

4. + Next line, at first non-white

5. - Previous line, at first non-white

6. CR return, same as +

7. j next line, same column

8. k previous line, same column

Character positioning
1. 0 beginning of line

2. $ end of line

3. h forward

4. l backwards

5. SPACE same as l

6. fx find x forward

7. Fx find x backward

8. ; repeat last f F

9. , inverse of ;

Vim Color Editor HOW-TO (Vi Im-
proved with syntax color highlighting)

37

10.| to specified column

11.% find matching { or }

Words, sentences, paragraphs
1. w Word forward

2. b Word backward

3. e End of word

4.) To next sentence

5. (Back sentence

6. } To next paragraph

7. { Back paragraph

8. W Blank delimited word

9. B Back W

10.E To end of W

Marking and returning
1. `` (press twice the back-quote ` key) Previous context

2. '' (press twice the single-quote ` key) Previous context at first non-white in line

3. mx mark position with letter x

4. `x (back quote key and letter x) goto mark x

5. 'x goto mark x at first non-white in line

Corrections during insert
1. CTRL-h Erase last character

2. CTRL-w Erase last word

3. erase Press DELETE key, same as CTRL-h

4. kill Your kill key, erase input this line

5. \ Escapes CTRL-h, DELETE and kill

6. ESC Ends insertion, back to command

7. CTRL-? Interrupt, terminates insert

8. CTRL-d Backtab over autoindent

Vim Color Editor HOW-TO (Vi Im-
proved with syntax color highlighting)

38

9. CTRL-v Quote non-printing character

Adjusting the screen
1. CTRL-l Clear and redraw

2. CTRL-r retype, eliminate @lines

3. z-CR redraw, current line at window top

4. z- redraw, current line at window bottom

5. z. redraw, current line at window center

6. /pat/z- pat line bottom

7. tn Use n line window

8. CTRL-e Scroll window down 1 line

9. CTRL-y Scroll window up 1 line

Delete
1. x Delete the character under the cursor

2. X Delete the charater before the cursor

3. D Delete to the end of line

4. d^ Delete back to start of line

5. dd Delete the current line

6. ndd Delete n lines starting with the current one

7. dnw Delete n words starting from cursor

Insert, change
1. i Enter input mode inserting before the cursor

2. I Enter input mode inserting before the first non-blank character

3. a Enter input mode inserting after the cursor

4. A Enter input mode inserting after the end of the line

5. o Open a new line below current line and enter input mode

6. O Open a new line above current line and enter input mode

7. r Replace the character under the cursor (does NOT enter input mode)

8. R Enter input mode replacing characters

Vim Color Editor HOW-TO (Vi Im-
proved with syntax color highlighting)

39

9. C shift-c. Change rest of line

10.D shift-d. Delete rest of line

11.s Substitute chars

12.S Substitute lines

13.J Join lines

14.J Join lines

Copy and Paste
The "yank buffer" is filled by EVERY delete command, or explicitely by Y and yy .

1. Y Copy the current line to the yank buffer

2. n yy Copy n lines starting from the current to the yank buffer

3. p Paste the yank buffer after the cursor (or below the current line)

4. P Paste the yank buffer before the cursor (or above the current line)

5. " x p Put from buffer x

6. " x y Yank to buffer x

7. " x d Delete into buffer x

Operators (use double to affect lines)
1. d delete

2. c change

3. < left shift

4. > right shift

5. ! filter through command

6. = indent for LISP

7. y yank text to buffer

Search and replace
1. / text Search forward for text

2. ? text Search backward for text

3. n Repeat the last search in the same direction

4. N Repeat the last search in the reverse direction

5. / Repeat the last search forward

Vim Color Editor HOW-TO (Vi Im-
proved with syntax color highlighting)

40

6. ? Repeat the last search backward

7. [addr] s/from/to/ [g] Search for the occurence of from and replace it with to in the current line,
or in the range addr (two line numbers seperated by command; 1,$ is the whole file). Replaces one
occurrence per line, or all occurrences if g is specified. For example, :3,20s/someword/anotherword/g
Will replace "someword" with "anotherword" starting from line 3 to line 20. 'g' is global means replace
all occurrences of "someword".

General
1. :sh Forks a shell (to be exited with CTRL-d)

2. :! command Forks a shell to execute command

3. :set number Switch on line numbering

4. :set nonumber Switch off line numbering

Line Editor Commands
1. : Tells vi that the next commands you issue will be line editor commands.

2. :sh Temporarily returns to the shell to perform some shell commands without leaving vi .

3. CTRL-d Escapes the temporary return to the shell and returns to vi so you can edit the current window.

4. : n Goes to the n th line of the buffer.

5. : x,z w filename Writes lines from the numbers x through the number z into a new file called
filename .

6. :$ Moves the cursor to the beginning of the last line in the buffer.

7. :.,$d Deletes all the lines from the current line to the last line

8. :r filename Inserts the contents of the file filename under the current line of the buffer.

9. :s /text/new_text/ Replaces the first instance of text on the current line with new_text

10.:s /text/new_text/g Replaces the every occurrence of text on the current line with new_text

11.:g /text/s//new_text/g Changes every occurrence of text on the buffer to new_text .

