
Package ‘spagmix’
June 25, 2024

Type Package

Title Artificial Spatial and Spatio-Temporal Densities on Bounded
Windows

Version 0.4-2

Date 2024-06-25

Maintainer Tilman M. Davies <tilman.davies@otago.ac.nz>

Description Simple utilities to design and generate density functions on bounded re-
gions in space and space-time, and simulate independent, identically distributed data there-
from. See Davies & Lawson (2019) <doi:10.1080/00949655.2019.1575066> for example.

Depends R (>= 3.5.0), spatstat (>= 3.0-0)

Imports abind, sparr, mvtnorm, spatstat.geom, spatstat.random

Suggests rgl

License GPL (>= 2)

Encoding UTF-8

LazyData true

NeedsCompilation no

Author Anna K. Redmond [aut],
Tilman M. Davies [aut, cre]

Repository CRAN

Date/Publication 2024-06-25 02:50:02 UTC

Contents
spagmix-package . 2
lgcpmix . 5
plot.stim . 8
rgmix . 9
rpoispoly . 10
rrmix . 12
rrpoint . 14
rrstmix . 17

1

https://doi.org/10.1080/00949655.2019.1575066

2 spagmix-package

rstpoint . 19
sgmix . 20
stgmix . 22
stintegral . 23
stkey . 25
toywin . 27
unify.owin . 28

Index 29

spagmix-package The spagmix Package: Artificial Spatial and Spatio-Temporal Densi-
ties on Bounded Windows

Description

Provides functions to design synthetic spatial and spatiotemporal densities and relative risk func-
tions based mainly on Gaussian mixture distributions, and simulate independent and identically
distributed data therefrom.

Details

Package: spagmix
Version: 0.4-2
Date: 2024-06-25
License: GPL (>= 2)

Appraisal of existing, refined, and new statistical methods for the analysis of spatial and spatiotem-
poral point pattern data usually involves numeric experimentation. Motivated by relevant problems
in nonparametric density estimation (see e.g. Wand & Jones, 1995), spagmix (“spatial Gaussian
mixtures”) provides some simple utilities for designing heterogeneous density and density-ratio or
relative risk (Bithell 1990, 1991; Kelsall & Diggle, 1995) functions in space and space-time (see
Fernando & Hazelton, 2014 for the latter). The package is also capable of producing realisations
of (possibly inhomogeneous) spatial log-Gaussian Cox process intensities (Møller et al., 1998; see
also Davies & Hazelton, 2013).

Additionally, functions for simulating datasets given these scenarios are included. For examples of
how these kinds of synthetic functions have been used in simulation studies in various publications,
see for example Clark & Lawson, 2004; Davies & Hazelton, 2010; Davies, 2013a,b; Davies &
Hazelton, 2013; Fernando et al., 2014; Davies et al., 2016; Davies et al., 2018a; and Davies &
Lawson, 2019.

We have designed the objects of spagmix to use and be compatible with standard object classes of
the spatstat (Baddeley & Turner, 2005; Baddeley et al., 2015) and sparr (Davies et al., 2018b)
packages. The content of spagmix can be broken up as follows:

spagmix-package 3

Artificial polygonal windows
Some pre-made synthetic spatial windows; these are all single closed polygons as objects of class
owin and are lazy-loaded:
bx, heart, shp1, shp2, star, toywin

Spatial scenarios
sgmix is used to create spatial (2D) Gaussian mixture distributions on a bounded subset of the plane.
rgmix also creates 2D Gaussian mixture densities, but does so by stochastic generation of the con-
tributing bumps.
rrmix creates Gaussian mixture relative risk scenarios based on a supplied control density (see
e.g. Davies & Hazelton, 2010). lgcpmix generates a spatial log-Gaussian Cox process intensity
in space, given a deterministic intensity function and residual correlation governed by a stochastic
realisation of a Gaussian field with a specified covariance structure.

Spatiotemporal scenarios
stgmix is used to create spatiotemporal (3D) Gaussian mixture densities on a bounded subset of the
plane and a single closed interval in time.
stkey is used to create spatiotemporal densities by pixel-wise interpolation of multiple spatial im-
age ‘keyframes’. rrstmix is a spatiotemporal version of rrmix, used to create artificial spatiotem-
poral relative risk functions. Note the control density may be purely spatial, representing a distribu-
tion ‘at-risk’ points that does not change over time (Fernando & Hazelton, 2014).

Data generation
To generate purely spatial data for a single spatial density, the user is directed to rpoint of the
spatstat package or rimpoly of the sparr package.
rpoispoly is a wrapper of rimpoly, and is used to generate realisations of Poisson point processes
in space, given an intensity function. rrpoint is a wrapper of rimpoly, and is used to generate iid
datasets based on a synthetic spatial relative risk surface object.
rstpoint is a 3D rejection algorithm for sampling iid data from a supplied spatiotemporal density.
rrstpoint is a wrapper of rstpoint to generate iid datasets from a synthetic spatiotemporal rela-
tive risk surface object.

Miscellaneous
plot.stim is an S3 plotting method for spatiotemporal density objects.
stintegral computes the 3D integral of a spatiotemporal density object.
unify.owin is a wrapper for affine that transforms any spatial owin to fall inside the unit square.

Dependencies/Imports

Depends on spatstat functionality (Baddeley & Turner, 2005; Baddeley et al., 2015) and imports
from abind (Plate & Heiberger, 2016), sparr (Davies et al., 2018b), and mvtnorm (Genz et al.,
2018). We also highly recommend the rgl package (Adler et al., 2018) which can be used to create
interactive plots of spatiotemporal data.

Author(s)

A.K. Redmond and T.M. Davies
Dept. of Mathematics & Statistics, University of Otago, Dunedin, New Zealand

4 spagmix-package

Maintainer: T.M.D. <tilman.davies@otago.ac.nz>

References

Adler, D., Murdoch, D. and others (2018), rgl: 3D Visualization Using OpenGL, R package version
0.99.16 https://CRAN.R-project.org/package=rgl

Baddeley, A., Rubak, E. and Turner, R. (2015), Spatial Point Patterns: Methodology and Appli-
cations with R, Chapman and Hall/CRC Press, London.

Baddeley, A. and Turner, R. (2005), Spatstat: an R package for analyzing spatial point patterns,
Journal of Statistical Software, 12(6), 1-42.

Bithell, J.F. (1990), An application of density estimation to geographical epidemiology, Statistics
in Medicine, 9, 691-701.

Bithell, J.F. (1991), Estimation of relative risk function,. Statistics in Medicine, 10, 1745-1751.

Clark, A.B. and Lawson, A.B. (2004), An evaluation of non-parametric relative risk estimators
for disease maps, Computational Statistics & Data Analysis, 47, 63-78.

Davies, T.M. (2013a), Jointly optimal bandwidth selection for the planar kernel-smoothed density-
ratio, Spatial and Spatio-temporal Epidemiology, 5, 51-65.

