
Glibc Installation HOWTO
Kai Schlachter

Glibc Installation HOWTO
Kai Schlachter

Publication date 2004-03-19

iii

Table of Contents
1. Preface .. 1

Copyright ... 1
Revision History ... 1
Thanks .. 1

2. Introduction .. 2
Why? .. 2
What? ... 2

3. Preparations .. 3
Stuff you will need ... 3

Software you will need .. 3
Sources you will need .. 3

Special things you need to do ... 3
Things you will definitely need ... 4
Software that may come in handy .. 8

4. The installation of glibc itself .. 9
Obtaining and compiling the source ... 9
The installation ... 10

LILO ... 10
Grub .. 10

After the kernel is booted... ... 10
5. Troubleshooting—if something goes wrong... ... 12

Errors with configure or make while trying to compile glibc .. 12
Something goes wrong during make install ... 12

Going back to a working configuration ... 13

1

Chapter 1. Preface
Copyright

Copyright (c) 2004 by Kai Schlachter

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with
no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is located
at http://www.gnu.org/licenses/fdl.html.

Revision History
• v1.01: Fixed some missplaced quotation marks

Thanks
I especially want to thank Nico Schmoigl for helping me get my crashed system back up after I ran make
install for glibc while my system was still fully running. This was the main reason I wrote this mini-HOW-
TO.

Thanks also go to all the other people who helped me along the way; getting the HOWTO in correct format,
finding all the typos, etc.

http://www.gnu.org/licenses/fdl.html

2

Chapter 2. Introduction
In this HOWTO I will explain how you install a new version of glibc™ on your system.

I wrote this manual because I want to save others from the problems I encountered.

This HOWTO is a kind of guideline, made up from settings and ways of doing things that worked out for
me. No liability for the contents of this document can be accepted. Use the concepts, examples and other
content at your own risk. You are strongly recommended to make a backup of your system before major
installations and backups at regular intervals.

If you have any suggestions, found another bug in some distribution and how to fix it, please let me know
by writing me an e-mail: <linux_at_murphyslantech.de>.

Why?
Yes, that's a good question. Why would you need to install a new glibc? Well, there are several reasons:

• you are a developer and you need the new functions of the library

• you wanted to compile a new program that needs the new library

• you like the thrill of errors and bugs in new versions ;-)

What?
If you do not know what glibc is by now, don't worry! When I first had problems with a new program I
wanted to compile, I only knew that my version of glibc was not sufficient for the compile. Now that I
know more, I will try to explain in a very simple way what glibc does.

The glibc package contains a library written in the programming language of C. Libraries are a very useful
thing in programming; instead of inventing the wheel from scratch for operations such as computing the
square-root of a number, such common functions are stored in separate files—the so-called libraries. When
a new version of a library is published it often contains some new functions, uses more efficient algorithms
for already implemented functions, and so on.

This is the reason why some programs complain about an older version of glibc: the current version just
does not contain all the functions the program needs in order to run.

I know this is not technically correct in all detail, but it gives you a basic understanding of the architecture
behind.

3

Chapter 3. Preparations
As an installation of glibc is not an easy task. You need to do a lot of things in advance, especially in the
event that something goes wrong. (That is what happened to me on my first glibc install, and I did not
make any preparations.)

Stuff you will need
Basically, you need two different things: software that is already running on your machine (eg., pre-in-
stalled by your distribution) and packages of source-code for different programs.

Software you will need
• a running gcc™

• an older version of glibc™ ;-)

• GNU-binutils™

• GNU-make™

• the GNU-core-utils™

• GNU-tar™

• bash™ or any shell you prefer

• very useful but not a must: Midnight Commander™

• an editor you like (vi, jed™, etc.)

Sources you will need
• bash™or the shell you like

• GNU-tar™

• GNU-core-utils™

• GNU-make™

• of course:glibc™

• possibly: gcc™

Special things you need to do
Since you are going to substitute the basic library many programs rely on, you can imagine the problems
that may occur.

For me, it so happened that everything went fine until I typed in make install. At about halfway through
the installation process I got an error telling me that rm was not able to run, and I found out that even all

Preparations

4

the common commands like cp, ls, mv, ln, tar, etc., did not work; all told me that they were not able to
find parts of the library they needed.

