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MUS MUS algorithm

Description

Perform Maxima Units Search (MUS) algorithm on a large and sparse matrix in order to find a set
of pivotal units through a sequential search in the given matrix.

Usage

MUS(C, clusters, prec_par = 10)

Arguments

C N ×N matrix with a non-negligible number of zeros. For instance, a similarity
matrix estimated from a N ×D data matrix whose rows are statistical units, or
a co-association matrix resulting from clustering ensembles.

clusters A vector of integers from 1 : k indicating the cluster to which each point is
allocated (it requires k < 5, see Details).

prec_par Optional argument. The maximum number of candidate pivots for each group.
Default is 10.

Details

ConsiderH distinct partitions of a set ofN d-dimensional statistical units into k groups determined
by some clustering technique. A N × N co-association matrix C with generic element ci,j =
ni,j/H can be constructed, where ni,j is the number of times the i-th and the j-th unit are assigned
to the same cluster with respect to the clustering ensemble. Units which are very distant from each
other are likely to have zero co-occurrences; as a consequence, C is a square symmetric matrix
expected to contain a non-negligible number of zeros. The main task of the MUS algorithm is to
detect submatrices of small rank from the co-association matrix and extract those units—pivots—
such that the k × k submatrix of C, determined by only the pivotal rows and columns indexes,
is identical or nearly identical. Practically, the resulting units have the desirable property to be
representative of the group they belong to.

With the argument prec_par the user may increase the powerful of the underlying MUS algorithm
(see @egidi2018mus for details). Given the default value 10, the function internally computes an
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effective prec_par as min(10,minnj), where nj is the number of units belonging to the group
j, j = 1, . . . , k.

Value

pivots A vector of integers in 1:N denoting the indeces of the k selcted pivotal units.

prec_par The effective number of alternative pivots considered for each group. See De-
tails.

Author(s)

Leonardo Egidi <legidi@units.it>, Roberta Pappadà

References

Egidi, L., Pappadà, R., Pauli, F., Torelli, N. (2018). Maxima Units Search(MUS) algorithm:
methodology and applications. In: Perna, C. , Pratesi, M., Ruiz-Gazen A. (eds.) Studies in Theo-
retical and Applied Statistics, Springer Proceedings in Mathematics and Statistics 227, pp. 71–81.

Examples

# Data generated from a mixture of three bivariate Gaussian distributions

## Not run:
N <- 620
centers <- 3
n1 <- 20
n2 <- 100
n3 <- 500
x <- matrix(NA, N,2)
truegroup <- c( rep(1,n1), rep(2, n2), rep(3, n3))

x[1:n1,]=rmvnorm(n1, c(1,5), sigma=diag(2))
x[(n1+1):(n1+n2),]=rmvnorm(n2, c(4,0), sigma=diag(2))
x[(n1+n2+1):(n1+n2+n3),]=rmvnorm(n3, c(6,6), sigma=diag(2))

# Build a similarity matrix from clustering ensembles

H <- 1000
a <- matrix(NA, H, N)

for (h in 1:H){
a[h,] <- kmeans(x,centers)$cluster

}

sim_matr <- matrix(NA, N,N)
for (i in 1:(N-1)){

for (j in (i+1):N){
sim_matr[i,j] <- sum(a[,i]==a[,j])/H
sim_matr[j,i] <- sim_matr[i,j]
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}
}

# Obtain a clustering solution via kmeans with multiple random seeds

cl <- KMeans(x, centers)$cluster

# Find three pivots

mus_alg <- MUS(C = sim_matr, clusters = cl)

## End(Not run)

piv_KMeans k-means Clustering Using Pivotal Algorithms For Seeding

Description

Perform classical k-means clustering on a data matrix using pivots as initial centers.