Other commands
1. u Undo the last change

2. U Restore the current line

3. ~ Change case

4. J Join the currentline with the next line

5. . Repeat last text changing command

6. CTRL-g Show file name and line number

Vim Color Editor HOW-TO (Vi Im-
proved with syntax color highlighting)

41

Vim as XML Editor
If you do lot of XML editing with Vim, refer to this mini-howto on Vim as XML Editor at http://
www.pinkjuice.com/howto/vimxml [http://www.pinkjuice.com/howto/vimxml] . See also Vim XML
Wiki page [http://www.protocol7.com/svg-wiki/?VimXml] , Devin Weaver "Script Karma" - xmledit
[http://vim.sourceforge.net/scripts/script.php?script_id=301] a filetype plugin to help edit XML, HTML,
and SGML documents, Vim.org XML scripts [http://www.vim.org/scripts/script_search_results.php?
keywords=xml] , Vim.org XML tips [http://www.vim.org/tips/tip_search_results.php?keywords=xml] ,
w3.org - Well formed XML doc [http://www.w3.org/TR/REC-xml.html#sec-well-formed] .

Matchit.vim & Xmledit.vim
With XML syntax recognition turned on, you can find the matching XML tag by placing the cursor on the
XML tag (but within the < and >) and then pressing the % key. Note, however that you should not place the
cursor on the < or > since vim will simply match the < or > . Visit http://www.vim.org/scripts/script.php?
script_id=39 [www.vim.org/scripts/script.php?script_id=39] For installation instructions enter:

vim somefile.txt
:help add-local-help
rpm -qa | grep -i vim
rpm -ql vim-minimal | less
rpm -ql vim-common | less
ls /usr/share/vim/vim61/macros/matchit.*
mkdir -p ~/.vim/plugin
cp /usr/share/vim/vim61/macros/matchit.vim ~/.vim/plugin/
mkdir ~/.vim/doc
cp /usr/share/vim/vim61/macros/matchit.txt ~/.vim/doc/
vim some-xml-file.xml # And test out the % key to match the tags

For xmledit.vim download the tar ball from http://www.vim.org/scripts/script.php?script_id=301 [http://
www.vim.org/scripts/script.php?script_id=301] and unpack this into ~/.vim for Unix and into $VIM/vim-
files folder for MS DOS or MS Windows.

 cd ~/.vim
 tar xvf xmledit.tar.gz
 ln ftplugin/*.xml ~/.vim/plugin
 vim some-xml-file.xml # And test out the autocreation of tags in insert mode

Vim and Docbook - Useful key mappings
This is from Ashley - gVim and Docbook [http://supportweb.cs.bham.ac.uk/documentation/tutorials/doc-
system/build/tutorials/gvim/gvim.html#gVim-DocBook] . One can write DocBook documents at an in-
credably faster rate if one maps element entry to key bindings. A directory called xml was created in the
ftplugins directory of the gVim installation. Into this was placed a vim file that contained macros to map
key combinations to element insertions. Comma preceeds each mapping, this is convenient because if the
user types comma followed by space, nothing happens, but if the user types comma followed by one of
the mapped key combinations an element is inserted. Most of the mappings are intuitive, for example,
ulink is mapped onto ,-u-l. The mappings are very easy to customise and the improvement in document
creation speed is amazing.

http://www.pinkjuice.com/howto/vimxml
http://www.pinkjuice.com/howto/vimxml
http://www.pinkjuice.com/howto/vimxml
http://www.protocol7.com/svg-wiki/?VimXml
http://www.protocol7.com/svg-wiki/?VimXml
http://www.protocol7.com/svg-wiki/?VimXml
http://vim.sourceforge.net/scripts/script.php?script_id=301
http://vim.sourceforge.net/scripts/script.php?script_id=301
http://www.vim.org/scripts/script_search_results.php?keywords=xml
http://www.vim.org/scripts/script_search_results.php?keywords=xml
http://www.vim.org/scripts/script_search_results.php?keywords=xml
http://www.vim.org/tips/tip_search_results.php?keywords=xml
http://www.vim.org/tips/tip_search_results.php?keywords=xml
http://www.w3.org/TR/REC-xml.html#sec-well-formed
http://www.w3.org/TR/REC-xml.html#sec-well-formed
www.vim.org/scripts/script.php?script_id=39
www.vim.org/scripts/script.php?script_id=39
www.vim.org/scripts/script.php?script_id=39
http://www.vim.org/scripts/script.php?script_id=301
http://www.vim.org/scripts/script.php?script_id=301
http://www.vim.org/scripts/script.php?script_id=301
http://supportweb.cs.bham.ac.uk/documentation/tutorials/docsystem/build/tutorials/gvim/gvim.html#gVim-DocBook
http://supportweb.cs.bham.ac.uk/documentation/tutorials/docsystem/build/tutorials/gvim/gvim.html#gVim-DocBook
http://supportweb.cs.bham.ac.uk/documentation/tutorials/docsystem/build/tutorials/gvim/gvim.html#gVim-DocBook

Vim Color Editor HOW-TO (Vi Im-
proved with syntax color highlighting)

42

XML Validation
To check for well-formedness of your XML document just do

:!xmllint --valid --noout %

And the --dtdvalid dtd allows validation of the document(s) against a given DTD.

