Package ‘riverdist’

November 7, 2024
Type Package

Title River Network Distance Computation and Applications
Version 0.17.1

Date 2024-11-07

Author Matt Tyers [aut, cre]

Maintainer Matt Tyers <matttyersstat@gmail.com>

Description Reads river network shape files and computes network distances.
Also included are a variety of computation and graphical tools designed
for fisheries telemetry research, such as minimum home range, kernel density
estimation, and clustering analysis using empirical k-functions with
a bootstrap envelope. Tools are also provided for editing the river
networks, meaning there is no reliance on external software.

License GPL-2

Depends R (>=3.5.0)

Imports sf (>= 1.0-14), methods
Suggests knitr, rmarkdown, tibble, testthat
VignetteBuilder knitr

LazyData TRUE

URL https://cran.r-project.org/package=riverdist

BugReports https://github.com/mbtyers/riverdist/issues
RoxygenNote 7.3.1

NeedsCompilation no

Repository CRAN

Date/Publication 2024-11-07 18:10:02 UTC

Contents

riverdist-package L.
abstreams oL e e e e e

https://cran.r-project.org/package=riverdist
https://github.com/mbtyers/riverdist/issues

Contents

abstreamsQ L e 5
addcumuldist 5
addverts 6
buildlookup L 7
buildsegroutes e e e e e 8
calculateconnections oLl e 9
checkbraided 10
checkbraidedTF e 11
cleanup e e e 12
cleanup_Verts e e 13
COMNECESEES « « « . v v v e e et e e e e e e e e e e e e e e e 14
densityanomaly L L L e 15
detectroute L. e e e 17
dissolve 18
fakefish e 19
fakefish_density L 20
Gulk . . . e 20
highlightseg e 21
homerange L e 21
homerange-class L 23
homerangeoverlap 24
isflowconnected 25
Kenail o e 26
Kenai2 e 26
Kenaid e 27
kfunc 27
KilleyW . . . o e 29
KoyukukO e 30
Koyukukl e 30
Koyukuk2 31
line2network 31
line98 e 33
makeriverdensity L. e 33
mapbynameo e e e e e e e e e e e e e e e 35
matbysurveylist 35
mouthdist e 37
mouthdistbysurvey oL 38
PAISt . . 40
PAISLtOt e e e e e e 40
plothomerange e 41
plotriverdensity L. 42
plotrivernetwork e e 45
plothomerangeoverlap L 46
plotmatbysurveylist L 47
plotriverdensitypoints L. 48
PIOLSEq .« . o o o e e e e e e 49
pointshp2segvert L 50

removeduplicates 51

riverdist-package 3

TEMOVEIMICIOSEES .« « « v v v v v e v e e e e e e e e e e e e e e e e e e 52
removeunconnected L Lol 53
riverdensity L e e 54
riverdireCtion L. e e e e e e e e e e e 55
riverdirectionmat L. L Lo L e e e 56
riverdirectionmatbySurveyo e e e e e 57
TIVerdireCtionSeq« v v v o e e e e e e e e e e e e e e e 59
riverdirectiontofrom L. oL e 61
riverdiStance e e e e e e e e e e e e 63
riverdistancelist L. L e e e e 64
riverdistancemat L L L e e 66
riverdistancematbySurvey L. L e e e e e e e 67
TIVErdiStanCeseq v v v v v e e e e e e e e e e e e e e e 68
riverdistancetofrom L L L L L 70
rivernetwork L L e e 72
TIVEIPOINES © . v v v v o i it e e e e e e e e e e e 73
routelist 74
SEEVETI2ZXY + v v v v v e 75
SEQUENCEVEILS it e e e e 76
setmouth L e e e 77
showends 78
smallset e 78
splitsegmentat L. e e e e e e e e e e e 79
SPlitSEgMENts e e 80
topologydots e e e 81
tHMIIVET o o o s e 82
trimtopoINtS e e e 83
UPSITEAIM .+ . v v v v v v e 84
UPSIT@AMMAL o v v v v et e e e e e e e e e e e e e e e e e e 86
upstreammatbysurvey 87
UPSETEAMSE« v o v v o v v e e e e e e e e e e e &9
upstreamtofrom Ll 91
whoconnected 93
XY2SEEVETL . o v v v v e 94
ZOOMUOSEE . . .« o v v v v v e it e e e e e e e e e e e e e e 95
Index 96
riverdist-package River Network Distance Computation and Applications
Description

Reads river network shape files and computes network distances. Also included are a variety of
computation and graphical tools designed for fisheries telemetry research, such as minimum home
range, kernel density estimation, and clustering analysis using empirical k-functions with a boot-
strap envelope. Tools are also provided for editing the river networks, meaning there is no reliance
on external software.

4 abstreams

Details

Package: riverdist
Type: Package
Version: 0.17.1
Date: 2024-11-07
License: GPL-2

The riverdist package provides tools for distance calculation along a river network. The river net-
work is imported from a projected shapefile. Spatial point data may be imported from a shapefile
as well, or directly from coordinates.

Some basic formatting of the river shapefile may be necessary. If available, formatting in a ge-
ographic information system (GIS) prior to importing into R is recommended (projecting, spatial
trimming to the study area, and possibly dissolving river segments), but the riverdist package and
its dependencies also include tools for accomplishing the necessary formatting within R.

Author(s)

Matt Tyers

Maintainer: Matt Tyers <matttyersstat@gmail.com>

abstreams Dataset: A-B Streams

Description

A complex river network object, a subset of the streams in the Absaroka-Beartooth Wilderness.

Usage

data(abstreams)

Format

A river network object, see rivernetwork

abstreamsQ 5

abstreamso Dataset: A-B Streams 0

Description
An unusably messy river network object, included for the purpose of testing river network editing
functions.

Usage

data(abstreamso)

Format

A river network object, see rivernetwork

addcumuldist Add Cumulative Distance to a River Network

Description

Adds a vector of cumulative distances to a river network. Called internally.

Usage

addcumuldist(rivers)
Arguments

rivers The river network object to use.
Value

Returns an object of class "rivernetwork” containing all spatial and topological information. See
rivernetwork-class.

Author(s)
Matt Tyers

Examples

Gulk1 <- addcumuldist(rivers=Gulk)

6 addverts

addverts Add Vertices To Maintain a Minimum Distance Between Vertices

Description

In certain cases, such as when there is a lake within a river system, there may be long, straight lines
in a river network with vertices only at either end. In these cases, any point data along these stretches
would be snapped to the vertices at either end. This function automatically adds equally-spaced ver-
tices along the straight line, according to a specified minimum allowable distance between vertices.

Usage

addverts(rivers, mindist = 500)

Arguments

rivers The river network object to use.

mindist The minimum distance to use between vertices. Defaults to 500.
Value

A new river network object with the specified segments connected (see rivernetwork)

Note

This function is called within cleanup, which is recommended in most cases.

Author(s)

Matt Tyers

See Also

line2network

Examples

data(Kenai3)
Kenai3split <- addverts(Kenai3,mindist=200)

zoomtoseg(seg=c(47,74,78), rivers=Kenai3)
points(Kenai3$lines[[741]1) # vertices before adding

zoomtoseg(seg=c(47,74,78), rivers=Kenai3split)
points(Kenai3split$lines[[74]]) # vertices after adding

buildlookup 7

buildlookup Build Lookup Tables for Fast Distance Computation

Description

Adds lookup tables for distance computation, dramatically reducing computation time. It may take
some time to calculate, particularly in a braided network.

Usage

buildlookup(rivers)
Arguments

rivers The river network object to use
Value

A rivernetwork object, with a new list element, $distlookup, a list of three matrices. Element
[i,j] of each matrix corresponds to the route between segment i and j. The distlookup$middist
matrix gives the total distance of the "middle" of each route (between the starting and ending
segments"), and the distlookup$starttop and distlookup$endtop matrices have value TRUE,
FALSE, or NA if the segments at the beginning or end of the route are connected to the rest of the
route at the top of the coordinate matrix, bottom of the coordinate matrix, or if the route is contained
to just one segment, respectively. (See rivernetwork.)

Note

This will add three n by n matrices to the river network object, which will be very large if the river
network has many segments.

This function is called within cleanup, which is recommended in most cases. It is also called within
buildsegroutes, and will add lookup tables by default if there are fewer than 400 segments in the
river network.

This function can still be called in the presence of a braided network, but all resulting distances used
in subsequent analyses will be the shortest route.

If segment routes ($segroutes) are not present, this function may take a very long time to run.

Author(s)
Matt Tyers

Examples

data(abstreams)

abstreams1 <- buildlookup(abstreams)

8 buildsegroutes

buildsegroutes Build Segment Routes

Description

Adds the travel routes from the mouth (lowest point) of a river network to each segment, and (op-
tionally) distance lookup tables. This greatly reduces the time needed to detect routes, making
distance calculation much more efficient, particularly in the case of multiple distance calculations.

Usage

buildsegroutes(rivers, lookup = NULL, verbose = FALSE)

Arguments
rivers The river network object to use
lookup Whether to build lookup tables as well. This may take some time, but will result
in even faster distance computation in analyses (see buildlookup). Because of
the object size returned, this may not be advisable in a large river network (more
than a few hundred segments). Accepts TRUE or FALSE, and defaults to NULL. If
the default value is accepted, lookup tables will be built if the river network has
400 segments or fewer.
verbose Whether or not to print the segment number the function is currently building a
route for (used for error checking). Defaults to FALSE.
Value

A rivernetwork object, with a new list element, $segroutes, which gives the route from the mouth
to each rivernetwork segment. Optionally, it may add $distlookup, distance lookup tables for even
faster distance computation. (See rivernetwork.)

Note

In the event of braiding (multiple channels), it is likely that there will be differences in the routes
detected. If this is the case, building routes will likely result in a shorter and more efficient route.
Regardless, extreme caution is always advised in the event of braiding.

The mouth segment and vertex must be specified (see setmouth).

This function is called within cleanup, which is recommended in most cases.

Author(s)

Matt Tyers

calculateconnections 9

Examples

data(abstreams)

plot(x=abstreams)

abstreams1 <- abstreams

abstreamsi$segroutes <- NULL #taking out the $segroutes component

before

tstart <- Sys.time()

detectroute(start=120, end=111, rivers=abstreams1)
Sys.time() - tstart

after

tstart <- Sys.time()

detectroute(start=120, end=111, rivers=abstreams)
Sys.time() - tstart

calculateconnections Calculate the Connectivity Matrix for a River Network

Description

Calculates the connectivity matrix for a river network, during import and editing. Called internally.

Usage

calculateconnections(lines, tolerance)

Arguments
lines A list of coordinate matrices, each corresponding to a line segment.
tolerance The spatial tolerance for establishing connectivity.

Value

A matrix with topological information. See the $connections element of the rivernetwork-class.

Author(s)

Matt Tyers

Examples

Gulk_connections <- calculateconnections(lines=Gulk$lines, tolerance=Gulk$tolerance)

10 checkbraided

checkbraided Check for Braiding in a River Network

Description

Detects braiding (multiple flow channels between two locations) within a river network object.
Braiding can either be checked for in the route between two segments, or in the river network as a
whole.

Usage

checkbraided(rivers, startseg = NULL, endseg = NULL, progress = TRUE)

Arguments
rivers The river network object to check.
startseg Starting segment of a route to investigate. If this and endseg are NULL, the full
river network will be checked.
endseg Starting segment of a route to investigate. If this and startseg are NULL, the
full river network will be checked.
progress Whether to show the progress bar. Defaults to TRUE.
Note

This function is called within cleanup, which is recommended in most cases.

Author(s)
Matt Tyers

Examples

data(Gulk)
plot (x=Gulk)
checkbraided(rivers=Gulk)

data(KilleyW)
plot(x=KilleyW)
checkbraided(rivers=KilleyW)

Kenai3.subset <- trimriver(trimto=c(22,2,70,30,15,98,96,89,52,3), rivers=Kenai3)
plot(x=Kenai3.subset)

checkbraided(startseg=1, endseg=7, rivers=Kenai3.subset)
checkbraided(startseg=1, endseg=5, rivers=Kenai3.subset)

checkbraidedTF

11

checkbraidedTF

Check for Braiding in a River Network

Description

Detects braiding (multiple flow channels between two locations) within a river network object, and
returns a logical value for specifying braiding within a river network object.

Usage
checkbraidedTF(rivers, toreturn = "rivers”, progress = TRUE)
Arguments
rivers The river network object to check.
toreturn Specifying toreturn="rivers" (the default) will return a river network object
with a value of TRUE or FALSE assigned to the $braided element of the river net-
work object. Specifying toreturn="1logical" will just return TRUE if braiding
is detected or FALSE if no braiding is detected. Specifying toreturn="routes"
will return the first two differing routes detected, which may be useful in identi-
fying where the problem lies.
progress Whether to show the progress bar. Defaults to TRUE.
Note

This function is called within cleanup, which is recommended in most cases.

Author(s)

Matt Tyers

Examples

data(Gulk,KilleyW)
Gulk <- setmouth(seg=1, vert=1, rivers=Gulk)

plot (x=Gulk)

checkbraidedTF(rivers=Gulk, toreturn="logical")

KilleyW <- setmouth(seg=1, vert=288, rivers=KilleyW)

plot(x=KilleyW)

checkbraidedTF(rivers=KilleyW, toreturn="logical")
checkbraidedTF(rivers=KilleyW, toreturn="routes")

KilleyW.1 <- checkbraidedTF(rivers=KilleyW, toreturn="rivers")

str(KilleyW.1)

12 cleanup

cleanup Interactive Cleanup of a River Network

Description

This is the recommended function to use for cleanup of a river network. It calls all available river
network editing functions in appropriate sequence, detecting which are needed or recommended,
and prompts user input wherever necessary.

Currently, it automatically calls removeduplicates, prompts the user whether to run dissolve, auto-
matically runs removemicrosegs and splitsegments if needed, provides user prompts for addverts
and setmouth, detects if segments are unconnected and provides user prompts for removeuncon-
nected or connectsegs, automatically runs checkbraidedTF, and prompts the user whether to run
buildsegroutes if no braiding is detected.

Usage

cleanup(rivers)

Arguments

rivers The river network object to use

Value

A new river network object, see rivernetwork

Author(s)

Matt Tyers

See Also

line2network

Examples

data(abstreams®,Koyukuk@,Kenail)

abstreams_fixed <- cleanup(abstreams@)
Koyukuk <- cleanup(Koyukuk®)
Kenai <- cleanup(Kenail)

cleanup_verts 13

cleanup_verts Interactive Cleanup of the Vertices of Individual Segments

Description

A trial version of a function for deep-cleaning a river network.

Sometimes a shapefile contains errors that are not obvious at an initial check, typically vertices that
should not be there.

This function steps through each segment in sequence, and allows the user to interactively remove
vertices.

Usage

cleanup_verts(rivers, startwith = 1)

Arguments

rivers The river network object to use

startwith The segment (number) to start with, defaulting to 1.
Value

A new river network object, see rivernetwork

Note

Stepping through a large and messy river network can be time-consuming. To resume a cleanup
session, use the startwith= argument and the last returned river network. For example, if rivers1
<- cleanup_verts(rivers) were initially called and the user selected "save & close" at segment
100, cleanup can be resumed by calling rivers2 <- cleanup_verts(rivers1, startwith=100).

