
Package ‘hdMTD’
April 24, 2025

Type Package

Title Inference for High-Dimensional Mixture Transition Distribution
Models

Version 0.1.0

Description Estimates parameters in Mixture Transition Distribution (MTD) models, a class of high-
order Markov chains. The set of relevant pasts (lags) is selected using either the Bayesian Infor-
mation Criterion or the Forward Stepwise and Cut algorithms. Other model parameters (e.g. tran-
sition probabilities and oscillations) can be estimated via maximum likelihood estima-
tion or the Expectation-Maximization algorithm. Additionally, 'hdMTD' includes a perfect sam-
pling algorithm that generates samples of an MTD model from its invariant distribution. For the-
ory, see Ost & Takahashi (2023) <http://jmlr.org/papers/v24/22-0266.html>.

URL https://github.com/MaiaraGripp/hdMTD

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

Depends R (>= 4.1.0)

Imports methods, dplyr, purrr

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

NeedsCompilation no

Author Maiara Gripp [aut, cre],
Guilherme Ost [ths],
Giulio Iacobelli [ths]

Maintainer Maiara Gripp <maiara@dme.ufrj.br>

Repository CRAN

Date/Publication 2025-04-24 07:20:02 UTC

1

http://jmlr.org/papers/v24/22-0266.html
https://github.com/MaiaraGripp/hdMTD

2 checkSample

Contents

checkSample . 2
countsTab . 3
dTV_sample . 4
freqTab . 5
hdMTD . 6
hdMTD_BIC . 7
hdMTD_CUT . 10
hdMTD_FS . 11
hdMTD_FSC . 12
MTDest . 14
MTDmodel . 16
oscillation . 17
perfectSample . 18
probs . 19
raindata . 20
sleepscoring . 21
tempdata . 22
testChains . 23

Index 24

checkSample Checks a sample

Description

Checks if a sample is a suitable argument for some functions within the package.

Usage

checkSample(X)

Arguments

X A vector, a single-column data frame, a list, or a matrix with a single row or a
single column. Must be composed by nonnegative integers.

Value

Returns the sample as a vector or identifies any possible sample problems.

countsTab 3

countsTab Counts sequences of length d+1 in a sample

Description

Creates a tibble containing all unique sequences of length d+1 found in the sample, along with their
absolute frequencies.

Usage

countsTab(X, d)

Arguments

X A numeric vector, a single-column data frame, or a list with a sample from a
Markov chain. The first element must be the most recent observation.

d A positive integer specifying the number of elements in each sequence, which
will be d+1. Typically, d represents the chain order or serves as an upper limit
for it.

Details

The function generates a tibble with d+2 columns. In the first d+1 columns, each row displays a
unique sequence of size d+1 observed in the sample. The last column, called Nxa, contains the
number of times each of these sequences appeared in the sample.

The number of rows in the output varies between 1 and |A|d+1, where |A| is the number of unique
states in X, since it depends on the number of unique sequences that appear in the sample.

Value

A tibble with all observed sequences of length d+1 and their absolute frequencies.

Examples

countsTab(c(1,2,2,1,2,1,1,2,1,2), 3)

Using test data.
countsTab(testChains[, 1], 2)

4 dTV_sample

dTV_sample The total variation distance between distributions

Description

Calculates the total variation distance between distributions conditioned in a given past sequence.

Usage

dTV_sample(S, j, A = NULL, base, lenA = NULL, A_pairs = NULL, x_S)

Arguments

S A numeric vector of positive integers (or NULL) representing a set of past lags.
The distributions from which this function will calculate the total variation dis-
tance are conditioned on a fixed sequence indexed by S (the user must also input
the sequence through the argument x_S).

j A positive integer representing a lag in the complement of S. The symbols
indexed by j vary along the state space A, altering the distribution through this
single lag, and the size of this change is what this function seeks to measure.

A A vector of unique positive integers (state space) with at least two elements. A
represents the state space. You may leave A=NULL (default) if you provide the
function with the arguments lenA and A_pairs (see Details below).

base A data frame with sequences of elements from A and their transition probabil-
ities. base is meant to be an output from function freqTab(), and must be
structured as such. The data frame must contain all required transitions condi-
tioned on x_S (i.e. length(A)^2 rows with sequence x_S). See Details section
for further information.

lenA An integer >= 2, representing length(A). Required if A is not provided.

A_pairs A two-column matrix with all unique pairs of elements from A. Required if A is
not provided.

x_S A vector of length length(S) or NULL. If S==NULL, x_S will be set to NULL. x_S
represents a sequence of symbols from A indexed by S. This sequence remains
constant across the conditional distributions to be compared, representing the
fixed configuration of the past.

Details

This function computes the total variation distance between distributions found in base, which
is expected to be the output of the function freqTab(). Therefore, base must follow a specific
structure (e.g., column names must match, and a column named qax_Sj, containing transition dis-
tributions, must be present). For more details on the output structure of freqTab(), refer to its
documentation..