Usage

piv_KMeans(
x,
centers,
alg.type = c("kmeans", "hclust"),
method = "average",
piv.criterion = c("MUS", "maxsumint", "minsumnoint", "maxsumdiff"),
H = 1000,
iter.max = 10,
nstart = 10,
prec_par = 10

)

Arguments

x A N ×D data matrix, or an object that can be coerced to such a matrix (such as
a numeric vector or a dataframe with all numeric columns).

centers The number of groups for the the k-means solution.

alg.type The clustering algorithm for the initial partition of the N units into the desired
number of clusters. Possible choices are "kmeans" (default) and "hclust".

method If alg.type is "hclust", the character string defining the clustering method.
The methods implemented are "single", "complete", "average", "ward.D",
"ward.D2", "mcquitty", "median", "centroid". The default is "average".
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piv.criterion The pivotal criterion used for identifying one pivot for each group. Possible
choices are: "MUS", "maxsumint", "minsumnoint","maxsumdiff". If centers
<= 4, the default method is "MUS"; otherwise, the default method is "maxsumint"
(see the details and the vignette).

H The number of distinct k-means runs used for building theN×N co-association
matrix. Default is 10^3.

iter.max If alg.type is "kmeans", the maximum number of iterations to be passed to
kmeans(). Default is 10.

nstart If alg.type is "kmeans", the number of different starting random seeds to be
passed to kmeans(). Default is 10.

prec_par If piv.criterion is "MUS", the maximum number of competing pivots in each
group. If groups’ sizes are less than the default value, which is 10, then it is set
equal to the cardinality of the smallest group in the initial partition.

Details

The function implements a modified version of k-means which aims at improving the clustering
solution starting from a careful seeding. In particular, it performs a pivot-based initialization step
using pivotal methods to find the initial centers for the clustering procedure. The starting point
consists of multiple runs of the classical k-means by selecting nstart>1 in the kmeans function,
with a fixed number of clusters in order to build the co-association matrix of data units.

Value

A list with components

cluster A vector of integers indicating the cluster to which each point is allocated.

centers A matrix of cluster centers (centroids).

coass The co-association matrix built from ensemble clustering.

pivots The pivotal units identified by the selected pivotal criterion.

totss The total sum of squares.

withinss The within-cluster sum of squares for each cluster.

tot.withinss The within-cluster sum of squares summed across clusters.

betwennss The between-cluster sum of squared distances.

size The number of points in each cluster.

iter The number of (outer) iterations.

ifault integer: indicator of a possible algorithm problem (for experts).

Author(s)

Leonardo Egidi <legidi@units.it>, Roberta Pappada

References

Egidi, L., Pappadà, R., Pauli, F., Torelli, N. (2018). K-means seeding via MUS algorithm. Confer-
ence Paper, Book of Short Papers, SIS2018, ISBN: 9788891910233.
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Examples

# Data generated from a mixture of three bivariate Gaussian distributions

## Not run:
N <- 620
k <- 3
n1 <- 20
n2 <- 100
n3 <- 500
x <- matrix(NA, N,2)
truegroup <- c( rep(1,n1), rep(2, n2), rep(3, n3))

x[1:n1,] <- rmvnorm(n1, c(1,5), sigma=diag(2))
x[(n1+1):(n1+n2),] <- rmvnorm(n2, c(4,0), sigma=diag(2))
x[(n1+n2+1):(n1+n2+n3),] <- rmvnorm(n3, c(6,6), sigma=diag(2))

# Apply piv_KMeans with MUS as pivotal criterion

res <- piv_KMeans(x, k)

# Apply piv_KMeans with maxsumdiff as pivotal criterion

res2 <- piv_KMeans(x, k, piv.criterion ="maxsumdiff")