Build Your "WYSIWYG" HTML Editor With Vi &
Netscape

This section was written by Manas K Laha [http://www.pcquest.com/content/lin-
ux/handson/101100102.asp] , Aerospace Engineering Department, IIT Kharagpur, India. This is about a
quick and dirty way to create an HTML editor combining vi and Netscape.

If vi (or one of its friends, such as elvis or vim) is your favorite text editor, as it is mine, you must surely
long for a way of creating HTML with it quickly and comfortably. And if with that you could get the
convenience of "WYSIWYG", wouldn't you just jump at it? All this is indeed possible, and here we'll
see how.

The major hurdles I've found in editing HTML with vi are

1. The need to write HTML tags. It appears that there are more tags to be written than displayable matter.
Moreover, some of these tags have a syntax that is hard to remember.

2. The need to keep track of whether an opening tag has been given its proper closing tag at the right place
(for example, whether a < ol> has a matching < /ol>).

3. Difficulty in readily identifying matching pairs of tags.

These can be got around using some of the less used features of vi and friends. In this article I shall use
vim for definiteness, but the ideas should apply to classic vi and its other look-alikes as well.

The "abbreviation" feature of vim:

Vim has a feature whereby it is possible to assign a keystroke sequence to represent a string of characters
in input mode. This is the ab colon command. For example, the command

:ab tT <tt> </tt>

creates an abbreviation, named tT, for the sequence of characters < tt>< /tt>. Then, in input mode, as soon
as the characters tT are typed, they are replaced by the string < tt>< /tt>. Complicated HTML tags may
also be abbreviated. The ab definition

:ab aH <!? { ?>^M
Comments here^M^D <!? } ?>

makes aH the shorthand for

http://www.pcquest.com/content/linux/handson/101100102.asp
http://www.pcquest.com/content/linux/handson/101100102.asp
http://www.pcquest.com/content/linux/handson/101100102.asp

Vim Color Editor HOW-TO (Vi Im-
proved with syntax color highlighting)

43

<!? { ?>
Comments here
<!? } ?>

where the two ^M s cause the two line breaks and the ^D causes the closing < /a> tag to be indented back
to be in line with the opening < a> tag. (Indenting the matter enclosed within a matching pair of tags makes
reading and editing the raw HTML easier.) The syntax of the tag is outlined, as an aid to memory. The
'Comments here' line is a placeholder, to be replaced with appropriate text.

What are the { and } within HTML comments doing there? Aha! Those are for matching the opening and
closing tags (in this case < a> and < /a>). The bracket matching feature of vi (using the % key) is readily
usable for the purpose. This can be really helpful when the opening and closing tags are many lines apart
and cannot be readily matched 'by eye', such as can be the case with the < ol>< /ol> pair.

This technique can be extended to generate fancier HTML, for example with frames. All one has to do is
to define the appropriate abbreviations. For example, the definition

:ab fS <frameset scrolling=?no?
frameborder=?0? framespacing=?0?
cols=?20%,80%?><!? { ?>^M </frameset> <!?
} ?>

makes the string fS a convenient abbreviation for the pair of tags:

<frameset scrolling=?no? frameborder=?0?
framespacing=?0? cols=?20%,80%?> <!? { ?>
</frameset><!? } ?>

Some tags do not like comments to come in between the opening and closing pair. The ones I have found
are < title>< /title> and < a\ href=?mailto:?> < /a>. Luckily, in both these the opening and closing pair are
never very far apart, so the braces-within-comments feature is not needed.

Sample .vimhtmlrc File
How do I tell vim about these abbreviations? I put all of them (and a command to set some of vim's
variables) in a file, which I call .vimhtmlrc and which resides in my home directory, and invoke

vim -u ~/.vimhtmlrc index.html

where index.html is the HTML file I want to edit. This is what my .vimhtmlrc file looks like:

ab aH <!? { ?>^M
Comments here^M^D <!? } ?>

ab aM ^M Comments
here^M^D

ab bO <body bgcolor=#e0e0e0
text=#000000><!? { ?>^M </body> <!? } ?>

Vim Color Editor HOW-TO (Vi Im-
proved with syntax color highlighting)

44

ab bR

ab cE <center bgcolor=#e0e0e0
text=#000000><!? { ?>^M </center> <!? } ?>

ab cM <!? ^M ?>

ab cO <code> <!? { ?>^M </code> <!? } ?>

ab dL <dl><!? { ?>^M</dl><!? } ?>

ab dT <dt>

ab fO ^M

ab h1 <h1><!? { ?>^M Heading size
1^M^D </h1> <!? } ?>

ab h2 <h2><!? { ?>^M Heading size
2^M^D </h2><!? } ?>

ab h3 <h3><!? { ?>^M Heading size
3^M^D </h3> <!? } ?>

ab hD <head> <!? { ?>^M </head> <!? } ?>

ab hR <hr>

ab hT <html> <!? { ?>^M </html> <!? } ?>

ab iM

ab lI <!? { ?>^M <!? } ?>

ab oL <!? { ?>^M <!? } ?>

ab pR <pre> <!? { ?>^M </pre> <!? } ?>

ab tD <td> <!? { ?>^M </td> <!? } ?>

ab tL <title>^M Title here^M^D </title>

ab tS <table bgcolor=?#d0d0d0?> <!? {
?>^M </table> <!? } ?>

ab tT <tt> </tt>

ab uL <!? { ?>^M <!? } ?>

ab xB

ab xI <i> </i>

ab xP <p> <!? { ?>^M </p> <!? } ?>

Vim Color Editor HOW-TO (Vi Im-
proved with syntax color highlighting)

