
VB6 To Tcl mini-HOWTO
Mark Hubbard

Digital Connections Inc. (http://www.dcisite.com)

markh@dcisite.com

Revision History
Revision 1.0 2003-04-30 Revised by: tab
Initial release, reviewed by LDP
Revision 0.9 2003-04-08 Revised by: ppadala
Docbook conversion
Revision 0.8 2002-07-08 Revised by: mark
Original Document

A 15 Minute Tcl Tour For Visual Basic and VBScript Programmers

1. Introduction

VB and VBScript programmers: I know how you feel. Really. As a Microsoft Certified Professional in
VB6, I’ve been doing those languages for 7 years. I really liked them, until I got over the hump in Tcl
and started noticing the differences in flexibility that are shown here. If Tcl looks completely alien to
you, and you wonder how in the world they dreamed it up, hold it up beside a piece of C code, or a
UNIX shell script. I think those are what influenced it the most. UNIX shell scripts are a lot more
advanced than MS Windows shell scripts, even those on NT/2000. In fact, UNIX shell scripts have a lot
of the capabilities shown here. Both Tcl and shell script are based largely on string substitution. I chose
to study Tcl over shell scripts because Tcl code is much more verbose and English-like (and therefore
maintainable) than shell scripts, which tend to be cryptic. Some of the shell script command names are
just punctuation alone!

Tcl also runs easily on the "big 4" PC platforms (Linux, *nix, Windows, Mac) as well as some others.
This is promised by Java(tm), but delivered just as much (or more) by Tcl. And unlike Java and VB, Tcl
is free of any commercial influences (which is true freedom, not just "free of charge"); over the years its
development path sticks closer to what is really needed and wanted by you, its developers and potential
developers. There has been no parent company to steer Tcl away from that and toward the company’s
own interests. The most startling contrast of all between Tcl and VB is that Tcl may even overshadow all
the technical differences shown below.

1

VB6 To Tcl mini-HOWTO

2. Examples
Table 1. Differences

VB6 Tcl/Tk 8.3

Notes/differences

dim a as integer dim b as integer

a=1 : b=0

set a 1; set b 0

Separator for multiple commands per line. Tcl uses a semicolon. Multiple commands per line is
generally considered bad form, but the semicolon is also used to implement partial-line comments, so it
is illustrated here.

’ this is a whole line # this is a whole line

Full-line comment. Neither language requires a space after the comment marker.

dim a as integer

a=1 ’this is a partial-line comment set a 1 ;# this is a partial-line comment

Partial-line comment. Note the semicolon, used as if the comment is another command on that line.

dim s as string

s="/data/docs/vb6_to_tcl.htm"

set s {/data/docs/vb6_to_tcl.htm}

Assignment of a string quoted with braces. Most Tcl substitutions are NOT done in a string quoted with
braces. If the string contains variables or other items that would be substituted, these will be deferred,
but may be substituted at a later time. This is often done by commands that implement control
structures, such as ’if’ or ’while’. Once you start to get familiar with Tcl initially, try to thoroughly
understand this process because it’s important to getting ’good’ in Tcl.

(No equivalent) set s "/data/docs/vb6_to_tcl.htm"

Assignment of a quoted string. All Tcl substitutions (variables, commands, backslashes) are available
within a quoted string.

(No equivalent) set s /data/docs/vb6_to_tcl.htm

Assignment of an unquoted string. All Tcl substitutions (variables, commands, backslashes) are
available within an unquoted string. The interpreter simply takes the string as the third word in the set
command (second argument to the set command). This works if there is no whitespace or certain other
characters in the string. Use judiciously, especially when dealing with arbitrary data entered by the user.

2

VB6 To Tcl mini-HOWTO

dim s as string

s = vbCrLf &"Free software is not just" &vbCrLf _

&"about being ’free of charge’" &vbCrLf _

&"but about freedom to create" &vbCrLf _

&"and use the best possible tools." &vbCrLf

set s { Free software is not just

about being ’free of charge’

but about freedom to create

and use the best possible tools. }

Assignment of multi-line string. Note the more cluttered syntax in VB, which makes it more difficult to
read than the Tcl code.

dim s as string dim t as string

s = trim(t)

set s [string trim $t]

Assignment of function return value. The third word of this set command is surrounded in square
brackets. That means it is itself a command to be executed, with the result taking its place as the third
word of the set command.

dim s as string dim t as string

s = lcase(trim(t)) set s [string tolower [string trim $t]]

Assignment of function-of-function.