# Plot the data and the clustering solution

par(mfrow=c(1,2), pty="s")
colors_cluster <- c("grey", "darkolivegreen3", "coral")
colors_centers <- c("black", "darkgreen", "firebrick")
graphics::plot(x, col = colors_cluster[truegroup],

bg= colors_cluster[truegroup], pch=21, xlab="x[,1]",
ylab="x[,2]", cex.lab=1.5,
main="True data", cex.main=1.5)

graphics::plot(x, col = colors_cluster[res$cluster],
bg=colors_cluster[res$cluster], pch=21, xlab="x[,1]",
ylab="x[,2]", cex.lab=1.5,
main="piv_KMeans", cex.main=1.5)

points(x[res$pivots, 1], x[res$pivots, 2],
pch=24, col=colors_centers,bg=colors_centers,
cex=1.5)

points(res$centers, col = colors_centers[1:k],
pch = 8, cex = 2)

## End(Not run)

piv_MCMC JAGS/Stan Sampling for Gaussian Mixture Models and Clustering via
Co-Association Matrix.
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Description

Perform MCMC JAGS sampling or HMC Stan sampling for Gaussian mixture models, post-process
the chains and apply a clustering technique to the MCMC sample. Pivotal units for each group are
selected among four alternative criteria.

Usage

piv_MCMC(
y,
k,
nMC,
priors,
piv.criterion = c("MUS", "maxsumint", "minsumnoint", "maxsumdiff"),
clustering = c("diana", "hclust"),
software = c("rjags", "rstan"),
burn = 0.5 * nMC,
chains = 4,
cores = 1,
sparsity = FALSE

)

Arguments

y N -dimensional vector for univariate data or N ×D matrix for multivariate data.

k Number of mixture components.

nMC Number of MCMC iterations for the JAGS/Stan function execution.

priors Input prior hyperparameters (see Details for default options).

piv.criterion The pivotal criterion used for identifying one pivot for each group. Possible
choices are: "MUS", "maxsumint", "minsumnoint","maxsumdiff". The de-
fault method is "maxsumint" (see the Details and the vignette).

clustering The algorithm adopted for partitioning the N observations into k groups. Pos-
sible choices are "diana" (default) or "hclust" for divisive and agglomerative
hierarchical clustering, respectively.

software The selected MCMC method to fit the model: "rjags" for the JAGS method,
"rstan" for the Stan method. Default is "rjags".

burn The burn-in period (only if method "rjags" is selected). Default is 0.5× nMC.

chains A positive integer specifying the number of Markov chains. The default is 4.

cores The number of cores to use when executing the Markov chains in parallel (only
if software="rstan"). Default is 1.

sparsity Allows for sparse finite mixtures, default is FALSE.

Details

The function fits univariate and multivariate Bayesian Gaussian mixture models of the form (here
for univariate only):

(Yi|Zi = j) ∼ N (µj , σj),
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where the Zi, i = 1, . . . , N , are i.i.d. random variables, j = 1, . . . , k, σj is the group variance,
Zi ∈ 1, . . . , k are the latent group allocation, and

P (Zi = j) = ηj .

The likelihood of the model is then

L(y;µ, η, σ) =

N∏
i=1

k∑
j=1

ηjN (µj , σj),

where (µ, σ) = (µ1, . . . , µk, σ1, . . . , σk) are the component-specific parameters and η = (η1, . . . , ηk)
the mixture weights. Let ν denote a permutation of 1, . . . , k, and let ν(µ) = (µν(1), . . . , µν(k)),
ν(σ) = (σν(1), . . . , σν(k)), ν(η) = (ην(1), . . . , ην(k)) be the corresponding permutations of µ, σ
and η. Denote by V the set of all the permutations of the indexes 1, . . . , k, the likelihood above is
invariant under any permutation ν ∈ V , that is

L(y;µ, η, σ) = L(y; ν(µ), ν(η), ν(σ)).

As a consequence, the model is unidentified with respect to an arbitrary permutation of the la-
bels. When Bayesian inference for the model is performed, if the prior distribution p0(µ, η, σ)
is invariant under a permutation of the indices, then so is the posterior. That is, if p0(µ, η, σ) =
p0(ν(µ), ν(η), σ), then

p(µ, η, σ|y) ∝ p0(µ, η, σ)L(y;µ, η, σ)

is multimodal with (at least) k! modes.