45

se ai aw sw=4 ts=4 wm=10 showmode
showmatch ruler magic

When the ab commands are put in a file, to be read in by vim at startup, then the leading :is not needed.
The last line is a command to set some of vim 's variables. Here is what they mean:

se set: tells vim to activate the options that follow autoindent: begin the next
ai line in the same column as this one (and not from column 1)
aw autowrite: automatically write file to disk when it changes on a TAB key, move cursor 4
ts=4 characters (and not the normal 8); this is my personal preference
sw=4 number of spaces to use for indentation chars from right margin where
wm=10 line wrapping starts (useful if one is writing running text and not programs)
 message on status line to show
showmode current mode (for the novice, actually) briefly jump to matching
 opening '(' or '{' or '[' as
showmatch soon as a closing ')' or '}' or ']' is typed; beep if no match
ruler show cursor line and column in status line some characters, such as '.'
magic and '*', have special meanings in search and replace patterns.

Typing help in a vim window shows the explanations for these options and many more besides.

WYSIWYG
'WYSIWYG' has two parts to it. To begin with is the fact that Netscape under Unix (and Linux) can be
controlled remotely.

That is, you may control the behavior of an already running Netscape through commands of the form

netscape -remote -noraise 'openFile(/home/mlaha/html/index.html)'

(If no Netscape is running, the command just exits with an error message.) This command caus-
es the Netscape browser window to attempt to open the file /home/mlaha/html/index.html. For more
on remote controlling Netscape, see "http://home.netscape.com/newsref/std/x-remote.html" [http://
home.netscape.com/newsref/std/x-remote.html] .

And then, there is atchange . Jeffrey Copeland and Jeffrey Haemer ("http://alumni.caltech.edu/~copeland/
work/edit-web.html" [http://alumni.caltech.edu/~copeland/work/edit-web.html] , "ftp://ftp.ncifcrf.gov/
pub/delila/atchange" [ftp://ftp.ncifcrf.gov/pub/delila/atchange] and "http://www.lecb.ncifcrf.gov/~toms/
atchange.html" [http://www.lecb.ncifcrf.gov/~toms/atchange.html]) describe a little shell script, called
atchange, that waits in the background for a named file to change and then invokes a specified command.
Thus,

atchange index.html 'netscape -noraise -remote 'openFile(/home/mlaha/html/index.html)'' &

would cause atchange to run in the background, watching the file index.html and, as soon as it changed,
ask Netscape to display it afresh. If you were editing index.html with vi, then, when you saved it (with :w,
say), atchange would spring into action and Netscape would update its display.

If you wish to edit another HTML file, you have to quit vim, kill the current invocation of atchange, then
start it again with the name of the new file in place of index.html and begin editing that file with vim.

http://home.netscape.com/newsref/std/x-remote.html
http://home.netscape.com/newsref/std/x-remote.html
http://home.netscape.com/newsref/std/x-remote.html
http://alumni.caltech.edu/~copeland/work/edit-web.html
http://alumni.caltech.edu/~copeland/work/edit-web.html
http://alumni.caltech.edu/~copeland/work/edit-web.html
ftp://ftp.ncifcrf.gov/pub/delila/atchange
ftp://ftp.ncifcrf.gov/pub/delila/atchange
ftp://ftp.ncifcrf.gov/pub/delila/atchange
http://www.lecb.ncifcrf.gov/~toms/atchange.html
http://www.lecb.ncifcrf.gov/~toms/atchange.html
http://www.lecb.ncifcrf.gov/~toms/atchange.html

Vim Color Editor HOW-TO (Vi Im-
proved with syntax color highlighting)

46

Other 'WYSIWYG' uses
As you may have guessed, atchange can be used in other instances, too. You can make a handy
'WYSIWYG' LaTeX editor by having atchange monitor your LaTeX source and, when it changed, run the
necessary programs to convert it to Postscript. The 'WYSIWYG' capability is provided in this case by in-
voking Ghostview with the monitoring option (-watch) that causes it to redisplay its current Postscript file
whenever that file changes. Thus, every time you saved your LaTeX source file in the editor, the Postscript
output with the latest changes would be automatically displayed in the Ghostscript window.