dim x as double dim y as double

x = (y + 10) * 5

set x [expr {($y + 10) * 5}]

Assignment of result of a mathematical expression. The Tcl interpreter relies on the expr command to
evaluate mathematical or logical expressions. Many other commands such as ’if’ or ’while’ also rely on
expr in their implementation. When used explicitly, expr should be passed a single argument which is a
string containing the expression (as shown here). That could get cumbersome in simple cases where
you just want to add a certain increment to a variable. Try using the incr command for that instead.

dim s as string s = s &"more text" append s {more text}

Append to an existing string. This is one of the slowest operations in VB, but is typically very speedy in
Tcl. Speed is important here because it is often done within loops or compound loops.

dim s as string dim t as string

dim u as string

s = "I’ll ask " & t & " to email " & trim(u) & " with the price"

set s "I’ll ask $t to email [string trim $u] with the price"

Building a string by substitution.

print "hello" Displays hello.

Print to console (VB actually prints to a form or to the debug window).

3

VB6 To Tcl mini-HOWTO

sub my_sub (byval a as integer, byval b as string)

debug.print "I’ll ask " & b end sub

function my_function (byval a as integer, _

optional byval b as string = "Mark") _

as string

my_function = "I’ll ask " & b

end function

proc my_sub {a b} {

puts "I’ll ask $b" }

proc my_function {a {b Mark}} {

return "I’ll ask $b" }

Procedure definition. Note that VB uses a separate syntax for subs and for functions. Tcl uses the proc
command to define either one. proc itself is an ordinary Tcl command that executes like any other
command. Its first argument is a Tcl list of the parameters of the new procedure. Its second argument is
a large string containing the body of the new procedure (actual Tcl script). Important: Tcl is case
sensitive in almost all operations, including all references to command names and variable names, as
well as (by default) string data comparisons. So a call to Proc would cause an error (capital P), as
would a call to My_Sub, or a reference to the variable B within my_sub (b was defined as lower case).

dim i as integer

if i < 0 then i = 0 else i = i - 1

if {$i < 0} {set i 0} {incr i -1}

alternate form

if {$i < 0} then {set i 0} else {incr i -1}

another alternate form

if {$i < 0} then { set i 0

} else { incr i -1

}

’if’ conditional execution. The Tcl ’if’ command ignores the optional keywords ’then’ and ’else’ if they
are present. Since both code blocks are just strings, they can be enclosed in braces and nicely formatted
as shown. To avoid syntax errors, also enclose any non-trivial test expression in braces. That way
substitutions (such as $i here) are deferred until the ’if’ command passes the test expression to the
expression parser.

dim i as integer i = 1

while i < 2000 i = i * 2 wend

’alternate form i = 1

do while i < 2000 i = i * 2

loop

set i 1 while {$i < 2000} {

set i [expr {$i * 2}] }

’while’ loop. This is similar to the Tcl ’if’ command in that it takes a test expression as its first
argument, followed by a string of code.

4

VB6 To Tcl mini-HOWTO

dim i as integer for i = 0 to 8

’nine passes 0-8 debug.print i

next

for {set i 0} {$i < 9} {incr i} {

nine passes 0-8 puts $i }

alternate form

for {set i 0} {$i <= 8} {incr i} {

again, nine passes 0-8 puts $i

} # another alternate form

for {set i 1} {$i <= 9} {incr i} {

nine passes 1-9 puts $i }

yet another alternate form - less readable

set i 1 for {} {[incr i] <= 9} {} {

nine passes 1-9 puts $i

}

’for’ loop with an integer counter. In Tcl (or any other language) this is equivalent to a ’while’ loop. In
some languages such as VB, ’for’ is not as flexible as ’while’. In Tcl this is not the case. Anything can
be used as the initialization code, the test-for-continuation expression, and the increment code. Those
pieces are not restricted to doing anything in particular, as you can see by the final example.

dim c as new collection

dim o as object c.add "Mark"

c.add "Roy" c.add "Brian"

for each o in c debug.print o

next

set c [list Mark Roy Brian]

foreach o $c { puts $o }

Loop through items in a data structure. In Tcl, a list data structure is used. VB has no direct equivalent
to that, but a collection object is the most similar. Note that VB collections are far slower than Tcl lists
in typical operations due to the overhead of using method calls to objects. Also note that there are far
more powerful and creative uses of the foreach command that are not shown here. Those have no direct
equivalent in VB.

dim s as string select case s

case "John"

debug.print "Mellencamp"

case "Steve"

debug.print "Tyler" case else

debug.print "Unknown" end select

switch -exact $s {

John {puts Mellencamp}

Steve {puts Tyler}

default {puts Unknown} }

One-of-many execution. Note the Tcl version is case sensitive. In VB it often is not, depending on the
’option compare’ that is in effect for the module. The -exact option specifies an exact string match is
required, as opposed to a pattern match or regular expression match (this has no bearing on case
sensitivity). Also note that there are more powerful and creative uses of the switch command that are
not shown here.