Depending on the selected software, the model parametrization changes in terms of the prior choices.
Precisely, the JAGS philosophy with the underlying Gibbs sampling is to use noninformative pri-
ors, and conjugate priors are preferred for computational speed. Conversely, Stan adopts weakly
informative priors, with no need to explicitly use the conjugacy. For univariate mixtures, when
software="rjags" the specification is the same as the function BMMmodel of the bayesmix pack-
age:

µj ∼ N (µ0, 1/B0inv)

σj ∼ invGamma(nu0Half, nu0S0Half)

η ∼ Dirichlet(1, . . . , 1)

S0 ∼ Gamma(g0Half, g0G0Half),

with default values: µ0 = 0, B0inv = 0.1, nu0Half = 10, S0 = 2, nu0S0Half = nu0Half ×
S0, g0Half = 5e− 17, g0G0Half = 5e− 33, in accordance with the default specification:

priors=list(kind = "independence", parameter = "priorsFish", hierarchical = "tau")

(see bayesmix for further details and choices).

When software="rstan", the prior specification is:

µj ∼ N (µ0, 1/B0inv)

σj ∼ Lognormal(µσ, τσ)

ηj ∼ Uniform(0, 1),
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with default values: µ0 = 0, B0inv = 0.1, µσ = 0, τσ = 2. The users may specify new hyperpa-
rameter values with the argument:

priors=list(mu_0=1, B0inv=0.2, mu_sigma=3, tau_sigma=5)

For multivariate mixtures, when software="rjags" the prior specification is the following:

µj ∼ ND(µ0, S2)

Σ−1 ∼Wishart(S3, D + 1)

η ∼ Dirichlet(α),

where α is a k-dimensional vector and S2 and S3 are positive definite matrices. By default, µ0 = 0,
α = (1, . . . , 1) and S2 and S3 are diagonal matrices, with diagonal elements equal to 1e+05. The
user may specify other values for the hyperparameters µ0, S2, S3 and α via priors argument in
such a way:

priors =list(mu_0 = c(1,1), S2 = ..., S3 = ..., alpha = ...)

with the constraint for S2 and S3 to be positive definite, and α a vector of dimension k with
nonnegative elements.

When software="rstan", the prior specification is:

µj ∼ ND(µ0, LD ∗ LT )

L ∼ LKJ(ε)

D∗j ∼ HalfCauchy(0, σd).

The covariance matrix is expressed in terms of the LDL decomposition as LD ∗ LT , a variant of
the classical Cholesky decomposition, where L is a D ×D lower unit triangular matrix and D∗ is
a D×D diagonal matrix. The Cholesky correlation factor L is assigned a LKJ prior with ε degrees
of freedom, which, combined with priors on the standard deviations of each component, induces a
prior on the covariance matrix; as ε → ∞ the magnitude of correlations between components de-
creases, whereas ε = 1 leads to a uniform prior distribution for L. By default, the hyperparameters
are µ0 = 0, σd = 2.5, ε = 1. The user may propose some different values with the argument:

priors=list(mu_0=c(1,2), sigma_d = 4, epsilon =2)

If software="rjags" the function performs JAGS sampling using the bayesmix package for uni-
variate Gaussian mixtures, and the runjags package for multivariate Gaussian mixtures. If software="rstan"
the function performs Hamiltonian Monte Carlo (HMC) sampling via the rstan package (see the
vignette and the Stan project for any help).

After MCMC sampling, this function clusters the units in k groups, calls the piv_sel() function
and yields the pivots obtained from one among four different methods (the user may specify one
among them via piv.criterion argument): "maxsumint", "minsumnoint", "maxsumdiff" and
"MUS" (available only if k <= 4) (see the vignette for thorough details). Due to computational rea-
sons clarified in the Details section of the function piv_rel, the length of the MCMC chains will
be minor or equal than the input argument nMC; this length, corresponding to the value true.iter
returned by the procedure, is the number of MCMC iterations for which the number of JAGS/Stan
groups exactly coincides with the prespecified number of groups k.
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Value

The function gives the MCMC output, the clustering solutions and the pivotal indexes. Here there
is a complete list of outputs.

true.iter The number of MCMC iterations for which the number of JAGS/Stan groups
exactly coincides with the prespecified number of groups k.