Davies, T.M. (2013b), Scaling oversmoothing factors for kernel estimation of spatial relative risk,
Epidemiological Methods, 2(1), 67-83.

Davies, T.M. and Hazelton, M.L. (2010), Adaptive kernel estimation of spatial relative risk, Statis-
tics in Medicine, 29(23), 2423-2437.

Davies, T.M. and Hazelton, M.L. (2013), Assessing minimum contrast parameter estimation for
spatial and spatiotemporal log-Gaussian Cox processes, Statistica Neerlandica, 67(4), 355-389.

Davies, T.M., Jones, K. and Hazelton, M.L. (2016), Symmetric adaptive smoothing regimens for
estimation of the spatial relative risk function, Computational Statistics & Data Analysis, 101, 12-
28.

Davies, T.M. and Lawson, A.B. (2019), An evaluation of likelihood-based bandwidth selectors
for spatial and spatiotemporal kernel estimates, Journal of Statistical Computation and Simulation,
89 1131-1152.

Davies, T.M., Flynn, C.R. and Hazelton, M.L. (2018a), On the utility of asymptotic bandwidth
selectors for spatially adaptive kernel density estimation, Statistics & Probability Letters, 138, 75-
81.

Davies, T.M., Marshall, J.C. and Hazelton, M.L. (2018b), Tutorial on kernel estimation of con-
tinuous spatial and spatiotemporal relative risk, Statistics in Medicine, 37(7), 1191-1221.

lgcpmix 5

Fernando, W.T.P.S., Ganesalingam, S. and Hazelton, M.L. (2014), A comparison of estimators
of the geographical relative risk function, Journal of Statistical Computation and Simulation, 84(7),
1471-1485.

Fernando, W.T.P.S. and Hazelton, M.L. (2014), Generalizing the spatial relative risk function, Spa-
tial and Spatio-temporal Epidemiology, 8, 1-10.

Genz, A., Bretz, F., Miwa, T., Mi, X., Leisch, F., Scheipl, F. and Hothorn, T. (2018), mvtnorm: Mul-
tivariate Normal and t Distributions, R package version 1.0-8. URL http://CRAN.R-project.org/package=mvtnorm

Kelsall, J.E. and Diggle, P.J. (1995), Kernel estimation of relative risk, Bernoulli, 1, 3-16.

Møller, J., Syversveen, A.R. and Waagepetersen, R.P. (1998), Log-Gaussian Cox processes, Scan-
dinavian Journal of Statistics, 25(3) 451–482.

Plate, T. and Heiberger, R. (2016), abind: Combine Multidimensional Arrays, R package version
1.4-5. https://CRAN.R-project.org/package=abind

lgcpmix Generate a spatial log-Gaussian Cox process intensity

Description

Generate a realisation of a (possibly inhomogeneous) log-Gaussian Cox process (LGCP) spatial
intensity function with an identifiable mean structure.

Usage

lgcpmix(lambda, ...)

Arguments

lambda A pixel image giving the deterministic spatial intensity as the mean structure of
the process. The generated Gaussian field will match the dimensions, resolution
and domain of this object.

... Additional arguments controlling the Gaussian random field to be passed to
rLGCP. Minimally, the user will need to supply param and model. See ‘Details’.

Details

This function allows the user to generate a spatial intensity function Γ of the form

Γ(x) = λ(x) exp[Y (x)]

for x ∈ W , where λ(x) (passed to lambda) is the deterministic spatial intensity over the spatial
domain W , and Y (x) is a Gaussian random field on W . This Gaussian field, implemented through

6 lgcpmix

rLGCP, is defined with a particular spatial covariance function (specified via the model argument
given to ...) with variance and scale parameters σ2 and ϕ respectively, as well as any additionally
required parameter values (all specified in the param argument, also given to ...). For example, re-
questing model = "exponential" with param = list(var=σ2,scale=ϕ)) imposes an exponential
covariance structure on the generated field whereby Cov(u) = σ2 exp(−u/ϕ) for the Euclidean
distance between any two spatial locations u.

The mean parameter µ of the Gaussian field Y is internally fixed at −σ2/2; negative half the
variance. This is for identifiability of the mean structure, forcing E[Y (x)] = 1 for all x ∈ W (see
theoretical properties in Møller et al., 1998). In turn, this means the deterministic intensity function
λ(x) is solely responsible for describing fixed heterogeneity in spatial intensity over W (as such, the
pixel image supplied to lambda as λ(x) must be non-negatively-valued and yield a finite integral),
with the randomly generated Gaussian field left to describe residual stochastic spatial correlation.
This presents a highly flexible class of model, even with stationarity and isotropy of the Gaussian
field itself, and is intuitively sensible in a variety of applications. See Diggle et al. (2005) and
Davies & Hazelton (2013) for example. Given this, any user-supplied value of mu in ... (intended
for rLGCP) is irrelevant and will be ignored/overwritten.

To generate a subsequent dataset, use e.g. rpoispp or rpoispoly.

Value

A pixel image giving the generated intensity function, comprised of the product of lambda (fixed,
and unchanging in repeated calls to this function) and the exponentiated Gaussian field (with ex-
pected value 1, this is stochastic and varies in repeated calls).

Author(s)

T.M. Davies.

References

Davies, T.M. and Hazelton, M.L. (2013), Assessing minimum contrast parameter estimation for
spatial and spatiotemporal log-Gaussian Cox processes, Statistica Neerlandica, 67(4) 355–389.

Diggle, P.J., Rowlingson, B. and Su, T. (2005), Point process methodology for on-line spatio-
temporal disease surveillance, Environmetrics, 16 423–434.

Møller, J., Syversveen, A.R. and Waagepetersen, R.P. (1998), Log-Gaussian Cox processes, Scan-
dinavian Journal of Statistics, 25(3) 451–482.

See Also

rLGCP, rpoispp, rpoispoly

Examples

Homogeneous example

Create constant intensity image integrating to 500

homog <- as.im(as.mask(toywin))
homog <- homog/integral(homog)*500

lgcpmix 7

Corresponding LGCP realisations using exponential covariance structure
oldpar <- par(mfrow=c(2,2),mar=rep(1.5,4))
for(i in 1:4){

temp <- lgcpmix(homog,model="exponential",param=list(var=1,scale=0.2))
plot(temp,main=paste("Realisation",i),log=TRUE)

}
par(oldpar)

Inhomogeneous examples

Create deterministic trend

mn <- cbind(c(0.25,0.8),c(0.31,0.82),c(0.43,0.64),c(0.63,0.62),c(0.21,0.26))
v1 <- matrix(c(0.0023,-0.0009,-0.0009,0.002),2)
v2 <- matrix(c(0.0016,0.0015,0.0015,0.004),2)
v3 <- matrix(c(0.0007,0.0004,0.0004,0.0011),2)
v4 <- matrix(c(0.0023,-0.0041,-0.0041,0.0099),2)
v5 <- matrix(c(0.0013,0.0011,0.0011,0.0014),2)
vr <- array(NA,dim=c(2,2,5))
for(i in 1:5) vr[,,i] <- get(paste("v",i,sep=""))
intens <- sgmix(mean=mn,vcv=vr,window=toywin,p0=0.1,int=500)