If you provide the state space A, the function calculates: lenA <- length(A) and A_pairs <-
t(utils::combn(A, 2)). Alternatively, you can input lenA and A_pairs directly and let A <-
NULL, which is useful in loops to improve efficiency.

freqTab 5

Value

Returns a vector of total variation distances, where each entry corresponds to the distance between a
pair of distributions conditioned on the same fixed past x_S, differing only in the symbol indexed by
j, which varies across all distinct pairs of elements in A.The output has length equal to the number
of unique pairs in A_pairs.

Examples

#creating base argument through freqTab function.
pbase <- freqTab(S=c(1,4),j=2,A=c(1,2,3),countsTab = countsTab(testChains[,2],d=5))
dTV_sample(S=c(1,2),j=4,A=c(1,2,3),base=pbase,x_S=c(2,3))
pbase <- freqTab(S=NULL,j=1,A=c(1,2,3),countsTab = countsTab(testChains[,2],d=5))
dTV_sample(S=NULL,j=1,A=c(1,2,3),base=pbase)

freqTab A tibble containing sample sequence frequencies and estimated prob-
abilities

Description

This function returns a tibble containing the sample sequences, their frequencies and the estimated
transition probabilities.

Usage

freqTab(S, j = NULL, A, countsTab, complete = TRUE)

Arguments

S A numeric vector of positive integers or NULL. Represents a set of past lags that
must be present within the columns of the countsTab argument and are to be
considered while estimating the transition probabilities. Both S and j cannot be
NULL at the same time.

j An integer or NULL. Typically represents a lag j in the complement of S. Both
S and j cannot be NULL at the same time. Both S and j cannot be NULL at the
same time. See Details for further information.

A A vector with nonnegative integers. Must have at least two different entries. A
represents the state space.

countsTab A tibble or a data frame with all sequences of length d+1 that appear in the sam-
ple, and their absolute frequency. This tibble is typically generated by the func-
tion countsTab(). If using a custom data frame not generated by countsTab(),
make sure its format and column names match the expected structure; otherwise,
errors may occur in freqTab().

complete Logical. If TRUE all sequences that did not appear in the sample will be included
in the output with frequency equal to 0 .

6 hdMTD

Details

The parameters S and j determine which columns of countsTab are retained in the output. Spec-
ifying a lag j is optional. All lags can be specified via S, while leaving j = NULL (default). The
output remains the same as when specifying S and j separately. The inclusion of j as a parameter
improves clarity within the package’s algorithms. Note that j cannot be an element of S.

Value

A tibble where each row represents a sequence of elements from A. The initial columns display
each sequence symbol separated into columns corresponding to their time indexes. The remain-
ing columns show the sample frequencies of the sequences and the MLE (Maximum Likelihood
Estimator) of the transition probabilities.

Examples

freqTab(S=c(1,4),j=2,A=c(1,2,3),countsTab = countsTab(testChains[,2],d=5))
#Equivalent to freqTab(S=c(1,2,4),j=NULL,A=c(1,2,3),countsTab = countsTab(testChains[,2],d=5))

hdMTD Inference in MTD models

Description

This function estimates the relevant lag set in a Mixture Transition Distribution (MTD) model using
one of the available methods. By default, it applies the Forward Stepwise ("FS") method, which is
particularly useful in high-dimensional settings. The available methods are:

• "FS" (Forward Stepwise): selects the lags by a criteria that depends on their oscillations.

• "CUT": a method that selects the relevant lag set based on a predefined threshold.

• "FSC" (Forward Stepwise and Cut): applies the "FS" method followed by the "CUT" method.

• "BIC": selects the lag set using the Bayesian Information Criterion.

Usage

hdMTD(X, d, method = "FS", ...)

Arguments

X A vector or single-column data frame containing a chain sample.

d A positive integer representing an upper bound for the chain order.

method A character string indicating the method for estimating the relevant lag set. The
available methods are: "FS" (default), "FSC", "CUT", and "BIC". See the De-
tails section and the documentation of the corresponding method functions for
more information.

... Additional arguments for the selected method. If not specified, default values
will be used (see Details).

hdMTD_BIC 7

Details

The function dynamically calls the corresponding method function (e.g., hdMTD_FSC() for method
= "FSC"). Additional parameters specific to each method can be provided via ..., and default
values are used for unspecified parameters.

#’ This function serves as a wrapper for the method-specific functions:

• hdMTD_FS(), for method = "FS"

• hdMTD_FSC(), for method = "FSC"

• hdMTD_CUT(), for method = "CUT"

• hdMTD_BIC(), for method = "BIC"

Any additional parameters (...) must match those accepted by the corresponding method function.
If a parameter value is not explicitly provided, a default value is used. The main default parameters
are:

• S = seq_len(d): Used in "BIC" or "CUT" methods.