Mu An estimate of the groups’ means.

groupPost true.iter×N matrix with values from 1:k indicating the post-processed group
allocation vector.

mcmc_mean If y is a vector, a true.iter × k matrix with the post-processed MCMC chains
for the mean parameters; if y is a matrix, a true.iter × D × k array with the
post-processed MCMC chains for the mean parameters.

mcmc_sd If y is a vector, a true.iter×k matrix with the post-processed MCMC chains for
the sd parameters; if y is a matrix, a true.iter×D array with the post-processed
MCMC chains for the sd parameters.

mcmc_weight A true.iter × k matrix with the post-processed MCMC chains for the weights
parameters.

mcmc_mean_raw If y is a vector, a (nMC − burn) × k matrix with the raw MCMC chains for
the mean parameters as given by JAGS; if y is a matrix, a (nMC − burn) ×
D × k array with the raw MCMC chains for the mean parameters as given by
JAGS/Stan.

mcmc_sd_raw If y is a vector, a (nMC− burn)×k matrix with the raw MCMC chains for the
sd parameters as given by JAGS/Stan; if y is a matrix, a (nMC − burn) × D
array with the raw MCMC chains for the sd parameters as given by JAGS/Stan.

mcmc_weight_raw

A (nMC − burn) × k matrix with the raw MCMC chains for the weights pa-
rameters as given by JAGS/Stan.

C The N ×N co-association matrix constructed from the MCMC sample.

grr The vector of cluster membership returned by "diana" or "hclust".

pivots The vector of indices of pivotal units identified by the selected pivotal criterion.

model The JAGS/Stan model code. Apply the "cat" function for a nice visualization
of the code.

stanfit An object of S4 class stanfit for the fitted model (only if software="rstan").

Author(s)

Leonardo Egidi <legidi@units.it>

References

Egidi, L., Pappadà, R., Pauli, F. and Torelli, N. (2018). Relabelling in Bayesian Mixture Models by
Pivotal Units. Statistics and Computing, 28(4), 957-969.
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Examples

### Bivariate simulation

## Not run:
N <- 200
k <- 4
D <- 2
nMC <- 1000
M1 <- c(-.5,8)
M2 <- c(25.5,.1)
M3 <- c(49.5,8)
M4 <- c(63.0,.1)
Mu <- rbind(M1,M2,M3,M4)
Sigma.p1 <- diag(D)
Sigma.p2 <- 20*diag(D)
W <- c(0.2,0.8)
sim <- piv_sim(N = N, k = k, Mu = Mu,

Sigma.p1 = Sigma.p1,
Sigma.p2 = Sigma.p2, W = W)

## rjags (default)
res <- piv_MCMC(y = sim$y, k =k, nMC = nMC)

## rstan
res_stan <- piv_MCMC(y = sim$y, k =k, nMC = nMC,

software ="rstan")

# changing priors
res2 <- piv_MCMC(y = sim$y,

priors = list (
mu_0=c(1,1),
S2 = matrix(c(0.002,0,0, 0.1),2,2, byrow=TRUE),
S3 = matrix(c(0.1,0,0,0.1), 2,2, byrow =TRUE)),
k = k, nMC = nMC)

## End(Not run)

### Fishery data (bayesmix package)

## Not run:
library(bayesmix)
data(fish)
y <- fish[,1]
k <- 5
nMC <- 5000
res <- piv_MCMC(y = y, k = k, nMC = nMC)

# changing priors
res2 <- piv_MCMC(y = y,

priors = list(kind = "condconjugate",
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parameter = "priorsRaftery",
hierarchical = "tau"), k =k, nMC = nMC)

## End(Not run)

piv_plot Plotting outputs from pivotal relabelling

Description

Plot and visualize MCMC outputs and posterior relabelled chains/estimates.