But there is help available. You can force the compilation of programs with the libraries compiled into
them, so the programs do not need to look them up from the library.

For that reason, in this chapter, we will compile all the utilities we need for the install into a static version.

Things you will definitely need

The GNU-Binutils

1. Get the newest version from: ftp.gnu.org/gnu/binutils; at the time of writing, this was version 2.14

2. Open the package:

tar xIvf binutils-2.14.tar.bz2

3. Change to the directory:

cd binutils-2.14

4. Configure the Makefiles:

./configure

5. Compile the sources:

make

6. Install them with:

make install

If you run into trouble with the compilation of the binutils, referring to problems with gettext (indicated
by errors like: “undeclared reference to lib_intl” or similar) please install the newest version, available
from ftp.gnu.org/gnu/gettext.

If this does not help, try disabling the native-language support by using:

./configure --no-nls

You don't need to build a static version of the binutils, though it would not hurt, but I encountered many
systems running with very old versions and ran into errors almost every time, so I think it is a good idea
to mention them here.

GNU make

The make command is responsible for the compiling of the sources, calling gcc and all the other programs
needed for a compile. Since you may need to compile something if a problem occurs with the new glibc,
it is a good idea to have it static, otherwise it might not work after an error appears.

1. Download the source from ftp.gnu.org/gnu/make/; at the time of writing the current version was 3.80

2. Unpack the source, eg.:

tar xIvf make-3.80.tar.bz2

ftp.gnu.org/gnu/binutils
ftp.gnu.org/gnu/gettext
ftp.gnu.org/gnu/make/

Preparations

5

3. Change to the created directory:

cd make-3.80

4. Take care that the binaries are built static:

export CFLAGS="-static -O2 -g"

5. Run the configure script:

./configure

6. Compile the stuff:

make

7. Install the binaries:

make install

8. Make a check:

make -v

You should now see the new version installed. If not, check for older binary files and replace them by
smlinks to the new version.

Congratulations! You have compiled another static-linked program.

the GNU core-utils

The core-utils are commands like: cp, rm, ln, mv, etc. In case of an error in the installation, these are an
absolute requirement to help bring your system up again, so static binaries are really necessary here.

1. Again, download the source tarball from: ftp.gnu.org/gnu/coreutils/; at the time of writing, version 5.0
was current.

2. Unpack it:

tar xIvf coreutils-5.0.tar.bz2

3. Change to the directory:

cd coreutils-5.0

4. Take care that the binaries are built static:

export CFLAGS="-static -O2 -g"

5. Configure the package:

./configure

6. Compile the binaries:

make

7. And install them:

ftp.gnu.org/gnu/coreutils/

Preparations

6

make install

8. Verify that the right core-utils are used:

cp --version

. You should see the correct version, otherwise remove any old binaries and replace them with symlinks
to the new version.

Now that the binaries of these very elementary tools are static, you can be sure they will work every time
you need them.

GNU tar

You have already used GNU tar to unpack all the programs compiled and installed so far. But maybe you
need to compile another program which is needed by glibc after you had a crash, and in this situation (I
experienced this myself!) it is very useful to have a working tar ready to unpack the missing programs.
With tar, we also need to take care of the bz2 compression algorithm, which is not included in the normal
source distribution of tar.

1. Get the source of GNU tar from ftp.gnu.org/gnu/tar; at the time of writing, version 1.13 was up-to-date.

2. As many source tarballs are compressed with bzip2, we would like to have the support built
in, rather than working with pipes, so get the patch from: ftp://infogroep.be/pub/linux/lfs/lfs-pack-
ages/4.1/tar-1.13.patch.

3. Unpack the source by invoking:

tar xzvf tar-1.13.tar.gz

4. Copy the patch to the source directory of tar:

cp tar-1.13.patch tar-1.13/

5. Apply the patch:

patch -Np1 -i tar-1.13.patch

6. Set the compiler flags to make a static binary:

export CFLAGS="-static -O2 -g"

7. Now we are ready to configure:

./configure

8. Compile with:

make

9. And as the next step, install the package:

make install

10.Do a quick check to ensure the new version is being used from now on:

tar --version

ftp.gnu.org/gnu/tar
ftp://infogroep.be/pub/linux/lfs/lfs-packages/4.1/tar-1.13.patch
ftp://infogroep.be/pub/linux/lfs/lfs-packages/4.1/tar-1.13.patch

Preparations

7

The version you just installed should display, otherwise check for old binaries and replace them with
symlinks to the new location.