• l = d. Required in "FS" or "FSC" methods.

• alpha = 0.05, mu = 1. Used in "CUT" or "FSC" methods.

• xi = 0.5. Used in "CUT", "FSC" or "BIC" methods.

• minl = 1, maxl = length(S), byl = FALSE. Used in "BIC" method. All default values are
specified in the documentation of the method-specific functions.

Value

A vector containing the estimated relevant lag set.

Examples

X <- testChains[,1]
hdMTD(X = X, d = 5, method = "FS", l = 2)
hdMTD(X = X, d = 5, method = "BIC", xi = 1, minl = 3, maxl = 3)

hdMTD_BIC The Bayesian Information Criterion (BIC) method for inference in
MTD models

Description

A function for estimating the relevant lag set Λ of a Markov chain using Bayesian Information
Criterion (BIC). This means that this method selects the set of lags that minimizes a penalized log
likelihood for a given sample, see References below for details on the method.

8 hdMTD_BIC

Usage

hdMTD_BIC(
X,
d,
S = seq_len(d),
minl = 1,
maxl = length(S),
xi = 1/2,
A = NULL,
byl = FALSE,
BICvalue = FALSE,
single_matrix = FALSE,
indep_part = TRUE,
zeta = maxl,
warning = FALSE,
...

)

Arguments

X A vector or single-column data frame containing a chain sample (X[1] is the
most recent).

d A positive integer representing an upper bound for the chain order.

S A numeric vector of positive integers from which this function will select a set
of relevant lags. Typically, S is a subset of 1:d. If S is not provided, by default
S=1:d.

minl A positive integer. minl represents the smallest length of any relevant lag set this
function might return. If minl == maxl, this function will return the subset of S
of length minl with the lowest BIC. If minl < maxl, the function will consider
subsets ranging from length minl to length maxl when searching for the subset
of S with the smallest BIC.

maxl A positive integer equal to or greater than minl but less than the number of
elements in S (maxl = length(S) is accepted but in this case the output will al-
ways be S). maxl represents the largest length of any relevant lag set this function
might return.

xi The BIC penalization term constant. Defaulted to 1/2. A smaller xi (near 0)
reduces the impact of overparameterization.

A A vector with positive integers representing the state space. If not informed, this
function will set A=sort(unique(X)).

byl Logical. If TRUE, the function will look for the set with smallest BIC by each
length (from minl to maxl), and return the set with smallest BIC for each length.
If minl==maxl setting byl=TRUE or FALSE makes no difference, since the func-
tion will only calculate the BIC for sets with maxl elements in the relevant lag
set.

BICvalue Logical. If TRUE, the function will also return the calculated values of the BIC
for the estimated relevant lag sets.

hdMTD_BIC 9

single_matrix Logical. If TRUE, the chain sample is thought to come from an MTD model
where the stochastic matrices pj are constant across all lags j ∈ Λ. In practice,
this means the user believes the stochastic matrices for every lag in S are the
same, which reduces the number of parameters in the penalization term.

indep_part Logical. If FALSE there is no independent distribution and λ0 = 0 which reduces
the number of parameters in the penalization term.

zeta A positive integer representing the number of distinct matrices pj in the MTD,
which affects the number of parameters in the penalization term. Defaulted to
maxl. See more in Details.

warning Logical. If TRUE, the function warns the user when A is set automatically.

... Additional arguments (not used in this function, but maintained for compatibility
with hdMTD().

Details

Note that the upper bound for the order of the chain (d) affects the estimation of the transition
probabilities. If we run the function with a certain order parameter d, only the sequences of length
d that appeared in the sample will be counted. Therefore, all transition probabilities, and hence
all BIC values, will be calculated with respect to that d. If we use another value for d to run the
function, even if the output agrees with that of the previous run, its BIC value might change a little.

The parameter zeta indicates the the number of distinct matrices pj in the MTD. If zeta = 1, all
matrices pj are identical; if zeta = 2 there exists two groups of distinct matrices and so on. The
largest value for zeta is maxl since this is the largest number of matrices pj . When minl<maxl, for
each minl ≤ l ≤ maxl, zeta = min(zeta,l). If single_matrix = TRUE then zeta is set to 1.

Value

Returns a vector with the estimated relevant lag set using BIC. It might return more than one set
if minl < maxl and byl = TRUE. Additionally, it can return the value of the penalized likelihood for
the outputted lag sets if BICvalue = TRUE.

References

Imre Csiszár, Paul C. Shields. The consistency of the BIC Markov order estimator. The Annals of
Statistics, 28(6), 1601-1619. doi:10.1214/aos/1015957472

Examples

X <- testChains[, 1]
hdMTD_BIC (X, d = 6, minl = 1, maxl = 1)
hdMTD_BIC (X,d = 3,minl = 1, maxl = 2, BICvalue = TRUE)

https://doi.org/10.1214/aos/1015957472

10 hdMTD_CUT

hdMTD_CUT The CUT method for inference in MTD models

Description

A function that estimates the set of relevant lags of an MTD model using the CUT method.