Author(s)
Matt Tyers

See Also

line2network

Examples
data(abstreams®,Koyukuk@,Kenail)
abstreams_fixedl <- cleanup_verts(abstreams®)

Koyukuk <- cleanup(Koyukuk®)
Kenai <- cleanup(Kenail)

14 connectsegs

connectsegs Connect Segments

Description

Provides a method to manually connect unconnected segments within a river network. The nearest
endpoint (or vertex) of the second segment is added as a new vertex to the first, and the network
topology is then updated.

Usage
connectsegs(
connect,
connectto,
nearestvert = TRUE,
rivers,
calcconnections = TRUE
)
Arguments
connect The segment(s) to connect to the network. Typically, this is the segment that is
disconnected from the rest of the river network. A vector of segments may be
used.
connectto The segment(s) to connect it (them) to. Typically, this is a segment that is con-
nected to the rest of the river network. A vector of segments may be used,
corresponding to that used in connect=.
nearestvert Whether to connect at the nearest vertex and split the segment (FALSE), or con-
nect at the nearest endpoint (TRUE). Defaults to TRUE. A vector may be used,
corresponding to those used in connect= and connectto=.
rivers The river network object to use.
calcconnections
Whether to recalculate all connections. Defaults to TRUE. Setting to FALSE is not
recommended unless many connections are to be made, in which case connec-
tions can be calculated afterward.
Value

A new river network object with the specified segments connected (see rivernetwork)

Note

This function is called within cleanup, which is recommended in most cases.

Author(s)
Matt Tyers

densityanomaly 15

See Also

line2network

Examples

data(Koyukuk®)
plot(Koyukuk@, ylim=c(1930500,1931500), x1im=c(194900,195100))
topologydots(Koyukuk®, add=TRUE)

Koyukuk@.1 <- connectsegs(connect=21, connectto=20, rivers=Koyukuk®)
plot(Koyukuk®.1,ylim=c(1930500,1931500), xlim=c(194900,195100))
topologydots(Koyukuk®.1, add=TRUE)

or the vector version

zoomtoseg(seg=21:23, rivers=Koyukuk®)

Koyukuk@.2 <- connectsegs(connect=c(20,21,22), connectto=c(21,22,23),
nearestvert=c(FALSE,FALSE,TRUE), rivers=Koyukuk®)

zoomtoseg(seg=21:23, rivers=Koyukuk®.2)

topologydots(Koyukuk@.2, add=TRUE)

densityanomaly Plot Difference from Mean Kernel Density Using River Distance

Description

Plots kernel density anomaly for each survey, which is defined as the difference between kernel
density for each survey and mean kernel density across all surveys. The intent of this function is to
highlight areas in which density is higher or lower for specific surveys than it is on average.

The input argument is an object returned from makeriverdensity.

Usage
densityanomaly(
X7
whichplots = NULL,
method = c("overlap”, "both”, "positive”, "negative"),
negative_ramp = "blue”,
positive_ramp = "red”,

parmfrow = NULL,

Arguments

X An object returned from makeriverdensity.

16

whichplots

method

negative_ramp

positive_ramp

parmfrow

Value

NULL

Author(s)

Matt Tyers

See Also

densityanomaly

A vector of plots to produce, if multiple plots are produced. For example, spec-
ifying whichplot=c(2,3,4) will result in only the second, third, and fourth
plots of the sequence being produced. Accepting the default (NULL) will result
in all plots being produced. Note: this will also be the set of kernel densities
used to calculate the mean kernel density and thereby differences from mean
kernel density.

Whether to produce plots for positive and negative anomalies overlayed ("overlay”),
in sequence ("both"), or positive or negative only ("positive” or "negative”).

Color ramp to use for negative anomaly (see plot.riverdensity for more details).
Defaults to "blue”.

Color ramp to use for negative anomaly (see plot.riverdensity for more details).
Defaults to "red”.

Optional argument to par(mfrow)=, which may be useful if method="both".
Defaults to NULL.

Additional arguments to plot.riverdensity.

makeriverdensity, plot.riverdensity, plotriverdensitypoints

Examples

data(Gulk, fakefish)

Gulk_dens <- makeriverdensity(seg=fakefish$seg, vert=fakefish$vert, rivers=Gulk,
survey=fakefish$flight.date)

first, the behavior of plot.riverdensity
10 plots will be created, recommend calling par(mfrow=c(2,5))

plot(x=Gulk_dens)

next, showing densityanomaly

densityanomaly(x=Gulk_dens, parmfrow=c(2,5))
densityanomaly(x=Gulk_dens, method="negative", parmfrow=c(2,5))
densityanomaly(x=Gulk_dens, method="positive"”, parmfrow=c(2,5))

detectroute

17

detectroute

Detect Route

Description

Called internally within riverdistance. Detects the sequential route from one river network segment

to another.
Usage
detectroute(
start,
end,
rivers,
verbose = FALSE,
stopiferror = TRUE,
algorithm = NULL
)
Arguments
start Segment number of the start of the route
end Segment number of the end of the route
rivers The river network object to use
verbose Whether or not to print all routes being considered (used for error checking).
Defaults to FALSE.
stopiferror Whether or not to exit with an error if a route cannot be found. If this is set to
FALSE and a route cannot be found, detectroute() will return NA. Defaults to
TRUE.
algorithm Which route detection algorithm to use. If set to NULL (the default), the function
will automatically make a selection. Choices are:

 Setting algorithm="sequential” will be quite slow, and may give in-
accurate results in the event of braiding. This algorithm returns the first
complete route detected, which may not be the shortest. This algorithm is
not recommended in almost all cases, but is retained as an option for certain
checks. It will not be used unless specified.

» Setting algorithm="Dijkstra"” will be much faster, and will return the
shortest route in the event of braiding. If braiding is present or unknown,
this will be the algorithm automatically chosen.

» Setting algorithm="segroutes” will be the fastest of all, but will only
return results in a non-braided network. This will be the algorithm auto-
matically selected if segment routes are present - see buildsegroutes.

Value

A vector of segment numbers corresponding to the ordered route.

18 dissolve

Author(s)
Matt Tyers

Examples

data(Gulk)
plot(x=Gulk, cex=1)

detectroute(start=6, end=14, rivers=Gulk)

tstart <- Sys.time()

detectroute(start=120, end=111, rivers=abstreams, algorithm="sequential")
tend <- Sys.time()

tend - tstart

data(abstreams)

tstart <- Sys.time()

detectroute(start=120, end=111, rivers=abstreams, algorithm="Dijkstra")
tend <- Sys.time()

tend - tstart

tstart <- Sys.time()

detectroute(start=120, end=111, rivers=abstreams, algorithm="segroutes")
tend <- Sys.time()

tend - tstart

dissolve Dissolve

Description

Acts like a spatial dissolve within a GIS environment. Simplifies a river network object by combin-
ing "runs" of segments with no other connections.

Usage

dissolve(rivers)
Arguments

rivers The river network object to use
Value

A new river network object with segments combined

Note

This function is called within cleanup, which is recommended in most cases.

fakefish 19

Author(s)
Matt Tyers

See Also

line2network

Examples

data(Kenai2)
plot(x=Kenai2)

Kenai2dissolve <- dissolve(rivers=Kenai2)
plot(x=Kenai2dissolve)

fakefish Dataset: Fakefish

Description

A set of observations of Fakefish on the Gulkana River and its tributaries.

Usage
data(fakefish)

Format

A data frame

Details

* x. X-coordinate of observation (Alaska Albers Equal Area). Note that the locations do not
align with the river network object.

¢ y. Y-coordinate of observation

* seg. River segment (with x- and y-coordinates snapped to river network object)

* vert. River vertex

e fish.id. Numeric identifier for each fish (individual fish were observed more than once)
* flight. Numeric identifier for each telemetry flight

* flight.date. Date of each telemetry flight

See Also
Gulk

20 Gulk

fakefish_density Dataset: Fakefish Density

Description

An object created by riverdensity, describing the density of Fakefish points in the Gulkana River
during ten surveys.

Usage

data(fakefish_density)

Format

A river density object, see riverdensity, plotriverdensity, riverdensity-class

Details

Intended for plotting using plotriverdensity.

Gulk Dataset: Gulkana River

Description

A stretch of Gulkana River and tributaries.

Usage

data(Gulk)

Format

A river network object, see rivernetwork

highlightseg 21

highlightseg Highlight Segments

Description

Plots a river network object and displays specified segments in bold, for easy identification.

Usage
highlightseg(seg, rivers, cex = 0.8, 1wd = 3, add = FALSE, color = FALSE, ...)
Arguments
seg A vector of segments to highlight
rivers The river network object to use
cex The character expansion factor to use for segment labels
lwd The line width to use for highlighted segments
add Whether to add the highlighted segments to an existing plot (TRUE) or call a new
plot (FALSE). Defaults to FALSE.
color Whether to display segment labels as the same color as the segments. Defaults
to FALSE.
Additional plotting arguments (see par)
Author(s)
Matt Tyers
Examples
data(Kenai3)
plot(Kenai3)

highlightseg(seg=c(10,30,68),rivers=Kenai3)

homerange Home Range

Description

Returns the minimum observed home range for multiple observations of each individual fish.

22 homerange

Usage

homerange (
unique = NULL,
survey = NULL,

seg,
vert,
rivers,
map = FALSE,
algorithm = NULL,
main = NULL,
)
Arguments
unique A vector of unique identifiers for each fish. If the default (NULL) is used, the
function will assume all observations come from a single individual.
survey A vector of survey identifiers for each fish. This argument is not needed for
home range calculation, but can affect plotting (see plot.homerange).
seg A vector of river locations (segment component).
vert A vector of river locations (vertex component).
rivers The river network object to use.
map Deprecated, use plot.homerange for plotting instead. Originally, whether to pro-
duce sanity-check maps of observed locations and calculated home range for
each fish.
algorithm Which route detection algorithm to use ("Dijkstra”, "sequential”, or "segroutes").
If left as NULL (the default), the function will automatically make a selection. See
detectroute for more details.
main Deprecated, use plot.homerange for plotting instead. Originally, plot title, if map
is set to TRUE. If unspecified, the unique ID will be used for the title.
Deprecated, use plot.homerange for plotting instead. Originally, additional plot-
ting arguments, if map is set to TRUE.
Value

An object of the homerange-class. The $ranges element is a data frame with two columns: $IDis a
list of unique fish (as specified by unique=), and $range is calculated minimum home range, in the
units of the coordinate system (this will likely be meters). The other elements are used for plotting,
see homerange-class for more details.

Note

Building routes from the river mouth to each river network segment and/or distance lookup tables
will greatly reduce computation time (see buildsegroutes).

homerange-class 23

Author(s)

Matt Tyers

See Also

plot.homerange, homerangeoverlap, plothomerangeoverlap

Examples

data(Gulk, fakefish)
ranges <- with(fakefish, homerange(unique=fish.id, survey=flight, seg=seg, vert=vert, rivers=Gulk))
ranges

19 plots will be produced, recommend calling par(mfrow=c(4,5))
plot(ranges)
plot(ranges,cumulative=TRUE, label=TRUE)

homerangeoverlap(ranges)

plothomerangeoverlap(ranges)
with(fakefish, riverpoints(seg=seg, vert=vert, rivers=Gulk))

homerange-class The "homerange" Class

Description

A class that holds information computed from the homerange function. Contains all information
for plotting in plot.homerange.

Elements

ranges: Object of class "data.frame”. Contains a column of the identifiers for each individual,
and a column of the associated home ranges.

subseg_n: List of the number of times each subsegment was traveled. The first level of the list
corresponds to individual, the second level to river segment.

subseg_length: List of lengths of each subsegment.

seg, vert, unique, rivers: All inputs from the original homerange call.

Author(s)

Matt Tyers

24 homerangeoverlap

homerangeoverlap Home Range Overlap

Description

Returns matrices describing the overlap of the minimum observed home range for multiple obser-
vations of each individual fish.

Usage

homerangeoverlap(x)
Arguments

X An object returned from homerange.
Value

A list of three matrices, with $either giving the distances represented by the union of home ranges
of each pair of individuals, and $both giving the distances represented by the intersection of home
ranges of each pair of individuals. Element $prop_both gives the proportion of overlap, defined as
intersection/union.

Author(s)

Matt Tyers

See Also

homerange, plot.homerange, plothomerangeoverlap

Examples

data(Gulk, fakefish)
ranges <- with(fakefish, homerange(unique=fish.id, survey=flight, seg=seg, vert=vert, rivers=Gulk))
ranges

19 plots will be produced, recommend calling par(mfrow=c(4,5))
plot(ranges)
plot(ranges,cumulative=TRUE, label=TRUE)

homerangeoverlap(ranges)

plothomerangeoverlap(ranges)
with(fakefish, riverpoints(seg=seg, vert=vert, rivers=Gulk))

isflowconnected

25

isflowconnected

Check Flow-Connectedness

Description

Checks to see if two segments are flow-connected. Called internally within riverdirection and up-

stream.

Usage

isflowconnected(segl, seg2, rivers, stopiferror = TRUE, algorithm = NULL)

Arguments
segl
seg?2
rivers

stopiferror

algorithm

Value

First input segment
Second input segment
The river network object to use

Whether or not to exit with an error if a route cannot be found. If this is set to
FALSE and a route cannot be found, the function will return NA in the appropriate
entry. Defaults to TRUE. See detectroute.

n on

Which route detection algorithm to use ("Dijkstra”, "sequential”, or "segroutes”).
If left as NULL (the default), the function will automatically make a selection. See
detectroute for more details.

Logical TRUE if the two segments are flow-connected, FALSE if they are not

Note

The river mouth must be specified (see setmouth).

Author(s)
Matt Tyers

Examples

data(Gulk)
plot (Gulk)

Gulk <- setmouth(seg=1, vert=1, rivers=Gulk)

isflowconnected(segl=13, seg2=14, rivers=Gulk)
isflowconnected(segl=13, seg2=1, rivers=Gulk)

26 Kenai2

Kenail Dataset: Kenai River 1

Description

A first pass at a messy river network object.

Usage

data(Kenail)

Format

A river network object, see rivernetwork

See Also

Kenai2, Kenai3

Kenai2 Dataset: Kenai River 2

Description
A second pass at a messy river network object. In this iteration of cleanup, several non-connected
segments have been removed.

Usage

data(Kenai?2)

Format

A river network object, see rivernetwork

See Also

Kenail, Kenai3

Kenai3 27

Kenai3 Dataset: Kenai River 3

Description
A third pass at a messy river network object. In this iteration of cleanup, several non-connected seg-
ments have been removed, and several series of segments have been dissolved into single segments.
Usage
data(Kenai3)

Format

A river network object, see rivernetwork

See Also

Kenail, Kenai2

kfunc Plotting K-functions for a Set of Surveys

Description

Plots K-functions for locations in each of a set of surveys. In this implementation, this can be
interpreted as the proportion of additional fish within a given distance. This will increase as a
function of distance, and may provide evidence of clustering or dispersion features, particularly if
the envelope is used.