Usage

piv_plot(
y,
mcmc,
rel_est,
par = c("mean", "sd", "weight", "all"),
type = c("chains", "hist")

)

Arguments

y Data vector or matrix.

mcmc The ouptut of the raw MCMC sampling, as provided by piv_MCMC.

rel_est Pivotal estimates as provided by piv_rel.

par The parameters for which estimates are displayed. Choose among: "mean",
"sd", "weight" and "all".

type Type of plots required. Choose among: "chains", "hist".

Author(s)

Leonardo Egidi <legidi@units.it>

Examples

# Fishery data
## Not run:
library(bayesmix)
data(fish)
y <- fish[,1]
N <- length(y)
k <- 5
nMC <- 5000
res <- piv_MCMC(y = y, k = k, nMC = nMC)
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rel <- piv_rel(mcmc=res, nMC = nMC)
piv_plot(y, res, rel, "chains")
piv_plot(y, res, rel, "estimates")
piv_plot(y, res, rel, "hist")

## End(Not run)

piv_rel Performing the pivotal relabelling step and computing the relabelled
posterior estimates

Description

This function allows to perform the pivotal relabelling procedure described in Egidi et al. (2018)
and to obtain the relabelled posterior estimates.

Usage

piv_rel(mcmc)

Arguments

mcmc The output of the MCMC sampling from piv_MCMC.

Details

Prototypical models in which the label switching problem arises are mixture models, as explained
in the Details section of the piv_MCMC function.

These models are unidentified with respect to an arbitrary permutation of the labels 1, ..., k. Re-
labelling means permuting the labels at each iteration of the Markov chain in such a way that the
relabelled chain can be used to draw inferences on component-specific parameters.

We assume here that a MCMC sample is obtained for the posterior distribution of a Gaussian mix-
ture model–for instance via piv_MCMC function–with a prior distribution which is labelling invariant.
Furthermore, suppose that we can find k units, one for each group, which are (pairwise) separated
with (posterior) probability one (that is, the posterior probability of any two of them being in the
same group is zero). It is then straightforward to use the k units, called pivots in what follows and
denoted by the indexes i1, . . . , ik, to identify the groups and to relabel the chains: for each MCMC
iteration h = 1, . . . ,H (H corresponds to the argument nMC) and group j = 1, . . . , k, set

[µj ]h = [µ[Zij
]h ]h;

[Zi]h = j for i : [Zi]h = [Zij ]h.

The applicability of this strategy is limited by the existence of the pivots, which is not guaranteed.
The existence of the pivots is a requirement of the method, meaning that its use is restricted to those
chains—or those parts of a chain—for which the pivots are present. First, although the model is
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based on a mixture of k components, each iteration of the chain may imply a different number of
non-empty groups. Let then [k]h ≤ k be the number of non-empty groups at iteration h,

[k]h = #{j : [Zi]h = j for some i},

where #A is the cardinality of the set A. Hence, the relabelling procedure outlined above can be
used only for the subset of the chain for which [k]h = k; let it be

Hk = {h : [k]h = k},

which correspond to the argument true.iter given by piv_MCMC. This means that the resulting
relabelled chain is not a sample (of size H) from the posterior distribution, but a sample (of size
#Hk) from the posterior distribution conditional on there being (exactly) k non-empty groups.
Even if k non-empty groups are available, however, there may not be k perfectly separated units.
Let us define

H∗k = {h ∈ Hk : ∃r, s s.t. [Zir ]h = [Zis ]h}

that is, the set of iterations where (at least) two pivots are in the same group. In order for the
pivot method to be applicable, we need to exclude iterations H∗k; that is, we can perform the pivot
relabelling onHk −H∗k, corresponding to the argument final_it.