Usage

hdMTD_CUT(
X,
d,
S = 1:d,
alpha = 0.05,
mu = 1,
xi = 0.5,
A = NULL,
warning = FALSE,
...

)

Arguments

X A vector or single-column data frame containing a chain sample (X[1] is the
most recent).

d A positive integer representing an upper bound for the chain order.

S A numeric vector of distinct positive integers from which this function will se-
lect a set of relevant lags. Should be a subset of 1:d. Default is 1:d.

alpha A positive real number used in the CUT threshold (which determines if two dis-
tributions can be considered different). The larger the alpha, the greater the
distance required to consider that there is a difference between a set of distribu-
tions.

mu A positive real number such that mu > (emu − 1)/2. mu is also a component of
the same threshold as alpha.

xi A positive real number, xi is also a component of the same threshold as alpha.

A A vector with positive integers representing the state space. If not informed, this
function will set A <- sort(unique(X)).

warning Logical. If TRUE, the function warns the user when A is set automatically.

... Additional arguments (not used in this function, but maintained for compatibility
with hdMTD().

hdMTD_FS 11

Details

The "Forward Stepwise and Cut" (FSC) is an algorithm for inference in Mixture Transition Distri-
bution (MTD) models. It consists in the application of the "Forward Stepwise" (FS) step followed
by the CUT algorithm. This method and its steps where developed by Ost and Takahashi and are
specially useful for inference in high-order MTD Markov chains. This specific function will only
apply the CUT step of the algorithm and return an estimated relevant lag set.

Value

Returns a set of relevant lags estimated using the CUT algorithm.

References

Ost, G. & Takahashi, D. Y. (2023). Sparse Markov models for high-dimensional inference. Journal
of Machine Learning Research, 24(279), 1-54. http://jmlr.org/papers/v24/22-0266.html

Examples

X <- testChains[,3]
hdMTD_CUT(X,4,alpha=0.02,mu=1,xi=0.4)
hdMTD_CUT(X,d=6,S=c(1,4,6),alpha=0.0065)

hdMTD_FS The Forward Stepwise (FS) method for inference in MTD models

Description

A function that estimates the set of relevant lags of an MTD model using the FS method.

Usage

hdMTD_FS(X, d, l, A = NULL, elbowTest = FALSE, warning = FALSE, ...)

Arguments

X A vector or single-column data frame containing a chain sample (X[1] is the
most recent).

d A positive integer representing an upper bound for the chain order.

l A positive integer specifying the number of lags to be selected as relevant.

A A vector with positive integers representing the state space. If not informed, this
function will set A <- sort(unique(X)).

elbowTest Logical. If TRUE, the function applies an alternative stopping criterion to deter-
mine the length of the set of relevant lags. See Details for more information.

warning Logical. If TRUE, the function warns the user when A is set automatically.

... Additional arguments (not used in this function, but maintained for compatibility
with hdMTD().

http://jmlr.org/papers/v24/22-0266.html
http://jmlr.org/papers/v24/22-0266.html

12 hdMTD_FSC

Details

The "Forward Stepwise" (FS) algorithm is the first step of the "Forward Stepwise and Cut" (FSC)
algorithm for inference in Mixture Transition Distribution (MTD) models. This method was devel-
oped by Ost and Takahashi This specific function will only apply the FS step of the algorithm and
return an estimated relevant lag set of length l.

This method iteratively selects the most relevant lags based on a certain quantity ν. In the first
step, the lag in 1:d with the greatest ν is deemed important. This lag is included in the output,
and using this knowledge, the function proceeds to seek the next important lag (the one with the
highest ν among the remaining ones). The process stops when the output vector reaches length l if
elbowTest=FALSE.

If elbowTest = TRUE, the function will store these maximum ν values at each iteration, and output
only the lags that appear before the one with smallest ν among them.

Value

A numeric vector containing the estimated relevant lag set using FS algorithm.

References

Ost, G. & Takahashi, D. Y. (2023). Sparse Markov models for high-dimensional inference. Journal
of Machine Learning Research, 24(279), 1-54. http://jmlr.org/papers/v24/22-0266.html

Examples

X <- testChains[,1]
hdMTD_FS(X,d=5,l=2)
hdMTD_FS(X,d=4,l=3,elbowTest = TRUE)

hdMTD_FSC Forward Stepwise and Cut method for inference in MTD models

Description

A function for inference in MTD Markov chains with FSC method. This function estimates the
relevant lag set Λ of an MTD model through the FSC algorithm.