Usage

kfunc(
seg,
vert,
survey = NULL,
rivers,
lwd = 2,
envelope = TRUE,
envreps = 1000,
envcol = "grey80",
envborder = NA,
maxdist = NULL,
xlab = "Distance”,
ylab = "% within”,
showN = TRUE,

28 kfunc

whichplots = NULL,
returnoutput = FALSE,

Arguments

seg A vector of river locations (segment)

vert A vector of river locations (vertex)

survey A vector of survey IDs corresponding to the values of seg and vert. Defaults
to NULL. If this argument is used, K-functions will be calculated for each unique
survey, and separate plots will be produced.

rivers The river network object to use

lwd Line width used for plotting. Defaults to 2.

envelope Whether to construct and display a 95 percent confidence envelope (see note.)
Defaults to TRUE if survey is specified, and is automatically FALSE otherwise.

envreps Number of bootstrap replicates to use for envelope calculation. Defaults to 1000.

envcol Color to use for envelope plotting. Defaults to "grey80".

envborder Border color to use for envelope plotting. Defaults to NA, which will result in no
border being plotted.

maxdist Maximum distance (x-axis value) for plotting. The default value (NULL) will
result in an appropriate value being chosen.

xlab X-coordinate label for plotting

ylab Y-coordinate label for plotting

showN Whether to show the sample size for each survey in each plot title. Defaults to
TRUE.

whichplots A vector of plots to produce, if multiple plots are produced. For example, spec-

ifying whichplot=c(2,3,4) will result in only the second, third, and fourth
plots of the sequence being produced. Accepting the default (NULL) will result
in all plots being produced.

returnoutput Whether to return output instead of producing a plot. Defaults to FALSE.

Additional plotting parameters.

Note

K-function envelopes for each survey are constructed by bootstrapping all within-survey distances,
that is, the distances between all individuals within each survey, for all surveys. This results in a
confidence envelope under the assumption that spacing is independent of survey; therefore a survey
K-function outside the envelope provides evidence of clustering or dispersal in that survey that is
outside the typical range. An envelope is not available if only one survey is plotted.

A K-function above the envelope for a given distance range provides evidence of a greater number
of individuals than expected at that distance range (clustering); A K-function below the envelope
for a given distance range provides evidence of a smaller number of individuals than expected at
that distance range (dispersal).

KilleyW 29

This function is distance-computation intensive, and will be extremely slow-running if a river net-
work is used that does not have segment routes and/or distance lookup tables for fast distance
computation. See buildsegroutes and/or buildlookup for more information.

Author(s)

Matt Tyers

Examples

data(Gulk, fakefish)

10 plots will be created - recommend calling
par(mfrow=c(3,4))

kfunc(seg=fakefish$seg, vert=fakefish$vert, rivers=Gulk, survey=fakefish$flight,
envreps=100, maxdist=200000)

This shows relatively high amounts of clustering for surveys 1 and 8,
and relatively high amounts of dispersal in surveys 5 and 6.

plotting the survey locations that led to this calculation, for comparison

10 plots will be created - recommend calling

par(mfrow=c(3,4))

for(i in 1:10) {
plot(x=Gulk, segmentnum=FALSE, color=FALSE, main=i)
riverpoints(seg=fakefish$seg[fakefish$flight==1i],
vert=fakefish$vert[fakefish$flight==i], rivers=Gulk, col=2, pch=15)

3

KilleyW Dataset: Killey River, West Channel

Description

A messy and braided section of the Kenai River network - actually a subset of Kenai3.

Usage
data(KilleyW)

Format

A river network object, see rivernetwork

30 Koyukuk 1

Koyukuk®@ Dataset: Koyukuk River O

Description

An unusably messy river network object, included for the purpose of testing river network editing
functions.

Usage
data(Koyukuk®)

Format

A river network object, see rivernetwork

See Also

Koyukuk1, Koyukuk?2

Koyukuk1 Dataset: Koyukuk River 1

Description

A first pass at a messy river network object. The way it was dissolved in ArcGIS makes the end-
points appear disconnected to line2network and the topologies do not work.

Usage

data(Koyukuk1)

Format

A river network object, see rivernetwork

See Also
Koyukuk2

Koyukuk?2 31

Koyukuk?2 Dataset: Koyukuk River 2

Description

A second pass at a messy river network object, with topologies fixed from Koyukukl.

Usage
data(Koyukuk2)

Format

A river network object, see rivernetwork

See Also
Koyukuk1

line2network Create a River Network Object from a Shapefile

Description

Uses read_sf in package ’sf’ to read a river shapefile, and establishes connectivity of segment end-
points based on spatial proximity.

Usage

line2network(
sf = NULL,
path = ".",
layer = NA,
tolerance = 100,
reproject = NULL,
autofix = TRUE

)
Arguments
sf Optional input as an sf object, if shapefile has already been read into the R
environment.
path File path, default is the current working directory.

layer Name of the shapefile, without the .shp extension.

32 line2network

tolerance Snapping tolerance of segment endpoints to determine connectivity. Default
is 100, therefore care should be exercised when working with larger units of
distance, such as km.

reproject A valid projection, if the shapefile is to be re-projected. Re-projection is done
using st_transform in package ’sf’.

autofix Whether to automatically apply two corrections: removal of duplicate segments,
and segments with lengths shorter than the connectivity tolerance. Defaults to
‘TRUE".
Value

Returns an object of class "rivernetwork” containing all spatial and topological information. See
rivernetwork-class.

Note

Since distance can only be calculated using projected coordinates, line2network() will generate
an error if a non-projected input shapefile is detected. To resolve this, the shapefile can be re-
projected in a GIS environment, or using reproject=, shown in the second example below.

Author(s)

Matt Tyers, Jemma Stachelek

Examples

filepath <- system.file("extdata”, package="riverdist")

Gulk_UTM5 <- line2network(path=filepath, layer="Gulk_UTM5")
plot (Gulk_UTM5)

Reading directly from an sf object

sf <- sf::read_sf(dsn = filepath, layer = "Gulk_UTM5")
Gulk_UTM5 <- line2network(sf=sf)

plot (Gulk_UTM5)

Re-projecting in Alaska Albers Equal Area projection:

AKalbers <- "+proj=aea +lat_1=55 +lat_2=65 +lat_0=50 +lon_0=-154
+x_0=0 +y_0=0 +datum=NAD83 +units=m +no_defs +ellps=GRS80"

Gulk_AKalbers <- line2network(path=filepath, layer="Gulk_UTM5", reproject=AKalbers)
plot(Gulk_AKalbers)

line98 33

1ine9s8 Dataset: Line 98 of Kenai River 1 (Long-Lat)

Description
A matrix of coordinates in longitude-latitude, used to illustrate coordinate transformation. Coordi-
nates come from arbitrary line number 98 in the Kenai River 1 shapefile, rendered in long-lat.
Usage

data(line98)

Format

A matrix of values

makeriverdensity Calculate Kernel Density Using River Distance

Description

Uses spatial point data (segment and vertex) to calculate a kernel density object to use in the out-
put class plotting method,plot.riverdensity. Scaled kernel density is calculated at approximately
regularly-spaced locations, with spacing specified by the user.

If an argument is used in the survey field, kernel densities will be calculated for each unique value
of survey, resulting in a separate plot for each.

The purpose of this function is to generate a kernel density object to plot using plot(), see plot.riverdensity.

Usage

makeriverdensity(
seg,
vert,
rivers,
survey = NULL,
kernel = "gaussian”,
bw = NULL,
resolution = NULL

34

Arguments

seg
vert
rivers

survey

kernel

bw

resolution

Value

makeriverdensity

A vector of river locations (segment)
A vector of river locations (vertex)
The river network object to use

A vector of survey IDs corresponding to the values of seg and vert. If this
argument is used, kernel densities will be calculated for each unique survey, and
separate plots will be produced.

The type of density kernel to use. Allowed types are "gaussian” (normal) and
"rect” (rectangular, giving simple density). Defaults to "gaussian”.

The kernel bandwidth to use. If kernel is set to "gaussian”, this provides the
standard deviation of the gaussian (normal) kernel to use. If kernel is set to
"rect”, this provides the half-width of the rectangular kernel, or the distance to
use in simple density. Accepting the default (NULL) will result in the function
determining a value to use, based on the total length of the river network and the
value of the resolution argument.

The approximate spacing of the river locations used for kernel density calcula-
tion. Accepting the default (NULL) will result in the function determining a value
to use, based on the total length of the river network.

A river density object, see riverdensity-class.

Note

It is likely that calculation will be very slow. Use of this function with a river network for which

segment routes has

not yet been calculated is not recommended.

This function is distance-computation intensive, and may be slow-running if a river network is used
that does not have segment routes and/or distance lookup tables for fast distance computation. See
buildsegroutes and/or buildlookup for more information.

Author(s)
Matt Tyers

See Also

plot.riverdensity, densityanomaly, plotriverdensitypoints

Examples

data(Gulk, fakefish)

Gulk_dens <- makeriverdensity(seg=fakefish$seg, vert=fakefish$vert, rivers=Gulk,
survey=fakefish$flight.date)

10 plots will be created, recommend calling par(mfrow=c(2,5))

plot(x=Gulk_dens)

mapbyname 35

mapbyname Map Segments by Name

Description

Provides a check that river network segments were appropriately named.

Usage
mapbyname(rivers, scale = TRUE, cex = 0.6, ...)
Arguments
rivers The river network object to use. Function checks segment names contained in
the river network object.
scale Whether or not to give x- and y-axes the same scale
cex Global character expansion factor for plotting
Additional plotting arguments (see par)
Author(s)
Matt Tyers
Examples
data(Gulk)
str(Gulk)

Gulk$names <- c("Gulkana River”,"Trib 1"”,"West Fork”,"Gulkana River”,6"Trib 1",
"West Fork”,"Trib 2","West Fork"”,"Twelvemile Creek"”,"Gulkana River",
"Middle Fork","Gulkana River","Middle Fork"”,"Hungry Hollow")
str(Gulk)

mapbyname (rivers=Gulk)

matbysurveylist Generate List of Distance Matrix Between Observations, for All Indi-
viduals

Description

Returns a list of matrices, each giving the river distance, direction, or upstream travel distance
between all observations of one unique fish. This function is principally intended for producing an
object to plot in plotmatbysurveylist.

matbysurveylist

Usage
matbysurveylist(
unique,
survey,
Seg ’
vert,
rivers,
indiv = NULL,
method = "upstream”,
flowconnected = FALSE,
net = FALSE,
stopiferror = TRUE,
algorithm = NULL
)
Arguments
unique A vector of unique identifiers for each fish.
survey A vector of identifiers for each survey. It is recommended to use a numeric or
date format (see as.Date) to preserve survey order.
seg A vector of river locations (segment component).
vert A vector of river locations (vertex component).
rivers The river network object to use.
indiv A vector of unique individuals to use. Accepting the default (NULL) will result
in a matrix being returned for all unique individuals.
method Which general method to use. Setting method="distance" will compute dis-
tance for each pair of observation, setting method="direction” will compute
direction between each pair of observation, and setting method="upstream”
will compute directional (upstream) distance between each pair of observation.
Defaults to "upstream”.
flowconnected Optional parameter to pass to the distance or direction calculation. Defaults to
FALSE.
net Optional parameter to pass to the distance or direction calculation. Defaults to
FALSE.
stopiferror Optional parameter to pass to the distance or direction calculation. Defaults to
TRUE.
algorithm Optional parameter to pass to the distance or direction calculation. Defaults to
NULL.
Value

A list with each element corresponding to a unique fish. Each list element is the output from either
riverdistancematbysurvey, riverdirectionmatbysurvey, or upstreammatbysurvey.

mouthdist 37

Note

Building routes from the river mouth to each river network segment and/or distance lookup tables
will greatly reduce computation time (see buildsegroutes).

Author(s)
Matt Tyers

See Also

riverdistance, riverdirection, upstream, riverdistancematbysurvey, riverdirectionmatbysurvey, up-
streammatbysurvey, plotmatbysurveylist

Examples

data(Gulk, smallset)

matbysurveylist <- matbysurveylist(unique=smallset$id, survey=smallset$flight, seg=smallset$seg,
vert=smallset$vert, rivers=Gulk)

plotmatbysurveylist(matbysurveylist)

plotmatbysurveylist(matbysurveylist, type="confint")

plotmatbysurveylist(matbysurveylist, type="dotplot”)

data(fakefish)

matbysurveylist <- matbysurveylist(unique=fakefish$fish.id, survey=fakefish$flight,
seg=fakefish$seg, vert=fakefish$vert, rivers=Gulk)

plotmatbysurveylist(matbysurveylist)

mouthdist Distance From Mouth

Description
Calculates distance from river locations (given as vectors of segment and vertex) and the specified
mouth of the river network. The mouth must first be specified (see setmouth).

Usage

mouthdist(seg, vert, rivers, stopiferror = TRUE, algorithm = NULL)

Arguments
seg Vector of segments
vert Vector of vertices
rivers The river network object to use
stopiferror Whether or not to exit with an error if a route cannot be found. If this is set to

FALSE and a route cannot be found, the function will return NA in the appropriate
entry. Defaults to TRUE. See detectroute.

38 mouthdistbysurvey

n on

algorithm Which route detection algorithm to use ("Dijkstra”, "sequential”, or "segroutes”).
If left as NULL (the default), the function will automatically make a selection. See
detectroute for more details.

Value

Distance (numeric)

Note
Building routes from the river mouth to each river network segment and/or distance lookup tables
will greatly reduce computation time (see buildsegroutes).

Author(s)
Matt Tyers

Examples
data(Gulk)
Mouth must be specified

Gulk$mouth$mouth.seg <- 1
Gulk$mouth$mouth.vert <- 1

mouthdist(seg=4, vert=40, rivers=Gulk)
mouthdist(seg=c(4,5), vert=c(40,20), rivers=Gulk)

mouthdistbysurvey Distance From Mouth for All Observations of Individuals

Description

Calculates distance from the mouth of a river network to all observations of each individual (given
as segment and vertex). and the specified mouth of the river network. The mouth must first be
specified (see setmouth). Returns a matrix of distances, with a row for each unique individual and
a column for each survey.

A plotting method is provided for the output; see plotseq.

Usage

mouthdistbysurvey(
unique,
survey,
seg,
vert,
rivers,
logical = NULL,

mouthdistbysurvey 39

stopiferror = TRUE,
algorithm = NULL

)
Arguments
unique A vector of identifiers for each fish.
survey A vector of identifiers for each survey. It is recommended to use a numeric or
date format (see as.Date) to preserve survey order.
seg A vector of river locations (segment)
vert A vector pf rover coordinates (vertex)
rivers The river network object to use
logical A boolean vector that can be used for subsetting - if used, mouthdistbysurvey ()
will only return distances in which a specified condition is met.
stopiferror Whether or not to exit with an error if a route cannot be found. If this is set to
FALSE and a route cannot be found, the function will return NA in the appropriate
entry. Defaults to TRUE. See detectroute.
algorithm Which route detection algorithm to use ("Dijkstra”, "sequential”, or "segroutes”).
If left as NULL (the default), the function will automatically make a selection. See
detectroute for more details.
Value

A vector of river network distances (numeric), with each row corresponding to a unique fish and
each column corresponding to a unique survey. Values of NA indicate the individual not being
located during the survey in question.

Note
Building routes from the river mouth to each river network segment and/or distance lookup tables
will greatly reduce computation time (see buildsegroutes).

Author(s)
Matt Tyers

See Also

plotseq

Examples

data(Gulk, fakefish)

segbysurvey <- mouthdistbysurvey(unique=fakefish$fish.id, survey=fakefish$flight.date,
seg=fakefish$seg, vert=fakefish$vert, rivers=Gulk)

segbysurvey

plotseq(segbysurvey)

40

pdisttot

pdist Pythagorean Distance

Description

Pythagorean distance between two points. Called internally.

Usage

pdist(pl, p2)

Arguments
pl X-Y coordinates of point 1
p2 X-Y coordinates of point 2
Value

Distance (numeric)

Author(s)
Matt Tyers

Examples

point1 <- c¢(1,3)
point2 <- c(4,7)

pdist(point1,point2)

pdisttot Total Pythagorean Distance

Description

Total Pythagorean distance of a sequence of points. Called internally.