Source code for atchange

#!/usr/local/bin/perl
by Jeff Haemer
and a tip o' the hat to Tom Schneider
who wrote the original version as a shell script
version = 2.07 of atchange 1999 Dec 30
1999 Dec 18: Added shell call to /bin/csh so that
atchange works under Linux.
1999 Feb 5: By setting the PERLCSH variable, the new shell can tell
it has been called by atchange.
The test inside the .cshrc is:
#if ((! $?PERLCSH) && $?prompt) then
stty erase '^H'
set prompt = "`uname -n` \!% "
#endif
This is necessary under Sun Solaris 2.6 because otherwise the
call to stty gives an error message now.
previous change: 1997 Jan 9
delay time is 0.25 seconds
For current version and other information about this program, see:
http://www.lecb.ncifcrf.gov/~toms/atchange.html
Tom Schneider
National Cancer Institute
Laboratory of Mathematical Biology
Frederick, Maryland 21702-1201
toms@ncifcrf.gov
http://www.lecb.ncifcrf.gov/~toms/
1999 Dec 30: James Haefner (jhaefner@biology.usu.edu)
has found that some changes are needed to make atchange
work under Linux. See the web site for details.
This code will be revised when a good solution is found.
$0 =~ s(.*/)(); # basename
$usage = "usage: $0 filename cmd | $0 command_file";
@ARGV || die $usage; # check for proper invocation
This allows the .cshrc to know that atchange has called it:
$ENV{'PERLCSH'} = "TRUE";
Haefner Suggestion 1999 Dec 18:
##if default SHELL is sh or csh or tcsh use the following line
###$shell = $ENV{"SHELL"} ? $ENV{"SHELL"} : "/bin/sh";
##if default SHELL is bash (eg, Linux) use the following line
1999 Dec 28 - this is not a good idea - untestable by me
$shell = "/bin/csh";

Vim Color Editor HOW-TO (Vi Im-
proved with syntax color highlighting)

47

$shell = $ENV{"SHELL"} ? $ENV{"SHELL"} : "/bin/sh";
open(SHELL, "|$shell") || die "Can't pipe to $shell: $!";
select(SHELL); $| = 1;
if (@ARGV > 1) { # it's a file and a command
 $file = shift; # peel off the filename
 $cmd{$file} = join(" ", @ARGV) . "\n"; # and the command
 $old{$file} = (stat($file))[9]; # mod time.
} else { # it's a program
 open(PGM, shift) || die "Can't open $_: $!";
 $/ = ""; # paragraph mode
 while(<PGM>) { # first read the program
 s/#.*\n/\n/g;
 ($file, $cmd) = /(\S*)\s+([^\000]+)/;
 $cmd{$file} = $cmd;
 unless ($file) { print $cmd{$file}; next; }
 if ($file && ! $cmd{$file}) { warn "odd line"; next; };
 $old{$file} = (stat($file))[9]; # mod time.
 }
}
while(1) {
 # sleep 1; # wait a second, then
 select(undef, undef, undef, 0.25); # wait a quarter second, then
 foreach (keys %cmd) { # rip through the whole list
 atchange($_);
 }
}
close(SHELL);
sub atchange { # if $file has changed, do $cmd{$file}
 my($file) = @_;
 my($new);
 $new = (stat($file))[9];
 return 0 if ($old{$file} == $new);
 while (1) { # wait until it stops changing
 $old{$file} = $new;
 sleep 1;
 $new = (stat($file))[9];
 if ($old{$file} == $new) {
 print $cmd{$file};
 return 1;
 }
 }
}

HTML Beautifier Inside Vim : Program Tidy
While editing HTML files with Vim, it is possible to automatically check syntax errors and beautify the
code with program like Tidy

(Visit Raggett Tidy [http://www.w3.org/People/Raggett/tidy] , Tidy Project [http://tidy.sourceforge.net]
and Beatifier HOWTO [http://www.tldp.org/HOWTO/C-C++Beautifier-HOWTO]).

Inside Vim (gvim), click on menu Tools->'Set Compiler'->'Tidy' and give command ":make". The :make
command will run the tidy and show all errors if any. You can also edit the setting file tidy.vim and
customize:

http://www.w3.org/People/Raggett/tidy
http://www.w3.org/People/Raggett/tidy
http://tidy.sourceforge.net
http://tidy.sourceforge.net
http://www.tldp.org/HOWTO/C-C++Beautifier-HOWTO
http://www.tldp.org/HOWTO/C-C++Beautifier-HOWTO

Vim Color Editor HOW-TO (Vi Im-
proved with syntax color highlighting)

48

 ls /usr/share/vim/vim61/compiler
 cd /usr/share/vim/vim61/compiler
 cp tidy.vim tidy.vim.backup
 man tidy # And the manual page of tidy and see options..
 tidy -h | less # See help about using tidy
 vi tidy.vim

See also related HTML validators section (HTML Beautifier section) in Beatifier HOWTO [http://
www.tldp.org/HOWTO/C-C++Beautifier-HOWTO]

Emacs - Old Habits Die Hard !
If you were using Emacs before and now started using Vim & vi, then this mistake is commited very often
and will be quite annoying to you.

You hit "control x" "control s" to save the file and Vim stops dead. How to rescue without killing the
xwindow containing the vim process, and recovering. You will see that there is no response at the keyboard.

The explanation for this behaviour is : It is not the feature of vim but it is the feature of the xterm 'terminal'.
The "control s" means stop feeding to terminal output, so you do not see any output. To get out of it do
"control q" (to quit out of stop output). This happens only in vim/vi and not in gvim (graphical Vim).

Also in xterm, at the bash prompt type something and do "control s" and type something you will not see
output. Now type "control q" you will see output.