Usage

hdMTD_FSC(X, d, l, alpha = 0.05, mu = 1, xi = 0.5, A = NULL, ...)

http://jmlr.org/papers/v24/22-0266.html
http://jmlr.org/papers/v24/22-0266.html

hdMTD_FSC 13

Arguments

X A vector or single-column data frame containing a chain sample (X[1] is the
most recent).

d A positive integer representing an upper bound for the chain order.

l A positive integer that sets the number of elements in the output vector.

alpha A positive real number used in the CUT threshold (which determines if two dis-
tributions can be considered different). The larger the alpha, the greater the
distance required to consider that there is a difference between a set of distribu-
tions. Defaulted to 0.05.

mu A positive real number such that mu > (emu − 1)/2. mu is also a component of
the same threshold as alpha.

xi A positive real number, xi is also a component of the same threshold as alpha.

A A vector with positive integers representing the state space. If not informed, this
function will set A <- sort(unique(X)).

... Additional arguments (not used in this function, but maintained for compatibility
with hdMTD().

Details

The "Forward Stepwise and Cut" (FSC) is an algorithm for inference in Mixture Transition Distri-
bution (MTD) models. It consists in the application of the "Forward Stepwise" (FS) step followed
by the CUT algorithm. This method and its steps where developed by Ost and Takahashi and are
specially useful for inference in high-order MTD Markov chains.

Value

Returns a vector with the estimated relevant lag set using FSC algorithm.

References

Ost, G. & Takahashi, D. Y. (2023). Sparse Markov models for high-dimensional inference. Journal
of Machine Learning Research, 24(279), 1-54. http://jmlr.org/papers/v24/22-0266.html

Examples

X <- testChains[,1]
hdMTD_FSC(X,4,3,alpha=0.02)
hdMTD_FSC(X,4,2,alpha=0.001)

http://jmlr.org/papers/v24/22-0266.html
http://jmlr.org/papers/v24/22-0266.html

14 MTDest

MTDest EM estimation of MTD parameters

Description

Estimation of MTD parameters through the Expectation Maximization (EM) algorithm.

Usage

MTDest(
X,
S,
M = 0.01,
init,
iter = FALSE,
nIter = 100,
A = NULL,
oscillations = FALSE

)

Arguments

X A vector or single-column data frame containing an MTD chain sample (X[1]
is the most recent).

S A numeric vector of positive integers. Typically, S represents a set of relevant
lags.

M A stopping point for the EM algorithm. If M=NULL the algorithm will run for a
total of nIter iteractions.

init A list with initial parameters: p0 (optional), lambdas (required), pj (required).
The entries in lambdas are weights for the distribution p0 and the distributions
present in the list pj. Therefore, the order in which the elements appear in the
vector lambdas is important for correct assignment. Please refer to the Details
section for more information.

iter Logical. If TRUE, returns the number of iterations of the algorithm, that is, the
number of times the initial parameters were updated.

nIter An integer positive number with the maximum number of iterations.

A A vector with positive integers representing the state space. If not informed, this
function will set A=unique(X).

oscillations Logical. If TRUE, the function will return the estimated oscillations for the up-
dated model along with the estimated parameters.

MTDest 15

Details

Regarding the M parameter: it functions as a stopping criterion within the EM algorithm. When
the difference between the log-likelihood computed with the newly estimated parameters and that
computed with the previous parameters falls below M, the algorithm halts. Nevertheless, if the
value of nIter (which represents the maximum number of iterations) is smaller than the number of
iterations required to meet the M criterion, the algorithm will conclude its execution when nIter is
reached. To ensure that the M criterion is effectively utilized, we recommend using a higher value
for nIter, which is set to a default of 100.

Concerning the init parameter, it is expected to be a list comprising either 2 or 3 entries. These
entries consist of: an optional vector named p0, representing an independent distribution (the prob-
ability in the first entry of p0 must be that of the smallest element in A and so on), a required list of
matrices pj, containing a stochastic matrix for each element of S (the first matrix must refer to the
smallest element of S and so on), and a vector named lambdas representing the weights, the first
entry must be the weight for p0, and then one entry for each element in pj list. If your MTD model
does not have an independent distribution p0, set init$lambda[1]=0.

Value

A list with the estimated parameters of the MTD model.

References

Lebre, Sophie and Bourguignon, Pierre-Yves. (2008). An EM algorithm for estimation in the
Mixture Transition Distribution model. Journal of Statistical Computation and Simulation, 78(1),
1-15. doi:10.1080/00949650701266666

Examples

Simulating data.
Model:
MTD <- MTDmodel(Lambda=c(1,10),A=c(0,1),lam0=0.01)
Sampling a chain:
X <- hdMTD::perfectSample(MTD,N=2000)

Initial Parameters:
init <- list('p0'=c(0.4,0.6),'lambdas'=c(0.05,0.45,0.5),

'pj'=list(matrix(c(0.2,0.8,0.45,0.55),byrow = TRUE,ncol=2),
matrix(c(0.25,0.75,0.3,0.7),byrow = TRUE,ncol=2)))

MTDest() ------------------------------------
MTDest(X,S=c(1,10),M=1,init)
MTDest(X,S=c(1,10),init=init,iter = TRUE)
MTDest(X,S=c(1,10),init=init,iter = TRUE,nIter=5)
MTDest(X,S=c(1,10),init=init,oscillations = TRUE)

https://doi.org/10.1080/00949650701266666

16 MTDmodel

MTDmodel Creates a Mixture Transition Distribution (MTD) Model

Description

Generates an MTD model as an object of class MTD given a set of parameters.