Two realisations (identical calls to function), exponential covariance structure

r1exp <- lgcpmix(lambda=intens,model="exponential",param=list(var=2,scale=0.05))
r2exp <- lgcpmix(lambda=intens,model="exponential",param=list(var=2,scale=0.05))

Two more realisations, Matern covariance with smoothness 1

r1mat <- lgcpmix(lambda=intens,model="matern",param=list(var=2,scale=0.05,nu=1))
r2mat <- lgcpmix(lambda=intens,model="matern",param=list(var=2,scale=0.05,nu=1))

Plot everything, including 'intens' alone (no correlation)

oldpar <- par(mar=rep(2,4))
layout(matrix(c(1,2,4,1,3,5),3))
plot(intens,main="intens alone",log=TRUE)
plot(r1exp,main="realisation 1\nexponential covar",log=TRUE)
plot(r2exp,main="realisation 2\nexponential covar",log=TRUE)
plot(r1mat,main="realisation 1\nMatern covar",log=TRUE)
plot(r2mat,main="realisation 2\nMatern covar",log=TRUE)
par(oldpar)

Plot example datasets
dint <- rpoispoly(intens,w=toywin)
d1exp <- rpoispoly(r1exp,w=toywin)
d2exp <- rpoispoly(r2exp,w=toywin)
d1mat <- rpoispoly(r1mat,w=toywin)

8 plot.stim

d2mat <- rpoispoly(r2mat,w=toywin)

oldpar <- par(mar=rep(2,4))
layout(matrix(c(1,2,4,1,3,5),3))
plot(dint,main="intens alone",log=TRUE)
plot(d1exp,main="realisation 1\nexponential covar",log=TRUE)
plot(d2exp,main="realisation 2\nexponential covar",log=TRUE)
plot(d1mat,main="realisation 1\nMatern covar",log=TRUE)
plot(d2mat,main="realisation 2\nMatern covar",log=TRUE)
par(oldpar)

plot.stim Plotting ’stim’ objects

Description

plot method for class stim.

Usage

S3 method for class 'stim'
plot(x, fix.range = FALSE, sleep = 0.2, override.par = TRUE, ...)

Arguments

x An object of class stim.

fix.range Logical value indicating whether use the same color scale limits for each plot in
the sequence. Ignored if the user supplies a pre-defined colourmap to the col
argument, which is matched to ... and passed to plot.im.

sleep Single positive numeric value giving the amount of time (in seconds) to Sys.sleep
before drawing the next image in the animation.

override.par Logical value indicating whether to override the existing graphics device pa-
rameters prior to plotting, resetting mfrow and mar. See ‘Details’ for when you
might want to disable this.

... Additional graphical parameters to be passed to plot.im (see ‘Details’).

Details

Actual visualisation is deferred to plot.im, for which there are a variety of customisations available
the user can access via

The stim object is plotted as an animation, one pixel image after another, separated by sleep
seconds. If instead you intend the individual images to be plotted in an array of images, you should
first set up your plot device layout, and ensure override.par = FALSE so that the function does not
reset these device parameters itself. In such an instance, one might also want to set sleep = 0.

Value

Plots to the active graphics device.

rgmix 9

Author(s)

T.M. Davies

Examples

See help(stgmix) and help(stkey) for examples

rgmix Random bivariate Gaussian mixture density generation

Description

Generates a pixel image of a bivariate normal mixture density observed on a bounded window using
a specified number of contributing densities with randomly selected means and variance-covariance
matrices.

Usage

rgmix(N, window, v = 4, S = NULL, extras = FALSE, ...)

Arguments

N The number of Gaussian components to generate for the mixture.
window An object of class owin giving the observational window on which the mixture

density is defined.
v The degrees of freedom for the inverse-Wishart distribution of the variance-

covariance matrices (must be at least 4). The default value of 4 ensures the
generated covariance matrices are centered on S.

S A symmetric, positive-definite 2× 2 scale matrix for the inverse-Wishart distri-
bution of the variance-covariance matrices.

extras A logical value indicating whether, in addition to returning the pixel image of
the final mixture density, to also return the randomly realised mean locations
and corresponding variance-covariance matrices. See ‘Value’.

... Additional arguments to be passed to sgmix. See ‘Details’.

Details

This function creates and returns a bivariate Gaussian mixture density on a bounded window based
on N randomly generated mean locations and corresponding randomly generated variance-covariance
matrices. First, the N mean locations are generated based on a uniform distribution over the spatial
window. Each location is then associated with a covariance matrix generated from an inverse-
Wishart distribution with v degrees of freedom and scale matrix S.
Once the above steps are completed, the function calls sgmix with the chosen mean and covariance
matrices, thereby creating the Gaussian mixture. Resolution and other aspects of this call can be
controlled by using ..., passing the contents internally to sgmix. By default, all generated Gaussian
components have equal weight in contributing to the final mixture density. The user can alter this
by passing p0 and p to the ..., though should take care that the length of p is N, and that p0 and p
sum to 1, as outlined in the documentation for sgmix.

10 rpoispoly

Value

If extras = FALSE (default), then a pixel image of the final mixture density. If extras = TRUE, a list
is returned with members f (the pixel image of the final mixture density); mn (a 2× N matrix with
each column giving the mean location of each of the N Gaussian bumps); and vcv (a 2× 2× N array
with layers giving the covariance matrices associated with the means in the columns of mn).

Author(s)

A.K. Redmond and T.M. Davies

Examples

set.seed(321)
dens1 <- rgmix(7,window=toywin)
plot(dens1)

set.seed(456)
dens2 <- rgmix(7,window=toywin)
plot(dens2)

Explicitly return details of generated means and covariances
set.seed(321)
dens1.detailed <- rgmix(7,window=toywin,extras=TRUE)
dens1.detailed$f
dens1.detailed$mn
dens1.detailed$vcv

Set underlying uniform proportion and compare with dens2 from above
set.seed(456)
dens2.wunif <- rgmix(7,window=toywin,p0=0.3)
plot(rpoint(500,dens2))
plot(rpoint(500,dens2.wunif))

Explicitly setting scale matrix for inverse-wishart generation of covariances
dens3 <- rgmix(3,window=toywin,S=matrix(c(0.025,-0.004,-0.004,0.02),2))
plot(dens3)

rpoispoly Generate a Poisson point pattern in a polygonal window

Description

Generates a single realisation of a spatial Poisson point process based on a pixel image and a polyg-
onal owin.

Usage

rpoispoly(z, w = NULL, correction = 1.1, maxpass = 50)

rpoispoly 11

Arguments

z A pixel image of class im defining the spatial intensity function of the points.
The number of points generated, n, will be found as a randomly generated Pois-
son variate with mean parameter equal to the integral of z.

w A polygonal window of class owin. See ‘Details’.

correction An adjustment to the number of points generated at the initial pass of the internal
loop in an effort to minimise the total number of passes required to reach n
points. See ‘Details’ and ‘Warning’.

maxpass The maximum number of passes allowed before the function exits. If this is
reached before n points are found that fall within w, a warning is issued.