Value

This function gives the relabelled posterior estimates–both mean and medians–obtained from the
Markov chains of the MCMC sampling.

final_it The final number of valid MCMC iterations, as explained in Details.

final_it_p The proportion of final valid MCMC iterations.

rel_mean The relabelled chains of the means: a final_it ×k matrix for univariate data,
or a final_it ×D × k array for multivariate data.

rel_sd The relabelled chains of the sd’s: a final_it ×k matrix for univariate data, or
a final_it ×D matrix for multivariate data.

rel_weight The relabelled chains of the weights: a final_it ×k matrix.

Author(s)

Leonardo Egidi <legidi@units.it>

References

Egidi, L., Pappadà, R., Pauli, F. and Torelli, N. (2018). Relabelling in Bayesian Mixture Models by
Pivotal Units. Statistics and Computing, 28(4), 957-969.

Examples

#Univariate simulation
## Not run:
N <- 250
nMC <- 2500
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k <- 3
p <- rep(1/k,k)
x <- 3
stdev <- cbind(rep(1,k), rep(20,k))
Mu <- seq(-trunc(k/2)*x,trunc(k/2)*x,length=k)
W <- c(0.2,0.8)
sim <- piv_sim(N = N, k = k, Mu = Mu,

stdev = stdev, W=W)
res <- piv_MCMC(y = sim$y, k =k, nMC = nMC)
rel <- piv_rel(mcmc=res)

## End(Not run)

#Bivariate simulation
## Not run:
N <- 200
k <- 3
D <- 2
nMC <- 5000
M1 <- c(-.5,8)
M2 <- c(25.5,.1)
M3 <- c(49.5,8)
Mu <- matrix(rbind(M1,M2,M3),c(k,2))
Sigma.p1 <- diag(D)
Sigma.p2 <- 20*diag(D)
W <- c(0.2,0.8)
sim <- piv_sim(N = N, k = k, Mu = Mu,

Sigma.p1 = Sigma.p1,
Sigma.p2 = Sigma.p2, W = W)

res <- piv_MCMC(y = sim$y, k = k, nMC = nMC)
rel <- piv_rel(mcmc = res)
piv_plot(y=sim$y, mcmc=res, rel_est = rel, type="chains")
piv_plot(y=sim$y, mcmc=res, rel_est = rel,

type="hist")

## End(Not run)

piv_sel Pivotal Selection via Co-Association Matrix

Description

Finding pivotal units from a data partition and a co-association matrix C according to three different
methods.

Usage

piv_sel(C, clusters)
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Arguments

C AN×N co-association matrix, i.e. a matrix whose elements are co-occurrences
of pair of units in the same cluster among H distinct partitions.

clusters A vector of integers from 1 : k indicating a partition of the N units into, say, k
groups.

Details

Given a set of N observations (y1, y2, ..., yN ) (yi may be a d-dimensional vector, d ≥ 1), consider
clustering methods to obtain H distinct partitions into k groups. The matrix C is the co-association
matrix, where ci,p = ni,p/H , with ni,p the number of times the pair (yi, yp) is assigned to the same
cluster among the H partitions.

Let j be the group containing units Jj , the user may choose i∗ ∈ Jj that maximizes one of the
quantities: ∑

p∈Jj

ci∗p

or ∑
p∈Jj

ci∗p −
∑
j 6∈Jj

ci∗p.

These methods give the unit that maximizes the global within similarity ("maxsumint") and the
unit that maximizes the difference between global within and between similarities ("maxsumdiff"),
respectively. Alternatively, we may choose i∗ ∈ Jj , which minimizes:∑

p 6∈Jj

ci∗p,

obtaining the most distant unit among the members that minimize the global dissimilarity between
one group and all the others ("minsumnoint"). See the vignette for further details.

Value

pivots A matrix with k rows and three columns containing the indexes of the pivotal
units for each method.