Usage

MTDmodel(
Lambda,
A,
lam0 = NULL,
lamj = NULL,
pj = NULL,
p0 = NULL,
single_matrix = FALSE,
indep_part = TRUE

)

Arguments

Lambda A numeric vector of positive integers representing the relevant lag set. The ele-
ments will be sorted from smallest to greatest. The smallest number represents
the latest (most recent) time in the past, and the largest number represents the
earliest time in the past.

A A vector with nonnegative integers representing the state space.

lam0 A numeric value in [0,1), representing the weight of the independent distribu-
tion.

lamj A numeric vector of weights for the transition probability matrices in pj. Values
must be in the range [0, 1), and their sum with lam0 must be equal to 1. The
first element in lamj must be the weight for the first element in Lambda and so
on.

pj A list with length(Lambda) stochastic matrices, each of size length(A) x length(A).
The first matrix in pj must refer to the first element in Lambda and so on.

p0 A probability vector for the independent component of the MTD model. If NULL
and indep_part=TRUE, the distribution will be sampled from a uniform distri-
bution. If indep_part=FALSE, then there is no independent distribution and p0
entries will be set to zero. If you enter p0=0, indep_part is set to FALSE.

single_matrix Logical. If TRUE, all matrices in list pj are identical.

indep_part Logical. If FALSE, the model does not include an independent distribution and
p0 is set to zero.

oscillation 17

Details

The resulting MTD object can be used by functions such as oscillation(), which retrieves the
model’s oscillation, and perfectSample(), which will sample an MTD Markov chain from its
invariant distribution.

Value

A list of class MTD containing:

P The transition probability matrix of the MTD model.

lambdas A vector with MTD weights (lam0 and lamj).

pj A list of stochastic matrices defining conditional transition probabilities.

p0 The independent probability distribution.

Lambda The vector of relevant lags.

A The state space.

Examples

MTDmodel(Lambda=c(1,3),A=c(4,8,12))

MTDmodel(Lambda=c(2,4,9),A=c(0,1),lam0=0.05,lamj=c(0.35,0.2,0.4),
pj=list(matrix(c(0.5,0.7,0.5,0.3),ncol=2)),p0=c(0.2,0.8),single_matrix=TRUE)

MTDmodel(Lambda=c(2,4,9),A=c(0,1),lam0=0.05,
pj=list(matrix(c(0.5,0.7,0.5,0.3),ncol=2)),single_matrix=TRUE,indep_part=FALSE)

oscillation Oscillations of an MTD Markov chain

Description

Calculates the oscillations of an MTD model object or estimates the oscillations of a chain sample.

Usage

oscillation(x, ...)

Arguments

x Must be an MTD object or a chain sample.

... Additional parameters that might be required. Such as:
S: If x is a chain sample the user should provide a set of lags for which he
wishes to estimate the oscillations. It must be labeled as S, an in this scenario
the function takes an upper bound for the order as d=max{S}.
A: If x is a chain sample, and there may be elements in A that did not appear in
x, the state space should be specified, and it must be labeled as A.

18 perfectSample

Details

The oscillation for a certain lag j of an MTD model ({δj : j ∈ Λ}), is the product of the weight λj

multiplied by the maximum of the total variation distance between the distributions in a stochastic
matrix pj .

δj = λj max
b,c∈A

dTV (pj(·|b), pj(·|c)).

So, if x is an MTD object, the parameters Λ, A, λj , and pj are inputted through, respectively, the
entries Lambda, A, lambdas and the list pj of stochastic matrices. Hence, an oscillation δj may be
calculated for all j ∈ Λ.

If we wish to estimate the oscillations from a sample, then x must be a chain, and S, a vector
representing a set of lags, must be informed. This way the transition probabilities can be estimated.
Let p̂(·|xS) symbolize an estimated distribution in A given a certain past xS (which is a sequence
of elements of A where each element occurred at a lag in S), and p̂(·|bjxS) an estimated distribution
given past xS and that the symbol b ∈ A occurred at lag j. If N is the sample size, d =max(S) and
N(xS) is the number of times the sequence xS appeared in the sample, then

δj = max
cj ,bj∈A

1

N − d

∑
xS∈AS

N(xS)dTV (p̂(.|bjxS), p̂(.|cjxS))

is the estimated oscillation for a lag j ∈ {1, . . . , d}\S. Note that AS is the space of sequences of A
indexed by S.