5

VB6 To Tcl mini-HOWTO

on error goto handler

debug.print a ’a is undeclared. ...

handler:

debug.print err.number, err.description

if [catch {

puts $a ;# a has not been set

} my_err] {

puts "error message: $my_err"

puts "stack trace: $errorInfo"

these things would have been shown

by the default error handler anyway.

} else { puts {All is well.}

the else block is optional. }

Error handling. In VB, handling errors concisely can be a problem, especially if different actions need
to be taken based on which part of the code failed. Tcl catch command neatly solves these problems. In
addition, Tcl automatically provides a stack trace of the code that failed. In VB, the stack trace has to
be explicitly built by the code, if a stack trace is desired while the application is in production (not in
the IDE). This is an advantage for Tcl when debugging in the field. Note that catch returns a boolean 1
or 0, which is typically used with ’if’, as shown here.

(No equivalent) set i [expr $e]

Pass an arbitrary mathematical expression to the interpreter for evaluation. This could be an expression
entered by the user, or composed by earlier code. This is one of the most powerful aspects of Tcl. It is
not available at all in VB.

(No equivalent) set s [eval $c]

Pass arbitrary code to the interpreter for execution. This could be some script entered by the user, or
composed by earlier code. This is one of the most powerful aspects of Tcl. It is not available at all in
VB.

(No equivalent) source my_script.tcl

Pass an arbitrary filename to the interpreter for execution of that file as a script. This is one of the most
powerful aspects of Tcl. It is not available at all in VB.

(No equivalent) set var_name marks_age

incr $var_name

Perform operations on an arbitrarily-chosen variable. The code shown here will increment the variable
marks_age. Its name (the string "marks_age") is stored in the variable var_name. In fact, all parts of
every command are subject to one pass of substitution by the interpreter just prior to execution. So any
part of any command (even the name of the command itself) can be varied based on data or any other
criteria. This is one of the most powerful aspects of Tcl. It is not available at all in VB.

6

VB6 To Tcl mini-HOWTO

dim s as string dim li as string

dim f_num as integer s = ""

f_num = freefile

open "my_file.txt" for input as #f_num

while not eof(f_num)

line input #f_num, li

s = s & li & vbCrLf wend close #f_num

set f [open my_file.txt r]

set s [read $f] close $f

Read whole file into a variable. This VB code is very slow for even moderately large files. And it has no
way to deal with newline characters in the data. The Tcl code accepts and preserves newlines in the
data. It also normalizes different newline characters into a single kind of standardized newline character
(by default). This code applies equally well to raw data, or Tcl lists, or Tcl arrays. The r in the open
command indicates ’read’ mode.

dim a(1 to 3) as string

a(1) = "Mark" a(2) = "Brian"

a(3) = "Roy"

’oops - need more elements

redim preserve a(1 to 10) as string

a(4) = "John"

array set a [list 1 Mark 2 Brian 3 Roy]

set a(4) John

now some different kinds of

element names in the same array

set a(Red) Hat

set a(Linux,RedHat) 7.1

Array vs. Array. VB arrays are restricted to using numbers as subscripts (subscripts, or indexes, are
called ’element names’ in Tcl). And the array must be declared to be a certain size - expanding it
requires a (slow) ’ReDim Preserve’ operation. Tcl arrays automatically expand, and they use a
super-efficient hash table implementation to handle even hundreds of thousands of elements with
superior speed. Tcl uses any kind of data for an element name, and different styles can even be mixed
within the same array. There are no restrictions on the number of dimensions in each element. Tcl
provides simple ways to iterate through the array, or through only certain elements in the array (by
filter). You can also obtain a full or partial list of the element names, and do other operations more
conveniently than in VB. To get just a portion of those capabilities in VB requires the use of a
collection or dictionary object. Each of those comes with its own quirks and pitfalls, such as even
higher overhead than a VB array.

(No equivalent) array set my_array $my_list

set my_list [array get my_array]

List to array, and back. Easy and rapid translation between these two primary data structures means that
the tools for each one can be applied to both. They multiply each other’s usefulness.