Details

This is a wrapper function for rimpoly that operates much like rpoispp, but with artificial correc-
tions at the edges of boundary pixels. This allows the user to generate a realisation of a 2D Poisson
point process using a supplied pixel image as the spatial intensity function, but return the result with
a polygonal owin instead of a binary image mask.

Let n be a randomly generated integer from a Poisson distribution with mean given by the integral
of the intensity function z. When the user specifies their own polygonal window in w, a while loop
is called and repeated as many times as necessary (up to maxpass times) to find n points inside w
(when w = NULL, then the union of the pixels of z is used, obtained via as.polygonal(Window(z))).
The loop is necessary because the standard behaviour of rpoispp can (and often does) yield points
that sit in corners of pixels which lie outside a corresponding irregular polygon w.

The correction argument is used to determine how many points are generated initially, which will
be ceiling(correction*n); to minimise the number of required passes over the loop this is by
default set to give a number slightly higher than the requested n.

An error is thrown if Window(z) and w do not overlap.

Value

An object of class ppp containing the Poisson-generated points, defined with the polygonal owin, w.

Warning

Note that this is an artificial correction that forces the Poisson-generated number of n points to be
found inside any supplied polygon w (even if w only partially covers the domain of z). As such,
this function only makes sense in terms of the theory of a Poisson point process if the polygon
w corresponds exactly to the pixellised intensity. For practical intents and purposes, it therefore
must be assumed in using this function that a supplied polygon w is/was the original basis for the
discretisation into the pixel image for the purposes of producing the intensity z, and hence that
any adverse effects arising from imposing w as the window of the final result are negligible. See
‘Examples’.

Author(s)

T.M. Davies

12 rrmix

References

Diggle, P.J. (2014) Statistical Analysis of Spatial and Spatiotemporal Point Patterns, 3rd Ed, Chap-
man & Hall, Boca Raton, USA.

See Also

rpoint, rimpoly, rpoispp

Examples

mn <- cbind(c(0.25,0.8),c(0.31,0.82),c(0.43,0.64),c(0.63,0.62),c(0.21,0.26))
v1 <- matrix(c(0.0023,-0.0009,-0.0009,0.002),2)
v2 <- matrix(c(0.0016,0.0015,0.0015,0.004),2)
v3 <- matrix(c(0.0007,0.0004,0.0004,0.0011),2)
v4 <- matrix(c(0.0023,-0.0041,-0.0041,0.0099),2)
v5 <- matrix(c(0.0013,0.0011,0.0011,0.0014),2)
vr <- array(NA,dim=c(2,2,5))
for(i in 1:5) vr[,,i] <- get(paste("v",i,sep=""))
intens <- sgmix(mean=mn,vcv=vr,window=toywin,p0=0.1,int=500)

aa <- rpoispp(intens) # Default spatstat function
bb <- rpoispoly(intens) # No polygon supplied; just uses pixel union
cc <- rpoispoly(intens,w=toywin) # Original irregular polygon

plot(intens,log=TRUE)
plot(aa,main=paste("aa\nn =",npoints(aa)))
plot(bb,main=paste("bb\nn =",npoints(bb)))
plot(cc,main=paste("cc\nn =",npoints(cc)))

rrmix Spatial relative risk surface generation

Description

Generates an appropriately scaled spatial (bivariate) relative risk surface using a supplied control
density and N isotropic Gaussian-style hotspots.

Usage

rrmix(g, rhotspots, rsds, rweights, rbase = 1, log = TRUE)

Arguments

g A pixel image representing the control density; this will be internally rescaled
to integrate to 1 if it does not already do so.

rhotspots A 2 × N matrix giving the centers of the N peaks and troughs in the relative
risk density.

rrmix 13

rsds A positive numeric vector of length N giving the isotropic standard deviations
for each relative Gaussian peak or trough.

rweights A vector of length N giving relative weightings for each peak (positive weights)
or trough (negative).

rbase The base level of the relative risk surface (default is 1). The peaks and troughs
will be added or subtracted from this base level prior to normalisation.

log A logical value. If TRUE (default), the relative risk surface is returned logged.

Details

A useful tool for the comparison of two estimated density functions on the same spatial region
W ⊂ R2 is the relative risk function, r, (Bithell, 1990; 1991; Kelsall and Diggle, 1995), defined
simply as a density-ratio:

r(x) = f(x)/g(x);x ∈ W.

Various methods have been developed to improve estimation of r, most commonly with a motiva-
tion in geographical epidemiology, where the ‘numerator’ density f pertains to the observed disease
cases and the ‘denominator’ density g reflects the distribution of the at-risk controls (Kelsall and
Diggle, 1995; Hazelton and Davies, 2009; Davies and Hazelton, 2010). To test newly developed
methodology, simulations based on known relative risk scenarios are usually necessary. This func-
tion allows the user to design such scenarios, as used in Hazelton and Davies (2009), Davies and
Hazelton (2010), and Davies (2013) for example.

This function calculates a relative risk surface based on N Gaussian-style ‘bumps’ added and sub-
tracted from a base level of rbase, with the peaks and troughs centered at the coordinates given by
rhotspots with relative weights of rweights and isotropic standard deviations of rsds. The risk
surface r is computed as

r(x) ∝ rbase +
∑N

i=1 rweights[i]∗exp(−0.5∗rsds[i](− 2)∗||x−rhotspots[,i]||2)

where || . || denotes Euclidean norm. Because f and g are both densities, the risk surface as defined
above must then be rescaled with respect to the supplied control density g (argument g) to ensure
that∫
W

r(x)g(x)dx = 1

This is automatically performed inside the function. The case density that gives rise to the designed
r is then easily recovered because f = r ∗ g. By default, the function returns the log-relative risk
surface log r = log f − log g alongside the case and control densities.

Value

An object of class rrim. This is a solist of three pixel images: f as the case density, g the control
density (a copy of the argument of the same name, integrating to 1), and r as the (log) relative risk
surface.

Author(s)

A.K. Redmond and T.M. Davies

14 rrpoint

References

Bithell, J.F. (1990), An application of density estimation to geographical epidemiology, Statistics
in Medicine, 9, 691-701.

Bithell, J.F. (1991), Estimation of relative risk functions, Statistics in Medicine, 10, 1745-1751.

Davies, T.M. (2013), Jointly optimal bandwidth selection for the planar kernel-smoothed density-
ratio, Spatial and Spatio-temporal Epidemiology, 5, 51-65.

Davies, T.M. and Hazelton, M.L. (2010), Adaptive kernel estimation of spatial relative risk, Statis-
tics in Medicine, 29(23) 2423-2437.

Kelsall, J.E. and Diggle, P.J. (1995a), Kernel estimation of relative risk, Bernoulli, 1, 3-16.