Value

If the x parameter is an MTD object, it will provide the oscillations for each element in Lambda. In
case x is a chain sample, it estimates the oscillations for a user-inputted set S of lags.

Examples

oscillation(MTDmodel(Lambda=c(1,4),A=c(2,3)))
oscillation(MTDmodel(Lambda=c(1,4),A=c(2,3),lam0=0.01,lamj=c(0.49,0.5),
pj=list(matrix(c(0.1,0.9,0.9,0.1),ncol=2)), single_matrix=TRUE))

perfectSample Perfectly samples an MTD Markov chain

Description

Samples an MTD Markov Chain from the stationary distribution.

Usage

perfectSample(MTD, N = NULL)

probs 19

Arguments

MTD An MTD object, see MTDmodel() for properly generating a MTD object.

N The sample size. If NULL sample size will be set to 1000.

Details

This perfect sample algorithm requires that the MTD model has an independent distribution (p0)
with a positive weight (i.e., MTD$lambdas["lam0"]>0 which means λ0 > 0).

Value

Returns a sample from an MTD model (the first element is the most recent).

Examples

perfectSample(MTDmodel(Lambda=c(1,4), A = c(0,2)), N = 200)
perfectSample(MTDmodel(Lambda=c(2,5), A = c(1,2,3)), N = 1000)

probs Estimated transition probabilities

Description

Computes the Maximum Likelihood estimators (MLE) for an MTD Markov chain with relevant lag
set S.

Usage

probs(X, S, matrixform = FALSE, A = NULL, warning = FALSE)

Arguments

X A vector or single-column data frame containing a sample of a Markov chain
(X[1] is the most recent).

S A numeric vector of unique positive integers. Typically, S represents a set of
relevant lags.

matrixform Logical. If TRUE, the output is formatted as a stochastic transition matrix.

A A numeric vector of distinct integers representing the state space. If not pro-
vided, this function will set A <- sort(unique(X)).

warning Logical. If TRUE, the function warns the user when the state space is automati-
cally set as A <- sort(unique(X)).

20 raindata

Details

The probabilities are estimated as:

p̂(a|xS) =
N(xSa)

N(xS)

where N(xSa) is the number of times the sequence xS appeared in the sample followed by a, and
N(xS) is the number of times xS appeared (followed by any state). If N(xS) = 0, the probability
is set to 1/|A| (assuming a uniform distribution over A).

Value

A data frame or a matrix containing estimated transition probabilities:

• If matrixform = FALSE, the function returns a data frame with three columns:

– The past sequence xS (a concatenation of past states).
– The current state a.
– The estimated probability p̂(a|xS).

• If matrixform = TRUE, the function returns a stochastic transition matrix, where rows corre-
spond to past sequences xS and columns correspond to states in A.

Examples

X <- testChains[, 3]
probs(X, S = c(1, 30))
probs(X, S = c(1, 15, 30))

raindata Rain data set for the city of Canberra, Australia

Description

A data frame with the rainfall history in the city of Canberra, Australia. The data spans from
01/11/2007 to 25/06/2017.

Usage

raindata

Format

A data frame with 3525 rows and 2 columns. Each row corresponds to a day specified in column 1
("Date"). The value in column 2 ("RainToday") is 0 if no rain was recorded in the city of Canberra
that day, and 1 otherwise.

Date Date in YYYY-MM-DD format.

RainToday Binary indicator (0 = no rain, 1 = rain).

sleepscoring 21

Note

The original BOM data is subject to their Terms of Use. For direct access, visit the BOM website
manually: https://www.bom.gov.au/climate/data/ (may require browser access).

Source

Original data source: Australian Bureau of Meteorology (BOM). Accessed via: Kaggle (https:
//www.kaggle.com/datasets/jsphyg/weather-dataset-rattle-package).

Examples

data(raindata)

sleepscoring Data with sleeping patterns

Description

The dataset contains 136,925 rows and 7 columns, representing the sleeping patterns of 151 patients
over the course of one night, with measurements taken at 30-second intervals. It is a collection of
151 whole-night polysomno-graphic (PSG) sleep recordings (85 Male, 66 Female, mean age of
53.9 ± 15.4) collected during 2018 at the Haaglanden Medisch Centrum (HMC, The Netherlands)
sleep center.

Usage

sleepscoring

Format

A tbl_df object with 136,925 rows representing the sleeping patterns of 151 patients.

Patient Identifies the patient.

Date Date when the measurements where made.

Time Time each measurement was made.

Recorging.onset Time, in seconds, since the beginning of the recordings.

Duration The duration of each lag between recordings, in seconds.

SleepStage The annotated sleeping stage. ’W’ refers to wakefulness, ’R’ to REM sleep, and ’N1’,
’N2’, and ’N3’ refer to non-REM stages 1, 2, and 3 respectively.