Usage

pdisttot(xy)

Arguments

Xy A matrix of X-Y coordinates of the sequence of points.

plot.homerange 41

Value

Distance (numeric)

Author(s)
Matt Tyers

Examples

points <- matrix(c(1:10), nrow=5, ncol=2, byrow=FALSE)

pdisttot(xy=points)

plot.homerange Plot Home Range

Description

Plotting method for home range, the minimum observed home range for multiple observations of
each individual fish.

Usage
S3 method for class 'homerange'
plot(
X ’
cumulative = FALSE,
lwd = 3,
maxlwd = 10,
col = 4,
pch = 21,
label = FALSE,
main = NULL,
)
Arguments
X An object returned from homerange.
cumulative Whether to plot travel as cumulative, with line thickness depending on the num-
ber of times a given region was traveled by a given individual. Defaults to
FALSE.
lwd The line width for plotting homerange, or minimum line width if cumulative
is TRUE. Defaults to 3.
maxlwd The maximum line width if cumulative is TRUE. Defaults to 10.

col The line color to use. Defaults to "blue”.

42 plot.riverdensity

pch The point character to use for individual points. Defaults to open circles, the
color of lines.

label Whether to add survey labels to individual points, if used in homerange. De-
faults to FALSE.

main Plot title. If the default NULL is used, plots will be titled according to unique
individual.

Additional plotting parameters, see plot.rivernetwork.

Author(s)

Matt Tyers, bug fix by Jordy Bernard

See Also

homerange, homerangeoverlap, plothomerangeoverlap

Examples

data(Gulk, fakefish)
ranges <- with(fakefish, homerange(unique=fish.id, survey=flight, seg=seg, vert=vert, rivers=Gulk))
ranges

19 plots will be produced, recommend calling par(mfrow=c(4,5))
plot(ranges)
plot(ranges,cumulative=TRUE, label=TRUE)

homerangeoverlap(ranges)

plothomerangeoverlap(ranges)
with(fakefish, riverpoints(seg=seg, vert=vert, rivers=Gulk))

plot.riverdensity Plot Kernel Density Using River Distance

Description

Produces a kernel density plot from a kernel density object created by makeriverdensity.

If the kernel density object includes densities from multiple surveys, a new plot will be created for
each survey.

Densities can be displayed using either line widths, color, or both.

The relative densities that are displayed in the plot are calculated according to the form (den-
sity/maxdensity)*pwr, with the value of pwr set by the pwr argument. Setting pwr to a value less
than 1 allows smaller values to be more visible on the plot.

plot.riverdensity

Usage

S3 method for class 'riverdensity'

43

plot(

X,
whichplots = NULL,
points = TRUE,

bycol = TRUE,
bylwd = TRUE,
maxlwd = 10,
pwr = 0.7,

scalebyN = TRUE,

ramp = c("grey”, "gray”, "red”, "green”, "blue”, "heat"”, "stoplight"”, "rainbow"),
lwd =1,

linecol = NULL,

denscol = NULL,
alpha = 1,

dark =1,

showN = TRUE,
main = NULL,
xlab = "",

ylab = "",

add = FALSE,

scalebar = TRUE,

Arguments

X A river density object created by makeriverdensity.

whichplots A vector of plots to produce, if multiple plots are produced. For example, spec-
ifying whichplot=c(2,3,4) will result in only the second, third, and fourth
plots of the sequence being produced. Accepting the default (NULL) will result
in all plots being produced.

points Whether to add the points used for density calculation. Defaults to TRUE.

bycol Whether to use a color ramp to show densities. Defaults to TRUE.

bylwd Whether to use line thickness to show densities. Defaults to TRUE.

maxlwd The maximum line width to use if bylwd is set to TRUE. Defaults to 10.

pwr The power to use in the nonlinear transformation calculating the relative density
values to be displayed (see above.) Defaults to 0.7.

scalebyN Whether to display relative density values scaled by sample size. Specifying

scalebyN=TRUE will show larger density values associated with surveys with
more points, and may be more appropriate for displaying total density. Specify-
ing scalebyN=FALSE will allow surveys with smaller sample sizes to be plotted
with similar density values as those with larger sample sizes, and may be more
appropriate for displaying relative density. Defaults to TRUE.

44

ramp

Iwd

linecol

denscol

alpha

dark

showN

main

xlab
ylab
add

scalebar

Author(s)
Matt Tyers

See Also

plot.riverdensity

The color ramp used to display densities if bycol is set to TRUE. Allowed values

are "grey"” (or "gray"”), "red”, "green”, "blue”, "heat"”, "stoplight”, and
"rainbow". Defaults to "grey”.

The line width to use for background lines if bylwd is set to TRUE, or all lines if
bylwd is set to FALSE. Defaults to 1.

The line color to use for background lines if bycol is set to FALSE. If the default
‘NULL" is accepted, "black” lines will be drawn.

The line color to use for showing density if bycol is set to FALSE. If the default
‘NULL' is accepted, "black” lines will be drawn.

The opacity value for lines. This could potentially allow multiple density plots
to be overlayed with different colors.

A color-saturation adjustment, with values in [0,1]. A value of 1 uses the true
colors, and a value less than 1 will render the colors as slightly darker (less
saturated), which may be appear better. Defaults to 1.

Whether to automatically include the number of points used as part of the plot
title(s).

Plot title(s), either given as a single text string which is repeated if multiple plots
are produced, or a vector of text strings (one for each plot produced). If multi-
ple plots are produced (resulting from multiple surveys), accepting the default
(NULL) will result in each unique value of survey being used as the plot title,
along with the sample size if showN is set to TRUE.

X-axis label

Y-axis label

Whether to produce a new plot (FALSE), or add to an existing plot (TRUE). De-
faults to FALSE.

Whether to add a scale bar to plot(s). Defaults to TRUE.

Additional plotting parameters.

makeriverdensity, densityanomaly, plotriverdensitypoints

Examples

data(Gulk, fakefi

sh)

Gulk_dens <- makeriverdensity(seg=fakefish$seg, vert=fakefish$vert, rivers=Gulk,
survey=fakefish$flight.date)

10 plots will be created, recommend calling par(mfrow=c(2,5))

plot(x=Gulk_dens)

plot.rivernetwork

45

plot.rivernetwork

Plotting a River Network

Description

S3 plotting method for the rivernetwork-class. Produces a map of all river segments of a river
network object.

Usage

S3 method for class 'rivernetwork'

plot(
X’

segmentnum = TRUE,
offset = TRUE,

lwd =
cex =
scale
color

’

.6

N © =

’

TRUE,
TRUE,

empty = FALSE,

linecol =
xlab = ""
ylab = nn

Arguments

X
segmentnum
offset

lwd

cex

scale

color

empty

linecol
x1lab
ylab

’

’

1,

The river network object to plot

Whether or not to plot segment numbers (defaults to TRUE)
Whether to offset segment numbers from lines (defaults to TRUE)
Line width

Global character expansion factor for plotting

Whether or not to give x- and y-axes the same scale

How to differentiate segments. If color==TRUE (default), segments will be
drawn in solid lines with differing colors. If color==FALSE, segments will be
drawn in the same color with differing line types.

Creates an empty plot if set to TRUE. Suppresses differentiation by line type if
color==FALSE, and suppresses segment number labels. Defaults to FALSE.

Line color to use if empty is TRUE or color is FALSE. Defaults to black.
Label for X-axis (defaults to "")
Label for Y-axis (defaults to "")

Additional plotting arguments (see par)

46 plothomerangeoverlap

Note

This function is intended to provide basic visual checks for the user, not for any real mapping.

Author(s)

Matt Tyers

Examples

data(Gulk)
plot (x=Gulk)

plothomerangeoverlap Plot Home Range Overlap

Description

Produces a plot of the overlap of the minimum observed home range for multiple observations of
each individual fish, with line thickness illustrating the respective number of individuals’ home-
ranges represented.

Usage

plothomerangeoverlap(x, lwd = 3, maxlwd = 10, col = 4, ...)
Arguments

X An object returned from homerange.

1wd Minimum line width to use, defaults to 3.

max1lwd Maximum line width to use, defaults to 10.

col Line color to use, defaults to "blue”.

Additional plotting parameters, see plot.rivernetwork.

Author(s)

Matt Tyers
See Also

homerange, plot.homerange, homerangeoverlap

plotmatbysurveylist 47

Examples

data(Gulk, fakefish)
ranges <- with(fakefish, homerange(unique=fish.id, survey=flight, seg=seg, vert=vert, rivers=Gulk))
ranges

19 plots will be produced, recommend calling par(mfrow=c(4,5))
plot(ranges)
plot(ranges,cumulative=TRUE, label=TRUE)

homerangeoverlap(ranges)

plothomerangeoverlap(ranges)
with(fakefish, riverpoints(seg=seg, vert=vert, rivers=Gulk))

plotmatbysurveylist Plot Upstream Distance Between Observations of All Individuals

Description

Produces a matrix of plots (boxplots are default), with plot [i, j] giving the distribution of upstream
distances from observation i to observation j, for all individuals.

Usage
plotmatbysurveylist(matbysurveylist, type = "boxplot”, showN = TRUE, ...)
Arguments
matbysurveylist
A list of distance matrices returned from matbysurveylist.
type If type is set to "boxplot”, boxplots will be produced for each cell. If type is
set to "confint”, lines denoting an approximate 95 percent confidence interval
for the mean will be produced instead. If type is set to "dotplot”, a jittered
dotplot will be produced for each cell, which will be the most appropriate if
sample sizes are small. Defaults to "boxplot”.
showN Whether to display the sample size for each cell. Defaults to TRUE.
Additional plotting arguments.
Note

Building routes from the river mouth to each river network segment and/or distance lookup tables
will greatly reduce computation time (see buildsegroutes).

Author(s)
Matt Tyers

48 plotriverdensitypoints

See Also

upstream, upstreammatbysurvey

Examples

data(Gulk, smallset)

matbysurveylist <- matbysurveylist(unique=smallset$id, survey=smallset$flight, seg=smallset$seg,
vert=smallset$vert, rivers=Gulk)

plotmatbysurveylist(matbysurveylist)

plotmatbysurveylist(matbysurveylist, type="confint")

plotmatbysurveylist(matbysurveylist, type="dotplot")

data(fakefish)

matbysurveylist <- matbysurveylist(unique=fakefish$fish.id, survey=fakefish$flight,
seg=fakefish$seg, vert=fakefish$vert, rivers=Gulk)

plotmatbysurveylist(matbysurveylist)

plotriverdensitypoints
Plot Points Used for Kernel Density

Description

Plots the points used to calculate a kernel density object in makeriverdensity.

This function is intended as a visual check that a sufficient resolution was used.

Usage

plotriverdensitypoints(riverdensity)

Arguments

riverdensity A river density object created by makeriverdensity.

Author(s)
Matt Tyers

See Also

makeriverdensity, plot.riverdensity

Examples
data(Gulk, fakefish)

Gulk_dens <- makeriverdensity(seg=fakefish$seg, vert=fakefish$vert, rivers=Gulk)

plotriverdensitypoints(riverdensity=Gulk_dens)

plotseq 49

plotseq Plot Sequence of Observations

Description

Plots the sequence of observations or movements of each individual (given as segment and ver-
tex). This function is primarily intended for use with mouthdistbysurvey, but will also work with
riverdistanceseq and upstreamseq.

Usage

plotseq(
seqgbysurvey,
type = "boxplot”,
xlab = "",
ylab = "",
main = "",
cex.axisX = 0.8,
lowerbound = NULL,
upperbound = NULL,
boundtype = "negative"”,
surveysareDates = F,

)
Arguments

segbysurvey A matrix returned from mouthdistbysurvey, riverdistanceseq, or upstreamseq.

type The type of plot to generate. Options are "boxplot”,”"dotplot”,"box1line",or
"dotline". Defaults to "boxplot”.

xlab X-axis label

ylab Y-axis label

main Plot title

cex.axisX Character expansion factor for X-axis labels

lowerbound An optional vector of lower survey bounds

upperbound An optional vector of upper survey bounds

boundtype Method of plotting survey bounds. Options are "positive”, "negative” (de-
fault), and "lines".

surveysareDates

If surveys are in Date format (see as.Date), a value of TRUE allows the x-coordinates
points to be spaced apart according to date, not equidistantly. Defaults to FALSE.
Any formatting of the survey variable must be done within the original call to
mouthdistbysurvey, riverdistanceseq, or upstreamseq. Dates must already be
formatted as dates, or in the form "YYYY-MM-DD"” or "YYYY/MM/DD".

Additional plotting parameters

50 pointshp2segvert

Note

Plots are intended as descriptive only. Any ANOVA-like inference that is suggested from these
plots is strongly discouraged. The user is instead advised to use a mixed-effects model or some
other inferential tool that accounts for repeated-measures and/or temporal autocorrelation.

Author(s)

Matt Tyers

Examples

data(Gulk, fakefish)

x <- mouthdistbysurvey(unique=fakefish$fish.id, survey=fakefish$flight.date,
seg=fakefish$seg, vert=fakefish$vert, rivers=Gulk)

plotseq(segbysurvey=x)

plotseq(seqgbysurvey=x, type="boxline")
plotseq(segbysurvey=x, type="dotplot")
plotseq(segbysurvey=x, type="dotline")

plotseq(segbysurvey=x, type="dotline"”, surveysareDates=TRUE)

from_upstreamseq <- upstreamseq(unique=fakefish$fish.id,
survey=fakefish$flight, seg=fakefish$seg, vert=fakefish$vert,
rivers=Gulk)

plotseq(segbysurvey=from_upstreamseq)

pointshp2segvert Convert a Point Shapefile to River Locations

Description

This function reads a point shapefile and determines the closest vertex in the river network to each
point of XY data, returning a data frame with river locations, defined as segment numbers and vertex
numbers, along with the data table read from the input shapefile.

Usage
pointshp2segvert(path = ".", layer, rivers)

Arguments
path File path, default is the current working directory.
layer Name of the shapefile, without the .shp extension.

rivers The river network object to use.

removeduplicates 51

Value

A data frame of river locations, with segment numbers in $seg, vertex numbers in $vert, snapping
distances in $snapdist, snapped x- and y-coordinates in $snap_x and $snap_y, and the remaining
columns corresponding to the data table in the input point shapefile.

Note

If the input shapefile is detected to be in a different projection than the river network, the input
shapefile will be re-projected before conversion to river locations.

Author(s)
Matt Tyers

See Also

xy2segvert

Examples

filepath <- system.file("extdata”, package="riverdist")

fakefish_UTM5 <- pointshp2segvert(path=filepath, layer="fakefish_UTM5", rivers=Gulk)
head(fakefish_UTM5)

plot(x=Gulk)
points(fakefish_UTM5$x, fakefish_UTM5$y)
riverpoints(seg=fakefish_UTM5%$seg, vert=fakefish_UTM5$vert, rivers=Gulk, pch=16, col=2)

removeduplicates Remove Duplicates

Description

Removes duplicated line segments, which can sometimes exist within a shapefile.

Usage

removeduplicates(rivers)

Arguments

rivers The river network object to use

Value

A new river network object with duplicated segments removed, see rivernetwork

52 removemicrosegs

Author(s)
Matt Tyers

See Also

line2network

Examples

data(abstreams®)
zoomtoseg(seg=c(170,171,157),rivers=abstreams0)

abstreams1 <- removeduplicates(rivers=abstreams®)
zoomtoseg(seg=c(166,167,154) ,rivers=abstreams1)

removemicrosegs Remove Segments that are Smaller than the Connectivity Tolerance

Description

Automatically detects and removes segments with total displacement (straight-line distance between
endpoints) less than the connectivity tolerance. These segments do not serve any real purpose, are
bypassed in routes, and cannot be dissolved.