Related URLs
Related VIM URLs are at -

• C and C++ Beautifer "http://www.metalab.unc.edu/LDP/HOWTO/C-C++Beautifier-HOWTO.html"
[http://www.metalab.unc.edu/LDP/HOWTO/C-C++Beautifier-HOWTO.html]

• Linux goodies main site is at "http://milkyway.has.it" [http://milkyway.has.it] and mirror at
"http://www.milkywaygalaxy.freeservers.com" [http://www.milkywaygalaxy.freeservers.com] Mir-
ror sites are at - angelfire [http://www.angelfire.com/country/aldev0] , geocities [http://
www.geocities.com/alavoor/index.html] , virtualave [http://aldev0.virtualave.net] , Fortunecity
[http://members.fortunecity.com/aldev] , Freewebsites [http://aldev.freewebsites.com] , Tripod
[http://members.tripod.lycos.com/aldev] , 101xs [http://www.101xs.com/101xs/aldev] , 50megs
[http://aldev0.50megs.com] ,

Other Formats of this Document
This document is published in 14 different formats namely - DVI, Postscript, Latex, Adobe Acrobat PDF,
LyX, GNU-info, HTML, RTF(Rich Text Format), Plain-text, Unix man pages, single HTML file, SGML
(Linuxdoc format), SGML (Docbook format), MS WinHelp format.

This howto document is located at -

• "http://www.linuxdoc.org" [http://www.linuxdoc.org] and click on HOWTOs and search for howto
document name using CTRL+f or ALT+f within the web-browser.

You can also find this document at the following mirrors sites -

http://www.tldp.org/HOWTO/C-C++Beautifier-HOWTO
http://www.tldp.org/HOWTO/C-C++Beautifier-HOWTO
http://www.tldp.org/HOWTO/C-C++Beautifier-HOWTO
http://www.metalab.unc.edu/LDP/HOWTO/C-C++Beautifier-HOWTO.html
http://www.metalab.unc.edu/LDP/HOWTO/C-C++Beautifier-HOWTO.html
http://milkyway.has.it
http://milkyway.has.it
http://www.milkywaygalaxy.freeservers.com
http://www.milkywaygalaxy.freeservers.com
http://www.angelfire.com/country/aldev0
http://www.angelfire.com/country/aldev0
http://www.geocities.com/alavoor/index.html
http://www.geocities.com/alavoor/index.html
http://www.geocities.com/alavoor/index.html
http://aldev0.virtualave.net
http://aldev0.virtualave.net
http://members.fortunecity.com/aldev
http://members.fortunecity.com/aldev
http://aldev.freewebsites.com
http://aldev.freewebsites.com
http://members.tripod.lycos.com/aldev
http://members.tripod.lycos.com/aldev
http://www.101xs.com/101xs/aldev
http://www.101xs.com/101xs/aldev
http://aldev0.50megs.com
http://aldev0.50megs.com
http://www.linuxdoc.org
http://www.linuxdoc.org

Vim Color Editor HOW-TO (Vi Im-
proved with syntax color highlighting)

49

• "http://www.caldera.com/LDP/HOWTO" [http://www.caldera.com/LDP/HOWTO]

• "http://www.linux.ucla.edu/LDP" [http://www.linux.ucla.edu/LDP]

• "http://www.cc.gatech.edu/linux/LDP" [http://www.cc.gatech.edu/linux/LDP]

• "http://www.redhat.com/mirrors/LDP" [http://www.redhat.com/mirrors/LDP]

• Other mirror sites near you (network-address-wise) can be found at "http://www.linuxdoc.org/
mirrors.html" [http://www.linuxdoc.org/mirrors.html] select a site and go to directory /LDP/HOW-
TO/xxxxx-HOWTO.html

• You can get this HOWTO document as a single file tar ball in HTML, DVI, Postscript or SGML formats
from - "ftp://www.linuxdoc.org/pub/Linux/docs/HOWTO/other-formats/" [ftp://www.linuxdoc.org/
pub/Linux/docs/HOWTO/other-formats/] and "http://www.linuxdoc.org/docs.html#howto" [http://
www.linuxdoc.org/docs.html#howto]

• Plain text format is in: "ftp://www.linuxdoc.org/pub/Linux/docs/HOWTO" [ftp://
www.linuxdoc.org/pub/Linux/docs/HOWTO] and "http://www.linuxdoc.org/docs.html#howto"
[http://www.linuxdoc.org/docs.html#howto]

• Single HTML file format is in: "http://www.linuxdoc.org/docs.html#howto" [http://
www.linuxdoc.org/docs.html#howto]

Single HTML file can be created with command (see man sgml2html) - sgml2html -split 0
xxxxhowto.sgml

• Translations to other languages like French, German, Spanish, Chinese, Japanese are in
"ftp://www.linuxdoc.org/pub/Linux/docs/HOWTO" [ftp://www.linuxdoc.org/pub/Linux/docs/HOW-
TO] and "http://www.linuxdoc.org/docs.html#howto" [http://www.linuxdoc.org/docs.html#howto]
Any help from you to translate to other languages is welcome.