Examples

set.seed(1)
gg <- rgmix(3,window=toywin,S=matrix(c(0.08^2,0,0,0.1^2),nrow=2),p0=0.2)

rho <- rrmix(g=gg,
rhotspots=cbind(c(0.8,0.3),c(0.4,0.4),c(0.6,0.5),c(0.3,0.5)),
rsds=c(0.005,0.025,0.01,0.025),
rweights=c(3,2,10,5)*10)

rho.sample <- rrpoint(c(400,800),rho,toywin)

oldpar <- par(mfrow=c(2,2))
plot(rho$g,main="control density")
plot(rho$f,main="case density")
plot(rho$r,main="log relative risk surface")
plot(rho.sample$controls,main="sample data")
points(rho.sample$cases,col=2)
legend("topright",col=2:1,legend=c("cases","controls"),pch=1)
par(oldpar)

rrpoint Generate random case/control points in space or space-time

Description

Generates a pair of random, independent point patterns corresponding to a case density and a control
density, for relative risk analyses.

rrpoint 15

Usage

rrpoint(n, r, W = NULL, correction = 1.1, maxpass = 50)
rrstpoint(n, r, W = NULL, correction = 1.5, maxpass = 50)

Arguments

n The number of points to be generated. This must be a numeric vector of length
2 giving the number of points to generate for the case and control densities re-
spectively. Alternatively a single number can be supplied; then the same number
of points is generated for both densities.

r The relative risk surface object containing the definitions of the case and control
probability densities: an object of class rrim or rrs for rrpoint, or an object
of class rrstim or rrst for rrstpoint.

W The polygonal owin defining the spatial window on which the density is defined.
If NULL, this will be set to the as.polygonal version of the pixel images stored
in r. See ‘Details’.

correction An adjustment to the number of points generated at the initial pass of the internal
loop in an effort to minimise the total number of passes required to reach n
points.

maxpass The maximum number of passes allowed before the function exits. If this is
reached before n points are found with respect to the spatial or spatiotemporal
domains of r, a warning is issued.

Details

These functions randomly generate a pair of independent spatial or spatiotemporal point patterns
of n points based on the case and control density functions stored in r. At any given pass for each
density, n * correction points are generated and rejection sampling is used to accept some of the
points; this is repeated until the required number of points is found.

The argument W is optional, but is useful when the user wants the spatial window of the resulting
point pattern to be a corresponding irregular polygon, as opposed to being based on the boundary of
a binary image mask (which, when the pixel images in r are converted to a polygon directly, gives
jagged edges based on the union of the pixels).

Value

A list with two components, cases and controls, each of which is an object of class ppp contain-
ing the n generated points. for spatiotemporal densities, the marks of the object will contain the
correspondingly generated observation times.

Author(s)

T.M. Davies

16 rrpoint

Examples

Using 'rrim' object:
set.seed(1)
gg <- rgmix(3,window=toywin,S=matrix(c(0.08^2,0,0,0.1^2),nrow=2),p0=0.2)
rho <- rrmix(g=gg,

rhotspots=cbind(c(0.8,0.3),c(0.4,0.4),c(0.6,0.5),c(0.3,0.5)),
rsds=c(0.005,0.025,0.01,0.025),
rweights=c(3,2,10,5)*10)

rho.sample <- rrpoint(n=c(400,800),r=rho,W=toywin)

oldpar <- par(mfrow=c(2,2))
plot(rho$g,main="control density")
plot(rho$f,main="case density")
plot(rho$r,main="log relative risk surface")
plot(rho.sample$controls,main="sample data")
points(rho.sample$cases,col=2)
legend("topright",col=2:1,legend=c("cases","controls"),pch=1)
par(oldpar)

Using 'rrs' object:
require("sparr")
data(pbc)
pbccas <- split(pbc)$case
pbccon <- split(pbc)$control
h0 <- OS(pbc,nstar="geometric")
f <- bivariate.density(pbccas,h0=h0,hp=2,adapt=TRUE,pilot.density=pbccas,

edge="diggle",davies.baddeley=0.05,verbose=FALSE)
g <- bivariate.density(pbccon,h0=h0,hp=2,adapt=TRUE,pilot.density=pbccas,

edge="diggle",davies.baddeley=0.05,verbose=FALSE)
pbcrr <- risk(f,g,tolerate=TRUE,verbose=FALSE)

pbcrr.pt <- rrpoint(n=1000,r=pbcrr)

par(mfrow=c(1,3))
plot(pbcrr)
plot(pbcrr.pt$cases)
plot(pbcrr.pt$controls)

Using 'rrstim' object:
set.seed(321)
gg <- rgmix(7,window=shp2)
rsk <- rrstmix(g=gg,rhotspots=matrix(c(-1,-1,2,2.5,0,5),nrow=3),

rsds=sqrt(cbind(rep(0.75,3),c(0.05,0.01,0.5))),
rweights=c(-0.4,7),tlim=c(0,6),tres=64)

plot(rsk$r,fix.range=TRUE)

rsk.pt <- rrstpoint(1000,r=rsk,W=shp2)

par(mfrow=c(1,2))

rrstmix 17

plot(rsk.pt$cases)
plot(rsk.pt$controls)

Using 'rrst' object:
require("sparr")
data(fmd)
fmdcas <- fmd$cases
fmdcon <- fmd$controls

f <- spattemp.density(fmdcas,h=6,lambda=8)
g <- bivariate.density(fmdcon,h0=6)
rho <- spattemp.risk(f,g)

rho.pt <- rrstpoint(1000,r=rho)

par(mfrow=c(1,2))
plot(rho.pt$cases)
plot(rho.pt$controls)

rrstmix Spatiotemporal relative risk surface generation

Description

Generates an appropriately scaled spatiotemporal (trivariate) relative risk surface using a supplied
control density and N Gaussian-style hotspots.

Usage

rrstmix(g, rhotspots, rsds, rweights, rbase = 1, log = TRUE,
tlim = NULL, tres = NULL)

Arguments

g The control density as a stim, stden, or im object; this will be internally rescaled
to integrate to 1 if it does not already do so. When a stim or stden object, the
resolution and domain of the final result will be the same as this. When this argu-
ment is passed an object of class im, the function assumes a static (unchanging)
control density over time (see Fernando and Hazelton, 2014), and the user must
additionally specify tlim and tres.

rhotspots A 3 × N matrix specifying the spatiotemporal coordinates of the N peaks and
troughs in the relative risk density. The three entries down each column will
be respectively interpreted as x-coord., y-coord., and time-coordinate of each
Gaussian bump.

rsds A 3 × N strictly positive numeric matrix specifying the standard deviations
along each axis of each of the N bumps, the ordering of the components in each
column is the same as rhotspots.

18 rrstmix

rweights A vector of length N giving relative weightings for each peak (positive weight)
or trough (negative).

rbase The base level of the relative risk surface (default is 1). The peaks and troughs
will be added or subtracted from this base level prior to normalisation.

log A logical value. If TRUE (default), the relative risk surface is returned logged.

tlim Only used if g is a pixel image object. A vector of length 2 giving the boundaries
of the time interval on which the relative risk surface will be defined.

tres Only used if g is a pixel image object. The resolution along the temporal axis of
the final result.