If you experience problems with the execution of make, try to turn off native-language support (nls). You
may achieve this by invoking configure with the option:

--disable-nls

Note: In this new version of tar, you must use the -j switch to decompress .bzip2 files, so instead of

tar xIvf anyfile.tar.bz2

you now have to use

tar xjvf anyfile.tar.bz2

I do not know why this was changed, but it works fine.

The Bash shell

I prefer Bash as my shell; if you use a different one, please be sure you have installed a static version of
it before you install glibc.

1. Get Bash from: ftp.gnu.org/gnu/bash/. Download the newest version you can find; at the time of writing
this was version 2.05b.

2. Unpack the source tree:

tar xzvf bash-2.05b.tar.gz

which will create a directory called bash-2.05b with all the unpacked sources in it.

3. Go to the directory:

cd bash-2.05a

4. Set everything up for building a static version:

export CFLAGS="-static -O2 -g"

5. Configure the makefiles:

./configure

If you would like something special in your Bash, see

./configure --help

for a list of options.

6. Compile everything:

make

7. Install the compiled binaries:

make install

ftp.gnu.org/gnu/bash/

Preparations

8

This will install the binaries to /usr/local/bin/.

8. Make sure there is not another version laying around (like in my Suse-Linux: /bin/), by copying
the file:

cp /usr/local/bin/bash /bin/

We don't use a symlink here because both at boot-time and when starting Bash there might be trouble
with symlinks.

You now have installed a static version of Bash. For that reason, the binary is much bigger than usual,
but it will run under all circumstances.

If you prefer to use another shell, you are free to do so, but make sure it is a statically-linked version. Feel
free to email me a method to build the shell of your choice in a static version, and chances are good that
it will be implemented in the next revision of this document.

Software that may come in handy

Midnight Commander

Midnight Commander is a very useful file manager, supporting many nice features like transparent decom-
pression of packed files, built-in copy, move and other common commands, as well as an integrated editor.

To compile this piece of software, you will need to have glib installed; in some distributions this is already
the case. If you get an error in the make command saying that ld could not find glib, you will need to
install this library first. You can get the sources from: ftp.gnome.org/pub/gnome/sources/glib/2.2/, and the
installation is straight-forward.

Here are the steps to build Midnight Commander:

1. Get the source from http://www.ibiblio.org/pub/Linux/utils/file/managers/mc/" [http://
www.ibiblio.org/pub/Linux/utils/file/managers/mc/]; at the time of writing, the newest version was
4.6.0.

2. Unpack the sources:

tar xzvf mc-4.6.0.tar.gz

3. Change to the directory you just created:

cd mc-4.6.0

4. Set up the configuration-files:

./configure

5. Start compiling:

make

6. Install everything:

make install

ftp.gnome.org/pub/gnome/sources/glib/2.2/
http://www.ibiblio.org/pub/Linux/utils/file/managers/mc/
http://www.ibiblio.org/pub/Linux/utils/file/managers/mc/
http://www.ibiblio.org/pub/Linux/utils/file/managers/mc/

9

Chapter 4. The installation of glibc
itself

Now we come to the most important thing: the glibc install.

Obtaining and compiling the source
There are several versions of glibc available, but not in all cases are new versions really better than the old
ones. The best thing you can do to find out which works and which ones you should not use is to check
out the different forums on the Internet. If you have someone to ask, talk to him about the topic. Maybe
he already has installed the new version and might be able to tell you that version x.y.z is a PITA, but
version a.b.c works really well!

I decided to install glibc-2.2.4, as I was told it works well, but it is your decision which one to choose.

Ok, now let's go to work:

1. Get the source from ftp.gnu.org/gnu/glibc/; as I said, I used version 2.2.4.

2. Unpack the source:

tar -xzvf glibc-2.2.4.tar.gz

3. In addition, you will need a package called “linuxthreads,” found in the linuxthreads directory on
ftp.gnu.org. The file is called:

glibc-linuxthreads-2.2.4.tar.gz

Make sure you get the version that corresponds to your glibc source tree.