7

VB6 To Tcl mini-HOWTO

dim a(1 to 100) as string

dim i as integer dim f_num as integer

f_num = freefile

open "my_file.txt" for output as #f_num

for i=1 to 100 print #f_num, a(i)

next

close #f_num

set f [open my_file.txt w]

puts $f [array get a] close $f

Write whole array. In this VB code, and frequently in other VB code, newlines and possibly other
characters appearing in the data will cause errors during a later step (the read-back). This becomes a
problem whenever your code deals with arbitrary data entered by the user. In Tcl they do not - the data
is kept "clean" at all times. In addition, various combinations of carriage return (0x0D or decimal 13)
and line-feed (0x0A or decimal 10) characters are automatically normalized by default. Note that these
two examples don’t produce identical output files. The Tcl example, like the VB, writes a plain text file.
But the Tcl file will be read back in (by Tcl) and automatically have the same number of elements,
same element names, etc.. The Tcl list data structure is used for this. Using it ensures that the data is
formatted in a concise, non-ambiguous, textual representation. It is also readable and writable by
humans.

(No equivalent) set f [open my_file.txt w]

puts $f [array get a red*] close $f

Write certain elements of an array. In the VB, a collection or dictionary object would have to be used
for this. A loop would iterate through all the elements and select them as appropriate. In the Tcl, the
array’s name is a and a string pattern of red* (case sensitive) is used as a filter to select elements at
high speed.

(No equivalent) set my_list [lsort $my_list]

Sort a list. The sort can be reversed, or ordered by numeric value, etc. It can also order a list of sublists
using an index element. Tcl contains a full suite of commands for manipulating the list data structure.
See also lappend, linsert, lreplace, lsearch, concat, split, join, etc. Tcl lists can also be nested
arbitrarily, and the foreach command has no trouble dealing with that.

’ requires a reference to ADO

’ assume we have a connection called conn

dim rs as new recordset

rs.open "select id, name, age from people", _

my_connection, adOpenStatic

’ processing code goes here rs.close

set rs=nothing

package require tclodbc

assume we have a connection called conn

conn read a "select id, name, age from people"

processing code goes here

unset a ;# get rid of this array

Retrieve a simple array of data from a database table. In VB data is always retrieved in a recordset
object. In Tcl it can be read into an array and/or a list, depending on your needs, and the database
package in use.

8

VB6 To Tcl mini-HOWTO

(No equivalent) package require http

set httpTrans [http::geturl $pageURL]

upvar #0 $httpTrans state

if {$state(status) == {ok}} {

puts $state(body)

}

Retrieve a document or file from a web server.

(No equivalent)

regexp -all {src=[’"](.+?)[’"]} $body my_images

Complex string pattern search and extraction. Tcl uses regular expressions for this. Regular expression
is a specification for a string pattern to be matched, similar in concept to the wildcard patterns used
with VB’s ’like’ operator, except on steroids - a whole lot of steroids. Regular expressions are several
times more powerful and flexible than ’like’ patterns. For an informal introduction to regular
expressions, see http://zez.org/article/articleprint/11. Tcl’s regular expression parser is written in
hand-optimized C code and is available to Tcl in several different commands (regexp, regsub, lsearch,
etc). The simpler, less powerful versions you’re used to are also available for use in several different
commands (glob, string match, lsearch, and so on). This example would take 15 to 50 lines of VB
code, depending on how robust and how tolerant of different situations it needs to be. In addition, that
is some of the most difficult, error-prone, and slowest code that can be written in VB (voice of
experience). Here, the code quickly obtains a list of the URLs of every image on an HTML page.

(No equivalent)

set find {<tr>(.*?)<td>(.*?)</td><td>(.*?)</td><td>(.*?)</td>(.*?)</tr>}

set replace {<tr>\1<td width=20%>\2</td><td width=40%>\3</td><td width=30%>\4</td>\5</tr>}

regsub -all -nocase $exp $body $replace result

puts $result

Complex string pattern search and substitution. Again, Tcl uses regular expressions. This example
would take 40 lines of VB code or more, especially if it is logically organized with sufficient comments
for a maintenance programmer to follow it. And again, it is some of the most difficult, error-prone, and
slowest code that can be written in VB. Here the set of three cells in every row in the HTML body is
altered systematically, while the contents of each cell is preserved.