ConscientLevel A measurement of the level of consciousness during different sleep stages. 0
indicates Wake, 1 represents REM sleep, and 2, 3, and 4 correspond to N1, N2, and N3 stages
respectively.

https://www.bom.gov.au/climate/data/
https://www.kaggle.com/datasets/jsphyg/weather-dataset-rattle-package
https://www.kaggle.com/datasets/jsphyg/weather-dataset-rattle-package

22 tempdata

Source

Alvarez-Estevez, D. & Rijsman, R. M. (2022). Haaglanden Medisch Centrum sleep staging database
(version 1.1). PhysioNet. doi:10.13026/t79qfr32

Alvarez-Estevez, D. & Rijsman, R. M. (2021). Inter-database validation of a deep learning approach
for automatic sleep scoring. PLOS ONE, 16(8), 1-27. doi:10.1371/journal.pone.0256111

Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G.,
Mietus, J. E., Moody, G. B., Peng, C. K. & Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and
PhysioNet: Components of a new research resource for complex physiologic signals. Circulation,
101(23), e215-e220. doi:10.1161/01.CIR.101.23.e215

Examples

data(sleepscoring)

tempdata Maximum temperatures in the city of Brasília, Brazil.

Description

A data frame with the maximum temperature of the last hour, by each hour, in the city of Brasília,
Brazil. The data spans from 01/01/2003 to 31/08/2024.

Usage

tempdata

Format

A data frame with 189936 rows and 3 columns. Each row corresponds to a time in a day specified
in columns 2 ("TIME") and 1 ("DATE") respectively. The value in column 3 ("MAXTEMP") is the
maximum temperature measured in the last hour, in Celsius (Cº), in the city of Brasília, the capital
of Brazil, located in the central-western part of the country.

DATE The day, from 01/01/2003 to 31/08/2024

TIME The time, form 00:00 to 23:00 each day

MAXTEMP The maximum temperature measured in the last hour in Celsius

Source

Meteorological data provided by INMET (National Institute of Meteorology, Brazil). Data collected
from automatic weather station in Brasília (latitude: -15.79°, longitude: -47.93°, altitude: 1159.54
m). Available at: https://bdmep.inmet.gov.br/

Examples

data(tempdata)

https://doi.org/10.13026/t79q-fr32
https://doi.org/10.1371/journal.pone.0256111
https://doi.org/10.1161/01.CIR.101.23.e215
https://bdmep.inmet.gov.br/

testChains 23

testChains MTD samples for tests

Description

A tibble with chains perfectly sampled from a MTD model. Each chain was sampled from the same
MTD model. Hence the differences between the samples are due to randomness within the perfect
sample algorithm.

Usage

testChains

Format

A tibble with 3000 rows and 3 perfectly sampled chains.

testChain1 perfectSample1,N=3000

testChain2 perfectSample2,N=3000

testChain3 perfectSample3,N=3000

Details

The MTD model from which the chains were sampled was created as follows:

set.seed(1)

pj <- list("p-1"=matrix(c(0.1,0.1,0.8,0.4,0.4,0.2,0.5,0.3,0.2), byrow = T,ncol = 3),

"p-30"=matrix(c(0.05,0.2,0.75,0.4,0.4,0.2,0.3,0.3,0.4), byrow = T,ncol = 3))

MTDseed1 <- MTDmodel(Lambda=c(1,30),A=c(1,2,3),lam0=0.05, lamj = c(0.35,0.6),pj=pj)

testChain1 <- perfectSample(MTDseed1,3000)

testChain2 <- perfectSample(MTDseed1,3000)

testChain3 <- perfectSample(MTDseed1,3000)

testChains <- dplyr::as_tibble(cbind(testChain1,testChain2,testChain3))

Source

Created in-house to serve as example.

Examples

data(testChains)

Index

∗ datasets
raindata, 20
sleepscoring, 21
tempdata, 22
testChains, 23

checkSample, 2
countsTab, 3
countsTab(), 5

dTV_sample, 4

freqTab, 5
freqTab(), 4, 5

hdMTD, 6
hdMTD(), 9–11, 13
hdMTD_BIC, 7
hdMTD_BIC(), 7
hdMTD_CUT, 10
hdMTD_CUT(), 7
hdMTD_FS, 11
hdMTD_FS(), 7
hdMTD_FSC, 12
hdMTD_FSC(), 7

MTDest, 14
MTDmodel, 16
MTDmodel(), 19

oscillation, 17
oscillation(), 17

perfectSample, 18
perfectSample(), 17
probs, 19

raindata, 20

sleepscoring, 21

tempdata, 22
testChains, 23

24

	checkSample
	countsTab
	dTV_sample
	freqTab
	hdMTD
	hdMTD_BIC
	hdMTD_CUT
	hdMTD_FS
	hdMTD_FSC
	MTDest
	MTDmodel
	oscillation
	perfectSample
	probs
	raindata
	sleepscoring
	tempdata
	testChains
	Index