4. Copy the linuxthreads package to your glibc source directory:

cp glibc-linuxthreads-2.2.4.tar.gz glibc-2.2.4

5. Change to the glibc directory:

cd glibc-2.2.4

6. Unpack linuxthreads:

tar xzvf linux-threads-2.2.4.tar.gz

7. Configure the package:

./configure --enable-add-ons=linuxthreads

This will configure the package in such a way that the linuxthreads are included in the compile; this is
necessary for compliance with other Linux systems. For example, programs you compile will probably
not run on another machine if you forget to include this package.

8. Afterwards, start the compilation of glibc:

make

ftp.gnu.org/gnu/glibc/
ftp.gnu.org

The installation of glibc itself

10

This may take some time (about half an hour on my Duron XP, running with 1.5 GHz).

Now that the library is compiled, everything is ready for the installation, but things are not as easy this time.

The installation
To install glibc you need a system with nothing running on it, since many processes (for example sendmail)
always try to use the library and therefore block the files from being replaced. Therefore we need a “naked”
system, running nothing except the things we absolutely need. You can achieve this by passing the boot
option

init=/bin/bash

to your kernel. Depending on your bootloader you may need to do different things. In the following I will
explain this using the two most common bootloaders, LILO (LInux-LOader) and GNU grub, as examples.

LILO
To start the “only-basics” system, reboot your computer and at the LILO prompt enter the kernel im-
age-name you like to load and append

init=/bin/bash

to it before pressing Return. If you are planing to replace your glibc more often, it might be a good idea
to add a separate configuration to your /etc/lilo.conf. For details, refer to the man-page of LILO.

Grub
Grub is a newer bootloader, with enhanced support for different operating systems and file system types
(eg. it supports booting from reiserfs partitions). If you would like to know more go to: http://www.gnu.org/
software/grub/, where you will find all the stuff you need.

If you already have Grub installed, you probably use the text-based front-end to select the kernel you prefer
to boot. Grub has a nice feature—instead of returning to doing everything by hand, you can simply select
your entry and type e, which will bring up an option menu. In this menu you will see the commands Grub
executes prior to booting the kernel. Simply select the line saying

kernel="/where/your-kernel-is and-options-are"

and press e again. Now you can edit this line. Here you just add

init=/bin/bash

and after pressing Return to make the changes take effect, press b to start booting.

After the kernel is booted...
...You will find yourself in an absolute minimal bash-environment.

You will not even be asked to enter your username or password! At this time you are the ultimate su-
per-user; no-one can get around you because the system is in single-user mode, so be careful what you are
doing. There are no file-rights set or anything else!

http://www.gnu.org/software/grub/
http://www.gnu.org/software/grub/

The installation of glibc itself

11

Your prompt will probably look like this:

init-x.y#

At this moment your root (/) has been mounted as read-only, thus you will not be able to write the new
library to your hard drive. To make it r/w, enter the command:

mount -o remount,rw /

If your source is located on another partition you must also mount it, as it is not done for you (for me this
means mounting my raid system):

mount -t reiserfs /dev/md0 /usr/src

As you see, I defined the file system type, which is needed because mount does not look anything up in
/etc/fstab.

Now you can go to the directory containing the source and type in:

make install

If you like, now might be a good time to pray that everything works out fine... ;-)

If everything went through properly, you will return to your prompt after the installation without any error
message. In all other cases, please see Chapter 5, Troubleshooting—if something goes wrong... .

If everything goes fine, run:

ldconfig -v

to update your library cache.

Congratulations! The library is successfully installed. Now type in: mount -o remount,ro / to ensure that
all the data is written to the hard drive.

Now start the reboot:

exit

This will cause an error message saying that you have caused a kernel-panic. If possible, restart the com-
puter by using CTRL+ALT+DEL, otherwise use your hardware's reset switch.

Try booting your normal kernel. If everything turns out fine, you are ready to use the new library.

12

Chapter 5. Troubleshooting—if
something goes wrong...

If you come to this section and you have followed all the instructions above, you probably encountered
the problem of different Linux distributions, some of which do not keep stuff where it should normally be,
but somewhere else. The Suse Linux distributions are most famous for such stupid quirks, but there may
be others having similar problems. If you encounter such a thing and you find the cause for the trouble—
and hopefully a solution—please let me know and I will add this to my HOWTO.

I think this section will never really be complete, but I will list some possible errors and solutions for
these issues.