Usage

removemicrosegs(rivers)

Arguments

rivers The river network object to use.

Value

A new river network object with the specified segments connected (see rivernetwork)

Note

This function is called within cleanup, which is recommended in most cases.

Author(s)

Matt Tyers

See Also

line2network

removeunconnected 53

Examples

data(abstreams®)
abstreams1 <- removemicrosegs(abstreamso)

removeunconnected Remove Unconnected Segments

Description

Detects and removes segments that are not connected to the river mouth.

Usage

removeunconnected(rivers)

Arguments

rivers The river network object to use.

Note

This function is called within cleanup, which is recommended in most cases.

Author(s)

Matt Tyers

Examples

data(Koyukuk?2)

Koy_subset <- trimriver(trimto=c(39,28,29,3,19,27,4),rivers=Koyukuk?)
Koy_subset <- setmouth(seg=1,vert=427,rivers=Koy_subset)

plot (Koy_subset)

Koy_subset_trim <- removeunconnected(Koy_subset)
plot(Koy_subset_trim)

54

riverdensity

riverdensity The "riverdensity” Class

Description

A class that holds density information computed from point data along a river network.

Details

Created by makeriverdensity from point data and a river network. Contains all information for
plotting in plot.riverdensity.

Elements

densities: Object of class "1list"”. Each list element corresponds to a unique value of survey.
Each element is itself of class "1ist"”, with each element corresponding to a segment from
the associated river network. Each element is a vector of class "numeric”, with values equal
to the scaled densities calculated at the river network vertices stored in $densverts of the
associated river network segment.

endptverts: List of vectors of class "numeric”. Each list element is a vector of the vertices
of the endpoints of the subsegments considered for density calculation. Each list element
corresponds to a river segment from the associated river network.

densverts: List of vectors of class "numeric”. Each element is a vector of the vertices of the
points of the subsegments considered for density calculation, that were used for density cal-
culation. Each list element corresponds to a river segment from the associated river network.

pointsegs: Vector of class "numeric”. Defined as the segment numbers of the point data used for
density calculation.

pointverts: Vector of class "numeric”. Defined as the vertex numbers of the point data used for
density calculation.

survey: Vector of class "numeric” or class "character”. Defined as the survey identifiers asso-
ciated with the point data used for density calculation.

rivers: Object of class "rivernetwork” ; see rivernetwork-class.

Author(s)

Matt Tyers

riverdirection 55

riverdirection River Direction

Description

Calculates direction of travel between two points. Only works if river mouth (lowest point) has
been specified (see setmouth).

Usage

riverdirection(
startseg,
endseg,
startvert,
endvert,
rivers,
flowconnected = FALSE,
stopiferror = TRUE,
algorithm = NULL

)

Arguments
startseg Segment number of the start of the route
endseg Segment number of the end of the route
startvert Vertex number of the start of the route
endvert Vertex number of the end of the route
rivers The river network object to use

flowconnected If TRUE, only returns direction if the two input segments are flow-connected.
Defaults to FALSE.

stopiferror Whether or not to exit with an error if a route cannot be found. If this is set to
FALSE and a route cannot be found, the function will return NA in the appropriate
entry. Defaults to TRUE. See detectroute.

"o

algorithm Which route detection algorithm to use ("Dijkstra”, "sequential”, or "segroutes").
If left as NULL (the default), the function will automatically make a selection. See
detectroute for more details.

Value
Direction: "up", "down", or "0" (character). Returns NA if flowconnected==TRUE and the two
segments are not flow-connected.

Note

Building routes from the river mouth to each river network segment and/or distance lookup tables
will greatly reduce computation time (see buildsegroutes).

56 riverdirectionmat

Author(s)
Matt Tyers

See Also

setmouth

Examples
data(Gulk)
Mouth must be specified

Gulk$mouth$mouth.seg <- 1
Gulk$mouth$mouth.vert <- 1

plot (x=Gulk)
riverdirection(startseg=6, endseg=3, startvert=40, endvert=40, rivers=Gulk)

riverdirectionmat River Direction Matrix

Description

Returns a matrix of calculated travel direction between every point and every other point of given
river locations (segment and vertex), or of a subset. The mouth (lowest point) segment and vertex
must be specified (see setmouth).

Usage

riverdirectionmat(
seg,
vert,
rivers,
logical = NULL,
ID = NULL,
flowconnected = FALSE,
stopiferror = TRUE,
algorithm = NULL

)
Arguments
seg A vector of river locations (segment component).
vert A vector of river locations (vertex component).
rivers The river network object to use
logical A boolean vector that can be used for subsetting - if used, riverdirectionmat()

will only return pairwise distances in which a specified condition is met.

riverdirectionmatbysurvey 57

ID a vector of observation IDs for aid in interpreting the output table

flowconnected If TRUE, only returns direction if the input segments are flow-connected. De-
faults to FALSE.

stopiferror Whether or not to exit with an error if a route cannot be found. If this is set to
FALSE and a route cannot be found, the function will return NA in the appropriate
entry. Defaults to TRUE. See detectroute.

non

algorithm Which route detection algorithm to use ("Dijkstra”, "sequential”, or "segroutes").
If left as NULL (the default), the function will automatically make a selection. See
detectroute for more details.

Value

A matrix of directions (character) with rows and columns labeled by corresponding values of ID.
See riverdirection for additional information.

Note

Building routes from the river mouth to each river network segment and/or distance lookup tables
will greatly reduce computation time (see buildsegroutes).

Author(s)
Matt Tyers

See Also
riverdirection

Examples
data(Gulk, fakefish)
Mouth must be specified
Gulk$mouth$mouth.seg <- 1
Gulk$mouth$mouth.vert <- 1

logil <- (fakefish$flight.date==as.Date("2015-11-25"))

riverdirectionmat(seg=fakefish$seg, vert=fakefish$vert, rivers=Gulk, logical=logil)

riverdirectionmatbysurvey
River Direction Matrix of All Observations of an Individual

Description

Returns a matrix of travel direction between all observations of one unique fish.

58 riverdirectionmatbysurvey

Usage

riverdirectionmatbysurvey(
indiv,
unique,
survey,
seg,
vert,
rivers,
full = TRUE,
flowconnected = FALSE,
stopiferror = TRUE,
algorithm = NULL

)
Arguments

indiv The unique identifier of the fish in question.

unique A vector of identifiers for each fish.

survey A vector of identifiers for each survey. It is recommended to use a numeric or
date format (see as.Date) to preserve survey order.

seg A vector of river locations (segment component).

vert A vector of river locations (vertex component).

rivers The river network object to use.

full Whether to return the full matrix, with NA values for missing data (TRUE), or a the
subset of rows and columns corresponding to successful observations. Defaults
to TRUE.

flowconnected If TRUE, only returns direction if the input segments are flow-connected. De-
faults to FALSE.

stopiferror Whether or not to exit with an error if a route cannot be found. If this is set to
FALSE and a route cannot be found, the function will return NA in the appropriate
entry. Defaults to TRUE. See detectroute.

n on

algorithm Which route detection algorithm to use ("Dijkstra”, "sequential”, or "segroutes”).
If left as NULL (the default), the function will automatically make a selection. See
detectroute for more details.

Value

A matrix of directions (character), with rows and columns defined by survey. In the resulting matrix,
the element with the row identified as A and column identified as B is defined as the direction traveled
from survey A to survey B. Therefore, it is likely that only the upper triangle of the matrix will be
of interest.

Note

Building routes from the river mouth to each river network segment and/or distance lookup tables
will greatly reduce computation time (see buildsegroutes).

riverdirectionseq 59

Author(s)
Matt Tyers

See Also

riverdirection

Examples

data(Gulk, fakefish)
riverdirectionmatbysurvey(indiv=1, unique=fakefish$fish.id, survey=fakefish$flight,
seg=fakefish$seg, vert=fakefish$vert, rivers=Gulk)

riverdirectionmatbysurvey(indiv=1, unique=fakefish$fish.id, survey=fakefish$flight,
seg=fakefish$seg, vert=fakefish$vert, rivers=Gulk, full=FALSE)

riverdirectionseq River Travel Direction Between Sequential Observations

Description

Returns a matrix of directions traveled by unique fish between sequential surveys. The mouth
(lowest point) segment and vertex must be specified (see setmouth).

Usage

riverdirectionseq(
unique,
survey,
seg,
vert,
rivers,
logical = NULL,
flowconnected = FALSE,
stopiferror = TRUE,
algorithm = NULL

)
Arguments
unique A vector of identifiers for each fish.
survey A vector of identifiers for each survey. It is recommended to use a numeric or
date format (see as.Date) to preserve survey order.
seg A vector of river locations (segment component).
vert A vector of river locations (vertex component).

rivers The river network object to use.

60

logical

flowconnected

stopiferror

algorithm

Value

riverdirectionseq

A boolean vector that can be used for subsetting - if used, riverdirectionseq()
will only return pairwise distances in which a specified condition is met.

If TRUE, only returns direction if the input segments are flow-connected. De-
faults to FALSE.

Whether or not to exit with an error if a route cannot be found. If this is set to
FALSE and a route cannot be found, the function will return NA in the appropriate
entry. Defaults to TRUE. See detectroute.

n n

Which route detection algorithm to use ("Dijkstra”, "sequential”, or "segroutes").
If left as NULL (the default), the function will automatically make a selection. See
detectroute for more details.

A data frame of directions (character), with rows defined by unique fish and columns defined by
observation increment (1 to 2, 2 to 3, etc.) See riverdirection for additional information.

Note

Building routes from the river mouth to each river network segment and/or distance lookup tables
will greatly reduce computation time (see buildsegroutes).

Author(s)

Matt Tyers

See Also

riverdirection

Examples

data(Gulk, fakefish)

Mouth must be specified
Gulk$mouth$mouth.seg <- 1
Gulk$mouth$mouth.vert <- 1

riverdirectionseq(unique=fakefish$fish.id, survey=fakefish$flight, seg=fakefish$seg,
vert=fakefish$vert, rivers=Gulk)

riverdirectionseq(unique=fakefish$fish.id, survey=fakefish$flight.date, seg=fakefish$seg,
vert=fakefish$vert, rivers=Gulk)

riverdirectiontofrom

61

riverdirectiontofrom River Direction Matrix between Two Datasets

Description

Returns a matrix of directions between each river location in two datasets, with one expressed as
rows and the other expressed as columns.

Usage

riverdirectiontofrom(

segl,
vertl,
seg2,
vert2,
rivers,
logicall =
logical2 =
IDT = NULL,
ID2 = NULL,

NULL,
NULL,

flowconnected = FALSE,

stopiferror

TRUE,

algorithm = NULL

Arguments

segl

vertl

seg?2

vert?2

rivers

logicali

logical2

ID1

First vector of river locations (segment component). These are expressed as
rows in the output matrix.

First vector of river locations (vertex component). These are expressed as rows
in the output matrix.

Second vector of river locations (segment component). These are expressed as
columns in the output matrix.

Second vector of river locations (vertex component). These are expressed as
columns in the output matrix.

The river network object to use.

A boolean vector that can be used for subsetting. If used, riverdirectiontofrom
will only return directions in which a specified condition is met for the first
dataset.

A boolean vector that can be used for subsetting. If used, riverdirectiontofrom
will only return directions in which a specified condition is met for the second
dataset.

a vector of observation IDs for the first dataset that will be used as row names in
the output matrix.

62

ID2

flowconnected

stopiferror

algorithm

Value

riverdirectiontofrom

a vector of observation IDs for the second dataset that will be used as column
names in the output matrix.

If TRUE, only returns distance if the input segments are flow-connected. Defaults
to FALSE.

Whether or not to exit with an error if a route cannot be found. If this is set to
FALSE and a route cannot be found, the function will return NA in the appropriate
entry. Defaults to TRUE. See detectroute.

n n

Which route detection algorithm to use ("Dijkstra”, "sequential”, or "segroutes™).
If left as NULL (the default), the function will automatically make a selection. See
detectroute for more details.

A matrix of directions (character) with rows and columns labeled by corresponding values of ID.
See riverdirection for additional information.

Note

Building routes from the river mouth to each river network segment and/or distance lookup tables
will greatly reduce computation time (see buildsegroutes).

Author(s)

Matt Tyers

See Also

riverdirection

Examples

data(Gulk)

streamlocs.seg <- ¢(1,8,11)
streamlocs.vert <- c(50,70,90)
streamlocs.ID <- c("A","B","C")

fish.seg <- ¢(1,4,9,12,14)
fish.vert <- ¢(10,11,12,13,14)
fish.ID <- c("fish1","fish2","fish3","fish4", "fish5")

Gulk <- setmouth(seg=1, vert=1, rivers=Gulk)

riverdirectiontofrom(segl=streamlocs.seg, vertl=streamlocs.vert,
seg2=fish.seg, vert2=fish.vert, rivers=Gulk,
ID1=streamlocs.ID, ID2=fish.ID)

logil <- streamlocs.ID=="B" | streamlocs.ID=="C"
logi2 <- fish.ID!="fish3"

riverdistance 63

riverdirectiontofrom(segi=streamlocs.seg, vertl=streamlocs.vert,
seg2=fish.seg, vert2=fish.vert, rivers=Gulk, logicall=logil,
logical2=1logi2, ID1=streamlocs.ID, ID2=fish.ID)

riverdistance River Distance

Description

Calculates the total river network distance between two points on the river network, given in river
locations (segment and vertex).

Usage

riverdistance(
startseg = NULL,
endseg = NULL,
startvert,
endvert,
rivers,
path = NULL,
map = FALSE,
add = FALSE,
stopiferror = TRUE,
algorithm = NULL

)
Arguments

startseg Segment number of the start of the route

endseg Segment number of the end of the route

startvert Vertex number of the start of the route

endvert Vertex number of the end of the route

rivers The river network object to use

path (optional) The vector-format route of segment numbers can also be supplied
instead of the starting and ending segments.

map Whether or not to draw a sanity-check map, showing the calculated route in
entirety. Defaults to FALSE.

add If map==TRUE, whether to add the route drawing to an existing plot (add=TRUE)
or produce a new plot (add=FALSE).

stopiferror Whether or not to exit with an error if a route cannot be found. If this is set to
FALSE and a route cannot be found, riverdistance() will return NA. Defaults
to TRUE. See detectroute.

algorithm Which route detection algorithm to use ("Dijkstra”, "sequential”, or "segroutes”).

If left as NULL (the default), the function will automatically make a selection. See
detectroute for more details.

64 riverdistancelist

Value

Total route distance, in the units of the coordinate system used (this will likely be meters).

Note

If a distance lookup table ($distlookup) is present in the river network object, accepting NULL will
bypass route detection and return distance automatically, the fastest algorithm of all. This is done
automatically in buildsegroutes, but can be called directly using buildlookup.

Building routes from the river mouth to each river network segment and/or distance lookup tables
will greatly reduce computation time (see buildsegroutes).