Author(s)

Leonardo Egidi <legidi@units.it>

References

Egidi, L., Pappadà, R., Pauli, F. and Torelli, N. (2018). Relabelling in Bayesian Mixture Models by
Pivotal Units. Statistics and Computing, 28(4), 957-969.
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Examples

# Iris data

data(iris)
# select the columns of variables
x<- iris[,1:4]
N <- nrow(x)
H <- 1000
a <- matrix(NA, H, N)

# Perform H k-means partitions

for (h in 1:H){
a[h,] <- kmeans(x, centers = 3)$cluster

}
# Build the co-association matrix

C <- matrix(NA, N,N)
for (i in 1:(N-1)){
for (j in (i+1):N){
C[i,j] <- sum(a[,i]==a[,j])/H
C[j,i] <- C[i,j]

}}

km <- kmeans(x, centers =3)

# Apply three pivotal criteria to the co-association matrix

ris <- piv_sel(C, clusters = km$cluster)

graphics::plot(iris[,1], iris[,2], xlab ="Sepal.Length", ylab= "Sepal.Width",
col = km$cluster)

# Add the pivots chosen by the maxsumdiff criterion

points( x[ris$pivots[,3], 1:2], col = 1:3,
cex =2, pch = 8 )

piv_sim Generate Data from a Gaussian Nested Mixture

Description

Simulate N observations from a nested Gaussian mixture model with k pre-specified components
under uniform group probabilities 1/k, where each group is in turn drawn from a further level
consisting of two subgroups.
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Usage

piv_sim(
N,
k,
Mu,
stdev,
Sigma.p1 = diag(2),
Sigma.p2 = 100 * diag(2),
W = c(0.5, 0.5)

)

Arguments

N The desired sample size.

k The desired number of mixture components.

Mu The input mean vector of length k for univariate Gaussian mixtures; the input
k ×D matrix with the means’ coordinates for multivariate Gaussian mixtures.

stdev For univariate mixtures, the k × 2 matrix of input standard deviations, where
the first column contains the parameters for subgroup 1, and the second column
contains the parameters for subgroup 2.

Sigma.p1 The D ×D covariance matrix for the first subgroup. For multivariate mixtures
only.

Sigma.p2 TheD×D covariance matrix for the second subgroup. For multivariate mixtures
only.

W The vector for the mixture weights of the two subgroups.

Details

The functions allows to simulate values from a double (nested) univariate Gaussian mixture:

(Yi|Zi = j) ∼
2∑
s=1

pjsN (µj , σ
2
js),

or from a multivariate nested Gaussian mixture:

(Yi|Zi = j) ∼
2∑
s=1

pjsND(µj ,Σs),

where σ2
js is the variance for the group j and the subgroup s (stdev is the argument for specifying

the k x 2 standard deviations for univariate mixtures); Σs is the covariance matrix for the subgroup
s, s = 1, 2, where the two matrices are specified by Sigma.p1 and Sigma.p2 respectively; µj and
µj , j = 1, . . . , k are the mean input vector and matrix respectively, specified by the argument Mu;
W is a vector of dimension 2 for the subgroups weights.
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Value

y The N simulated observations.

true.group A vector of integers from 1 : k indicating the values of the latent variables Zi.

subgroups A k×N matrix where each row contains the index subgroup for the observations
in the k-th group.

Examples

# Bivariate mixture simulation with three components

N <- 2000
k <- 3
D <- 2
M1 <- c(-45,8)
M2 <- c(45,.1)
M3 <- c(100,8)
Mu <- rbind(M1,M2,M3)
Sigma.p1 <- diag(D)
Sigma.p2 <- 20*diag(D)
W <- c(0.2,0.8)
sim <- piv_sim(N = N, k = k, Mu = Mu, Sigma.p1 = Sigma.p1,
Sigma.p2 = Sigma.p2, W = W)
graphics::plot(sim$y, xlab="y[,1]", ylab="y[,2]")
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