Details

This function is the spatiotemporal (trivariate) equivalent of rrmix. See ‘Details’ in the documen-
tation for that function for more information.

Value

An oject of class rrstim. This is a list with the following components:

f An object of class stim giving the case density.

g A copy of the object passed to the argument g, possibly renormalised to integrate
to 1 if this was necessary. If g was originally an im, this will be converted to an
object of class stim.

r An object of class stim giving the (log) relative risk surface.

Author(s)

A.K. Redmond and T.M. Davies

References

Fernando, W.T.P.S. and Hazelton, M.L. (2014), Generalizing the spatial relative risk function, Spa-
tial and Spatio-temporal Epidemiology, 8, 1-10.

Examples

time-varying control density
gg1 <- stgmix(mean=matrix(c(2,1,3,0,-1,5),nrow=3),

vcv=array(c(1,0,0,0,1,0,0,0,1,2,0,0,0,1,0,0,0,2),dim=c(3,3,2)),
window=shp2,tlim=c(0,6))

rsk1 <- rrstmix(g=gg1,rhotspots=matrix(c(-2,0,2,1,2,5.5),nrow=3),
rsds=sqrt(cbind(rep(1.5,3),rep(0.25,3))),rweights=c(-0.5,5))

plot(rsk1$g,sleep=0.1,fix.range=TRUE)
plot(rsk1$f,sleep=0.1,fix.range=TRUE)
plot(rsk1$r,sleep=0.1,fix.range=TRUE)

time-constant control density
set.seed(321)
gg2 <- rgmix(7,window=shp2)

rstpoint 19

rsk2 <- rrstmix(g=gg2,rhotspots=matrix(c(-1,-1,2,2.5,0,5),nrow=3),
rsds=sqrt(cbind(rep(0.75,3),c(0.05,0.01,0.5))),
rweights=c(-0.4,7),tlim=c(0,6),tres=64)

plot(rsk2$g,sleep=0.1,fix.range=TRUE)
plot(rsk2$f,sleep=0.1,fix.range=TRUE)
plot(rsk2$r,sleep=0.1,fix.range=TRUE)

rstpoint Generate random points in space-time

Description

Generates a random spatiotemporal point pattern containing n independent, identically distributed
points with a specified distribution.

Usage

rstpoint(n, f, W = NULL, correction = 1.5, maxpass = 50)

Arguments

n The number of points to be generated.
f The probability density of the points, an object of class stim or stden.
W The polygonal owin defining the spatial window on which the density is defined.

If NULL, this will be set to the as.polygonal version of the pixel images stored
in f. See ‘Details’.

correction An adjustment to the number of points generated at the initial pass of the internal
loop in an effort to minimise the total number of passes required to reach n
points.

maxpass The maximum number of passes allowed before the function exits. If this is
reached before n points are found with respect to the spatiotemporal domain of
f, a warning is issued.

Details

This function randomly generates a spatiotemporal point pattern of exactly n points based on the
density function f. At any given pass, n * correction points are generated and rejection sampling
is used to accept some of the points; this is repeated until the required number of points is found.

The argument W is optional, but is useful when the user wants the spatial window of the resulting
point pattern to be a corresponding irregular polygon, as opposed to being based on the boundary of
a binary image mask (which, when the pixel images in f are converted to a polygon directly, gives
jagged edges based on the union of the pixels).

Value

An object of class ppp containing the n generated points. The marks of the object contain the
correspondingly generated observation times.

20 sgmix

Author(s)

A.K. Redmond and T.M. Davies

Examples

r1a <- sgmix(cbind(c(0.5,0.5)),vcv=0.01,window=toywin,p0=0.5,p=c(0.5),res=128)
r1b <- sgmix(cbind(c(0.5,0.5),c(0.4,0.6)),vcv=c(0.06,0.015),window=toywin,

p0=0.1,p=c(0.5,0.4),res=128)
r1c <- sgmix(cbind(c(0.4,0.6)),vcv=c(0.1),window=toywin,p0=0.1,p=c(0.9),res=128)
sts1 <- stkey(start=r1a,

stop=r1c,
tlim=c(1,10),
tres=64,
window=toywin,
kf=solist(r1a,r1b),
kftimes=c(2,6),
fscale=0.1+0.9*dnorm(seq(-3,3,length=64),mean=0,sd=1))

plot(sts1,sleep=0.1)

Y <- rstpoint(500,sts1,W=toywin,correction=10,maxpass=500)
plot(Y)

require("rgl")
plot3d(Yx,Yy,marks(Y))

sgmix Bivariate Gaussian mixture density generation

Description

Generates a pixel image of a specified bivariate normal mixture density observed on a bounded
window.

Usage

sgmix(mean, vcv, window, p0 = 0, p = NULL, resolution = 128, int = 1)

Arguments

mean A 2×N matrix specifying the means of each of N contributing normal densities.

vcv Either a 2 × 2 × N array specifying the variance-covariance matrices of each
contributing density, or a numeric vector of length N giving the isotropic stan-
dard deviations of each contributing density. An error is thrown if the function
encounters anything but a symmetric, positive-definite covariation specification
for each component.

window An object of class owin giving the observational window on which the mixture
density is defined.

sgmix 21

p0 The proportion of uniform density that contributes to the mixture (default is 0).

p A numeric vector of the N proportions for each contributing density (default
is equal proportions for each density, after subtracting p0). Together, p0 and p
must sum to exactly 1.

resolution The number of pixels along each side of the grid for the pixel image (default is
128).

int A positive numeric value for post-hoc rescaling of the density (useful if the user
wishes to return an intensity function). Defaults to 1 for no change in scaling.

Details

This function generates a pixel image of a 2D density function made of a mixture of N bivariate
normals; each component is restricted to conserve probability mass over a bounded subset of the
plane. A warning will appear if less than 1% of the integral of each Gaussian bump is inside the
observational window.

Value

An object of class im giving the mixture density.

Author(s)

A.K. Redmond

Examples

Example using isotropic standard deviations
m1 <- c(0.4,0.5)
m2 <- c(0.2,0.7)
s1 <- 0.1
s2 <- 0.025
dens1 <- sgmix(mean=cbind(m1,m2),vcv=c(s1,s2),window=toywin,p0=0.3,p=c(0.5,0.2))

plot(dens1,log=TRUE)
pts1 <- rpoint(200,dens1) # generate random points via spatstat.core::rpoint
points(pts1)

Example using full covariance matrices
mn <- cbind(c(0.25,0.8),c(0.31,0.82),c(0.43,0.64),c(0.63,0.62),c(0.21,0.26))
v1 <- matrix(c(0.0023,-0.0009,-0.0009,0.002),2)
v2 <- matrix(c(0.0016,0.0015,0.0015,0.004),2)
v3 <- matrix(c(0.0007,0.0004,0.0004,0.0011),2)
v4 <- matrix(c(0.0023,-0.0041,-0.0041,0.0099),2)
v5 <- matrix(c(0.0013,0.0011,0.0011,0.0014),2)
vr <- array(NA,dim=c(2,2,5))
for(i in 1:5) vr[,,i] <- get(paste("v",i,sep=""))
dens2 <- sgmix(mean=mn,vcv=vr,window=toywin,p0=0.1)

plot(dens2,log=TRUE)
pts2 <- rpoint(200,dens2)

22 stgmix

points(pts2)

stgmix Trivariate Gaussian mixture density generation

Description

Generates a pixel image array of a specified trivariate normal mixture density observed on a bounded
window in space and time.