Author(s)

Matt Tyers

Examples

data(Gulk)

riverdistance(startseg=6, endseg=14, startvert=100, endvert=200, rivers=Gulk)
riverdistance(startvert=100, endvert=200, path=c(6,3,4,10,11,14), rivers=Gulk)
riverdistance(startseg=6, endseg=14, startvert=100, endvert=200, rivers=Gulk, map=TRUE)

speed comparison:
data(abstreams)

tstart <- Sys.time()

riverdistance(startseg=120, startvert=10, endseg=131, endvert=10, rivers=abstreams,
algorithm="sequential")

Sys.time()- tstart

tstart <- Sys.time()

riverdistance(startseg=120, startvert=10, endseg=131, endvert=10, rivers=abstreams,
algorithm="Dijkstra")

Sys.time()- tstart

tstart <- Sys.time()
riverdistance(startseg=120, startvert=10, endseg=131, endvert=10, rivers=abstreams)

Note: it is not necessary to specify the algorithm here: the distance function
will automatically select the fastest algorithm unless otherwise specified.
Sys.time()- tstart

riverdistancelist Multiple River Distances

riverdistancelist 65

Description

Used to calculate a list of possible river distances, in the event of braiding. Calls routelist to detect
a list of routes from one river location to another, and uses riverdistance to calculate the distances
along those routes. Different routes are detected by randomly reordering the segment numbers of
the input river network object, thus changing the internal hierarchy of segment selection.

Usage

riverdistancelist(startseg, endseg, startvert, endvert, rivers, reps = 100)

Arguments

startseg Segment number of the start of the route

endseg Segment number of the end of the route

startvert Vertex number of the start of the route

endvert Vertex number of the end of the route

rivers The river network object to use

reps Deprecated. Was the number of randomized reorderings to try.
Value

A list with two objects, $routes being a list of detected routes in ascending order by distance, and
$distances being the respective distances along the routes detected.

Note

Since this function uses randomization, there is no guarantee that the list of routes will be com-
prehensive. Larger numbers of reps can be tried, but computation can be slow, particularly in the
presence of a complex river network. It may be advantageous to use trimriver to create a smaller,
more specific river network object to work with.

Author(s)
Matt Tyers

Examples

data(KilleyW)
plot(x=KilleyW)

Killey.dists <- riverdistancelist(startseg=1, endseg=16, startvert=100, endvert=25,
rivers=KilleyW)
Killey.dists # 18 routes are detected.

mapping the shortest route detected...
riverdistance(startvert=100, endvert=25, path=Killey.dists$routes[[1]], rivers=KilleyW, map=TRUE)

mapping the shortest longest detected...
riverdistance(startvert=100, endvert=25, path=Killey.dists$routes[[18]], rivers=KilleyW, map=TRUE)

66 riverdistancemat

riverdistancemat River Distance Matrix

Description

Returns a matrix of distances between every point and every other point of given river locations
(segment and vertex), or of a subset.

Usage

riverdistancemat(
seg,
vert,
rivers,
logical = NULL,
ID = NULL,
stopiferror = TRUE,
algorithm = NULL

)
Arguments
seg A vector of river locations (segment component).
vert A vector of river locations (vertex component).
rivers The river network object to use.
logical A boolean vector that can be used for subsetting. If used, riverdistancemat
will only return pairwise distances in which a specified condition is met.
1D a vector of observation IDs for aid in interpreting the output table
stopiferror Whether or not to exit with an error if a route cannot be found. If this is set to
FALSE and a route cannot be found, the function will return NA in the appropriate
entry. Defaults to TRUE. See detectroute
algorithm Which route detection algorithm to use ("Dijkstra”, "sequential”, or "segroutes").
If left as NULL (the default), the function will automatically make a selection. See
detectroute for more details.
Value

A matrix of distances (numeric) with rows and columns labeled by corresponding values of ID.

Note

Building routes from the river mouth to each river network segment and/or distance lookup tables
will greatly reduce computation time (see buildsegroutes).

Author(s)
Matt Tyers

riverdistancematbysurvey 67

See Also

riverdistance
Examples
data(Gulk, fakefish)
logil <- (fakefish$flight.date==as.Date("2015-11-25"))

riverdistancemat(seg=fakefish$seg, vert=fakefish$vert, rivers=Gulk, logical=logil)

riverdistancematbysurvey
River Distance Matrix of All Observations of an Individual

Description

Returns a matrix of network distances between all observations of one unique fish.

Usage

riverdistancematbysurvey(
indiv,
unique,
survey,
seg,
vert,
rivers,
full = TRUE,
stopiferror = TRUE,
algorithm = NULL

)
Arguments
indiv The unique identifier of the fish in question.
unique A vector of identifiers for each fish.
survey A vector of identifiers for each survey. It is recommended to use a numeric or
date format (see as.Date) to preserve survey order.
seg A vector of river locations (segment component).
vert A vector of river locations (vertex component).
rivers The river network object to use.
full Whether to return the full matrix, with NA values for missing data (TRUE), or a the

subset of rows and columns corresponding to successful observations. Defaults
to TRUE.

68 riverdistanceseq

stopiferror Whether or not to exit with an error if a route cannot be found. If this is set to
FALSE and a route cannot be found, the function will return NA in the appropriate
entry. Defaults to TRUE. See detectroute.

non

algorithm Which route detection algorithm to use ("Dijkstra”, "sequential”, or "segroutes").
If left as NULL (the default), the function will automatically make a selection. See
detectroute for more details.

Value

A matrix of distances (numeric), with rows and columns defined by survey.

Note
Building routes from the river mouth to each river network segment and/or distance lookup tables
will greatly reduce computation time (see buildsegroutes).

Author(s)
Matt Tyers

See Also

riverdistance

Examples

data(Gulk, fakefish)
riverdistancematbysurvey(indiv=1, unique=fakefish$fish.id, survey=fakefish$flight,
seg=fakefish$seg, vert=fakefish$vert, rivers=Gulk)

riverdistancematbysurvey(indiv=1, unique=fakefish$fish.id, survey=fakefish$flight,
seg=fakefish$seg, vert=fakefish$vert, rivers=Gulk, full=FALSE)

riverdistanceseq River Distance Between Sequential Observations

Description

Returns a matrix of distances traveled by unique fish, between sequential surveys. A plotting
method is also provided for the output; see plotseq

Usage

riverdistanceseq(
unique,
survey,
seg,
vert,

riverdistanceseq

rivers,

69

logical = NULL,

stopiferror

algorithm

Arguments

unique

survey

seg
vert
rivers

logical

stopiferror

algorithm

Value

TRUE,

NULL

A vector of identifiers for each fish.

A vector of identifiers for each survey. It is recommended to use a numeric or
date format (see as.Date) to preserve survey order.

A vector of river locations (segment component).
A vector of river locations (vertex component).
The river network object to use.

A boolean vector that can be used for subsetting. If used, riverdistanceseq()
will only return pairwise distances in which a specified condition is met.

Whether or not to exit with an error if a route cannot be found. If this is set to
FALSE and a route cannot be found, the function will return NA in the appropriate
entry. Defaults to TRUE. See detectroute.

n on

Which route detection algorithm to use ("Dijkstra”, "sequential”, or "segroutes").
If left as NULL (the default), the function will automatically make a selection. See
detectroute for more details.

A data frame of distances (numeric), with rows defined by unique fish and columns defined by
observation increment (1 to 2, 2 to 3, etc.)

Note

Building routes from the river mouth to each river network segment and/or distance lookup tables
will greatly reduce computation time (see buildsegroutes).

Author(s)
Matt Tyers

See Also

riverdistance, plotseq

Examples

data(Gulk, fakefish)
riverdistanceseq(unique=fakefish$fish.id, survey=fakefish$flight,
seg=fakefish$seg, vert=fakefish$vert, rivers=Gulk)

segbysurvey <- riverdistanceseq(unique=fakefish$fish.id, survey=fakefish$flight.date,

70 riverdistancetofrom

seg=fakefish$seg, vert=fakefish$vert, rivers=Gulk)
segbysurvey
plotseq(segbysurvey)

riverdistancetofrom River Distance Matrix between Two Datasets

Description

Returns a matrix of distances between each river location in two datasets, with one expressed as
rows and the other expressed as columns.

Usage

riverdistancetofrom(
segl,
vertl,
seg2,
vert2,
rivers,
logicali
logical2
IDT = NULL,
ID2 = NULL,
stopiferror = TRUE,
algorithm = NULL

NULL,
NULL,

)
Arguments

segl First vector of river locations (segment component). These are expressed as
rows in the output matrix.

vert1 First vector of river locations (vertex component). These are expressed as rows
in the output matrix.

seg?2 Second vector of river locations (segment component). These are expressed as
columns in the output matrix.

vert2 Second vector of river locations (vertex component). These are expressed as
columns in the output matrix.

rivers The river network object to use.

logicali A boolean vector that can be used for subsetting. If used, riverdistancetofrom
will only return distances in which a specified condition is met for the first
dataset.

logical2 A boolean vector that can be used for subsetting. If used, riverdistancetofrom

will only return distances in which a specified condition is met for the second
dataset.

riverdistancetofrom

ID1

ID2

stopiferror

algorithm

Value

71

a vector of observation IDs for the first dataset that will be used as row names in
the output matrix.

a vector of observation IDs for the second dataset that will be used as column
names in the output matrix.

Whether or not to exit with an error if a route cannot be found. If this is set to
FALSE and a route cannot be found, the function will return NA in the appropriate
entry. Defaults to TRUE. See detectroute.

Which route detection algorithm to use ("Dijkstra”, "sequential”, or "segroutes").
If left as NULL (the default), the function will automatically make a selection. See
detectroute for more details.

A matrix of distances (numeric) with rows and columns labeled by corresponding values of ID.

Note

Building routes from the river mouth to each river network segment and/or distance lookup tables
will greatly reduce computation time (see buildsegroutes).

Author(s)
Matt Tyers

See Also

riverdistance

Examples

data(Gulk)

streamlocs.seg <- ¢(1,8,11)
streamlocs.vert <- c(50,70,90)
streamlocs.ID <- c("A","B","C")

fish.seg <- ¢(1,4,9,12,14)
fish.vert <- ¢(10,11,12,13,14)
fish.ID <- c("fish1"”,"fish2","fish3","fish4","fish5")

riverdistancetofrom(segl=streamlocs.seg, vertl=streamlocs.vert,
seg2=fish.seg, vert2=fish.vert, rivers=Gulk, ID1=streamlocs.ID, ID2=fish.ID)

logil <- streamlocs.ID=="B" | streamlocs.ID=="C"
logi2 <- fish.ID!="fish3"

riverdistancetofrom(segl=streamlocs.seg, vertl=streamlocs.vert,
seg2=fish.seg, vert2=fish.vert, rivers=Gulk, logicall=logil, logical2=logi2,
ID1=streamlocs.ID, ID2=fish.ID)

72

rivernetwork

rivernetwork The "rivernetwork" Class

Description

A class that holds spatial coordinates for river networks, as well as network topology and attributes.

Details

Created by line2network from an input line shapefile. Contains all information for network distance
calculation, plotting, etc. in the ’riverdist’ package.

Plotting methods are described in plot.rivernetwork.

Elements

sf: Object of class "sf" from package ’sf’; see sf. This is the original object as read by read_sf,
and is preserved to maintain plotting capability.

sf_current: Object of class "sf"” from package ’sf’; see sf. This is an updated sf object generated
from the coordinates in the ‘lines‘ element, incorporating any changes to geometry. Any
corresponding data will be dropped.

lines: Object of class "1ist"”. Each list element is a matrix of XY coordinates of the vertices of
a single river segment.

connections: Object of class "matrix”, with "numeric” elements. Defined as a square matrix,
with elements describing the type of connection detected between line segments.

L]

lengths:

A value of 1 in element [i, j] indicates that the beginning of segment i is connected to
the beginning of segment j.

A value of 2 in element [i, j] indicates that the beginning of segment i is connected to
the end of segment j.

A value of 3 in element [i,j] indicates that the end of segment i is connected to the
beginning of segment j.

A value of 4 in element [i, j] indicates that the end of segment i is connected to the end
of segment j.

A value of 5 in element [1i, j] indicates that segments i and j are connected at both
beginning and end.

A value of 6 in element [i, j] indicates that the beginning of segment i is connected to
the end of segment j, and the end of segment i is connected to the beginning of segment
Jj.

A value of NA in element [i, j] indicates that segments i and j are not connected.

Vector of class "numeric”. Defined as the calculated total lengths of each river segment.

names: Vector of class "character”. Defined as the names of each river segment.

mouth: Object of class "1ist", with two elements. Element mouth. seg gives the segment number
of the mouth (lowest point) of the river network, and mouth.vert gives the vertex number.

sequenced: "logical”: has value of TRUE if line vertices have been stored in upstream sequence
using sequenceverts.

riverpoints

73

tolerance: "numeric”: the spatial tolerance that was used in determining river segment endpoint
connectivity; see line2network, splitsegments.

units: "character”: the spatial units detected from the input shapefile.

braided: "logical”: Has value of TRUE if checkbraidedTF has detected braiding, FALSE if no
braiding has been detected, and NA if braiding has not yet been checked.

cumuldist: List of class "numeric”: Each element is a vector of cumulative distances along each
river segment, beginning with 0.

segroutes: Object of class "list"”, with each element defined as a vector of class "numeric”,
describing the route from the mouth segment to the specific segment. This element only exists
if buildsegroutes has been run, and can greatly speed up route and distance calculation.

distlookup: List of three matrices, of class "numeric” or "logical”. Element [i,j] of each
matrix corresponds to the route between segment i and j. The distlookup$middist matrix
gives the total distance of the "middle" of each route (between the starting and ending seg-
ments"), and the distlookup$starttop and distlookup$endtop matrices have value TRUE,
FALSE, or NA if the segments at the beginning or end of the route are connected to the rest of
the route at the top of the coordinate matrix, bottom of the coordinate matrix, or if the route is
contained to just one segment, respectively.

Author(s)
Matt Tyers

riverpoints

Draw Points from River Locations

Description

Adds points to an active plot. Works like points but with river locations (segments and vertices)
rather than xy coordinates.

Usage
riverpoints(seg, vert, rivers, pch =1, col =1, jitter = 0, ...)
Arguments
seg A vector of segments
vert A vector of vertices
rivers The river network object to use
pch Point character, as a vector or single value
col Point color, as a vector or single value
jitter Maximum amount of random noise to add to "jitter" points if desired, so points

do not overlap one another

Additional arguments for points

74 routelist

Author(s)
Matt Tyers

Examples

data(fakefish,Gulk)

plot(x=Gulk, xlim=c(862000,882000), ylim=c(6978000,6993000))
points(x=fakefish$x, y=fakefish$y, pch=16, col=2)
riverpoints(seg=fakefish$seg, vert=fakefish$vert, rivers=Gulk, pch=15, col=4)

plot(x=Gulk, empty=TRUE)
with(fakefish, riverpoints(seg=seg, vert=vert, rivers=Gulk,
pch=16, col=flight, jitter=1000))

routelist Detect Multiple Routes

Description

Called internally within riverdistancelist. Detects all possible routes from one river network segment
to another, in the event of braiding.

Usage

routelist(startseg, endseg, rivers, reps = 100)

Arguments

startseg Segment number of the start of the route

endseg Segment number of the end of the route

rivers The river network object to use

reps Deprecated. Was used in a previous version using randomization.
Value

A list of vectors, each describing a route in segment numbers.

Note

The previous version of this function returned many possible routes using randomization - this
algorithm now computes all possible routes.

Author(s)
Matt Tyers

segvert2xy 75

Examples

data(KilleyW)
plot(x=KilleyW)

routelist(startseg=1, endseg=16, rivers=KilleyW)

segvert2xy Convert River Locations to XY coordinates

Description

This function is almost the reverse of xy2segvert, and returns a data frame of the XY spatial coor-
dinates corresponding to vectors of segment and vertex. It should be noted that this only returns the
spatial coordinates from the river network itself, and will not necessarily correspond to the original
set of point data.