The document is written using a tool called "SGML-Tools" which can be got from - "http://
www.sgmltools.org" [http://www.sgmltools.org] Compiling the source you will get the following com-
mands like

• sgml2html xxxxhowto.sgml (to generate html file)

• sgml2html -split 0 xxxxhowto.sgml (to generate a single page html file)

• sgml2rtf xxxxhowto.sgml (to generate RTF file)

• sgml2latex xxxxhowto.sgml (to generate latex file)

Acrobat PDF format
PDF file can be generated from postscript file using either acrobat distill or Ghostscript . And postscript
file is generated from DVI which in turn is generated from LaTex file. You can download distill software
from "http://www.adobe.com" [http://www.adobe.com] . Given below is a sample session:

bash$ man sgml2latex
bash$ sgml2latex filename.sgml
bash$ man dvips
bash$ dvips -o filename.ps filename.dvi
bash$ distill filename.ps

http://www.caldera.com/LDP/HOWTO
http://www.caldera.com/LDP/HOWTO
http://www.linux.ucla.edu/LDP
http://www.linux.ucla.edu/LDP
http://www.cc.gatech.edu/linux/LDP
http://www.cc.gatech.edu/linux/LDP
http://www.redhat.com/mirrors/LDP
http://www.redhat.com/mirrors/LDP
http://www.linuxdoc.org/mirrors.html
http://www.linuxdoc.org/mirrors.html
http://www.linuxdoc.org/mirrors.html
ftp://www.linuxdoc.org/pub/Linux/docs/HOWTO/other-formats/
ftp://www.linuxdoc.org/pub/Linux/docs/HOWTO/other-formats/
ftp://www.linuxdoc.org/pub/Linux/docs/HOWTO/other-formats/
http://www.linuxdoc.org/docs.html#howto
http://www.linuxdoc.org/docs.html#howto
http://www.linuxdoc.org/docs.html#howto
ftp://www.linuxdoc.org/pub/Linux/docs/HOWTO
ftp://www.linuxdoc.org/pub/Linux/docs/HOWTO
ftp://www.linuxdoc.org/pub/Linux/docs/HOWTO
http://www.linuxdoc.org/docs.html#howto
http://www.linuxdoc.org/docs.html#howto
http://www.linuxdoc.org/docs.html#howto
http://www.linuxdoc.org/docs.html#howto
http://www.linuxdoc.org/docs.html#howto
ftp://www.linuxdoc.org/pub/Linux/docs/HOWTO
ftp://www.linuxdoc.org/pub/Linux/docs/HOWTO
ftp://www.linuxdoc.org/pub/Linux/docs/HOWTO
http://www.linuxdoc.org/docs.html#howto
http://www.linuxdoc.org/docs.html#howto
http://www.sgmltools.org
http://www.sgmltools.org
http://www.sgmltools.org
http://www.adobe.com
http://www.adobe.com

Vim Color Editor HOW-TO (Vi Im-
proved with syntax color highlighting)

50

bash$ man ghostscript
bash$ man ps2pdf
bash$ ps2pdf input.ps output.pdf
bash$ acroread output.pdf &

Or you can use Ghostscript command ps2pdf . ps2pdf is a work-alike for nearly all the functionality of
Adobe's Acrobat Distiller product: it converts PostScript files to Portable Document Format (PDF) files.
ps2pdf is implemented as a very small command script (batch file) that invokes Ghostscript, selecting a
special "output device" called pdfwrite . In order to use ps2pdf, the pdfwrite device must be included in
the makefile when Ghostscript was compiled; see the documentation on building Ghostscript for details.

Convert Linuxdoc to Docbook format
This document is written in linuxdoc SGML format. The Docbook SGML format supercedes the linuxdoc
format and has lot more features than linuxdoc. The linuxdoc is very simple and is easy to use. To convert
linuxdoc SGML file to Docbook SGML use the program ld2db.sh and some perl scripts. The ld2db output
is not 100% clean and you need to use the clean_ld2db.pl perl script. You may need to manually correct
few lines in the document.

• Download ld2db program from "http://www.dcs.gla.ac.uk/~rrt/docbook.html" [http://
www.dcs.gla.ac.uk/~rrt/docbook.html] or from "http://milkyway.has.it" [http://milkyway.has.it] and
mirror at Al Dev site [http://www.milkywaygalaxy.freeservers.com]

• Download the cleanup_ld2db.pl perl script from "http://milkyway.has.it" [http://milkyway.has.it] and
mirror at Al Dev site [http://www.milkywaygalaxy.freeservers.com]

The ld2db.sh is not 100% clean, you will get lots of errors when you run

 bash$ ld2db.sh file-linuxdoc.sgml db.sgml
 bash$ cleanup.pl db.sgml > db_clean.sgml
 bash$ gvim db_clean.sgml
 bash$ docbook2html db.sgml

And you may have to manually edit some of the minor errors after running the perl script. For e.g. you
may need to put closing tag < /Para> for each < Listitem>

Convert to MS WinHelp format
You can convert the SGML howto document to Microsoft Windows Help file, first convert the sgml to
html using:

 bash$ sgml2html xxxxhowto.sgml (to generate html file)
 bash$ sgml2html -split 0 xxxxhowto.sgml (to generate a single page html file)

Then use the tool HtmlToHlp [http://javadocs.planetmirror.com/htmltohlpe.html] . You can also use
sgml2rtf and then use the RTF files for generating winhelp files.