Usage

stgmix(mean, vcv, window, tlim, p0 = 0, p = NULL, sres = 128, tres = sres, int = 1)

Arguments

mean A 3xN matrix specifying the means of each of N contributing normal densities;
each component in the order of (x-coord, y-coord, time-coord).

vcv A 3x3xN array specifying the variance-covariance matrices of each contribut-
ing density.

window An object of class owin giving the spatial observational window on which the
mixture density is defined.

tlim A vector of length 2 giving the boundaries of the time interval on which the
mixture density is defined.

p0 The proportion of uniform density that contributes to the final mixture (default
is 0).

p A numeric vector of the N proportions for each contributing density (default
is equal proportions for each density, after subtracting p0). Together, p0 and p
must sum to exactly 1.

sres The spatial resolution (number of pixels) along each side of the spatial grid
(default is 128).

tres The temporal resolution (default is to equate with sres).

int A positive numeric value for post-hoc rescaling of the density (useful if the user
wishes to return a spatiotemporal intensity function). Defaults to 1 for no change
in scaling.

Details

This function creates a 3D array of a density function made up of a mixture of N trivariate normals
with the interpretation of a continuous probability density function in space-time. As such, each
component is restricted to conserve mass over a 3D region specified by a fixed polygonal window in
space, stretched over defined temporal limits (tlim). A warning will appear if less than 1% of the
integral of each Gaussian bump is inside this observational spatiotemporal polyhedron.

stintegral 23

Value

An object of class stim giving the trivariate density. This is a list with six components:

a The sres x sres x tres array of the specified density.

v A pixel image version of a, provided as a solist of length tres, with each
member being the spatial image slice of the 3D density at each of the time-
coordinate values.

xcol Grid coordinates in the spatial x-axis (corresponds to each spatial image in v).

yrow Grid coordinates in the spatial y-axis (corresponds to each spatial image in v).

tlay Grid coordinates in the temporal axis (corresponds to the order of the spatial
images in v).

W A copy of window, the spatial owin upon which the density is defined.

Author(s)

A.K. Redmond and T.M. Davies

Examples

require("abind")
m1 <- c(0.3,0.3,2)
m2 <- c(0.5,0.8,8)
m3 <- c(0.7,0.6,7)
v1 <- diag(c(0.01^2,0.01^2,1))
v2 <- diag(c(0.005,0.005,0.5))
v3 <- diag(c(0.005,0.005,0.5))
stg1 <- stgmix(mean=cbind(m1,m2,m3),

vcv=abind(v1,v2,v3,along=3),
window=toywin,tlim=c(1,10),
p0=0.1,tres=64)

plot(stg1,log=TRUE)

mn <- matrix(c(0,0,0,-2,1,4,1,-2,8),nrow=3)
vr <- array(c(1,0,0,0,1,0,0,0,1,1,0,0.5,0,1,0,0.5,0,3,1,0,0,0,2,0,0,0,1),

dim=c(3,3,3))
stg2 <- stgmix(mean=mn,vcv=vr,window=shp1,

tlim=c(0,10),tres=50)
plot(stg2,fix.range=TRUE,sleep=0.1)

stintegral Evaluate integral of a spatiotemporal object

Description

Integrates an object of class stim or stden.

24 stintegral

Usage

stintegral(x)

Arguments

x The object of class stim or stden to be integrated.

Details

The integral is evaluated arithmetically as the sum of the product of the value of each voxel and the
voxel area, for those voxels inside the relevant space-time window (i.e. ignoring NAs).

Value

A single numeric value giving the integral sought.

Author(s)

T.M. Davies

Examples

'stim' objects
require("abind")
m1 <- c(0.3,0.3,2)
m2 <- c(0.5,0.8,8)
m3 <- c(0.7,0.6,7)
v1 <- diag(c(0.01^2,0.01^2,1))
v2 <- diag(c(0.005,0.005,0.5))
v3 <- diag(c(0.005,0.005,0.5))
stg1 <- stgmix(mean=cbind(m1,m2,m3),vcv=abind(v1,v2,v3,along=3),

window=toywin,tlim=c(0,10),p0=0.1,tres=64)
stg2 <- stgmix(mean=cbind(m1,m2,m3),vcv=abind(v1,v2,v3,along=3),

window=toywin,tlim=c(0,10),p0=0.1,tres=64,int=200)
stintegral(stg1)
stintegral(stg2)

'sten' objects
require("sparr")
data(burk)
hlam <- OS.spattemp(burk$cases)
bden <- spattemp.density(burk$cases,h=hlam[1],lambda=hlam[2],sres=64,verbose=FALSE)
stintegral(bden)

stkey 25

stkey Spatiotemporal density generation via keyframe interpolation

Description

Uses the supplied spatial pixel images and scalings to linearly interpolate the behaviour of the
function over time, creating a trivariate density function in space-time.

Usage

stkey(start, stop, tlim, kf = NULL, tres = 64,
kftimes = NULL, fscales = NULL, window = NULL)

Arguments

start The spatial pixel image corresponding to the spatial density at start of the time
interval. May be unnormalised, the function internally rescales all supplied spa-
tial images to integrate to 1.

stop The pixel image for the end of the time interval. Must be compatible with start,
in that it is defined over the same spatial domain and is of identical resolution.

tlim A numeric vector of length 2 representing the temporal window i.e. the time
interval over which the interpolation takes place.

kf A solist of the pixel images of the keyframes between start and stop. If
supplied, each image must be compatible with start and stop. If unsupplied,
the resulting interpolation is performed only on start and stop

tres The resolution of the resulting array in the time dimension (default is 64).

kftimes A vector of times that position the interim keyframes in kf between tlim[1]
and tlim[2]. Ignored if kf = NULL. If unsupplied (NULL), but kf is present, the
function simply positions the images of kf at evenly spaced time points in the
tlim interval.

fscales A numeric vector of unnormalised, relative point-intensity scales. This may
be provided either as of length(kf) + 2, so the point intensities assinged to
each frame in the order c(start,<entries of kf>,stop), or of length tres. If
unsupplied, each spatial frame is simply given equal weight. See ‘Details’.

window An object of class owin giving the polygonal spatial observational window on
which the density is defined. If NULL, the polygon is simply obtained from the
union of pixel values in the supplied images.