Usage

segvert2xy(seg, vert, rivers)

Arguments
seg A vector of river segments to transform
vert A vector of river vertices to transform
rivers The river network object to use

Value

A data frame of XY coordinates, given as $snap_x and $snap_y..

Author(s)
Matt Tyers

See Also

xy2segvert, pointshp2segvert

Examples

data(Gulk, fakefish)
head(fakefish)

xy_from_segvert <- segvert2xy(seg=fakefish$seg, vert=fakefish$vert,
rivers=Gulk)

head(xy_from_segvert)

plot(x=Gulk, xlim=c(862000,882000), ylim=c(6978000,6993000))

76 sequenceverts

points(x=fakefish$x, y=fakefish$y, pch=16, col=2)

points(x=xy_from_segvert$snap_x, y=xy_from_segvert$snap_y, pch=15, col=4)

sequenceverts Store Vertices in Ascending Sequence

Description
Rearranges the vertices of a river network object so that vertices are stored sequentially moving up
river for all segments (coordinates [1,] are the bottom of each segment).

Usage

sequenceverts(rivers)

Arguments

rivers The river network object to use

Value

A new river network object (see rivernetwork)

Note

Even without calling sequenceverts, the vertices will be stored sequentially - either moving up
river or down for a given segment. What sequenceverts() adds is a standardized direction.

Currently, no function in package ’‘riverdist’ requires the vertices to be stored sequentially.

Author(s)
Matt Tyers

See Also

line2network

Examples

data(Gulk)
Gulk <- setmouth(seg=1, vert=1, rivers=Gulk)
str(Gulk)

Gulk.dir <- sequenceverts(rivers=Gulk)
str(Gulk.dir)

setmouth 77

setmouth Specify the Segment and Vertex of the Mouth of a River Network Ob-
ject.

Description
Provides a user-friendly way of specifying the segment and vertex of the mouth (lowest point) of a
river network object.

Usage

setmouth(seg, vert, rivers)

Arguments
seg The segment number to store for the mouth
vert The vertex number to store for the mouth
rivers The river network object to use

Value

A new river network object (see rivernetwork)

Note

The mouth segment and vertex can also be specified using direct assignment to the $mouth$seg and
$mouth$vert components of the river network object.

This function is called within cleanup, which is recommended in most cases.

Author(s)
Matt Tyers

See Also

line2network

Examples
data(Gulk)
say we know that segment 1 is the lowest segment in this river network, but we don't know

which end is the mouth.
showends(seg=1, rivers=Gulk)

this means that the mouth is row 1, so we can specify this:
Gulk <- setmouth(seg=1, vert=1, rivers=Gulk)

78 smallset

showends Identify Vertex Coordinates of Segment Endpoints

Description

Identifies the vertex coordinates (row numbers) of the endpoints of a given segment. The main
purpose is determining which of the endpoints is the mouth (or lowest point) of the river system.

Usage

showends(seg, rivers)

Arguments
seg The segment (number) to check
rivers The river network object to use
Note

This function is called within cleanup, which is recommended in most cases.

Author(s)
Matt Tyers

Examples

data(Gulk)

say we know that segment 1 is the lowest segment in this river network, but we don't know
which end is the mouth.
showends(seg=1, rivers=Gulk)

this means that the mouth is row 1, so we can specify this:
Gulk <- setmouth(seg=1, vert=1, rivers=Gulk)

smallset Dataset: Smallset

Description

A small set of observations of fakefish on the Gulkana River and its tributaries.

Usage

data(smallset)

splitsegmentat 79

Format

A data frame

Details

* x. X-coordinate of observation (Alaska Albers Equal Area). Note that the locations do not
align with the river network object.

¢ y. Y-coordinate of observation

* seg. River segment

¢ vert. River vertex

e fish.id. Numeric identifier for each fish (individual fish were observed more than once)

e flight. Numeric identifier for each telemetry flight

See Also
Gulk

splitsegmentat Split a Segment at a Specified Vertex

Description

Splits a segment at a specified vertex, creating two new segments.

Usage

splitsegmentat(seg, vert, rivers)

Arguments

seg The segment to split

vert The vertex to split it at

rivers The river network object to use
Value

A new, updated river network object

Author(s)
Matt Tyers

See Also

line2network

80 splitsegments
Examples
data(Gulk)
plot(x=Gulk)
Gulk2 <- splitsegmentat(seg=1, vert=400, rivers=Gulk)
plot(x=Gulk2)
splitsegments Split Segments by Endpoint Proximity
Description
Detects cases in which segments should be split to establish appropriate topology, and splits them.
Specifically, it looks for segment endpoints intersecting (or within a tolerance of) another segment.
It then splits the intersected segment at the point where the endpoint of the other segment breaks it.
Usage
splitsegments(
rivers,
tolerance = NULL,
splitthese = NULL,
splitthemat = NULL,
one2one = FALSE,
append = FALSE
)
Arguments
rivers The river network object to use
tolerance The spatial snapping tolerance to use for detecting intersection. If a NULL value
is used (default), it will default to the tolerance that was used in river network
creation in line2network.
splitthese An optional vector of target segments to split. If this argument is used, only
these segments will be split. If the default (NULL) is accepted, all segments will
be used.
splitthemat An optional vector of segments (endpoints) to use for splitting. If this argument
is used, segments will only be split at the endpoints of these segments. If the
default (NULL) is accepted, all segments will be used.
one2one Logical, indicating a one-to-one correspondence between arguments splitthese
and splitthemat. Defaults to FALSE,
append Logical, indicating how to organize the output river network. If TRUE, appends

newly-created segments to the end of $1ines, rather than retaining original line
ordering. This may be useful in retaining original line ID. Defaults to FALSE.

topologydots 81

Value

A new, updated river network object

Note

This function is called within cleanup, which is recommended in most cases.

Author(s)
Matt Tyers

See Also

line2network

Examples

data(Koyukuk1)

topologydots(rivers=Koyukuk1)

Segments 7, 8, 13, and 16 need to be split so topologies will work.
Since endpoints are not in the same place, they are not detected as
being connected.

plot (x=Koyukuk1)

Koyukuk1split <- splitsegments(rivers=Koyukuk1)
topologydots(rivers=Koyukuklsplit)
plot(x=Koyukuk1split)

if only segment 17 were to be split in three places
plot(x=splitsegments(rivers=Koyukukl1, splitthese=c(7,7,7),
splitthemat=c(14,5,12)))

if only segment 16 were to be split, showing behavior of append=
plot(x=splitsegments(rivers=Koyukukl, splitthese=c(7,7,7),
splitthemat=c(14,5,12), append=TRUE))

topologydots Check Connectivity of a River Network Object

Description

Produces a graphical check of the connectivity of a river network object. It produces a plot of the
river network object, and overlays red dots at non-connected endpoints and green dots at connected
endpoints.

Usage

topologydots(rivers, add = FALSE, ...)

82

Arguments

rivers The river network object to check

trimriver

add Whether call a new plot (FALSE) or add dots to an existing plot (TRUE). Defaults

to FALSE.

Additional plotting arguments (see par)

Author(s)

Matt Tyers

See Also

line2network

Examples

data(Gulk)
topologydots(rivers=Gulk)

trimriver Trim a River Network Object to Specified Segments

Description

Removes line segments from a river network object. User can specify which segments to remove

(trim) or which segments to keep (trimto).

Usage

trimriver(trim = NULL, trimto = NULL, rivers)

Arguments
trim Vector of line segments to remove
trimto Vector of line segments to keep
rivers The river network object

Value

A new river network object

Note

Specifying segments in both trim and trimto arguments will result in an error.

trimtopoints

Author(s)
Matt Tyers

See Also

line2network

Examples

data(Kenail)
plot(x=Kenail)

83

Kenail.trim <- trimriver(trim=c(46,32,115,174,169,114,124,142,80), rivers=Kenail)
plot(x=Kenail.trim)

Kenail.trim.2 <- trimriver(trimto=c(20,57,118,183,45,162,39,98,19), rivers=Kenail)
plot(x=Kenail.trim.2)

trimtopoints

Trim a River Network to a Set of X-Y Coordinates

Description

Removes line segments from a river network object that are not adjacent to a set of point data, given
in X-Y coordinates.

Usage

trimtopoints(x, y, rivers, method = "snap”, dist = NULL)

Arguments
X

y

rivers

method

dist

Value

Vector of x-coordinates of point data to buffer around
Vector of y-coordinates of point data to buffer around
The river network object to use

Three methods are available. If "snap” is specified (the default), only the closest
segment to each point is retained. If "snaproute” is specified, segments are
also retained that will maintain total connectivity in the resulting river network.
If "buffer” is specified, all segments with endpoints or midpoints within dist
units of the input locations are retained.

Distance to use for buffering, if method="buffer". If this is not specified, the
maximum spread in the x- and y- direction will be used.

A new river network object (see rivernetwork)

84 upstream

Note

If method=="buffer”, only distances to segment endpoints and midpoints are checked, and still
only whole segments are removed.

Author(s)

Matt Tyers

See Also

line2network

Examples

data(Koyukuk2)
X <- c(139241.0, 139416.1, 124600.1, 122226.8)
y <- ¢c(1917577, 1913864, 1898723, 1898792)

plot (x=Koyukuk2)

points(x, y, pch=15, col=4)

legend(par("usr”)[1], par("usr"”)[4], legend="points to buffer around”, pch=15, col=4, cex=.6)
Koyukuk2.buf1 <- trimtopoints(x, y, rivers=Koyukuk2, method="
plot (x=Koyukuk2.buf1)

points(x, y, pch=15, col=4)

snap”)

Koyukuk2.buf2 <- trimtopoints(x, y, rivers=Koyukuk2, method="snaproute")
plot (x=Koyukuk2.buf2)
points(x, y, pch=15, col=4)

Koyukuk2.buf3 <- trimtopoints(x, y, rivers=Koyukuk2, method="buffer”, dist=1000)
plot (x=Koyukuk2.buf3)
points(x, y, pch=15, col=4)

upstream Upstream River Distance

Description

Calculates river network distances as +/-, defined as upriver/downriver.

Specifying net=TRUE will compute net upriver distance (3 river km down a tributary and then 15
river km up the mainstem will mean 12 rkm net. Otherwise the function will return 18 rkm upriver
travel.)

The mouth (lowest point) segment and vertex must be specified (see setmouth).

upstream

Usage

upstream(
startseg,
endseg,
startvert,
endvert,
rivers,
flowconnected
net = FALSE,
stopiferror =

85

= FALSE,

TRUE,

algorithm = NULL

Arguments

startseg
endseg
startvert
endvert
rivers

flowconnected

net

stopiferror

algorithm

Value

Upstream distance

Segment number of the start of the route
Segment number of the end of the route
Vertex number of the start of the route
Vertex number of the end of the route
The river network object to use

If TRUE, only returns distance if the two input segments are flow-connected.
Defaults to FALSE.

Whether to calculate net distance (net=TRUE) or total distance (net=FALSE)

Whether or not to exit with an error if a route cannot be found. If this is set to
FALSE and a route cannot be found, the function will return NA in the appropriate
entry. Defaults to TRUE. See detectroute.

n on

Which route detection algorithm to use ("Dijkstra”, "sequential”, or "segroutes").
If left as NULL (the default), the function will automatically make a selection. See
detectroute for more details.

(numeric). Returns NA if flowconnected has value TRUE and the two segments

are not flow-connected.

Note

Building routes from the river mouth to each river network segment and/or distance lookup tables
will greatly reduce computation time (see buildsegroutes).

Author(s)
Matt Tyers

See Also

setmouth

86

Examples

data(Gulk)

Mouth must be specified
Gulk$mouth$mouth.seg <- 1
Gulk$mouth$mouth.vert <- 1

plot (x=Gulk)

riverpoints(seg=c(6,4), vert=c(140,140), pch=16, col=2, rivers=Gulk)

upstreamimat

upstream(startseg=6, endseg=4, startvert=140, endvert=40, rivers=Gulk, net=TRUE)
upstream(startseg=6, endseg=4, startvert=140, endvert=40, rivers=Gulk, net=FALSE)
upstream(startseg=6, endseg=4, startvert=140, endvert=40, rivers=Gulk, flowconnected=TRUE)

upstreammat

Upstream Distance Matrix

Description

Returns a matrix of upstream distance between every point and every other point of given river
locations (segment and vertex), or of a subset. The mouth (lowest point) segment and vertex must

be

Usage

up

specified (see setmouth).

streammat (

seg,

vert,

rivers,

logical = NULL,

ID = NULL,
flowconnected = FALSE,
net = FALSE,
stopiferror = TRUE,
algorithm = NULL

)
Arguments
seg A vector of river locations (segment component).
vert A vector of river locations (vertex component).
rivers The river network object to use.
logical A boolean vector that can be used for subsetting - if used, riverdirectionseq()
will only return pairwise distances in which a specified condition is met.
1D a vector of observation IDs for aid in interpreting the output table
flowconnected If TRUE, only returns distance if the input segments are flow-connected. Defaults

to FALSE.

upstreammatbysurvey

net

stopiferror

algorithm

Value

87

Whether to calculate net upstream distance (net=TRUE) or total distance (net=FALSE,
default). See upstream.

Whether or not to exit with an error if a route cannot be found. If this is set to
FALSE and a route cannot be found, the function will return NA in the appropriate
entry. Defaults to TRUE. See detectroute.

n on

Which route detection algorithm to use ("Dijkstra”, "sequential”, or "segroutes").
If left as NULL (the default), the function will automatically make a selection. See
detectroute for more details.

A matrix of upstream distances (numeric) with rows and columns labeled by corresponding values
of ID. See upstream for additional information.

Note

Building routes from the river mouth to each river network segment and/or distance lookup tables
will greatly reduce computation time (see buildsegroutes).

Author(s)

Matt Tyers

See Also

upstream

Examples

data(Gulk, fakefish)

Mouth must be specified
Gulk$mouth$mouth.seg <- 1
Gulk$mouth$mouth.vert <- 1

logil <- (fakefish$flight.date==as.Date(”2015-11-25"))

upstreammat (seg=fakefish$seg, vert=fakefish$vert, rivers=Gulk, logical=logil)

upstreammatbysurvey Upstream Distance Matrix of All Observations of an Individual

Description

Returns a matrix of upstream travel distance between all observations of one unique fish.

upstreammatbysurvey(

indiv,

unique,

survey,

seg,

vert,

rivers,

full = TRUE,
flowconnected = FALSE,
net = FALSE,
stopiferror = TRUE,
algorithm = NULL

upstreammatbysurvey

Arguments
indiv
unique

survey

seg
vert

rivers

full
flowconnected

net

stopiferror

algorithm

Value

The unique identifier of the fish in question.
A vector of identifiers for each fish.

A vector of identifiers for each survey. It is recommended to use a numeric or
date format (see as.Date) to preserve survey order.

A vector of river locations (segment component).
A vector of river locations (vertex component).
The river network object to use.

Whether to return the full matrix, with NA values for missing data (TRUE), or a the
subset of rows and columns corresponding to successful observations. Defaults
to TRUE.

If TRUE, only returns direction if the input segments are flow-connected. De-
faults to FALSE.

Whether to calculate net upstream distance (net=TRUE) or total distance (net=FALSE,
default).

Whether or not to exit with an error if a route cannot be found. If this is set to
FALSE and a route cannot be found, the function will return NA in the appropriate
entry. Defaults to TRUE. See detectroute.

n on

Which route detection algorithm to use ("Dijkstra”, "sequential”, or "segroutes”).
If left as NULL (the default), the function will automatically make a selection. See
detectroute for more details.