Errors with configure or make while trying to
compile glibc

Sometimes you get configuration error telling you that, for example, a requirement is not met—typical for
software or other library-packages which are to old. I encountered this with a series of programs, especially
during the compile of all the static software. Normally there should be no problem: get an up-to-date
version of the software or libraries needed and then compile them according to the description found in
the source tree (usually called README, INSTALL or something similar).

But there are sometimes cases where this just does not want to work. For example, I experienced problems
compiling a new version of my binutils (one of the reasons why I mention them in the requirements), as I
needed to compile glibc. In return, the configure script for the binutils told me, “Your glibc is to old!” So
I thought, Here the snake starts eating its tail. Thankfully there is a solution for this problem: if you can
not take one big step, try taking smaller ones, but more of them.

In my distribution, a glibc with the version number 2.1.1 was included. To get around the error I tried to
compile version 2.1.3, which was no problem. After I installed this version of the library, I tried to compile
the binutils once more, and this time all the requirements were met.

If you encounter such a “loop,” try to find out what version of the software required is the minimum, then
download that version (I think that is one of the reasons why so many old versions are still lying around
on the FTP servers). After successfully compiling and installing, try to build the software that complained
about the version again; in most cases you should now be able to compile. It may be necessary that you
continue to use this method to compile missing or old software. This is what I call “the long tail of the
rat” or “domino-effect.” You only wanted to do one thing, but you needed to do many more before you
could make the move you wanted to. It might be very nasty, but there is one good side to it: afterwards
you can be quite sure that many of the programs which were really old will replaced by the time you finish
your installation.

Something goes wrong during make install
The most common mistake is not to have a set of basic, static tools; in this case you can only use the
command cd, but nothing else. This is the reason why in this HOWTO I have described in detail how to
make those tools static.

The only tool not static is mount and, for good reason in my opinion, it is included in the package of
linux-utils, which also contains login, passwd, etc. Since you are not able to use statically-linked versions

Troubleshooting—if
something goes wrong...

13

in combination with PAM or other security-related software, it would be unwise to compile them statically
under all circumstances. Of course you are free to do so if you are really sure about what you are doing.

Going back to a working configuration
The way back to a working configuration is quite simple if you have the static tools: go to the direc-
tory /usr/local/lib/ and move all the newly installed files into another location (eg. /usr/lo-
cal/lib/storedaway). You may identify them by looking at their version number, which should be
the same as the one from your glibc installation (in my example all files fitted to the scheme lib*-2.2.4),
and of course by the creation date and time. It is quite uncommon that two different libraries have the same
version number at the same time—I, myself, have never experienced such a thing—but just to be sure you
do not delete something important to your system, check the date and time of creation. A very useful tool
in this case is the Midnight Commander, if you have it installed.

You could try to remove the files ld-2.2.4.so and libc-2.2.4.so and run ldconfig -v afterwards,
before removing all the crashed files. This will enable you to use at least most of your programs and in
every case you will be able to run the Midnight Commander.

Do not forget to do at least one ldconfig -v after you have removed all the files.

Removing the causes for the crashing of the installation

A common cause for problems is that your distribution has stored all the library files in a different location
than the newly-installed routine will use, thus it often happens that there are two versions running simul-
taneously, disturbing each other. In my case, lots of trouble was caused by a second copy of libc6.so
lying around in /lib, a symbolic link from this file to the corresponding one in /usr/local/lib
fixes this problem.

	Glibc Installation HOWTO
	Table of Contents
	Chapter 1. Preface
	Copyright
	Revision History
	Thanks

	Chapter 2. Introduction
	Why?
	What?

	Chapter 3. Preparations
	Stuff you will need
	Software you will need
	Sources you will need

	Special things you need to do
	Things you will definitely need
	The GNU-Binutils
	GNU make
	the GNU core-utils
	GNU tar
	The Bash shell

	Software that may come in handy
	Midnight Commander

	Chapter 4. The installation of glibc itself
	Obtaining and compiling the source
	The installation
	LILO
	Grub

	After the kernel is booted...

	Chapter 5. Troubleshooting—if something goes wrong...
	Errors with configure or make while trying to compile glibc
	Something goes wrong during make install
	Going back to a working configuration
	Removing the causes for the crashing of the installation