Details

This function interpolates in a pixel-wise fashion between the im objects supplied as start and
stop (and kf if supplied), placing them as keyframes at the times in tlim (for start and stop) and
kftimes (for the members of kf). The final result is rescaled such that its total integrated volume
over the defined spatiotemporal domain is 1, yeilding a trivariate density function.

26 stkey

If fscale is a vector of length tres, each element will correspond to the relative overall scaling
of one of the resulting interpolated pixel images. If it is of length length(kf) + 2, the scales will
correspond to start, each keyframe in kf and stop in that order. The values in this argument are
only interpretable in a relative sense: for example, with a single keyframe suppled to kf (in addition
to the required start and stop), then fscales = c(0.5,1,0.5) has exactly the same effect on
the final result as fscales = c(1,2,1), and is interpreted as yielding a point density that reaches
twice the concentration at the time of the supplied keyframe relative to the start and stop margins.
Supplying fscale as a vector of length tres thus allows finer control over the relative point density
over time, such as for the incorporation of harmonic seasonal variation.

Value

Like stgmix, an object of class stim giving the trivariate density. This is a list with six components:

a The xr x yr x tres array of the specified density (where xr and yr are used
here to denote the spatial resolution along the x- and y-axes; this is governed in
stkey by the images initally supplied to start and stop).

v A pixel image version of a, provided as a solist of length tres, with each
member being the spatial image slice of the 3D density at each of the time-
coordinate values.

xcol Grid coordinates in the spatial x-axis (corresponds to each spatial image in v).

yrow Grid coordinates in the spatial y-axis (corresponds to each spatial image in v).

tlay Grid coordinates in the temporal axis (corresponds to the order of the spatial
images in v).

W A copy of window, the spatial owin upon which the density is defined.

Author(s)

A.K. Redmond and T.M. Davies

Examples

mn <- matrix(c(0,0,1,2,0.5,-1),nrow=2)
vr <- array(c(0.2,0,0,2,1,0,0,1,1,0.3,0.3,0.5),dim=c(2,2,3))
im1 <- sgmix(mn,c(1,2,1),shp1,p=c(0.4,0.3,0.3))
im2 <- sgmix(matrix(c(-3,0,0,-2,-1,2),nrow=2),c(3,1,1),shp1,p=c(0.4,0.3,0.3))
im3 <- sgmix(mn,vr,shp1,p0=0.1)

kf1 <- stkey(start=im1,stop=im2,tlim=c(5,20),window=shp1)
plot(kf1)

kf2 <- stkey(start=im1,stop=im1,tlim=c(0,15),kf=solist(im1,im1),kftimes=c(2,8),
fscale=c(1,2,1.5,1),window=shp1)

plot(kf2,fix.range=TRUE)

kf3 <- stkey(start=im1,stop=im2,tlim=c(0,20),kf=solist(im1,im2),kftimes=c(8,12),
fscale=c(1,2,2,1),window=shp1)

plot(kf3,fix.range=TRUE)

toywin 27

ff <- c(sin((1:64)/3)+1.5)
plot(ff,type="l")
kf4 <- stkey(start=im1,stop=im2,kf=solist(im3),kftimes=25,tlim=c(0,50),fscale=ff,window=shp1)
plot(kf4,fix.range=TRUE)

toywin Toy Windows

Description

Synthetic spatial windows for use in testing, simulations and demonstrations.

Usage

data(bx)
data(heart)
data(shp1)
data(shp2)
data(star)
data(toywin)

Format

Each of these is a single closed polygon of class owin.

• bx is a box on [-5,5]^2.

• heart is a heart, professing love for all things spatstat.

• shp1 is shape of mystery.

• shp2 is a slightly more symmetric shape of mystery.

• star is a star that shines brightly in even non-spatial contexts.

• toywin is the eponymous toy window used in publications e.g. Davies & Lawson (2019).

Details

These are lazy-loaded so may be called directly by name upon loading of spagmix.

Author(s)

A.K. Redmond and T.M. Davies

References

Davies, T.M. and Lawson, A.B. (2019), An evaluation of likelihood-based bandwidth selectors for
spatial and spatiotemporal kernel estimates, Journal of Statistical Computation and Simulation, 89
1131-1152.

28 unify.owin

Examples

oldpar <- par(mfrow=c(2,3))
plot(bx);axis(1);axis(2)
plot(heart);axis(1);axis(2)
plot(shp1);axis(1);axis(2)
plot(shp2);axis(1);axis(2)
plot(star);axis(1);axis(2)
plot(toywin);axis(1);axis(2)
par(oldpar)

unify.owin Spatial window unit rescaler

Description

Rescales any owin to fall inside the unit square.

Usage

unify.owin(W)

Arguments

W An object of class owin giving the spatial window to be transformed.

Details

This function is a simple wrapper for affine deployed to rescale a supplied owin to fall inside the
unit square.

Value

The rescaled owin.

Examples

W <- Window(chorley)
U <- unify.owin(W)

oldpar <- par(mfrow=c(1,2))
plot(W,axes=TRUE)
plot(U,axes=TRUE)
par(oldpar)

Index

∗ package
spagmix-package, 2

affine, 3, 28
as.polygonal, 15, 19

bx, 3
bx (toywin), 27

colourmap, 8

heart, 3
heart (toywin), 27

im, 5, 6, 9–13, 15, 17–19, 21, 23, 25, 26

lgcpmix, 3, 5

marks, 15, 19

owin, 3, 9–11, 15, 19, 20, 22, 23, 25–28

plot.im, 8
plot.stim, 3, 8
ppp, 11, 15, 19

rgmix, 3, 9
rimpoly, 3, 11, 12
rLGCP, 5, 6
rpoint, 3, 12
rpoispoly, 3, 6, 10
rpoispp, 6, 11, 12
rrim, 15
rrim (rrmix), 12
rrmix, 3, 12, 18
rrpoint, 3, 14
rrs, 15
rrst, 15
rrstim, 15
rrstim (rrstmix), 17
rrstmix, 3, 17

rrstpoint, 3
rrstpoint (rrpoint), 14
rstpoint, 3, 19

sgmix, 3, 9, 20
shp1, 3
shp1 (toywin), 27
shp2, 3
shp2 (toywin), 27
solist, 13, 23, 25, 26
spagmix (spagmix-package), 2
spagmix-package, 2
sparr, 2, 3
spatstat, 2, 3, 27
star, 3
star (toywin), 27
stden, 17, 19, 23, 24
stgmix, 3, 22, 26
stim, 8, 17–19, 23, 24, 26
stim (stgmix), 22
stintegral, 3, 23
stkey, 3, 25
Sys.sleep, 8

toywin, 3, 27

unify.owin, 3, 28

29

	spagmix-package
	lgcpmix
	plot.stim
	rgmix
	rpoispoly
	rrmix
	rrpoint
	rrstmix
	rstpoint
	sgmix
	stgmix
	stintegral
	stkey
	toywin
	unify.owin
	Index