A matrix of upstream distances (numeric), with rows and columns defined by survey. In the resulting
matrix, the element with the row identified as A and column identified as B is defined as the upstream
distance traveled from survey A to survey B. Therefore, it is likely that only the upper triangle of
the matrix will be of interest.

upstreamseq 89

Note

Building routes from the river mouth to each river network segment and/or distance lookup tables
will greatly reduce computation time (see buildsegroutes).

Author(s)

Matt Tyers

See Also

upstream

Examples

data(Gulk, fakefish)
upstreammatbysurvey(indiv=1, unique=fakefish$fish.id, survey=fakefish$flight,
seg=fakefish$seg, vert=fakefish$vert, rivers=Gulk)

upstreammatbysurvey(indiv=1, unique=fakefish$fish.id, survey=fakefish$flight,
seg=fakefish$seg, vert=fakefish$vert, rivers=Gulk, full=FALSE)

upstreamseq Upstream Distance Between Sequential Observations

Description

Returns a matrix of distance with direction by unique fish between sequential surveys. The mouth
(lowest point) segment and vertex must be specified (see setmouth). A plotting method is provided
for the output; see plotseq.

Usage

upstreamseq(
unique,
survey,
seg,
vert,
rivers,
logical = NULL,
flowconnected = FALSE,
net = FALSE,
stopiferror = TRUE,
algorithm = NULL

90 upstreamseq

Arguments
unique A vector of identifiers for each fish.
survey A vector of identifiers for each survey. It is recommended to use a numeric or
date format (see as.Date) to preserve survey order.
seg A vector of river locations (segment component).
vert A vector of river locations (vertex component).
rivers The river network object to use.
logical A boolean vector that can be used for subsetting - if used, upstreamseq() will

only return pairwise distances in which a specified condition is met.

flowconnected If TRUE, only returns distance if the input segments are flow-connected. Defaults

to FALSE.

net Whether to calculate net upstream distance (net=TRUE) or total distance (net=FALSE,
default).

stopiferror Whether or not to exit with an error if a route cannot be found. If this is set to

FALSE and a route cannot be found, the function will return NA in the appropriate
entry. Defaults to TRUE. See detectroute.

n on

algorithm Which route detection algorithm to use ("Dijkstra”, "sequential”, or "segroutes”).
If left as NULL (the default), the function will automatically make a selection. See
detectroute for more details.
Value
A data frame of upstream distances (numeric), with rows defined by unique fish and columns de-
fined by observation increment (1 to 2, 2 to 3, etc.) See upstream for additional information.
Note

Returns either net upstream distance (net=TRUE) or total distance (net=FALSE, default). See up-
stream.

Building routes from the river mouth to each river network segment and/or distance lookup tables
will greatly reduce computation time (see buildsegroutes).

Author(s)
Matt Tyers

See Also

upstream, plotseq
Examples
data(Gulk, fakefish)

Mouth must be specified
Gulk$mouth$mouth.seg <- 1

upstreamtofrom

91

Gulk$mouth$mouth.vert <- 1

upstreamseq(unique=fakefish$fish.id, survey=fakefish$flight, seg=fakefish$seg,
vert=fakefish$vert, rivers=Gulk)

segbysurvey <- upstreamseq(unique=fakefish$fish.id, survey=fakefish$flight.date, seg=fakefish$seg,
vert=fakefish$vert, rivers=Gulk)

segbysurvey

plotseq(segbysurvey)

upstreamtofrom

Upstream Distance Matrix between Two Datasets

Description

Returns a matrix of upstream distances between each river location in two datasets, with one ex-
pressed as rows and the other expressed as columns.

Usage
upstreamtofrom(
segl,
vertl,
seg2,
vert2,
rivers,
logicall = NULL,
logical2 = NULL,
ID1 = NULL,
ID2 = NULL,
net = FALSE,
flowconnected = FALSE,
stopiferror = TRUE,
algorithm = NULL
)
Arguments
segl First vector of river locations (segment component). These are expressed as
rows in the output matrix.
verti First vector of river locations (vertex component). These are expressed as rows
in the output matrix.
seg?2 Second vector of river locations (segment component). These are expressed as
columns in the output matrix.
vert2 Second vector of river locations (vertex component). These are expressed as
columns in the output matrix.
rivers The river network object to use.

92 upstreamtofrom

logicali A boolean vector that can be used for subsetting. If used, upstreamtofrom will
only return upstream distances in which a specified condition is met for the first
dataset.

logical2 A boolean vector that can be used for subsetting. If used, upstreamtofrom

will only return upstream distances in which a specified condition is met for the
second dataset.

ID1 a vector of observation IDs for the first dataset that will be used as row names in
the output matrix.

ID2 a vector of observation IDs for the second dataset that will be used as column
names in the output matrix.

net Whether to calculate net upstream distance (TRUE) or signed total distance (FALSE).
See upstream.

flowconnected If TRUE, only returns distance if the input segments are flow-connected. Defaults
to FALSE.

stopiferror Whether or not to exit with an error if a route cannot be found. If this is set to
FALSE and a route cannot be found, the function will return NA in the appropriate
entry. Defaults to TRUE. See detectroute.

non

algorithm Which route detection algorithm to use ("Dijkstra”, "sequential”, or "segroutes”).
If left as NULL (the default), the function will automatically make a selection. See
detectroute for more details.
Value
A matrix of upstream distances (numeric) with rows and columns labeled by corresponding values
of ID. See upstream for additional information.
Note

Building routes from the river mouth to each river network segment and/or distance lookup tables
will greatly reduce computation time (see buildsegroutes).

Author(s)
Matt Tyers

See Also
upstream
Examples
data(Gulk)
streamlocs.seg <- c¢(1,8,11)
streamlocs.vert <- c¢(50,70,90)

streamlocs.ID <- c("A","B","C")

fish.seg <- ¢(1,4,9,12,14)

whoconnected 93

fish.vert <- c(10,11,12,13,14)
fish.ID <- c("fish1”,"fish2","fish3","fish4"” "fish5")

Gulk <- setmouth(seg=1, vert=1, rivers=Gulk)

upstreamtofrom(segl=streamlocs.seg, vertl=streamlocs.vert,
seg2=fish.seg, vert2=fish.vert, rivers=Gulk,
ID1=streamlocs.ID, ID2=fish.ID)

logil <- streamlocs.ID=="B" | streamlocs.ID=="C"
logi2 <- fish.ID!="fish3"

upstreamtofrom(segi=streamlocs.seg, vertl=streamlocs.vert,
seg2=fish.seg, vert2=fish.vert, rivers=Gulk, logicall=logil,
logical2=1logi2, ID1=streamlocs.ID, ID2=fish.ID)

whoconnected Check Which Segments are Connected to a Given Segment.

Description

Returns which segments are connected to a specified segment within a river network. It may be
useful for error checking.

Usage

whoconnected(seg, rivers)

Arguments

seg The segment to check

rivers The river network object it belongs to
Value

A vector of segment numbers

Author(s)
Matt Tyers

Examples

data(Gulk)
plot(Gulk)
whoconnected(seg=4, rivers=Gulk)

94 xy2segvert

xy2segvert Convert XY Coordinates to River Locations

Description
This function determines the closest vertex in the river network to each point of XY data and returns
a list of river locations, defined as segment numbers and vertex numbers.

Usage

xy2segvert(x, y, rivers)

Arguments
X A vector of x-coordinates to transform
y A vector of y-coordinates to transform
rivers The river network object to use

Value

A data frame of river locations, with segment numbers in $seg, vertex numbers in $vert, and the
snapping distance for each point in $snapdist. Two additional columns are $snap_x and $snap_y,
which give the x- and y-coordinates snapped to the river network.

Note

Conversion to river locations is only valid if the input XY coordinates and river network are in
the same projected coordinate system. Point data in geographic coordinates can be projected using
sf_project in package ’sf’, and an example is shown below.

Author(s)
Matt Tyers

See Also

pointshp2segvert, segvert2xy

Examples

data(Gulk, fakefish)
head(fakefish)

fakefish.riv <- xy2segvert(x=fakefish$x, y=fakefish$y, rivers=Gulk)
head(fakefish.riv)

plot(x=Gulk, xlim=c(862000,882000), ylim=c(6978000,6993000))
points(fakefish$x, fakefish$y, pch=16, col=2)

zoomtoseg 95

riverpoints(seg=fakefish.riv$seg, vert=fakefish.riv$vert, rivers=Gulk, pch=15, col=4)

converting a matrix of points stored in long-lat to Alaska Albers Equal Area:
data(line98, Kenail)

head(1ine98) # note that coordinates are stored in long-lat, NOT lat-long

line98albers <- sf::sf_project(pts=1ine98, to="+proj=aea +lat_1=55 +lat_2=65
+lat_0=50 +lon_0=-154 +x_0=0 +y_0=0 +datum=NAD83 +units=m +no_defs
+ellps=GRS80")

head(1line98albers)

zoomtoseg(seg=c(162,19), rivers=Kenail)
points(line98albers)

zoomtoseg Zoom to segment

Description
Calls plot.rivernetwork and automatically zooms to a specified segment or vector of segments. Not
intended for any real mapping - just investigating and error checking.

Usage

zoomtoseg(seg, rivers, ...)

Arguments

seg A segment or vector of segments to zoom to
rivers The river network object to use

Additional plotting arguments (see par)

Author(s)
Matt Tyers

Examples
data(Kenai3)
plot(x=Kenai3)

checking out a particularly messy region...
zoomtoseg(c(110,63), rivers=Kenai3)

Index

+ datasets
abstreams, 4
abstreamso, 5
fakefish, 19
fakefish_density, 20
Gulk, 20
Kenail, 26
Kenaiz2, 26
Kenai3s, 27
KilleyW, 29
Koyukuk®, 30
Koyukuk1, 30
Koyukuk2, 31
1line98, 33
smallset, 78

abstreams, 4

abstreamso, 5

addcumuldist, 5

addverts, 6, 12

as.Date, 36, 39, 49, 58, 59, 67, 69, 88, 90

buildlookup, 7, 8, 29, 34, 64

buildsegroutes, 7,8, 12, 17, 22, 29, 34,
37-39,47,55,57, 58, 60, 62, 64, 66,
68, 69,71,73,85,87,89, 90, 92

calculateconnections, 9

checkbraided, 10

checkbraidedTF, 11, 12, 73

cleanup, 6-8, 10, 11,12, 14, 18, 52, 53,77,
78, 81

cleanup_verts, 13

connectsegs, 12, 14

densityanomaly, 15, 34, 44

detectroute, 17, 22, 25, 37-39, 55, 57, 58,
60, 62, 63, 66, 68, 69, 71, 85, 87, 88,
90, 92

dissolve, 12, 18

96

fakefish, 19
fakefish_density, 20

Gulk, 79, 20, 79

highlightseg, 21
homerange, 21, 23, 24, 41, 42, 46
homerange-class, 22, 23
homerangeoverlap, 23, 24, 42, 46

isflowconnected, 25

Kenail, 26, 26, 27
Kenai2, 26, 26, 27
Kenais, 26, 27, 29
kfunc, 27
KilleyW, 29
Koyukuk@, 30
Koyukuk1, 30, 30, 31
Koyukuk2, 30, 31

line2network, 30, 31, 72, 73, 76, 77, 79-84
1line9s, 33

makeriverdensity, 15, 16, 33, 42—44, 48, 54
mapbyname, 35

mapriver (plot.rivernetwork), 45
matbysurveylist, 35,47

mouthdist, 37

mouthdistbysurvey, 38, 49

par, 21, 35,45, 82, 95

pdist, 40

pdisttot, 40

plot, 81

plot.homerange, 22-24, 41, 46
plot.riverdensity, 16, 33, 34,42, 48, 54
plot.rivernetwork, 42, 45, 46, 72, 95
plothomerangeoverlap, 23, 24, 42, 46
plotmatbysurveylist, 35, 37, 47
plotriverdensity, 20

INDEX 97

plotriverdensity (plot.riverdensity), 42 upstreammat, 86
plotriverdensitypoints, 16, 34, 44, 48 upstreammatbysurvey, 36, 37, 48, 87
plotseq, 38, 39, 49, 68, 69, 89, 90 upstreamseq, 49, 89

points, 73 upstreamtofrom, 91

pointshp2segvert, 50, 75, 94
whoconnected, 93
read_sf, 31,72

removeduplicates, 12, 51 xy2segvert, 51, 75,94
removemicrosegs, 12, 52
removeunconnected, 12, 53 zoomtoseg, 95

riverdensity, 20, 54
riverdensity-class, 20, 34
riverdensity-class (riverdensity), 54
riverdirection, 25, 37,55, 57, 59, 60, 62
riverdirectionmat, 56
riverdirectionmatbysurvey, 36, 37, 57
riverdirectionseq, 59
riverdirectiontofrom, 61
riverdist (riverdist-package), 3
riverdist-package, 3
riverdistance, 17, 37, 63, 65, 67-69, 71
riverdistancelist, 64, 74
riverdistancemat, 66
riverdistancematbysurvey, 36, 37, 67
riverdistanceseq, 49, 68
riverdistancetofrom, 70
rivernetwork, 4-8, 12-14, 20, 26, 27, 29-31,
51,52,72,76, 77,83
rivernetwork-class, 5, 9, 32,45, 54
rivernetwork-class (rivernetwork), 72
riverpoints, 73
routelist, 65, 74

segvert2xy, 75, 94
sequenceverts, 72, 76
setmouth, 8, 12, 25, 37, 38, 55, 56, 59,77,
84-86, 89
sf, 31,72
sf_project, 94
showends, 78
smallset, 78
splitsegmentat, 79
splitsegments, 12, 73, 80
st_transform, 32

topologydots, 81
trimriver, 65, 82
trimtopoints, 83

upstream, 25, 37, 48, 84, 87, 89, 90, 92

	riverdist-package
	abstreams
	abstreams0
	addcumuldist
	addverts
	buildlookup
	buildsegroutes
	calculateconnections
	checkbraided
	checkbraidedTF
	cleanup
	cleanup_verts
	connectsegs
	densityanomaly
	detectroute
	dissolve
	fakefish
	fakefish_density
	Gulk
	highlightseg
	homerange
	homerange-class
	homerangeoverlap
	isflowconnected
	Kenai1
	Kenai2
	Kenai3
	kfunc
	KilleyW
	Koyukuk0
	Koyukuk1
	Koyukuk2
	line2network
	line98
	makeriverdensity
	mapbyname
	matbysurveylist
	mouthdist
	mouthdistbysurvey
	pdist
	pdisttot
	plot.homerange
	plot.riverdensity
	plot.rivernetwork
	plothomerangeoverlap
	plotmatbysurveylist
	plotriverdensitypoints
	plotseq
	pointshp2segvert
	removeduplicates
	removemicrosegs
	removeunconnected
	riverdensity
	riverdirection
	riverdirectionmat
	riverdirectionmatbysurvey
	riverdirectionseq
	riverdirectiontofrom
	riverdistance
	riverdistancelist
	riverdistancemat
	riverdistancematbysurvey
	riverdistanceseq
	riverdistancetofrom
	rivernetwork
	riverpoints
	routelist
	segvert2xy
	sequenceverts
	setmouth
	showends
	smallset
	splitsegmentat
	splitsegments
	topologydots
	trimriver
	trimtopoints
	upstream
	upstreammat
	upstreammatbysurvey
	upstreamseq
	upstreamtofrom
	whoconnected
	xy2segvert
	zoomtoseg
	Index