(No equivalent)

set handle [socket markhpc.dcisite.com 2000]

set greeting [read $handle]

close $handle

Make a connection to a network socket (act as a client) and retrieve data. The example assumes a server
is listening on TCP port 2000 of the specified host.

9

VB6 To Tcl mini-HOWTO

(No equivalent)

proc greeting {handle client_ip client_port} {

puts $handle {Welcome to our greeting server!}

close $handle }

socket -server greeting 2000

Implement a network server to answer the client shown above. This is the complete script. If you’re
using Wish (the Tcl windowing shell) this will run all day as shown. If you’re using Tclsh (the console
Tcl shell) add a vwait command at the end, to make the program wait for events instead of terminating
at the end of the script. That difference between the two shells is necessary and intentional, since Wish
is event-driven by default, and Tclsh is not.

3. Getting More Information
• General Tcl/Tk programming and introduction: See Brent Welch’s unbelievable book Practical

Programming in Tcl and Tk. Due to Brent’s generosity, you can even read and print the older editions
and selected chapters from the current editions at http://www.beedub.com/book .

• Downloads needed to develop in Tcl: See http://www.tcl.tk for TclPro 1.4.1 for all operating systems,
plus almost any add-on package you could ever want. TclPro contains the 2 interpreters (Tclsh and
Wish) version 8.3, plus an excellent interactive debugger and a suite of helpful tools and libraries.
Version 1.4.1 was released to the public. However, as of mid-2002, it looks like ActiveState
(http://www.activestate.com) is taking over the TclPro product as a commercial product. Remember
you can always get the ’standard’ interpreters for all operating systems from http://tcl.sourceforge.net
because Tcl is open source software.

• Editors with syntax highlighting, etc: For MS Windows, I like the inexpensive commercial product
TextPad at http://www.textpad.com. Currently the cost is $27 US per license, and you can try before
you buy. Be sure to get the Tcl syntax definition file from their web site. TextPad is the most
feature-rich editor for MS Windows I’ve ever seen, and has the ability to emulate Microsoft editors’
behavior. You can use it as an IDE for Tcl/Tk development by interfacing it with the interpreters and
your other tools. For Unix/Linux, and maybe even for MS Windows, try Nedit at http://www.nedit.org.
It’s free under the GNU General Public License. It also does a good job of making MS Windows users
productive right away.

• Tools you’ll probably want: The first thing most VB programmers want is to hit an ODBC database.
Go get the TclODBC 2.2 package from http://www.tcl.tk . It’s a DLL for Win32 that hooks you into
all ODBC data sources and drivers. It comes with documentation, and there’s a minimal example
above. Note that it may or may not be portable to other operating systems, so you might want to wrap
all your calls to it into procedures. That way you can port your code to use other libraries later.
Regular expressions are almost a powerful programming language of their own. Accordingly, they
take some time to master. The simple Tcl program ’Visual RegExp’ has helped me tremendously with
that. Get it at http://laurent.riesterer.free.fr/regexp . There are also several packages available for
hooking Tcl to the world of ActiveX, so you can automate MS Office applications, etc..

10

VB6 To Tcl mini-HOWTO

• Essential help topics: Once you have TclPro and its help file, go to its index and visit the ’Tcl’ topic.
There’s a concise summary of the language’s syntax rules, and the substitutions that drive it. Also be
sure to hit the ’re_syntax’, ’tclvars’, ’tclsh’, and ’wish’ topics. These are apparently translated from the
Tcl man pages on Unix/Linux, and are some of the best texts I’ve ever seen for WinHelp, if you need
reference material. I don’t recommend reading this help file as your first introduction, but it is an
excellent reference while programming.

• ’Start’ menu items: Once you have TclPro installed, you should look at the ’Start’ menu for TclPro,
and check out the ’Incr Widgets Reference’ and ’Widget Tour’. These show the built-in GUI
capabilities of Tk with the actual Tcl code required to use them.

• Advocacy (how to convince your management to use Tcl/Tk): A wealth of advocacy information is
available at http://www.tcl.tk .

4. Copyright and License

Copyright (c) 2003 Mark Hubbard.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
located at http://www.gnu.org/copyleft/fdl.html, in the section entitled “GNU Free Documentation
License”.

"Visual Basic," "VBScript," and all related terms are trademarks of Microsoft -
http://www.microsoft.com.

Tcl (Tool Command Language) is open source software, begun by John Ousterhout - http://www.tcl.tk or
http://tcl.sourceforge.net.

11

	1. Introduction
	2. Examples
	3. Getting More Information
	4. Copyright and License