Reading various formats
In order to view the document in dvi format, use the xdvi program. The xdvi program is located in tetex-
xdvi*.rpm package in Redhat Linux which can be located through ControlPanel | Applications | Publishing
| TeX menu buttons. To read dvi document give the command -

http://www.dcs.gla.ac.uk/~rrt/docbook.html
http://www.dcs.gla.ac.uk/~rrt/docbook.html
http://www.dcs.gla.ac.uk/~rrt/docbook.html
http://milkyway.has.it
http://milkyway.has.it
http://www.milkywaygalaxy.freeservers.com
http://www.milkywaygalaxy.freeservers.com
http://milkyway.has.it
http://milkyway.has.it
http://www.milkywaygalaxy.freeservers.com
http://www.milkywaygalaxy.freeservers.com
http://javadocs.planetmirror.com/htmltohlpe.html
http://javadocs.planetmirror.com/htmltohlpe.html

Vim Color Editor HOW-TO (Vi Im-
proved with syntax color highlighting)

51

 xdvi -geometry 80x90 howto.dvi man xdvi

And resize the window with mouse. To navigate use Arrow keys, Page Up, Page Down keys, also you
can use 'f', 'd', 'u', 'c', 'l', 'r', 'p', 'n' letter keys to move up, down, center, next page, previous page etc. To
turn off expert menu press 'x'.

You can read postscript file using the program 'gv' (ghostview) or 'ghostscript'. The ghostscript program is
in ghostscript*.rpm package and gv program is in gv*.rpm package in Redhat Linux which can be located
through ControlPanel | Applications | Graphics menu buttons. The gv program is much more user friendly
than ghostscript. Also ghostscript and gv are available on other platforms like OS/2, Windows 95 and NT,
you view this document even on those platforms.

• Get ghostscript for Windows 95, OS/2, and for all OSes from "http://www.cs.wisc.edu/~ghost" [http://
www.cs.wisc.edu/~ghost]

To read postscript document give the command -

 gv howto.ps ghostscript howto.ps

You can read HTML format document using Netscape Navigator, Microsoft Internet explorer, Redhat
Baron Web browser or any of the 10 other web browsers.

You can read the latex, LyX output using LyX a X-Windows front end to latex.

Copyright Notice
Copyright policy is GNU/GPL as per LDP (Linux Documentation project). LDP is a GNU/GPL project.
Additional restrictions are - you must retain the author's name, email address and this copyright notice
on all the copies. If you make any changes or additions to this document then you should notify all the
authors of this document.

http://www.cs.wisc.edu/~ghost
http://www.cs.wisc.edu/~ghost
http://www.cs.wisc.edu/~ghost

	Vim Color Editor HOW-TO (Vi Improved with syntax color highlighting)
	Table of Contents
	Introduction
	Before you Install
	Install Vim on Redhat Linux
	Install Vim on Debian GNU/Linux
	Install Vim on Unixes
	Install Vim on Microsoft Windows 95/NT
	Install Vim on VMS
	Download files
	Compiling
	Deploy
	Practical usage
	GUI mode questions

	Install Vim on OS/2
	Install Vim on Apple Macintosh

	Install Vim on Microsoft Windows 95/NT
	Install bash shell
	Edit bash_profile
	Setup Window colors

	MS Windows Notepad and Wordpad Imitator in Vim
	MS Windows EditPlus Features in Vim

	Setup gvim init files
	Sample gvimrc file
	Xdefaults parameters

	Color Syntax init files
	Auto source-in method
	Manual method

	VIM Usage
	Remote Vi - MS Windows QVWM Manager
	Vi companions
	Directory Tree 'tags'
	Ctags for ESQL
	Ctags for JavaScript programs, Korn, Bourne shells
	Debugger gdb

	Online VIM help
	Vim Home page and Vim links
	Vi Resources and Tips

	Vim Tutorial
	Vim Hands-on Tutorial
	Vi Tutorials on Internet

	Vi Tutorial
	Cursor Movement Commands
	Repeat Counts
	Deleting Text
	Changing Text
	Yanking (Copying) Text
	Filtering text
	Marking Lines and Characters
	Naming Buffers
	Substitutions
	Miscellaneous "Colon Commands"
	Setting Options
	Key Mappings
	Editing Multiple Files
	Final Remarks

	Vim Reference Card
	Vi states
	Shell Commands
	Setting Options
	Notations used
	Interrupting, cancelling
	File Manipulation
	Movement
	Line Positioning
	Character positioning
	Words, sentences, paragraphs
	Marking and returning
	Corrections during insert
	Adjusting the screen
	Delete
	Insert, change
	Copy and Paste
	Operators (use double to affect lines)
	Search and replace
	General
	Line Editor Commands
	Other commands

	Vim as XML Editor
	Matchit.vim & Xmledit.vim
	Vim and Docbook - Useful key mappings
	XML Validation

	Build Your "WYSIWYG" HTML Editor With Vi & Netscape
	Sample .vimhtmlrc File
	WYSIWYG
	Other 'WYSIWYG' uses
	Source code for atchange
	HTML Beautifier Inside Vim : Program Tidy

	Emacs - Old Habits Die Hard !
	Related URLs
	Other Formats of this Document
	Acrobat PDF format
	Convert Linuxdoc to Docbook format
	Convert to MS WinHelp format
	Reading various formats

	Copyright Notice

